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Abstract—Dimension reduction is a preprocessing step in many
classification tasks, but reducing dimensionality and finding the
optimal set of features or attributes are challenging because of the
big search space and interactions between attributes. This paper
proposes a new dimension reduction method by using a statistical
variable grouping method that groups similar attributes into a
group by considering interaction between attributes and using
particle swarm optimisation as a search technique to adopt the
discovered statistical grouping information to search optimal
attribute subsets. Two types of approaches are developed, where
the first aims to select one attribute from each group to reduce
the dimensionality, and the second allows the selection of multiple
attributes from one group to further improve the classification
performance. Experiments on ten datasets of varying difficulties
show that all the two approaches can successfully address
dimension reduction tasks to decrease the number of attributes,
and achieve the similar of better classification performance.
The first approach selects a smaller number of attributes than
the second approach while the second approach achieves better
classification performance. The proposed new algorithms out-
perform other recent dimension reduction algorithms in terms
of the classification performance, or further reduce the number
of attributes while maintaining the classification performance.

I. INTRODUCTION

In recent years, with the advances of data collection tech-
niques, many real-world data mining tasks, e.g. classification,
often include a large number of attributes (or variables or
features). This causes the problem of “the curse of dimen-
sionality” and leads to many issues, e.g. learning/classification
algorithms fail to achieve satisfied accuracy, the classification
process is time-consuming, and the trained classifier is too
complicated to understand/interpret. Dimension reduction can
address these issues by using only a small number of attributes.
It can be achieved by attribute selection to select a smaller
number of feature or feature construction to create a smaller
set of new attributes [1], [2], [3], [4], [5]. Dimension reduction
has been used in both supervised learning (e.g. classification
that learns from labelled data to assign one of the predefined
class labels to an instance), and unsupervised learning (e.g.
clustering that learns from unlabelled data to group similar
instances to different clusters), but the majority of the current
work on dimension reduction is for classification. The focus

of this work is dimension reduction via selecting a subset of
relevant attributes in classification.

Existing dimension reduction algorithms can be classified
into two categories: filter and wrapper approaches [1], [3].
Their main difference is whether a classification method is
involved in the dimension reduction process. Wrappers uses
a classification algorithm to measure the classification per-
formance of the selected attributes to evaluate the selected
attributes. Filters do not use any classification algorithm,
which are often computationally cheaper and more general,
but wrappers often can achieve better classification accuracy
than filters [6].

Dimension reduction is challenging because of the large
search space and the interactions between variables. The
search space size is 2n for a dataset with n variables. Many
algorithms, such as greedy search based algorithms [6], have
limitations, such as stagnation in local optimal or high com-
putationally expensive. An efficient global search technique
should be used to address dimension reduction problems.
Furthermore, dimension reduction Evolutionary computation
(EC) techniques include powerful “global” search algorithms
and have been successfully applied to a variety of fields [7].
Among them, Particle swarm optimisation (PSO) is based
on social intelligence, which has fewer parameters and is
computationally cheaper than many other EC techniques, e.g.
genetic algorithms (GAs) and genetic programming (GP) [7].

Feature interaction is a commonly appeared issue in clas-
sification tasks [6], [8]. Because of interactions between at-
tributes, an individually relevant attribute may become less
useful or redundant when combined with other attributes. On
the other hand, a weakly relevant attribute could become
very useful when used together with other attributes. In an
“optimal” subset, attributes are expected to provide comple-
mentary information and can work together to increase the
classification accuracy. Therefore, during dimension reduction,
the removal or addition of attributes should consider the
appearance or absence of other attributes, which increases
the difficulty of dimension reduction tasks. Finding a way
to cope with interactions between attributes is expected to
increase the performance of a dimension reduction algorithm.



Meanwhile, interactions between attributes is also an important
issue being considered in statistical data analysis. Applying
statistical variable grouping methods [9], [10] through a model
allows taking interactions between attributes into account to
group relatively homogeneous attributes into groups (Note that
statistical variable grouping methods aim to group similar at-
tributes into a single group, which are different from the clus-
tering (unsupervised learning) methods in data mining (e.g.
K-means) that often aim to cluster similar instances/examples
in the data set into one cluster [11]). Such statistical ideas
could be useful to address interactions between attributes in
dimension reduction, but very little work has been conducted
in this area. Our recent work has shown that such statistical
variable grouping information could be utilised to develop
a good dimension reduction algorithm [12], [13], but they
are just very preliminary work on this direction and further
investigation is needed (the difference between this new work
and the existing work [12], [13] are described in Section III).

