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Abstract—In machine learning and data mining, feature ma-
nipulation is a data pre-processing step to increase the quality of a
feature space, which can significantly improve the performance of
a learning algorithm in terms of the accuracy, the learning speed,
and the complexity and the interpretability of the learnt models.
However, feature manipulation is a difficult task and facing
more challenges along with the trend that more and more data
is collected in many domains. Evolutionary computation (EC)
techniques have recently attracted much attention for dealing
with complex feature manipulation problems. Current work has
demonstrated some strengths of EC for feature manipulation, but
also shown some limitations and issues that need to be addressed.
More importantly, there are some highly interesting research
topics in the EC for feature manipulation area, which could
potentially result in promising approaches to data analysis in a
variety of real-world applications. This position paper describes
and discusses the main issues and key challenges of feature
manipulation, and also provides a number of directions for
further consideration in future research.

I. INTRODUCTION

GIGO (garbage in, garbage out) is a common long-standing
principle in computer science, mathematics, and many other
fields, which expresses the idea that the quality of the output
is determined by the quality of the input. In machine learning
and data mining, the output of an algorithm could be in
different forms, e.g. a classifier for classification, a function
for regression, a set of cluster centres for clustering, or a
model for prediction [1]. However, the input of all algorithms
is the same, i.e. the data describing the problem to be solved,
where the data is almost always expressed by a number of
features (attributes or variables) showing different properties
of the problem. So the quality of the feature space (i.e. the
input) very much determines the performance (i.e. the output)
of every machine learning or data mining technique.

Although recent advanced machine learning or data mining
algorithms are very powerful in handling different kinds of
tasks, their performance is still limited or influenced when the
feature space is of poor quality. Feature manipulation, mainly
including feature (subset) selection, feature construction (or
feature extraction), and feature weighting (or ranking), can
improve the feature space in order to improve the learning
performance (e.g. classification accuracy), reduce the dimen-
sionality, speed up both the training and test processes, sim-

plify the learnt model, help visualisation and interpretability,
reduce the memory/storage space, and/or reduce the data
collection cost [2], [3], [4], [5], [6], [7], [8]. Therefore, feature
manipulation is a multi-disciplinary research topic heavily
studied in many areas, such as computer science, statistics,
mathematics, biology, engineering, and business [2], [3], [4],
[5], [9].

However, feature manipulation, especially feature selection
and construction, is a challenging task because of the large
search space growing exponentially with the total number of
features, and the complex interactions between features. They
are typically NP-hard problems with a large and complex
search space containing many local optima, and there are often
multiple conflicting objectives involved. Research on feature
selection has been for more than 50 years, but the feature
space becomes increasingly large and complicated in recent
years, which pushes the capability limits of current algorithms,
and new efforts are required for dealing with the emerging
challenges.

Evolutionary computation (EC) includes a group of nature-
inspired approaches [10], such as genetic algorithms (GAs),
evolutionary strategy (ES), genetic programming (GP), particle
swarm optimisation (PSO), ant colony optimisation (ACO),
and differential evolution (DE). EC techniques have been
proven to be highly successful across a wide range of tasks
in the past 20 years [10], [11], [12], [13]. There also have
been a lot of evidence showing the success of EC in machine
learning and data mining [14], including feature manipulation
[9], [6], [15], [16].

The position of this paper is that EC techniques have great
potential to address feature manipulation tasks in machine
learning and data mining. They are still facing some issues
and challenges, but there are some encouraging directions that
should be explored in the future. These points will be discussed
in the following sections.

