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ABSTRACT
To evaluate a node’s cooperativeness/sel�shness behaviour in a
heterogeneous wireless environment, global reports from other
nodes in wireless multihop networks (WMNs) may be required to
strengthen the judgment made using local observation. However,
it cannot be assumed that a node is always honest in sharing the
behaviour information. A group of nodes might collude to falsely
accuse/praise a particular node to gain communication bene�ts at
the cost of other nodes’ resources. This paper proposes a �ltering
mechanism named Trust Features-based Evidence (TFE) by formu-
lating evidence that is based on trust features to reduce the number
of liar nodes and thus, ensuring the authenticity of the shared in-
formation. Assisted by an e�cient cross-checking algorithm, the
TFE mechanism is able to reduce the number of cheating nodes
over time and the rate of illegitimate collusion, by having detected
cheaters aware that the only way to survive in the network is by
presenting genuine information.

KEYWORDS
recommendation, trust, node collusion, sel�shness, wireless multi-
hop networks

ACM Reference format:
Normalia Samian and Winston K. G. Seah. 2017. Trust-based Scheme for
Cheating and Collusion Detection in Wireless Multihop Networks. In Pro-
ceedings of MobiQuitous 2017, Melbourne, VIC, Australia, November 7–10,
2017, 10 pages.
https://doi.org/10.1145/3144457.3144486

1 INTRODUCTION
Evaluation of node behaviour can be done via two main approa-
ches viz. local and global observation. Although not mandatory, the
former is essential for a node’s self-reference and can be done on a
node-to-node basis using several observation/monitoring techni-
ques such as overhearing, packet acknowledgment, and probing.
However, in the event that a node either cannot access another
node’s behaviour information or wants to strengthen its own local
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assessment, the latter approach is chosen. The global observation
approach works by having nodes in the network share their local
observation judgments which are used to determine nodes’ beha-
viour based on majority of votes. The globally shared behaviour
information is also known as recommendation [23] and with the
diversi�ed nature of node behaviour in heterogeneous wireless
environments dominated by wireless multihop communications,
not all recommenders will share honest information; this leads to
fallacy and unnecessary punishment/reward that are detrimental
to network performance [4]. Various solutions have been proposed
to overcome false recommendation issues with trust-based mecha-
nisms but, to the best of our knowledge, none have addressed the
issue of validating the honesty of the information shared by recom-
menders which was locally observed and how much they can be
trusted.

We propose the Trust Features-based Evidence (TFE) mecha-
nism that utilizes a trust module which acts as a �lter for any node
receiving the global report to carry out cross-checking when va-
lidating the recommender and the shared information. Thus, the
proposed approach adopts distributed trust computation, but a cen-
tralized approach can also be supported on logically centralized
network architectures like Software-De�ned Networking (SDN) [1]
by implementing TFE on the SDN controller to evaluate nodes’
behaviour. The main di�erence between the trust module propo-
sed in this study and existing trust-based schemes is that both
recommender and its carried information are evaluated in order to
measure the trust value, rather than just assessing the recommen-
der only. In addition, we build on the proven Compare and Measure
Sel�shness Detection (CMSD) mechanism to ensure observation
accuracy [21, 22].

Our contributions can be summarized as follows:

(i) a trust-based scheme to �lter false recommendations by as-
signing a trust value to recommender node which is derived
from trust features that re�ect the forwarding/communication
behaviour of the node;

(ii) the formulation of trust feature that is based on extracted
information, from a proven local observation mechanism
(CMSD), which consists of an observed node’s forwarding
details that can be evaluated as an input to assess the recom-
mender node’s honesty; and

(iii) the detection of cheaters and node collusion using an e�cient
cross-checking algorithm.

The remainder of this paper is organized as follows. Section II
discusses related work on trust-based recommendation schemes.



Discussion on some preliminaries and proposed scheme are presen-
ted in Section III and IV respectively. Section V presents the results
from our performance evaluation before concluding in Section VI.

2 RELATEDWORK
Recommendation-based approach has been widely used as a way
to assess node behaviour via global judgments from other nodes.
Decision on a node’s behaviour is made based on majority of votes
as either bad or good. However, honest recommendations cannot
be assumed as nodes may be sharing false information for their
own bene�ts which remain challenging issues to be addressed.

A node’s trustworthiness level can be derived based on certain
trust parameters. CONFIDANT [3] introduced a trust manager that
cross-checks a particular misbehaviour report based on learning
observation experience and deterioration test prior to making de-
cision. However, aside from the critical assumption of being able
to gather accurate malicious evidence and alarm information, this
scheme is also susceptible to false accusation by colluding nodes
towards a well-behaved one. Similar node collusion problems are
also faced by subsequent proposed schemes, such as [8, 13]. A
social-based trust approach known as Recommendation Exchange
Protocol (REP) [24] takes into account the maturity of node relati-
onship to evaluate trust level (i.e. the longer any two nodes have
known each other, the higher the trust level.) The resilience of REP
against false recommendation and node collusion attack is justi�ed
on the premise that a node that has longer relationship with the
node it is recommending would provide a more truthful recommen-
dation. Like ICARUS [5], where robustness towards liar nodes is
evaluated based on di�erent values of cheating probabilities, REP
lacks the ability to identify/ascertain the lying behaviour itself and
cheating actions are assumed to be accurately detectable.

In [6], to ensure false recommendation is low, the scheme only
considers reports from recommenders that have positive evaluation
on an observed node, which are presumed to have frequent mutual
interactions. This work proposed the concept of trust chain whe-
reby the longer the length of indirect recommenders in between of
a trustor and a trustee, denotes lower trust value. However, depen-
ding on factors like path reliability and observation period, di�erent
optimal path lengths have been found to gain accurate trust va-
lue. The concept of considering only positive recommendations to
evaluate node’s behaviour has also been proposed in [18] with a
scheme known as Collaborative Reputation (CORE). Although false
rating can be reduced at certain points, but, inaccurate evaluation
occurs when nodes are colluding to rate a bad node as good, which
leads to trusting the wrong node.

