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Feature selection has the two main objectives of minimising the classification error rate and
the number of features. Based on binary particle swarm optimisation (BPSO), we develop
two novel multi-objective feature selection frameworks for classification, which are NSBPSO
and CMDBPSO. Four multi-objective feature selection methods are then developed by ap-
plying mutual information and entropy as two different filter evaluation criteria in each of
the proposed frameworks. The proposed algorithms are examined and compared with a single
objective method on eight benchmark datasets. Experimental results show that the proposed
multi-objective algorithms can evolve a set of solutions that use a smaller number of features
and achieve better classification performance than using all features. In most cases, NSBPSO
achieves better results than the single objective algorithm and CMDBPSO outperforms all
other methods mentioned above. This work represents the first study on multi-objective BPSO
for filter based feature selection.
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1. Introduction

In classification, features that are used to describe the problem can significantly
influence the classification performance. Without prior knowledge, relevant features
are usually difficult to determine. Therefore, a large number of features are often
involved, but not all of them are useful for classification. Irrelevant and redundant
features may even reduce the classification performance due to the unnecessarily
large search space. Feature selection is a data pre-processing technique to select
only the relevant features for classification, which aims to reduce the number of
features for classification and simultaneously increase the classification performance
(Dash and Liu 1997).

Feature selection is a difficult problem because there can be complex interaction
between features. An individually relevant (redundant or irrelevant) feature may
become redundant (relevant) when working together with other features. A good
feature subset should be a group of complementary features that span over the di-
verse properties of the classes to properly discriminate them. In order to find such
a good feature subset, an evaluation criterion is needed to determine the goodness
of the selected feature subsets, which is a key factor in feature selection. Based
on the evaluation criterion, existing feature selection approaches can be broadly
classified into two categories: wrapper approaches and filter approaches. Wrapper
approaches include a learning/classification algorithm as part of the evaluation
function to determine the goodness of the selected feature subsets. Wrappers can
often achieve better results than filter approaches. As each evaluation involves a
training and testing classification process, wrappers are usually more computa-
tional expensive. Meanwhile, wrapper approaches have the drawback of the loss of
generality because the selected feature subset may not work well when using other
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learning/classification algorithms than their internal algorithm (Kohavi and John
1997). Filter approaches use statistical characteristics of the data for evaluation
and the feature selection search process is independent of a learning/classification
algorithm. Compared with wrappers, filter approaches are argued to be computa-
tionally less expensive (Dash and Liu 1997).

The feature selection task is challenging also because of the large search space,
which is 2n for n features. So in most situations, it is impractical to conduct an ex-
haustive search for feature selection (Kohavi and John 1997). In order to solve this
problem, a variety of search techniques have been applied to feature selection such
as exhaustive search, complete search, greedy search, heuristic search and random
search (Dash and Liu 1997, Dash and Lee 2003, Whitney 1971). However, most
existing feature selection methods still suffer from a variety of problems, such as
stagnation in local optima and high computational cost (Unler and Murat 2010, Liu
et al 2011). In order to better address feature selection problems, an efficient global
search technique is needed. Evolutionary computation techniques are well-known
for their global search ability. Particle swarm optimisation (PSO) (Kennedy and
Eberhart 1995, Shi and Eberhart 1998) is a relatively recent evolutionary computa-
tion technique. Compared with other evolutionary computation algorithms such as
genetic algorithms (GAs) and genetic programming (GP), PSO is computationally
less expensive and can converge more quickly (Engelbrecht 2007). Therefore, PSO
has been used as an effective technique in many fields, including feature selection
(Unler and Murat 2010, Liu et al 2011, Chuang et al 2008, Huang and Dun 2008,
Mohemmed et al 2009).

Feature selection has the two main objectives of minimising both the classification
error rate and the number of features. These two objectives are usually conflicting
and the optimal decision needs to be made in the presence of a trade-off between
the two objectives. However, most existing feature selection approaches are single
objective algorithms and belong to wrapper approaches, which are “less general”
than filter approaches, and often do not achieve good results because of the high
computational cost. There has been no work conducted to use PSO to develop a
multi-objective, filter based feature selection approach to date.

1.1. Goals

The overall goal of this paper is to develop a multi-objective, filter based fea-
ture selection approach to classification based on PSO and information theory to
search for a set of non-dominated solutions (feature subsets), which are expected
to contain a small number of features and achieve similar or even better classifi-
cation performance than using all features. To achieve this goal, we will develop
two information measurements (mutual information and entropy) and two multi-
objective binary PSO (BPSO) frameworks, which are NSBPSO using the idea of
non-dominated sorting and CMDBPSO using the ideas of crowding, mutation and
dominance. Four multi-objective feature selection algorithms will be proposed by
applying the two information measurements in each of the two frameworks. These
proposed feature selection algorithms will be examined and compared with a single
objective BPSO on eight benchmark problems of varying difficulty. Specifically, we
will investigate

• whether a single objective BPSO approach with the two information measure-
ments can select a small number of features and improve the classification per-
formance over using all features;

• whether NSBPSO based multi-objective feature selection algorithms can evolve
a smaller number of features and achieve better classification performance than
the single objective approach; and
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• whether CMDBPSO based multi-objective feature selection algorithms can
evolve a set of good feature subsets, and can outperform all other algorithms
mentioned above.

1.2. Organisation

The remainder of the paper is organised as follows. Section 2 provides background
information. Section 3 describes the proposed BPSO based multi-objective feature
selection algorithms. Section 4 describes experimental design and Section 5 presents
experimental results with discussions. Section 6 provides conclusions and future
work.

2. Background

This section provides background about PSO, multi-objective optimisation, mutual
information and entropy, and also reviews typical related work on feature selection.

2.1. Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation technique proposed by Kennedy and Eberhart
(Kennedy and Eberhart 1995, Shi and Eberhart 1998). PSO is based on swarm
intelligence and motivated by social behaviours such as birds flocking and fish
schooling. The underlying phenomenon of PSO is that knowledge is optimised by
social interaction in the swarm where thinking is not only personal but also social.

In PSO, each solution can be represented as a particle in the swarm. A particle
has a position in the search space and a vector xi = (xi1, xi2, ..., xiD) represents the
position of particle i, where D is the dimensionality of the search space. Particles
move in the search space to search for the optimal solutions. So, particle i has a
velocity represented as vi = (vi1, vi2, ..., viD). During the movement, each particle
updates its position and velocity according to the experience of its own and its
neighbours. The best previous position of the particle is recorded as the personal
best pbest and the best position obtained by the swarm thus far is called gbest.
Based on pbest and gbest, PSO updates the velocity and the position of each particle
to search for the optimal solutions. The updating formulae are shown by Equations
1 and 2.

xt+1
id = xtid + vt+1

id (1)

vt+1
id = w ∗ vtid + c1 ∗ r1 ∗ (pid − xtid) + c2 ∗ r2 ∗ (pgd − xtid) (2)

where t represents the tth iteration in the evolutionary process. d ∈ D represents
the dth dimension in the search space. w is inertia weight, which is to control the
impact of the previous velocities on the current velocity. c1 and c2 are acceleration
constants. r1 and r2 are random values uniformly distributed in [0, 1]. pid and pgd
denote the elements of pbest and gbest in the dth dimension. The velocity is limited
by a predefined maximum velocity, vmax and vt+1

id ∈ [−vmax, vmax]. The algorithm
stops when a predefined criterion is met, which could be a good fitness value or
a predefined maximum number of iterations. Figure 1 shows the basic steps of a
PSO algorithm.

PSO was originally proposed to address continuous problems (Kennedy and
Eberhart 1995). Later, Kennedy and Eberhart (Kennedy and Eberhart 1997) de-
veloped a binary PSO (BPSO) to solve discrete problems. In BPSO, xid, pid and
pgd are restricted to 1 or 0. The velocity in BPSO indicates the probability of the
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corresponding element in the position vector taking value 1. A sigmoid function is
used to transform vid to the range of (0, 1). BPSO updates the position of each
particle according to the following formula:

xid =

{
1, if rand() < 1

1+e−vid

0, otherwise
(3)

where rand() is a random number chosen from a uniform distribution in [0,1].