II. STATE-OF-THE-ART IN EC FOR FEATURE
MANIPULATION

A poor feature space may be that the dimensionality is
too high (curse of dimensionality), features are not equally
important, some features are irrelevant, redundant or even
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Fig. 1. Overall categories of feature manipulation methods.

noisy, the original features are not informative enough, the
features are not linearly separatable, and so on [2]. These
will lead to various performance limitations. For example in
classification, these will lead to low classification accuracy, a
long training time, a complex classifier [2], [3], etc. Feature
manipulation can address these problems by feature (subset)
selection that aims to select a small subset of relevant features,
feature construction (or feature extraction) that aims to con-
struct new high-level features from the original features using
some function operations, or feature weighting (or ranking)
that aims to give each feature a weight based on their relative
importance. Most existing feature manipulation approaches
focus on feature selection or feature construction for classi-
fication [5], although there are some works on clustering and
other tasks [4].

Two key components in feature manipulation are the search
strategy that finds the optimal feature set(s) and the evalua-
tion criterion that evaluates the quality/fitness of the feature
subsets. Based on the evaluation criteria, feature manipulation
methods can be categorised to wrapper, filter and embedded
approaches depending whether and how a learning algorithm is
involved in the evaluation procedure [4]. Since feature manip-
ulation often involves multiple conflicting objectives, such as
maximising the accuracy, miminising the dimensionality, and
minimising the model complexity, the existing approaches can
also categorised into single objective approaches and multi-
objective approaches. Fig.1 shows the overall categories of
exiting feature manipulation methods, where feature construc-
tion approaches may construct a single new feature or multiple
new features, and there are very few multi-objective methods
in the embedded category.

Although the earliest work on EC for feature manipulation
was published around 1990 when problems with over 20
features were referred as large-scale [17], this area started
booming since 2007 when the number of features in many
areas reaches a few hundreds or more. Now, EC based feature
manipulation methods have covered all the above categories
shown in Fig 1. Among them, almost all methods focus on
EC for feature selection or construction in classification [9],

although there are a few papers on EC for feature weighting.
This is mainly because EC technique were firstly introduced
to feature manipulation due to their search ability while
feature weighting usually does not require a powerful search
algorithm. For both feature selection and construction, there
are a small number of embedded methods compared with
filter and wrapper approaches since it is hard to for most EC
techniques to perform learning and feature selection simultane-
ously except for GP and learning classifier systems (LCSs). On
EC for feature selection, the most widely used EC techniques
are GAs, PSO, ACO and GP, and most of these approaches
focus on wrapper approaches [9], although there are a number
of filter and embedded approaches recently developed [18],
[9]. On EC for feature construction, although there are some
initial works on GAs and PSO for feature construction, GP is
the most widely used algorithm due to its flexible tree-based
representation that is able to deal with function operations
easily and directly. There is much more work on EC for
feature selection than for feature construction, since most EC
techniques cannot cope with function operations easily.

EC based feature manipulation approaches have made a
big progress over the last ten years, and shown their superior
performance over commonly used traditional (non-EC) meth-
ods, especially on the wrapper based approaches. The most
significant contribution of EC for feature manipulation relies
on the multi-objective category, where all the current multi-
objective feature manipulation approaches are based on EC
techniques. The targeted problems mainly have hundreds of
features, and there are also some targeted problems having
thousands and tens of thousands of features. Furthermore, EC
based feature manipulation approaches have also been applied
to a variety of areas, such as image analysis, face recognition,
handwritten digit recognition, EEG brain-computer-interface,
speaker recognition, gene analysis, disease diagnosis, financial
problems, customer churn prediction, text mining, web service,
network security, power system, music, agriculture, chemistry,
geoscience, and weather forecast [19], [20], [9].

III. EC FOR FEATURE MANIPULATION: STRENGTHS

Feature manipulation is typically an NP-hard problem with a
huge search space especially when the number of available fea-
tures is big, which easily reaches thousands and even millions
[21]. The search space also has many local optima, especially
features often have interactions with each other. These make
the search space of an feature manipulation task very complex
and poorly understood. Therefore, many mathematical or
statistical approaches that often have assumptions about the
problem, such as the data points being normally distributed, or
linearly separable, fail to achieve good performance because
the assumptions often cannot be satisfied in real-world data
[11], [12], [22], [23].

