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a b s t r a c t

This paper proposes a bacterial foraging based approach for portfolio optimization problem. We

develop an improved portfolio optimization model by introducing the endogenous and exogenous

liquidity risk and the corresponding indexes are designed to measure the endogenous/exogenous

liquidity risk, respectively. Bacterial foraging optimization (BFO) is employed to find the optimal set of

portfolio weights in the improved Mean-Variance model. BFO-LDC which is a modified BFO with linear

deceasing chemotaxis step is proposed to further improve the performance of BFO. With four

benchmark functions, BFO-LDC is proved to have better performance than the original BFO. And then

comparisons of the results produced by BFO, BFO-LDC, particle swarm optimization (PSO), and genetic

algorithms (GAs) for the proposed portfolio optimization model are presented. Simulation results show

that BFOs can obtain both near optimal and the practically feasible solutions to the liquidity risk

portfolio optimization problem. In addition, BFO-LDC outperforms BFO in most cases.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Portfolio optimization (PO) is an investment problem which
tries to maximize the expected return by selecting a proper
combination of various securities among a large number of them
in financial industry [1]. PO is a NP-hard and non-linear problem
with many local optima. A lot of work has been done which
attempted to solve this problem by a variety of techniques, such
as cutting planes, interior point methods, decomposition etc, but
exact solution methods failed to solve large-scale instances of the
problem. The advent of evolutionary computation (EC) inspired as a
new technique for optimal selection of portfolio assets. A number of
different evolutionary computation approaches have been proposed
to solve this problem, including genetic algorithms [2], simulated
annealing [3], neural networks [4] and others [5–7].

Recently, bacterial foraging optimization (BFO) has emerged as
a powerful technique for optimization problems [8–10]. It has
been successfully applied to solve many real world problems like
harmonic estimation [11], transmission loss reduction [12], active
power filter for load compensation [13], power network [14], load
forecasting [15], and stock market prediction [16]. In BFO, each
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bacterium updates its position using chemotaxis, swarming, repro-
duction, elimination, and dispersal. Among them the chemotaxis
procedure is a key step in BFO.

In [17], we focused on investigating the ability of BFO to
achieve high-quality solutions to general PO problem and also a
new and more complicated PO problem, which was under
liquidity risk environment. The liquidity risk is one of the most
important adjustable parameters in PO problem. Bangia et al. [18]
proposed a novel portfolio optimization model considering both
the liquidity risk and the market risk by VAR, which named BDSS
model and Heude–Wynendaele model. Consigi [19] studied the
mean-VAR model in the case of fat tailed distribution. Berkowitz
[20] applied the VAR to measure the bank liquidity risk. Anil et al.
[21] constructed a new liquidity risk model with implications for
market risk, but they ignored the endogenous liquidity risk.

In [17], we considered the difference between Chinese secu-
rities market (a centralized auction system) and foreign securities
market (a market-maker system). An improved model using VAR
to measure both market and liquidity risk was proposed, and
three evolutionary computation techniques (GA, PSO and BFO)
were applied to solve the new model with complex constrains.
The comparative results illustrated that the improved PO model
and the performance of BFO was relatively efficient. However, the
improved PO model is a non-linear and complex optimiza-
tion problem, the results produced by all the three approaches
(GA, PSO and BFO) are not optimal solutions.

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2011.05.048
dx.doi.org/10.1016/j.neucom.2011.05.048
dx.doi.org/10.1016/j.neucom.2011.05.048
mailto:drniuben@gmail.com
mailto:niuben@hku.hk
dx.doi.org/10.1016/j.neucom.2011.05.048


B. Niu et al. / Neurocomputing 98 (2012) 90–100 91
To solve this mixed-integer non-linear programming (NP-
hard) more efficiently, we propose a modified BFO with the
chemotaxis step varying dynamically as linear functions of itera-
tions in this paper. In original BFO the chemotaxis step length is
set as a constant value. There is not any mechanism to keep the
balance of global search and local search. This restricts BFO to be
applied to complex optimization problems. Our proposed method
employed a linear decreasing chemotaxis step strategy, which
allowed each bacterium kept a good balance between exploration
and exploitation by decreasing its run-length unit linearly.

