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ABSTRACT
The original notion of potency – one of the core features underpin-
ningmany forms of multi-level modeling – has come under pressure
in several ways: First, since its inception new modeling challenges
have come to the fore that raise serious questions about classic
potency. Second, classic potency was developed in the context
of constructive modeling and does not accommodate exploratory
modeling, thus representing a major hindrance to the unification
of constructive and exploratory modeling in a multi-level model-
ing context. Third, as the discipline of multi-level modeling has
evolved, a number of alternative interpretations of potency have
emerged. In part, these are based on different underlying principles,
yet an explicit recognition of the respective differences at a founda-
tional level and an explicit discussion of the trade-offs involved has
been missing from the literature to date. In this paper, I identify
limitations of classic potency, propose to evolve it to a potency no-
tion based on a new foundation which – along with further novel
proposals – addresses the aforementioned challenges, and finally
conduct a comparison to three alternative definitions of potency.
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1 INTRODUCTION
Multi-level modeling has been receiving a growing level of interest
as a way of providing both flexibility and type-safety in modeling [7,
18]. The MODELS conference has already hosted five multi-level
modeling workshops within the “MULTI” workshop series, and the
recent Dagstuhl seminar 17492 was entirely devoted to multi-level
modeling [1].
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Deep modeling, one of the earliest approaches to multi-level
modeling, has inspired numerous related approaches, leading to

• employment in specific domains [15, 31],
• usage in industry [2, 17], and
• usage in standard definition initiatives [19].

Deep modeling can be thought of as being based on two major
features: The alignment of metalevels with domain levels (as op-
posed to an alignment with language definition layers) and deep
instantiation [6]. Both features have received widespread adoption
among alternative multi-level modeling approaches [18, 25]. How-
ever, the particular way in which deep instantiation (i.e., the ability
of an element to have an instantiation depth higher than one) is
realized differs considerably among various approaches to multi-
level modeling. In particular, the notion of potency is interpreted in
fundamentally different ways.

In general, the goal of potency is to provide a basis for organizing
model content through classification by providing the ability for
model elements to characterize the properties of their instances over
multiple levels of classification. In this paper I will focus specifically
on clabject potency which pertains to a modeling entity’s extent
of control over subjacent modeling levels. Other kinds of potency
which I will not consider here include field potency which pertains
to slots/attributes/operations (cf. durability [3] and intrinsic at-
tributes [15]), and value potency which pertains to the changeability
of attribute values over classification levels (cf. mutability [3]).

The original notion of clabject potency ([4]) has been an essen-
tially unmodified part of deep modeling to date and I will refer to
it in short as classic potency. I will demonstrate a number of unre-
solved questions associated with clabject potency by confronting it
with select modeling scenarios that have emerged from initiatives to
inject an ontological foundation into multi-level modeling [11, 12]
(see Sect. 3).

Another source of pressure on classic potency is the continued
convergence of constructive multi-level modeling and exploratory
modeling [9–11, 20, 21, 23, 26]. Classic potency is not applicable
in exploratory modeling contexts and if at least some of its ideas
are going to be relevant in future unified theories of multi-level
modeling then there is a need to identify an alternative notion of
potency that is not only tenable in both areas but provides value to
them (see Sect. 4).

Finally, the emergence of alternative potency-based modeling ap-
proaches over time has led to variants of potency notions that rest
on different foundations. Examples include “leap potency” [13],
“dual deep modeling” [27], “cross-level relations” [9] and “non-
potency elements” [17]. These alternatives not only implicitly sug-
gest that classic potency is not fit to address the concerns the al-
ternatives have been designed to address, but the rich plurality of
available alternatives potentially poses a wider problem of creating

https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1145/3239372.3239411


MODELS ’18, October 14–19, 2018, Copenhagen, Denmark Thomas Kühne

diversity that may hinder a cohesive growth of the discipline. Fur-
thermore, multi-level modeling users and researchers are currently
missing a clarification of the fundamental differences between the
various potency dialects.

Overall, the new ideas presented in this paper – based on novel
insights of how to

• understand differences between various potency definitions,
• define potency so that it meets recent challenges, and
• complement potency with additional modeling features.

– are intended to not only constitute a new potency variant fit to
support the development of new unifying approaches to construc-
tive and exploratory modeling, but, more importantly, inform future
discussions on comparing and designing potency-based approaches.