EC techniques have gained attention in feature manipulation
and obtained good results in recent years. The main reasons
can be summarised as follows. Firstly, EC algorithms do not
make any assumption about the problem, such as whether it
is linearly or non-linearly separable, and differentiable, so that



they are widely applicable and easily transferable at a low cost.
This is an advantage that attracts researchers to use EC for
addressing many complex problems, and feature manipulation
is one of such problems.

Secondly, EC techniques do not require domain knowledge,
but they are also flexible and can be easily incorporated
within, or make use of, domain-specific methods or existing
methods such as local search, which often leads to a better
hybrid approach. There are a large number of exiting feature
manipulation approaches including different filter measures
and search methods. The filter measures, such as fuzzy and
rough sets, information measures, and correlation measures,
can be easily used as the fitness function of an EC algorithm
to address feature manipulation problems [9]. The search
methods, such as sequential forward/backward search, floating
search, and Tabu search, can be incorporated with EC in
different ways to build a good approach, e.g. as a local search
to fine tune the solutions found by the EC method [24], [25],
[26]. Also, traditional feature weighting methods can also be
easily used during the EC search to improve the performance
[5].

Thirdly, EC algorithms maintain a population of initially
randomised choices/solutions, which makes them robust, par-
ticularly critical for problems with many local optima. More
importantly, they can produce multiple solutions in a single
run, which makes them particularly suitable for multi-objective
problems where multiple trade-off solutions of the problem
are needed so that users can make an informed decision
according to different requirements. The relationship between
the multiple objectives in feature manipulation problems is
very complicated, e.g. the number of features is conflicting
with the classification accuracy in some regions of the search
space, but not some others. This makes it very hard to combine
them into a single fitness function by predefining their weights
to reflect the user preference. Therefore, EC for multi-objective
feature manipulation, especially feature selection, has been
very popular in recent few years [27], [28], [29], [30], [31].

In addition, EC techniques are capable of producing un-
expected solutions because they are blind to human precon-
ceptions and so can find effective, but non-intuitive solutions,
which are often valuable in design domains [12]. In feature
manipulation, because of the highly complex feature interac-
tion issues, it is extremely challenging to predict which fea-
tures working together can achieve the best performance, even
for domain experts. EC techniques have the potential to find
solutions that are even better than the best solution designed
by human experts. One example is that our recent work on GP
for biomarker detection [32], where domain experts predefined
9 biomarkers to achieve perfect classification accuracy for a
cancer task, but GP is able to find a feature set with only 5
features to achieve perfect performance. This is due probably
to the very underlying interactions between features. Although
feature interaction is an important problem recognised by
the feature manipulation community for decades, there are
only very few papers explicitly working on feature interaction
[33] because they are very complex and vary in different

datasets. Therefore, using EC techniques to automatically and
implicitly handle feature interaction is not a bad choice before
an effective feature interaction detector is proposed.

IV. EC FOR FEATURE MANIPULATION: WEAKNESS AND
ISSUES

Despite the achievement of EC for feature manipulation,
there are also some issues and challenges in current EC
techniques for feature manipulation. Four major ones are the
search space, the long computational time, the poor scalabil-
ity, the feature selection or construction bias issue, and the
generalisation issue.

The size search space highly depends on the representation
in the EC methods. GAs and PSO are the most popular
algorithms, and the most commonly used representation is
bit-string/vector with a length equal to the total number of
features, which leads to a large search space. The fitness
landscape is another important factor influencing the quality
of the obtained solution. Most of the existing approaches used
the classification accuracy or existing filter measures in the
fitness function, which often cannot lead to a smooth fitness
landscape or with low locality because changes in the solutions
(feature sets) often cannot lead to corresponding changes in the
fitness values. This is especially the case when a complicated
classification algorithm, such as support vector machines, is
used to calculate the accuracy, since such algorithms perform
extensive optimisation to process the input features during the
learning stage.

