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ABSTRACT
The entropy measures have been used in feature selection for decades,
and showed competitive performance. In general, the problem aims
at minimizing the conditional entropy of the class label on the se-
lected features. However, the generalization of the entropy mea-
sures has been neglected in literature. Specifically, the use of con-
ditional entropy has two critical issues. First, the empirical condi-
tional distribution of the class label may have a low confidence and
thus is unreliable. Second, there may not be enough training in-
stances for the selected features, and it is highly likely to encounter
new examples in the test set. To address these issues, a bi-objective
optimization model with a modified entropy measure called the
Bayesian entropy is proposed. This model considers the confidence
of the optimized conditional entropy value as well as the condi-
tional entropy value itself. As a result, it produces multiple feature
subsets with different trade-offs between the entropy value and its
confidence. The experimental results demonstrate that by solving
the proposed optimization model with the new entropy measure,
the number of features can be dramatically reduced within a much
shorter time than the existing algorithms. Furthermore, similar or
even better classification accuracy was achieved for most test prob-
lems.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Machine Learning; G.1.6
[Numerical Analysis]: Optimization—Global Optimization

Keywords
Feature Selection; Multi-Objective Computation; Generalization

1. INTRODUCTION
In data mining and machine learning tasks, feature selection [9,

25] can improve the quality of the data space by selecting only a
small subset of relevant features and removing irrelevant and/or re-
dundant features. By doing so, feature selection can reduce the
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dimensionality of the data, maintain or even improve the learning
performance, reduce the training speed of a learning algorithm, and
simplify the learnt models [5, 9]. Feature selection has been suc-
cessfully used to improve the data space for many tasks, such as
classification and clustering [16], and the focus of this paper is fea-
ture selection for classification.

Existing feature selection methods can be generally grouped into
two categories [5]: filter and wrapper approaches. The main dif-
ference between them lies in the evaluation criteria. Wrapper ap-
proaches [13] “wrapper” a classification algorithm into the feature
selection process to evaluate candidate feature subsets. Filter ap-
proaches are independent of any classification algorithm, where
the selected features are evaluated based on the characteristics of
the data. Wrapper approaches can often achieve better classifica-
tion performance than filter approaches, but filter approaches are
usually faster and the selected features are general to different clas-
sification algorithms, i.e. can maintain or even increase the classifi-
cation accuracy of different classifiers [5]. While the classification
algorithm is used as a “black box” in wrappers, filter approaches
focus on the data itself, aiming to improve the overall quality of the
data space, which is particularly important to avoid overfitting and
perform data analysis for real-world complex problems.

There have been different filter measures proposed, such as the
measures based on information theory [18], distance measures [2],
and rough-set-based measures [22]. Among these measures, those
based on information theory are the most popular ones [18, 20, 8].
They have been used in many different ways [27, 23, 17, 28, 21,
7, 20, 3]. For example, they can be used as evaluation criteria to
guide the search direction [4, 10]. Most of these approaches are
based on entropy measures, e.g. the conditional entropy between
the feature and class labels, and the joint distribution of the selected
features. These measures become very popular since entropy mea-
sures have strong theoretical background to provide reliable solu-
tions. However, there are still some limitations in the existing ap-
proaches, mainly in how to calculate the entropies to maintain the
generalizability from the training set to the test set (details in Sec-
tion 2.2).

Furthermore, searching for the optimal feature subsets is chal-
lenging due to the large search space, which grows exponentially
along with the number of available features in the dataset (2m,
where m is the number of features). Exhaustively searching for
all the possible feature subsets is practically impossible in most sit-
uations. Therefore, heuristic search techniques are often popular
in solving feature selection problems. However, since feature se-
lection has a complex search space, many existing methods, such
greedy search, still suffer from a variety of problems, e.g. stag-



nation into local optima [23, 15]. Evolutionary Computation (EC)
includes a group of powerful search techniques, which have been
widely applied in many areas, including feature selection [26, 11,
28, 12, 14].

In this paper, we focus on the investigation of the filter approaches,
aiming to design faster feature selection approaches and gain a
deeper understanding of the relationship between the selected fea-
tures and the resultant classification accuracy. More specifically,
we will focus on the entropy-based feature selection approaches
which minimizes the conditional entropy (maximizes the informa-
tion gain).

1.1 Goals
The overall goal of this paper is to investigate the limitations of

the existing entropy-based approaches, and propose new algorithms
to address these issues. More specifically,

1. Two limitations that affect the generalization are identified:
(1) the calculation of the entropy is based on empirical prob-
abilities, which might be quite different between the train-
ing set and the test set; (2) the training set may not contain
enough instances to cover all the occurrences of the selected
features.

2. To address these two issues and to improve the tradeoff be-
tween the empirical samples and the potential outliers, a bi-
objective optimization model is proposed. In addition, the
empirical probability is modified to a posterior one, which is
called the Bayesian entropy.

3. The efficacy of the proposed algorithms is verified on a num-
ber of classification datasets by comparing the test perfor-
mance of different classifiers when using the selected fea-
tures and using all the features.

1.2 Organization
The rest of the paper is organized as follows: First, the back-

ground of using entropy measures for feature selection and its limi-
tations are introduced in Section 2. Then, the proposed approach is
described in Section 3. Experimental studies and analysis are con-
ducted in Section 5. Finally, conclusions and future work are given
in Section 6.