2.2. Multi-Objective Optimisation

A problem can be called a multi-objective problem when optimal decisions need to
be taken in the presence of trade-offs between two or more conflicting objectives.
Multi-objective optimisation involves minimising or maximising multiple conflict-
ing objective functions. In mathematical terms, the formulae of a multi-objective
minimisation problem can be written as follows:

minimise F (x) = [f1(x), f2(x), ... , fk(x)] (4)

subject to:
gi(x) ≤ 0, i = 1, 2, ... m (5)

hi(x) = 0, i = 1, 2, ... l (6)

where x is the vector of decision variables, fi(x) is a function of x, k is the number
of objective functions to be minimised, gi(x) and hi(x) are the constraint functions.

In multi-objective optimisation, the quality of a solution is explained in terms of
trade-offs between conflicting objectives. Let y and z be two solutions of the above
k-objective minimisation problem. If the following conditions are met, one can say
y dominates z (or z is dominated by y, or y is better than z):

∀i : fi(y) ≤ fi(z) and ∃j : fj(y) < fj(z) (7)

where i, j ∈ {1, 2, 3, ...k}. Take a two-objective minimisation problem (shown in
Figure 2) as an example, x1 dominates both x2 and x3. For the case that neither
x2 dominates x3 nor x3 dominates x2, x2 and x3 are called non-dominated solutions
or trade-off solutions of each other. When a solution is not dominated by any other
solutions, it is referred as a Pareto-optimal solution. The set of all Pareto-optimal
solutions forms the trade-off surface in the search space, the Pareto front. A multi-
objective algorithm is designed to search for a set of non-dominated solutions.

Feature selection has two main conflicting objectives, which are minimising both
the number of features and the classification error rate. Therefore, feature selection
can be expressed as a two-objective minimisation problem.

2.3. Entropy and Mutual Information

Entropy and mutual information in information theory are able to measure the
information of random variables (Shannon and Weaver 1949). The entropy is a
measure of the uncertainty of random variables. Let X be a random variable with
discrete values, its uncertainty can be measured by entropy H(X) defined as

H(X) = −
∑
x∈X

p(x) log2 p(x) (8)

where p(x) = Pr(X = x) is the probability density function of X. Note that
entropy does not depend on actual values, but just the probability distribution of
the random variable.
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For two discrete random variables X and Y with their probability density func-
tion p(x, y), the joint entropy H(X,Y ) is defined as

H(X,Y ) = −
∑

x∈X ,y∈Y
p(x, y) log2 p(x, y) (9)

When a variable is known and others are unknown, the remaining uncertainty
is measured by the conditional entropy. Given Y , the conditional entropy H(X|Y )
of X with respect to Y is

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log2 p(x|y) (10)

where p(x|y) is the posterior probabilities of X given Y . H(X|Y ) = 0 means that
X completely depends on Y and no more other information is required to describe
X when Y is known. H(X|Y ) = H(X) denotes that knowing Y will do nothing to
observe X.

Mutual information defines the information shared between two random vari-
ables. Given variable X, mutual information I(X;Y ) is how much information one
can gain about variable Y .

I(X;Y ) =H(X)−H(X|Y )

=H(Y )−H(Y |X)

=−
∑

x∈X ,y∈Y
p(x, y) log2

p(x, y)

p(x)p(y)
(11)

According to Equation 11, the mutual information I(X;Y ) will be large if two
variables X and Y are closely related. I(X;Y ) = 0 if X and Y are totally unrelated.

2.4. Related Work on Feature Selection

A number of feature selection algorithms have been proposed in recent years, which
can be classified into wrapper approaches and filter approaches (Dash and Liu
1997). Typical feature selection algorithms are reviewed in this section.

2.4.1. Wrapper Feature Selection Algorithms

Sequential forward selection (SFS) (Whitney 1971) and sequential backward se-
lection (SBS) (Marill and Green 1963) are two commonly used wrapper feature
selection methods. SFS (SBS) starts with no features (all features), then candidate
features are sequentially added to (removed from) the initial feature subset until
the further addition (removal) does not increase the classification performance. The
limitation of SFS and SBS is that once a feature is selected (eliminated) it cannot
be eliminated (selected) later, which is so-called nesting effect (Yusta 2009). This
limitation can be overcomed by combining both SFS and SBS into one algorithm.
Therefore, the “plus-l-take away-r” method was proposed by Stearns (1976), which
performs l times forward selection followed by r times backward elimination. The
challenge is to determine the optimal values of (l, r). To address this challenge,
Pudil et al (1994) proposed two floating feature selection algorithms, namely se-
quential forward floating selection (SFFS) and sequential backward floating selec-
tion (SBFS). SFFS and SBFS automatically determine the values for (l, r). These
two floating methods are regarded to be at least as good as the best sequential
method, but they still suffer from the problem of stagnation in local optima (Yusta
2009).



March 19, 2015 9:23 Connection Science MOPSOforFilterFeatureSelection

6

Evolutionary computation techniques have been applied to address feature se-
lection problems, such as GAs, GP, ant colony optimisation (ACO) and PSO.
Hamdani et al (2007) developed a multi-objective feature selection algorithm using
non-dominated sorting based multi-objective genetic algorithm II (NSGAII) and
K nearest neighbours (KNN), but the performance of the proposed algorithm has
not been compared with any other feature selection algorithm. Zhu et al (2007)
proposed a hybrid wrapper and filter feature selection algorithm (WFFSA) based
on a memetic algorithm, i.e. a combination of GA and local search. In WFFSA,
GA adds or deletes a feature based on the ranked individual features. Three differ-
ent local search strategies, namely improvement first strategy, greedy strategy and
sequential strategy were investigated in WFFSA. Experiments show that WFFSA
outperformed GA and other methods. This work also shows that a good balance be-
tween local search and genetic search can improve the search quality and efficiency
of WFFSA. Muni et al (2006) developed a multi-tree GP algorithm for feature
selection (GPmtfs) to simultaneously select a feature subset and design a classifier
using the selected features. For a c-class problem, each classifier in GPmtfs has
c trees. Comparisons suggest GPmtfs achieved better results than SFS, SBS and
other methods. However, the number of features selected increases when there are
(synthetically added) noisy features. ACO has also been applied in wrapper based
feature selection, Gao et al (2005) proposed a wrapper feature selection algorithm
based on ACO to network intrusion detection.

PSO has recently gained more attention for solving feature selection problems.
Azevedo et al (2007) proposed a wrapper feature selection algorithm using PSO and
support vector machine (SVM) for personal identification in a keystroke dynamic
system. However, the proposed algorithm obtained a relatively high false accep-
tance rate, which should be low in most identification systems. Mohemmed et al
(2009) proposed a hybrid method (PSOAdaBoost) that incorporates PSO with an
AdaBoost framework for face detection. PSOAdaBoost aims to search for the best
feature subset and determine the decision thresholds of AdaBoost simultaneously,
which speeds up the training and increases the accuracy of weak classifiers in Ad-
aBoost. Huang and Dun (2008) also proposed a similar feature selection method
but used two versions of PSO. BPSO is used to search for the optimal feature
subset and continuous PSO is used to simultaneously optimise the parameters in
the kernel function of SVM. Xue et al (2012) proposed a feature selection approach
based on BPSO and new fitness functions, which included both the number of fea-
tures and the classification performance. Compared with the basic fitness function,
the proposed algorithms further reduced the number of features and increase the
classification performance.

The performance of PSO may be improved by properly setting the value of the
inertia weight to balance its local search and global search. Yang et al (2008)
proposed two feature selection algorithms, which are based on two inertia weights
strategies to properly balance the local search and global search of PSO. The
two proposed algorithms outperformed other algorithms, such as SFS, “plus-l-take
away-r” , SFFS, a sequential GA and different hybrid GAs. Chuang et al (2008)
developed a strategy for gbest in PSO for feature selection in which gbest will be
reset to zero if it maintains the same value after several iterations. Chuang et al
(2011) applied the so-called catfish effect to PSO for feature selection, which is to
introduce new particles into the swarm by re-initialising the worst particles when
gbest has not improved for a number of iterations. The authors claimed that the
introduced catfish particles could help PSO avoid premature convergence and lead
to better results than sequential GA, SFS, SFFS and other methods.

