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Abstract. Feature selection is an important pre-processing step in classification
tasks. Feature selection aims to minimise both the classification error rate and
the number of features, which are usually two conflicting objectives. This paper
develops a differential evolution (DE) based multi-objective feature selection ap-
proach. The multi-objective approach is compared with two conventional meth-
ods and two DE based single objective methods, where the first algorithm is to
minimise the classification error rate only while the second algorithm combines
the number of features and the classification error rate into a single fitness func-
tion. Their performances are examined on nine different datasets and the results
show that the proposed multi-objective algorithm successfully evolved a number
of trade-off solutions, which reduce the number of features and keep or reduce
the classification error rate. In almost all cases, the proposed multi-objective al-
gorithm achieved better performance than all the other four methods in terms of
both the classification accuracy and the number of features.

Keywords: Differential evolution, Feature selection, Multi-objective optimisa-
tion, Classification.

1 Introduction

In machine learning and data mining tasks, such as classification, feature selection (FS),
also called dimensionality reduction, is a process of selecting a small subset of features
from a large set of original features. FS can effectively increase the classification per-
formance, speed up the training process, reduce the dimensionality of the data, and
simplify the built classifiers/models [11].

FS has been of interest for many decades [6]. One of the main challenges in FS is
the large search space. For a dataset including n features, the size of the search space
is 2n. Therefore, exhaustive search is impractical in most situations because of the long
computational time. Although many different search techniques have been applied to FS
tasks [6], most of them still have the limitations of high computational cost and being
stuck in local optima [6]. Evolutionary computation (EC) includes a group of global
search techniques in which differential evolution (DE) [20] is a simple yet powerful
algorithm. DE has been successfully used to solve problems in a variety of fields [5],
including FS [1].
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FS aims to minimise the number of features and maximise the classification accu-
racy (minimise the classification error rate). These two objectives are conflicting to each
other in most cases, which makes FS a multi-objective problem. However, there are only
a limited number of multi-objective FS algorithms and most of them are based on EC
techniques [3, 12, 27]. Those EC techniques are population based algorithms, which are
particularly suitable for multi-objective optimisation because they can produce multi-
ple solutions in a single run [4]. Multi-objective DE gains more and more attention to
solve complex multi-objective problems. Recently, Wang et al. [21] showed that DE can
achieve better performance than many other EC algorithms on single objective FS, but
there is only one initial work [24] on DE for multi-objective FS. This paper will further
investigate this topic by significantly extend the work in [24].

1.1 Goals

The overall goal is to develop a DE based multi-objective FS approach to searching for
a set of non-dominated feature subsets, which include a small subset of features and
achieve similar or better classification performance than using all features. To achieve
this goal, we propose a multi-objective FS approach (DEMOFS) by using a multi-
objective DE algorithm to simultaneously minimise the number of features and the
classification error rate. DEMOFS is compared with two conventional methods and two
DE based single objective algorithms, where the first DE algorithm aims to minimise
the classification error rate only and the second DE algorithm combines the classifica-
tion error rate and the number of features into a single fitness function. Specifically, we
will investigate:

– whether the two single objective DE algorithms can successfully reduce the number
of features and maintain or even improve the classification performance over using
all features,

– whether DEMOFS can achieve a set of non-dominated feature subsets, which can
further reduce the number of features and improve the classification performance,
and

– whether DEMOFS can outperform the two conventional FS algorithms in terms of
the number of features and the classification performance.

2 Background

2.1 Differential Evolution (DE)

Differential evolution (DE) was first developed by Storn and Price [20] in 1997. Due to
its simplicity, robustness and effectiveness, DE has attracted more and more attention of
researchers from different fields. In DE, a candidate solution is encoded as an individual
in the population. Considering there are P individuals in the population, the individual i
(1 ≤ i ≤ P ) can be shown by a vector (xi1, xi2, ...xiD), where D is the dimensionality
of the problem or search space. There is a vector (xmax1, xmax2, ...xmaxD) to define
the upper bound of the search space and a vector (xmin1, xmin2, ...xminD) to limit the
lower bound of the search space. A DE algorithm starts with randomly generated initial
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individuals. Then DE employs the mutation operation to produce a mutant candidate
solution Ci for each individual xi, which is also called the parent xi.

