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Mutual information for feature selection: estimation or counting?
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Abstract In classification, feature selection is an important

pre-processing step to simplify the dataset and improve the

data representation quality, which makes classifiers

become better, easier to train, and understand. Because of

an ability to analyse non-linear interactions between fea-

tures, mutual information has been widely applied to fea-

ture selection. Along with counting approaches, a

traditional way to calculate mutual information, many

mutual information estimations have been proposed to

allow mutual information to work directly on continuous

datasets. This work focuses on comparing the effect of

counting approach and kernel density estimation (KDE)

approach in feature selection using particle swarm opti-

misation as a search mechanism. The experimental results

on 15 different datasets show that KDE can work well on

both continuous and discrete datasets. In addition, feature

subsets evolved by KDE achieves similar or better classi-

fication performance than the counting approach. Further-

more, the results on artificial datasets with various

interactions show that KDE is able to capture correctly the

interaction between features, in both relevance and

redundancy, which can not be achieved by using the

counting approach.

Keywords Mutual information � Feature selection �
Classification � Particle swarm optimisation

1 Introduction

Nowadays, under the development of technology, many

real-world problems have a large number of features,

which causes difficulties to machine learning tasks, such as

classification. Particularly, there might be some noisy or

irrelevant features, which do not provide any useful

information to the class label and may also deteriorate the

classification accuracy. In addition, some redundant fea-

tures provide exactly the same information as other fea-

tures, which results in a longer training time without any

improvement in the classification performance. In such

cases, dimensionality reduction is necessary to reduce

imprecise, misleading and redundant information. A

smaller number of relevant features is useful to avoid ‘‘the

curse of dimensionality’’, which can lead to improvements

in both quality and training speed of classification

algorithms.

Dimensionality reduction can be classified into two

main groups: feature extraction and feature selection. In

feature extraction, a new feature set is created based on the

original feature set [1]. The new feature set usually con-

tains a smaller number of features than the original set.

Some well-known feature extraction techniques are Prin-

ciple Component Analysis (PCA) [2], Independent Com-

ponent Analysis (ICA) [3]. Feature selection selects a small

feature subset from the original large feature set. The

selected features are expected to maintain or increase the

useful information about the class label over using all

features. Feature selection aims to reduce the feature set

size by removing redundant and irrelevant features.
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However, feature selection is not an easy task due to its

large search space. Suppose that there are n original fea-

tures, then the total number of possible feature subsets is

2n. So the search space’s size exponentially grows with

respect to the number of features. An exhaustive search

approach, which considers all possible feature subsets,

guarantees to select an optimal feature subset. However, it

is too slow to perform in most cases. To improve the

efficiency, some greedy feature selection approaches are

proposed, for instance sequential forward selection [4] and

sequential backward selection [5]. However, these

sequential searches usually get stuck at local optima due to

the complicated search space of feature selection. Evolu-

tionary computation (EC) algorithms, such as genetic

algorithms (GAs), genetic programming (GP), ant colony

optimisation (ACO) and particle swarm optimisation

(PSO), have been well-known because of their global

search ability, which are suitable mechanisms to cope with

large search problems like feature selection. Therefore,

recently EC has been widely applied to feature selec-

tion,which can be seen in a comprehensive survey about

EC-based feature selection algorithms done in [6]. Among

EC techniques, PSO is preferred because it has a natural

representation for feature selection, in which each position

entry corresponds to an original feature. In addition, PSO

also has fewer parameters and converges more quickly than

other EC algorithms. In some applications, especially

computer vision, it has been shown that PSO is faster than

GAs for achieving the same performance [7].

Beside the huge search space, feature selection is a chal-

lenging task because of the complicated interactions between

features. On the one hand, two or more weakly relevant

features might become significantly useful when working

with each other, which is known as ‘‘complementary fea-

tures’’. On the other hand, two relevant features might

become redundant when working with each other because

they provide the same information. The feature interaction is

hard to capture because there can be multi-way interactions.

A good evaluation criterion of feature subsets needs to be

able to handle this difficulty. According to the evaluation

criterion, existing feature selection methods can be classified

into three main categories: wrapper, filter and embedded

approaches [8, 9]. In a wrapper approach, a specific classi-

fication algorithm is used to evaluate the selected feature

subset. In other words, the classification accuracy reflects the

goodness of a feature subset. Meanwhile, filter approaches,

which are done in an independent way of learning algo-

rithms, use statistic characteristics of the data to evaluate the

feature subset. Therefore, wrapper approaches usually

achieve better classification accuracy than filter approaches.

However, the filter approach has better generality, which

means that its selected features can be applied to different

classification algorithms rather than only a wrapped

classification algorithm like wrappers. Additionally, filters

usually have less expensive computation cost than wrappers

because they do not involve any classification process. In an

embedded approach, the feature subset is selected during the

training period of a classification algorithm. An example of

the embedded approach is the decision tree classification

algorithm, in which all features used in the trained tree are

considered an important feature subset.

Filter approaches have been investigated by many

researchers, who have proposed a large number of filter

measures, such as Fisher score [10], Consistency measure

[11], Correlation measure [12] and Mutual information

[13]. Among these filter measures, mutual information

gains more attention because it is able to detect non-linear

correlation between features. Further more, mutual infor-

mation is capable to analyse the interaction between mul-

tiple features while other filter measures, like correlation

measure, are limited to two-way interaction between fea-

tures or between a single feature and the class label.

However, currently most of MI-based feature selection

algorithms count the number of instances in a dataset to

derive probability distributions and mutual information.

This counting approach can result in an inaccurate mutual

information when there are not enough instances. In

addition, the counting approach is applicable to only dis-

crete datasets. To overcome these limitations, several

estimation methods have been proposed to estimate mutual

information [14]. Recently, we [15] proposed the first

work, in which mutual information estimation and PSO are

incorporated to achieve feature selection. The experimental

results showed that mutual information estimation could

guide PSO to evolve better feature subsets than the

sequential search using the counting approach. However,

due to the page limit, the comparisons between estimation

approach and counting approach using the same search

mechanism were not conducted and the feature interaction

information was not analysed deeply. Therefore, this work

will provide a detail comparison between estimation and

counting approach using PSO as a search technique.

Goals The overall goal of this paper is to extend our

work in [15] by inspecting mutual information estimation

in more detail. Specifically, we will investigate:

• Whether mutual information estimation for feature

selection can work well on both discrete and continuous

datasets. Note that in this paper, a discrete dataset

means that its features are ordinal numeric features,

• Whether mutual information estimation can achieve

better performance than counting in terms of the

classification performance and

• Whether mutual information estimation can capture the

interactions between features better than the counting

approach.
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2 Background

2.1 Particle swarm optimisation (PSO)

Particle Swarm Optimisation (PSO) is proposed in [16],

which is inspired from social behaviour such as bird

flocking and fish schooling. In PSO, a problem is optimised

by using a set of particles, called a swarm. Each particle is

a candidate solution, which is represented by a position in

the search space. The particle moves around the search

space by using a velocity. Both particle’s velocity and

position are vectors of numbers, which have the same size

as the number of dimensionality of the search space. The

velocity of a particle is determined by its own best position,

called pbest, and its neighbours’ best position, called gbest.

Each velocity component is limited by a predefined max-

imum velocity, called vmax. The position and velocity of

particle i, denoted by x and v, are updated according to the

following equations:

vtþ1
id ¼w� vtid þ c1 � ri1 � ðpid � xtidÞ þ c2 � ri2 � ðpgd � xtidÞ

ð1Þ

xtþ1
id ¼xtid þ vtþ1

id ð2Þ

where t denotes the tth iteration in the search process, d is

the dth dimension in the search space, vtid and xtid represents

the dth entry of the ith’s velocity and position respectively,

w is an inertia weight, c1 and c2 are acceleration constants,

ri1 and ri2 are random values uniformly distributed in [0,1],

pid and pgd represent the position entry of pbest and gbest

in the dth dimension, respectively.

