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Tutte Invariants for 2-Polymatroids

JAMES OXLEY and GEOFF WHITTLE

Introduction

This paper describes a theory of Tutte invariants for 2-polymatroids that
parallels the corresponding theory for matroids. The paper is a slightly infor-
mal exposition of the main results of [13] and contains no proofs. In particular,
it shows that 2-polymatroid invariants obeying deletion-contraction recursions
arise in the enumeration of many combinatorial structures including match-
ings and perfect matchings in graphs, colourings in hypergraphs, and common
bases in pairs of matroids. The main result is that, just as for matroids, there
is a two-variable polynomial that is essentially the universal Tutte invariant
for 2-polymatroids.

Section 1 of the paper presents some basic facts about polymatroids. Sec-
tion 2 summarizes the theory of Tutte-Grothendieck invariants for matroids
which we are seeking to generalize, and Section 3 describes this generalization.
The graph and matroid terminology used throughout will follow Bondy and
Murty [1] and Oxley [11], respectively.

1. Polymatroids

‘We begin with an example. Let M be the rank-3 matroid that is repre-
sented geometrically in Figure 1. Now pick some set of flats of M, say the
lines that are labelled 1,2,3, and 4 and the points labelled 5,6,7,8, and 9. Let
E={1,2,...,9} and, for each subset X of F, let f(X) be the rank in M of
the union of the flats that are labelled by members of X. So, for example,
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Hah =r7{2h) =531 =f({4h =2,
f{sh) = f{6}) = f{"H =r({8H = F({9h) = L,

f({1,5}) = f({1,5,6}) =2, f({1,2}) = 3, and so on.

Figure 1

Then the pair (E, f} is an example of a polymatreid.

Next consider slightly modifying this example by allowing the set E to
be a multiset of flats of M. This amounts geometrically to adding flats in
parallel to existing flats as shown, for instance, in Figure 2. In that case,
E={1,1,2,3,3,4,5,5,5",6,7,7,8,9} and, for example, f({1,1'}) = 2,

Figure 2

F({1,5,5'}) =2, and so on. Again, (B, f) is an example of a polymatroid.

Formally, a polymatroid (E, f) consists of a finite set £ and a function
f: 2% — & such that

@ 1=
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(i) if X C Y, then f(X) < f(Y); and
(i) if X,¥,C E, then f(X) + f(¥) > F(XUY) + f(XNY).

But we find it easier to think of polymatroids geometrically as in the above
examples. Indeed, every polymatroid arises as a multiset of flats of some
matroid in the manner described there [ 7, 8, 10].

This paper will focus on 2-polymatroids, where, for a positive integer k, a
E-polymatroid is a polymatroid (E, f) such that f{{e}) < k for all e in E. Thus
a 1-polymatroid is just the rank function of a matroid, and both of the examples
looked at earlier are 2-polymatroids. Geometrically, every 2-polymatroid can
be viewed as consisting of a multiset of lines, points, and loops of some matroid.

Two well-known classes of 2-polymatroids will receive the most attention
here. The members of the first class arise from graphs in the following way.
Let G be a graph having edge set E and, for all X C E, let fo(X) be [V(X)|,
the number of vertices of G that are incident with some edge in X. It is not
difficult to check that (E, fg) is indeed a 2-polymatroid. Comparing this 2-
polymatroid with the more familiar cycle matroid M{G) of G, we note that the
rank of X in M(G) is [V (X){—k(X) where k(X is the number of components
of the induced graph G[X]. Moreover, unlike M (G), the 2-polymatroid (E, f&}
uniquely determines GG up to the possible presence of isolated vertices.

Our second fundamental class of examples of 2-polymatroids arises from
matroids. Let M; and Ay be matroids on a common ground set E and, for
all X C E, let f(X) = ri(X) + ro(X) where »; is the rank function of M;.
Since each of (E,r;) and (E,r2) is a l-polymatroid, it is easy to show that
(B, 71 +72) is & 2-polymatroid.

2. Tutte-Grothendieck invariants for matroids

Much of the motivation for our results on 2-polymatroid isomorphism
invariants derives from the well-established theory of Tutte-Grothendieck in-
variants for matroids. This theory, which grew out of work of Tutte [14] for
graphs, is reviewed in detail in [3). We now briefly summarize some of the
relevant aspects of the theory.

Let 9 be a class of matroids that is closed under isomorphism and the tak-
ing of minors. A function 1 on MM taking values in a field K is an isomorphism
invariant if Y(M) = (N) whenever M = N.

