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TOWARDS A MATROID-MINOR STRUCTURE THEORY

Jim Geelen, Bert Gerards, and Geoff Whittle

This chapter surveys recent work that is aimed at generalizing the results
and techniques of the Graph Minors Project of Robertson and Seymour to
matroids.
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5.1 Introduction

A number of the most interesting and apparently difficult conjectures in matroid
theory concern minor-closed classes. We begin by describing three fundamental
conjectures of this type.

Perhaps the most famous such conjecture is Rota’s Conjecture [27]. A minor-
minimal matroid that does not belong to a given minor-closed class of matroids
is an excluded minor for that class.

Conjecture 5.1 (Rota’s Conjecture) Let F be a finite field. There are, up to
isomorphism, only finitely many excluded minors for the class of F-representable
matroids.

Lazarson [19] showed that there are an infinite number of excluded minors
for representability over the reals and this is certainly true for all other infinite
fields, so, if true, Rota’s Conjecture is best possible.

Tutte [29] proved that a matroid is binary if and only if it has no U2,4-minor.
In [1,28], it is proved that a matroid is ternary if and only if it has no U2,5,
U3,5, F7, or F ∗

7 -minor. No real progress was made for twenty years until Geelen,
Gerards, and Kapoor [5] proved Rota’s Conjecture for GF(4) showing that there
are seven excluded minors for GF(4)-representability.

Other fundamental conjectures are inspired by the groundbreaking work of
Robertson and Seymour in their celebrated Graph Minors Project. A major
outcome of this project is their proof of Wagner’s Conjecture establishing that
graphs are well-quasi-ordered under the minor order [25]. In other words, in any
infinite sequence of graphs there is one that is isomorphic to a minor of another.
The conjectured extension to matroids was certainly made by Robertson and
Seymour, although apparently not in print.
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Conjecture 5.2 (Well-Quasi-Ordering [WQO] Conjecture) Let F be a finite
field. Then any infinite set of F-representable matroids contains two matroids,
one of which is isomorphic to a minor of the other.

As yet, the WQO Conjecture has not been resolved for any finite field. Note
that the WQO Conjecture is equivalent to the conjecture that, for a finite field
F, any minor-closed class of F-representable matroids has a finite number of
F-representable excluded minors.

The WQO Conjecture is best possible in the sense that it is easy to construct
infinite anti-chains of matroids that are representable over any infinite field.
Here is an elementary one. For an integer n ≥ 3, let Pn be the matroid on
{p1, . . . , pn, q1, . . . , qn} where {p1, . . . , pn} are the vertices of a regular n-gon in
the affine plane and place each point qi freely on the line spanned by {pi, pi+1}
in the circular order. Then it is routinely verified that {P3, P4, . . .} is an infinite
anti-chain of rank-3 matroids. It is also easily seen that each Pn is representable
over any infinite field.

The Graph Minors Project also has fundamental algorithmic consequences.
In particular Robertson and Seymour [24] prove that there is a polynomial-
time algorithm for recognizing a given graph as a minor. As a consequence
any minor-closed property of graphs can be recognized in polynomial time.
We conjecture that this result extends to matroids representable over finite
fields.

Conjecture 5.3 (Minor-Recognition Conjecture) For any finite field F and F-
representable matroid N , there is a polynomial-time algorithm for testing whether
an F-representable matroid contains an N -minor.

Combined with the WQO Conjecture, Conjecture 5.3 implies that, for a given
finite field F, there is a polynomial-time algorithm for testing any minor-closed
property for F-representable matroids.

We are currently undertaking a programme of research aimed at extending
the techniques of the Graph Minors Project to matroids with the eventual goal
of resolving conjectures such as the ones described above.

At the heart of the Graph Minors Project is the Graph Minors Structure
Theorem. This theorem provides a constructive characterization for members of
the class of graphs that do not contain a given graph as a minor. This structural
characterization is the workhorse of the Graph Minors Project. Having such a
characterization enables techniques to be brought to bear to establish well-quasi-
ordering and algorithmic consequences.

Our hope is to use the same strategy for matroids. Indeed, this strategy has
already had some success. It turns out that excluding a planar graph as a minor
imposes tangible structure on a class of representable matroids, and we begin
by discussing this.
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5.2 Excluding a planar graph

Let F be a finite field and let H be a planar graph. In this section we give a con-
structive structural description of F-representable matroids with no M(H)-minor
and show that this description enables significant progress on Conjectures 5.1,
5.2, and 5.3.