Goals: The goal of this work is to propose a novel wrapper
based dimension reduction approach in classification based on
PSO and statistical variable grouping. To achieve this, a statis-
tical variable grouping method is employed as a pre-processing
step to group attributes into different groups. By utilising
the statistical variable grouping information, two approaches
are proposed to maximise the classification performance with
the constraint of selecting one attribute from each group and
allowing the selection of multiple attributes from each group,
respectively. Specifically, we will investigate:

• whether the first new approach can select one attribute
from each group to reduce the dimensionality, and obtain
similar or better accuracy than using all the available
attributes,

• whether the second new approach that allows selecting
multiple attributes from a single group can further im-
prove the classification performance,

• whether the newly developed approaches can outper-
form two conventional dimension reduction algorithms,
a single objective PSO algorithm without using grouping
information, and a method using grouping information.

II. BACKGROUND

A. Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) [14] was proposed based
on swarm intelligence. A swarm of particles, i.e. candidate
solutions, “fly” together to find the best solutions of the target
problem. For particle i, xi = (xi1, xi2, ..., xiD) represents the
position and vi = (vi1, vi2, ..., viD) represents its velocity,
where D represents the dimensionality of the search space.
Each particle maintains its best position visited so far, i.e.
personal best or pbest, and the best solution obtained by the
whole swarm, i.e. global best or gbest. PSO updates xi and
vi of each particle iteratively to find the optimal solutions.

PSO was firstly proposed to address continuous problems.
Later, a binary PSO (BPSO) was developed in [15] to use
PSO to address binary problems, where xi, pbest and gbest

can only have values 0 or 1. vi shows the probability of xi
being 1. The vi and xi are updated using Equations (1), (2)
and (3).

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xtid) + c2 ∗ ri2 ∗ (pgd − xtid) (1)

xid =

{
1, if rand() < s(vid)
0, otherwise (2)

where
s(vid) =

1

1 + e−vid
(3)

where vt+1
id is the velocity value of particle i in dth dimension

in the (t + 1)th iteration. w is the inertia weight, indicating
influence of previous velocity. c1 and c2 are acceleration
constants. ri1, ri2 and rand() are random values from [0, 1].
pid and pgd shows the values of pbest and gbest. s(vid), the
sigmoid function, is to scale the velocity to (0, 1). A predefined
maximum velocity, vmax, is to limit vt+1

id to [−vmax, vmax].
rand() is randomly chosen from [0,1].

B. Related Work on Dimension Reduction

This work focuses mainly on wrapper dimension reduction
in classification. This section reviews related methods, includ-
ing non-EC methods and EC based methods. Since this paper
involves mainly on EC for dimension reduction, more space
is given to EC based methods and only typical non-EC based
methods are reviewed here, but readers are referred to recent
surveys on (non-EC based) dimension reduction methods from
[16], [6], [17].

1) Traditional Dimension Reduction Methods: Sequential
forward selection (SFS) and sequential backward selection
(SBS) [1] are two commonly used dimension reduction al-
gorithms using the idea of greedy hill-climbing to search for
the optimal attribute subset, but with different starting points,
i.e. SFS starts with an empty set while SBS starts with the
full set of attributes. However, both SFS and SBS may easily
stuck into local optima [1] and they are expensive when the
number of attributes is large [1]. Stearns [18] proposed a
method named “plus-l-take away-r” where SFS was applied
l times and then SBS was applied for r back tracking steps.
However, the best values of (l, r) is challenging to determine.

Later, [19] proposed two floating selection methods, se-
quential backward floating selection (SBFS) and sequential
forward floating selection (SFFS), which can automatically
determine the (l, r) values. These two values are dynamically
controlled, rather than being fixed values. Based on the best-
first algorithm and SFFS, A linear forward selection (LFS) [20]
was proposed, which restricted the number of attributes to be
considered in each step. LFS further improves the efficiency
of SFS while having comparable classification performance.