2. ENTROPY MEASURES FOR FEATURE
SELECTION

2.1 Entropy Measures
When using entropy measures for feature selection, the problem

aims to select a subset of featuresX s out of the entire feature setX ,
so that the conditional entropy [19] H(Y |X s) of the class label Y
on X s is minimized. The problem can be simply stated as follows:

min
Xs⊆X

H(Y |X s). (1)

For any X and Y , the entropy measures have the following use-
ful properties:

H(X) > 0, H(Y ) > 0, (2)
H(Y |X) ≤ H(Y ), (3)
H(X,Y ) ≥ max{H(X), H(Y )}. (4)

Based on the above properties, we can obtain the lower and upper
bounds of the objective function as follows:

H(Y |X ) ≤ H(Y |X s) ≤ H(Y ). (5)

Obviously, the optimal value of Eq. (1) is zero, in which case the
class label Y is completely determined by the value of X s.

2.2 Limitations in Entropy for Feature Selec-
tion

Although the entropy-based feature selection method has strong
theoretical background and is classifier-independent, there are two
major drawbacks that hinder it from selecting the truly important
features. First, the conditional entropy totally depends on the em-
pirical probabilities (density or frequency) of the occurrences in the
training set. In this case, the empirical probabilities may be highly
uncertain, and vary a lot in the test data. A simple example of this is
the index feature I . It is obvious that the class label Y is completely
determined by the index, since each index corresponds to a unique
instance, and thus a unique class label. Hence,H(Y |I) = 0. How-
ever, there is only one sample for each index value i, which is far
less enough for making a reliable prediction about Y . This is es-
sentially the same as the situation when we flip a coin once and
obtain a result of head, we are still highly uncertain about which
side will be on top in the next flip.

Second, the number of possible (joint) occurrences increases with
the increase of the number of selected features. Therefore, there
may not be enough training instances to cover all the occurrences
of the selected features, especially when the number of selected
features is relatively large relative to the given number of training
instances. In this case, one will still be unable to predict the label
of a test instance whose feature values were never seen before.

3. THE PROPOSED BI-OBJECTIVE OPTI-
MIZATION FOR FEATURE SELECTION

In order to address the issues discussed above, the joint entropy
of the selected features H(X s) is included in the features selec-
tion as well as the original objective H(Y |X s). While H(Y |X s)
indicates how well Y depends on X s, H(X s) implies how much
we can trust the dependency, i.e., how likely the same pattern will
occur in the test set as it is in the training set. For example, given
a feature X , H(X) = 0 indicates that Pr(X = a) = 1, where a
is the sole value of X occurring in the training set. In this case, it
is reasonable to believe that X has a stable distribution, and will be
highly likely to take the value of a in any unseen test instance. On
the other hand, a large H(X) corresponds to a more random dis-
tribution, which makes the occurrences in the training set unlikely
to be repeated in the test set. For instance, the entropy of the index
feature I is the largest possible value. That is, H(I) = log2 n,
where n is the number of training instances. This implies that I
has a highly random distribution, and each occurrence in the train-
ing set is unique. As expected, they are never repeated in the test
instances. Therefore, given a test instance whose feature value has
not appeared in the training set, its class label can hardly be pre-
dicted, since there is no reference training instance. Based on the
above considerations, we propose a bi-objective optimization prob-
lem for feature selection, which is stated as follows:

min
Xs⊆X

H(Y |X s), (6)

min
Xs⊆X

H(X s). (7)

The above bi-objective optimization problem can be directly solved
by any evolutionary multi-objective algorithms. Here, we adopt
the well known evolutionary multi-objective algorithm named non-
dominated sorting genetic algorithm II (NSGA-II) [6]. The pseudo
code of NSGA-II for solving the above problem is described in Al-



gorithm 1. In the algorithm, each individual is represented as an
m-dimensional bit string, where m is the total number of features.
If the ith bit takes 1, then the ith feature is selected. Otherwise, the
feature is not selected. In lines 15 and 16, the normalization of the
objective functions are conducted as follows:

H̄(Y |X s) =
H(Y |X s)−H(Y |X )

H(Y )−H(Y |X )
, (8)

H̄(X s) =
H(X s)−minX∈X [H(X)]

H(X )−minX∈X [H(X)]
. (9)

Finally, a set of non-dominated solutions (feature subsets) in
terms of Eqs. (6) and (7) are obtained by Algorithm 1.

ALGORITHM 1: NSGA-II for minimizing H(Y |X s) and H(X s).

// Initialization
1 pop← ∅, arch← ∅; // arch is the
non-dominated archive

2 for i = 1→ popsize do
3 Randomly generate an individual indi;
4 pop← pop ∪ indi;
5 end
6 Update arch with pop;
// Search process

7 while Stopping criteria are not met do
8 tpop← pop;
9 for i = 1→ popsize/2 do

10 Select two parents par1 and par2 from pop by
tournament selection;

11 Generate ox1 and ox2 by applying the single-point
crossover operator to par1 and par2;

12 Generate om1 and om2 by applying the single flip
mutation operator to ox1 and ox2;

13 Calculate H(Y |om1) and H(om1);
14 Calculate H(Y |om2) and H(om2);
15 Calculate the normalized H̄(Y |om1) and H̄(om1);
16 Calculate the normalized H̄(Y |om2) and H̄(om2);
17 tpop← tpop ∪ {om1, om2};
18 end
19 Sort tpop by fast non-dominated sorting;
20 pop← tpop[1 : popsize];
21 end
22 Update arch with pop;
23 return arch;

3.1 Bayesian Entropy
The proposed bi-objective optimization problem still has a draw-

back that may reduce the generalizability of the selected features.
The drawback is the use of the empirical entropy, which is cal-
culated directly based on the empirical density, which uses the
empirical density of the occurrences. Table 1 gives an example
when the empirical entropy fails. In the table, both the training
and test sets have five features X1 to X5. The class label Y is ob-
tained by either checking whether there are odd number of bits in
(X1, X2, X3) (3-bit parity problem), or applying the AND opera-
tor to X4 and X5. Therefore, one can either choose the feature set
X s1 = {X1, X2, X3} or X s2 = {X4, X5}. When calculating the
two objectives (6) and (7) from the training set, one can easily get

H(Y |X s1 ) = 0, H(Xs
1) = 1.50,

H(Y |X s2 ) = 0, H(Xs
2) = 1.56.