Tree-width is now a well-understood parameter for graphs and we will not
define it here. Intuitively a graph has low tree width if it can be obtained from
a set of small graphs using clique-sums, or, put another way, it admits a tree-
like decomposition into small pieces. A class of graphs has bounded tree-width
if there is an integer k such that all members of the class have tree-width at
most k.

In [22], Robertson and Seymour prove:

Theorem 5.4 For any planar graph H, there is a k such that if G is a graph
of tree width at least k, then G has an H-minor.

Note that every planar graph is a minor of a grid; therefore it suffices to
prove Theorem 5.4 for the case that H is a grid. For this reason, Theorem 5.4 is
often referred to as the grid theorem.

Let G be a class of graphs that does not have a fixed planar graph H as a
minor. By the grid theorem, G has bounded tree width, providing a constructive
structural characterization for members of the class. These structural properties
provide considerable traction for both algorithmic and theoretical problems. For
example, Robertson and Seymour [21] prove that any class of graphs of bounded
tree width is well-quasi-ordered so that G is well-quasi-ordered.

While tree width does extend to matroids [17], the related notion of ‘branch
width’, introduced for graphs in [23], extends more naturally and is easier to
work with. Branch width is equivalent to tree width in that a class of graphs, or
matroids, has bounded branch width if and only if it has bounded tree width.
Johnson, Robertson, and Seymour [18] conjectured that Theorem 5.4 extends to
all finite fields and this extension is achieved in [12].

Theorem 5.5 (Grid theorem for matroids) Let H be a planar graph and q
be a prime power. Then there exists an integer ω(H, q) such that, if M is a
GF(q)-representable matroid with branch width at least ω(H, q), then M has an
M(H)-minor.

This theorem is absolutely central to our project, and was not easily achieved.
There are at least three proofs of the grid theorem for graphs in the literature
[22,26,3]. It is natural to attempt to extend the techniques in these proofs. In this
respect [3] was particularly tantalizing, since it is the easiest of the proofs and the
hard part of the proof has a matroidal flavour. Johnson, Robertson, and Seymour
succeeded in generalizing the ‘hard part’ to matroids, but, unfortunately, the
‘easy part’ relied on properties that appear to be particular to graphs. When
specialized to graphs, our proof of Theorem 5.5 is different from the existing
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proofs. It is important to note that we had access to an extraordinary 150-page
handwritten manuscript of Johnson, Robertson, and Seymour describing their
progress towards a grid theorem for matroids. The techniques we learned from
their manuscript played a crucial role in our proof. The proof also makes use of
earlier results we obtained together with Neil Robertson [6,7].

It follows that any minor-closed class of GF(q)-representable matroids that
does not contain all planar graphs has bounded branch width. In [8], it is proved
that any class of GF(q)-representable matroids of bounded branch width is well-
quasi-ordered under the minor order. As a consequence we obtain the following
partial result towards the WQO Conjecture.

Theorem 5.6 Let F be a finite field and M be a minor-closed class of F-
representable matroids that does not contain the cycle matroids of all planar
graphs. Then M is well-quasi-ordered under the minor order.

In combination with results of Hliněný [16], we also obtain partial progress
towards the Minor-Recognition Conjecture.

Theorem 5.7 For any finite field F and planar graph H, there is a polynomial-
time algorithm for testing whether or not an F-representable matroid contains
an M(H)-minor.

In [14] it is shown that for a finite field F and integer k, the number of
excluded minors for F-representability that have branch width at most k is finite.
In combination with the grid theorem this yields the following theorem.

Theorem 5.8 For any finite field F and planar graph H, there are a finite
number of excluded minors for F-representability that do not have M(H) as a
minor.

We see that the structure imposed on a class of matroids by excluding
the matroid of a planar graph as a minor yields restricted solutions to Rota’s
Conjecture, the WQO Conjecture, and the Minor-Recognition Conjecture, and
that is a promising beginning.