2 BACKGROUND
The properties relevant to the subsequent discussions are a model-
ing element’s order, level, and classic potency.

2.1 Order
The order of a modeling element can be regarded as a measure of
its set-theoretic classification power, since it corresponds to the
maximum depth of the “type-of” relationships originating from
an element. Comparable to the “height”-property of a tree, the
order of an element is therefore a measure of the maximum number
of classification relationships between the element and its most
remote instances, in all possible worlds. Pure instances, typically
representing domain particulars, have order zero, since they do not
classify any instances. Regular types in two-level technology have
order one, as their instances do not classify any elements, etc.

Figure 1 depicts various elements along with their order val-
ues. Note that Product has order one since even though it does
not directly classify any instances, it indirectly classifiesMobyDick
(through Book).

2.2 Level
The Dagstuhl seminar 17492 working group “Formal Foundations
and Ontology Integration”, comprising nine international research-
ers with a diverse representation of fields – observed that various
definitions of “level” may be used in a multi-level modeling con-
text [1]. No ruling on any preferred definitions was made but it was
explicitly recognized that organizing elements into levels always
follows one of either two schemes:

LS1: element.order = element.level, or less strictly
LS2: element.order ≤ element.level.

Figure 1 shows three levels, separated by two horizontal dashed
level boundaries. Note that all four elements on the left hand side
of Fig. 1 comply to both schemes. In contrast, the two elements on
the right hand side only comply to LS2.

In both schemes, the element level difference (∆level, i.e., the
relative level distance as measured by the difference in level val-
ues between elements in the same classification branch) between
related elements is identical but scheme LS2 enables elements to
be optionally shifted up the level hierarchy. I discuss some of the
ramifications of this distinction in Sect. 5.
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Figure 1: Level vs Order vs Potency

2.3 Classic Potency
Classic clabject potency controls the maximum number of instanti-
ation steps available for an element, i.e., its maximum instantiation
depth. This is achieved by codifying clabject potency as a non-
negative integer value and enforcing the rule that any instance of
a model element must have a potency that is one lower than that
of its type [4]. Although this description bears a striking resem-
blance to the definition of order (cf. Sect. 2.1), there is a notable
difference: While it is indeed rather common for an element to have
element.potency = element.order (cf. Fig. 1 in which this applies to
all elements but Product), in general, only the following holds:

P1: 0 ≤ element.potency ≤ element.order.
Element order obviously cannot be lower than classic potency but
classic potency semantics permits elements to have a potency that
is lower than their order. Two distinct kinds of model elements in
traditional object-oriented modeling are thus naturally associated
with a potency of zero:
Abstract classes (e.g., Product0) Only concrete classes may have

direct instances whereas abstract classes are restricted to
having indirect instances (through their subclasses).

Objects (e.g. MobyDick0) Such elements do not have any instances
in any shape or form.
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3 ISSUES WITH CLASSIC POTENCY
In this section I present three modeling scenarios that highlight a
number of unresolved questions surrounding classic potency.

3.1 Intermediate Abstract Class Inconsistency
Figure 2 shows a typical modeling scenario in which elements are
arranged in a powertype configuration [30]. Breed plays the role
of a powertype with respect to Dog, since all of Dog’s subclasses
are instances of Breed. The “{complete}” annotation near Corgi indi-
cates that the generalization set formed by the subclasses of Corgi
is “covering’ ([29]), i.e., the superset implied by Corgi is completely
partitioned by the subsets implied by PembrokeWelshCorgi and Cardi-
ganWelshCorgi. The corresponding modeling intention is to claim
that any corgi individual must either be a pembroke welsh corgi
or a cardigan welsh corgi. The superclass Corgi is only regarded as
a useful generalization to reference corgis in general (all of which
actually have a more specific type) whenever a distinction between
the two corgi varieties is not required.

Breed2

Dog0

Lassie0:Collie

{complete}

CardiganWelshCorgi1:BreedPembrokeWelshCorgi1:Breed

Susan0:PembrokeWelshCorgi

{complete}

Collie1:BreedCorgi?:Breed

Figure 2: Intermediate Abstract Class Inconsistency
In an analogous case the UML superstructure specification 2.1.1

observes that Corgi, given the “{complete}” annotation, is an abstract
class [28, p. 78]. This, in turn, suggests that Corgi should have
potency zero. However, according to classic potency rules, Corgi
should receive a potency of one (one less than Breed) because it is
declared to be an instance of Breed. Due to these conflicting forces
on the classic potency value, I marked the potency of Corgi as a
question mark. At best, classic potency restricts modeler choice
and, at worst, creates contradictory scenarios when interacting
with covering generalization sets.