Therefore, X s1 is considered to be better than X s2 . However,
when being applied to the test set, X s2 is much better than X s1 in

the sense that all the occurrences of X s1 are unseen in the train-
ing set. Intuitively, if there are more features selected, then the
joint variable space of the features will become larger (unless the
features are strongly correlated). Thus, given the same number of
training instances, it is less likely to cover all the occurrences in
the joint variable space. For example, there are three occurrences
in the training set for both X s1 ((0, 0, 1), (1, 1, 0) and (1, 0, 1)) and
X s2 ((1, 1), (0, 1) and (1, 0)). However, in the test set, there will
be five outliers for Xs

1 and one outlier for Xs
2 ((0, 0)). As a result,

one has to make a random guess for all the five test instances with
Xs

1 , but for only one test instance with Xs
2 .

Table 1: An example of the training and test sets.
Training Test

ID X1 X2 X3 X4 X5 Y ID X1 X2 X3 X4 X5 Y

1 0 0 1 1 1 1 1 1 0 0 1 1 1
2 1 1 0 0 1 0 2 1 1 1 1 1 1
3 1 1 0 0 1 0 3 0 1 1 0 1 0
4 1 0 1 0 1 0 4 0 0 0 0 0 0
5 1 0 1 1 0 0 5 0 1 0 1 1 1
6 1 1 0 1 0 0
7 0 0 1 1 1 1
8 1 1 0 1 0 0

From the above example, one can see two issues of the empir-
ical entropy, which adopts the empirical density. First, the set of
occurrences in the training set may not be able to cover all the
possible occurrences of the selected features, especially when the
number of features is large relative to the number of training in-
stances. Second, the empirical entropy tends to put more empha-
sis on the more biased distributions such as the one in Table 1.
This can increase the confidence of the majority occurrence (e.g.,
(X1, X2, X3) = (1, 1, 0) occurred 4 times in the training set of Ta-
ble 1). However, the confidence of the minority occurrences (e.g.,
(X1, X2, X3) = (0, 0, 1) occurred twice in the training set of Ta-
ble 1) will be low due to the lack of training instances with the same
feature values, not to mention the outliers which failed to occur in
the training set at all.

To address the above issues, we proposed to replace the em-
pirical density with the posterior probability, which is estimated
by Bayesian inference. The resultant entropies are then called the
Bayesian entropies. They are defined as follows:

HB(X s) = −
∑

xs∈Ω(Xs)

pB(xs) log2 pB(xs), (10)

HB(Y |X s) =
∑

(xs,y)∈Ω(Xs,Y )

pB(xs, y) log2

pB(xs)

pB(xs, y)
, (11)

where pB(x) of the vector x stands for the posterior probability
estimated based on the assumed prior distribution and the training
instances as samples. Ω(X ) indicates the domain of the variables
X , which is defined as the set of all the possible values that X can
take. For example, if X is a binary variable, then Ω(X) = {0, 1}.

As a starting point, the prior distribution is simply assumed to
be the binomial distribution here. For a random variable X and
an occurrence x ∈ Ω(X), suppose that the prior probability of x
is θ, i.e., p(x) = θ. If x appears m times among n observations
(m ≤ n), then the posterior probability of θ can be calculated based
on Bayes’ theorem as:

p(θ|m,n) =
p(m,n|θ)p(θ)∫
θ
p(m,n|θ)p(θ)

, (12)



where p(m,n|θ)p(θ) =
(
n
m

)
θm(1 − θ)n−m. In Eq. (12), a con-

jugate prior distribution of beta function is commonly assumed for
θ. That is, θ ∼ B(α, β), where α and β are the parameters of the
beta function. Then, the posterior probability still follows a beta
function as follows:

θ|m,n ∼ B(α+m,β + n−m). (13)

The expectation of the posterior probability is

E[θ|m,n] =
α+m

α+ β + n
. (14)

When, n = m = 0, the posterior probability is reduced to the
prior probability, whose expectation is

E[θ] = E[θ|0, 0] =
α

α+ β
. (15)

Given a domain Ω, with no prior knowledge, it is reasonable to
assume that each occurrence occ ∈ Ω has the same probability. In
this case, α+ β = α · |Ω|.

When determining Ω, there are two different assumptions called
independent and dependent assumptions, which are described as
follows:

• Independent assumption: The features are independent, and
Ω is defined as the Cartesian product of their own domains;

• Dependent assumption: The features are dependent, and Ω
only consists of the occurrences happened in the training in-
stances.

For example, given two binary features X4 and X5 in Table
1, it is known that Ω(X4) = Ω(X5) = {0, 1}. Then, under
the independent assumption, Ω(X1, X2) = Ω(X1) × Ω(X2) =
{(0, 0), (0, 1), (1, 0), (1, 1)}. However, under the dependent as-
sumption with the training instances given in Table 1, Ω(X1, X2) =
{(1, 1), (0, 1), (1, 0)}.

Algorithm 2 describes the calculation of the proposed Bayesian
entropy measures under the independent and dependent assump-
tions. In lines 13 and 17, n stands for the number of training in-
stances. Different assumptions lead to different size of domains
(lines 5 to 10), and thus different HB(Y |X s) and HB(X s) values.