5.3 Global and local structure

The Graph Minors Structure Theorem provides a constructive structural descrip-
tion of the members of the class of graphs obtained by excluding an arbitrary
graph H as a minor. Intuitively, the theorem states that: any graph with no
H-minor admits a tree-like decomposition into parts that essentially embed into
some surface that H does not. For applications, we typically consider the case
that H is a clique. The tree-decomposition provides ‘global structure’, and
the structure of the parts is referred to as ‘local structure’. In Graph Minors
X [23], Robertson and Seymour show that all graphs naturally exhibit tree-
like decompositions into parts that are highly connected. This decomposition is
obtained by considering the maximal ‘tangles’ in a graph.
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A separation of a graph G is a pair (G1, G2) of subgraphs of G such that G =
G1 ∪ G2; the order of the separation (G1, G2) is |V (G1) ∩ V (G2)|. A separation
of a matroid M is a partition (A,B) of E(M). The order of the separation
(A,B) is rM (A) + rM (B) − r(M) + 1; for a representable matroid this is the
dimension of the intersection of the subspaces spanned by A and B plus 1.
Moreover, if (G1, G2) is a separation of G and G1, G2, and G are connected,
then the order of (G1, G2) is equal to the order of the separation (E(G1), E(G2))
in M(G).

Just as one might call the blocks of a graph its ‘2-connected components’,
the tangles of order k are its “k-connected components”. To define a tangle of
order k we consider all separations (G1, G2) of order less than k, and assign one
of G1 and G2 to be the small side in such a way that no three small sides cover
the graph. Moreover, to avoid trivialities, no small side may be spanning. The
definition for matroids is essentially the same.

Robertson and Seymour [23] prove that each graph admits a tree-like decom-
position whose parts are the maximal tangles. In [10], we generalize this to
matroids: each matroid admits a tree-like decomposition whose parts are the
maximal tangles. Now, to obtain a structural theorems it suffices to describe the
structure of a graph or matroid local to each of its tangles. Generalizing results
from [26], in [10] we proved that, for any planar graph H and finite field F,
each tangle of sufficiently large order in an F-representable matroid ‘controls’ an
M(H)-minor. (For the tangle to control a minor N , we mean that E(N) is not
contained in the small side of a separation of low order.) We typically choose
H to be a grid. This highly structured minor helps to get a handle on the local
structure of the tangle.

Robertson and Seymour [23] also prove that the maximum order of a tangle
in a graph is equal to its branch width. Dhamatilike [2] extended this to matroids
(although this result was implicit in [23]).

The above results provide a good handle on the global structure. We now
turn to local structure, and give a clearer explanation of what we mean by this.
Consider a separation (G1, G2) in a graph G. We say that H is obtained by
reducing G1 in G, if H is obtained from G2 by putting a clique on the vertex
set V (G1) ∩ V (G2). Now, let C be a class of graphs and let G be a graph with a
given tangle T . We say that T has local structure in C if there exist separations
(L1, R1), . . ., (Lk, Rk) in G with edge-disjoint small sides L1, . . ., Lk such that
the graph obtained from G by reducing each of L1, . . ., Lk is in C.

To make the analogous definition for matroids, we need only describe what
we mean by ‘reducing’. Consider a separation (A,B) in an F-represented matroid
M . To avoid trivial technicalities, suppose that M is simple and is given as a
restriction of a projective geometry. Let C be the set of points in the projective
geometry that are in the closure of B and that are spanned by a set A′ ⊆ A
where rM (A′) + rM (B) = rM (A′ ∪ B) + 1. That is, C is the set of points in the
flat spanned by B onto which we can contract elements of A. The matroid N on
C ∪ B is the matroid obtained from M by reducing A.
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5.4 Some minor-closed classes

Consider a finite field F. In this section we develop natural minor-closed classes of
F-representable matroids in an attempt to describe the local structure of tangles.

Let us first consider minor-closed classes of graphs. For any surface Σ, the
class of graphs that embed in Σ is minor closed. Readers familiar with the Graph
Minors Structure Theorem will also be aware that richer minor-closed classes can
be obtained by adding a bounded number of structures called vortices to graphs
embedded in Σ. Vortices are essentially graphs of bounded path width glued,
in a particular way, to a face-boundary of a graph drawn in Σ. We can further
embellish the class by adding vertices; given any minor-closed class C of graphs,
we can construct a new minor-closed class by ‘apexing’. That is, we construct all
graphs that can be obtained by adding, to each graph in C, a new vertex v and
an arbitrary set of edges incident with v. The Graph Minors Structure Theorem
shows that, in combination, these ideas suffice in describing the local structure
of tangle in a graph with no Kn-minor.