2) EC Technique to Dimension Reduction: There have been
many EC-based dimension reduction methods, such as PSO
based [21], [22], GP based [23], and differential evolution
(DE) [24].

A combination of a GA and local search was employed to
achieve dimension reduction in [25], where GA employed a



wrapper fitness function and local search employed a filter
criterion. This memetic dimension reduction method achieved
better performance than using GAs only and other methods.

A multi-tree GP method was used in [23] for dimension
reduction, which was designed to select a attribute subset and
simultaneously learn a classifier using the selected attributes.
Kanan and Faez [26] proposed a wrapper attribute selection
method using ant colony optimisation, which achieved better
performance than other existing methods to solve a face
detection problem. However, the performance of this method
have not been tested on other benchmark problems. Wang
et al. [27] developed DE based method for simultaneously
dimension reduction and instance reduction, where a binary
DE algorithm inspired by the idea of binary PSO was used to
choose only informative attributes and representative instances
from a datasets to reduce the size of the dataset. Experimental
results showed that the proposed method could significantly
reduce the data size and achieve comparable performance to
the original data. A binary DE method was proposed for
dimension reduction using a mutual information based filter
evaluation [24].

Recently, BPSO has been applied to dimension reduction
problems. Xue et al. [21] developed a PSO based two-stage
dimension reduction algorithm to maximise the classification
performance in the first phase and consider the number of
attributes in the second phase. The experiments show that the
two-stage algorithm can select a smaller number of attributes
and achieve higher classification performance than other two
PSO based dimension reduction algorithms. Xue et al. [28]
used PSO for dimension reduction and proposed initialisation
strategies and pbest and gbest updating strategies. Experi-
ments indicated that the ideas could increase the accuracy and
decrease the size of attribute subset and the computational
cost. PSO was used for dimension reduction and clustering
in machine learning [29], where each particle aimed to find
optimal weights for all attributes and group the center values.
Dimension reduction is accomplished by removing attributes
with low weight values. However, because of interactions
between attributes, attributes with low weights may be useful
as well, but the removal of such attributes may decrease the
performance of the attribute subset.

Statistical approaches have also been used to reduce the
dimensionality of a dataset, e.g. Relief [30] uses a statistical
metric to choose relevant attributes, in which each attribute has
a score value showing its relevance to the class labels. Relief
selects all relevant attributes, which may lead to a attribute
subset including redundancy because relevant attributes can
be redundant to each other. Many other measures, such as
Pearson’s correlation or least square regression error [31],
have also been used in dimension reduction to score the
discrimination ability of attributes in class separation [6].

Statistical variable grouping analysis is an important topic
in statistics which aim to group attributes (or variables) to a
number of groups. A statistical variable grouping algorithm
considers interactions between attributes and groups relatively
homogeneous attributes together [9], [10]. So, the interaction

information between attributes found by a statistical variable
grouping method, which is shown in the attribute groups, could
be utilised to design a good dimension reduction algorithm,
but this has not been investigated (except for our initial work
[12], [13]). Since PSO is a powerful search technique in
dimension reduction problems, this work will investigate the
use of statistical variable grouping information and PSO for
dimension reduction.

III. THE PROPOSED ALGORITHMS

A recent statistical models based grouping method [9], [10]
is used in this study to group attributes into different groups.
The statistical attribute grouping method is conducted as a
pre-processing step on a small subset of training instances to
group attributes into different groups. By doing so, the PSO
search will based on groups of attributes with the expectation
of improving the efficiency of dimensionality reduction.

In this section, two new single objective algorithms are
proposed to utlise the information discovered by the statistical
variable grouping method, where the first algorithm aims to
select a single attribute from each attribute group and the
second algorithm allows the selection of multiple attributes
from a single/each group. The two new methods select at-
tributes based on attribute groups. They are different from the
existing PSO based approaches, which select attributes based
on the whole attribute set. To consider the variable grouping
information during the search process, new position updating
mechanisms are needed to develop the two new algorithms.