A trust model named Trust-based Exclusion Access-control Me-
chanism (TEAM) proposed in [11] introduced a judiciary-based
system to evaluate node’s trustworthiness. Behaviour information
based on local observation of each node is submitted to jury nodes
for assessment prior to making �nal decision based on majority of
the juries’ votes. Although the model practiced random selection of
juries to avoid node collusion, the reliability of the juries’ behaviour
and judgment have not been validated beforehand and thus, prone
to false recommendation by the juries.

The work in [23] proposed a clustering approach to overcome
dishonest recommendation by measuring trust value using social

properties such as number of interactions and length of distance
between the recommenders and their reported nodes. With the
help of recommendation and cluster managers, con�dence and
deviation values are measured as a mean to detect liars more e�-
ciently. However, this scheme is vulnerable to high communication
overheads and delay with the appointment of two-tiers central
managers, which have not been proven otherwise in the work.
Clustering concept which works as a �lter has also been applied
in [25]. However, description about how the trustworthiness of the
appointed cluster’s managers is evaluated has not been discussed
in both schemes which are of similar concerning issue highlighted
for judiciary-based system in [11].

3 PRELIMINARIES
3.1 Trust Establishment
The concept of trust has been widely deployed in wireless multihop
networks to enhance collaborative and cooperative communica-
tions among nodes. In the autonomous environment of wireless
multihop networks (WMNs), it is important for each node in the
network to build mutual trust relationships with many (if not all)
other nodes to maximize the assurance of successful data trans-
mission. However, due to diversi�ed behaviour of the nodes, trust
takes time and e�ort to establish, taking into consideration aspects
like mobility, past interaction experience, anonymity level, history
of packet forwarding, positive recommendations, etc. Hence, the
information gathered might not be su�cient to build an acceptable
level of initial trust bootstrapping or the trust level information
stored may be outdated and does not re�ect the current behaviour
state of a node.

Apart from time and dynamical environment constraint, buil-
ding trust is especially challenging with the presence of cheater
nodes that provide dishonest information, and worsen with the
scenario of illegitimate colluding nodes. Many existing works that
proposed solutions to address cheaters and colluding nodes are
actually lacking in identifying the behaviours accurately. If there
is some sort of cheating identi�cation, it is evaluated based on the
robustness of the proposed schemes towards di�erent numbers of
cheating probabilities such as in [5] or by having more information
gatherings from other nodes that have su�cient interactions with
an observed node such as in [23]. But, how is the cheating action
itself detected has not been fully addressed. Motivated by such
issues, this study has proposed solutions to detect cheating action
using trust concept by ensuring that the trust is established using
signi�cant evidences.

In this study, trust concept has been used to verify the authenti-
city of the behaviour information shared during global assessment
by validating the trustworthiness of the recommender (i.e. observer
node) and its shared information based on certain requirements. Ac-
cording to Li and Singhal [15], and Cho et al. [7], the requirements
can be formulated based on evidences in the form of numerical va-
lue or tangible properties of a node such as public key and identity
or any other properties that can prove a node’s trustworthiness
either it is self-generated or assigned by other nodes. In existing
works, the trustworthiness of a node is evaluated using several
parameters such as the length of trust chain [6], list of mutually
connected friends [10], history of successful packet forwarding [17],
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and recommended reputation/trust level [12, 23]. When it comes to
recommendation-based approach, typically, when the recommen-
der node surpasses certain trust metrics requirement based on its
investigated previous communication history, its recommended
information such as the trust level or forwarding ratio of an ob-
served node is also considered trusted without investigating the
information itself. Hence, assessment should cater for both; the re-
commender and its corresponding shared information as has been
proposed in this study. This can be made possible with the use of
local observation mechanism like CMSD as it contains information
that can be extracted as evidences to evaluate its legitimacy.

3.2 CMSD Mechanism for Local Observation
In this paper, the local observation technique used is based on the
CMSD mechanism [21, 22]. The main concept of CMSD is that an
observer node IDV evaluates and compares the forwarding rate of
a relay node IDR against di�erent incoming packets’ forwarding
requests (including IDV ’s request). A node’s behaviour is measured
by using quantity of packets forwarded/sent to compute the packet
forwarding speed and sending speed of a relay node R towards
di�erent incoming requests, which are used to determine the cor-
relation coe�cient, r , of the transmission rate of data packets by
sender and relay node to determine cooperativeness/sel�shness
level [21].

The r values of an IDR for di�erent requestor nodes will then
be used to determine its fairness, f , level. A node’s behaviour is
categorized based on combination of four classi�cations, i.e. coope-
rative (c) or sel�sh (s) and fair (f ) or unfair (u), from which we can
obtain four possible combinations of pairs: (c, f )(a,b), (c,u)(a,b),
(s,u)(a,b), and (s, f )(a,b), where a is the identity of a relay node,
IDR and b is the identity of either an observer, IDV , or a competitor
node, IDC . The pairs have been arranged in such a sequence to de-
note the decreasing level of cooperativeness and fairness from good
to worst state which are represented using our proposed fairness
metric, fm, as shown in Table 1.