The parameter α controls the degree of impact of the observa-
tions on the posterior probabilities. Specifically, the impact de-
creases with the increase of α. Extremely, when α = 0, the poste-
rior probability becomes the empirical density. When α→∞, the
posterior probability converges to the prior probability.

According to Algorithm 2, the computational complexity of fit-
ness evaluation is O(n + |Ω(X s)| + |Ω(X s, Y )|), where n is the
number of training instances. In practice, it is normal to assume
that |Ω(X s)| � n and |Ω(X s, Y )| � n. In this case, the com-
plexity becomes O(n).

4. HOW IT WORKS: A DEMONSTRATION
To help understand how the proposed approach works, we pro-

vide a demonstration based on the example given in Table 1. In
the table, suppose that we have already found three feature sets
X s1 = {X1, X2, X3}, X s2 = {X4, X5} and X s3 = {ID}, all are
able to classify the label Y without confusion, i.e.

H(Y |X s1 ) = H(Y |X s2 ) = H(Y |X s3 ) = 0.

First, as we introduce the second objective, we have

H(X s1 ) = 1, 500, H(X s2 ) = 1.561, H(X s3 ) = 3.00.

ALGORITHM 2: Calculation of HB(Y |X s) and HB(X s).

1 foreach Xs ∈ X s do
2 Ω(Xs)← all the distinct occurrences of Xs in the

training set;
3 end
4 Ω(Y )← all the distinct occurrences of Y in the training set;
5 if independent assumption then
6 Ω(X s)← Ω(Xs

1)× · · · × Ω(Xs
|Xs|),

Ω(X s, Y )← Ω(X s)× Ω(Y );
7 else
8 Ω(X s)← all the distinct occurrences of X s in the

training set;
9 Ω(X s, Y )← all the distinct occurrences of (X s, Y ) in

the training set;
10 end
11 foreach xs ∈ Ω(X s) do
12 count(xs)← number of training instances where xs

occurred;
13 pB(xs)← α+count(xs)

|Ω(Xs)|·α+n
;

14 end
15 foreach (xs, y) ∈ Ω(X s, Y ) do
16 count(xs, y)← number of training instances where

(xs, y) occurred;
17 pB(xs, y)← α+count(xs,y)

|Ω(Xs,Y )|·α+n
;

18 end
19 Calculate HB(X s) and HB(X s, Y ) by Eqs. (10) and (11);
20 return HB(X s) and H(Y |X s);

Obviously, the index feature X s1 is much worse than the other two
feature sets, as its entropy is much larger. However, X s1 is consid-
ered to be the best, although it is more likely to have outliers in the
test set.

Then, after modifying the original entropy to the Bayesian en-
tropy, we have two parameters to set, one is α and the other is the
assumption of the domain (dependent or independent). If we set
α = 10, then under the dependent assumption, we have

HB(Y |X s1 ) = HB(Y |X s2 ) = HB(Y |X s3 ) = 0,

HB(X s1 ) = 1.581, HB(Xs
2) = 1.584, HB(X s2 ) = 3.00.

It can be seen that the difference between HB(Xs
1) and HB(Xs

2)
is reduced. Under the independent assumption, on the other hand,
we have

HB(Y |X s1 ) = 1.004, HB(Y |X s2 ) = 0.998, HB(Y |X s3 ) = 0.998,

HB(X s1 ) = 2.989, HB(X s2 ) = 1.992, HB(X s2 ) = 3.00.

One can see that X s2 becomes better than X s1 in terms of both ob-
jectives, and thus will be selected instead.

In summary, the above example shows that

• With the help of the proposed second objective, one can iden-
tify the features with much higher confidence (e.g. X s1 and
X s1 against X s3 );

• With proper parameter setting of the Bayesian entropy, one
can shift the bias to the empirical samples, and thus change
the selected feature set (e.g. from X s1 to X s2 by setting α =
10 and adopting the independent assumption).

5. EXPERIMENTAL STUDIES

5.1 Experimental Settings
Eight discrete datasets were selected from UCI machine learning

repository [1], whose details are given in Table 2. In each dataset,



70% of the instances are used as training set and the other 30% are
used as test set. To evaluate the selected features, four different
types of classification algorithms were applied, and their test accu-
racies were compared with the test accuracy obtained on the entire
feature set. The classification algorithms include k-nearest neigh-
bour algorithm with k = 1 (1-NN) based on distance, Random
Forest (RF) based on ensemble learning, J48 decision tree based
on information gain, and Naïve Bayes (NB) based on probabili-
ties. The parameter α ∈ {0, 0.01, 0.1, 1, 10, 100} were tested and
compared to each other. Note that α = 0 indicates the use of the
original entropy measures.

Table 2: Properties of the datasets.
Dataset #Features #Classes #Instances

Lymphography (Lymph) 18 4 148
Mushroom (Mush.) 22 2 5644

Spect 22 2 267
Leddisplay(Led.) 24 10 1000

Ionosphere (Iono.) 34 2 351
Chess 36 2 3196

Lung Cancer (Lung) 56 3 32
Splice 61 3 3190

The total number of evaluations was set to 1000 · m, where m
is the number of features in the dataset. For each α value on each
dataset, 30 independent runs were conducted. For each run, a set
of non-dominated feature subsets were obtained. Then, for each
classifier, the feature subset yielding the best training accuracy was
selected and used in the test phase.