In order to demonstrate the performance of the proposed
algorithm, BFO-LDC is applied into the improved portfolio opti-
mization model and compared the test results with those of the
original BFO, GA and PSO.

The rest of the paper is organized as follows. Section 2 gives a
review of BFO and a description of the proposed algorithm BFO-
LDC. In Section 3, it will be shown that BFO-LDC outperforms BFO
on four benchmark functions. Section 4 describes the improved
portfolio optimization model and a detailed design algorithm of BFO
approaches for liquidity risk portfolio optimization. In Section 5,
experimental settings and experimental results are given. Finally,
Section 6 concludes the paper.
2. BFO and BFO-LDC

2.1. Bacterial foraging optimization (BFO)

Based on the biology and physics underlying the foraging behavior
of Escherichia coli, Liu and Passino [9] exploited a variety of bacterial
swarming and social foraging behaviors, discussed how the control
system on the E. coli dictated and how foraging should proceed. In the
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Fig. 1. Bacterial traject
bacterial foraging process, four motile behaviors (chemotaxis, swarm-
ing, reproduction, and elimination and dispersal) are mimicked.
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Chemotaxis: This process simulates the movement of an
E. coli cell through swimming and tumbling via flagella.
Biologically an E. coli bacterium can move in two different
ways. It can swim for a period of time in the same direction or
it may tumble, and alternate between these two models of
operation for a run lifetime. Supposed yi

ðj,k,lÞ represents the ith
bacterium at jth chemotactic kth reproductive and lth elimina-
tion and dispersal step. CðiÞ is the size of the step taken in the
random direction specified by the tumble (run length unit). D
indicates a vector in the random direction whose elements lie
in [�1, 1]. Then in computation chemotaxis the movement of
the bacterium may be represented by

yi
ðjþ1,k,lÞ ¼ yi

ðj,k,lÞþCðiÞ
DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DT
ðiÞDðiÞ

q ð1Þ
(2)
 Swarming: E. coli cells can cooperatively self-organize into
highly structured colonies with elevated environmental adapt-
ability using an intricate communication mechanism (e.g.,
quorum-sensing, chemotactic signaling and plasmid exchange).
Generally speaking, the cells provide an attraction signal to
each other so they swarm together. The mathematical repre-
sentation for swarming can be represented by

JCCðy,pðj,klÞÞ ¼
Xn

i ¼ 1

Ji
CCðy,yi

ðj,k,lÞÞ

¼
Xn
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where Jccðy,Pðj,k,lÞÞ is the cost function value to e added to be
added to the actual cost function to be minimized to present a
time varying cost function, S is the total number of bacteria, P is
the number of parameters to be optimized which are presented
in each bacterium, and dattract, wattract, hreplent, and wreplent are
different coefficients that should be chosen properly.
(3)
 Reproduction: The most unhealthy bacteria die and each of
the other healthier bacteria each splits into two bacteria,
which replace the locations. This makes the population of
bacteria constant.
(4)
 Elimination and dispersal: It is possible that in local environ-
ment, the lives of a population of bacteria change either
gradually (e.g., via consumption of nutrients) or suddenly due
to some other influences. Events can occur such that all the
bacteria in a region are killed or a group disperse and emerge in
a new part of the environment. They have the effect of possibly
destroying the chemotactic progress, but they also have the
effect of assisting in chemotaxis, since dispersal may place
bacteria near the good food sources. From a broad perspective,
elimination and dispersal are parts of the population-level
long-distance motile behavior.
2.2. BFO with linear deceasing chemotaxis step (BFO-LDC)

To illustrate the importance of chemotaxis step length, a two-
dimensional fitness function was adopted from Passino [8] as the
benchmark function and parameters were set to be the same.
A comparison between the bacterial motion trajectories using
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Fig. 2. Bacterial trajecto
different chemotaxis step lengths was presented in Figs. 1–3, respec-
tively. From the figures, it can be concluded that when chemotaxis
step length C was too large (C ¼ 1.5) bacteria failed to locate the
global optimum by swimming without stop (Fig. 1). While C was too
small (C ¼ 0.01), it took a long time for the swarm to find the global
optimum (Fig. 2). An expected result with faster searching time and
global optimal orientation can be obtained when intermediate
chemotaxis step length (C ¼ 0.1) was responsible (Fig. 3).