Several mumbers that one can associate with a matroid M such as its
number of bases, its number of independent sets, and its number of spanning
sets obey the following two basic recursions:

(2.1) Y(M) = Y(M\e)p(M|{e}) if e is a separator (a loop or coloop) of M;
and

(2.2) for some fized non-zero members o and T of K,
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Y(M) = ap(M\e) + T (M /e)

if e is not a separator of M.

An isomorphism invariant on 9% that obeys (2.1) and (2.2) is called a gen-
eralized T-G invariont on 9. There are many well-known important examples
of such invariants; for instance, the chromatic polynomial is a generalized T-G
invariant on the class of graphic matroids as is the flow polynomial. One par-
ticularly attractive feature of these invariants is that they are all evaluations
of a certain universal invariant. To state this result formally, we shall need
another definition. For a matroid M having ground set F and rank function
r, the (matroid) rank generating function is given by

(2.3) s(M;u,0) = 3 uB-r(X)iX|-r(X),
XCE

or, equivalently,
(2.4) s(M;u,0) = 3 wE)-r(Xyr(B)-r*{E-X),
XCE

It is not difficult to show that this function is a generalized T-G invariant with
g = 7 = 1. Moreover, for the two single-element matroids, Uy ; and Uy 1, which
consist of a single coloop and a single loop, respectively,

s(Uh1;u,v) =u+1and s(Up;u,v) =v+ 1

These matroids are distinguished here because they are the only irreducible
matroids with respect to the operations in (2.1) and (2.2).

Extending a result of Brylawski {2}, Oxley and Welsh [12] proved that every
generalized T-G invariant is easily expressible in terms of the rank-generating
function:

(2.5) THEOREM. Let M be o class of matroids that is closed under isomor-
phism and the taking of minors. If 1 is o generalized T-G invariant from N
into o field K such that (U1 ,1) =z and P{Uy1) =y, then, for all M in M,

Q!)(M) = JlE(AE)I_T(AJ)TT(AJ)S(_R/I; i _ 1, 3 _ 1)
T [+)

This result is more usually stated in terms of the Tutte polynomial
H(M;z,y), where

t(M; ) =s(M;z—1,y—1).
However, the above form of the result extends more naturally to 2-polyma-

troids. Some well-known basic evaluations of the rank generating function are
as follows:

(2.6) s(Ad;1,0) is the number of independent sets of M;
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(2.7) s(M;0,0) is the number of bases of M; and
(2.8) s(M;0,1) is the number of spanning sets of M.
3. Isomorphism invariants for 2-polymatroids

QOur approach to developing a theory of isomorphism invariants for 2-
polymatroids will be to try to mimic the corresponding theory for matroids.
But there are several potential problems that one needs to solve.

Firstly, what does it mean for an element e to be a separator in a 2-
polymatroid (E, f)? Here we follow Cunningham [4] and define e to be a sepa-
ratorif f(e)+ f(E —e) = f{E). It should be noted that whereas the separators
in a matroid are of just two types, loops and points, those in a 2-polymatroid
are of three types: loops, points, and lines.

Next we need to define deletion and contraction in a 2-polymatroid (E, f).
Deletion is straightforward; we define it in terms of restriction of f: if
AC FEand X C E— A, then

' (N (X) = F(X).

For contraction, we again look to matroids. If 7ps is the rank function of a
matroid M on E and A C E, then the rank function of M/A is defined by

TM/A(X) =T‘M(XUA) —T‘M(A)

for all X C E— A. This suggests defining contraction in a 2-polymatroid (¥, f)
analogously, that is,

(F/4)(X) = f(X L 4) - F(4)

for all X € E — A [6]. 1t is not difficult to show that (F — A4, f/A) is indeed
a 2-polymatroid. Moreover, this definition of contraction is consistent with
the matroid definition in another semse. If the polymatroid f is represented
as a multiset E of flats of a matroid M and A C E, then f/A has a natural
representation as s multiset of fiats of M/ (Uscaa).

We now have analogues for 2-polymatroids of two of the three fundamental
matroid operations of deletion, contraction, and the taking of duals. The basic
link between these operations in the matroid case is

(3.1) M*\e = (M/e)".

Whittle [15] proposed that duality for 2-polymatroids should be an idempo-
tent operation for which the analogue of (3.1) always holds. Moreover, he
showed that if this occurs, that is, if, for all 2-polymatroids (E, f) and all e
in B, (f)* = f and f*\e = (f/e)*, then the dual (E, f*) of (E, f) must be
defined by
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(3.2) fX) =24X]+ f(E - X) - §(B)

for all X € E. The last equation should be compared with the formula for the
usual dual of a matroid rank function r, which is given by

™ (X)=1X|+7(E-X) -r(E).