2.2 Information theory

Entropy, one of the core concepts in information theory [17],

is used to measure the uncertainty or the amount of infor-

mation of a random variable. Given X is a discrete variable,

its entropy can be calculated by the following formula:

HðXÞ ¼ �
X

x2X
PðX ¼ xÞ � log2 PðX ¼ xÞ ð3Þ

Entropy can be extended to measure the uncertainty of a

joint variable, which consists of more than one random

variable. The joint entropy can be defined as:

HðX1; . . .;XnÞ ¼ �
X

xi 2 Xi

i ¼ 1. . .n

pðx1; . . .; xnÞ � log2 pðx1; . . .; xnÞ

ð4Þ

where pðx1; . . .; xnÞ ¼ PðX1 ¼ x1; . . .;Xn ¼ xnÞ
Mutual information is another important concept in

information theory. Mutual information is used to calculate

the common information between two random variables.

Mutual information is a symmetric measure, which is

defined by the following formula:

MIðX; YÞ ¼ HðXÞ þ HðYÞ � HðX; YÞ

¼ �
X

x2X;y2Y
pðx; yÞ � log2

pðx; yÞ
pðxÞpðyÞ

ð5Þ

where p(x, y) is the joint probability distribution function.

According to Eq. (5), if X and Y are totally independent,

which means pðx; yÞ ¼ pðxÞ � pðyÞ, then the mutual

information between X and Y becomes 0. On the other

hand, if there is a strong relationship between X and Y then

MI(X;Y) will be large. If X and Y are two continuous

variables, mutual information is extended by replacing the

summation by a definite double integral as below:

MIðX; YÞ ¼
Z

X

Z

Y

pðx; yÞ � log2
pðx; yÞ
pðxÞpðyÞ dxdy ð6Þ

where p(x), p(y) and p(x, y) are probability density functions.

Mutual information is also extended in many ways to

measure the common information between more than two

random variables. Suppose that S is a joint variable, which

consists of m single variables. Multi-variate information

(MvI) or interaction information is used to measure the

common between all variables’ information. The interac-

tion information of a joint variable S ¼ fs1; . . .; smg is

calculated using Eq. (7).

MvIðSÞ ¼ �
X

U�S

ð�1ÞjSj�jUj
HðUÞ ð7Þ

Meanwhile, there is another extension of MI, called ‘‘total

correlation information’’ (TCI) [18], which measures the

common information between any variable subsets of S.

Since TCI can capture the interaction between variables, it

is more suitable for feature selection. TCI can be computed

by using the following equation:

TCIðSÞ ¼
X

si2S
HðsiÞ � Hðs1; s2; . . .; smÞ ð8Þ

where m is the total number of single feature/variable (si)

in the joint feature/variable (S).

2.3 Related work on feature selection

A basic version of feature selection is feature ranking [8],

where a score is assigned to each feature according to an

evaluation criterion. Feature selection can be achieved by

selecting the features with the highest scores. However,

this type of algorithm ignores the interaction between

features. Additionally, the features with the highest scores

are usually similar. Therefore, the algorithm tends to select

redundant features.
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Sequential search techniques are also applied to solve

feature selection problems. In particular, sequential for-

ward selection (SFS) [4] and sequential backward selection

(SBS) [5] are proposed. At each step of the selection pro-

cess, SFS (or SBS) adds (or removes) a feature from an

empty (full) feature set. Although these local search tech-

niques achieve better performance than the feature ranking

method, they might suffer ‘‘nesting’’ problem, in which

once a feature is added (or removed), it cannot be removed

(or added) later. In order to avoid the nesting effect, Stearns

et al. [19] proposed a ‘‘plus-l-take away-r’’ method in

which SFS was applied l times forward and then SBS was

applied for r back tracking steps. However, it is challeng-

ing to determine the best values of (l, r). This problem is

addressed by sequential backward floating selection

(SBFS) and sequential forward floating selection (SFFS),

proposed in [20]. In SBFS ad SFFS, the values (l, r) are

dynamically determined rather than being fixed in the

‘‘plus-l-take away-r’’ method.

Besides sequential searches, PSO was also widely

applied to solve feature selection problems. Many ideas

have been proposed to improve the performance of PSO-

based feature selection algorithms. These ideas include

modifications in the initialisation strategy, representation,

fitness function or search mechanisms. Three initialisation

strategies, which followed the sequential feature selection

procedure, were proposed by Xue et al. [21]. These

strategies used different proportions of the original feature

set to initialise all particles. In comparison to a standard

PSO, the proposed mechanisms evolved better feature

subsets, which had a smaller number of features and

achieved higher classification performance. Bharti et al.

[22] proposed a PSO based feature selection algorithm

which applied opposition chaotic method. Firstly, opposi-

tion chaotic was used to initialise the swarm by selecting

the top feature subsets which were generated on two

opposite sides. Opposition chaotic also helped to dynami-

cally update the PSO parameters and mutate gbest. The

experimental results on 3 text datasets showed that the

proposed algorithm could evolve informative feature sub-

sets with in short convergent times.

Along with the initialisation, a representation also

played an important role in PSO. A PSO representation was

proposed in [23] to achieve feature selection and optimise

support vector machine (SVM) kernel parameters at one

time. Besides bits for the original feature set, the new

representation had additional bits for optimising the kernel

parameters. In comparison with other EC based feature

selection algorithms [24–26], the proposed algorithm

evolved better feature subsets, which had a smaller number

of features and achieved higher accuracy. However, the

proposed representation increased the complexity of the

search space due to additional bits for kernel parameters. In

addition, the algorithm was specific designed for SVM

classification algorithm. To reduce the dimensionality of a

particle, Lane et al. [27] proposed a representation for PSO

based on statistical feature clustering. Each position entry

represented for a feature cluster, which allowed selecting

only one feature from a cluster. The idea was extended in

[28] by applying Gaussian distribution to allow more than

one features selected from a cluster. Later, Nguyen et al.

[29] also applied statistical clustering to proposed a new

representation, which had lower dimensionality than the

traditional representation. In the proposed algorithm, a

maximum number of selected features from each cluster

was pre-defined. Each bit string represents a feature index

from a feature cluster. Although each bit in this represen-

tation was a real number, the particle still could not move

smoothly in the continuous search space. This problem was

addressed by a new transformation rule [30], which based

on the Gaussian distribution to form a smoother fitness

landscape.

Premature convergence is a typical problem of PSO

especially when searching in a complicated search space

problem like feature selection. In order to avoid this

problem, Chuang et al. [24] proposed a gbest resetting

mechanism, which set all gbest position’s elements to zero

when the best fitness did not change for a number of

iterations. Gbest resetting mechanism was also used with

local searches on pbest in [31] to further reduce the

number of selected features while still improving the

classification accuracy. The efficiency of the proposed

feature selection algorithm was also improved by consid-

ering the changed features only. However, this algorithm

was specifically designed for k nearest neighbour classi-

fication algorithm.

PSO was also used with other search techniques to

achieve feature selection. For instance, in [32], PSO

cooperated with GAs during the evolutionary process to

solve feature selection problems. Particularly, in each

iteration, the top individuals were selected to be enhanced

by both PSO and GAs. Therefore, in the next generation,

half of the springs were from PSO and the other half were

produced by GA’s crossover and mutation operations. The

experimental results show that the proposed algorithm

could evolve informative feature subsets in accept-

able computation times.

2.3.1 Information theory-based feature selection

Freeman et al. [33] did a comprehensive evaluation about

the effect of different filter measures on two common

classification algorithms, k-nearest neighbour and support

vector machine. The experimental results showed that

mutual information was able to evolve good feature subsets

for both classification algorithms.
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Based on the idea of ‘‘Max-relevance and min-redun-

dancy’’ [34], mutual information was used to form fitness

functions, which aimed to find a feature subset with a

minimal redundancy within the subset and a maximal rel-

evance between the subset and the class label. However,

this work only considered two-way mutual information,

which measured the common information between either

two features or between a feature and the class label. In

addition, sequential searches were used as the searching

mechanism, which made the proposed algorithm easy to be

trapped in local optima. The proposed work was improved

in Estévez et al. [35], which introduced normalised mutual

information. Since mutual information favoured features,

which had a high number of values, Estévez et al. [35] used

entropy values as upper bounds of mutual information. In

addition, instead of using sequential searches, a GA was

applied to generate feature subsets. However, this work

still considered two-way mutual information only. Hoque

et al. [36] also applied mutual information to guide a

sequential search to achieve feature selection. In the pro-

posed algorithm, mutual information was used to rank all

non-selected features. Particularly, each unselected fea-

ture’s relevance was the mutual information between the

feature and the class label. Meanwhile, the unselected

feature’s redundancy was the average of the mutual

information between the feature and each selected feature.