A. PSO with Roulette Wheel Dimension Reduction (PSORWS)

PSORWS is developed to maximise the classification ac-
curacy by selecting a single attribute from each group. The
rationale is that attributes from the same group are suppose
to be similar and a single attribute can be chosen as the
representative of the associate attribute group.

In BPSO for dimension reduction, a binary vector is used
to encode a particle with the length or dimensionality as the
total number of attributes in the dataset and each dimension
corresponds to one attribute. For a particle, “1” in means
the corresponding attribute is selected and “0” otherwise.
The velocity value is transformed by Equation 3, S(v), to
the range of (0,1), which indicates the probability of the
position value updates to “1” and also the probability of
the corresponding attribute being selected. Based on this, a
maximum probability based algorithm was proposed in [12],
which always selects the attribute with the largest probability
from each group. However, one potential limitation is that the
swarm will easily lose the diversity and stagnation in local
optima. Based on further investigation, it is found that the
attribute with the largest S(v) value in Equation 3 should
have the largest probability to be selected, but the attributes
with small velocities should also have (small) chances to be
selected. To address this issue, we introduce a roulette wheel
selection to select one attribute from each group based on the
probability values. It is worth to mention that roulette wheel
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Fig. 1. (a) Plot of Equation 3, S(v) and Equation 4, Sig(v); (b) Position
update in PSORWS.

selection is based on the attributes’ probability values within
a group (not on individuals within the population).

The gradient of the original sigmoid function (Equation 3) is
found not to be steep enough, which causes a small difference
in probability between attributes that are significantly differing
in velocity. Therefore, a new sigmoid function (Equation 4) is
introduced to transform the original velocity to (0,1) instead of
Equation 3. Fig. 1(a) shows the difference between Equation
3 and Equation 4, where the increase of v in the middle range
will cause a greater increase in Sig(v) than in S(v). Therefore,
Equation 4 better suits the roulette wheel selection approach
than Equation 3 because it provides a greater bias towards the
attributes with higher velocities. After applying Equation 4,
the roulette wheel selection is performed to select one attribute
from each group.

Sig(vi) =
1

1 + 4e−2vi
(4)

Fig. 1(b) uses one group/group as an example to show
the position updating of PSORWS. Algorithm 1 describes the
pseudo-code of PSORWS.

Algorithm 1: Pseudo-code of PSORWS

begin
initialise x and v of all particles;
randomly select one attribute from each group;
while Maximum Iterations has been not reached do

calculate classification performance of the selected
attributes;

for i=1 to SS(Swarm Size) do
update pbest and gbest of particle i;

for i=1 to SS do
for d=1 to D do

calculate vi using Equation 1 ; /* Update
velocity */

calculate Sig(vid) using Equation 4;
for c=1 to Clusters Size do

perform roulette wheel selection;
update the dimension selected by roulette

wheel selection to 1 ; /* Update
position */

set the other dimensions for attributes in the
same groups to 0 ; /* Update
position */

calculate classification performance of the selected
attributes on both the training and test sets;

return gbest, the training performance and testing
performance.

B. Improved Gaussian Based PSO for Dimension Reduction

PSORWS aims to select one attribute from each group,
which may limit the classification performance because at-
tributes from the same group might still contain complimen-
tary information [32]. Therefore, allowing selecting multi-
ple attributes from one group may increase the classifica-
tion performance. In [13], we proposed such an algorithm
(named GPSO) based on a Gaussian based position updating
mechanism. The Gaussian updating mechanism is based on
a Gaussian distribution function to consider the grouping
information. It firstly determines the number of attributes to
be selected from a certain group, and then select specific
individual attributes from that group. The details can be seen
from [13]. In this paper, we will further improve GPSO by
proposing a new Gaussian based fitness function to develop
an improved Gaussian based PSO algorithm (named IGPSO).