There are different types of mutation strategies [19]. Equation (1) takes DE/rand/1/bin
as an example to how Ci is generated.

Cid =

{
xi,r1
id + F ∗ (xi,r2

d − xi,r3
id ), if rand() < CR

xid, otherwise
(1)

where xi,r1, xi,r2, and xi,r3 are randomly selected from the population. xi, xi,r1, xi,r2,
and xi,r3 are different from each other. F ∈ (0, 1) is a scale factor, which controls the
rate at which the population evolves. rand() is a random number uniformly distributed
in (0,1). CR is the crossover probability. If Cid falls out of the lower and upper bounds,
a constraint method is usually applied to handle it. A simply way is to replace the value
in Cid that exceeds the boundary value with the closest boundary value.

2.2 Related Work on Feature Selection

EC algorithms have been applied to FS problems, such as DE [14], genetic algorithms
(GAs) [28], genetic programming (GP) [17], and particle swarm optimisation (PSO)
[2, 22, 23, 25–27]. Typical EC based FS algorithms are reviewed in this section. Zhu et
al. [28] proposed a FS method incorporating GA with local search (i.e. forms a memetic
algorithm). Meanwhile, this algorithm combines filter ranking measure into a wrapper
framework to take advantage of both filter and wrapper approaches. Fdhila et al. [8]
applied multi-swarm PSO to solve FS problems. However, the computational cost of
the proposed algorithm is high because it involves parallel evolutionary processes and
multiple sub-swarms with a relative large number of particles. He et al. [14] applied a
binary differential evolution (BDE) algorithm to filter FS, where mutual information is
used to evaluate the goodness of the selected feature subsets. However, the proposed
algorithm is not compared with any other algorithm and the datasets used in the exper-
iments include a relatively small number (maximum 56) of features. Al-Ani et al. [1]
also proposed a DE based FS method, where features are distributed to a set of wheels
and DE is employed to select features from each wheel. This algorithm can significantly
reduce the number of features and improve the classification performance.

EC algorithms have been applied to multi-objective FS. Hamdani et al. [12] devel-
oped a multi-objective FS algorithm using non-dominated sorting based multi-objective
GA II (NSGAII). Neshatian and Zhang [17] proposed a GP based filter model as a multi-
objective algorithm for FS in binary classification problems. Ke et al. [3] developed a
Pareto-based multi-objective ant colony optimisation (ACO) for FS based on rough set
theory. Xue et al. [27] proposed a PSO based multi-objective approach for wrapper FS,
which shows that the PSO based algorithm outperforms three other commonly used EC
based multi-objective algorithms. Wang et al. [21] showed that DE can achieve better
performance than GA, PSO, ACO, and harmony search on single objective FS, but the
use of DE for multi-objective FS has not been investigated to date.



Multi-objective Feature Selection in Classification 519

Create a candidate C individual for 
parent K from the population

Termination ? 

Yes

No

Return the best solution 
(Selected features)

Initialise a population of
P random individuals 

Evaluate the fitness of individuals

K < P ?

No

Evaluate the fitness of C

Replace the parent K with C if C is 
better than K

Yes

Perform crossover 
between C with its parent

Create candidate C 
according to Equation (1)

Randomly select three 
different individuals

K=0

K=K+1

Calculate the fitness 
value

Transform 
training set

Evaluate the classification 
error rate

Collect selected features

Fig. 1. Training Process of DEFS and DEFS2

3 Proposed Approach

3.1 Single Objective Algorithm 1: DEFS

To investigate the performance of DE for FS, DE is firstly used to optimise the classi-
fication performance of the selected features to form the algorithm DEFS. DEFS uses
Equation (2) as the fitness function, which is to minimise the classification error rate.