Based on the calculated values, the feature, which is

dominated by most of other features in terms of redun-

dancy and dominates the highest number of features in

terms of relevance, is selected. The proposed method

achieved comparable results in five standard feature

selection algorithms from Weka library [37]. However, this

work ignored the interactions between more than two

features because of applying two-way mutual information

only. Lee et al. [38] extended mutual information to

interaction information to solve feature selection problem

in multi-label datasets. Instead of decomposing mutual

information between two sets into many two-way mutual

information in [39], a new score function, which consid-

ered an any-degree interaction, was proposed. The exper-

imental results showed that the degree-3 or degree-4

approximation of the score function achieved better clas-

sification accuracy than the degree-2 approximation

method, which showed how important to consider the

interaction between more than two features. The proposed

score function was also significantly better than other four

conventional methods in terms of accuracy. However,

since the score-function only considered the relevance

between the selected feature and the class labels, the pro-

posed algorithm might select redundant features. In addi-

tion, the number of selected features was pre-defined due to

the incremental search. Fang et al. [40] proposed a mutual

information and class separability based method for feature

selection. In particular, a square matrix of mutual infor-

mation, which included all pair-wise mutual information

between two single features, was calculated by using

nearest neighbour’s estimation [41]. This matrix was used

to compute a feature’s redundancy level. In addition, class

separability was used to select the most discriminative

feature subset. The experimental results showed that in

comparison with other correlation matrices based feature

selection methods, the proposed method could effectively

select a small number of features and achieved better

classification performance. However, the interactions

between more than two features were ignored in this work

due to the two-way mutual information and the class sep-

arability measure. Further more, this work also needed to

specify the number of selected features in advance.

Cervante et al. [42] proposed two new information

theory based fitness functions. In the first fitness function,

mutual information between two selected features and

between a selected feature and the class label (paired

evaluation) were used to respectively compute the rele-

vance and redundancy of the feature subsets. These mea-

sures were also combined in the second fitness measure.

However, in the second measure, instead of using mutual

information, information gain (group evaluation) was used

to calculate the relevance and redundancy of the feature

subset. The results showed that both fitness functions

successfully guided PSO to search for small feature sub-

sets, which achieve better classification accuracy than

using all features. The subset evolved by the first fitness

function is smaller than the one evolved by the second

fitness function. However the second algorithm achieved

better classification performance.

Multi-objective PSO was also combined with filter

measures to form multi-objective feature selection

approaches. Xue et al. [43] proposed two multi-objective

PSO-based feature selection algorithms, which simultane-

ously minimised the number of selected features and

maximised the relevance of the selected feature subset. In

these algorithms, the relevant measure was calculated by

applying either pair-wise mutual information or informa-

tion gain. The results illustrated that the proposed multi-

objective algorithms outperformed single objective algo-

rithms. Mutual information was also applied in hybrid

approaches, which took the advantages of both filters and

wrappers. For instance, Nguyen et al. [44] used mutual

information as a measure to improve gbest by applying a

local search. The local search was similar to backward

feature selection since it tried to remove selected features

from gbest. The proposed algorithms selected much

smaller number of features while still achieved similar or

better performance than other PSO based algorithms.

PSO and mutual information have been applied widely

to feature selection. Particularly, PSO generates feature
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subsets, which are usually evaluated by mutual informa-

tion. However, in most cases the mutual information is

derived by counting instances in the training set. Although

mutual information estimation is used in some studies, it

usually incorporates with sequential searches, which might

be stuck at local optima. Therefore, this work focuses on

analysing the combination of PSO and mutual information

estimation in feature selection.

3 Mutual information for feature selection

Since mutual information is able to detect non-linear

interaction between multiple variables, it is widely applied

to feature selection. Most of mutual information based

feature selection approaches utilise mutual information to

measure the redundancy and relevance of a feature subset,

using two formulas, Eqs. (9) and (10), respectively.

Red ¼ MIðs1; s2; . . .; smÞ ð9Þ
Rel ¼ MIðS;CÞ ð10Þ

where C is the class label, S is the feature set, which

contains m features s1; . . .; sm.

The aim of feature selection is to produce an optimal

feature subset by removing all redundant and irrelevant

features. So the optimal feature subset minimise the quality

measure given in Eq. (11).

F ¼ �a� Relþ ð1� aÞ � Red ð11Þ

where a is used to control the contribution of relevance and

redundancy into the fitness measure.

3.1 Counting approach for mutual information

According to Eqs. (3) and (8), in order to calculate the

mutual information between two or more variables/fea-

tures, it is necessary to know the probability distribution of

each variable as well as the joint probability distribution.

However, it is not a trivial task in real-world problems. In

most current approaches, the probability distribution is

achieved by counting the number of instances in the

training set. Although this approach is quite efficient, it is

hard to apply it to continuous datasets since each contin-

uous variable has an infinite number of values. So in order

to be applied to continuous datasets, counting approaches

require an efficient and effective way to discretise the

datasets. Even with a discrete dataset, counting approaches

still can not produce an accurate probability distribution of

a joint of variables. Suppose that each feature si in the

feature set S has ni possible values, then the total number of

possible values of the feature set S is
Qm

i¼1 ni. Therefore, in

order to accurately calculate the mutual information of a

feature set, it usually requires a huge number of instances

in the training set. However this requirement is hardly

satisfied in real-world datasets, for instance gene datasets

can have up to thousands of features but a small number of

samples. To adapt with the privation of samples, the rele-

vance and redundancy measures are estimated by decom-

posing them into pair-wise mutual information, which can

be seen in Eqs. (12) and (13). As a result, a feature subset is

also evaluated by using pair-wise mutual information as in

Eq. (14).

Relpw ¼
Xm

i¼1

MIðsi;CÞ ð12Þ

Redpw ¼
Xm�1

i¼1

Xm

j¼iþ1

MIðsi; sjÞ ð13Þ

Fpw ¼ �a� Relpw þ ð1� aÞ � Redpw ð14Þ

In comparison with multi-variate mutual information, the

pair-wise mutual information has less expensive compu-

tation cost since only the probability distribution of two

variables is required. However, pair-wise mutual informa-

tion can not capture the interaction between features. For

example, pair-wise mutual information can not figure out

the complementary feature set, in which two or more

weakly-relevant features might become highly-relevant

when working with each other.

3.2 Estimation approach for mutual information

Pair-wise mutual information only considers two-way

interaction between features. In addition, the counting

approach is only applicable to discrete datasets. To over-

come these limitations, mutual information estimations

have been developed. The oldest and simplest estimator is

the ‘‘basic histogram’’ [45], in which each dimension cor-

responding to one variable is divided into many non-

overlapping bins with fixed size. The probability distribu-

tion of each ‘‘bin’’ is calculated as a ratio between the

number of observations falling into the bin and the total

number of observations. Therefore, each bin is considered

a possible value of a single variable or a joint variable. The

entropy of each single/joint variable can be calculated by

applying the discretised version given in Eq. (3) and then

the mutual information can be acquired according to the

formula Eq. (5). In this approach, there are two most

important parameters, which are the number of bins and the

bin’s size.

The basic histogram is sensitive to the parameter

selections. In addition, histogram approaches have sharp

boundaries, which means that two similar instances on

different sides of boundary are considered different values.