Since EC approaches have a large number of evaluations,
being computationally intensive is one of the major issues in
EC for feature manipulation [34], especially when a wrapper
approach is used, i.e. each evaluation involves a learning
process of a machine learning or data mining algorithm. This
makes EC techniques much more expensive than most tradi-
tional feature manipulation methods, which also limits their
applications to many areas. Furthermore, many conclusions in
traditional feature manipulation methods do not stand in EC
based approaches, such as filters are computationally cheaper
than wrappers [35].

Scalability in EC for feature manipulation refers to two
aspects, the number of features/dimensions and the number
of instances. EC based approaches have achieved promising
results on feature manipulation problems with hundreds of
features (the dimensionality of the search space often equals
to the total number of features). When the number of features
reaches thousands, or even millions, EC approaches face dif-
ficulty. The large-scale global function optimisation research
in EC currently has only reached to tens of thousands, but
researchers from other fields have started their work on feature
manipulation problems with millions of features [21]. When
the number of instances is large, EC based approaches are
often not applicable because of the long computational time.
This will limit the use of EC for feature manipulation on big
data, which is a trend in current real-world problems.

Feature selection or construction bias is another common
issue in many EC for feature manipulation approaches, which



happens if the whole set of data is used during the feature
selection or construction process [36]. This is very common
in wrapper based approaches, where each evaluation involves
a training and a test processes of an algorithm, e.g. a classifi-
cation algorithm. Although a separate training set and a test set
are often used for classification during the feature selection or
construction process, the selected or constructed features are
not tested on any unseen data that has never been involved
in the feature selection (i.e. training) process. The reported
classification accuracy is actually a “training” performance,
or biased performance. The experiment design is even more
complicated in the case k-fold cross-validation is used since
the experiments need to repeat k times for the cross validation,
and the stochastic EC process needs to perform a number of
independent runs. Although this has been discussed in [3],
many papers on EC for feature manipulation still have feature
selection or construction bias, especially for gene datasets.
This definitely should be avoided since the conclusions could
be very different in the situations with and without feature
selection bias [37].

Generalisation is a common issue in many machine learning
and data mining problems. It is also an issue in EC for feature
manipulation, especially when a wrapper approach is used.
The selected or constructed features can easily overfit the
wrapped learning algorithm and the training data, leading to
poor performance on unseen test data. Filter approaches suffer
less than wrappers in terms of generalisation since they often
aim to capture the patterns of the data itself, rather than fitting
to any learning algorithms. Compared with feature selection,
the poor generalisation happens more in feature construc-
tion because the constructed high-level features often do not
maintain the original low-level information, and the way they
are created might fit the training data only. When a wrapper
approach is used in feature construction, the performance of
the algorithm on unseen test set could be very poor, which
strongly limit its use in real-world problems.

V. FUTURE DIRECTIONS

Nowadays, feature manipulation is becoming increasingly
important in a variety of areas. Future research should focus
on utilising the strengths of EC for feature manipulation,
overcoming the weakness to discover their great potential, and
address the current issues.

Developing a good filter measure for the fitness function
could solve a number of problems in EC for feature manip-
ulation. An efficient and effective measure could reduce the
computational cost, smooth the landscape of the search space,
improve the learning and generalisation performance, and
increase the interpretability/understandability of the obtained
feature set. Many simple traditional filter measures from the
machine learning field have been used in EC for feature
manipulation without or with minor modifications. They are
effective, but definitely not optimal or even near-optimal
because most of them only consider relationship between a
pair of features (or a feature and the class label), rather than
a group of features that is the only way to capture underlying

complementary (or interactive) information to find the optimal
feature sets with the maximum useful information but mini-
mum redundancy. A good filter measure in the EC scenario
should consider the search behaviours of the EC method and
also be able to discover complex feature interactions to obtain
good feature subsets. This is of course a very challenging
task, but with great potential. A good starting point would be
rather than looking at the traditional measures, the advanced
or state-of-the-art measures, such as the sparse learning based
methods [38], [39], [40], can be introduced and investigated
with modifications according to the characteristics of EC since
such measures also require a powerful search method.