Liu et al (2011) introduced a multi-swarm PSO algorithm to search for the op-
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timal feature subset and optimise the parameters of SVM simultaneously. Exper-
iments show that the proposed feature selection method achieved higher classifi-
cation accuracies than grid search, standard PSO and GA. However, the proposed
algorithm is computationally more expensive than the other three methods be-
cause of the large population size and complicated communication rules between
different subswarms. Based on PSO, Unler and Murat Unler and Murat (2010)
proposed a feature selection algorithm with an adaptive selection strategy, where a
feature is chosen not only according to the likelihood calculated by PSO, but also
to its contribution to the features already selected. Experiments suggest that the
proposed method outperforms the tabu search and scatter search algorithms.

Esseghir et al (2010) proposed a filter-wrapper feature selection method based
on PSO, which aims to integrate the strengths of both filters and wrappers. The
proposed filter-wrapper scheme encodes the position of each particle with a score,
which reflects feature-class dependency levels evaluated by a filter criterion. The
fitness of a particle is the classification accuracy achieved by the selected features.
Experimental results show that the proposed method could achieve slightly better
performance than BPSO based filter algorithm. As the proposed approach uses the
wrapper scheme, one would have expected that a wrapper approach was compared
in the experiments.

2.4.2. Filter Feature Selection Algorithms

The Relief algorithm (Kira and Rendell 1992) is a classical filter feature selection
algorithm. Relief assigns a weight to each feature to denote the relevance of the
feature to the target concept. However, Relief does not deal with redundant fea-
tures, because it attempts to find all relevant features regardless of the redundancy
between them. Cardie (1993) proposed a filter based feature selection algorithm
that uses a decision tree (DT) algorithm to select a subset of features for a nearest
neighbour algorithm, because DT use only relevant features that are required to
completely classify the training set and remove all other features. The FOCUS al-
gorithm (Almuallim and Dietterich 1994), a filter algorithm, exhaustively examines
all possible feature subsets, then selects the smallest feature subset. However, the
FOCUS algorithm is computationally inefficient because of the exhaustive search.

Evolutionary computation techniques have also been applied to filter based fea-
ture selection. Based on GAs, Chakraborty (2002) proposed a feature selection
algorithm using a fuzzy sets based fitness function. However, PSO with the same
fitness function in (Chakraborty 2008) achieved better performance than this GA
based algorithm. Neshatian and Zhang (2009) proposed a GP relevance measure
(GPRM) to evaluate and rank subsets of features in binary classification tasks,
and GPRM is also efficient in terms of feature selection to select a small number
of features and achieve higher classification performance than using all features.
Ming (2008) proposed a feature selection method based on ACO and rough sets
theory (Pawlak 1982). The proposed algorithm starts with the features included in
the core of the rough sets. Forward selection is adopted into the proposed method
to search for the best feature subset. Experimental results show that the proposed
algorithm achieved better classification performance with fewer features than a
C4.5 based feature selection algorithm. However, experiments did not compare the
proposed method with other commonly used feature selection algorithms.

Based on BPSO, Iswandy and Koenig (2006) developed a multi-objective, fil-
ter based feature selection algorithm. The proposed algorithm employed different
weights to linearly combine three objectives, which were evaluated by three filter
criteria, into a single fitness function. Experimental results show that the proposed
algorithm outperformed other methods on several benchmark problems. The pro-
posed algorithm aimed to select only one feature subset instead of a set of non-
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dominated solutions. Wang et al (2007) proposed a filter feature selection algorithm
based on an improved BPSO and rough sets theory. The goodness of a particle is
assigned as the dependency degree between class labels and selected features, which
is measured by rough sets. This work also shows that the computation of the rough
sets consumes most of the running time, which is a drawback of using rough sets
in feature selection problems.

A variety of feature selection approaches have been proposed, but most of them
are single objective algorithms and not much work has been conducted to treat
a feature selection task as a multi-objective problem. Although Hamdani et al
(2007) developed a multi-objective, wrapper, feature selection algorithm based on
NSGAII, there is no comparisons with other feature selection methods to judge its
performance. Many studies have shown that PSO is a powerful technique for feature
selection, but the use of PSO for multi-objective, filter based feature selection has
not been investigated. Moreover, most existing approaches are wrappers, which are
computationally expensive and “less general” than filter approaches. A relatively
small number of PSO based filter feature selection approaches have been proposed
in which rough sets and fuzzy sets theories are mainly used to evaluate the fitness
of the selected features. There are a variety of other measures that can be used
in a filter based feature selection approach. Therefore, the investigation of a PSO
based multi-objective, filter based feature selection approach is still an open issue
and the work conducted in this paper is the first effort in this area.

3. Proposed Multi-Objective Feature Selection Approaches

This section briefly describes the two filter criteria to be used in this paper, which
are based on mutual information and entropy (Cervante et al 2012). Then we
propose two new multi-objective BPSO feature selection frameworks that form the
new algorithms to address feature selection problems with the goal of minimising
the number of features and maximising the relevance between features and class
labels, which is evaluated by the two filter criteria.

3.1. Mutual Information and Entropy for Feature Selection

Mutual information shows the relevance between two random variables. In classifi-
cation problems, the classification performance can be increased by maximise the
relevance between each feature and the class labels. The number of features needed
for classification can be reduced by minimising the redundancy between features,
which can be shown by the mutual information between features. Therefore, mu-
tual information can be used to develop a filter feature selection algorithm. We
proposed a BPSO based filter feature selection algorithm (BPSOfsMI) based on
mutual information in an attempt to maximise the relevance between features and
class labels and minimise the redundancy among features (Cervante et al 2012).
In BPSOfsMI, each selected feature and the class labels are treated as discrete
random variables and the fitness function can be shown by Equation 12.

F1 = Rel1 −Red1 (12)
where

Rel1 =
∑
x∈X

I(x; c), and Red1 =
∑

xi,xj∈X
I(xi, xj)

where Rel1 calculates the relevance (mutual information) between each feature and
the class labels, which determine the relevance of the selected feature subset to the
class labels. Red1 evaluates the mutual information shared by each pair of selected
features, which indicates the redundancy contained in the selected feature subset.
X is the set of selected features and c is the class labels. F1 aims to maximise the
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relevance Rel1 and simultaneously minimise the redundancy Red1 in the selected
feature subset.

Feature selection can be achieved by using mutual information to find the two-
way relevance and redundancy between features. However, mutual information
could not handle multi-way complex feature interaction, which is one of the chal-
lenges in feature selection. Entropy in information theory can measure the relevance
between a group of features, based on which, we proposed a feature selection mea-
surement to discover multi-way relevance and redundancy among features (Cer-
vante et al 2012). Further, we developed a single objective filter feature selection
algorithm (BPSOfsE) (Cervante et al 2012) based on BPSO and the proposed
entropy measurement. Equation 13 was used as the fitness function in BPSOfsE.

F2 = Rel2 −Red2 (13)

where

Rel2 = IG(c|X) and Red2 =
1

|S|
∑
x∈X

IG(x|{X/x})

where Rel2 evaluates the information gain in c given information of the features
in X, which show the relevance between the selected feature subset and the class
labels. Red2 evaluates the joint entropy of all the features in X, which indicates the
redundancy in the selected feature subset. X and c have the same meaning as in
Equation 12. F2 aims to maximise the relevance Rel2 and minimise the redundancy
Red2 among selected features.