Table 1: Fairness Metrics

Behaviour Pairs Fairness Metric, fm
(c, f )(a,b) 1.0
(c,u)(a,b) 0.75
(s,u)(a,b) 0.5
(s, f )(a,b) 0.25

The fairness metric, fm, together with correlation value, r , of a
relay node j are used as inputs to calculate the overall probability
function of node j’s forwarding e�ort, FRi j , observed by node i by
obtaining arithmetic mean (a) of the two elements:

a = FRi j =
(r j + fmj )

n(r j ) + n(fmj )
(1)

where n(·) is the cardinality of the respective element set and
0  a  1. This information is submitted by an observer node
i to a collector node or central agent (CA) collecting the global in-
formation which evaluates the average forwarding ratio of a node
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Figure 1: TFE Framework

j based on this formula:

FRCA, j =

Õn(N )
i 2NR

FRi j

n(NR )
(2)

where N is a set of all nodes, and NR 2 N is a subset of nodes
that submit behaviour information reports. If FRCA, j is below the
threshold value FRTh = 0.5, node j is considered as sel�sh [5, 22].

4 TRUST FEATURES-BASED EVIDENCE (TFE)
4.1 Framework
This section provides overall description on the important elements
of the proposed TFE scheme. As shown in Figure 1, the general
framework consists of �ve modules, each brie�y explained below:
[Module 1] Second-hand opinion: The �rst module starts from
the process of an evaluating node, IDE , requesting for second opi-
nion from other nodes to strengthen its judgment of a particular
observed node, IDR , in the network. This will create a collection of
global reports from other nodes about the forwarding behaviour of
the observed node.
[Module 2] Global observation report (recommendation): It
responds to requests from other nodes for behaviour information
on a particular relay node, IDR . Under the policy of the proposed
TFE scheme, it is assumed that all nodes are adopting CMSD me-
chanism in performing local observation and all reporting nodes
must append the observed behaviour information with additional
information as listed below:

(i) ID of a recommender/observer node - IDV
(ii) ID of a node in which forwarding comparison has been made

in performing CMSD or also known as requestor/competitor
node - IDC

(iii) The observed relay node’s forwarding details:
(a) identity - IDR
(b) behaviour classi�cation (e.g. unfairly sel�sh node)
(c) correlation value - r
(d) fairness metric - fm
(e) forwarding ratio towards IDV and IDC - FRi j
(f) timestamp of CMSD operation, start & end time - ts & te

[Module 3] Trust checker: Each node has its own trust checker
module to carry out cross-checking tasks to validate the honesty
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of a recommender node and its shared information. Assessment is
done on both the recommender IDV and observed relay node(s)
IDR whereby information from IDR will be extracted and formu-
lated as one of the trust features (TF3) to compute the total trust
value (TVi j (t) - cf: Eqn. (3)) of the recommender node IDV at time
t which will become an input to evaluate sel�shness and trust level
(TRi j (t) - cf: Eqn. (11)) of an IDR via indirect trust. Two impor-
tant elements in evaluating IDR are direct and indirect trust which
makes it a hybrid trust computation module [12]. The former is
obtained via past self-experience of a node with a recommender
whereby evaluation on the trustworthiness of the recommender
node has been made in previous communication sessions.
[Module 4] Detection: If a recommender node’s trust value is
found to be below a minimum threshold which also denotes false
recommendation, it will be labeled as a “liar” and in the case where
more than two nodes are detected to have the same trait of cheating
history, they will be listed as colluding nodes.
[Module 5] Punishment: The shared sel�shness/cooperativeness
behaviour is validated in this module. If the shared behaviour infor-
mation is obtained from an untrusted node identi�ed in Module 4,
the information will be discarded as it is considered tampered. On
the other hand, genuine sel�shness behaviour provided by trusted
nodes will result in the sel�sh node being punished.

4.2 Recommendation Policy
As aforementioned, each node in this study performs local observa-
tion using CMSD mechanism and will share them with other nodes
by transmitting packet containing the observed node’s forwarding
information (i.e. IDR ) based on format shown in Figure 2. Trans-
mitting this packet in the network requires minimum resource
consumption due to its small size, however, minimizing its trans-
mission will help in reducing network tra�c which has become
the motivation for this study to only have the information trans-
ferred upon request rather than having periodical network-wide
broadcast. One of the CMSD’s requirements is that an observer
node must compare the forwarding rate of a relay node towards its
request and at least one other node (i.e. competitor node, IDC ) at
the same time. It is assumed that such information is available as it
is possible that a relay node tends to multiple forwarding requests
from di�erent nodes at the same time [9]. Hence, appending all
the information listed in Figure 2 is possible such that inability
to provide su�cient information will decrease the recommender
node’s trust value. Upon receiving the information packet, the node
that requested for the recommended behaviour information will
store them in its bu�er, and later perform behaviour assessment on
IDV and IDR . For the former, assessment on its behaviour is based
on trust features.

Identity Behaviour classification  
of                      

     CMSD Timestamp 

                 Start      End      

    – recommender node;     – competitor node;     – relay node;                  – correlation 
value;    – fairness metrics;       forwarding ratio ;   – cooperative;   – selfish;   – fair;   – unfair 

 

Figure 2: Packet Information.

4.3 Trust Features Formulation
4.3.1 Assessment of recommender node, IDV , and its shared infor-

mation. As shown in module 3, a recommender node’s behaviour
is evaluated using three trust features, namely: blacklist record
(TF1), combination of direct and indirect trust (TF2), and input
from CMSD operation (TF3). The three trust features will be assig-
ned weight values and combined together to form a single trust
value of a recommender node IDV at time t , denoted as TVi j (t), as
follows:

TVi j (t) = �1 ⇤TF1(t) + �2 ⇤TF2(t) + �3 ⇤TF3(t) (3)

where �1 + �2 + �3 = 1. Throughout this paper, the notation i re-
presents a node which evaluates/recommends the behaviour/trust
value of an observed/recommended node j. For TF1, it is obtai-
ned from an evaluating node’s own record of an IDV (if any) to
check whether or not it is malicious node and has been blacklisted,
whereby:

TF1 =

(
0, if blacklisted.
1, if not blacklisted.