In the original BFO, the chemotaxis step length C is a constant.
So, it is hard to maintain a balance between global and local
search ability, and this influences the accuracy and speed of the
search.

We proposed a scheme to modulate the chemotaxis step size
with a view to improve its convergence behavior without impos-
ing additional requirements in terms of numbers of evaluations.
The step length was adjusted during reproduction and elimina-
tion to shorten the time of approaching the global optimum at the
beginning, and to improve the accuracy in the end.

In our proposed method, a linearly decreasing chemotaxis step
length is used over iterations. It starts with a large value Cmax and
linearly decreases to Cmin at the maximal number of iterations. The
mathematical representation of this strategy is shown as following:

Cði,k,lÞ ¼ Cminþ
J�j

j ðCmax�CminÞ ð3Þ

where Cði,k,lÞ is the chemotaxis step length of ith bacterium at the
kth (0 o k o K) reproduction loop in the lth (0 o l o L) elimina-
tion-dispersal event. J is the maximal number of iterations (chemo-
taxis step), j is the current number of iterations. With Cmin ¼ Cmax, the
system becomes a special case of fixed chemotaxis step length, as the
original proposed BFO algorithm. From hereafter, this BFO algorithm
will be referred to as BFO-LDC. Pseudocode for the BFO-LDC algorithm
is listed in Table 1.
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Table 1
Pseudocode for the BFO-LDC algorithm.

FOR (l ¼ 1:L)

FOR (k ¼ 1:K)

FOR (j ¼ 1:J)

FOR each bacterium i

Tumble: Generate a random vector D(i)ARp with each

element Dm(i), m ¼ 1, 2, y, D a random number on [�1, 1]

Run: Let yi
ðhþ1,k,lÞ ¼ yi

ðj,k,lÞþCði,k,lÞDðiÞ=
ffiffiffiffiffiffiffiffiffiffi
DTD

p
Cði,k,lÞ ¼ Cminþ

J�j
j ðCmax�CminÞ

Swim: Let m ¼ 0 (counter for swim length)

While (m o Ns) m ¼ m þ 1.

If J(i,j,k,l)oJlast, then

Jlast ¼ J(i, jþ1, k, l);

yi
ðjþ1,k,lÞ ¼ yi

ðj,k,lÞþCðiÞDðiÞ=
ffiffiffiffiffiffiffiffiffiffi
DTD

p
Calculate the new J(i, jþ1, k, l) using yi

ðjþ1,k,lÞ

Else

let m¼Ns.

END

END

END

END

END

END
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Fig. 3. Bacterial trajectories with C ¼ 0.1.
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3. Benchmark functions

A set of well-known benchmark functions that are extensively
used to compared both BFO-type and non-BFO-type bio-heuristic
algorithm, were used to evaluate the performance, both in terms
of solution quality and convergence rate, of the proposed algo-
rithm. Our test suite includes 4 well-known benchmark functions,
which present different difficulties to the algorithms to be evalu-
ated. These benchmark functions can be grouped into unimodal
functions (f1, f2) and multimodal functions (f3, f4). For each of these
functions, the goal is to find the global minimizer. The following
functions were used:
1.
 Sphere function

f 1ðxÞ ¼
Xn

i ¼ 1

x2
i ð4Þ
2.
 Rosenbrock function

f 2ðxÞ ¼
Xn

i ¼ 1

100� ðxiþ1�x2
i Þ

2
þð1�xiÞ

2
ð5Þ
3.
 Rastrigin function

f 3ðxÞ ¼
Xn

i ¼ 1

100� ðxiþ1�x2
i Þ

2
þð1�xiÞ

2
ð6Þ
4.
 Griewank function

f 4ðxÞ ¼
1

4000

Xn

i ¼ 1

x2
i �
Yn

i ¼ 1

cos
xiffiffi

i
p

� �
þ1 ð7Þ

Table 2 lists the dimension of each function, their global
minimizer, the ranges of their search space and iterations. An
asymmetrical initialization procedure was used in this paper
following the work reported in [22], in which the population
was initialized only in a portion of the search space. This is to
prevent a centre-seeking optimizer from ‘‘accidentally’’ finding
the global optimum.