It may seem straightforward to avoid the conflict described above
simply by not declaring Corgi to be an instance of Breed. This ap-
proach seems justifiable in that arguably Corgi has been relegated to
a pure abstract notion and only its subclasses represent actual dog
breeds. On the other hand, it would be useful for Corgi to receive all
(potentially deep) features defined by Breed. Therefore, this attempt
at a resolution shall not be considered to be a fully satisfactory
solution in general.

3.2 Potency Zero Ambiguity
Figure 3 shows a model that demonstrates an ambiguity inherent to
potency-zero elements according to classic potency. Deep modeling
forgoes the notion of an explicit {abstract} tag for classes, as potency-
zero classes essentially are abstract classes. As mentioned before,
both objects and abstract classes have zero potencies, ergo it is
not possible to conclude from a potency-zero value whether the
element concerned is an object or an abstract class.

Breed?

Corgi0:BreedQueenElizabethII0:Person
favouriteDogBreed

Person1

Figure 3: Potency Zero Ambiguity

In Fig. 3, Corgi’s potency zero value could potentially denote that
Corgi is an object, i.e., without further context, it is possible that
Corgi : Breed is meant to be one of the many favorite things of the
queen (e.g., among Blue : Color and Twinings: TeaSupplier) without
any potential to ever serve a classifier role. Yet, its potency zero
value does not preclude the possibility that it could be an abstract
class that has (possibly elided) concrete subclasses, with the latter
supplying instances that Corgi (indirectly) classifies (cf. Fig. 2).

Additionally, similar to the previous challenge, there is a poten-
tial conflict between the potency zero value of Corgi and the potency
value of Breed. It is likely that the preferred potency value for Breed
is two (cf. Fig. 2). However, this would require Corgi’s potency to
be one. I therefore put a question mark in place of Breed’s potency.

3.3 Implicit Subclass Anomaly
So far, I have only considered complete generalization sets, i.e.,
subclasses were always meant to comprehensively cover all possible
object types with the implication that no object may have the
superclass as its direct type.

In Fig. 4(a), I now consider a model that contains a partitioning of
dogs into subtypes that is declared to be incomplete. The respective
“{incomplete}” tag should not be confusedwithmodel elision inwhich
one presents a partial view on a complete model. The intent of
“{incomplete}” is rather to express the possibility of dogs existing that
are neither collies nor poodles [29, p. 123].

Figure 4(a) thus implicitly defines a third partitioning set – shown
as a shaded area in the set visualization on the right hand side of
Fig. 4(a) – containing all non-collie-non-poodle dogs. Arguably, the
openness of the generalization set implies a “catch-all” type that
provides a home to all dogs that are neither collies nor poodles.
Figure 4(b) explicitly shows such a type and attaches the name
“Mongrel” to it (disregarding any other pure dog breeds).

As it has been argued before, a class with a single “{complete}”
generalization set – here Dog in Fig. 4(b) – should be declared as
an abstract class, and hence should have potency zero. Yet, Dog in
Fig. 4(a) cannot have potency zero since it is the only type avail-
able to account for non-collie-non-poodle dogs. Again, there are
conflicting forces on the potency of Dog in Fig. 4(b) (cf. Sect. 3.1),
given that a consistent treatment of Dog’s potency in Fig. 4 seems
to be a reasonable expectation.
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(b)

(a)

Dog?

age : Integer

Collie1:Breed

hairLength : Integer

Poodle1:Breed

color : Color

Mongrel1

Dog?

age : Integer

{incomplete}

Collie1:Breed

hairLength : Integer

Poodle1:Breed

color : Color

{complete}

Figure 4: Implicit Subclass Anomaly

With respect to Fig. 4(b) suggesting a potency of zero, there is
apparently an undesirable language feature interaction between
classic potency and generalization set completeness. Such inter-
actions should be avoided in general as they suggest a potential
redundancy of language features and may lead to increased main-
tenance effort; singular changes may cause ripple-on changes due
to the need to maintain consistency between interacting features.

