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Abstract. Feature construction is a pre-processing technique to create
new features with better discriminating ability from the original features.
Genetic programming (GP) has been shown to be a prominent technique
for this task. However, applying GP to high-dimensional data is still chal-
lenging due to the large search space. Feature clustering groups similar
features into clusters, which can be used for dimensionality reduction by
choosing representative features from each cluster to form the feature
subset. Feature clustering has been shown promising in feature selection;
but has not been investigated in feature construction for classification.
This paper presents the first work of utilising feature clustering in this
area. We propose a cluster-based GP feature construction method called
CGPFC which uses feature clustering to improve the performance of
GP for feature construction on high-dimensional data. Results on eight
high-dimensional datasets with varying difficulties show that the CGPFC
constructed features perform better than the original full feature set and
features constructed by the standard GP constructor based on the whole
feature set.

Keywords: Genetic programming, feature construction, feature clus-
tering, classification, high-dimensional data

1 Introduction

In machine learning, there has been an immense increase in high-dimensional
data such as microarray gene expression, proteomics, images, text, and web
mining data [34]. These datasets usually have thousands to tens of thousands of
features. This enormity leads to the curse of dimensionality that tends to limit
the scalability and learning performance of many machine learning algorithms,
including classification methods. Furthermore, they usually contain a significant
number of irrelevant and redundant features. The existence of these features not
only enlarges the search space but also obscures the effect of relevant features
on showing the hidden patterns of the data. As a result, they may significantly
degrade the performance of many learning algorithms [15].
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Feature construction (FC) has been used as an effective pre-processing tech-
nique to enhance the discriminating ability of the feature set by creating new
high-level features from the original features [12, 18]. In order to create new fea-
tures with better discriminating power, a FC method needs to select informative
features and appropriate operators to combine the selected features. Therefore,
the search space of the FC problem is very large, which requires a powerful
search technique for a FC method.

With a flexible representation and a global search technique, Genetic pro-
gramming (GP) [11] has been widely used in FC methods [8, 12, 18] in general
and in high-dimensional data [2, 27, 28] as well.

GP has been proposed as a FC method with filter, wrapper, or embedded ap-
proaches [7]. While wrapper methods evaluate constructed features based on the
performance of a learning algorithm, filter methods rely on the intrinsic charac-
teristics of the training data. As a result, wrapper methods usually achieve better
classification accuracy than filters. On the other hand, the later are usually faster
than the former. Since GP can also be used as a classification algorithm, GP
embedded FC methods have also been proposed where the constructed features
are evaluated by applying GP itself as a classifier to the training data.

Although GP has been shown promising in generating better discriminating
features than original features [18], its application to high-dimensional data is
still challenging. In a recent study [27], Tran et al. proposed a GP-based feature
construction method (or GPFC) that produced a combination of one constructed
feature and a set of features selected to construct it. Experiment results demon-
strated that GPFC is a promising approach on high-dimensional data. However,
since these datasets may have a large number of redundant features, there may
exist a high chance that GP selects redundant features to construct a new feature
from the whole feature set. Therefore, the performance of GP in constructing
new features may be degraded accordingly. Such a problem can be addressed if
GP can avoid choosing redundant features when constructing a new feature.

Feature clustering groups similar features into one cluster, which is different
from the common data mining task of clustering that groups similar instances
into clusters [3]. Based on the resulting clusters, one or several features from
each group can be chosen as representatives of each group. Using this approach,
feature clustering has been proposed and shown promising performance in many
feature selection methods [6, 10, 13, 24]. However, applying feature clustering to
FC is still limited.

Goals

This study proposes a cluster-based feature construction method called CGPFC
for high-dimensional data. CGPFC uses feature clustering to improve the perfor-
mance of GP for FC on high-dimensional data. Its performance will be compared
with the standard GP for feature construction (GPFC) proposed in [27]. Specif-
ically, we ask the following questions:

– How to automatically group features into clusters,



– Whether the proposed method can construct features with better discrim-
inating ability (better classification accuracy) than the original full feature
set and the one constructed by GPFC,

– Whether CGPFC can select a smaller number of features than GPFC to
construct a better new feature, and

– Whether the CGPFC combination sets perform better than those created
by GPFC.