Next we consider the elements in a 2-polymatroid that are not separators.
Such elements obey one of the following three conditions, where the dual f*
of f is its 2-polymatroid dual:

(i) f(E—e)=f(E)and f*(E—¢) = f(E)-1,
(i) f(E—¢) = f(B) — 1 and f*(E — ¢) = f~(E); and
(iii) f(E—e¢) = f(E) and f*(E — e) = f*(E).

Note that if f is a matroid rank function and f* denotes the rank function
of the dual matroid, then those elements obeying (i} and (ii) above are precisely
the loops and coloops, respectively, of the matroid. Conditions (i}, (i}, and
(iii) are equivalent to (i)', (i)', and (iii)’, respectively, where (i)’ - (iii)’ are as
follows:

(i) f(E—e)=f(E) and f(e) = 1;
(i) f(F—e)=f(E)—1and f(e) =2; and
(iii) f(E—e)= f(E)and f(e) =2
In view of the existence of these three different types of nonseparator
elements in 2-polymatroids, the definition of a generalized Tutte invariant for

2-polymatroids, which we shall give next, will allow three distinct variants on
the fundarnental deletion-contraction recursion.

Let 1 be a class of 2-polymatroids that is closed under isomorphism,
deletion, and contraction. Assume that 91 contains U1, Ui, and Usy, the
single-element 2-polymatroids of ranks zero, one, and two which correspond to
a loop, a point, and a line. An isomorphism invariant 1 on M is a generalized
Tutte invariant for 91 if, whenever f is a member of M having ground set E
and e € E, ¥(f) € C[z,y,2,0,b,¢,d, m,n| where

(3.3) Y(Usa) =z, $(Up) =y, and P(U1,1) = z
(3.4) ¥(f) =v(F\(E — e))9{f\e) if e is a separator of f;
and

(3.5)

ab(f\e) +byp(f/e) if f(E—e)= f(E) and f(e) = L;
() = cb(f\e) + dp(f/e) if f(E—e)=f(E)—1and fle) =2
mp(f\e) + np(f/e) i f(F—e)= f(E)and fle)=2.
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An important example of such an invariant is the 2-polymatroid rank gen-
erating function which is defined as follows:

(3.6) S(fiuu)= 3 wf B I2XI-1(X)
XCE

or, eguivalently,

(3.7) S(fiup) = 3 Wl BSOS @1 (B-X),
XCE

Indeed, it is not difficult to check that, S(f;u,v) is a generalized Tutte invariant
on the class of all 2-polymatroids having

z=14v? y=14+0% z2=u+v, m=n=1,a=d=1,b=v, andc=u.

The reader should note the similarity between (2.4) and (3.7), the dif-
ference being that, in the first, the duality is matroid duality while, in the
second, it is 2-polymatroid duality. One striking difference occurs here be-
tween S(f;u,v) and an arbitrary generalized T-G invariant for matroids. For
the latter, the four parameters, z,vy,o, and 7 are independent. But, for the
former the nine parameters, z,y,z,m,n, e, b, ¢, and d, are far from being inde-
pendent. A natural question here is whether some such dependence is forced
for all generalized Tutte invariants for 2-polymatroids. Our main result will
answer this. Before presenting it, we look at certain interesting evaluations
of 8(f;u,v) for the two special classes of 2-polymatroids distinguished earlier.
We begin with the analogues of (2.6}-(2.8).

Recall that, for a graph G, fo(X) = |V(X)| for all X C E(G). It is not
difficult to see that

(3.8) S{fe;1,0) is the number of matchings of G.

Moreover, if G has no isolated vertices, then

(3.9) S(fg;0,0) is the number of perfect matchings of G; and
(3.10) S{fz;0,1) is the number of subsets of E(G) that cover V{(G).

Now suppose that r; and rg are the rank functions of matroids My and
My on E. Then

(3.11) S(ry+re;1,0) is the number of common independent sets of My and
My;

(3.12) S(r1 +79;0,0) is the number of common bases of M; and My; and
(3.18) S{ri;+re;0,1) is the number of common spanning sets of M7 and M.

Generalizing the above, we note that, for an arbitrary 2-polymatroid

(B, f),



16 JAMES OXLEY AND GEQFF WHITTLE

(3.14) S(f;1,0) is the number of matchings of (E, f), and
(8.15) S(f;0,1) is the number of spanning sets of {E, f),

where a matching is a set X such that f(X) = 2|X|, while a spanning set is a
set ¥ for which f(Y) = f(E).