Current representation scheme is one of the main factors
that limit the scalability of feature manipulation methods, since
the most common bit-string or vector representation leads to
a large search space. It only reflects whether a feature is
selected in feature selection and cannot be easily used for
feature construction except for the tree based representation
in GP. A good representation should be able to avoid the
huge search space, and can incorporate more information of
about the features, such as the relative importance of features,
feature interactions or feature similarity [41], [42], which
will significantly improve the performance of EC for feature
manipulation.

Search mechanism is a key factor in developing a feature
manipulation approach, which is also the primary advantage
of EC techniques. In most current work, EC techniques are
directly applied to feature manipulation without specifically
considering the characteristics of the tasks. An advantage of
EC over other search methods is that it is flexible to com-
bine with domain-specific method or other existing methods,
which should be taken into consideration when designing a
new approach in feature manipulation. In some early work
which considered the characteristics of feature selection, or
hybridised EC with local search (memetic algorithms) or
traditional feature selection methods, has shown a significant
improvement on the performance [25], [24], [43]. In recent
years, there have been great achievements in different EC
streams that are closely related to feature manipulation, es-
pecially the following ones:

• Evolutionary multi-objective optimisation [44], [45], [46],
[47]: feature manipulation is essentially a complex multi-
objective task with the two main objectives are to max-
imise the learning performance (e.g. classification accu-
racy) and minimise the number of selected or constructed
features. Some other objectives such as the complexity
of the learnt models could also be considered to better
solve the problems. It is worthy mentioning that feature
selection could also be useful for the currently hot topic of
evolutionary many objective optimisation by effectively
reducing the objective space [48].

• Combinatorial optimisation [49], [50]: both feature selec-
tion and feature construction are combinatorial problems,
where feature selection aims to choose the best combi-
nation of the existing features while feature construction
needs to find the best combination of features and func-



tion operators to create new informative features.
• Memetic computing [51], [52]: memetic computing has

shown its superior performance in feature selection [24]
by using a relatively cheap local search to fine tune the
solution found by EC search. This could be further inves-
tigated to solve the new challenges in feature selection.
Furthermore, feature construction is more challenging
than feature selection, but capability of memetic com-
puting has not been investigated in feature construction.

• Large-scale optimisation [53], [54]: most current EC
for large-scale global (function) optimisation is based
on decomposition by analysing the interaction between
variables, which is very similar to feature interactions in
feature manipulation. Although the tasks are quite differ-
ent, there are a lot of overlap between these two types of
problems. To achieve, large-scale feature manipulation for
problems with thousands or even millions of features, the
advances in large-scale optimisation will be very helpful,
and the study of decomposition could also benefit both
fields.

• Surrogate models [55], [56], [57], [58]: filter approaches
were initially developed as a surrogate model of the
wrapper approaches, i.e. using a simpler and more effi-
cient measure to approximate the classification accuracy
rather than directly training a classifier in each evaluation.
Therefore, the advances in surrogate models can also be
utilised in feature manipulation problems.

• Adaptive parameter control techniques [59], [60]: choos-
ing the right parameters can significantly improve the
performance of an EC algorithm. This is particularly
important for feature manipulation since different datasets
often have need different parameters, so it is almost
impossible to find the best fixed parameter values for all
datasets, but adaptive parameter control based the data
itself could overcome this issue.