2 Background

2.1 Genetic Programming for Feature Construction

When applying GP to FC, a constructed feature is usually represented as a
tree in which terminal nodes are features selected from the original feature set
and internal nodes are operators [12, 18]. Although GP has a built-in capability
to select good features based on the guide of fitness function, its performance
is still affected when applied to high-dimensional data due to the large search
space [27]. Therefore, it is critical to narrow this search space for GP performance
improvement.

Attempt to reduce the number of features in the GP terminal set has been
proposed for different applications. In [1], GP is proposed as a feature selection
method for high-dimensional data. The GP terminal set is a combination of 50
top ranked features selected by Information Gain and ReliefF methods. Results
show that GP achieves better feature subsets than baseline methods. However, it
is necessary to choose a good number of top ranked features. Furthermore, many
redundant features may still exist when combining selected features from the
two feature selection methods. Readers are referred to [33] for more examples.
In [17], GP is used to build c non-dominated sets of classifiers for a c-class
problem. In this method, GP uses a relevance measure combined with some
threshold as the probability of choosing features to form the trees. During the
evolutionary process, GP also eliminates features that do not appear in the
population. Results show that the proposed method achieves better classification
accuracy than the compared ones.

Results from the above studies have shown that helping GP select appropriate
features is critical for enhancing its performance. However, this approach has
not been investigated in GP for FC. Therefore, in this study, we propose to use
clustering to eliminate redundant features in order to improve GP performance
for FC.

2.2 Feature Clustering

Clustering or cluster analysis is one of the main tasks in exploratory data mining.
It aims to group similar objects into the same group or cluster. Literature has
proposed different clustering algorithms using different measures to evaluate the
similarity between objects as well as different ways of grouping objects [30].



Clustering has been used for decades as an unsupervised task where instances
are grouped into clusters based on the similarity between them [32]. In machine
learning and data mining, the “clustering” terminology is usually meant instance
clustering or instance grouping. Recently, clustering techniques have been pro-
posed to group similar features, thus called feature clustering, to achieve feature
selection [3]. Similar features are grouped into the same cluster. Then one or
more representative features from each cluster were used to form final subsets.
Clustering techniques and different strategies of using the resulting feature clus-
ters have been proposed in feature selection methods [14, 19, 26].

Correlation coefficient (CC) is a popular measure to evaluate feature depen-
dency or redundancy. To group redundant features, CC is used to replace the
proximity measure in the k-means clustering algorithm [9]. The final feature sub-
set is then formed by gathering the most relevant feature from each cluster. A
feature is considered as the most relevant of the cluster if its CC value with the
class label is the highest. Experiments on two datasets with hundreds of features
show a better result than a compared method and worse than the other. How-
ever, when k-means is used, the performance of the proposed method depends on
other methods in estimating the number of clusters. Feature clustering is used
as an approach to dimensionality reduction not only in classification but also in
regression. In [31], CC is used to calculate the input coherence Ic and output
incoherence Oc of each feature f to each feature cluster. Feature f is put into the
cluster with the highest Ic if its Ic and Oc values satisfy two predefined thresh-
olds. Then k new features are constructed from k clusters based on a weight
matrix. Results on four regression problems with 13 to 363 features showed that
the proposed method has better performance than the compared methods.

While CC measures the level of correlation between features, mutual infor-
mation indicates how much knowledge one can get for a variable by knowing
the value of another variable. Symmetric uncertainty (SU) [22], which is a nor-
malised version of information gain (IG) [23], is also used to identify irrelevant
and redundant features. A feature is considered irrelevant if it does not give any
information about the target concept or its SU with the class label is very small.
Two features are redundant if their mutual information or their SU is high [16].
For example, in [26], SU is combined with minimum spanning tree (MST) to
group features. Firstly, features are considered as irrelevant and removed if their
SU with the class label is lower than a predefined threshold. Then a MST is built
on the remaining features where SU between two features are used as the cost of
each edge. The MST is then partitioned into disconnected trees, each of which
contains features that have SU between them higher than their SU to the class.
The most relevant feature in each tree is chosen to form the final subset. Results
on 35 high-dimensional data including microarray, text and images showed that
the proposed method achieve better performance on micro-array data than the
state of the art feature selection methods.