Both Rel2 and Red2 involve the calculation of a single discrete feature given
information of a set of discrete features. Taken Rel2 as the example,

Rel2 =IG(c|X)

=H(c)−H(c|X)

=H(c)− (H(c ∪X)−H(X))

=H(c) +H(X)−H(c ∪X)

where H(X) is the joint entropy of all the features in X. If X = W,Y,Z, where
W,Y,Z are single features then

H(W,Y,Z) = −
∑
w∈W

∑
y∈Y

∑
z∈Z

p(wyz) log2 p(wyz)

3.1.1. Different Weights for Relevance and Redundancy in BPSOfsMI and
BPSOfsE

The relevance and redundancy are equally important in the two fitness functions
(Equations 12 and 13). In order to investigate the influence of different relative
importances for the relevance and redundancy, a parameter α is introduced into
Equation 12 in BPSOfsMI (shown as α1) and Equation 13 in BPSOfsE (shown as
α2), which can be seen in Equations 14 and 15.

F1 = α1 ∗Rel1 − (1− α1) ∗Red1 (14)

F2 = α2 ∗Rel2 − (1− α2) ∗Red2 (15)

where α1 and α2 are constant values in [0, 1], which show the relative importance
of the relevance in two fitness functions. (1 − α1) and (1 − α2) show the relative
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Algorithm 1: Pseudo-Code of NSfsMI and NSfsE
1 begin
2 divide Dataset into a Training set and a Test set, initialise the swarm (Swarm);
3 while Maximum Iterations is not met do
4 evaluate two objective values of each particle; /* number of features and

the relevance (Rel1 in NSfsMI and Rel2 in NSfsE) on the Training
set */

5 identify the particles (nonDomS) (non-dominated solutions in Swarm);
6 calculate crowding distance particles in nonDomS and then sort them;
7 for i=1 to Population Size (P ) do
8 update the pbest of particle i;
9 randomly select a gbest for particle i from the highest ranked solutions in

nonDomS;
10 update the velocity and the position of particle i;
11 end
12 add the original particles Swarm and the updated particles to Union;
13 identify different levels of non-dominated fronts F = (F1, F2, F3, ...) in Union;
14 empty the Swarm for the next iteration;
15 i = 1;
16 while |Swarm| < P do
17 if (|Swarm|+ |Fi| ≤ P ) then
18 calculate crowding distance of each particle in Fi;
19 add Fi to Swarm;
20 i = i+ 1;
21 end
22 if (|Swarm|+ |Fi| > P ) then
23 calculate crowding distance of each particle in Fi;
24 sort particles in Fi;
25 add the (P − |Swarm|) least crowded particles to Swarm;
26 end
27 end
28 end
29 calculate the classification error rate of the solutions (feature subsets) in the F1

on the test set;
30 return the solutions in F1 and their testing classification error rates;
31 end

importance of the reduction of the redundancy. We assume the relevance is more
important than the redundancy, so α1 or α2 is set to be larger than (1 − α1) or
(1−α2). When α1 = 0.5 (1−α1 = 0.5) and α2 = 0.5 (1−α2 = 0.5), Equations 14
and 15 are the same as Equations 12 and 13, where the relevance and redundancy
are equally important.

The representation of a particle in BPSOfsMI and BPSOfsE is a n-bit binary
string, where n is the number of available features in the dataset. n is also the
dimensionality of the search space. In the binary string, “1” represents that the
feature is selected and “0” otherwise.

3.2. New Algorithms: NSfsMI and NSfsE

Experiments on BPSOfsMI and BPSOfsE show that mutual information and en-
tropy can be effective criteria for filter feature selection (Cervante et al 2012).
However, weights in the fitness functions of BPSOfsMI and BPSOfsE need to be
predefined. Based on BPSO, we develop a multi-objective filter feature selection
approach using mutual information (or entropy) with the objectives of minimising
the number of features and maximising the relevance between features and the
class labels to explore the Pareto front of a feature selection problem.

PSO was originally proposed as a single objective optimisation technique. To
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extend PSO for multi-objective optimisation, one of the most important tasks
is to determine a good leader (gbest) for each particle from a set of potential
non-dominated solutions. Li (Li 2003) introduces the concepts from a popular
evolutionary multi-objective technique, NSGAII (Deb et al 2002), into PSO to
develop a continuous multi-objective PSO algorithm and achieves promising results
on the optimisation of several benchmark functions. However, this idea has never
been applied to feature selection problems.

In this study, we develop a binary multi-objective PSO framework (NSBPSO)
for filter feature selection based on the idea of non-dominated sorting in NSGAII.
Based on NSBPSO, two filter multi-objective feature selection algorithms are de-
veloped, which are NSfsMI and NSfsE. NSfsMI and NSfsE employe Rel1 and Rel2
to evaluate the relevance between features and class labels, respectively.

Figure 3 shows the flowchart of two NSBPSO based multi-objective feature se-
lection algorithms, NSfsMI and NSfsE. The main idea is to use non-dominated
sorting (Step 7) to select a gbest for each particle and update the swarm in the
evolutionary process. As shown in Figure 3, in each iteration, the algorithm firstly
identifies the non-dominated solutions in the swarm and calculates the crowding
distance, then all the non-dominated solutions are sorted according to the crowding
distance (Step 2). In Step 3, a gbest is randomly selected from the least crowded
solutions (the highest ranked part) of the sorted non-dominated solutions. In Step
4, all the particles in the swarm are copied to a union. After determining the gbest
and pbest for each particle, the new velocity and the new position of each particle
are calculated according the Equations 2 and 3 and the new positions of all par-
ticles are added into the union (Step 5). The two objective values of each particle
are evaluated in Step 6, where the relevance is evaluated by Rel1 in CMDfsMI and
by Rel2 in CMDfsE. Step 7 shows the non-dominated sorting procedure. Specifi-
cally, the non-dominated solutions in the union are called the first non-dominated
front, subsequently excluded from the union. Then the non-dominated solutions
in the new union are called the second non-dominated front. The following levels
of non-dominated fronts are identified by repeating this procedure. Step 8 shows
the process of updating the swarm for the next iteration. Specifically, particles are
selected from the top levels of the non-dominated fronts, starting from the first
front. If the number of solutions needed is larger than the number of solutions in
the current non-dominated front, all the solutions are added into the next iteration.
Otherwise, the solutions in the current non-dominated front are ranked according
to the crowding distance and the highest ranked solutions are added into the next
iteration. Steps 2 to 8 are repreated until the termination criteria is met. The
algorithm returns the first non-dominated Pareto front in the Union.

3.3. New Algorithms: CMDfsMI and CMDfsE

The performance of a PSO algorithm can be influenced by the diversity of the
swarm. NSBPSO has a potential limitation of quickly losing the diversity of the
population during the evolutionary process. Many new particles in the next itera-
tion may be identical. Because new particles are selected from the combination of
current particles and the updated particles, all non-dominated particles that share
the same solution will be kept into the new swarm. In order to better address
feature selection problems, we develop another binary multi-objective PSO frame-
work (CMDBPSO) for feature selection using the ideas of crowding, mutation and
dominance (Sierra and Coello 2005).

Based on the CMDBPSO framework, we further develop two filter multi-
objective feature selection algorithms, CMDfsMI and CMDfsE. Rel1 is employed
in CMDfsMI to evaluate the relevance and Rel2 is used in CMDfsE to measure
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Algorithm 2: Pseudo-Code of CMDfsMI and CMDfsE

1 begin
2 divide Dataset into a Training set and a Test set; initialise the swarm;
3 initialise the set of leaders LeaderSet and Archive
4 calculate the crowding distance of each member in LeaderSet;
5 while Maximum Iterations is not met do
6 for each particle do
7 select a leader (gbest) from LeaderSet for each particle by using a

binary tournament selection based on the crowding distance;
8 update the velocity and the position of particle i according to

Equations 2 and 3;
9 apply bit-flip mutation;

10 evaluate two objective values for each particle; /* number of
features and the relevance (Rel1 in CMDfsMI and Rel2 in
CMDfsE) on the Training set */

11 update the pbest of each particle;
12 end
13 identify the non-dominated solutions (particles) to update LeaderSet;
14 send leaders to Archive;
15 calculate the crowding distance of each member in LeaderSet;
16 end
17 calculate the classification error rate of the solutions in Archive on the test

set;
18 return the solutions in Archive and their training and test classification error

rates;
19 end

the relevance between the selected features and the class labels. The objectives
of CMDfsMI and CMDfsE are minimising the number of features and maximis-
ing the relevance between the selected features and the class labels. Algorithm 2
shows the brief pseudo-code of CMDfsMI and CMDfsE. Basically, CMDfsMI and
CMDfsE follow the basic steps of the PSO algorithm except for the steps related
to the selection of gbest, mutation and dominance. According to Algorithm 2, in
order to address the main issue of determining a good leader (gbest), CMDfsMI
and CMDfsE employ a leader set to keep the non-dominated solutions as the po-
tential leaders for each particle. The maximum size of the leader set is usually set
as the number of individuals in the population. A crowding factor is employed to
decide which non-dominated solutions should be added into the leader set and kept
during the evolutionary process. Binary tournament selection based on the crowd-
ing factor is applied to choose a leader (gbest) for each particle from the leader
set. A bit-flip mutation operator is adopted to keep the diversity of the swarm
and improve the search ability of the algorithm. An archive is used to keep the
non-dominated solutions and a dominance factor is adopt to determine the size of
archive, which is also the number of non-dominated solutions that CMDfsMI or
CMDfsE reports.