To avoid this discontinuity, Parzen et al. [46] proposed

kernel density estimation (KDE). This approach estimated
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the probability density of each instance with a kernel

function H, which is shown in the Eq. (15).

p̂ðSjÞ ¼
1

N
�
XN

j0¼1

H Sj � Sj0
�� ��� r
� �

ð15Þ

where H is the kernel function and r is the kernel width, :j j
is a norm and N is the total number of instances.

The kernel function H measures the similarity between

two instances of feature set S, Sj and Sj0 . Normally, the H is

a step function, which means that HðX[ 0Þ ¼ 0 and

HðX� 0Þ ¼ 1. The norm |.| is the maximum norm.

Therefore, the probability estimated by Eq. (15) is the

proportion of the N instances, whose distances to the

instance Si are less than r. The entropy of the joint variable

or feature subset S is then achieved by averaging the local

entropy of all instances, which can be seen in the Eq. (16).

The calculated entropies are plugged in Eq. (5) to derive

the mutual information estimation.

ĤðSÞ ¼ 1

N
�
XN

i¼1

�p̂ðSiÞ � log p̂ðSiÞ ð16Þ

Beside KDE, recently Kraskov et al. [41] proposed another

estimation approach, called Nearest Neighbour estimation

(NNE). Similar to KDE, NNE also works on each instance.

The main idea of NNE is if neighbours of an instance on

two dimensions X and Y are similar, then there must be a

strong relationship between X and Y. Particularly, for each

instance, K nearest neighbours of an instance are found to

derive the distance �, which is then used as a boundary to

define the neighbours of the instance on each dimension

(feature). The mutual information is acquired by substi-

tuting the number of neighbours on each dimension for nij
in Eq. (17).

M̂IðSÞ ¼ wðkÞ � m� 1

k
þ ðm� 1Þ � wðNÞ � 1

N
�
XN

i¼1

Xm

j¼1

nij

ð17Þ

where m is the number of single variables (features) in the

variable (feature) set S, nij is the number of neighbours

whose distance from the ith instance Si in the space spec-

ified by dimension (feature) sj is not greater than

0:5� �ðiÞ ¼ 0:5�maxð�X1
ðiÞ; . . .; �Xm

ðiÞÞ.
Therefore, NNE can be seen as an improvement of

KDE, where the boundary r is dynamically determined by

the number of nearest neighbours K. Both estimators are

implemented in Java Information Dynamics Toolkit

(JIDT), an information-theoretic toolkit developed by

Lizier et al. [47]. In terms of computation cost, NNE is

more expensive than KDE. Particularly, NNE’s computa-

tion cost is OðKN2Þ, where N is the total number of

instances. Although JIDT implements k-d tree algorithm to

faster search for nearest neighbours, its cost is still

O(KNlog(N)), which is more expensive than KDE, whose

time-complexity is only O(N) with box-assisted methods.

This work will compare between two ways to compute

mutual information, including the counting approach and

the estimation approach. The KDE is chosen as the rep-

resentative of estimation approaches because it is simpler,

easier to understand and faster than NNE, which was used

in [15]. PSO is chosen as a feature subset generation. Each

feature subset is evaluated using the pair-wise fitness

measure shown in Eq. (14), where both counting approach

and KDE can be applied.

3.3 PSO representation for feature selection

The representation of a particle in PSO is a vector of n real

numbers, where n is the total number of features. Each

position entry xid falls in the range [0,1] and corresponds to

the dth feature in the original feature set. A threshold h is

used to determine whether or not a feature is selected: if

xid [ h then the dth feature is selected, otherwise the dth

feature is not selected.

4 Design of experiments

4.1 Datasets

In this work, KDE and counting approach will be compared

in both artificial and real-world datasets. All datasets can

be seen in the Table 1, where ‘‘Con’’ and ‘‘Dis’’ mean

Table 1 Datasets

Dataset Type #Fs #Cs #Is

Real-world datasets

Wine Con 13 3 178

Vehicle Dis 18 4 946

German Dis 24 2 1000

WBCD Con 30 2 569

Ionosphere Con 34 2 351

Sonar Con 60 2 208

Musk 1 Dis 166 2 476

Arrhythmia Dis 279 16 452

Artificial datasets

Binary 1 Dis 3 2 8

Binary 2 Dis 3 2 8

Monk 1 Dis 6 2 432

Monk 2 Dis 6 2 432

Monk 3 Dis 6 2 432

2-Way linear Con 4 2 200

3-Way linear Con 4 2 200

Evol. Intel. (2016) 9:95–110 101

123



respectively continuous and discrete datasets, #Fs means

the total number of features, #Cs means the total number of

class values and #Is is the total number of available

instances. There are 8 real-world datasets, which are

original from UCI repository [48]. These datasets contain

different number of features and instances. The continuous

datasets are discretised so that the counting approach can

be applied.

There are 7 different artificial datasets, which have

different relationships between features and between fea-

tures and the class labels. The first two artificial datasets

have three binary features. In Binary 1, an instance belongs

to class 1 if exactly two features have value 1, otherwise

the instance is in class 0. In Binary 2, if all instances’

features have the same value then it is in class 1, otherwise

it belongs to class 0. So in these two datasets, there is no

redundancy and all three features are relevant to the class

label. Feature selection on these datasets should select all

three features.

Three other artificial datasets are Monk datasets [48],

which have 6 discrete features and one binary class label.

The 3rd and 6th features are binary variables, which can be

either 1 or 2. The 5th feature has four possible values from

1 to 4. The other features have three values, which range

from 1 to 3. In Monk 1 dataset, the class label is 1 if either

f0 ¼ f1 or f4 ¼ 1. So the optimal feature set of Monk 1 is

ff0; f1; f4g. Meanwhile, in Monk 2, the class label is 1 if

there are exactly two features taking value 1. In this case,

all features are important in Monk 2 dataset. The last Monk

dataset is a bit more complicated, where the class label is 1

if ( f3 ¼ 1 and f4 ¼ 3) or (f4 6¼ 4 and f1 6¼ 3). So in Monk 3

datasets, the most important feature subset is ff1; f3; f4g.
Notice that there is no redundancy in the Monk datasets.

2-Way linear and 3-way linear have 4 continuous fea-

tures. In 2-way linear, the last two features are copies of the

first two features (f0 ¼ f2; f1 ¼ f3). The class label is set to 1

if the average of the first two features is greater than 0.5.

Therefore, the optimal feature subset for this dataset is one

of 4 feature subsets, ff0; f1g, ff0; f3g, ff1; f2g or ff2; f3g. In
3-way linear dataset, the first two features are two random

variables, which fall in [0,1]. The 3rd feature is the average

of the first two features, f2 ¼ f0þf1
2
. The 4th feature (f3) is

just a copy of the first feature. So in this dataset, there is

redundancy in any feature subsets that contains f0 along

with f3 or (f1 and f2). The class label is determined by

feature f2. Particularly, the class label is set to 1 if f2 [ 0:5.

So the optimal feature subset for this dataset is {f2}.

4.2 Parameter setting

Each dataset is divided into 10 folds. Each fold will be

selected as a test set and the other folds are used as a

training set to select features. This process is run 30

independent times. So there will be 300 evolved feature

subsets. Since each dataset has continuous and discrete

versions, the selected feature subsets are tested on both

versions using three classification algorithms K-nearest

neighbour (KNN), Decision Tree (DT) and Naive Bayes

(NB). For KNN classification algorithm, K is set to 5 so

that the classification algorithm is able to avoid noise

instances with a good efficiency. REP (Reduced-Error

Pruning) tree is picked as a representative of the DT

classification algorithm. The setting of REP tree follows

the default setting in Weka [37].

The kernel width r needs to satisfy the condition

Kr �N=ð3=rÞm, where Kr is the number of neighbours fall

in the range r and m is the number of dimensions or the

number of features and N is the total number of instances.

In this case, since only pair-wise mutual information is

used, the number of dimensions m is 2. Lungarella et al.

[49] proposed that Kr should be at least equal to 3 to avoid

undersampling effects. Therefore, in this work Kr is set to

3. From the above conditions, the kernel width r is speci-

fied by 3
log2 N=3

.