5.2 Results and Discussions
Table 3 shows the results of the 1-NN, RF, J48 and NB classifiers

on the features selected by different α values as well as the entire
feature set under the dependent assumption. For each dataset and
classifier, t-test with significance level of 0.05 was also conducted
between the accuracies of the best α value(s) and all the features.
The significantly better one is marked in bold. From the table, one
can see that the proposed algorithm considerably reduced the num-
ber of features for all the datasets. For the lung dataset, the average
number of selected features is even less than 10% of the total num-
ber of features.

In most cases, using the selected features only, the classifica-
tion performance of the four algorithms can be maintained or even
increased. This shows the proposed filter approach can obtain fea-
tures that are general to different types of classification algorithms.
Specifically,

• On 6 out of the 8 datasets, the 1-NN classifier achieved sig-
nificantly better test accuracy when using the selected fea-
tures than using all the features. In the Led. dataset, 1-
NN classifier managed to achieve 100% accuracy with much
fewer features (7 versus 22). On the Iono. dataset, statis-
tically comparable test performance was achieved with less
than 18% of the features (6 versus 34).

• For the RF classifier, the advantage of the selected features
is not so obvious. Using the selected features led to signifi-
cantly better accuracy on the Spect dataset, and was defeated
by the entire set on the Lymph and Splice dataset. On the re-
maining 5 datasets, the difference between the test accuracies
was insignificant, including the Led. and Mush. datasets, on
which a 100% accuracy was consistently achieved.

• In 5 out of the 8 cases, the J48 classifier using the selected
features obtained by the bestα value(s) achieved significantly

better accuracy than using all the features. On the remaining
3 datasets, the difference was insignificant.

• For the NB classifier, the results are mixed. Using the se-
lected features led to significantly better accuracy on 4 datasets,
but significantly worse accuracy on 3 datasets. On the re-
maining Led. dataset, all the feature sets led to a 100% accu-
racy.

• Overall, the advantage of the selected features over the en-
tire feature set is the most obvious for the 1-NN classifier.
This is consistent with the rationale of the entropy optimiza-
tion, which assumes that given a test instance, if there exists
a training instance with the same values of the selected fea-
tures (zero distance), then they tend to have the same class
label. In addition, since the 1-NN classifier is generally the
simplest classifier and thus usually perform worse than other
classifiers, the significant improvement for the 1-NN classi-
fier reduces the difference between the test performance of
different classifiers, and makes the classification more ro-
bust.

When comparing among different α values, it can be seen that
the relative performance of α depends on classifier. For example,
on the Spect dataset, the test accuracy tends to improve with the
increase of α for the 1-NN and RF classifiers, but with the decrease
of α for the J48 and NB. In most cases, the results of different α
values are not much different from each other, i.e. the test accuracy
is not sensitive to the α value. From the table, a value from 0.1 to
1 seems to be a reasonable setting in most cases, unless the size of
the training set is too small, where a much larger α may be needed.

Table 4 shows the corresponding results under the independent
assumption. The table shows a similar pattern as Table 3 in terms
of the relative performance of the selected feature to that of all the
features. For the 1-NN classifier, the selected features led to signif-
icantly better accuracy on 6 datasets. For the RF classifier, the se-
lected features achieved significantly better accuracy on 2 datasets,
but significantly worse accuracy on 4 datasets. For the J48 classi-
fier, the selected features obtained significantly better accuracy on
5 datasets, and worse on 1 dataset. For the NB classifier, feature
selection significantly improved the accuracy on 5 datasets, while
outperformed by the original feature set on 2 datasets.

Overall, the dependent assumption led to better results than the
independent assumption on most of the datasets, except the Lung
dataset. From Table 2, we can see that the number of instances in
all the datasets are relatively large except the Lung dataset, which
only contains 32 instances in total. As a result, there are only 22
training instances (70% × 32). Such a small number of training
instances can hardly cover all the possible occurrences of the fea-
tures most of the time. In this case, the independent assumption is
better than the dependent assumption, as it takes the outliers into
account. Table 4 shows that under the independent assumption, the
test accuracy of all the four classifiers have been dramatically im-
proved, and the number of selected features is reduced from 4 to
2. For the other datasets, the probability of missing occurrences in
the training set is lower due to the relatively sufficient number of
instances. Therefore, the dependent assumption outperformed the
independent assumption. In summary, if there are a large number
of training instances, then the dependent assumption tends to be
better. In contrast, if the training instances are not enough or many
features are selected, then the independent assumption is recom-
mended to be adopted.

It is worth noting that the independent and dependent assump-
tions are two extremes of the occurrence coverage in the training



Table 3: The results of 1-NN, Random Forest (RF), J48, and Naïve Bayes (NB) classifiers under the dependent assumption.

Dataset α
1-NN RF J48 NB Time

Accuracy |X s| Accuracy |X s| Accuracy |X s| Accuracy |X s| (s)

Chess

all 95.40 36 99.06 36 99.34 36 83.76 36 -
0 97.02± 0.29 26.4 98.95± 0.18 26.4 99.28± 0.23 25.3 93.67± 0.24 6.6 55.7

0.01 97.04± 0.28 26.6 99.02± 0.16 26.6 99.30± 0.18 25.6 93.71± 0.03 5.5 66.2
0.1 96.90± 0.27 26.7 99.01± 0.14 26.7 99.32± 0.20 25.6 93.71± 0.13 6.5 60.2
1 97.00± 0.34 26.7 99.05± 0.15 26.7 99.26± 0.15 26.1 93.71± 0.05 6.4 61.7
10 97.04± 0.35 26.9 99.09± 0.14 26.9 99.27± 0.13 26.7 93.72± 0.03 6.0 58.9
100 96.13± 1.06 25.6 97.96± 1.89 25.6 98.31± 1.70 25.7 93.22± 0.69 11.7 50.4