Table 2
Parameter settings for benchmark functions.

Function Dim Minimum value Range of search Iterations

f1 15 0 [�100, 100]n 1000

f2 15 0 [�100, 100]n 10,000

f3 15 0 [�5.12, 5.12]n 10,000

f4 15 0 [�600, 600]n 10,000

Table 3
Parameter settings for BFO-LDC.

f Nc Nre Ned Cmax Cmin Ns

f1 1000 5 2 0.2 0.01 4

f2 1000 5 2 0.2 0.01 4

f3 1000 5 2 0.1 0.01 4

f4 1000 5 2 0.6 0.001 4

0 2000 4000 6000 8000 10000 12000
-10

-5

0

5

10

15

iterations

fit
ne

ss
 (l

og
)

BFO
BFO-LDC

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

iterations

fit
ne

ss
 (l

og
)

BFO
BFO-LDC

Fig. 5. Convergence curve of Rosenbrock function.
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The performance of BFO-LDC was compared with standard
BFO. In BFO, for all the benchmark functions,Nc ¼ 1000, Nre ¼ 5,
Ned ¼ 2, and Ns ¼ 4. The dimension size and the maximum
number of iterations are set to 15 and 10,000 for all functions.
The chemotaxis step length is critical for the convergence beha-
vior of BFO. A suitable value for the chemotaxis step length
usually provides a balance between global and local exploration
abilities and consequently results in a better optimum solution. In
BFO-LDC, a linearly decreasing chemotaxis step length is used
which started at Cmax and ends at Cmin, and their values are shown
in Table 3. The results reported in this section were averaged over
10 simulations.

Figs. 4–7 show the comparison of the convergence curves of
basic BFO and BFO-LDC during 10,000 generations for f1, f2, f3 and
f4, respectively. From these figures, BFO-LDC kept on optimizing
towards a better fitness, whereas the BFO stagnated and flattened
out with no further improvement. The results indicate superiority
in terms of speed of convergence for our proposed BFO-LDC
algorithm for the four classical test functions, without sacrificing
accuracy, especially the most complex optimization problem
function f4.

The stimulation results for the proposed BFO-LDC algorithm
and basic BFO for four benchmark problems are shown in Tables
4–7. For each function, our improved BFO algorithm obtains
better results with the comparison of basic BFO.

Fig. 4. Convergence curve of sphere function.



Table 4
Numerical results for sphere function.

Algorithms Best Worst Mean Std

BFO 0.0637 0.1005 0.0800 0.0122

BFO-LDC 9.4411e�004 0.0014 0.0012 1.3828e�004

Table 5
Numerical results for Rosenbrock function.

Algorithms Best Worst Mean Std

BFO 22.2595 107.3795 42.9600 29.8036

BFO-LDC 5.0536 11.4833 8.0572 2.2018

Table 6
Numerical results for Rastrigin’s function.

Algorithms Best Worst Mean Std

BFO 37.1416 49.9942 45.1861 3.4579

BFO-LDC 18.4889 31.1916 25.0785 4.6219

Table 7
Numerical results for Griewank function.

Algorithms Best Worst Mean Std

BFO 45.6331 99.1808 65.9662 17.8595

BFO-LDC 0.0080 1.4884 0.1731 0.4624
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4. Liquidity risk portfolio optimization based on BFO
approaches

4.1. Liquidity risk portfolio optimization

The liquidity is the vitality of stock market. It is regarded as an
important symbol of the maturity also a significant quality
indicator of the stock market. The market provides sufficient
liquidity to help investors to change their assets to cash. But it is
not liquid all the time. It has friction and there must be liquidity
risk. Modern portfolio analysis started from the work of Marko-
witz [23] who proposed the original Mean-Variance model, then
Alexander and Baptista [24] established a new model named
mean-VAR to measure portfolio problem, using VAR instead of the
variance. However, the conditional portfolio problem only con-
sidered the market risk and the liquidity risk was not involved.
Ignoring liquidity risk or lack of liquidity risk management
awareness will cause huge economic losses. For example, some
of the most famous victims are Long Term Capital Management
(LTCM), British Baring bankruptcy, and ‘‘Shan Yi‘‘ securities firm
in Japan collapsed. So we proposed a new model with considering
the liquidity risk.