(4)

This feature becomes the main condition that would a�ect the rest
of the node’s trust calculation as being malicious is more hazardous
than being sel�sh.

Next, TF2 is formulated based on a combination of the evalua-
ting node’s direct and indirect trust lists of an IDV as both nodes
might have accumulated communication history previously. The
direct trust indicates that the evaluating node, IDE , has a direct
interaction with IDV . The direct trust value is computed using
Beta probability distribution function [2, 23] which is estimated
using two parameters (� , �). We chose this method to evaluate the
direct trust value because the information is unlikely to be prone
to false recommendation (with the assumption that local observa-
tion is accurate), such that positive and negative behaviours can
be mapped into binary representations more con�dently. Since we
are using the CMSD mechanism for local observation, � and �
cannot be simply represented by accumulation of forwarded and
dropped packets respectively as in [23]. Instead, we let � denotes
cooperative behaviour of a node with forwarding ratio (Eq. (1)),
FRi j � 0.5, and � denotes sel�sh behaviour with FRi j < 0.5. The
Beta distribution function can be de�ned as Gamma function, �(·),
as follows:

f (p |� , �) = �(� + �)
�(�)(�) p

��1(1 � p)��1 (5)

where 0  p  1; � , � > 0, and p , 0 if � < 1 and p , 1 if � < 1,
and the expectation given by:

f (p) = �

� + �
(6)

If the number of cooperative (�) and sel�sh (�) occurrences of a
node are represented by c and s respectively, where c and s � 0,
the expectation of beta probability function which also denotes the
direct trust (DTi j ) value of an evaluator node i towards an observed
(recommender) node j can be de�ned as:

f (p) = DTi j =
ci j + 1

(ci j + 1) + (si j + 1)
(7)

On the other hand, the indirect trust of an evaluating node IDE
towards a recommender node IDV needs to be considered if both
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nodes do not have a priori direct interaction and the direct trust va-
lue is null. However, this information is only sought from the IDE ’s
own record which has been pre-processed in previous communica-
tion. This means that an IDE will not be broadcasting behaviour
recommendation request from other nodes during the evaluating
process or might do so at another time for future evaluation. When
node i requires recommendation on node j , it can be obtained from
one of node j’s neighbours, e.g. node h, that can directly observe j.
When node i receives N recommendations on node j, the indirect
trust is determined as an average of forwarding ratio using the
following equation:

ITi j =
N’
h=1

DTk j
N

(8)

where DTk j is the direct trust node k has towards node j and 0 
DTk j  1. We apply a stricter policy in evaluating the TF2 of an
IDV in the sense that if an IDE is not able to �nd a prompt indirect
trust information in its own record to evaluate an IDV ’s honesty
during an evaluation period, the IDV will be directly assigned a
low trust value and the shared information might be discarded.
This is to avoid high risk of getting false recommendation and also
reducing delay in processing the information. Given the direct and
indirect trust values, we obtain:

TF2 = �d ⇤ DTi j + �i ⇤ ITi j (9)

where �d + �i = 1 and �d > �i due to the more reliable nature of
direct trust evaluation.

The third trust feature, TF3, is the most crucial element in com-
puting the total trust value of a recommender node, IDV , which is
obtained from its observation information towards relay node, IDR .
To the best of our knowledge, assessing node’s behaviour based
on its observation information and making it as an obligation for
any recommender node to present the required information has
not been done in existing works. In our justi�cation, such requi-
rement could become a foolproof recommendation system in the
sense that a node that has been doing real observation (and later
willing to share) should be able to present the required information
as depicted in Figure 2. However, one of the salient challenges is en-
suring the validity of the shared information as a node could falsify
them. Hence, in this paper, we propose a cross-check method based
on the concept of trust chain which will be discussed in Section 4.4.

In validating recommendation, the very �rst thing to be evalua-
ted is whether or not the shared information is su�cient according
to requirements of the recommendation policy. We divided the
su�ciency level, s� , into four parts: 1) identity information, s�1, 2)
Behaviour classi�cation, s�2, 3) forwarding ratio, including r and
fm values, s�3, and 4) CMSD timestamp, s�4; each holds a value
of 0.25 for a total s� value of 1, if all information is presented or
else, s� = 0. At this stage, we apply a strict policy whereby an IDV
needs to present all information required, otherwise, the shared
information will not be evaluated which could lead to node IDV
having low trust value total. This is motivated by the fact that an
honest node which has been doing genuine observation has no
issue to report the information accordingly. Next is to validate the
shared information by using Algorithm 1, and derive the validation
value, �d = 1.0 if an IDV passes both the cheating and node col-
lusion tests; �d = 0.5 if validation is not completed; and �d = 0 if

node is cheating. Hence, TF3 value can be computed as follows:

TF3 = s� ⇤�d (10)

4.3.2 Assessment of recommended node, IDR . As shown in mo-
dule 3, assessment on node IDR starts right after the trust value
of an IDV has been obtained. If TVi j (t) � 0.5, then IDV ’s recom-
mendation is considered trustworthy and the shared behaviour
information will be used to evaluate the indirect trust value ITR of
an IDR . The indirect trust will be combined with direct trust value
DTR to obtain a single trust value of IDR . The calculation of direct
and indirect trust are based on Eq. (7) and Eq. (8) respectively. Hence,
the total trust value (also denotes cooperativeness/sel�shness level)
of an IDR is as follows:

TRi j (t) = �d ⇤ DTi j (t) + �i ⇤ ITi j (t) (11)

where �d + �i = 1 and �d > �i .