4. Experimental Design

4.1. Datasets

Table 1 shows the eight datasets used in the experiments, which were chosen from
the UCI machine learning repository (Frank and Asuncion 2010). The datasets were
selected to have various numbers of features, classes and instances and they are
used as representative samples of the problems that the proposed algorithms can
address. As mutual information and entropy are mainly used for discrete variables,
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the data in the selected datasets are categorical values.
In the experiments, all the instances in each dataset are randomly divided into

two sets: 70% as the training set and 30% as the test set. The algorithms firstly run
on the training set to select feature subsets and then the classification performance
of the selected features will be calculated on the test set by a learning algorithm.
There are many learning algorithms that can be used here, such as KNN, NB,
and DT. As DT is a very commonly used learning algorithm, it is selected in this
study to calculate the classification accuracy of the selected features according to
Equation 16:

Error rate =
FP + FN

TP + TN + FP + FN
(16)

where TP, TN, FP and FN stand for true positives, true negatives, false positives
and false negatives, respectively.

4.2. Parameter Settings

Parameter settings for BPSOfsMI, BPSOfsE, NSfsMI and NSfsE are shown in Table
2. These values are chosen based on the common settings in the literature (Shi and
Eberhart 1998, Van Den Bergh 2001). Five different values for α1 in BPSOfsMI
and α2 in BPSOfsE are used in the experiments, which are 0.9, 0.8, 0.75, 0.6 and
0.5. In the CMDfsMI and CMDfsE, w is a random value in [0.1,0.5], c1 and c2 are
random values in [1.5, 2.0], and the mutation rate is 1/n, where n is the number
of available features (dimensionality). These values are based on the settings of an
equivalent algorithm in the literature (Sierra and Coello 2005).

In order to examine the classification performance of BPSOfsMI (BPSOfsE), a
statistical significant test, T-test, is performed with a significance level of 0.05 (95%
confidence interval) between the 40 classification accuracies achieved by BPSOfsMI
(BPSOfsE) and the classification accuracy obtained by using all features. For each
dataset, BPSOfsMI and BPSOfsE obtain a single solution in each of the 40 inde-
pendent runs. Multi-objective algorithms, NSfsMI, NSfsE, CMDfsMI, and CMDfsE
obtain a set of non-dominated solutions in each run. In order to compare these two
kinds of results, the 40 solutions (from each of the 40 runs) that resulted from BP-
SOfsMI and BPSOfsE is presented in next section. The 40 sets of feature subsets
achieved by each multi-objective algorithm are firstly combined into one union set.
In the union set, for the feature subsets that contain the same number of features
(e.g. m), their classification error rates were averaged. The average classification
error rate is assigned as the average classification performance of the subsets with
m features. Therefore, a set of average solutions is obtained by using the average
classification error rates and the corresponding numbers of features (e.g. m). The
set of average solutions is called the average Pareto front and presented in next
section. Besides the average Pareto front, the non-dominated solutions in the union
set are also presented in next section.

5. Results and Discussions

This section provides the experimental results and discussions. Results of BPSOf-
sMI and BPSOfsE with different weights in the fitness functions are shown in
Tables 3 and Tables 4. Figures 4 and 5 show the comparisons between BPSOfsMI
(BPSOfsE) and the proposed multi-objective algorithms.
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5.1. Results of BPSOfsMI and BPSOfsE

Tables 3 and 4 show the experimental results of BPSOfsMI and BPSOfsE with 5
different weights, α (α1 in BPSOfsMI and α2 in BPSOfsE), in the fitness functions.
In the tables, “All” means that all of the available features are used for classifi-
cation. “MeanNo.” represents the average size of the feature subsets evolved by
each algorithm in 40 independent runs. “BestAcc” indicates the best test accuracy.
“MeanAcc” and “StdDevAcc” show the average and the standard deviation of the
40 test accuracies. “T-test” shows the result of the T-test, where “+” (“-”) indi-
cates that the classification performance of BPSOfsMI or BPSOfsE is significantly
better (worse) than that of all features. “=” means they are similar.

Tables 3 and 4 show that BPSOfsMI with mutual information and BPSOfsE
with entropy as the evaluation criteria can reduce the number of features and
achieve similar or even better classification performance than using all features in
some cases. The classification performances of BPSOfsMI and BPSOfsE are slightly
worse than that of using all features, but their best classification accuracy could be
the same or higher than using all features. BPSOfsMI or BPSOfsE with a large α
(e.g. 0.9) usually evolved a subset with more features and achieved higher classifi-
cation accuracy than with a small α (e.g. 0.5). This is because when α is large, the
relevance (Rel1 or Rel2) is more important and the redundancy (Red1 or Red2)
is less important than when α is small. The redundancy indirectly influences the
number of features selected. Therefore, with a large α, the fitness function guides
BPSOfsMI or BPSOfsE to search for a subset with high classification performance
and more features. In contrast, the fitness function with a small α guides BPSOf-
sMI or BPSOfsE to search for a subset including fewer features. While a small α
can always reduce the number of features, a large α does not always increase the
classification performance. For example, in the Leddisplay dataset, the classifica-
tion performance is the same in the five different α values, which means that the
feature subsets still have redundancy. More detailed discussions can be seen in the
literature (Cervante et al 2012).

Results in Tables 3 and 4 show that in order to achieve the optimal feature subset,
an appropriate weight value α1 or α2 need to be predefined. In next section, we
will investigate the use of BPSO for multi-objective feature selection to search for
the non-dominated solutions. In the five different α1 and α2 values, the number
of features is the most important when α1 = α2 = 0.5 and the classification
performance is the most important when α1 = α2 = 0.9. Therefore, BPSOfsMI and
BPSOfsE with weights (α1 or α2) values of 0.5 and 0.9 are used for comparison in
the next section to examine the performance of multi-objective feature selection
algorithms.

5.2. Results of NSfsMI and CMDfsMI

Figure 4 shows the Pareto front solutions obtained by NSfsMI and CMDfsMI in
the filter feature selection objective space, where mutual information is used as the
evaluation criterion. In filter based multi-objective feature selection approaches, the
performance of these Pareto front solutions should be evaluated by its classification
performance on the unseen test data. Therefore, the solutions used in Figures 4
are the Pareto front solutions obtained in the mutual information space, but their
classification performances shown in the figures was evaluated by DT on the test
data. Figures 4 compares the results of NSfsMI, CMDfsMI, and BPSOfsMI with
α1 = 0.5 and α1 = 0.9, which employ mutual information to evaluate the relevancy
and redundancy between a pair of features. On the top of each chart, the numbers
in the brackets show the number of the available features and the classification
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error rate using all features. In each chart, the horizontal axis shows the number
of features selected and the vertical axis shows the classification error rate. In
Figure 4, “NSfsMI-A” stands for the average Pareto front resulting from NSfsMI
in the 40 independent runs. “NSfsMI-B” represents the non-dominated solutions
resulting from NSfsMI in the 40 independent runs. α1 = 0.5 means the 40 solutions
of BPSOfsMI with α1 = 0.5 and α1 = 0.9 means the 40 solutions of BPSOfsMI
with α1 = 0.9.