Liquidity is another important feature of the securities as well
as the price volatility. It is generally believed a price balance
ability when a lot of trading in securities. According to their
source, liquidity risk can be divided into two categories: exogen-
ous liquidity risk and endogenous liquidity risk.
(1)
 Exogenous liquidity risk is a result of market characteristics.
It is common to all market players and unaffected by the
actions of any participant. Market determines the exogenous
liquidity risk, which produces the same impact to each
market participant and is not subject to the influence of
individual traders’ behavior. Heavy trading volume, small
and stable bid-ask spreads, stable and high levels of quote
depth, which make exogenous liquidity good. So the risk
is small.
(2)
 Endogenous liquidity risk, in contrast, is specific to one’s
position in the market, varies across market participants,
and the exposure of any single participant is affected by his/
her actions. It is mainly driven by the size of the position: the
larger the size, the greater the endogenous liquidity risk.
Usually, liquidity risk was measured from four aspects: the
width, depth, speed and flexibility. Traditionally, BDSS model
(Bangia et al. [18]) focused on quantifying exogenous liquidity
risk rather than endogenous liquidity risk, and it used the
following index to measure the exogenous risk:

ECL¼ 1
2PtðsþadÞ ð8Þ

s is the average relative spread (where relative spread, a normal-
izing device which allows for easy comparison across different
instruments, is defined as form: s¼ 1=k

Pk
i ¼ 1ðaski�bidiÞ=

ðaskiþbidiÞ= 2). d is the volatility of relative spread. a is the
scaling factor such that we achieve roughly a 99% probability
coverage. Pt is today’s mid-price for the asset or instrument.

But, usually the intraday data is not easy to get, and the data is
not important. Furthermore, Chinese securities market is different
from that of the foreign ones. It is an auction system, and so we
make these indexes to measure the liquidity risk: max daily price,
min price, close price and the turnover rate.

V ¼
ph�pl

pc

1

to
ð9Þ

ph, pl, and pc are the max, min and close daily price, respectively,
to is the relation turnover rate, V is only used to measure the
exogenous risk. It does not contain the trading volume and size.
So the above index cannot measure the endogenous risk. We use
the daily volume to weight the max, min and close price

Pi ¼
X3

n�1

pi volðnÞ=½volð1Þþvolð2Þþvolð3Þ� i¼ h,l,c ð10Þ

vol(n) is the daily volume n¼ 1, 2, 3, Pt is the weighted price
i ¼ max, min, close.

Using the daily volume weighted price to replace the original
price, it takes the endogenous and exogenous liquidity risk into
account. Liquidity risk index formula is as follows:

ECL¼
1

2
PtðWAV þa0d0Þ ð11Þ

WAV is the average relative price, and WAV ¼ ðPh�Pl=PcÞð1=toÞ.
In this paper, we assume that an investor allocates his/her

wealth among n assets. Some notations are introduced as follows:

xi is the proportion of the money used in the ithasset, andPn
i ¼ 1 xi ¼ 1.

xi Z 0 means there is no short sales.
ri is the yield of the ith asset.
sij ¼ cov(ri, rj) is the covariance of ri and rj.
Rx means the expected rate of revenue of the portfolio.
l is the risk-averse factor, which distributes in [0,1]. Smaller l
represents the investor could bear larger risk. We assume that
the c is 99%, so the F�1

ðcÞ ¼ 2:33. Our improved portfolio
optimization model can be formulated as

min FðxÞ ¼ l½F�1
ðcÞdx�Rxþ1=2ðWAV þa0d0Þ��ð1�lÞ

Xn

i ¼ 1

xiri

¼ l 2:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ 1

Xn

j ¼ 1

xixjsij

vuut �
Xn

i ¼ 1

xiriþ1=2 WAV þ2:33
Xn

i�1

Xn

j ¼ 1

xixjs0ij

0
@

1
A

2
4

3
5



Table 8
The encoding of a bacterium.

y1, y2, y, yn F(x)

The position of a bacterium in every dimension Fitness function
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�ð1�lÞ
Xn

i ¼ 1

xiri

s:t:

Xn

i ¼ 1

xi ¼ 1

xiZ0

8><
>: ð12Þ

4.2. BFO approaches for liquidity risk portfolio optimization

4.2.1. Encoding scheme

The way to encode a potential solution into a bacterium is a key
issue in BFO based methods. We encode a potential solution of the
proposed PO model as an n-dimensional vector, where each variable
represents the holdings of asset i in the portfolio. We use the real-
number encoding method to construct their indexes. In our solution,
the bacterium location y consists of sequence of real number,
presenting the proportion of each assest xi. Each dimension of the
y presents the proportion of a given assest, as shown in Table 8.

The encoding sheme for the bacteria colony P is showed in the
following ( the size is the population size of the bacterial colony):

P¼

y11 y12 y13 y14 � � � Fðx1Þ

y21 y22 y23 y24 � � � Fðx2Þ

y31 y32 y33 y34 � � � Fðx4Þ

� � � � � � � � � � � � � � � � � �

ysize1 ysize2 ysize3 ysize4 � � � FðxszieÞ

2
6666664

3
7777775

ð13Þ

4.2.2. Fitness function design

A fitness function must be used to evaluate the fitness value of
each bacterium within the population of each generation. Bacterium
with good position should get more opportunities to be selected as a
parent, whereas poor ones may be eliminated. Within the context of
the proposed PO model, the fitness function used is the expected
shared surplus as described in Eq. (8). We also add a penalty term to
the objective function for each violated constraint: the larger the
violation of the constraint, the larger the increase in the value of the
objective function. A portfolio which is unacceptable for the investor
must be penalized enough to be rejected by the minimization
process. The PO problems have two constraints:

Pn
i ¼ 1 xi ¼ 0 and

xi Z 0. It used a penalty term for considering the two constraints.
The final fitness function is formed as follows:

fitness¼ FðxÞþk1f 1ðxÞþk2f 2ðxÞ ð14Þ

where f 1ðxÞ ¼maxð0,
Pn

i ¼ 1 xi�1�ErrgoalÞ, Errgoal represents the
infinitesimal (it is set to 1e�10 in our experiment). f 2ðxÞ ¼

maxð�xi,0Þ and k1 ¼ k2 ¼ 104, F(x) is the original fitness function
(see Eq. (12)).

4.2.3. Initialization of parameters

This includes two sets of parameters: the parameters involved
in the fitness function, and the parameters of BFOs including the
population initialization. The initial population of the BFO or BFO-
LDC is created as follows:

P¼ randðp,sÞ � ðub�lbÞ�lb ð15Þ
where p is the population size, S is the dimension of each
bacterium that represents the number of the assets. ub and lb

are upper and lower limits, respectively.
The parameters involved in the fitness function will be given in

the experimental study, and the initialization of BFOs is now
taken up:
(1)
 The population size p ¼ 50.

(2)
 The values of ub and lb are set to 1 and 0, respectively.

(3)
 The swimming length Ns ¼ 4.

(4)
 The number of iterations in a chemotactic loop j is set to 80.

(5)
 The number of reproduction steps K is set to 5.

(6)
 The number of elimination and dispersal events L is set to 2.

(7)
 The probability of elimination/dispersal ped is set to 0.25.

(8)
 Cell-to-cell signaling is not used. Therefore, the values of

dattract ,wattract ,hrepelent , and wrepelent are irrelevant.

(9)
 Two additional parameters of BFO-LDC: Cmax and Cmin are set

to 0.2 and 0.01, respectively.

(10)
 The initial location of each bacterium, which is a function of

several parameters, f ðp,s,K ,L,JÞ is specified by a random
number in the range [0,1].
5. Illustrative examples