The new Gaussian based fitness function is developed to
consider classification performance and the number of at-
tributes. The classification performance can be easily shown by
the accuracy of the selected attributes. The number of selected
attributes cannot be directly used in the fitness function. The
main reasons are that the number of attributes is not in the
same range as the accuracy and that the number of selected
attributes itself cannot reflect the grouping information. There-
fore, we develop a new Gaussian criterion representing the
number of attributes.

a) Gaussian based similarity measure: x represents the
position of a particle (indicating a attribute subset), which is
n-dimensional vector with n as the total number of attributes
in the dataset. x̂ is a C-dimensional vector, where C is the



number of attribute groups. Each dimension in x̂ shows the
number of attributes selected by x from the corresponding
group. ŷ is also a C-dimensional vector with each dimension
value as “1”, which means selecting 1 attribute from each
group. ŷ shows an ideal solution for the number of attributes
when using the variable grouping information. Therefore,
we develop a new criterion based on multivariate Gaussian
distribution for measuring the similarity between x̂ and ŷ,
which will be used in the new fitness function to reflect the
number of attributes.

For a dataset with C attribute groups, a C-dimensional
multivariate Gaussian distribution is built. Since ŷ contains
1 attribute from each group, a mean of 1 is chosen on
each dimension of the multivariate Gaussian distribution. The
logarithmic function, σ = log(10 × |clu|) developed earlier
[13], is also used here to calculate the σ in each dimension,
which ensures the variance along each dimension scales with
the size of the attribute group. Since the Gaussian distribution
is multivariate, a C × C covariance matrix is needed to
establish the variances in each dimension. To achieve this, σ
in each dimension is squared as to equal the variances and are
placed on the diagonal entries of a C ×C covariance matrix.
By assigning all non-diagonal entries values as 0, it ensures
that the selection of attributes from one group is independent
from other groups.

Based on the covariance matrix, a Gaussian based similarity
measure is developed, which is shown by Equation (5).

Sim(x̂, ŷ) =
exp(− 1

2
(x̂− ŷ)TCov−1(x̂− ŷ))

2π
|clu|

2

√
|Cov|

(5)

where Cov is the multidimensional covariance matrix for
the attribute group, Cov−1 is its inverse and |Cov| is its
determinant. 0 < Sim(x̂, ŷ) ≤ 1. Sim(x̂, ŷ) = 1 is the
optimal/maximised value, which means x̂ is the same as
ŷ, i.e. selecting one attribute from each group. A solution
that contains many attributes per group will have a Gaussian
similarity measure score close to 0, which is the worst case.

b) Fitness function: Based on the proposed Gaussian based
measure, a new fitness function is proposed, which is shown
by Equation (6).

Fitness(x) = α ∗Accuracy + (1− α) ∗ Sim(x̂, ŷ) (6)

where “Accuracy” shows the classification accuracy of at-
tributes selected by x. Sim(x̂, ŷ) evaluates how close the x̂ to
ŷ, which indirectly reflects the number of attributes. α is set
to [0,1] to balance the accuracy and the number of attributes.
Obviously, Equation (6) is a maximisation function.

Based on the Gaussian updating mechanism developed ear-
lier [13], the dimension reduction algorithm named GPSO was
proposed. Based on the Gaussian fitness function, we further
develop an improved Gaussian based PSO for dimension
reduction algorithm (named IGPSO). The main difference
between IGPSO and GPSO [13] is that IGPSO uses the

TABLE I
DATASETS

Dataset #attributes #groups #classes #instances
Wine 13 6 3 178
Australian Credit 14 7 2 690
Vehicle 18 6 4 846
German 24 10 2 1000
WBCD 30 6 2 569
Ionosphere 34 11 2 351
Lung 56 5 3 32
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452

newly developed fitness function while GPSO used the fitness
function including the classification accuracy only. Comparing
IGPSO with GPSO can discover whether the Gaussian fitness
function can further reduce the number of attributes.

IV. EXPERIMENTAL DESIGN

To test the performance of the proposed attribute selection
algorithms, four benchmark methods are used as baseline
algorithms, including two widely used conventional algorithms
(i.e. LFS proposed in [20] and greedy stepwise backward
selection (GSBS) from [33]), the random forest classification
algorithm which includes attribute selection, a standard BPSO
method (PSOFS) [28] without considering statistical variable
grouping information, a statistical variable grouping based
algorithm [12] (selecting one attribute per group), and a
Gaussian based algorithm [13]. To save space, the detailed
results of the methods from [13] and [12] are not presented
in the next section, but the comparisons will be discussed.