Different from previous approaches, statistical clustering [21] takes into ac-
count interactions between features in evaluating feature redundancy. It is used
for the purpose of dimensionality reduction in [14, 19]. Particle swarm optimi-



sation is used to select features from each cluster to form the final subset. Per-
formances on UCI datasets of the proposed methods show promising results.
However, these statistical clustering algorithms are computationally expensive,
thus not suitable for high-dimensional data.

In summary, by reducing the number of redundant features in feature set,
feature clustering is a promising approach to feature selection. However, it has
not been investigated in GP for FC especially on high-dimensional data. In this
study, we propose to use feature clustering to automatically group features into
clusters and the best feature of each cluster will be chosen for FC.

3 The Proposed Approach

3.1 The Redundancy Based Feature Clustering Method: RFC

K-means is a well-known clustering algorithm. It is a simple and effective method.
However, it is essential to predefine a suitable number of clusters, which is not
easy especially in high-dimensional data with thousands to tens of thousands of
features. An inappropriate value may lead to clusters with uncorrelated or non-
redundant features. In addition, the number of clusters in feature clustering is not
as meaningful as the number of clusters in instance clustering, which represents
the number of different types of objects/instances. Therefore, instead of grouping
features based on a predefined number of clusters, in this study, we propose a new
algorithm to group features based on the redundancy levels between them (called
RFC). Different from the number of clusters, the redundancy or correlation level
of two features is a value in the range of 0 and 1, representing no and full
correlation between them, respectively. RFC uses a simple approach to ensure
that all features in the same cluster are redundant features with their correlation
level higher than a predefined threshold.

The main principle of RFC is to group features that have their redundancy
level higher than a given threshold. If two features X and Y have their CC(X,Y )
larger than this threshold, they will be grouped into the same cluster. In this
way, the number of clusters will be automatically determined. If a dataset has a
large number of redundant features, the number of clusters will be much smaller
than the number of features, and vice versa. Furthermore, using this strategy
enables us to ensure that the generated clusters include only features having their
correlation levels higher than or equal to the predefined redundancy threshold.

Algorithm 1 shows the pseudo code of RFC for a given training set and a
redundancy threshold θ. First of all, we analyse features to remove irrelevant
ones (lines 4-9). In this study, a feature is considered irrelevant if it does not
give any information about the class label. Since the class label is a discrete
variable, SU is a suitable measure for feature relevancy. Therefore, in this step,
all features whose SU with the class label are equal to zero will be removed.

SU between a feature X and the class C is calculated based on Eq.(1) which
gives a value between 0 and 1 representing no to full correlation, respectively. As
SU is an entropy-based measure, it can only be applied on category or nominal



Algorithm 1: The pseudo code of RFC
Input : Training data, redundancy threshold θ
Output: Clusters of features

1 begin
2 F ← ∅ ;
3 clusters← ∅ ;
4 for each feature fi in Training data do
5 su← SU(fi, class) (based on Eq.(1)) ;
6 if su > 0 then
7 F ← F ∪ {fi};
8 end

9 end
10 while (F 6= ∅) do
11 fi ← next feature in F ;
12 F ← F \ {fi};
13 new cluster ← {fi};
14 while (F 6= ∅) do
15 fj ← next feature in F ;
16 F ← F \ {fj};
17 cc← CC(fi, fj) (based on Eq.(3)) ;
18 if (cc > θ) then
19 new cluster ← new cluster ∪ {fj};
20 end
21 clusters← clusters ∪ new cluster;

22 end

23 end
24 Return clusters;

25 end

data. Therefore, we discretise data before calculating SU using MDL [5], which
is a popular discretisation method.

SU(X,C) = 2

[
IG(X|C)

H(X) +H(C)

]
(1)

where
IG(X|C) = H(X)−H(X|C) (2)

and H(X) is the entropy of X and H(X|C) is the conditional entropy of X given
C.

All remaining features are then grouped into exclusive or non-overlapped
clusters (lines 10-23). In this step, CC is used to measure redundancy level
between features because it can be directly applied to numerical data. Although
CC can only measure the linear relationship between variables, it has been shown
effective in many feature selection methods [9, 31]. The CC measure gives a value
between -1 and 1 whose absolute value represents the correlation level between
two features. Given that n is the number of instances in the dataset, CC between
feature X and Y is calculated based on Eq.(3) which gives a value in [0,1].