The 2-polymatroid rank generating function is closely related to the ma-
troid rank generating function. Indeed, if s(f;u,v) is defined for a 2-polyma-
troid f by simply replacing r by f in (2.3), then

(3.16) S{f;u,v) = v/ (Bds(f;uv=*, %) provided v # 0.

The last observation may suggest that S(f;u,v) contains little more in-
formation than s(f;u,v)}. In practice, however, several of the more interesting
evaluations of S(f;u,v) arise when v = 0. For instance, if G is a graph, then

(3.17) ufeEV2 g (fo;u=1/?,0) is the matching generating polynomial
> myu® of G where my, is the number of I~edge matchings of G.
k>0

If the graph G has n isolated vertices and ¢ = +/~1, then

(8.18) u™ i7¢(B) §(fq; —iu,0) is the matching defect palynomial of & (Lovész
and Plummer [9]).

Among the interesting properties of S{f;u,v) that are easily proved are
the following:

(8.19) S(f*5u,v) = S(fiv,u);

(3.20) S(£;1,1) = 2151;

(3.21) 5(f; —u, ~v) = (=) BV§(F; u, v); and

(3.22) S(f;2,u)=(1+ u2)|E| 1~ fE) provided u # 0.

The matching penerating and matching defect polynomials are just two
examples of several single-variable polynomials that arise as special cases of
S(f;u,v). For example, if G is a graph without isolated vertices and w(G) is
a random subgraph of G obtained by independently deleting each edge of &
with probability 1 — p, then

(3.23) (1 — p)IEI-FelB)/2 pia(B)/2 S ( fg;0,p'/2(1 — p)=1/2) is the probability
that w(G) has no isolated vertices.

Another evaluation of 5{f;u,v) is the stability polynomial A(G;p) of a
graph G, a polynomial that has been studied by a number of authors (see,
for example, Farr [5]). For G having no isolated vertices, A(G;p) is defined as
follows. Suppose that the vertices of G are chosen independently, each with
probability p. Then A(G;p) is the probability that the chosen set of vertices is

stable. Farr showed that A(G;p) = Y (—1)¥1 p/e(X), Hence
XCE
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(3.24) A(G;p) = (ip)e'B) § (fg; —ip~2,1) .

Finally we note that S(f;u,v) has several important applications to hy-
pergraphs. For instance,

(3.25) 7B S(f;~ir0) = 3 (=1} X1 MEIX) = P(f; )) where P(f;})
XCE

is the characteristic polynomial of f (Helgason [7]), which enumerates colour-
ings of a hypergraph in the same way that the chromatic polynomial enumer-
ates colourings in a graph.

Evidently 2-polymatroid rank generating functions arise in a wide variety
of contexts. The next theorem, the main result of the paper, indicates why
these functions are so pervasive by noting that S{f;u,v) is essentially the
universal Tutte invariant for 2-polymatroids.

(8.26) THEOREM. Let 1 be o generalized Tutte invariant on the class of all
2-polymatroids and suppose that at most two of ,y, 2,6,b,¢,d,m, and nn are
identically zero. Then one of the following occurs:
() a=m;d=n;mz=mn+chny=mn+bhz=>b+cm+#0;n#0; and
for all 2-polymatroids f, W(f) = mIBI-f(EV2 g (f; Ty W) ;
(ii) 2° = oy = ax + bz = cz + dy = mx -+ ny; yr = az + by, vz = cz + dz;
and, for all Z-polymatroids f, ¥(f) = Q(f) where
o) = { Y HEISIE
T ) BB (B it f(BE) = |E|

Of the two functions arising here, S{f; u, v) is, by now, quite familiar. The
other function @ is basically trivial. The only information it conveys about
(E, f) is the cardinality of F and the value of f(E). Thus, in the 2-polymatroid
case, just as in the matroid case, there is essentially a unique universal Tutte
invariant.

The proof of the theorem involves looking at a number of small 2-polyma-
troids. For ecach of these, one evaluates 9 in two different ways. For instance, if
(E, f) is represented geometrically by a single point on a line, then, on deleting
and contracting the line, we get

W) = c(e) + dp(Uo,1)
=cz +dy.

On the other hand, deleting and contracting the point gives

Wf) = ap(/) + bi(e)

= az + bz.

Thus, for ¢ to be well-defined,

cz -+ dy = ax + ba.
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By looking at several other examples, one obtains a mumber of other re-

lations between the nine variables involved. A detailed case analysis of these
relations leads eventually to the result. In fact, one can drop the restriction
that at most two of z,y, 2,a,b,¢,d,m, and n are zero for, in so doing, one
merely admits six more trivial invariants each of which is a monomial convey-
ing very limited information.

10.

11,

12.
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