4.4 Cheating and Node Collusion Detection
In this section, we discuss a distributed approach for the detection
of cheating (i.e. false recommendation) and colluding nodes, which
can be done by any node in the network without the involvement
of a central agent and the associated communication overhead. We
then propose a lightweight �ltering mechanism that is e�ective in
detecting a singular or colluding cheater.

Detection of a node’s cheating action is based on the following
three main conditions which become our rationale that realistic
cross-checking can be performed:

(i) using CMSD-based local observation, each IDV will present
two pairs of behaviour classi�cations (P1 and P2) on an IDR
whereby, the pairs are of IDR ’s forwarding e�orts towards
nodes IDV and IDC respectively. Correct reports should
follow logical classi�cation orders as shown in Table 2. For
example, when an IDV labels an IDR as being unfairly coope-
rative (c,u), it means that the IDR is being sel�sh towards
IDC such that unfairly sel�sh (s,u) classi�cation is expected
from IDC . Any deviation from the list denotes possible che-
ating occurrence which can be detected either if an IDV
itself presents con�icting pairs or if cross-comparison with
another recommender’s reported behaviour classi�cations
(P3 and P4) are also con�icted.

Algorithm 1 Recommendation Validation
1: for each recommendation received do
2: Check su�ciency level, s�
3: Assign s�
4: if s� = 1.0 then
5: Create IDV list = {�1, �2, �3, ....., �n }
6: Create IDR list = {r1, r2, r3, ....., rn }
7: Create IDC list = {c1, c2, c3, ....., cn }
8: Sort lists according to timestamp
9: Evaluate Algorithm 2
10: Obtain �d
11: else
12: Discard information
13: s� = 0; �d = 0
14: end if
15: end for
16: Calculate T F3

5



Table 2: Ideal Reports

Evaluation of Behaviour Classi�cation
IDR towards IDV (s, f ) (c, f ) (c,u) (s,u)
IDR towards IDC (s, f ) (c, f ) (s,u) (c,u)

(ii) CMSD implementation also enables an IDV to present de-
tailed information about an IDR as shown in Figure 2, ma-
king it hard for the IDV to falsify information easily. For
instance, the IDV cannot simply present the behaviour clas-
si�cation information without ensuring that r , fm and FRi j
values are tallied. Subsequently, colluding action will be
a�ected because nodes need to ensure that their false infor-
mation does not look replicated.

(iii) the competitor node, IDC , is the key element which can be
cross-compared. For an IDV to have the ability to observe the
packet forwarding rate of an IDR and the packet sending rate
of an IDC at the same time, signi�es that the two nodes are
adjacent neighbours of the IDV and increase the possibility
that an IDC will also be recommending IDR ’s behaviour.

Although there are many cheating scenarios can be investigated,
we focus on three cases for this paper, as shown in Algorithm 2,
which is explained with the help from sample cases presented in
Table 3. As shown in the table, each IDV will provide two behaviour
reports based on its parallel observation on forwarding e�ort of an
IDR towards itself and an IDC .

For case 1 and 2, IDV and IDC can be cross-compared due
to IDC also received the recommendation request and will share
its observation report towards an IDR . For this particular case, it
is an ideal condition to perform evaluation more accurately. The
di�erence is in the reported behaviour classi�cation, where in case
2, the pair does not follow the logical order as listed in Table 2
which signi�es suspicious reports. As for case 1, the behaviour
pairs are symmetrically presented by both IDV and IDC , which
is a sign of accurate recommendation but having a possibility of
node collusion. As suggested in the above-mentioned motivation,
to detect node collusion, evaluation towards forwarding details
needs to be performed. If the reported values of r , fm and FRi j
are totally replicated, nodes are therefore perceived to have been
colluding. This is done with the help from the rule we set, that the
values need to be represented in two decimal points to enhance
replication detection.

At this stage, we assume that nodes do not make smart cali-
bration tricks on the values because the process will cost them
communication overhead especially when more than two nodes in-
volved in the collusion. For case 2, the reported behaviour pairs are
con�icting, which denotes that one of the nodes is possibly cheating
(given assumption local observation’s accuracy is optimal). To cater
this scenario, the evaluating node will check on the reported beha-
viour classi�cation that an IDV provides for both requests. Since a
node with cheating intention will falsify the information, node ID4
is the cheater because it does not present the right classi�cation
on forwarding behaviour of ID2 towards ID5 that is (c,u)ID2, ID5,
whereas ID5 is honest in reporting its observation on ID2’s forwar-
ding e�ort towards ID4. Last but not least, for case 3, IDC is not an
IDV (and vice versa), so, cross-comparison cannot be done directly.

Thus, the evaluator node will check reports of di�erent timestamps
from the same recommender to perform evaluation. If the required
information is not available, the two nodes will be assigned lower
�d values, which is 0.5 and may be veri�ed in other assessment
session. However, the �nal decision on recommendation honesty
still depends on the other trust features to calculate the total trust
of an IDV .