CC(X,Y ) =

∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

XiYi − nX̄Ȳ√√√√ n∑
i=1

X2
i − nX̄2

√√√√ n∑
i=1

Y 2
i − nȲ 2

∣∣∣∣∣∣∣∣∣∣∣∣
(3)



3.2 The Proposed Method: CGPFC

After grouping features into clusters, collection of the best features of each clus-
ter is used to construct one new feature. This section introduces the proposed
cluster-based feature construction method, called CGPFC. Note that while the
feature clustering algorithm (RFC) uses a filter measure to group features, the
feature construction algorithm follows the wrapper approach.

Representation. CGPFC aims at constructing a single feature using a tree-
based representation. Each GP individual has one tree which represents a con-
structed feature. We follow [27] to create a combination of the constructed and
selected features from the GP tree. Fig. 1 provides an example of creating this
combination from the best GP tree.

/

+ *

F7 F2 F2F4

GP Tree
 Constructed Feature (CF): (F7 + F2) / (F4 * F2)

 Selected Features: F2, F4, F7

 Combination set:    CF, F2, F4, F7

Fig. 1: Constructed Feature and Selected Features

Fitness Function. The cluster-based feature construction method developed
in this work follows the wrapper approach. All classification algorithms can be
used to evaluate the performance of the constructed feature. To evaluate a GP
individual, the training set is transformed based on the feature constructed by
the GP tree. Then the transformed training set classification performance is
tested using L-fold cross validation (CV). The average accuracy is used as the
fitness of the individual.

Since many of the high-dimensional datasets are unbalanced data, the bal-
anced classification accuracy [20] is used in this fitness function. Given c as the
number of classes, TPi as the number of correctly identified instances in class
i, and |Si| as the total number of instances in class i, the balanced accuracy
is calculated based on Eq. (4). Since no bias is given to any specific class, the
weight here is set equally to 1/c.

fitness =
1

c

c∑
i=1

TPi

|Si|
(4)

Overall Algorithm. Algorithm 2 describes the pseudo code of CGPFC. Given
a training set and a redundancy threshold, the algorithm will return the combi-
nation of one constructed feature and the selected features constructing it.

First of all, the feature clustering procedure RFC is called to create a set of
clusters from the training data. The most relevant feature (based on SU measure)



Algorithm 2: The pseudo code of CGPFC
Input : Training data, redundancy threshold θ
Output: Constructed feature and selected features

1 begin
2 clusters← RFC(Training data, θ);
3 Initialise population using the best feature in each cluster of clusters;
4 while Maximum iterations or the best solution is not found do
5 for i = 1 to Population Size do
6 transf train← Calculate constructed feature of individual i on Training data

(transf train has only one new feature) ;
7 Evaluate transf train using the learning algorithm with L-fold CV;
8 fitness← average test accuracy based on Eq.(4);

9 end
10 Select parent individuals using tournament;
11 Create offspring individuals by applying crossover or mutation on the selected

parents;
12 Place new individuals into the population of the next generation;

13 end
14 Return the constructed feature and selected features in the best individual;

15 end

in each cluster is employed to initialise GP individuals. Lines 5-9 are used to
evaluate GP individuals. The loop of evaluation-selection-evolution (lines 4-13)
is executed until the stopping criteria are met.

4 Experiment Design

This section will describe the details of the experiments including datasets, pa-
rameter settings as well as configuration for the whole system.

Datasets. Eight binary-class gene expression datasets with thousands of fea-
tures are used to examine the performance of the proposed method on high-
dimensional data. These datasets are publicly available at http://www.gems-
system.org, and http://csse.szu.edu.cn/staff/zhuzx/Datasets.html.