What then might we expect in the class of F-representable matroids? One
natural minor-closed class is the class of graphic matroids. Also, if F

′ is a subfield
of F, then the class of F

′-representable matroids is a minor-closed class of F-
representable matroids. There is another natural class, generalizing the class
of graphic matroids, that was originally introduced by Dowling [4], and then
studied in greater depth by Zaslavsky [32]. We give a superficial treatment of
the class here; for a guide to the extensive literature in the area see [33].

Dowling matroids

Let M be a matroid having a representation over a field F by a V × E(M) matrix
A with the property that every column of A has at most two non-zero elements.
The fact that M has such a representation shows that M is a Dowling matroid,
and the representation A is a Dowling representation. It is straightforward to
prove that the class of Dowling matroids is minor closed. There are, in fact,
other rich minor-closed classes associated with Dowling matroids.

Dowling matroids and subgroups

Consider a Dowling representation A of a simple matroid M . An element of M
that is represented by a column with a single non-zero element is a joint. (Note
that the property of being a joint depends on the representation A.) Consider
a non-joint element e of M . By scaling we may assume that at least one of
the two non-zero elements in the associated column is a 1; let −γe denote the
other non-zero element. Let Γ be a subgroup of the multiplicative group F

∗ of F.
It is straightforward to verify that, if γe ∈ Γ for each non-joint element of M ,
then each minor of M has a Dowling representation with this same property. So
we get a rich minor-closed class of F-representable matroids from each subgroup
of F

∗.
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Dowling matroids on surfaces

Consider a V × E(M) Dowling representation A of a simple F-representable
matroid M . One can naturally associate a graph G with A, where V (G) = V
and E(G) is the set of non-joint elements of M . If this graph embeds on a surface
Σ, then each minor of M has a Dowling representation whose associated graph
also embeds on Σ. Thus, for each surface Σ we obtain a rich minor-closed class of
Dowling matroids. Moreover, in addition to the surface Σ we can also specify a
subgroup Γ of F

∗ and consider Dowling matroids over Γ embedded on Σ. In fact,
we can further embellish this minor-closed class by allowing a bounded number
of ‘vortices’ (these are obtained by adding matroid elements into bounded-rank
subspaces arranged in a cyclic manner around a face in the embedding).

We believe that the above classes are the building blocks for all minor-
closed classes of F-representable matroids. Each of these classes can be further
embellished by ‘lifting’ and ‘projecting’, just as minor-closed classes of graphs
can be embellished via apexing.

Projection

Projection is an ‘elementary’ strong map. Let M(A) be an F-represented
matroid. Now consider an extension M([A, v]) of M(A) by an element e. Then,
M([A, v])/e is a projection of M(A). If N is a projection of M , then we say that
N is obtained from M by projecting or that M is obtained from N by lifting.
Given any minor-closed class of F-representable matroids, we can obtain a new
minor-closed class by lifting and projecting a bounded number of times.

The operations of lifting and projecting can alternatively be viewed as ‘low-
rank perturbations’ of representations. We call a matrix B a rank-k perturbation
of a matrix A if, after possibly appending zero-rows to A, we have rank(A − B) =
k. Similarly, we call M(B) a rank-k perturbation of M(A) when B is a rank-k
perturbation of A.

We complete this section by briefly returning to graphs. Consider a graph G
that is obtained by adding k additional vertices, with arbitrary incident edges, to
a graph embedded in a surface Σ. Let G′ be obtained from G by shrinking these
k new vertices to a single vertex v. Alternatively, we could have added k − 1
edges to G and then contracted them. Thus M(G′) is obtained from M(G) by
projecting k − 1 times. Now let A be the V (G′) × E(G′) incidence matrix of G′

and let A′ be obtained from A by deleting row v. Note that M(G′) = M(A′)
(considered over GF(2)). Moreover, A′ is a Dowling representation of M(G′)
and the graph associated with this representation is G′ − v, which embeds in Σ.
Thus, the Graph Minors Structure Theorem is captured by the matroid classes
given above.