Table 3: Sample Case

Case IDV IDR IDC 
Time-
stamp 

Behaviour 
pair 

Forwarding 
details 

Case
1 

ID1 ID2 ID3 TS1 
P1: (   )         
P2: (   )         

r=0.30;fm=0.25;FRij=0.28 
r=0.45;fm=0.25;FRij=0.35 

ID3 ID2 ID1 TS1 
P3: (   )         
P4: (   )         

r=0.40;fm=0.25;FRij=0.33 
r=0.25;fm=0.25;FRij=0.25 

Case
2 

ID4 ID2 ID5 TS2 
P1: (   )         
P2: (   )         

r=0.22;fm=0.25;FRij=0.23 
r=0.35;fm=0.25;FRij=0.30   

ID5 ID2 ID4 TS2 
P3: (   )         
P4: (   )         

r=0.75;fm=0.75;FRij=0.75 
r=0.20;fm=0.50;FRij=0.35 

Case
3 

ID8 ID2 ID11 TS3 
P1: (   )         
P2: (   )          

r=0.80;fm=1.0;FRij=0.90 
r=0.60 ;fm=1.0;FRij=0.80 

ID9 ID2 ID10 TS3 
P1: (   )         
P2: (   )         

r=0.20;fm=0.25;FRij=0.23 
r=0.30;fm=0.25;FRij=0.28 

Algorithm 2 Cheating and Node Collusion Detection
1: From Algorithm 1
2: Evaluate cheating action
3: Check main condition
4: if P1 unmatched P2 || forwarding details unmatched behaviour pair

then
5: IDV is a cheater, �d = 0
6: Discard information
7: else
8: Check Cases
9: if IDC and IDV are cross-compared then
10: Case 1 or Case 2
11: else if IDC and IDV are not cross-compared then
12: Case 3
13: end if
14: end if
15: Check Case 1
16: if P1 matched P4 && P2 matched P3 then
17: if forwarding details replicated then
18: Colluding node, �d = 0
19: else if forwarding details not replicated then
20: IDV is honest and no collusion, �d = 1.0
21: end if
22: end if
23: Check Case 2
24: if P1 unmatched P4 && P2 unmatched P3 then
25: Compare sel�sh/cooperative label
26: if s2 == s3 || s4 == s1 then
27: IDV is honest, �d = 1.0
28: else if s2 != s3 || s4 != s1 then
29: IDV is cheating, �d = 0
30: end if
31: end if
32: Check Case 3
33: Cross-compare reports from di�erent timestamps
34: if available then
35: Check Case 1 or Case 2
36: else
37: Assign �d = 0.5
38: end if
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5 PERFORMANCE EVALUATION
The performance evaluation of our proposed scheme is divided into
three parts: (1) analysis of trust value assignment, (2) analysis of
false positive and false negative, and (3) network performance. The
majority of our analyses will be based on scenarios in wireless multi-
hop networks with stationary network topology which is applicable
to application scenarios such as human-operated static devices in
the Internet of Things (IoT) that require trust-management [14], and
especially vulnerable when they are part of the cloud [19]. Howe-
ver, for completeness, we also consider simple scenarios involving
mobile nodes.

5.1 Simulation Setup
This study utilizes the OMNeT++ simulation tool to evaluate net-
work scenarios that utilize the Ad hoc On-Distance Vector (AODV)
routing protocol [20] which has been adopted in commercial mesh
networking platforms, like DigiMesh1. Our study uses the simula-
tion parameters as shown in Table 4 based on similar settings in
the compared scheme [5] and assumes the following:

(i) Each node has a unique and forge-resistant identi�er (ID);
(ii) Every node in the network performs the same CMSD-based

local observation mechanism and an observer node only
monitors one other known tra�c to be compared with, at
one particular observation time; and

(iii) Adequate information of the observed tra�c can be obtained
by the observer node using promiscuous mode of listening
in a contention-free channel; non-ideal channel is overcome
using re-transmission mechanism.

Table 4: Simulation Parameters

Parameters Value
Network Area 800 m x 800 m
Simulation Time 1000 seconds
Number of Nodes 50
Movement Stationary & Gauss-Markov
Mobility Speed 10 m/s
Application CBR
Packet Size (bytes) 512
Channel Capacity 2MB/s
Radio Propagation Range 250 meters
�1,�2,�3 0.2, 0.4, 0.4
�d ,�i 0.6, 0.4
Cooperative / Trust Threshold 0.5

5.2 Trust Value Assignment
We �rst analyze the e�ectiveness of our proposed scheme in as-
signing the right trust values to nodes in the presence of false
recommendations in a static network topology. Nodes are rand-
omly distributed in the network area and remain static throughout
the 1000 seconds simulation run. The threshold value is set to 0.5
whereby a node that shares falsi�ed information will be assigned a

1https://www.digi.com/products/digimesh

trust value below threshold given that detection is accurate. For sim-
plicity, each recommender node holds value of s� = 1.0 which indi-
cates su�cient observation information is available for Algorithm 2
to be invoked. Cold-start communication is assumed for majority
of nodes, with an initial trust value of TVi j = 0.5 assigned which
denotes a level of uncertainty between trust and distrust; this value
will remain if a node does not get involved in any recommendation
process. This also implies that, no node is blacklisted for being
malicious. On the other hand, certain nodes may have varied initial
trust values which are gained from previous direct communications
with the evaluating node. In this analysis, �ve recommender nodes,
IDV (ID : N9,N19,N29,N39,N49) have been set to be sharing
false behaviour information (via three cases discussed earlier) about
several relay nodes, IDR (ID : N 8,N 18,N 27,N 31,N 40,N 47,N 50)
which are of fairly cooperative nodes (FRi j > 0.5) being accused
of being sel�sh or unfairly cooperative. The rest of the nodes are
honest in providing accurate information of their local observation
towards the listed nodes IDR in which behaviour information is
required by the evaluator node, IDE .

We will see how the false recommendation will a�ect the repu-
tation of the IDR with and without the support of the TFE scheme,
which is measured based on the �nal trust values assigned. Wit-
hout utilizing the TFE scheme, the sel�shness level of an IDR is
measured based on average forwarding ratio provided by recom-
menders with no mechanism to �lter the shared information [5].
Figure 3 shows the trust values obtained by each node which is
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Figure 3: Trust Value Assignment (Static Topology)

represented by y-axis, while x-axis represents node ID.With the use
of the TFE scheme, nodes with false recommendation are detected
and punished by decreasing their trust values to below threshold,
except for one mis-detection on node N 29 which maybe be caused
by insu�cient information to validate its false recommendation
towards an IDR . Subsequently, due to the mis-detection that causes
false information being accepted, the trust value of cooperative
node N 27 is slightly below threshold. However, we anticipate that
with more round of assessments, the actual behaviour of node N 29
can be detected. On the other hand, without the TFE scheme, the
dishonest nodes continue to persist while good cooperative no-
des are wrongly accused and assigned trust values that are below
threshold.