The weight a in the pair-wise fitness measure [Eq. (14)]

has three different values: 0.6, 0.8 and 1.0 to evaluate

the effect of different relevance and redundancy’s

contributions.

For PSO algorithm, the fully connected topology

is used. The parameters are set as follows [50]:

w ¼ 0:7298; c1 ¼ c2 ¼ 1:49618; vmax ¼ 2:0. The popula-

tion size is 30 and the maximum number of iterations is

100. Based on our previous experiments [51], the threshold

h is set as 0.6.

The results of counting and estimation approaches are

compared by both Wilcoxon and ANOVA tests with con-

fident interval of 95 %.

5 Results and discussion

Experimental results on real-world and artificial datasets

are shown in Tables 2 and 3, respectively. Each table is the

results of PSO using counting and KDE approach on a

dataset. The prefix ‘‘Con-’’ and ‘‘Dis-’’ correspond to the

results on the continuous and discrete versions of each

dataset. The Wilcoxon significant test between KDE and

counting approach is shown in the brackets, beside KDE’s

accuracies. The confident interval of Wilcoxon test is set to

0.95. ‘‘þ’’, ‘‘¼’’ or ‘‘-’’ mean that KDE approach is

respectively significantly better, similar or significantly

worse than counting approach. Table 4 shows which fea-

tures are selected by either KDE or counting approaches on

artificial datasets.
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Table 2 Test accuracies on real-world datasets

a Method Con-size Con-DT Con-KNN Con-NB Dis-size Dis-DT Dis-KNN Dis-NB

(a) Wine

Full 13 94.38 80.94 86.86 13 93.25 97.76 97.78

0.6 Counting 1.0 82.52 80.48 67.72 2.24 92.58 93.06 92.7

KDE 2.56 92.84(?) 81.69(=) 75.71(?) 2.24 92.42(=) 93.01(=) 92.63(=)

0.8 Counting 1.0 83.12 81.17 67.9 4.98 93.72 96.91 96.3

KDE 4.98 95.61(?) 80.98(=) 81.15(?) 4.98 93.74(=) 96.79(=) 96.31(=)

1.0 Counting 11.92 94.48 80.81 85.84 11.99 93.45 97.08 97.39

KDE 11.95 94.51(=) 80.76(=) 86.04(=) 12.01 93.46(=) 97.06(=) 97.33(=)

(b) Vehicle

Full 18 85.93 83.04 81.32 18 85.93 83.04 81.32

0.6 Counting 1.02 75.8 75.01 71.12 1.02 75.8 75.01 71.12

KDE 1.97 75.17(-) 74.41(=) 74.39(?) 1.97 75.17(-) 74.41(=) 74.39(?)

0.8 Counting 1.18 76.96 76.07 71.73 1.18 76.96 76.07 71.73

KDE 3.83 81.43(?) 80.1(?) 78.69(?) 3.83 81.43(?) 80.1(?) 78.69(?)

1.0 Counting 15.96 85.49 82.47 81.18 15.96 85.49 82.47 81.18

KDE 16.25 85.43(=) 82.46(=) 81.33(=) 16.25 85.43(=) 82.46(=) 81.33(=)

(c) German

Full 24 74.2 68.2 73.5 24 74.2 68.2 73.5

0.6 Counting 3.2 70.11 67.53 70.66 3.2 70.11 67.53 70.66

KDE 3.02 70.88(?) 68.36(=) 71.33(?) 3.02 70.88(?) 68.36(=) 71.33(?)

0.8 Counting 4.97 71.81 70.09 72.39 4.97 71.81 70.09 72.39

KDE 5.03 72.4(?) 71.0(?) 72.97(?) 5.03 72.4(?) 71.0(?) 72.97(?)

1.0 Counting 19.76 73.95 68.69 73.18 19.76 73.95 68.69 73.18

KDE 19.98 74.21(=) 68.95(=) 73.58(=) 19.98 74.21(=) 68.95(=) 73.58(=)

(d) WBCD

Full 30 94.73 93.32 88.57 30 91.91 96.49 94.38

0.6 Counting 1.37 88.21 87.32 75.93 2.07 92.09 91.74 92.73

KDE 2.14 91.81(?) 90.31(?) 84.76(?) 2.07 92.07(=) 91.75(=) 92.73(=)

0.8 Counting 1.9 90.25 89.93 80.72 4.21 93.0 94.39 94.87

KDE 3.79 93.49(?) 90.9(?) 89.26(?) 4.2 93.02(=) 94.41(=) 94.85(=)

1.0 Counting 24.96 94.14 92.94 88.49 25.01 92.31 96.06 94.19

KDE 24.83 94.21(=) 93.04(=) 88.79(=) 25.0 92.35(=) 96.07(=) 94.18(=)

(e) Ionosphere

Full 34 89.17 84.33 35.9 34 90.87 85.19 90.58

0.6 Counting 2.4 81.52 79.7 81.17 2.31 84.89 84.49 84.65

KDE 2.37 84.1(?) 84.71(?) 83.3(?) 2.25 84.75(=) 84.42(=) 84.54(=)

0.8 Counting 2.65 80.01 78.01 81.68 4.03 88.93 89.11 89.22

KDE 4.08 87.75(?) 88.12(?) 80.86(=) 4.0 88.89(=) 89.17(=) 89.24(=)

1.0 Counting 27.87 88.53 83.73 35.9 27.55 90.59 84.89 90.55

KDE 27.75 89.03(=) 84.14(?) 35.9(=) 27.59 90.65(=) 84.89(=) 90.56(=)

(f) Sonar

Full 60 74.0 80.17 50.38 60 72.57 85.07 75.98

0.6 Counting 1.57 57.48 56.88 51.86 2.11 63.87 62.06 64.29

KDE 2.18 61.7(?) 62.03(?) 52.32(=) 2.13 63.41(=) 61.64(=) 63.83(=)

0.8 Counting 1.58 57.27 57.87 52.09 2.69 68.3 67.11 68.38

KDE 2.67 67.21(?) 67.05(?) 50.64(=) 2.69 68.46(=) 67.05(=) 68.58(=)

1.0 Counting 46.29 72.96 80.22 51.11 45.99 73.13 83.75 75.19

KDE 45.79 72.81(=) 80.54(=) 50.02(-) 45.91 73.35(?) 83.66(=) 75.15(=)
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5.1 Real-world datasets

The results on the 8 real-world datasets are shown in

Table 2.

5.1.1 Consistency of KDE and counting approach

As can be seen from the results, in most datasets the order

of classification accuracies is preserved after the feature

selection process. For example, in the Vehicle dataset, the

highest classification accuracy belongs to DT classifier and

KNN is the second best classifier. After performing feature

selection using either KDE or counting approach, the best

classifier is still DT, which is followed by KNN. The

consistent results show that the mutual information mea-

sure does not produce features particularly bias to any

classification algorithm. Mutual information is able to

extract a general feature subset, which is meaningful to all

the three classification algorithms.

5.1.2 KDE versus counting approach on real-world

datasets

In terms of the classification accuracy, KDE is significantly

better than counting approach in the continuous version of

most of datasets. For example, on the Wine dataset, the

classification accuracy of KDE is about 10 % better than

counting approach on both DT and NB classification

algorithms. In addition, on the Ionosphere and Sonar

datasets, by applying to KNN classification algorithm, the

feature subsets generated by KDE achieve up to 10 %

better than counting approach regardless the similar num-

ber of selected features. On WBCD, KDE is significantly

better than counting approach on all the three classification

algorithms when a is set to 0.6 and 0.8. In summary, on the

continuous version of datasets, in almost all cases KDE

achieves similar or better performance than counting

approach in the three classification algorithms.

On the discrete version of each dataset, KDE also

achieves similar or better performance than the counting

approach. In most cases, KDE outperforms the counting

approach when a is set to 0.8. For example, in the Vehicle

dataset (Table 2b), the improvements of KDE over the

counting method on KNN, DT and NB are 4.5, 4 and 7 %

respectively. Despite of selecting the same number of

features, with a ¼ 0:8, KDE’s accuracies on all the three

classification algorithms are up to 1 % higher than results

of the counting approach. The experimental results show

that KDE is not only able to cope with both continuous

and discrete datasets but also similar or better than the

counting approach, which only works well with discrete

datasets.