Table 1: Datasets

Dataset #Features #Instances Class Distribution
Colon 2,000 62 35% - 65%
DLBCL 5,469 77 25% - 75%
Leukemia 7,129 72 35% - 65%
CNS 7,129 60 35% - 65%
Prostate 10,509 102 50% - 50%
Ovarian 15,154 253 36% - 64%
Alizadeh 1,095 42 50% - 50%
Yeoh 2,526 248 83% - 17%

Table 1 describes these datasets in detail. It can be seen that these datasets
have a small number of instances compared to the number of features. These
datasets are challenging tasks in machine learning due to the curse of dimen-
sionality issue. On top of this challenge, these are also unbalanced data with
very different percentage of instances in each class as shown in the last column
of the table.



Furthermore, gene expression data usually contains substantial noise gener-
ated during the data collection in laboratories. Therefore, discretisation is ap-
plied to reduce noise as suggested in [4]. Each feature is first standardised to
have zero mean and unit variance. Then its values are discretised into -1, 0 and
1 representing three states which are the under-expression, the baseline and the
over-expression of gene. Values that fall in the interval [µ−σ/2, µ+σ/2], where
µ and σ are mean and standard deviation of the feature values, are transformed
to state 0. Values that are in the left or in the right of this interval will be
transformed to state −1 or 1, respectively.

Parameter Settings. Table 2 shows the parameter settings for GP. The func-
tion set includes four basic arithmetic operators and three functions that used
to construct a numeric feature from the selected features and random constants.
Since the numbers of features in these datasets are quite different, ranging from
about two thousand to fifteen thousand, the search spaces of these problems
are very different. Therefore, we set the population size proportional to the ter-
minal set size or the number of clusters (#clusters · α). α is set to 20 in this
experiment. The mutation rate is set to 0.2, but after generation 10 it gradually
increases with a step of 0.02 in every generation to avoid stagnation in local op-
tima. The crossover rate is also updated accordingly to ensure the sum of these
two rates always equal to 1. The redundancy threshold is empirically set to 0.9.
The stopping criterion is either GP reaches the maximum generation or the best
solution is found.

Table 2: GP Parameter Settings

Function set +, −, ×, %, min, max, if
Terminal set Features and random constant values
Population size #clusters · α
Maximum generations 50
Initial population Ramped Half-and Half
Initial maximum tree depth 2
Maximum tree depth 17
Selection method Tournament Method
Tournament size 7
Crossover rate 0.8
Mutation rate 0.2
Elitism True
Redundancy threshold 0.9

Experiment Configuration. To test the performance of CGPFC, we com-
pared the discriminating ability of the constructed feature versus the original
features and the one constructed by the standard GP [27] based on the classifi-
cation accuracy of K-nearest neighbour (KNN), Naive Bayes (NB) and Decision
Tree (DT). This comparison is also conducted on the combination feature set of
the constructed and the selected features.

Due to the small number of instances in each dataset, two loops of CV are
used to avoid feature construction bias as described in [27]. The outer loop uses
a stratified 10-fold CV on the whole dataset. One fold is kept as the test set to
evaluate the performance of each method, and the remaining 9 folds are used
to form the training set for feature construction and classifier training. In the



fitness function, an inner loop of 3-fold CV within the training set is run to
evaluate the evolved feature (see Section 3.2). The learning algorithm used for
fitness evaluation is Logistic Regression (LR) - a statistical learning method. We
choose LR because it can help in scaling the constructed feature to determine the
probabilities of each class through the use of a logistic function. Therefore, it can
effectively test the ability of GP-constructed feature in discriminating classes.

Since GP is a stochastic algorithm, we run CGPFC on each dataset 30 times
independently with different random seeds and report the average results to
avoid statistical variations.

Therefore, a totally 300 runs (30 runs combined with 10-fold CV) are exe-
cuted on each dataset. Experiments were runs on PC with Intel Core i7-4770
CPU @ 3.4GHz, running Ubuntu 4.6 and Java 1.7 with a total memory of 8GB.
The results of 30 runs from each method were compared using Wilcoxon statis-
tical significance test [29], with the significance level of 0.05.

