Call for Papers

Special Session on Evolutionary Transfer Learning and Transfer Optimisation

2024 IEEE World Congress on Computational Intelligence (WCCI)/ IEEE Congress on Evolutionary Computation (CEC)

30 June - 5 July 2024, Yokohama, Japan

Evolutionary computation includes a group of nature-inspired population-based techniques, which have been successfully applied to many complex learning and optimisation problems, such as classification, clustering, vehicle routing, job shop scheduling, and face recognition. Most evolutionary learning and optimisation methods discard knowledge gained while solving one problem. When given a new problem, an evolutionary learning or optimisation method will start from scratch, regardless how similar the new problem is to the already addressed problems. However, many real-world problems are closely related, so experience or knowledge learnt from solving one problem could very helpful when solving another problem, such as knowledge learnt from texture image classification can be helpful for brain tumor detection using MRI images. In machine learning, transfer learning aims to transfer knowledge acquired in one problem domain, i.e. the source domain, onto another domain, i.e. the target domain. Transfer learning is now hot topic in data mining and machine learning, which has attracted increasing attention from many disciplines. In recent years, there is a growing interest in utilizing transfer knowledge in evolutionary computation to address challenging learning and optimisation tasks.

Aim and Scope:

The theme of this special session is evolutionary transfer learning and transfer optimisation , covering ALL different evolutionary computation paradigms, including Genetic algorithms (GAs), Genetic programming (GP), Evolutionary programming (EP), Evolution strategies (ES), Learning classifier systems (LCS), Particle swarm optimisation (PSO), Ant colony optimisation (ACO), Differential evolution (DE), Evolutionary Multi-objective optimisation (EMO) and Memetic computing (MC).

The aim is to investigate in both the new theories and methods on knowledge transfer can be achieved with different evolutionary computation paradigms, and the applications of evolutionary transfer learning and transfer optimisation in real-world problems.

Authors are invited to submit their original and unpublished work to this special session. Topics of interest include but are not limited to:

 

This special session is supported by IEEE CIS Task Force on Transfer Learning & Transfer Optimisation from ISATC, and IEEE CIS Task Force on Evolutionary Computation for Feature Selection and Construction from ECTC.

 

Important dates:

 

Paper Submission:

Please follow the instructions in the IEEE WCCI/CEC 2024 Web Site to submit your work via the Paper Submission System . Special session papers are treated the same as regular conference papers. Please specify that your paper is submitted to SS Evolutionary Transfer Learning and Transfer Optimisation. All papers accepted and presented at IEEE CEC 2024 will be included in the conference proceedings published by IEEE Explore, which are typically indexed by EI.

 

Important Note about Review Process:

Papers will be reviewed using a double blind review process. After being reviewed, papers may receive an Accept, Reject, or Revise–and–Resubmit. More details and clarifications can be seen from IEEE WCCI/CEC 2024 Instructions for Authors .

 

Organisers:

Bing Xue
School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
Bing.Xue@ecs.vuw.ac.nz
Phone: +64-4-463 5542; Fax: +64-4-463 5045.

Liang Feng
College of Computer Science, Chongqing University, China.
liangf@cqu.edu.cn
Phone: +86-23-65102502

Yew-Soon Ong
School of Computer Science and Engineering, Nanyang Technological University, Singapore.
asysong@ntu.edu.sg
Phone: +65-6790-5778, Fax: +65-6792-6559

Mengjie Zhang
School of Engineering and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
Mengjie.Zhang@ecs.vuw.ac.nz
Phone: +64-4-463 5654; Fax: +64-4-463 5045

Biography of the Organizers

Bing Xue is currently Professor of Artificial Intelligence, Deputy Head of School in the School of Engineering and Computer Science at VUW, Deputy Director of Centre for Data Science and Artificial Intelligence at VUW. Her research focuses mainly on evolutionary computation, machine learning, big data, feature selection/learning, evolving neural networks, explainable AI and their real-world applications. Bing has over 400 papers published in fully refereed international journals and conferences including many highly cited papers and top most popular papers. Bing is currently the Editor of IEEE CIS Newsletter, Chair of the Evolutionary Computation Technical Committee, member of ACM SIGEVO Executive Committee and Chair of IEEE CIS Task Force on Evolutionary Deep Learning and Applications. Bing has also been served as an Associate/Guest Editor or Editorial Board Member for > 10 international journals, including IEEE TEVC, ACM TELO, IEEE TETCI, and IEEE TAI. She is a key organiser for many international conferences, e.g. Conference Chair of IEEE CEC 2024, Co-ambassador for Women in Data Science NZ 2023, Panel Chair and Conflict-of-Interest Chair for IEEE CEC 2023, Tutorial Chair for IEEE WCCI 2022, Publication Chair of EuroGP 2022, Track Chair for ACM GECCO 2019-2022, Workshop Chair for IEEE ICDM 2021, Conference Activities Chair for IEEE SSCI 2021, Publicity Chair for IEEE CEC 2021, General Co-Chair of IVCNZ 2020, Program Co-Chair for KETO 2020, Senior PC of IJCAI 2019-2021, Finance Chair of IEEE CEC 2019, Program Chair of Austrasia AI 2018, IEEE CIS FASLIP Symposium founder and Chair since 2016, and others in international conferences. She is a Fellow of Engineering New Zealand.