Fit1 = ErrorRate =
FP + FN

TP + TN + FP + FN
(2)

where FP, FN, TP and TN mean false positives, false negatives, true positives, and true
negatives, respectively.

Since FS needs to consider both the classification performance and the number of
features, the number of features is not considered in the fitness function but during
the evolutionary process of DEFS. If there are multiple solutions with the smallest er-
ror rate, the one with the smallest size will be reserved and others are discarded. The
representation of DE follows the continuous encoding scheme since the original DE al-
gorithm was developed for continuous problems. In DEFS, each individual in DEFS is
a vector of real numbers, xi = (xi1, xi2, .., xid, .., xiD), where D is the dimensionality
and also the total number of features in the dataset. 0 ≤ xid ≤ 1 shows the probability
of the dth feature being selected. A threshold θ is used to determine whether this fea-
ture is selected. If θ ≤ xid, the dth feature is selected. Otherwise, the dth feature is not
selected.

Fig. 1 shows the training or search process of DEFS, where the DE scheme DE/rand/
1/bin [19] is used following [18]. The blue and green dash rectangles show the detailed
steps of evaluating the fitness value and creating a new candidate individual, respec-
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tively. After this training process, the selected feature subset will be used to transform
the test set of the problem and the classification performance of the selected features
will be evaluated on the transformed test set.

3.2 Single Objective Algorithm 2: DEFS2

In DEFS, the number of features is not directly included in the fitness function, al-
though it is considered during the search process. To further investigate the use of DE
for FS, an integrated fitness function, Equation (3), which combines the two objectives
of minimising the classification error rate and the number of features, is used to develop
another algorithm named DEFS2. Although DEFS2 considers the two objectives, it is
treated as a single objective algorithm since it follows a single objective search process.

Fit2 = α ∗ ErrorRate+ (1− α) ∗ #Size

D
(3)

where α ∈ (0, 1] is a weight parameter showing the relative importance of the classifi-
cation error rate. #Size represents the number of selected features and D is the total
number of features in the dataset. #Size

D is used to scale the value to (0,1] to be in the
same range of ErrorRate. α should be larger than 0.5 to make sure α > (1 − α), i.e.
the classification performance is more important than the number of features.

Equation (3) is used to investigate whether directly considering the number of se-
lected features can further reduce the number of features without significantly reducing
the classification accuracy. The search or training process of DEFS2 can also be shown
by Fig. 1. The main difference between DEFS and DEFS2 is the fitness function.

3.3 Multi-objective Algorithm: DEMOFS

Similar to most of other EC approaches, DE was proposed to solve single objec-
tive problems. Based on a popular evolutionary multi-objective algorithm, i.e. non-
dominated sorting based genetic algorithm II (NSGAII), Robič and Bogdand [18]
developed a multi-objective DE algorithm named DEMO [18] to use DE for multi-
objective optimisation. DEMO has shown promising performance on some problems,
but it has never been applied to FS problems. In this paper, we develop a multi-objective
FS algorithm named DEMOFS based on DEMO to investigate the use of DE for multi-
objective FS. DEMOFS aims to minimise the classification error rate and the number
of features. The representation of DEMOFS is the same as DEFS and DEFS2.

Algorithm 1 shows the pseudo-code of DEMOFS, where the two key steps are the
decision of the newly constructed individual and the update of the population. In Algo-
rithm 1, Line 8 to Line 16 show the decision on the newly constructed individual. After
this procedure, the population exceeds the pre-defined maximum number of individuals.
To update the population, a truncation step is needed, which is shown in Line 19. This is
similar to that in NSGAII [7], which involves the use of the non-dominated sorting and
crowding distance metric. Specifically, the non-dominated solutions in the population
are called the first non-dominated front, which are excluded from the population. Then
the non-dominated solutions in the new population are called the second non-dominated
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Algorithm 1. Pseudo-Code of DEMOFS

1 begin
2 randomly initialise individuals;
3 while Stopping Criterion is not met do
4 evaluate the number of features selected by each individual and its Training

error rate;
5 for i=1 to Number of individuals do
6 create candidate C from parent i ; /* details as shown in