5.5 The local structure of a tangle

In this section we state our main results and conjectures on the structure of
minor-closed classes. Let F be a finite field of order q = pk, where p is prime
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and let n be a positive integer. In each of these conjectures, T is a tangle in an
F-representable matroid M . Each of the implicit bounds given below depends
only on q and n, and not on T or M .

Excluding M(Kn) and M(Kn)∗

Let C be the class of F-representable matroids obtained in the following way.
Take a Dowling matroid whose associated graph is embedded in a surface of low
genus; add a bounded number of vortices of bounded depth; then apply a low-
rank perturbation. We believe that we have proved that: if T has sufficiently large
order and it does not control an M(Kn)-minor or M(Kn)∗-minor, then T has
local structure in C. This result implies the Graph Minors Structure Theorem.

With this result and duality, we can now restrict our attention to tangles
that control large cliques.

Excluding PG(n, p)

Let C be the class of F-representable matroids obtained by low-rank perturba-
tions of Dowling matroids. We conjecture that: if T controls an M(Km)-minor
for a sufficiently large integer m but T does not control a PG(n, p)-minor, then
T has local structure in C. Notice that vortices seem to vanish once we get off
surfaces. This may just be lack of imagination on our behalf, but this is backed-
up by several partial results.

Roughly speaking the conjectures above state that: if M is an F-representable
matroid with no PG(n, p)-minor, then M admits a tree-like decomposition such
that each part is either essentially a Dowling matroid or is essentially the dual
of a Dowling matroid. For fields of prime order this would give the required
constructive structural characterization of its proper minor-closed classes.

Excluding PG(n, q)

Suppose that q is not prime and let C be the class of F-representable matroids
obtained from low-rank perturbations of matroids that are representable over
subfields of F. We conjecture that: If T controls a PG(m, p)-minor for a suffi-
ciently large integer m but T does not control a PG(n, q)-minor, then T has
local structure in C.

Finally, we can summarize all of the above into a single conjecture. For
any proper minor-closed class M of F-representable matroids, each matroid in
M admits a tree-like decomposition such that each part is either essentially a
Dowling matroid, or is essentially the dual of a Dowling matroid, or is essentially
represented over a subfield of F.

5.6 Back to Rota’s Conjecture

Given that we know that Rota’s Conjecture holds for GF(2), GF(3), and GF(4),
and that the WQO Conjecture has not been resolved for any field, it is natural
to believe that the resolution of Rota’s Conjecture is the easier of the the two.
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But we are gravitating towards the belief that Rota’s Conjecture is the more
difficult. In [11], we prove that an excluded minor for GF(q)-representability
of sufficiently large branch width cannot contain a PG(q + 6, q)-minor. We also
know that there are a finite number of such excluded minors for any given
branch width. It follows that if Rota’s Conjecture fails for GF(q), then there
must exist excluded minors with arbitrarily large grid minors and no large
projective space as a minor. Therefore, a structure theorem for excluding a pro-
jective geometry would provide significant structural information about excluded
minors.

Assuming that one can prove a structure theorem, how would one go about
proving Rota’s Conjecture? The proof of Theorem 5.8 provides one possible
approach. Consider a planar graph H and finite field F. The results in [12]
provide the structural characterization for the class of F-representable matroids
with no M(H)-minor, and, by this structural characterization and the results
in [14], we see that all but a finite number of the excluded minors for the class
of F-representable matroids contain an M(H)-minor. The techniques in [14] are
quite general and could well extend to prove Rota’s Conjecture in full. The idea
is to consider the class of matroids M that have an element e such that M\e and
M/e are both F-representable, and to show that this class is well-quasi-ordered
with respect to taking minors. This approach is however fraught with horrendous
technicalities, which we would sooner avoid.

The techniques used in excluding a PG(q + 6, q)-minor are essentially a
generalization of the techniques used in the resolution of Rota’s Conjecture
for GF(4) [5] and rely crucially on the fact that a 3-connected matroid with
a PG(q, q)-minor is uniquely representable. Other than the results in [14], all
partial results towards Rota’s Conjecture require unique representability. To
avoid the technicalities in extending [14], we will need to develop a better
understanding the behaviour of inequivalent representations. Unfortunately, as
shown in [20], the number of inequivalent representations of 3-connected GF(q)-
representable matroids is unbounded for all prime powers q ≥ 7. One way to deal
with this is to raise connectivity.