Using the same scenario, we extended the evaluation to cater
for a dynamic network topology, where nodes move randomly in
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Figure 4: Trust Value Assignment (Dynamic Topology)

the network area based on the Gauss-Markov mobility model [16]
which have been widely used in ad hoc networks simulation due to
its highly realistic nature. Using the setting of � = 0, nodes move
in totally random pattern with speed of 10 m/s and we aim to study
how node mobility can a�ect the behaviour detection and even-
tually the trust values assignment. Figure 4 shows that cheating
behaviour can still be detected but the trust values for some chea-
ters are slightly below threshold which could be manipulated by
these nodes using intermittent tactic between honest and dishonest
behaviours. Node mobility aggravated the lack of su�cient infor-
mation to perform accurate cross-checking to identify cheating or
illegitimate collusion such that the value of �d is set to 0.5 instead
of 0 to de�nitively point out a cheating node, and consequently,
increases the calculation of overall trust value for bad nodes. On
the other hand, the trust values for majority of honest nodes are
decreased which can be anticipated due to �d ’s value being set to
0.5, only this time, instead of 1. Thus, it can be said that for high
node mobility scenarios a di�erent kind of detection mechanism is
required and will be investigated as part of our ongoing research.

5.3 Detection Accuracy
The scheme is further evaluated based on the following detection
accuracy metrics:

(i) rate of false positive - number of honest recommendation
falsely identi�ed as dishonest;

(ii) false negative - number of false recommendation wrongly
identi�ed as honest; and

(iii) true detection - number of false recommendation correctly
identi�ed;

For each metric, we compare between with and without TFE im-
plementation. Using the mixed of three cases discussed above, we
set various number of up to 25 nodes (out of 50) to be sharing false
information about 10 good nodes IDR , each of which holds initial
value of FRi j = 0.7, indicating good cooperativeness level and �uc-
tuations in FRi j values become the indication of evaluation. Every
time these cheaters receive behaviour recommendation requests
from any IDE , they will accuse the nodes IDR as being sel�sh with
FRi j < 0.5 and low values of its associated r and fm.

Figure 5 presents the ratio of false positive detected to the total
number of recommendations over increasing number of cheaters

in the network, with and without TFE implementation. The false
positive rate for both implementations are increasing with the in-
creased number of cheaters present in the network. This is because,
as the number of cheaters increases, some honest recommendati-
ons cannot be fully validated using the cross-checking algorithm
and would require longer detection time to be proven honest by
doing repetitive comparison with reports from di�erent time-stamp
sessions. However, by having TFE scheme incorporated, the false
positive is increasing at a signi�cantly lower rate compared to the
one without any �ltering mechanism and have to rely heavily on
majority of recommendations method.

A similar pattern is also observed in the false negative rate,
where the number of false recommendations incorrectly identi�ed
as honest are increasing over higher number of cheaters as depicted
in Figure 6. The slight di�erence is that the overall result for scheme
without TFE implementation is a�ected with higher percentage
of false negative. This can be attributed to the fact that the more
dishonest nodes present in the network, the higher potential of
illegitimate collusion occurring such that lower number of honest
recommendations cannot convince the system of their honesty. In
contrary to the scheme with TFE �ltering implementation, cheaters
cannot simply collude with one another without a good strategy
that is hard to detect.

As aforementioned, in order for nodes to collude e�ectively,
the colluding nodes need to communicate with one another in
corroborating the falsi�ed data. In addition, to ensure larger number
of colluding nodes, these nodes need to be mobile so that they
can collude and exchange false information with larger number of
nodes. But since they are static, even the slightest deviations would
eventually be detected because the same cheating pattern can be
recognized after performing several other cross-checking sessions.

Next, we evaluate the true detection rate which is the percentage
of the number of correctly identi�ed false recommendations to
the total number of actual false recommendations shared in the
network. Figure 7 shows that the rate of true detection of TFE
implementation is reasonably high despite reducing as the number
of cheaters are increasing. The ability to achieve the true detection
rate of above 80% shows that the TFE scheme is robust against
the large number of cheaters, unlike the case without any �ltering
mechanism.

The analysis is further supported by detection rate of false re-
commendation on the three di�erent cases (cf: Table 3) considered
in this paper which can be labeled as:

(i) Case 1 - cheating and colluding threats;
(ii) Case 2 - tricky cheating; and
(iii) Case 3 - insu�cient evidence.

The purpose of this analysis is to evaluate which case would take
longer time to be identi�ed. We study the scenario of having 25
cheater nodes in the network propagating false recommendations
about 10 relay nodes and measure the rate based on the total false
recommendations obtained at several di�erent time-stamps. As
shown in Figure 8, Case 1 is the fastest to be detected as it consists
of information that is su�cient to evaluate cheating behaviour more
accurately. Although towards the end of the simulation run the true
detection rate does not reach 100% due to some mis-detection, the
�nal rate of 91% is signi�cantly higher than the other two cases.
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Figure 5: False Positive Rate
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Figure 6: False Negative Rate
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Figure 7: True Detection Rate
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Figure 10: Average Detection Delay

Lower detection rate is found in the Case 2 scenario which is attrib-
uted to unmatched behaviour pairs such that cross-checking needs
to be further extended on more detailed information which requires
longer time to complete. Last but not least, Case 3 is the slowest to
be detected due to the need to collect and cross-check information
with di�erent time-stamps, and faced with the possibility of not
getting the required information. The delay scenarios are among
the trade-o�s of having CMSD-based cross-check detection such
that rigorous investigation on the information that is required to
be presented during recommendation phase would cause delay in
certain scenarios. However, in our justi�cation, this is an acceptable
trade-o� because the high complexity of the behaviour information
presented would require elaborate strategies to corroborate the
falsi�ed data and makes the scheme less prone to threats, such as,
bad-mouthing and large node collusion.