Fig. 1 */
7 evaluate the two objective values of C;
8 if C dominates i then
9 use C to replace i;

10 end
11 else if i dominates C then
12 C is discarded;
13 end
14 else if i and C are non-dominated to each other then
15 C is added to the population;
16 end
17 end
18 if the population size exceeds the maximum value then
19 truncate the population according to non-dominated sorting
20 end
21 randomly enumerate the individuals in the population;
22 end
23 end
24 calculate the testing classification error rate of the non-dominated solutions;
25 return the non-dominated solutions and their training and testing error rates.

front. The following levels of non-dominated fronts are identified by repeating this pro-
cedure. For the next generation, solutions (individuals) are selected from the top levels
of the non-dominated fronts to form a new/updated population, starting from the first
front. If the number of solutions needed is larger than the number of solutions in the
current non-dominated front, all the solutions are added into the population for the next
generation. Otherwise, the solutions in the current non-dominated front are ranked ac-
cording to the crowding distance and the highest ranked (least crowded) solutions are
added into the next generation.

4 Design of Experiments

4.1 Benchmark Techniques

The three DE based FS algorithms (i.e. DEFS, DEFS2 and DEMOFS) are examined and
compared with each other on nine datasets shown in Table 1, which were selected from
the UCI machine learning repository [9]. For each dataset, the instances are randomly
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Table 1. Datasets

Dataset NO. of Features NO. of Classes NO. of Instances
Wine 13 3 178
Australian 14 2 690
Zoo 17 7 101
Vehicle 18 4 846
German 24 2 1000
Lung Cancer 56 3 32
Sonar 60 2 208
Hillvalley 100 2 606
Musk Version 1 (Musk1) 166 2 476

divided into two sets: 70% as the training set and 30% as the test set. The nine datasets
are chosen to have different numbers of features, classes and instances to be used as
representatives of problems that the proposed algorithms can address.

All the algorithms are wrapper approaches, i.e. requiring a classification algorithm
to evaluate the classification error rate of the selected features. A commonly used clas-
sification algorithm, K-nearest neighbour (KNN), is used here and K=5. During the
training process, KNN with 10-fold cross-validation is employed to evaluate the classi-
fication error rate of the selected feature subset on the training set, and then the selected
features are evaluated on the test set to obtain the testing classification error rate [15].

Two traditional wrapper FS methods are used to compare with that of the DE based
algorithms, which are linear forward selection (LFS) [10] and greedy stepwise back-
ward selection (GSBS), which were derived from two typical greedy search based FS,
i.e. SFS and SBS, respectively. Details about LFS and GSBS can be seen from [10] and
[16]. Weka [13] is used to run the experiments of LFS and GSBS. All the settings in LFS
and GSBS are kept to the defaults. The parameters of the three DE based algorithms
are set as follows. The population size is 80 and the maximum number of generations is
100. The crossover rate is set as 0.3. All the three DE based algorithms share the same
representation. The threshold θ is set as 0.6 [27]. The parameter α in DEFS2 is set as
0.95, which means that the classification performance is much more important than the
number of features. LFS and GSBS are deterministic methods, which produce a unique
solution. The DE based algorithms are stochastic methods and each of them has been
performed for 30 independent runs on each dataset.

5 Results and Discussions

In this section, we first compare the performance of DE based stochastic algorithms,
DEFS, DEFS2 and DEMOFS, then compare their performance with that of the two
traditional (deterministic) methods, LFS and GSBS.