Lung

all 63.64 56 81.82 56 72.73 56 72.73 56 -
0 45.45± 0.00 4.0 45.45± 0.00 4.0 36.36± 0.00 4.0 45.45± 0.00 4.0 0.5

0.01 45.45± 0.00 4.0 45.45± 0.00 4.0 36.36± 0.00 4.0 45.45± 0.00 4.0 0.6
0.1 45.45± 0.00 4.0 45.45± 0.00 4.0 36.36± 0.00 4.0 45.45± 0.00 4.0 0.6
1 45.45± 0.00 4.4 45.45± 0.00 4.4 36.36± 0.00 4.4 45.45± 0.00 4.4 0.6

10 81.82± 0.00 3.5 81.82± 0.00 3.5 81.82± 0.00 3.5 45.45± 0.00 4.4 0.5
100 81.82± 0.00 4.0 81.82± 0.00 4.0 81.82± 0.00 4.0 45.45± 0.00 4.8 0.5

Lymph

all 63.27 18 85.71 18 75.51 18 85.71 18 -
0 72.14± 5.59 9.4 76.79± 3.51 9.4 77.86± 1.35 8.6 80.05± 3.08 6.4 0.8

0.01 73.06± 5.70 9.1 77.04± 3.39 9.1 77.50± 1.88 8.6 79.69± 3.55 6.3 0.8
0.1 73.52± 5.42 9.4 76.43± 3.33 9.4 78.01± 1.57 9.0 79.54± 3.35 6.6 0.8
1 72.24± 6.02 8.4 75.26± 4.60 8.4 75.05± 4.30 7.5 79.54± 3.05 6.3 0.8

10 73.47± 3.75 8.3 74.08± 2.93 8.3 73.47± 4.00 8.1 79.95± 4.00 7.5 0.8
100 73.16± 5.26 8.7 73.78± 4.07 8.7 73.47± 4.21 8.2 77.55± 3.36 8.3 0.8

Led.

all 79.88 24 100.00 24 100.00 24 100.00 24 -
0 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 6.4

0.01 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 7.4
0.1 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 6.7
1 100.00± 0.00 5.4 100.00± 0.00 5.4 100.00± 0.00 5.4 100.00± 0.00 5.4 6.9

10 100.00± 0.00 6.2 100.00± 0.00 6.2 100.00± 0.00 6.2 100.00± 0.00 6.2 6.8
100 100.00± 0.00 5.7 100.00± 0.00 5.7 100.00± 0.00 5.7 100.00± 0.00 5.7 6.4

Mush.

all 100.00 22 100.00 22 100.00 22 95.75 22 -
0 100.00± 0.00 6.7 100.00± 0.00 6.7 99.89± 0.04 5.8 97.50± 0.00 1.8 32.9

0.01 100.00± 0.00 6.3 100.00± 0.00 6.3 99.87± 0.06 5.7 97.50± 0.00 1.6 39.0
0.1 100.00± 0.00 6.1 100.00± 0.00 6.1 99.88± 0.05 6.0 97.50± 0.00 1.0 35.4
1 100.00± 0.00 6.0 100.00± 0.00 6.0 99.87± 0.06 5.9 97.50± 0.00 1.9 36.8

10 100.00± 0.00 6.6 100.00± 0.00 6.6 100.00± 0.00 6.6 97.50± 0.00 2.0 35.9
100 100.00± 0.00 6.3 100.00± 0.00 6.3 100.00± 0.00 6.3 97.50± 0.00 1.5 34.0

Spect

all 64.04 22 64.04 22 68.54 22 67.42 22 -
0 62.39± 0.95 16.9 63.82± 0.46 16.9 70.25± 1.78 14.5 70.03± 2.64 8.3 2.1

0.01 64.19± 1.89 20.2 63.23± 1.42 20.2 68.31± 1.42 20.1 70.14± 2.27 8.4 2.4
0.1 63.29± 2.62 19.4 64.27± 1.75 19.4 68.37± 1.07 19.2 70.48± 2.29 8.2 2.2
1 63.96± 2.34 20.2 64.33± 1.83 20.2 68.03± 2.25 20.1 69.86± 2.34 8.1 2.4
10 65.81± 2.67 19.1 64.38± 1.73 19.1 67.75± 1.73 19.2 69.58± 2.77 7.2 2.2
100 66.07± 3.02 18.7 65.25± 1.93 18.7 67.33± 1.96 18.9 67.81± 3.40 6.2 2.0

Splice

all 63.97 61 94.83 61 92.94 61 92.10 61 -
0 76.81± 2.56 9.6 90.06± 3.56 9.6 93.73± 0.86 8.2 89.38± 0.74 7.0 71.0

0.01 75.31± 3.42 9.6 88.23± 4.90 9.6 93.71± 0.95 8.4 89.26± 0.70 7.0 82.8
0.1 74.99± 3.54 9.7 88.26± 5.03 9.7 93.32± 1.49 8.2 89.47± 0.73 7.1 75.3
1 76.32± 3.32 9.8 90.43± 3.82 9.8 94.13± 1.19 8.4 88.93± 0.50 6.6 78.1

10 76.50± 2.50 9.7 90.16± 3.68 9.7 93.64± 1.19 8.6 89.36± 0.15 7.3 74.2
100 77.70± 3.50 9.9 91.34± 4.04 9.9 94.10± 0.75 8.8 89.41± 0.25 7.4 70.8

Iono.