In terms of the number of selected features, when a
increases, which means the contribution of redundancy into

the fitness function decreases, the number of selected fea-

tures of both approaches also increases. The extreme case

is when redundancy is ignored (a ¼ 1:0), on the datasets

with small number of features, almost all original features

are selected. Meanwhile, when the number of original

features is larger, the proportion of selected features is

smaller. The reason might be that a dataset with a large

number of features might contain many irrelevant features.

Table 2 continued

a Method Con-size Con-DT Con-KNN Con-NB Dis-size Dis-DT Dis-KNN Dis-NB

(g) Musk 1

Full 166 74.59 86.97 65.36 166 64.59 86.97 65.36

0.6 Counting 11.21 73.13 76.46 68.91 11.2 73.11 76.51 68.98

KDE 11.81 73.67(=) 76.91(=) 68.03(=) 11.81 73.67(=) 76.91(=) 68.03(=)

0.8 Counting 11.19 73.05 76.31 69.23 11.24 73.17 76.4 69.28

KDE 12.06 73.65(=) 76.92(=) 68.28(=) 12.06 73.65(=) 76.92(=) 68.28(=)

1.0 Counting 113.27 75.59 85.9 74.89 113.27 75.59 85.93 74.89

KDE 113.7 75.1(=) 86.01(=) 74.92(=) 113.7 75.1(=) 86.01(=) 74.92(=)

(h) Arrhythmia

Full 278 94.86 93.57 94.96 278 94.86 93.57 94.96

0.6 Counting 41.85 93.71 93.3 93.75 41.85 93.71 93.3 93.75

KDE 41.79 93.71(=) 93.29(=) 93.75(=) 41.79 93.71(=) 93.29(=) 93.75(=)

0.8 Counting 42.42 93.91 93.48 93.85 42.42 93.91 93.48 93.85

KDE 42.24 93.89(=) 93.5(?) 93.84(=) 42.24 93.89(=) 93.5(?) 93.84(=)

1.0 Counting 174.63 94.67 93.75 95.01 174.63 94.67 93.75 95.01

KDE 174.67 94.67(=) 93.75(=) 95.01(=) 174.67 94.67(=) 93.75(=) 95.01(=)
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However, the smaller number of selected features with

respect to lower contribution of redundancy does not mean

that redundancy measure Redpw works well in this case.

The reason is that Redpw, which is shown in Eq. (13), is a

monotonic function. Regardless of which features are

selected, according to Eq. (13) adding any feature into the

feature subset will results in additional MI, which might

increases Redpw because mutual information is non-nega-

tive. So in this case, it only can be confirmed that PSO does

find out optimal or near-optimal feature subsets when

a ¼ 1:0. It would be hard to analyse the effect of Relpw and

Redpw in the real datasets since the optimal feature subset is

unknown. Therefore, a deep analysis on the artificial

datasets is provided in the next section.

Table 3 Test accuracies on artificial datasets

a Method Con-size Con-DT Con-KNN Con-NB Dis-size Dis-DT Dis-KNN Dis-NB

(a) Monk 1

Full 6 85.87 94.21 75.0 6 85.87 94.21 75.0

0.6 Counting 1.59 75.0 63.22 75.0 1.59 75.0 63.22 75.0

KDE 3.0 99.77(?) 100.0(?) 75.0(=) 3.0 99.77(?) 100.0(?) 75.0(=)

0.8 Counting 2.79 75.0 66.79 75.0 2.79 75.0 66.79 75.0

KDE 3.0 99.77(?) 100.0(?) 75.0(=) 3.0 99.77(?) 100.0(?) 75.0(=)

1.0 Counting 5.94 85.88 93.2 75.0 5.94 85.88 93.2 75.0

KDE 3.0 99.77(?) 100.0(?) 75.0(=) 3.0 99.77(?) 100.0(?) 75.0(=)

(b) Monk 2

Full 6 79.63 69.46 66.45 6 79.63 69.46 66.45

0.6 Counting 4.67 65.96 57.58 66.26 4.67 65.96 57.58 66.26

KDE 5.94 78.92(?) 68.7(?) 66.48(?) 5.94 78.92(?) 68.7(?) 66.48(?)

0.8 Counting 5.24 69.83 62.04 66.24 5.24 69.83 62.04 66.24

KDE 5.94 78.92(?) 68.7(?) 66.48(?) 5.94 78.92(?) 68.7(?) 66.48(?)

1.0 Counting 5.95 78.84 68.74 66.46 5.95 78.84 68.74 66.46

KDE 5.94 78.92(=) 68.7(=) 66.48(=) 5.94 78.92(=) 68.7(=) 66.48(=)

(c) Monk 3

Full 6 100.0 99.54 97.23 6 100.0 99.54 97.23

0.6 Counting 3.29 100.0 100.0 97.23 3.29 100.0 100.0 97.23

KDE 3.0 100.0(=) 100.0(=) 97.23(=) 3.0 100.0(=) 100.0(=) 97.23(=)

0.8 Counting 3.97 100.0 100.0 97.23 3.97 100.0 100.0 97.23

KDE 3.0 100.0(=) 100.0(=) 97.23(=) 3.0 100.0(=) 100.0(=) 97.23(=)

1.0 Counting 5.97 100.0 99.53 97.23 5.97 100.0 99.53 97.23

KDE 3.0 100.0(=) 100.0(?) 97.23(=) 3.0 100.0(=) 100.0(?) 97.23(=)

(d) 2-Way linear

Full 4 92.5 94.5 46.0 4 92.5 94.5 46.0

0.6 Counting 1.0 69.5 69.3 54.0 1.0 69.5 69.3 54.0

KDE 2.0 92.5(?) 94.5(?) 54.0(=) 2.0 92.5(?) 94.5(?) 54.0(=)

0.8 Counting 1.0 69.5 69.3 54.0 1.0 69.5 69.3 54.0

KDE 2.0 92.5(?) 94.5(?) 54.0(=) 2.0 92.5(?) 94.5(?) 54.0(=)

1.0 Counting 4.0 92.5 94.5 46.0 4.0 92.5 94.5 46.0

KDE 2.0 92.5(=) 94.5(=) 54.0(?) 2.0 92.5(=) 94.5(=) 54.0(?)

(e) 3-Way linear

Full 4 99.5 95.5 52.0 4 99.5 95.5 52.0

0.6 Counting 1.0 80.4 76.13 48.0 1.0 80.4 76.13 48.0

KDE 2.8 99.5(?) 95.0(?) 48.0(=) 2.8 99.5(?) 95.0(?) 48.0(=)

0.8 Counting 1.0 80.4 76.13 48.0 1.0 80.4 76.13 48.0

KDE 2.8 99.5(?) 95.0(?) 48.0(=) 2.8 99.5(?) 95.0(?) 48.0(=)

1.0 Counting 4.0 99.5 95.5 52.0 4.0 99.5 95.5 52.0

KDE 2.8 99.5(=) 95.0(-) 48.0(-) 2.8 99.5(=) 95.0(-) 48.0(-)
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Table 4 Feature sets selected by KDE and Counting approaches

Counting KDE

(a) Binary 1 (Optimal subset: ff0; f1; f2g)
a ¼ 0:6 \f0; 1; 2g : 90[ , \f0; 1g : 73[ , \f1; 2g : 46[ , \f2g : 30[ ,