DEFS and DEFS2 are single objective methods producing 30 solutions for each
dataset from the 30 independent runs. DEMOFS is a multi-objective algorithm produc-
ing 30 sets of solutions for each dataset from the 30 independent runs. To compare their
results, the 30 sets of solutions are combined together to extract two sets of solutions,
which are the “best” set and the “average” set. The “best” set means the non-dominated
solutions achieved by DEMOFS across the 30 independent runs. The average set con-
tains the solutions with different numbers of features. For a certain number (e.g. m), its
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Fig. 2. Experimental Results of DEFS, DEFS2 and DEMOFS

classification error rate is the average error rate of all the available feature subsets that
include m features. Fig. 2 shows the results of DEFS, DEFS2 and DEMOFS, where
“DEMOFS-A” shows the “average” set and “DEMOFS-B” shows the “best” set. The
nine charts correspond to the nine datasets used in the experiments. In each chart, the
numbers in the bracket are the total number of features and the classification error rate
achieved by using all features. For DEFS and DEFS2, there might be fewer than 30
distinct dots shown in a chart. The reason is that many different solutions may have the
same number of features and the same classification error rate and they are plotted in
the same dot.

5.1 Results of DEFS and DEFS2

From Fig. 2, it can be seen that on all the nine datasets, DEFS reduced around half
of the features and reduced or achieved similar classification error rate to using all the
available features. The results show that DEFS uses DE as the search technique can
effectively search the solution space to reduce the number of features and maintain or
even improve the classification performance.

Fig. 2 shows that DEFS2 selected around one third of the available features and
achieved a similar or even lower classification error rate than using all features. For
example, on the Australian dataset, DEFS2 selected only three features from the 14
available features and reduced the classification error rate from 29.95% to 14.5%. Com-
paring DEFS2 with DEFS, DEFS2 which directly considers the number of features in
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Fig. 3. Further Comparisons Between DEFS, DEFS2 and DEMOFS: Non-Dominated Solutions

the fitness function can further reduce the number of features without increasing the
classification error or evening reducing it over DEFS. The main reason is that the num-
ber of features is considered but with a very small weight in the fitness function, which
on one hand results in the reduction of the number of features. On the other hand, slightly
compromising the classification performance with the number of features can also help
avoid the over-fitting problem, which may achieve better performance on the test set.

5.2 Results of DEMOFS

From Fig. 2, it can be observed that for all cases, at least one feature subset in the
“average” set included a smaller number of features and achieved similar or lower clas-
sification error rate than using all features. Note that DEMOFS reports a set of non-
dominated solutions in each run, but when combining the solutions from multiple runs,
some solutions may be dominated by others. Therefore, some of the solutions in the
“average” set dominate others. In all datasets, the “best” set included a significantly
smaller number of features and increased the classification accuracy over all features.

Fig. 2 suggests that by employing a multi-objective search mechanism, DEMOFS
can effectively explore the search space to obtain a number of non-dominated feature
subsets, which significantly reduced the number of features and improve the classifica-
tion performance over using all features.



Multi-objective Feature Selection in Classification 525

Table 2. Results of LFS ang GSBS
Wine Australian Zoo Vehicle German

# Features Error (%) # Features Error (%) # Features Error (%) # Features Error (%) # Features Error (%)
LFS 7 25.93 4 29.95 8 20.95 9 16.93 3 31.33
GSBS 8 14.81 12 30.43 7 20.0 16 24.21 18 35.67

Lung Sonar Hillvalley Musk1
# Features Error (%) # Features Error (%) # Features Error (%) # Features Error (%)

LFS 6 10.0 3 22.22 8 42.31 10 14.69
GSBS 33 10.0 48 31.75 90 50.55 122 23.78

5.3 Comparisons between DEFS, DEFS2 and DEMOFS

Fig. 2 also shows that the classification performance of the “average” set is often slightly
worse or similar to that of DEFS and DEFS2, but the solutions in the “best” set is
always better than DEFS and DEFS2. This is not surprised because DEFS, DEFS2 and
DEMOFS share the same (total) number of evaluations, but DEFS and DEFS2 focus
on the optimisation of the classification accuracy and return only one single solution
from each run. DEMOFS returns a set of feature subsets with trade-off between the
accuracy and the number of features. Therefore, when the error rates of feature subsets
from different runs are averaged, it may be slightly worse the DEFS and DEFS2.