5.1. Experimental settings

We choose four assets as the sample: PuFa Bank (600000),
JiangXi Copper Industry (600362), ShangHai Automotive Industry
(600124) and China Petrochemical Corporation (600028), which
are from different industries, different places. The basic data
about the assets were taken from January 1st in 2009 to
December 30th in 2009, and we got the interrelated index value
needed in the experiment based on them. We considered the
different kinds of the investors, and four different risk factors l
are use to identify the different kinds inverstors. The relation
number is set as follows:

l¼ ð0:15,0:4,0:6,0:85Þ

r¼ ð0:003496,0:006156,0:007198,0:002933Þ

s¼

½0:000821, 0:00061, 0:000352, 0:000398,

0:00061, 0:001828, 0:000597, 0:000513,

0:000352, 0:000597, 0:001174, 0:000282,

0:000398, 0:000512, 0:000282, 0:000582�

s0 ¼

½0:000126, 0:000125, 0:000088, �0:0000142,

0:0000125, 0:0000149, 0:000056, 0:000042,

0:000088, 0:0000556, 0:001203, 0:0007658,

�0:0000142, 0:000042, 0:0000765, 0:00713�

WAV ¼ ð0:0355, 0:00956, 0:0831, 0:10047Þ

For comparison purposes, four swarm based algorithms were
used, which are PSO, GA, BFO and BFO-LDC. The parameters for BFOs
are presented in the previous section, so here we only addressed the
parameters setting of the other two algorithms, PSO and GA.

In PSO, the inertia weight is decreased linearly from 0.9 in the
first iteration to 0.4 in the last iteration, and the acceleration
constants c1 ¼ c2 ¼ 2. In GA, the selection method is roulette
wheel and the crossover method is one-point crossover. The
crossover rate is set to 0.6 and mutation rate is set to 0.001. For
fair comparison, the population size and maximum iterations are
set as 80 and 800 for all the algorithms. A total of 15 runs for each
experimental setting are performed. Because the values of all the
data are small, all the results are multiplied by 100 in the
following section.



Table 12

Numerical results with different l.

Numerical results l ¼ 0.85

BFO PSO GA BFO-LDC

x1 0.7510 0.7544 0.6366 0.7503

x2 0.2130 0.2034 0.3051 0.2400

x 0.0343 0.0040 0.0032 0.0007
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5.2. Experimental results

Numerical results with different l obtained by the standard
PSO, GA and BFOs are showed in Tables 9–12. The final portfolio
selection results are also listed in those tables. Figs. 4–7 present
the mean relative performance with different l generated by the
four algorithms.

According to the tables and the figures, we can find that:

3

x4 0.0017 0.0202 0.0551 0.0090

Profit 0.0041 0.0040 0.0043 0.0041
(1)
Tabl

Num

Nu

x1

x2

x3

x4

Pro

Ris

Ma

Mi

Me

Std

Tabl

Num

Nu

x1

x2

x3

x4

Pro

Ris

Ma

Mi

Me

Std

Tabl

Num

Nu

x1

x2

x3

x4

Pro

Ris

Ma

Mi

Me

Std

Risk 0.0929 0.0916 0.0935 0.0928

Max 7.8803 10.0926 11.3107 7.7322

Min 7.7438 7.9064 8.0570 7.7314

Mean 7.7807 9.1335 9.8877 7.7317

Std 0.0380 0.4691 0.7987 2.0100e-04
The fitness value grows up according to the increase of the risk-
averse factor l, and this trend consists with the structure of the
fitness function. From the data in the tables, it can be seen the
profit reduces along with the rise of l, so does the risk. When
l ¼ 0.15, the investor can bear the highest risk, the value of the
profit rate and the risk rate in Table 9 are the largest ones. The
opposite results are produced when l ¼ 0.85.
3.5
(2)
GA

With the different l, the proportion of the four assets is
different.When l is bigger, asset 3 posses smaller proportion,
e 9

erical results with different l.

merical results l ¼ 0.15

BFO PSO GA BFO-LDC

0.1792 0.1845 0.1051 0.1829

0.2529 0.1636 0.1168 0.3878

0.3511 0.4848 0.5516 0.2066

0.2169 0.1671 0.2265 0.2227

fit 0.0053 0.0056 0.0057 0.0053

k 0.1255 0.1286 0.1420 0.1250

x 1.0003 1.5104 1.7837 0.9677

n 0.9782 1.1627 1.0530 0.9664

an 0.9846 1.3206 1.4431 0.9669

0.0065 0.0086 0.2258 3.6000e�04

e 10

erical results with different l.