Table I shows ten commonly used datasets from the UCI
machine learning repository [34], including different numbers
of attributes, classes and instances. Each dataset is randomly
split into a training set (including 70% of the instances)
and a test set (30% of the instances) [6], [3]. The training
instances are used in the statistical variable grouping method
to group attributes into different attribute groups. The number
of groups obtained are also listed in Table I. Experiments have
been conducted on ten different training and test partitions on
each dataset using different random seeds. Similar patterns
have been observed, so only the results on one partition are
presented in the main paper and the results on the other nine
partitions are shown in the appendices.

As wrapper approaches, a classification/learning algorithm
is needed to evaluate the classification accuracy of the attribute
subset. Any classification algorithm can be used here and a
simple and commonly used algorithm, K-Nearest Neighbour
(KNN) with K=5, is used here. The parameters of the PSO
based algorithms are set as follows [14], [35]: w = 0.7298,
c1 = c2 = 1.49618, vmax = 6.0, the population size is 30
with maximum 100 iterations. The fully connected topology
is employed. α in the fitness function (Equation 6) is set as
0.98 to make sure the classification accuracy is much more
important than the number of attributes. Experiments of LFS,



GSBS and random forest algorithms are run using Weka [36]
and all the settings are kept to the defaults.

On each dataset, each algorithm was run for 40 times with
different seeds. The Wilcoxon test non-parametric statistical
significance test is applied on the testing accuracies to compare
different methods, and the confidence interval is 95%.

V. RESULTS AND DISCUSSIONS

Table II shows the experimental results of the new single
objective methods PSORWS and IGPSO as well as PSOFS and
Table III shows the experimental results of the two traditional
methods (LFS and GSBS).

A. PSORWS: Results and Comparisons

In Table II, “All” means accuracy achieved by using all
attributes for classification. Since each PSO method has been
run for 40 independent runs, “AveSize” represents the aver-
age number of selected attributes, “BestAcc”, “AveAcc” and
“StdAcc” are the highest, mean and the standard deviation
of the testing accuracies, respectively. “Test” represents the
results of the significance test, where “+”, “-” or “=” shows
that PSOFS, PSORWS or IGPSO is significantly better, sig-
nificantly worse, or similar to “All’.

As can be seen from Table II, the PSOFS method selected a
small subset of attributes with less than half of the attributes,
but achieved similar or significantly better classification per-
formance than using all the attributes. The results suggest that
PSOFS can be effectively used for dimension reduction.

According to Table II, the PSORWS algorithm selected
attribute subsets with significantly higher or similar accuracy
than using all attributes on most datasets. Meanwhile, since
PSORWS was designed to select one attribute from each
group, the number of attributes selected by PSORWS is
significantly smaller than the total number of attributes.

Comparing PSORWS with PSOFS, it can be seen that the
overall classification performance of PSORWS on the twelve
datasets are similar to that of PSOFS. However, PSORWS
selected much smaller attribute sets than PSOFS, especially
on the datasets with a relatively large number (more than 50)
of attributes, where dimension reduction is more necessary
and more important than on datasets with a smaller number
of attributes.

Comparing with our previous work [12], which is also
based on statistical variable grouping information to select
one attribute from each group, PSORWS achieved better
classification performance than the algorithms developed in
[12]. The main reason is that PSORWS introduces a greater
amount of stochasticity, which provides a better search strategy
that maintains greater swarm diversity helping the algorithm
avoid stagnation in local optima. This allows the PSORWS
algorithm to further improve the classification accuracy over
the algorithms in [12] on most datasets, especially those having
a larger number of attributes, which often have a more complex
solution space.