In some datasets, BPSOfsMI and BPSOfsE may evolve the same feature subset
in different runs and they are shown in the same point in the chart. Therefore,
although 40 results are presented, there may be less than 40 distinct points shown in
a chart. For “NSfsMI-B” and “CMDfsMI-B”, each of these non-dominated solution
sets may also have duplicate feature subsets. They are also shown in the same point
in the chart. This is also the case for Figure 5.

5.2.1. Results of NSfsMI

According to Figure 4, in the Mushroom and Spect datasets, the average Pareto
fronts of NSfsMI (NSfsMI-A) contains two or more solutions that selected a smaller
number of features and achieved a lower classification error rate than using all
features.

For the same number of features, there are a variety of combinations of features
with different classification performance. In different runs, NSfsMI may select the
same number of features with the same fitness evaluated by mutual information
(Equation 12), but the same (or better) goodness measured by Equation 12 does
not necessarily result to the same (or better) classification performance. Therefore,
they may have different classification error rates. Although NSfsMI obtained a
set of non-dominated solutions in each run, the average solutions in the average
Pareto front may dominate each other (This also happens in CMDfsMI, NSfsE
and CMDfsE). In almost all datasets, the non-dominated solutions (NSfsMI-B)
include one or more feature subsets, which included less than 50% of the available
features and achieved better classification performance than using all features. For
example, in the Spect dataset, one non-dominated solution selected 11 features from
22 available features and the classification error rate was decreased from 33.75%
to 25.00%.

The results suggests that NSfsMI as a multi-objective algorithm can effectively
search the solution space and automatically evolve a set of feature subsets to reduce
the number of features and improve the classification performance.

5.2.2. Results of CMDfsMI

According to Figure 4, the average Pareto fronts of CMDfsMI (CMDfsMI-A) in-
clude two or more solutions that selected a smaller number of features and achieved
better classification performance than using all features in all datasets (or similar
classification performance only in the Connect4 dataset). In almost all cases (ex-
cept for the Soybean Large dataset), CMDfsMI-B evolved feature subsets including
less than one third of the available features and achieved better classification per-
formance. For example, in the Spect dataset, CMDfsMI-B selected only one feature
and decreased the classification error rate of 33.75% to 28.75%.

The results suggest that as a multi-objective algorithm, CMDfsMI can effec-
tively explore the Pareto front of a feature selection problem to reduce both the
classification error rate and the number of features needed for classification.

5.2.3. Comparisons between NSfsMI,CMDfsMI and BPSOfsMI

Comparing NSfsMI with BPSOfsMI, it can be seen that in most cases, NSfsMI
(NSfsMI-B) achieved better classification performance than BPSOfsMI with α1 =
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0.5 although the number of features are slightly larger. In most cases, NSfsMI
(NSfsMI-B) outperformed BPSOfsMI with α1 = 0.9 in terms of both the number
of features and the classification performance.

Comparing CMDfsMI with BPSOfsMI, in almost all cases, feature subsets
evolved by CMDfsMI (CMDfsMI-B) achieved better performance than feature sub-
sets evolved by BPSOfsMI with α1 = 0.5 and with α1 = 0.9 in terms of both the
number of features and the classification performance.

The comparisons show that with mutual information in the fitness function,
achieving better classification performance usually needs more features, but there
are occasionally some feature subsets that include a smaller number of features
and achieve better classification performance. NSfsMI and CMDfsMI can obtain
non-dominated feature subsets that use a smaller number of features and achieve
better classification performance. The results suggest that NSfsMI and CMDfsMI
as multi-objective algorithms, could better explore the solution space than the
single objective algorithm, BPSOfsMI.

5.3. Results of NSfsE and CMDfsE

Figure 5 shows the Pareto front solutions obtained by NSfsE and CMDfsE in the
entropy space, but their classification performances shown in the figures was eval-
uated by DT on the test data. Figures 5 compares the results of NSfsE, CMDfsE,
and BPSOfsE with α2 = 0.5 and α2 = 0.9, which employ entropy to evaluate the
relevancy and redundancy of a group of features.

5.3.1. Results of NSfsE

According to Figure 5, in most cases, the average Pareto fronts of NSfsE (NSfsE-
A) contains more than one solution that selected a smaller number of features and
achieved better classification performance than using all features. In almost all
datasets, NSfsMI-B reduced the classification error rate by only selecting around
half of the available features. Taking the Spect dataset as an example, NSfsE
reduced the classification error rate from 33.75% to 25.00% by selecting only 9
features from the 22 available features.

The results suggest that the proposed NSfsE with entropy as the evaluation
criterion can automatically evolve a set of feature subsets to simultaneously reduce
the number of features and improve the classification performance over using all
features.

5.3.2. Results of CMDfsE

According to Figure 5, in all datasets, the average Pareto front of CMDfsE
(CMDfsE-A) evolved feature subsets that selected a smaller number of features (less
than half in most cases) and achieved better classification performance than using
all features. In most cases, CMDfsMI-B increased the classification performance by
selecting less than 25% of the available features.

The results in Figure 5 suggest that as a multi-objective algorithm, CMDfsE can
automatically evolve a Pareto front of feature subsets, which reduce the classifica-
tion error rate and substantially reduces the number of features used for classifi-
cation.

5.3.3. Comparisons between NSfsE, CMDfsE and BPSOfsE

Comparing NSfsE with BPSOfsE, in most cases, NSfsE (NSfsE-B) achieved bet-
ter classification performance than BPSOfsE with both α2 = 0.5 and α2 = 0.9
although the number of features is slightly larger. One can conclude that NSfsE
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outperformed BPSOfsE when increasing the classification performance is consid-
ered more important than minimising the number of features.

Comparing CMDfsE with BPSOfsE, in almost all datasets, CMDfsE evolved a
smaller number of features and achieved better classification performance than BP-
SOfsE with both α2 = 0.5 and α2 = 0.9. Only in the Connect4 datasets, CMDfsE
achieved similar results to BPSOfsE with α2 = 0.5, but better results than BP-
SOfsE with α2 = 0.9.

The comparisons show with entropy as the evaluation criterion, the proposed
multi-objective feature selection algorithms (NSfsE and CMDfsE) can better ex-
plore the search space and achieve better solutions than the single objective feature
selection algorithm (BPSOfsE).

5.4. Comparisons between Proposed Algorithms

Comparing mutual information and entropy, Figures 4 and 5 show that BPSOfsE,
NSfsE and CMDfsE, which use entropy generally achieved better classification per-
formance than BPSOfsMI, NSfsMI and CMDfsMI, which use mutual information.
For single objective algorithms, BPSOfsMI usually selected a smaller number of fea-
tures than BPSOfsE using entropy. This suggests that the algorithms with entropy
as the evaluation criterion can discover the multiple-way relevancy and redundancy
among a group of features to further increase the classification performance. Be-
cause the evaluation is based on a group of features (instead of a pair of features),
the number of features involved is usually larger in BPSOfsE than BPSOfsMI.
However, the number of features in the proposed multi-objective algorithms is al-
ways smaller than single objective algorithms. For the proposed multi-objective
algorithms, NSfsE and CMDfsE achieved better classification performance than
NSfsMI and CMDfsMI with a similar number of features, which suggests that the
NSfsE and CMDfsE with entropy can utilise the discovered multiple-way relevancy
between features to increase the classification performance and as multi-objective
methods, can simultaneously explore the search space more effectively to reduce
the number of features.

Comparing NSfsMI and NSfsE with CMDfsMI and CMDfsE (the two proposed
frameworks, NSBPSO and CMDBPSO), Figures 4 and 5 show that in almost all
datasets, CMDfsMI and CMDfsE outperformed NSfsMI and NSfsE in terms of
both the number of features and the classification performance. As discussed in
Section 3.3, NSfsMI and NSfsE have a potential limitation of quickly losing the
diversity of the swarm because of the updating mechanism. CMDfsMI and CMDfsE
can address this limitation in NSfsMI and NSfsE by using crowding distance in
the leader set to keep the diversity of the non-dominated solutions. Therefore,
CMDfsMI and CMDfsE better search the space of solutions and achieve better
classification performance using a smaller number of features than NSfsMI and
NSfsE.