\f0g : 30[ , \f1g : 30[ , \f0; 2g : 1[ ,

\f0; 1; 2g : 293[ , \f0g : 3[ , \f1g : 3[ ,

\f2g : 1[ ,

a ¼ 0:8 \f0; 1; 2g : 210[ , \f0; 1g : 42[ , \f0; 2g : 39[ ,

\f1; 2g : 9[ ,

\f0; 1; 2g : 297[ , \f1g : 2[ , \f2g : 1[ ,

a ¼ 1:0 \f0; 1; 2g : 300[ , \f0; 1; 2g : 297[ , \f2g : 1[ , \f0g : 1[ ,

\f1g : 1[ ,

(b) Binary 2 (Optimal subset: ff0; f1; f2g)
a ¼ 0:6 \f0g : 100[ , \f2g : 85[ , \f0; 1; 2g : 60[ , \f1g : 35[ ,

\f1; 2g : 10[ , \f0; 1g : 8[ , \f0; 2g : 2[ ,

\f0; 1; 2g : 300[ ,

a ¼ 0:8 \f0; 2g : 75[ , \f0; 1g : 68[ , \f0; 1; 2g : 61[ ,

\f1; 2g : 58[ , \f2g : 17[ , \f0g : 15[ , \f1g : 6[ ,

\f0; 1; 2g : 300[ ,

a ¼ 1:0 \f0; 1; 2g : 240[ , \f2g : 18[ , \f0g : 15[ , \f1; 2g : 9[ ,

\f0; 1g : 8[ , \f1g : 8[ , \f0; 2g : 2[ ,

\f0; 1; 2g : 300[ ,

(c) Monk 1 (Optimal subset: ff0; f1; f4g)
a ¼ 0:6 \f4g : 122[ , \f3; 4g : 118[ , \f1; 4g : 57[ , \f2; 4g : 3[ , \f0; 1; 4g : 300[ ,

a ¼ 0:8 \f0; 3; 4g : 60[ , \f1; 2; 4g : 39[ , \f4g : 30[ ,

\f1; 4g : 30[ , \f3; 4g : 30[ , \f0; 2; 4; 5g : 30[ ,

\f3; 4; 5g : 30[ , \f1; 2; 3; 4g : 28[ , \f2; 3; 4g : 19[ ,

\f2; 4; 5g : 2[ , \f1; 3; 4g : 2[ ,

\f0; 1; 4g : 300[ ,

a ¼ 1:0 \f0; 1; 2; 3; 4; 5g : 281[ , \f0; 1; 2; 3; 4g : 6[ ,

\f1; 2; 3; 4; 5g : 4[ , \f0; 2; 3; 4; 5g : 4[ , \f0; 1; 3; 4; 5g : 4[ ,

\f0; 1; 2; 4; 5g : 1[ ,

\f0; 1; 4g : 300[ ,

(d) Monk 2 (Optimal subset: ff0; f1; f2; f3; f4; f5g)
a ¼ 0:6 \f0; 1; 3; 4g : 98[ , \f0; 1; 2; 3; 4g : 59[ , \f0; 1; 2; 3; 4; 5g : 59[ ,

\f0; 1; 3; 4; 5g : 54[ , \f0; 1; 3g : 28[ , \f0; 1; 4g : 2[ ,

\f0; 1; 2; 3; 4; 5g : 282[ , \f0; 2; 3; 4; 5g : 7[ ,

\f0; 1; 2; 3; 5g : 6[ , \f0; 1; 2; 4; 5g : 4[ ,

\f0; 1; 2; 3; 4g : 1[ ,

a ¼ 0:8 \f0; 1; 2; 3; 4; 5g : 114[ , \f0; 1; 3; 4; 5g : 81[ ,

\f0; 1; 2; 3; 4g : 62[ , \f0; 1; 3; 4g : 42[ , \f0; 1; 3; 5g : 1[ ,

\f0; 1; 2; 3; 4; 5g : 282[ , \f0; 2; 3; 4; 5g : 7[ ,

\f0; 1; 2; 3; 5g : 6[ , \f0; 1; 2; 4; 5g : 4[ ,

\f0; 1; 2; 3; 4g : 1[ ,

a ¼ 1:0 \f0; 1; 2; 3; 4; 5g : 285[ , \f0; 1; 2; 3; 4g : 11[ ,

\f0; 1; 3; 4; 5g : 4[ ,

\f0; 1; 2; 3; 4; 5g : 282[ , \f0; 2; 3; 4; 5g : 7[ ,

\f0; 1; 2; 3; 5g : 6[ , \f0; 1; 2; 4; 5g : 4[ ,

\f0; 1; 2; 3; 4g : 1[ ,

(e) Monk 3 (Optimal subset: ff1; f3; f4g)
a ¼ 0:6 \f1; 3; 4g : 214[ , \f1; 3; 4; 5g : 57[ , \f1; 2; 3; 4g : 29[ , \f1; 3; 4g : 300[ ,

a ¼ 0:8 \f1; 2; 3; 4g : 88[ , \f1; 3; 4; 5g : 87[ , \f1; 3; 4g : 66[ ,

\f0; 1; 2; 3; 4g : 28[ , \f0; 1; 3; 4; 5g : 28[ , \f0; 1; 3; 4g : 3[ ,

\f1; 3; 4g : 300[ ,

a ¼ 1:0 \f0; 1; 2; 3; 4; 5g : 290[ , \f0; 1; 2; 3; 4g : 6[ ,

\f1; 2; 3; 4; 5g : 4[ ,

\f1; 3; 4g : 300[ ,

(f) 2-Way linear (Optimal subset: ff0; f1g; ff0; f3g; ff1; f2g; ff2; f3g)
a ¼ 0:6 \f0g : 110[ , \f3g : 80[ , \f2g : 70[ , \f1g : 40[ , \f2; 3g : 110[ , \f1; 2g : 81[ , \f0; 1g : 60[ ,

\f0; 3g : 49[ ,

a ¼ 0:8 \f0g : 110[ , \f3g : 80[ , \f2g : 70[ , \f1g : 40[ , \f2; 3g : 110[ , \f1; 2g : 80[ , \f0; 1g : 60[ ,

\f0; 3g : 50[ ,

a ¼ 1:0 \f0; 1; 2; 3g : 300[ , \f2; 3g : 110[ , \f1; 2g : 80[ , \f0; 1g : 60[ ,

\f0; 3g : 50[ ,

(g) 3-Way linear (Optimal subset: ff2g)
a ¼ 0:6 \f0g : 110[ , \f3g : 80[ , \f2g : 70[ , \f1g : 40[ , \f1; 2; 3g : 144[ , \f0; 1; 2g : 96[ , \f0; 1g : 32[ ,

\f1; 3g : 28[ ,

a ¼ 0:8 \f0g : 110[ , \f3g : 80[ , \f2g : 70[ , \f1g : 40[ , \f1; 2; 3g : 144[ , \f0; 1; 2g : 96[ , \f0; 1g : 32[ ,

\f1; 3g : 28[ ,

a ¼ 1:0 \f0; 1; 2; 3g : 300[ , \f1; 2; 3g : 144[ , \f0; 1; 2g : 96[ , \f0; 1g : 32[ ,

\f1; 3g : 28[ ,
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5.2 Artificial datasets

Tables 3 and 4 show respectively the test accuracies and

the feature subsets selected by applying Counting and KDE

algorithms on 7 artificial datasets. The results of two

datasets Binary 1 and Binary 2 are not shown because DT,

KNN and NB are not able to classify the problems (0 %

accuracy). In terms of classification accuracy, as can be

seen from Table 3, KDE achieves similar of significantly

better results than the counting approach. The largest dif-

ference between the two approaches is in Monk 1 dataset,

where KDE’s accuracies are about 25 % better than

counting’s accuracies.

The more important factor to be considered in the arti-

ficial datasets is the feature subsets evolved. For each a
value, feature selection algorithms are run 30 times on each

dataset. The dataset is divided into 10 folds. For each

independent run, each fold is used as a test set and the

remaining folds play a role as a training set. This is also

known as ‘‘k-fold cross-validation’’, in which the distri-

bution of classes is roughly preserved. Therefore there will

be 300 (30 � 10) feature subsets generated for each a
value and each dataset. The feature subsets selected by

KDE and counting approaches are shown in Table 4. In the

table all indexes of selected features are in the curly

brackets, which follows by the number of times the feature

subset is selected. For example, hf0; 1; 2; 3g : 300i means

that the feature subset {0,1,2,3} are selected 300 times.