5.4 Network Performance
This section presents evaluation of TFE scheme with regard to
network performance in terms of packet delivery ratio (PDR) and
how fast cheating nodes are detected in comparison to an exis-
ting scheme, ICARUS [5]. ICARUS is a scheme which detects self-
ish/cheating nodes with assistance from a central agent. ICARUS
has been selected as a benchmark scheme to compare against be-
cause of its centralized architecture and behaviour detection based
on average forwarding ratio (AVR) in the network. When it comes
to processing recommendation using the AVRmethod, an evaluated
node is prone to bias accusation especially when a group of collu-
ding nodes collaborate in reporting low forwarding ratio causing
drop-o� on the node’s AVR value prior to being labeled as a bad
node. In ICARUS, the mechanism provided to overcome this issue
is by having a central agent aggregate information from all nodes;
however, there is no concrete guarantee that all nodes would submit
behaviour reports on a particular node and by rejecting reports

from any node already marked as sel�sh. However, as mentioned
in the paper, the scheme is likely prone to large number of cheaters
(> 50%). In addition, the paper did not speci�cally discuss how che-
ating action is detected, and rather used cheating probability from
0 to 1 to re�ect the increasing level of packet rejection. Despite this
condition giving the scheme an advantage of faster detection, they
are actually lacking in accurate detection of cheating behaviour,
yet dealing with a central agent is highly time consuming.

Besides the architectural di�erence between ICARUS and our
TFE approach, the other key di�erence is the way behaviour infor-
mation presented during the recommendation phase. For ICARUS,
the only information shared about a particular observed relay node
is its forwarding ratio value, whereas for our scheme, we use the
Case 1 scenario in the implementation for simplicity which also re-
�ects rather fair comparison considering simpler cheating scenario
adopted in ICARUS. We are going to show that even our proposed
scheme is fully distributive, yet detection is still e�ective such that
network performance is comparable, if not better.

As shown in Figure 9, with the increasing number of cheating
nodes in the network (the selected number is similar to ICARUS’
setting), the PDR values for both parameters are decreasing, which
is anticipated and requires more time to sustain the PDR at higher
rate. However, our scheme is proven to be more resilient than
ICARUS by maintaining higher rate of PDR. This statement can
be supported by the fact that with the existence of large number
of cheaters, more honest nodes are being falsely accused as sel�sh
and getting unnecessary punishment which eventually lowers the
PDR value. Our scheme has able to prevent these good nodes from
getting such treatment, and thus, obtaining higher PDR.

The analysis is further extended to cater for the delay imposed
towards the schemes based on the average detection time until the
last false recommendation is identi�ed under varied number of
cheaters. Figure 10 shows that, in the presence of lesser cheating
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nodes, ICARUS implementation outperforms TFE in detecting false
recommendation faster. This is because during the earlier phase,
the number of honest nodes are greater than the dishonest ones,
which accumulate majority of positive votes. Hence, the minority
recommendation of low average forwarding ratio of a particular
relay node is regarded as falsi�ed.

However, as the number of cheaters increased, contrary scenarios
start to emerge whereby TFE outperformed ICARUS by requiring
lesser time to detect false recommendation with exponential in-
crement. For ICARUS, the time growth becomes saturated upon
reaching 30 cheater nodes which indicate either longer simula-
tion time is required to detect more false recommendations or the
scheme is no longer able to perform correct detection furthermore.
It is worth to mention that both schemes have communication and
computational processes which cause delays such that the overall
time di�erence between the two schemes is not large. However,
our TFE scheme is clearly having better performance with higher
detection accuracy of false recommendation.

6 CONCLUSION AND FUTURE WORK
In this paper, we have proposed a distributive scheme to �lter false
recommendations during global observation session which is deve-
loped based on trust features. A signi�cant distinct element in our
trust-based scheme compared to the existing ones is that part of the
trust features is formulated based on information that is extracted
using a proven local observation mechanism, named CMSD. Using
the extracted information that has been made compulsory to be pre-
sented by recommender nodes, and given that certain metrics are
available, we are able to compute node’s trust level to detect false
reports, cheaters and colluding nodes to achieve signi�cant network
performance. Nonetheless, there are several potential extensions to
this study.

Firstly, other than using the CMSD mechanism, adoption of a
more generalised local observation technique and an alternative
way to assess the reported behaviour can be considered. This would
make TFE a more �exible scheme which could identify false recom-
mendation in the event of diversi�ed local observation techniques
and shared information presented by recommenders. Secondly, this
paper only considers three types of scenarios of node collusion and
able to detect them. In reality, there are various more possible cases
of cheating and node collusion actions which can be investigated
further to test the robustness of this scheme.

Last but not least, there are several costs involved in our propo-
sed scheme as trade-o�s in performing accurate evaluation such
as node’s computational cost in performing cross-checking on in-
coming reports, memory usage to store other nodes’ behaviour
information and energy usage to perform complete procedures as
required by the TFE modules. Despite having certain costs reduced
by such as implementing an on-demand packet broadcast in the
network instead of all-time network-wide �ooding and setting ex-
piration time for information storage, we however, aim to reduce
these costs further down as part of our future research.
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