More fundamentally, however, from an ontological perspective
it is undesirable to treat Dog’s potency as a volatile feature. Instead
of Dog having a stable interpretation that encompasses all its fea-
tures, its potency apparently depends on the context as shown in
Figures 4(a) versus 4(b). This seems particularly undesirable as an
incomplete partitioning (Fig. 4(a)) might be regarded as being equiv-
alent to a complete one where an implicit “catch-all” type simply
is not shown. Taking this view, Figures 4(a) & 4(b) are essentially
depicting equivalent modeling scenarios, yet require different po-
tency values for Dog. In the absence of fully satisfactory choices for
both Dog occurrences in Fig. 4, I marked their potency values with
question marks.

3.4 Summary
Arguably, in the light of the discussion so far, any clabject potency
definition should fulfill at least the following requirements:

R1 support deep instantiation.
R2 be applicable in constructive and exploratorymodelingmodes.
R3 provide adequate expressiveness, i.e., adequately support

common modeling scenarios (cf. Sect. 3.1–3.3).
R4 sustain a concise language design.

I maintain that any potency definition that aims to be relevant in
the ongoing unification of constructive and exploratory modeling
should at least satisfy requirements R1-R4.

None of the existing potency variants support all of R1-R4 and
therefore one of the main contribution of this paper is to present a
new definition of potency that satisfies R1-R4.

4 CHARACTERIZATION-POTENCY
At first sight an analysis of the issues with classic potency presented
in Sect. 3.1-3.3 suggests that classic potency conflates the notions
of order and abstractness. In traditional object-oriented modeling
there is no conflict in making an order-one class abstract. Classic
potency on its own, on the other hand, does not appear to support
an independent combination of order and abstractness. For instance,
in Fig. 2, by virtue of being an instance of Breed2, Dog should be
an order-one/potency-one class. However, since the abstractness of
Dog cannot be simply asserted using an additional tag, but instead
is expressed using potency zero, a conflict is introduced.

Interestingly, all other challenges dissolve as well when replac-
ing classic potency with order, sometimes in combination with
abstractness. The logical conclusion could therefore be to simply
abandon the notion of potency, as distinct from order, since its only
difference to order (cf. Sect. 2.3) introduces seemingly avoidable
modeling conundrums. It turns out, though, that a new foundation
for potency addresses the challenges and is more expressive than
order-based schemes (see Sect. 5).

4.1 Characterization versus Classification
The crucial insight to understanding the issues with classic potency
is to establish a differentiation between order and potency despite
the considerable apparent similarities. Both notions relate to the
length of “instance-of” chains in classification trees and an initial
analysis only reveals that an element’s potency is allowed to be
smaller than its order (cf. Sect. 2.3). From that, it would be possible
to conclude that the use of potency merely affords restricting an
element’s descriptive power to be less than its natural order would
otherwise permit.

However, a much more profound difference can be established
between order and potency that paves the path to a new definition
of potency that not only resolves all previously mentioned issues
but also is compatible with exploratory modeling. The key insight
is to view order as pertaining to classification-depth and potency as
pertaining to instantiation-depth.
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In order to increase the clarity of the distinction between classi-
fication-depth and instantiation-depth, it is useful to change termi-
nology and replace “instantiation” with “incarnation” to emphasize
the creational aspect in contrast to passive classification. Likewise,
an instance of a class shall be referred to as an incarnation of the
class, if the instance was generated by the class (as would be the
norm in a constructive modeling mode). In constructive modeling,
usually the types come first and the instances are derived from
them. In contrast, in exploratory modeling, the instances usually
come first and the types are derived from them. As a result, the
notion of order aligns well with exploratory modeling because ab-
stractions like Book and Product naturally receive order-one status
due to classifying an existing instance likeMobyDick. In exploratory
modeling, Product and Book are thus not qualitatively differentiated
from each other as no distinction is made between a “direct classi-
fier” versus an “indirect classifier”. For instance, the nature of Book
would not be changed by introducing ClassicBook as a subclass of
Book and declaring MobyDick to be an instance of ClassicBook.

Note that in Fig. 1, Product – a class that would typically be
declared as {abstract} – has classification-depth one (order = 1), as
it indirectly classifies MobyDick. At the same time its instantiation-
depth is zero, since – due to its abstract nature – it cannot have
instances of its own (potency = 0).

Hence, the notion of potency aligns well with constructive mod-
eling because in a constructive context classes are typically viewed
as generating incarnations. In such a context, it is very natural
to deliberate as to which types may be pure generalizations (here
Product) and therefore are not designed to have any incarnations,
versus other concrete types which are meant to have incarnations
(here Book).