5 Results and Discussions

5.1 Performance of The Constructed Feature

Table 3 shows the average test results of 30 independent runs of the proposed
method (CGPFC) compared with “Full” (i.e. using the original feature set)
and the GPFC [27]. The number of instances in each dataset is also displayed in
parentheses under its name. Column “#F” shows the average size of each feature
set. The following columns display the best (B), mean and standard deviation
of the accuracy (M±Std) obtained by KNN, NB and DT on the corresponding
feature set. The highest average accuracy of each learning algorithm for each
dataset is bold. Columns S1, S2, and S3 display the Wilcoxon significance test
results of the corresponding method over CGPFC with significance level of 0.05.
“+” or “–” means that the result is significantly better or worse than CGPFC
and “=” means that their results are similar. In other words, the more “–”, the
better the proposed method.

CGPFC Versus Full. It can be seen from Table 3 that using only a single
constructed feature by CGPFC, KNN obtains significantly better results than
Full on 6 out of the 8 datasets. The highest improvement in the average accuracy
is 8% on Ovarian and Yeoh, and 14% in the best result of Colon dataset. On
Alizadeh, it achieves a similar performance on average and 10% higher than Full
in the best case. Only on CNS, does CGPFC obtain slightly worse results than
Full, however, still 7% better accuracy in the best case. With 7129 features and
only 60 instances, this dataset can be considered as the most challenging dataset
among the eight. With a small number of training instances, it is hard for GP
to construct a feature that is generalised well to the unseen data.

Similar to KNN, the constructed feature by CGPFC also helps NB achieve
4% to 27% higher accuracy than Full on 5 datasets. Using only 1 constructed
feature on Prostate, the best accuracy NB can achieve is 32% higher than Full.



Table 3: Test Accuracy of The Constructed Feature

Dataset Method #F B-KNN M±Std-KNN S1 B-NB M±Std-NB S2 B-DT M±Std-DT S3

Colon
(62)

Full 2000 74.29 – 72.62 – 74.29 –
GPFC 1 79.28 71.40 ±4.46 – 78.81 69.64 ±4.17 – 79.28 72.25 ±4.07 –
CGPFC 1 88.81 77.56 ±4.47 88.81 77.96 ±4.16 88.81 78.08 ±4.05

DLBCL
(77)

Full 5469 84.46 – 81.96 – 80.89 –
GPFC 1 96.07 86.65 ±3.76 – 92.32 86.27 ±4.28 – 94.64 86.51 ±4.08 –
CGPFC 1 94.64 88.62 ±2.92 94.64 88.74 ±2.90 94.64 88.62 ±2.92

Leukemia
(72)

Full 7129 88.57 – 91.96 + 91.61 =
GPFC 1 94.46 89.03 ±2.71 – 93.21 87.26 ±4.44 – 95.89 88.97 ±2.96 =
CGPFC 1 95.89 90.65 ±3.21 97.32 90.73 ±3.16 95.89 90.65 ±3.21

CNS
(60)

Full 7129 56.67 + 58.33 + 50.00 –
GPFC 1 70.00 57.56 ±5.87 = 70.00 58.44 ±5.94 = 70.00 57.78 ±6.05 =
CGPFC 1 63.33 55.06 ±3.85 63.33 56.00 ±2.89 63.33 56.00 ±3.02

Prostate
(102)

Full 10509 81.55 – 60.55 – 86.18 –
GPFC 1 90.18 83.72 ±3.18 – 90.18 83.18 ±3.68 – 90.18 83.82 ±2.85 –
CGPFC 1 92.27 87.40 ±3.62 92.27 87.31 ±3.51 92.27 87.40 ±3.62

Ovarian
(253)

Full 15154 91.28 – 90.05 – 98.42 –
GPFC 1 99.62 97.86 ±1.22 – 99.62 97.22 ±1.48 – 99.62 97.89 ±1.18 –
CGPFC 1 100.00 99.37 ±0.48 100.00 99.37 ±0.48 100.00 99.37 ±0.48

Alizadeh
(42)

Full 1095 77.00 = 92.50 + 78.50 =
GPFC 1 86.00 77.88 ±5.53 = 88.50 76.52 ±5.85 = 86.00 77.20 ±5.84 =
CGPFC 1 87.50 77.12 ±5.85 87.50 76.88 ±6.06 87.50 77.20 ±6.11

Yeoh
(248)

Full 2526 89.97 – 93.57 – 97.57 =
GPFC 1 99.17 97.04 ±1.01 = 97.57 95.11 ±2.72 – 99.17 97.05 ±0.99 –
CGPFC 1 98.77 97.32 ±1.59 98.77 97.38 ±0.84 98.77 97.71 ±0.67

On Leukemia and CNS, although NB obtains 1% and 2% average result lower
than Full, its best accuracy is still 6% and 5% higher, respectively. On Alizadeh,
the accuracy of CGPFC constructed feature is significantly lower than Full. We
also note that the accuracy of NB on the Full feature set of this dataset is much
higher than KNN and DT.