Liang Feng received his Ph.D degree from the School of Computer Engineering, Nanyang Technological University, Singapore, in 2014. He was a Postdoctoral Research Fellow at the Computational Intelligence Graduate Lab, Nanyang Technological University, Singapore. He is currently a Professor at the College of Computer Science, Chongqing University, China. His research interests include Computational and Artificial Intelligence, Memetic Computing, Big Data Optimisation and Learning, as well as Transfer Learning. He has been honored with the 2019 IEEE Transactions on Evolutionary Computation Outstanding Paper Award, the 2023 IEEE TETCI Outstanding Paper Award, and the 2024 IEEE CIM Outstanding Paper Award. He is an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, IEEE CIM, and Memetic Computing. He is also the founding Chair of the IEEE CIS Intelligent Systems Applications Technical Committee Task Force on “Transfer Learning & Transfer Optimization” and the PC member of the IEEE Task Force on “Memetic Computing”. He had co-organized and chaired the Special Session on “Memetic Computing” and “Evolutionary Transfer Learning and Transfer Optimisation” held at IEEE CEC since 2016. .

Prof. Yew-Soon Ong received the Ph.D. degree in artificial intelligence for complex design from the University of Southampton, U.K., in 2003. He is President’s Chair Professor in Computer Science and Director of the Singtel-NTU Cognitive & Artificial Intelligence Joint Lab at Nanyang Technological University (NTU). He was Director of the Data Science and Artificial Intelligence Research Center and Chair of the School of Computer Science and Engineering at NTU. He was a visiting professorial fellow at the University of New South Wales, a visiting professor at Imperial College London and a visiting professor at MIT. He is a Fellow of IEEE, a recipient of four IEEE outstanding paper awards, Nanyang Education Excellence Award, National Day Honours Public Administration Medal and was listed as a Thomson Reuters highly cited researcher as well as among the World's Most Influential Scientific Minds. His research interest is in artificial and computational intelligence, particularly Machine Learning, Evolutionary Computation and Transfer Optimization. He was Editor-in-Chief of the IEEE Transactions on Emerging Topics in Computational Intelligence and currently an associate editor of the IEEE TNNLS, the IEEE Cybernetics, IEEE TEVC, IEEE TAI and others. Presently he also serves as Chief Artificial Intelligence Scientist and an Advisor to the Center for Frontier AI Research Center of the Agency for Science, Technology and Research in Singapore. He has also been a scientific and technical advisor/consultant of British Petroleum Plc., Automobile Association of Singapore, Singapore Technologies (ST) Dynamics, Singapore National Research Foundation (NRF) Research Council, Singapore Department of Statistics, and other startup companies. At the NRF of Singapore, he served as Scientific Advisor of the Singapore Digital Economy Initiative and currently a member of the Management committee of AI Singapore.

Prof. Mengjie Zhang is a Fellow of Royal Society of New Zealand, a Fellow of Engineering New Zealand, a Fellow of IEEE, an IEEE Distinguished Lecturer, currently Professor of Computer Science at Victoria University of Wellington (VUW), Director of Centre for Data Science and Artificial Intelligence at VUW. His research is mainly focused on artificial intelligence (AI), machine learning and big data, feature selection/construction and big dimensionality reduction, computer vision and image processing, job shop scheduling and resource allocation, multi-objective optimisation, and evolutionary deep learning and transfer learning. Prof Zhang has published over 800 research papers in refereed international journals and conferences in these areas. He has been serving as an associated editor for over ten international journals including IEEE Transactions on Evolutionary Computation, and IEEE Transactions on Cybernetics. He has been involving major AI and EC conferences such as GECCO, IEEE CEC, EvoStar, IJCAI, PRICAI, PAKDD, AusAI, IEEE SSCI and SEAL as a Chair. He has also been serving as a steering committee member and a program committee member for over 100 international conferences. Prof Zhang is a past Chair of the IEEE CIS Intelligent Systems Applications Technical Committee, the IEEE CIS Emergent Technologies Technical Committee and the IEEE CIS Evolutionary Computation Technical Committee, a vice-chair of the IEEE CIS Task Force on Evolutionary Feature Selection and Construction, a vice-chair of the IEEE CIS Task Force on Evolutionary Computer Vision and Image Processing. He is the founding chair of the IEEE Computational Intelligence Chapter in New Zealand.

 

Program Committee (TBA)