all 87.18 34 94.87 34 87.18 34 81.20 34 -
0 86.39± 2.13 5.2 92.71± 2.08 5.2 87.78± 1.12 4.4 89.08± 1.12 3.6 3.0

0.01 86.69± 2.14 5.2 92.69± 1.90 5.2 88.12± 0.74 4.6 89.08± 0.83 3.8 3.3
0.1 86.00± 2.03 5.3 92.88± 1.95 5.3 89.19± 1.39 4.7 88.93± 0.84 3.7 3.1
1 87.63± 1.90 5.2 93.89± 1.38 5.2 88.76± 2.26 4.4 87.54± 1.98 4.0 3.2

10 85.49± 1.67 4.8 92.37± 2.74 4.8 89.29± 1.78 4.1 88.80± 1.24 3.7 3.1
100 86.00± 2.03 5.8 94.72± 1.79 5.8 88.70± 2.24 4.4 86.65± 2.57 4.2 3.0

· “Accuracy” and “|X s| stand for the test accuracy and number of selected features. “Time (s)” is the computational time for feature
selection in seconds. “all” means using all the features.
· For each problem and classifier, t-test with the significance level of 0.05 was conducted between the accuracies of the best α value(s)
and all the features. The significantly better one is marked in bold.

set. The actual case can be in between, i.e. the domain is larger
than the empirical occurrence set, but smaller than the Cartesian
product of the domains of the selected features. Further investiga-
tions can be conducted on making a more proper assumption on the
domain, which should depend on the number of selected features.

Table 5 shows the average computational time of the proposed
algorithm along with that of some representative algorithms (in
seconds). F-MI and F-E [4] use the mutual information and en-
tropy based measures, respectively. F-RS and F-PRS [24] adopts
the rough set theory and the probabilistic rough set theory, respec-
tively. W-SVM, W-5NN, W-DT and W-NB stand for the PSO-
based wrapper approaches whose fitness function is calculated by

the corresponding classification methods. It can be seen that the
proposed algorithm is much faster than almost all the compared al-
gorithms. The computational time is independent of the α value. It
is only slightly slower than only F-MI, but it can improve the clas-
sification performance over using all features more frequently than
F-MI [4].

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigate the issues of using entropy measures

in feature selection, and address the significant generalizability is-
sues by designing a bi-objective optimization model with a novel
Bayesian entropy measure, which is defined based on Bayesian



Table 4: The results of 1-NN, Random Forest (RF), J48, and Naïve Bayes (NB) classifiers under the independent assumption.

Dataset α
1-NN RF J48 NB Time

Accuracy |X s| Accuracy |X s| Accuracy |X s| Accuracy |X s| (s)

Chess

all 95.40 36 99.06 36 99.34 36 83.76 36 -
0 97.02± 0.29 26.4 98.95± 0.18 26.4 99.28± 0.23 25.3 93.67± 0.24 6.6 55.7

0.01 97.35± 0.06 9.0 97.56± 0.01 9.0 97.56± 0.01 9.0 93.74± 0.15 7.7 37.4
0.1 94.37± 0.00 6.0 94.37± 0.00 6.0 94.37± 0.00 6.0 93.90± 0.00 6.0 32.4
1 93.98± 0.18 4.2 93.98± 0.18 4.2 93.98± 0.18 4.2 93.82± 0.25 4.2 28.5

10 90.33± 0.00 3.0 90.33± 0.00 3.0 90.33± 0.00 3.0 90.33± 0.00 3.0 27.5
100 77.46± 0.00 2.0 77.46± 0.00 2.0 77.46± 0.00 2.0 77.46± 0.00 2.0 24.3

Lung

all 63.64 56 81.82 56 72.73 56 72.73 56 -
0 45.45± 0.00 4.0 45.45± 0.00 4.0 36.36± 0.00 4.0 45.45± 0.00 4.0 0.5

0.01 81.82± 0.00 2.3 81.82± 0.00 2.3 81.82± 0.00 2.3 45.45± 0.00 4.6 0.5
0.1 81.82± 0.00 3.0 81.82± 0.00 3.0 81.82± 0.00 3.0 90.91± 0.00 3.0 0.5
1 90.91± 0.00 2.0 90.91± 0.00 2.0 72.73± 0.00 2.0 90.91± 0.00 2.0 0.5

10 72.73± 0.00 1.0 72.73± 0.00 1.0 72.73± 0.00 1.0 72.73± 0.00 1.0 0.5
100 72.73± 0.00 1.0 72.73± 0.00 1.0 72.73± 0.00 1.0 72.73± 0.00 1.0 0.6

Lymph

all 63.27 18 85.71 18 75.51 18 85.71 18 -
0 72.14± 5.59 9.4 76.79± 3.51 9.4 77.86± 1.35 8.6 80.05± 3.08 6.4 0.8

0.01 77.55± 0.00 4.0 75.51± 0.00 4.0 73.47± 0.00 4.0 79.59± 0.00 4.0 0.7
0.1 75.51± 0.00 2.0 73.47± 0.00 2.0 81.63± 0.00 2.0 79.59± 0.00 2.0 0.6
1 73.47± 0.00 2.0 73.47± 0.00 2.0 73.47± 0.00 2.0 73.47± 0.00 2.0 0.6

10 69.39± 0.00 1.0 69.39± 0.00 1.0 69.39± 0.00 1.0 69.39± 0.00 1.0 0.6
100 69.39± 0.00 1.0 69.39± 0.00 1.0 69.39± 0.00 1.0 69.39± 0.00 1.0 0.6

Led.

all 79.88 24 100.00 24 100.00 24 100.00 24 -
0 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 100.00± 0.00 6.0 6.4