DT also gets benefit from the constructed feature, shown as significantly
improvement in its performance on 5 datasets and obtaining a similar result on
the remaining datasets. The highest improvement is on DLBCL with 8% increase
on average and 14% in the best case. Although the average accuracy is slightly
worse on two datasets, namely Leukemia and Alizadeh, the best accuracy DT
obtained for each dataset is always higher than Full.

In general, over 24 comparisons between CGPFC and Full on 8 datasets
and 3 learning algorithms, the constructed feature by CGPFC wins 16, draws
4 and loses 4. The results indicate that the CGPFC constructed feature has
much higher discriminating ability than the original feature set with thousands
of features.

CGPFC Versus GPFC. Compared with GPFC, CGPFC helps KNN further
improve its results to achieve the best results on 6 out of the 8 datasets. The
result is significantly better than GPFC on 5 datasets and similar on the other
three. Similarly, using the CGPFC constructed feature, NB obtains significantly
better results than using GPFC constructed feature on 6 datasets with the high-
est improvement of 8% on Colon. Applying the CGPFC constructed feature
on DT also gives similar results as KNN with significantly improvement on 5
datasets and equivalent on the remaining ones.



In summary, the CGPFC constructed feature wins 16, draws 8, loses 0 out
of the 24 pairs of comparisons. The results show that by reducing the irrelevant
and the redundant features in the GP terminal set, the constructed feature has a
better discriminating ability than the one constructed from the full feature set.

5.2 Performance of The Constructed and Selected Features

In GP-based method, there is a built-in feature selection process which selects
informative features from the original set to construct the new feature. Results
in [27] has shown that the combination of these selected features and the con-
structed feature from the GP tree has better performance than other combina-
tions of the constructed and original features. This finding is also supported in
this study with an even better results.

The average size of this combination created by GPFC and CGPFC over the
30 runs is shown in Fig. 2. The average accuracy of the three learning algorithms,
namely KNN, NB and DT, on this combination are shown in Fig. 3, 4, and 5,
respectively. In these figures, each group of bars shows the results of GPFC
and CGPFC on each dataset. On the CGPFC bars, results of the significance
test comparing CGPFC against GPFC are displayed. “+” and “–” mean that
CGPFC is significantly better or worse than GPFC. “=” means that they are
similar.

First of all, let us examine the size of this combination of features. Since both
methods construct only one feature, the difference between their sizes comes from
the different numbers of distinct features they select. It can be seen from Fig. 2
that CGPFC always select a much smaller number of features than GPFC. On
four datasets, namely DLBCL, Leukemia, Ovarian and Alizadeh, CGPFC selects
less than half the number of features selected by GPFC. With a smaller number
of selected features, if the CGPFC combination sets have better classification
performance than those created by GPFC, it can be inferred that the selected
features by CGPFC have better discriminating power than those selected by
GPFC.

Results in Fig. 3 show that the CGPFC combination sets obtain a higher
KNN accuracy than those created by GPFC on 7 out of the 8 datasets. This
result is significantly better on 5 datasets and similar on the other three. Sim-
ilar patterns are seen in Fig. 4 and 5 for NB and DT with significantly better
results on 4 and 5 datasets, respectively. In general, CGPFC either improves or
maintains the performance of GPFC on all the 8 datasets.

As can be seen in Fig. 2-5, the error bars of CGPFC are always smaller than
the corresponding error bar of GPFC in all datasets. This indicates that CGPFC
produces more robust results than GPFC.