5.5. Comparisons with a Rough Sets Based Algorithm

The performances of the proposed algorithms are also compared with the filter
feature selection approach (PSORSFS) proposed by Wang et al (2007), which is
based on BPSO and rough sets. There are two datasets used in Wang et al (2007)
and also in our paper, which are the Lymph and Mushroom datasets. Therefore,
we can compare our proposed algorithms, NSfsMI, NSfsE, CMDfsMI and CMDfsE
with PSORSFS based on the results of these two datasets.

Wang et al (2007) only gave the best solutions achieved by PSORSFS, which are
7 features with the classification error rate of 24.29% on the Lymph dataset and 4
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features with the classification error rate of 0.3% on the Mushroom dataset. Note
that the solution achieved by PSORSFS on the Mushroom dataset was claimed to
be the (true) optimal solution found by an exhaustive search in the paper (Wang
et al 2007).

Comparing their best solution with the average solutions achieved by our pro-
posed algorithms, NSfsMI-A and NSfsE-A achieved similar or better classification
performance than PSORSFS, although the number of features is slightly larger.
CMDfsMI-A and CMDfsE-A outperformed PSORSFS in terms of both the number
of features and the classification performance on the Lymph dataset and achieved
similar classification performance with a slightly larger number of features on the
Mushroom dataset.

Comparing the best solution of PSORSFS and the best solution of our pro-
posed algorithms, NSfsMI-B and NSfsE-B outperformed PSORSFS on the Lymph
dataset and achieved similar classification performance with a slightly larger num-
ber of features on the Mushroom dataset. CMDfsMI-B and CMDfsE-B outper-
formed PSORSFS on the Lymph dataset. On the Mushroom dataset, the best
solution achieved by PSORSFS is included in CMDfsMI-B and CMDfsE-B. More-
over, CMDfsMI-B and CMDfsE-B include other non-dominated solutions, which
can provide more options for users than PSORSFS in real-world applications.

5.6. Comparisons with Exhaustive Search (Lymph)

In order to further verify the performance of the proposed algorithms, an exhaustive
search is performed on the Lymph dataset, which has a relatively small number of
features and is possible to search the solutions space exhaustively, i.e, all possible
solutions in the filter search space.

In both mutual information and entropy evaluation criteria spaces, the true
Pareto front obtained by the exhaustive search contains two solutions, where the
numbers of features are 1 and 2 and the corresponding testing classification error
rates are 26.67% and 17.78%, respectively. The results obtained by NSfsMI and
NSfsE can achieve the best classification performance (in the true Pareto front)
although the number of features is relatively large. CMDfsMI and CMDfsE can
achieve the true Pareto front in many runs although in some other runs, the number
of features is slightly larger (e.g. 3 or 4). Note that CMDfsMI identifies the Pareto
front solutions in the filter evaluation criterion space (training process), but chooses
a different feature from the exhaustive search in some runs. Therefore, the Pareto
front solution with 1 feature presented in Figure 4 has a lower testing classification
error rate than the one reported by the exhaustive search (26.67%). There are
different combinations for the feature subset that includes 2 features. CMDfsMI
and CMDfsE usually obtained different combinations of features in different runs.

There are 18 features in the Lymph dataset. For exhaustive search, the number
of evaluations is 262144 (218). While for the proposed algorithms, the number of
evaluations is only 3000 (the population size 30 multiply by the maximum iterations
100). Therefore, comparisons suggests that the proposed algorithms can achieve
good results (or the best results) by using a much smaller number of evaluations
than exhaustive search. Of course, this experiment also suggest that there is still
space to improve the proposed algorithms by reducing the number of selected
features, which we will investigate in the future.

5.7. Further Discussion

In Figures 4 and 5, the solutions used in the charts are the Pareto front solutions
obtained using the filter evaluation criteria, but their classification performances
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shown in the figures was evaluated by DT on the test sets. Figure 4 shows the
Pareto fronts achieved by the proposed algorithms (NSfsMI and CMDfsMI) using
mutual information as the evaluation criterion. Figure 5 shows the Pareto fronts
achieved by the proposed algorithms (NSfsE and CMDfsE) using entropy as the
evaluation criterion.

As can be seen in Figures 4 and 5, some solutions in the average Pareto front
(represented by “-A”) dominate others although they are non-dominated solutions
in the filter evaluation criterion space. This shows that the Pareto front in the filter
evaluation criterion space on the training set does not necessarily involve the same
subsets as the Pareto front in the DT-based evaluation on the test set. The main
reason is that the goodness of a feature subset evaluated by mutual information
or entropy on the training set does not necessarily show its exact classification
performance on the test set. In addition, the true Pareto front achieved by exhaus-
tive search in the two filter evaluation criteria objective space may not correspond
to the true Pareto front of using DT-based evaluation on the test set. Feature
subsets with the same (better or worse) filter goodness do not necessarily achieve
exactly the same (better or worse) classification performance on the unseen test
set evaluated by DT. For example, two feature subsets may have the same num-
ber of features (i.e. n), but different combinations of n features. These two feature
subsets may have the same goodness values evaluated by the filter evaluation crite-
rion on the training set. So they are non-dominated to each other. However, when
using DT (or any other learning/classification algorithm) to evaluate their classifi-
cation performances on the unseen test set, their classification performances may
be (slightly) different. The feature subset with better classification performance
will dominate the other one. This is also the case for other filter criteria and other
learning/classification algorithms. Therefore, the Pareto front in the filter evalua-
tion criterion space are usually not the same as the Pareto front in the DT-based
evaluation.

Ideally, the proposed algorithms should identify the true Pareto front in each
filter evaluation criterion space. As it is not possible to conduct exhaustive search
for the datasets with large numbers of features to identify the true Pareto fronts, we
take the Lymph dataset as an example (Section 5.6). The proposed multi-objective
algorithms CMDfsMI and CMDfsE can identify the true Pareto fronts obtained by
the exhaustive search, but NSfsMI and NSfsE can not. The main reason is that
the swarm in NSfsMI and NSfsE may lose its diversity quickly due to the updating
strategies (more details can be seen in Section 3.3). For the datasets with large
numbers of features, CMDfsMI and CMDfsE might not achieve the true Pareto
front. The main reason is that feature selection is a difficult problem due to the large
search space and feature interaction. Most of the existing feature selection methods
suffer from the problem of being stagnation in local optima and high computational
cost. Heuristic search such as evolutionary computation methods (e.g. PSO) are
introduced to address feature selection problems to search for satisfactory results.
In our future work, we will further investigate multi-objective feature selection
algorithms to achieve better performance.

6. Conclusions

The overall goal of this paper was to propose a multi-objective, filter feature selec-
tion approach based on BPSO and information theory to search for a set of non-
dominated feature subsets, which reduced the number of features and achieved
better classification performance than using all features. The goal was success-
fully achieved by developing two multi-objective BPSO frameworks (NSBPSO
and CMDBPSO) and two information evaluation criteria (mutual information and
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entropy). Hence four multi-objective algorithms (NSfsMI, NSfsE, CMDfsMI and
CMDfsE) were proposed for feature selection. NSfsMI and CMDfsMI (NSfsE and
CMDfsE) were examined and compared with a single objective BPSO based algo-
rithm, BPSOfsMI using mutual information (BPSOfsE using entropy) with differ-
ent weights for the classification performance and the number of features (repre-
sented by the redundancy between features).

Experimental results show that in almost all cases, the proposed multi-objective
feature selection algorithms can automatically evolve a set of non-dominated fea-
ture subsets that include a smaller number of features and achieve better classi-
fication performance than using all features. NSfsMI and NSfsE achieved better
results than the single objective algorithms (BPSOfsMI and BPSOfsE) although
the number of features is slightly larger in many cases. In most datasets, CMDf-
sMI and CMDfsE outperformed (or achieved similar results in some cases) all other
methods mentioned above in terms of both the number of features and the clas-
sification performance. Comparisons also show that the proposed multi-objective
algorithms outperformed a rough sets based algorithm and CMDfsE can achieve
the same solutions obtained by exhaustive search in most cases.