Comparing PSORWS with LFS and GSBS in Table III,
in most cases, although selecting a slightly larger number of

TABLE II
RESULTS

Dataset Algorithm AveSize BestAcc AveAcc ± StdAcc Test

Wine

All 13 76.54
PSOFS 8.32 97.53 95.96 ± 1.87E0 +
PSORWS 6 100 100 ± 0E0 +
IGPSO 5.65 98.77 96.91 ± 2.83E0 +

Australian

All 14 70.05
PSOFS 4 87.44 87.44 ± 4.26E-14 +
PSORWS 7 79.23 79.23 ± 5.68E-14 +
IGPSO 3.02 87.44 85.56 ± 30.2E-2 +

Vehicle

All 18 83.86
PSOFS 9.28 85.83 84.3 ± 61.9E-2 +
PSORWS 6 83.66 83.47 ± 3.07E-2 -
IGPSO 8.55 84.65 83.87 ± 39.4E-2 =

German

All 24 68.0
PSOFS 12.9 72 68.73 ± 1.3E0 +
PSORWS 10 71 70.83 ± 50E-2 +
IGPSO 9.6 73.33 70.12 ± 1.57E0 +

WBCD

All 30 92.98
PSOFS 14.92 92.98 92.98 ± 0E0 =
PSORWS 6 94.74 94.43 ± 34.6E-2 +
IGPSO 6.92 94.74 93.11 ± 38.1E-2 +

Ionosphere

All 34 83.81
PSOFS 10.38 93.33 89.05 ± 1.84E0 +
PSORWS 11 92.38 88.71 ± 65.8E-2 +
IGPSO 8.65 92.38 89.79 ± 1.55E0 +

Lung

All 56 70.0
PSOFS 26.92 80 72.5 ± 5.36E0 +
PSORWS 5 90 89.75 ± 1.56E0 +
IGPSO 7.8 90 83 ± 7.14E0 +

Sonar

All 60 76.19
PSOFS 24.72 87.3 79.52 ± 2.92E0 +
PSORWS 12 80.95 75.91 ± 2.51E0 =
IGPSO 16.32 82.54 77.42 ± 3.18E0 +

Musk1

All 166 83.92
PSOFS 83.6 89.51 85.65 ± 2.1E0 +
PSORWS 14 86.71 81.15 ± 2.57E0 -
IGPSO 36.05 88.81 84.56 ± 2.35E0 =

Arrhythmia

All 279 94.46
PSOFS 119.35 95.14 94.57 ± 33.5E-2 =
PSORWS 15 95.59 94.75 ± 33.1E-2 +
IGPSO 27.2 95.25 94.49 ± 40.8E-2 =

attributes, PSORWS achieved better classification performance
than LFS. PSORWS outperformed GSBS in terms of the
classification accuracy and the number of attributes on all the
ten datasets.

The results show that the PSORWS algorithm can success-
fully utilise the statistical variable grouping information to
address dimension reduction problems by selecting a single
attribute from each group, so that it is able to reduce the
dimensionality without decreasing but often increasing the ac-
curacy. However, although attributes from the same group are
similar attributes, they still can be complimentary to each other
(particularly for large groups) and need to be used together to
benefit the classification process due to interactions between
attributes. Therefore, PSORWS has a potential limitation of
missing complimentary attributes because of selecting only
one attribute from each group.

B. IGPSO: Results and Comparisons

According to Table II, it can be observed that on aver-
age, IGPSO selected a much smaller attribute subset than
the original attribute set in all cases. By using the selected



TABLE III
EXPERIMENTAL RESULTS OF LFS AND GSBS

Method Wine Australian Vehicle German WBCD
Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy

LFS 7 74.07 4 70.05 9 83.07 3 68.67 10 88.89
GSBS 8 85.19 12 69.57 16 75.79 18 64.33 25 83.63

Method Ionosphere Lung Sonar Musk1 Arrhythmia
Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy

LFS 4 86.67 6 90.0 3 77.78 10 85.31 11 94.46
GSBS 30 78.1 33 90.0 48 68.25 122 76.22 130 93.55

attributes, the classification performance of IGPSO is similar
or significantly better than using all attributes on all datasets.
On the three datasets that have more than 200 attributes (i.e.
the Arrhythmia dataset), IGPSO selected less than 10% of the
original attributes and achieved significantly higher accuracy
than using all attributes on two datasets, and achieved similar
results on the other datasets.

Compared with PSOFS, IGPSO achieved similar or better
performance than the PSOFS algorithm. Meanwhile, the aver-
age number of attributes obtained by IGPSO is always smaller
or even much smaller than the PSOFS method on all datasets.