The “average” set gives an overall idea of the solutions achieved by DEMOFS, espe-
cially for the number of features, but it has a potential limitation because the solutions
in the “average” set are not meaningful solutions. The reason is that in FS problems, the
solutions themselves cannot be averaged because the each solution involves a number
of features. Such individual features cannot be averaged to get an “average” solution,
although the numbers of features and their classification error rates can be averaged to
show the general performance. This is not a problem for the “best” set involving the
original non-dominated solutions only. Therefore, in order to further compare the per-
formance of DEFS, DEFS2 and DEMOFS, the non-dominated solutions obtained by
DEFS and DEFS2 over the 30 independent runs are also collected and compared with
that of DEMOFS, where the results are shown in Fig. 3.

From Fig. 3, it can be observed that DEFS2 generally achieved similar or better
performance than DEFS. This is generally consistent with the results in Fig. 2, but
shows a clearer pattern. On all the nine datasets, the solutions of DEMOFS dominate
that of DEFS. On eight of the nine datasets, the solutions of DEMOFS dominate that
of DEFS2. The only exception is the Musk1 dataset, where one of the solutions from
DEFS2 achieved a similar classification performance to that of DEMOFS, but selected
a smaller number of features. The results from Fig. 3 further show that DEMOFS has
the potential to obtain better feature subsets than DEFS and DEFS2, which included a
smaller number of features and a lower classification error rate.

5.4 Comparisons with Traditional Methods

Table 2 shows the results of the two traditional FS algorithms. Both LFS and GSBS are
deterministic algorithms that produce a unique solution.

Comparing the results in Table 2 to that in Fig. 2 and 3, it can be seen that DEFS,
DEFS2 and DEMOFS were able to outperform both LFS and GSBS in terms of both the
classification performance and the number of features on eight of the nine datasets. Only



526 B. Xue, W. Fu, and M. Zhang

on the Lung dataset, LFS outperformed DEFS and DEFS2, but DEMOFS achieved bet-
ter performance than LFS. The results show that DEFS, DEFS2 and DEMOFS employ
DE as the search technique can better explore the solution space to obtain better results
than LFS and GSBS.

6 Conclusions and Future Work

This paper investigated the use of DE for multi-objective FS in classification. The algo-
rithm DEMOFS was proposed to simultaneously minimise the number of features and
the classification error rate. The experiments on the nine different datasets show that
DEMOFS successfully evolved a set of trade-off solutions to reduce both the number of
features and the classification error rate. The results show that DEMOFS outperformed
two commonly used conventional FS methods (LFS and GSBS) in terms of both the
classification performance and the number of features. DEMOFS was also compared
with two DE based single objective FS algorithms (DEFS and DEFS2), where DEFS
aimed to minimise the classification error rates and DEFS2 combined both the classi-
fication error rate and the number of features into a single fitness function. DEMOFS
outperformed both DEFS and DEFS2 by employing a multi-objective search mecha-
nism. All the three DE based algorithms achieved better classification accuracy than
the two traditional algorithms.

This work discovers that DE can be successfully used for multi-objective FS. It also
provides motivations for further investigating EC particularly DE methods for multi-
objective FS. There are many future research directions, which can be seen as follows:

1. The performance of DEMOFS needs to compare with other EC based multi-
objective FS algorithms, such as PSO and GAs, which was not conducted in this
paper due to the page limit;

2. A new multi-objective DE algorithm needs to be developed to further improve the
performance of DE for multi-objective FS;

3. DE was originally for continuous problems, but FS is a binary task. Therefore, a
binary DE is demanded to better solve the problem;

4. This paper focuses on wrapper based algorithms and the investigation of DE for
filter based multi-objective FS is still an open issue;

5. Classification on datasets with over a thousand or a few thousands of features is
still a challenge. Investigating effective and efficient multi-objective FS approaches
on such large-scale problems can help address this challenge; and

6. To investigate the trade-off between the number of features and the classification
performance and decide how to select a single solution from a set of non-dominated
solutions in multi-objective FS.
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