0.01 100.00± 0.00 5.0 100.00± 0.00 5.0 100.00± 0.00 5.0 100.00± 0.00 5.0 6.1
0.1 100.00± 0.00 5.0 100.00± 0.00 5.0 100.00± 0.00 5.0 100.00± 0.00 5.0 5.9
1 64.35± 0.32 3.0 64.35± 0.32 3.0 64.35± 0.32 3.0 64.35± 0.32 3.0 5.3

10 45.65± 0.00 2.0 45.65± 0.00 2.0 45.65± 0.00 2.0 45.65± 0.00 2.0 5.4
100 23.42± 0.00 1.0 23.12± 0.00 1.0 23.42± 0.00 1.0 23.42± 0.00 1.0 4.8

Mush.

all 100.00 22 100.00 22 100.00 22 95.75 22 -
0 100.00± 0.00 6.7 100.00± 0.00 6.7 99.89± 0.04 5.8 97.50± 0.00 1.8 32.9

0.01 99.73± 0.00 4.1 99.73± 0.00 4.1 99.73± 0.00 4.1 97.50± 0.00 2.0 31.9
0.1 99.63± 0.00 5.0 99.63± 0.00 5.0 99.63± 0.00 5.0 97.50± 0.00 1.0 30.5
1 98.20± 0.78 3.2 98.20± 0.78 3.2 98.20± 0.78 3.2 97.50± 0.00 2.3 30.1

10 97.50± 0.00 1.0 97.50± 0.00 1.0 97.50± 0.00 1.0 97.50± 0.00 1.0 32.6
100 97.50± 0.00 2.0 97.50± 0.00 2.0 97.50± 0.00 2.0 97.50± 0.00 2.0 28.3

Spect

all 64.04 22 64.04 22 68.54 22 67.42 22 -
0 62.39± 0.95 16.9 63.82± 0.46 16.9 70.25± 1.78 14.5 70.03± 2.64 8.3 2.1

0.01 68.40± 0.73 8.0 63.51± 2.53 8.0 69.35± 1.11 7.2 71.54± 1.31 6.3 1.8
0.1 67.84± 1.29 5.9 66.04± 1.77 5.9 73.90± 1.33 5.9 71.97± 2.14 4.7 1.5
1 61.80± 0.00 3.0 61.80± 0.00 3.0 67.42± 0.00 3.0 67.42± 0.00 3.0 1.3

10 73.03± 0.00 1.0 73.03± 0.00 1.0 73.03± 0.00 1.0 73.03± 0.00 1.0 1.2
100 73.03± 0.00 1.0 73.03± 0.00 1.0 73.03± 0.00 1.0 73.03± 0.00 1.0 1.2

Splice

all 63.97 60 94.83 60 92.94 60 92.10 60 -
0 76.81± 2.56 9.6 90.06± 3.56 9.6 93.73± 0.86 8.2 89.38± 0.74 7.0 71.0

0.01 88.90± 0.00 4.0 89.28± 0.00 4.0 89.09± 0.00 4.0 88.90± 0.00 4.0 63.8
0.1 80.27± 0.16 3.0 80.27± 0.16 3.0 80.36± 0.15 3.0 80.39± 0.30 3.0 60.6
1 74.79± 0.00 2.0 74.79± 0.00 2.0 74.79± 0.00 2.0 71.50± 0.00 2.0 53.9

10 62.94± 0.00 1.0 62.94± 0.00 1.0 62.94± 0.00 1.0 62.94± 0.00 1.0 49.9
100 62.94± 0.00 1.0 62.94± 0.00 1.0 62.94± 0.00 1.0 62.94± 0.00 1.0 45.2

Iono.

all 87.18 34 94.87 34 87.18 34 81.20 34 -
0 86.39± 2.13 5.2 92.71± 2.08 5.2 87.78± 1.12 4.4 89.08± 1.12 3.6 3.0

0.01 91.45± 0.00 2.2 89.94± 0.36 2.2 90.60± 0.00 2.2 87.18± 0.00 2.0 2.8
0.1 85.09± 1.37 2.9 89.04± 2.51 2.9 89.62± 0.46 2.9 87.18± 0.00 2.9 2.7
1 76.07± 0.00 2.0 76.07± 0.00 2.0 83.76± 0.00 2.0 82.05± 0.00 2.0 2.6

10 72.65± 0.00 1.1 72.65± 0.00 1.1 72.65± 0.00 1.1 72.65± 0.00 1.1 2.6
100 64.10± 0.00 1.0 64.10± 0.00 1.0 64.10± 0.00 1.0 64.10± 0.00 1.0 2.5

· “Accuracy” and “|X s| stand for the test accuracy and number of selected features. “Time (s)” is the computational time for feature
selection in seconds. “all” means using all the features.
· For each problem and classifier, t-test with the significance level of 0.05 was conducted between the accuracies of the best α value(s)
and all the features. The significantly better one is marked in bold.

inference. The bi-objective optimization model is then solved by
NSGA-II. The experimental studies show that the generalizability
issues were addressed well, and the proposed algorithm managed
to select a small subset of features and led to a better test classi-
fication accuracy than using the entire feature set on most of the
selected discrete datasets within a much shorter time.

There are two main future directions that will be done based on
this work. First, due to the nature of entropy, the proposed algo-
rithm cannot classify the test instances whose feature values are
unseen before. This issue will be addressed by introducing the
distance between instances in the entropy computation, so that the
nearby instances can contribute to the entropy as well. Second,

the proposed algorithm is to be extended from discrete dataset to
continuous ones. This can be done by proper discretization or defi-
nition of continuous entropy measures.
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