In two Binary datasets, the optimal set is the original

feature set. According to the experimental results, regard-

less of the values of a, the original feature set is selected by

KDE in more than 98 % of the 300 times. Because there is

no redundancy in these datasets, the a values should not

affect on the evolved feature subsets. Therefore, the

redundancy measured by KDE works well in this case. For

counting approach, the proportion of the original feature set

to all feature subset ranges from 20 to 100 % when a
increases from 0.6 to 1.0. When redundancy contributes to

the fitness function, counting approach still results in a

smaller set than the optimal set regardless of the fact that

redundancy should be 0. Therefore, it can be seen that the

redundancy measured by the counting approach does not

work well on Binary datasets. Particularly, redundancy

between two independent features, measured by the

counting approach is greater than 0.

In Monk 1 dataset, the optimal feature subset is {f0, f1, f4}

and there is no redundancy in this dataset. Three features f2,

f3 and f5 are irrelevant to the class label. Once more, since the

redundancy in this dataset is 0, the a values should not affect
the selected feature subsets. This fact is completely reflected

by the KDE approach, which selects the optimal subset

{f0; f1; f4} all the 300 times. Meanwhile, the counting

approach selects very different feature subsets even within

the same a values. On all a values, f2 and f3 appears fre-

quently in the feature subsets, which indicates that the rele-

vance measure by counting approach still gives some scores

to these irrelevant features. An obvious evidence is that the

counting approach selects all features when a ¼ 1, which

means the irrelevant features are selected. For Monk 2

dataset, it is important to select all original features.

According to the experimental results, for all values of a,
KDE always selects no less than 5 features, in which all

features are selected more than 280 times out of the 300

times. Meanwhile, the size of feature subsets selected by the

counting approach ranges from 3 to 6 features. In Monk 3

dataset, the most complicated Monk dataset, the optimal

feature subset is ff1; f3; f4g, which is also selected by KDE in

all cases regardless of the a values. Meanwhile, the counting

approach still selects irrelevant features like f0; f2 and f5 very

frequently. So with the Monk datasets, it can be seen that the

counting approach is not able to detect irrelevant features,

which is done very well by the KDE approach.

In the remaining two artificial datasets, 2-way and 3-

way linear datasets, there is no irrelevant feature but there

are redundant features. In 2-way linear dataset, the class

label can be determined by one of the following feature

subsets ff0; f1g, ff0; f3g, ff1; f2g and ff2; f3g, which are also

the only 4 feature subsets selected by KDE. On the other

hand, the counting approach always selects a single feature

when a is set to 0.6 or 0.8. Once more the result shows that

the redundancy between two independent features is not

correctly calculated by the counting approach. In addition,

KDE approach is able to detect the complementary feature

subsets, although it is a hard problem when pair-wise fit-

ness function is used. In the 3-way linear dataset, once

more the counting approach always select a single feature

when a is less than 1.0. On the other hand, KDE selects

only 4 feature subsets, which are {f1, f2, f3}, {f0, f1, f2}, {f0,

f1} and {f1; f3}. As can be seen KDE never selects f0 and f3
together because they are redundant. According to the

linear datasets, KDE is able to detect the complementary

feature subset and remove the redundant features, which

can not be done by the counting approach.

The experimental results suggests that KDE for mutual

information works well on both continuous and discrete

datasets. The feature subsets generated by KDE achieve

similar or better performance than the counting approach.

The main reason is that the counting approach can not

correctly calculate the redundancy measure and detect the

complementary interaction between features, which can be

achieved by using KDE.

5.3 ANOVA test analysis

Since the counting and estimation approaches are com-

pared on 15 different datasets, using Wilcoxon test is not
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enough to confirm which method is better due to multi-test

problems. An ANOVA test, with confident interval of 0.95,

is run to compare the two methods and show the interac-

tions between the two methods and other factors such as

datasets, kinds of datasets and classification algorithms.

The test results are shown in Table 5, in which ‘‘*’’ in the

significant column shows that a factor or an interacting

factor has a significant effect on the classification accuracy.

It can be seen that, the interactions between methods and

other factors produce significant different accuracies. In

order to see which method is better, Fig. 1 plots these

interactions in terms of the classification accuracy. In the

figures, ‘‘c’’ and ‘‘e’’ stands for ‘‘counting’’ and ‘‘KDE’’

methods, respectively. As can be seen from the figure, ‘‘e’’

line is always on the top of ‘‘c’’ line, which means that

KDE method is better than counting approach in different

levels of other factors such as datasets, types of datasets or

classification algorithms.

5.4 Computation cost

The computation costs of KDE and counting approach are

shown in Table 6. As can be seen from the table, KDE is

more expensive than the counting approach. The reason is

that in order to calculate the mutual information, KDE

needs to calculate the distance from each instance to all

other instances to find out the number of neighbours of an

instance, which is about N times slower than the counting

approach (N is the total number of available instances).

6 Conclusions and future work

Although mutual information has been widely applied to

feature selection, it is limited to discrete datasets, which

requires discretising continuous datasets. Mutual informa-

tion estimation has been developed to allow mutual infor-

mation to directly work on continuous datasets without any

pre-processing step. The goal of this paper is to compare

between estimation and counting approach in cooperation

with PSO to achieve feature selection. The experimental

results show that mutual information estimation is able to

capture the interaction between features to evolve optimal

feature subsets. In addition, mutual information estimation

Table 5 ANOVA test results

Factor F value Pr([f) Significant

Method 1757.806 \2e-16 *

Dataset 3963.685 \2e-16 *

TypeDataset 1018.247 \2e-16 *

Classifier 4939.826 \2e-16 *

Method: Dataset 239.405 \2e-16 *

Method: TypeDataset 37.153 1.12e-09 *

Method: Classifier 259.040 \2e-16 *

Method:Classifier

A
cc
ur
ac

y

DT KNN NB

e
c

Method:Dataset

A
cc
ur
ac

y

2way australian monk1 musk1 wbcd

e
c

76
78

80
82

84
86

65
70

75
80

85
90

95
10

0

78
79

80
81

82
83

84

Method:TypeDataset

A
cc
ur
ac

y

Con Dis

e
c

Fig. 1 Comparisons between two methods with different factors

Table 6 Computation time on real-world datasets

Datset KDE time (ms) Counting time (ms)

Wine 344.49 38.74

Vehicle 244.7 1.64

German 145.45 2.19

Wbcd 6288.96 88.69

Ionosphere 4941.29 98.97

Sonar 6819.77 187.77

Musk 1 253546.83 424.43

Arrhythmia 4020.61 36.22

Binary 1 0.77 0.5

Binary 2 0.75 0.46

Monk 1 39.49 0.55

Monk 2 69.78 0.64

Monk 3 43.83 0.55

2-way linear 8.01 0.45

3-way linear 11.11 0.57
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also works well in both continuous and discrete versions of

datasets. Meanwhile the counting approach provides good

accuracy only in the discrete datasets and it fails to mea-

sure the redundancy between features.

However, in terms of efficiency, mutual information

estimation is still slower than the counting approach. Since

the estimation cost depends mainly on the number of

instances, the estimation’s efficiency can be improved if the

number of instances decreases. In addition, removing noisy

instances may also increase the accuracy of the estimator.

Therefore, it is important to develop instance selection

algorithms along with feature selection algorithms, which is

left for our future work. In addition, as can be seen from

Table 2, when a is smaller than 1, the final classification

accuracy decreases because the number of selected features

is too small. So it is important to develop a good a setting,

which can balance between the number of selected features

and the classification accuracy. Another solution for this

problem is to develop multi-objective methods, which can

consider both objectives, including classification accuracies

and the number of selected features. In terms of searching

mechanisms, this work applies a traditional continuous

PSO, which still has more parameters than the constriction

factor version of PSO [52]. Furthermore, recently geometric

PSO [53] has been proposed to solve discrete problems,

which is a promising searching mechanism for feature

selection problems in our future work.
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