merical results l ¼ 0.4

BFO PSO GA BFO-LDC

0.4055 0.4157 0.3096 0.4557

0.2361 0.2468 0.2129 0.2068

0.2654 0.2409 0.3279 0.2409

0.0930 0.0966 0.1496 0.0966

fit 0.0050 0.0050 0.0051 0.4878

k 0.1046 0.1036 0.1146 10.3488

x 3.4871 5.2052 5.2609 3.3939

n 3.4044 3.9536 3.5029 3.3928

an 3.4294 4.3355 4.5746 3.3932

0.0246 0.1113 0.4870 3.4700e�04

e 11

erical results with different l.

merical results l ¼ 0.6

BFO PSO GA BFO-LDC

0.4714 0.5922 0.4411 0.5407

0.2654 0.2595 0.3556 0.2753

0.2133 0.1088 0.1004 0.1614

0.0499 0.0395 0.1029 0.0226

fit 0.0049 0.0046 0.0047 0.0048

k 0.0983 0.0939 0.0992 0.0946

x 5.3957 7.0581 9.0874 5.3234

n 5.3326 5.8601 5.6425 5.3223

an 5.354 6.4033 6.9243 5.3226

0.0183 0.1494 0.973 3.1600e-04
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Fig. 8. l ¼ 0.15.
and asset 1 and asset 4 occupy higher proportions. The results
show that high risk can be with the more profit, so the market
can compensate for the liquidity risk, from which we know
that liquidity risk must be considered when investing stocks.
(3)
 From the data of the maximum value, minimum value and
standard deviations in the tables and Figs. 8–11, it is clear that
the results generated by BFO-LDC are the most stable
(the smallest standard deviations) and most precise ones
(the smallest mean fitness value). At the same time, it can
be concluded that the results obtained by BFO-LDC are better
than that of GA, PSO and BFO, and this explains the improve-
ment of BFO is effective.
(4)
 Comparing the convergence graphs presented in Figs. 8–11,
among these three algorithms, BFO-LDC and BFO are both
superior to GA and PSO for all the test cases. BFO-LDC is highly
competitive with BFO and usually produces better performance.
Added to the basic statistical tests (mean, average and stan-
dard deviation) presented in the above tables, analysis of variance
(ANOVA) test was also carried out to validate the efficacy of all
the four algorithms. The graphical analyses of four different l are
done through box plot, which are shown in Figs. 12–15. The box
plot can provide an excellent visual summary of many important
aspects of a distribution. The box stretches from the lower hinge
(defined as the 25th percentile) to the upper hinge (the 75th
percentile) and therefore contains the middle half of the scores in
the distribution. The median is shown as a line across the box.
Therefore, one-fourth of the distribution is between this line and
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0 200 400 600 800
0.5

1

1.5

2

2.5

3

3.5

Iteration Steps

Fi
tn

es
s 

(lo
g)

GA
BFO
PSO
BFO-LDC

Fig. 10. l ¼ 0.6.
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the top of the box and one-fourth of the distribution is between
this line and the bottom of the box.

Figs. 12–15 present the graphical performance representation
of all algorithms in 15 runs. From this box plot representation,
it is clearly visible and proved that the BFO-LDC provided better
results for the four test cases than that of GA, PSO and BFO. BFO
yielded a slight worse result than that of BFO-LDC, while it gave a
much better result than that obtained by GA and PSO.

6. Conclusions

In this paper, we focused on solving the portfolio optimization
problem with liquidity risk using BFO based methods. Instead of
using standard Mean-Variance model, we proposed a new model
using VAR measuring both market and liquidity risk. The improved
portfolio model is a non-linear and complex optimization problem
which is much harder to be solved by conventional techniques.

We employ a relatively new swarm intelligence based method,
BFO to solve this model. In additional, a linear decreasing chemotaxis
step strategy is included in original BFO and thus an improved BFO
algorithm BFO-LDC is proposed that is applied in the same problem.
The obtained results indicate that the high convergence rate and
accuracy shown in the experimental results illustrate the high
performance of proposed BFO. Generally, BFO-LDC outperforms
BFO. (Generally, BFO-LDC obtains better results than BFO.)

Our future works include to improve the performance BFO
based on some biological mechanisms, to insert more real-world
constraints into PO model and to study other risk measures.
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