Compared with PSORWS, the accuracy achieved by IGPSO
is at least similar than PSORWS in almost all cases. The
number of attributes is slightly larger in some cases (which
is expected). This suggests that by allowing selecting multiple
attributes from each group, IGPSO can successfully improve
the classification performance, but not always increase the
number of attributes (such as in Wine and Australian datasets)
since it allows selection of zero attributes from some groups
if all attributes in those groups are “irrelevant”.

In our previous work [13], a PSO based algorithm named
GPSO was proposed to select multiple attributes from each
group. The main difference between GPSO and IGPSO is
that IGPSO uses the newly developed fitness function, which
considers the number of attributes selected from each group.
Comparing Table II with the results in [13], IGPSO further
reduced the number of attributes in almost all cases, especially
on high dimensional datasets. The main reason for this lies
on the Guassian based measure, which reflects the number
of attributes in the new fitness function in IGPSO, plays a
significant role on datasets with a larger number of attributes.
In terms of the classification accuracy, IGPSO is similar to
GPSO in most cases, but a significant reduction of the number
of attributes in IGPSO results in a slight reduction in its
classification performance, such as on Arrhythmia. IGPSO
in general is a better approach than GPSO to dimension
reduction, because IGPSO achieved similar accuracy to GPSO
while selected a much smaller attribute subset than GPSO
on higher dimensional datasets, where dimension reduction
is more important and necessary.

Comparing IGPSO with LFS and GSBS in Table III, it can
be seen that in all cases, IGPSO achieved higher classification
accuracy than both LFS and GSBS. IGPSO selected a larger
number of attributes than LFS, but a significantly smaller
number of attributes than GSBS in all cases. Since in most

cases, classification performance is more important than the
number of attributes, IGPSO is a better dimension reduction
method than LFS and GSBS. PSORWS outperformed GSBS in
all cases, i.e. higher accuracy and lower number of attributes.

The results suggest that by using the Gaussian based updat-
ing mechanism and the Gaussian fitness function, IGPSO can
successfully use the statistical variable grouping information
to address dimension reduction problems. IGPSO reduced
the dimensionality of the datasets and at the same time
increased the classification performance in all cases. IGPSO
also outperformed PSOFS, PSORWS and the previously de-
veloped algorithm [13] without using the new Gaussian fitness
function.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to propose a new dimension
reduction approach in classification based on PSO and sta-
tistical variable grouping. The goal has been successfully
achieved by developing two new wrapper methods, where the
first algorithm PSORWS which selects a single attribute from
each group to reduce the number of attributes, and the second
algorithm named IGPSO that utlises the grouping information,
allowing the selection of multiple (or zero) attributes from
one group. The proposed algorithms were compared with
LFS and GSBS, a PSO algorithm without using statistical
variable grouping (PSOFS), and a PSO algorithm without
using statistical variable grouping (IGPSO) on twelve datasets
of varying difficulties.

Experiments show PSORWS and IGPSO can successfully
use the statistical variable grouping information to reduce the
number of attributes, and keep the same or improve the per-
formance of classification. Specifically, PSORWS significantly
reduced the dimensionality and improved the classification
performance. IGPSO further increased the classification per-
formance with a slight increase in the number of attributes.
Both of the new algorithms outperformed the existing con-
ventional and PSO based algorithms.

This work demonstrates the benefits of using statistical
variable grouping and the Gaussian fitness function. In future
work, we will utilise such information in multi-objective
attribute selection, which requires a multi-objective search
mechanism to simultaneously maximising the classification
accuracy and minimising the number of attributes. We will
also develop novel filter approaches, which are more general
and also computationally cheaper than wrappers. Furthermore,



the analysis of interactions between attributess discovered
by the statistical variable grouping method could lead to
further improvements in the classification performance of the
selected attributes. However, this will need domain knowledge.
Since the proposed algorithms are wrapper approaches, the
computational time on large datasets can be very long. We also
intend to develop a new approach combining filter and wrapper
methods to reduce computational cost without increasing (or
even further decreasing) the classification error rate and the
number of attributes.
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