This work represents the first PSO based multi-objective algorithms for filter
feature selection. Experimental results show the effectiveness of such algorithms,
especially multi-objective PSO, with information theory for filter feature selection
in classification. In future, we will further investigate the multi-objective PSO based
filter algorithm to better explore the Pareto front of non-dominated solutions in
feature selection problems. The claims that filter features selection methods are
“more general” and less computational expensive than wrappers will be tested
with the newly developed multi-objective filter based algorithms.
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Table 1. Datasets

Dataset #Features #Classes #Instances
Lymphography (Lymph) 18 4 148
Mushroom 22 2 8124
Spect 22 2 267
Leddisplay 24 10 1000
Dermatology 34 6 366
Soybean Large 35 19 307
Chess 36 2 3196
Connect4 42 3 44473

Table 2. Parameter settings

Parameter Value Parameter Value
w 0.7298 Population size 30
c1 1.49618 Maximum iterations 500
c2 1.49618 Topology fully connected
vmax 6.0 Runs 40

.
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Table 3. Results of BPSOfsMI with Different α1

Dataset α1 MeanNo. BestAcc MeanAcc ± StdDevAcc T-test

Lymph

All 18 82.22
α1 =0.9 14 82.22 82.22±5.68E-14 =
α1 =0.8 9 82.22 82.11±69.3E-2 =
α1 =0.75 7 77.78 77.78±5.68E-14 -
α1 =0.6 6 77.78 77.78±5.68E-14 -
α1 =0.5 4 77.78 77.78±5.68E-14 -

Mushroom

All 22 100.0
α1 =0.9 9.1 99.59 99.54±8.04E-2 -
α1 =0.8 4.5 98.88 98.81±5.88E-2 -
α1 =0.75 4.48 97.87 97.87±8.53E-14 -
α1 =0.6 3 97.87 97.87±8.53E-14 -
α1 =0.5 2 97.87 97.87±8.53E-14 -

Spect

All 22 66.25
α1 =0.9 6 71.25 71.19±39E-2 +
α1 =0.8 4.1 71.25 70.75±1.5E0 +
α1 =0.75 4 71.25 71±1.56E0 +
α1 =0.6 3 71.25 71.25±0E0 +
α1 =0.5 3 71.25 71.19±27.2E-2 +

Leddisplay

All 24 100
α1 =0.9 23.98 100 100±0E0 =
α1 =0.8 19 100 100±0E0 =
α1 =0.75 17 100 100±0E0 =
α1 =0.6 14.88 100 100±0E0 =
α1 =0.5 11.92 100 100±0E0 =

Dermatology

All 33 90.0
α1 =0.9 30.12 90 90±0E0 =
α1 =0.8 17.65 90 89.09±91E-2 -
α1 =0.75 11.62 93.64 88.16±1.33E0 -
α1 =0.6 8.15 95.45 89.64±2.41E0 =
α1 =0.5 6.38 91.82 86.34±6.11E0 -

Soybeanlarge

All 35 90.73
α1 =0.9 22.78 90.73 89.8±97.4E-2 -
α1 =0.8 13.8 91.22 86.72±2.2E0 -
α1 =0.75 9.68 88.78 84.11±2.49E0 -
α1 =0.6 7.4 86.34 80.33±3.53E0 -
α1 =0.5 5.72 84.39 76.89±3.97E0 -

Chess

All 36 98.44
α1 =0.9 13.95 95.2 95.19±6.4E-2 -
α1 =0.8 10.02 95.2 94.76±42.5E-2 -
α1 =0.75 8.18 95.1 94.49±68.2E-2 -
α1 =0.6 6.7 94.99 94.25±1.19E0 -
α1 =0.5 6.1 94.99 93.32±1.66E0 -

Connect4

All 42 74.62
α1 =0.9 9.68 70.36 69.4±60.7E-2 -
α1 =0.8 8 69.07 68.31±54.3E-2 -
α1 =0.75 7 68.73 67.6±54.2E-2 -
α1 =0.6 5.62 68.55 67.01±55.1E-2 -
α1 =0.5 5.12 67.52 66.51±51.2E-2 -
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Table 4. Results of BPSOfsE with Different α2

Dataset α2 MeanNo. BestAcc MeanAcc ± StdDevAcc T-test

Lymph

All 18 82.22
α2 =0.9 9.55 80 79.06±1.4E0 -
α2 =0.8 9.42 80 78.45±1.33E0 -
α2 =0.75 7.52 80 79.11±2.32E0 -
α2 =0.6 7 82.22 80.06±2.13E0 -
α2 =0.5 5.18 82.22 78.83±3.58E0 -

Mushroom

All 22 100.0
α2 =0.9 5.88 100 99.74±8.77E-2 -
α2 =0.8 5.95 99.88 99.32±1.37E0 -
α2 =0.75 2.52 99.7 97.88±44.5E-2 -
α2 =0.6 2.02 97.76 97.76±9.95E-14 -
α2 =0.5 2.05 97.76 97.72±22.2E-2 -

Spect

All 22 66.25
α2 =0.9 17.05 71.25 70.75 ± 1.5E0 +
α2 =0.8 15.3 71.25 68.59±1.75E0 +
α2 =0.75 12.85 71.25 66.44±2.06E0 =
α2 =0.6 9.62 72.5 68.25±1.08E0 +
α2 =0.5 7.42 71.25 68.5±3.53E0 +

Leddisplay

All 24 100
α2 =0.9 9 100 100±0E0 =
α2 =0.8 9 100 100±0E0 =
α2 =0.75 9 100 100±0E0 =
α2 =0.6 9 100 100±0E0 =
α2 =0.5 9 100 100±0E0 =

Dermatology

All 33 90.0
α2 =0.9 9.42 95.45 90.84±1.98E0 +
α2 =0.8 8.15 93.64 90.02±87.5E-2 =
α2 =0.75 7.68 93.64 90.27±1.31E0 =
α2 =0.6 6.52 93.64 89.32±1.59E0 -
α2 =0.5 6.28 92.73 89.16±2.94E0 =

Soybeanlarge

All 35 90.73
α2 =0.9 20.72 88.29 82.94±2.88E0 -
α2 =0.8 18.9 85.85 81.4±2.96E0 -
α2 =0.75 17.28 87.8 80.51±3.65E0 -
α2 =0.6 15.82 88.78 81.23±3.97E0 -
α2 =0.5 13.68 89.27 83.74±3.28E0 -

Chess

All 36 98.44
α2 =0.9 25.82 99.06 98.91±27E-2 +
α2 =0.8 22.62 99.37 99.07±15.6E-2 +
α2 =0.75 21.38 99.37 98.81±31.1E-2 +
α2 =0.6 19.22 99.06 98.36±40.2E-2 =
α2 =0.5 16.82 98.54 98.01±63.2E-2 -

Connect4

All 42 74.62
α2 =0.9 37.92 75.9 74.66±73.9E-2 =
α2 =0.8 38.12 75.94 74.7±92.7E-2 =
α2 =0.75 38.1 76.89 74.62±1.05E0 =
α2 =0.6 37.75 78.41 74.64±1.28E0 =
α2 =0.5 36.75 78.38 74.48±1.28E0 =
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Initialise the swarm with 
random position and velocity

If  fitness of a particle is better than 
pbest, update the pbest

Evaluate fitness of each 
particle

If fitness of any pbest is better than gbest, 
update the gbest

Update the velocity of each 
particle

Update the position of each 
particle

Termination ? 

Yes

Return the best 
solution

No

Figure 1. The Flowchart of PSO.
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Figure 2. A Minimisation Problem with Two Objective Functions.
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Figure 3. The Flowchart of NSfsMI and NSfsE.
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Figure 4. Experimental Results of BPSOfsMI, NSfsMI and CMDfsMI.
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Figure 5. Experimental Results of BPSOfsE, NSfsE and CMDfsE.