In [13] we prove that, for any finite field F, the number of inequivalent
representations of 4-connected GF(q)-representable matroids is bounded. We
also show that certifying non-GF(q)-representability of an n-element matroid
requires only O(n2) rank evaluations. From a complexity-theoretic point of view,
although not from an aesthetic one, this result is almost as good as Rota’s
Conjecture. (Rota’s Conjecture would imply that we only require a constant
number of rank evaluations.)

The results in [13] show promise, but, sadly, they seem inadequate for proving
Rota’s Conjecture. For Rota’s Conjecture, it seems that we need to extend the
theory of stabilizers [31] to 4-connected matroids.

The field GF(5) is peculiar with respect to Rota’s Conjecture. The results
in [31] resolve all issues caused by inequivalent representations. However, Rota’s
Conjecture remains open for GF(5). The problems encountered when trying to
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extend the methods of [5] are related to ‘intertwining’. A positive answer to the
following conjecture would be of great assistance.

Conjecture 5.9 Let N be a GF(q)-representable matroid. Then there is an
integer l such that if M is a GF(q)-representable matroid with branch width l
and M contains N as a minor, then there exists e ∈ E(M) − E(N) such that
both N\e and N/e contain N as a minor.

We hope to prove this conjecture as a corollary to the proposed structure
theorem for GF(q)-representable matroids.

References

[1] R. E. Bixby, On Reid’s characterization of the ternary matroids, J. Combin.
Theory Ser. B 26 (1979) 174–204.

[2] J. Dharmatilake, A min-max theorem using matroid separations, Matroid
Theory (Seattle WA 1995) 333–342, Contemp. Math. 197 Amer. Math.
Soc., Providence RI (1996).

[3] R. Diestel, K. Gorbanov, T. Jensen, and K. Thomassen, Highly connected
sets and the excluded grid theorem, J. Combin. Theory Ser. B 75 (1999)
61–73.

[4] T. Dowling, A class of geometric lattices based on finite groups, J. Combin.
Theory Ser. B 14 (1973) 61–86.

[5] J. Geelen, A. M. H. Gerards, and A. Kapoor, The excluded minors for
GF (4)–representable matroids, J. Combin. Theory Ser. B 79 (2000) 247–
299.

[6] J. Geelen, A. M. H. Gerards, N. Robertson, and G. Whittle, On the excluded
minors of matroids of branch width k, J. Combin. Theory Ser. B 88 (2003)
261–265.

[7] J. Geelen, A. M. H. Gerards, N. Robertson, and G. Whittle, Obstructions
to branch decompositions in matroids, to appear in J. Combin. Theory Ser.
B. AU: Please

update
references [7,
10–13, 17].

[8] J. Geelen, A. M. H. Gerards, and G. Whittle, Branch-width and well-quasi-
ordering in matroids and graphs, J. Combin. Theory Ser. B 84 (2002) 270–
290.

[9] J. Geelen, A. M. H. Gerards, and G. Whittle, Disjoint cocircuits in matroids
with large rank, J. Combin. Theory Ser. B 87 (2003) 270–279.

[10] J. Geelen, B. Gerards, and G. Whittle, Tangles, tree decompositions and
grids in matroids, preprint.

[11] J. Geelen, B. Gerards, and G. Whittle, On Rota’s Conjecture and excluded
minors containing large projective geometries, to appear in J. Combin.
Theory Ser. B.

[12] J. Geelen, B. Gerards, and G. Whittle, Excluding a planar graph from
GF (q)-representable matroids, submitted.

[13] J. Geelen, B. Gerards, and G. Whittle, Inequivalent representations of
matroids I: An overview, in preparation.



chapter05 OUP012/McDiarmid (Typeset by SPi, Delhi) 82 of 82 July 4, 2006 13:12

82 TOWARDS A MATROID-MINOR STRUCTURE THEORY

[14] J. Geelen and G. Whittle, Branch width and Rota’s conjecture, J. Combin.
Theory Ser. B 86 (2002) 315–330.

[15] J. Geelen and G. Whittle, Cliques in dense GF (q)–representable matroids,
J. Combin. Theory Ser. B 87 (2003) 264–269.
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