Feature construction is extremely important when the orig-
inal features (or data) are not informative enough, such as the
raw pixels values in image data. However, feature construction
is more challenging than feature selection, which is probably
why there is much more work on feature selection than on
feature construction. To achieve automatic feature construc-
tion/extraction, an algorithm is required to be able to deal with
both the features and function operators, which is not what
most EC techniques (and many other non-EC algorithms) are
good at, except for GP, which has a flexible representation
[61]. Most current feature construction approaches focus on
constructing a single high-level feature, which might not
be sufficient when the problem is complex. Multi-feature
construction is a promising approach for complex tasks, but
not heavily investigated. Meanwhile, GP can automatically
perform feature selection, construction and classification (or
symbolic regression) in a single process [62], [63], [64],
[65]. In most existing work on EC for image analysis, the
features are often drawn by using an independent feature
construction/extraction method, and the extracted features are

then fed to an EC method for performing image analysis. An
effective way to combine all these steps in a single system
could reduce the complexity, decrease the computational time,
and improve the overall performance [66]. Furthermore, since
both feature selection and feature construction have their own
advantages, a system that can take the advantages of both
feature selection and construction will be needed for some
complex problems.

Instance selection and construction [67] can also improve
the quality of the input data by removing some noisy data
and selecting or constructing only representative instances, to
improve the learning performance. Combining feature manip-
ulation with instance selection/construction could effectively
and efficiently further improve the quality of the data over
using either of them. When dealing with large-scale (big data)
problems, where both the number of instances and the number
of features are large, each evaluation for feature manipulation
is expensive since it involves a large number of instances. So it
will be of significant help by combining feature manipulation
and instance selection/construction to reduce the size and
improve the quality of the data. There has been some initial
work on this direction and shown encouraging results, but
more advanced work will be needed for large-scale (big data)
tasks in the future.

Combining EC with machine learning approaches for im-
plicitly feature manipulation is also very interesting. From the
landmark paper by Yao [68] using GA to evolve artificial
neural networks, to EC with deep neural networks [69], [70],
there have been a rich body of evidence showing the potential
benefit of this direction. Furthermore, in transfer learning,
one of the four major types of approaches is feature-based
transfer learning [71], where a key part is to miminise the
feature distribution difference between the source domain and
the target domain. Hellinger distance is a promising feature
distribution difference measure, but it can not be used in many
cases since it is non-differentiable. However, we can use EC
techniques to solve this problem and use the idea of transfer
learning to improve the EC performance [72].

There are many machine learning tasks with various real-
world applications, but most existing work on EC for fea-
ture manipulation is for classification. There are many other
important fields that require feature manipulation to improve
the learning performance, such as clustering and symbolic
regression. Especially, many EC techniques have been directly
used as a learning algorithm in such fields, for example, GP
can be directly used for symbolic regression, and PSO or
ABC has been directly used for clustering [73]. So embedding
feature manipulation into the learning system of GP for
symbolic regression or PSO/ABC for clustering could be an
effective way to improve the learning performance, reduce the
computational time, simplify the models, etc. In addition, to
develop a specific algorithm for a certain problem domain
will also be important for users, for example developing a
feature selection method for financial analysis or for biomarker
detection in biology. It will be very interesting by deeply
analysing the solutions in given background to see exactly



which features are useful for the task and investigate why
they are important. This will be inter-disciplinary research and
require experts from the problem domain.

VI. CONCLUSIONS

This paper discussed the current work, the strengths, issues,
and potential future directions in EC for feature manipulation.
Although EC techniques for feature selection have achieved
some success, they still face challenges and their potential has
not been fully investigated. The computational cost, scalability
and feature selection or construction bias are the most serious
limitations in EC for feature manipulation. How to deal with
feature interactions is probably the most challenging issue in
this area. Researchers should focus on utilising the advantages
of EC over other approaches and combining EC with other
approaches if necessary. Developing good filter measures can
solve a number of problems currently faced by EC for feature
manipulation and a better representation is also needed. Taking
the advantages of the powerful ability of EC for optimisation,
such as multi-objective optimisation, combinatorial optimisa-
tion and surrogate models, conducting feature construction,
and combining EC with machine learning techniques are also
interesting to be investigated in the future.
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