Results from the combination of constructed and selected features on the
8 datasets show that CGPFC uses a smaller number of features to construct a
new feature with better discriminating ability than GPFC. This indicates that by
reducing the number of redundant features in the terminal set, feature clustering
helps GP to improve its performance.
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Fig. 3: KNN Accuracy of CFTer.
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5.3 Cluster Analysis

To validate the structure of the clusters generated by our algorithm, in this
section, we investigate the cohesion or compactness within each cluster as well
as the separation or isolation between different clusters.

Silhouette analysis [25] is a popular method to study both the cohesion and
the separation of clusters. Eq. (5) displays the calculation of the silhouette coef-
ficient of a feature i in which ai is the average distance of feature i to all other
features in its cluster, and bi is the minimum average distance of feature i to
other clusters. Given that ci is the cluster that includes feature i, and ck is other
clusters, CC(fi, fj) is the CC between features i and j, ai and bi are calculated
based on Eq. (6) and (7). Since the CC (see (Eq. 3)) measures the correlation
level or similarity between 2 features and has a value between 0 and 1, we use
(1 - CC) as a distance or dissimilarity measure between them.

si =
(bi − ai)

max(ai, bi)
(5)

where

ai =
1

size(ci)

size(ci)∑
j=1

(1− CC(fi, fj)), i 6= j (6)

bi = min
∀ck 6=ci

(
1

size(ck)

size(ck)∑
j=1

(1− CC(fi, fj))) (7)



The value of the silhouette coefficient ranges from -1 to 1, where -1 is the
worst and 1 is the best case. Average silhouette coefficient (ASC) of all features
is an overall measure indicating the goodness of a clustering. Since the exper-
iments were conducted based on a 10-fold CV framework on each dataset, we
calculate the ASC for each fold and report the average of 10 ASCs. Table 4
shows the original number of features, the average number of clusters generated
with redundancy level of 0.9, the percentage of dimensionality reduction, and
the average of ASC of clustering on each dataset.

Table 4: Cluster Analysis

Dataset #Features #Clusters %Dimensionality
reduction

Silhouette
coefficient

Colon 2000 104.10 0.95 0.80
DLBCL 5469 819.20 0.85 0.96
Leukemia 7129 901.30 0.87 0.98
CNS 7129 79.30 0.99 1.00
Prostate 10509 1634.80 0.84 0.85
Ovarian 15154 601.20 0.96 0.31
Alizadeh 1095 93.60 0.91 0.94
Yeoh 2526 97.60 0.96 1.00

As can be seen from the fourth column of Table 4, all datasets obtain at least
84% of dimensionality reduction after the proposed feature clustering algorithm
is applied. The number of input features into GP is significantly reduced with
the largest reduction of 99% on CNS and 96% on Ovarian and Yeoh. The third
column of Table 4 also shows differences in the number of clusters generated
on different datasets regardless of its original number of features. For example,
CNS has much smaller number of clusters than Colon although its feature set
size is more than three times larger than Colon. The silhouette coefficient of each
dataset is quite good except for Ovarian, where features in different clusters are
still correlated but with a smaller level than 0.9. Even though its silhouette
coefficient is not good enough, the results of this dataset shown in Table 3 and
Fig. 3-5 reveal that feature clustering method enables the constructed feature
perform significantly better than the feature constructed from the whole feature
set.

6 Conclusions and Future Work

This study is the first work that aims to apply feature clustering to GP for FC
in classification in order to improve its performance on high-dimensional data.
The goal has been achieved by proposing a new feature clustering algorithm to
cluster redundant features in one group based on a correlation or redundancy
level. Then the best feature from each cluster is fed into GP to construct a
single new high-level feature. Performance of the constructed and/or selected
features is tested on three different classification algorithms. Results on eight
gene expression datasets have shown that feature clustering helps GP construct
features with better discriminating ability than those generated from the whole
feature set.

The clustering technique proposed in this study has an advantage of auto-
matically determining the number of clusters. It guarantees that features in one



cluster have their correlated level higher than the given redundancy level. Al-
though determining a redundancy level is easier than the number of clusters as
in the case of K-means clustering technique, the proposed method still has some
limitations, such as features in different clusters may also correlated to each
other with a lower level than the given threshold. Furthermore, the proposed
feature clustering method is threshold sensitive. These limitations can be solved
by integrating feature clustering into feature construction process so that the
performance of GP could be used to automatically adjust the feature clusters.
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