In OCL, the difference between incarnations (direct instances)
and indirect instances manifests itself in the presence of two opera-
tors, oclIsTypeOf and oclIsKindOf that can be applied to an object [32].
While the former only evaluates to true if the object is a direct in-
stance of the type, the latter also evaluates to true if the object is
an indirect instance of the type.

In particular, with a view to accommodating exploratory model-
ing, however, it is useful to not focus on different types of instance-
of relationships, but rather to recognize that the latter give rise to
different class roles, i.e., to characterizers (that have incarnations)
and classifiers (that have instances).

4.2 Accommodating Exploratory Modeling
Fortuitously, the distinction between characterizers and classifiers
that was already instrumental in unifying constructive and ex-
ploratory typing disciplines [23], can also be the basis of a new
definition of potency and thus achieve compatibility between po-
tency and exploratory modeling as well as constructive modeling.

The class roles of characterizer and classifier imply two differ-
ent kinds of “depth”-properties respectively: The characterization
depth of a class in a characterizer role is the maximum depth of
its incarnation relationships in all possible worlds. In contrast, the
classification depth of a class in a classifier role is its maximum
classification height with respect to all instance-of relationships
associated with it in all possible worlds. Therefore, a useful differ-
entiation between order and potency can be established by referring

to the classification depth of a class as its order, and the characteri-
zation depth of a class as its potency.

Note that since characterizer and classifer are roles a class can
play, rather than reflecting an intrinsic class property, it is possi-
ble for a single class to play both these roles simultaneously and
thus meaningfully assume different values for its order and its po-
tency respectively. Further, note that the differentiation of potency
from order implies different perspectives: While the order of an
element is determined by following instance-of chains from the
deepest instance upwards the element, the potency of an element
is determined by looking downwards along its incarnation chain.

These different perspectives make sense with respect to abstract
classes which “break” incarnation chains. Arriving at an abstract
class, when following incarnation chains downwards, results in the
termination of exploring this particular incarnation branch, since
abstract classes do not have incarnations themselves. In contrast,
when determining the order of an element, it makes sense to follow
incarnation chains upwards from the bottom to the element in ques-
tion thus bypassing all abstract classes. N.B., in general one would
follow instance-of relationships upwards, but in a level-respecting
hierarchy ([22]) the maximum classification depth of an element
coincides with the maximum height of incarnation relationships
when navigating upwards from instances. Exploiting this property
conveniently removes abstract classes from the equation when de-
termining classification depth. Determining the order of abstract
classes is then simply achieved by equating their order with the
order of their subclasses.

In the following I use the new potency foundation to inform
the resolution of the modeling challenges presented in 3.1–3.3. The
respective potency mechanism will henceforth be referred to as
characterization-potency.

4.3 Addressing the Intermediate Abstract Class
Inconsistency

The model in Fig. 2 entails two challenges:

(1) From an exploratory perspective, Corgi should be available
as a classifier. If a potency zero value were interpreted as
removing Corgi as a classifier, it would clash with the ex-
ploratory world view that Susan is an instance of Corgi in
the very same way it is an instance of PembrokeWelshCorgi.

(2) Corgi’s potency, which should be “one” with respect to Corgi
being an incarnation of Breed, should be “zero” with respect
to Corgi’s role as an abstract superclass.

The first of these two challenges, however, only arises when inter-
preting Corgi’s potency as the order of a classifier. When using the
previously established characterization depth semantics for Corgi’s
potency then there is no issue.

The first definition for characterization-potency is therefore

PD1: The potency of a clabject is a measure of the latter’s
maximum incarnation depth in all possible worlds.

Note the implied distinction between “potency” as a clabject prop-
erty, and “potency constraints” as denoted through attaching super-
script numbers to clabjects. The characterization-potency values
encountered in respective diagrams actually represent constraints
that establish an upper limit on an element’s potency.
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Also note that classic potency was intended as an “enabling”
property, i.e., in order for a class to have a characterization depth
higher than one, it was necessary to assign a potency value of two
or more to it. Subsequently, Gerbig observed that this complicated
a top-down approach for multi-level modeling as there may not
be a-priori knowledge as to what the characterization depth for a
class should be. In order to avoid repeated revisions to intermediate
potency values, the notion of star (∗) potency was conceived to
allow “wildcard” potency specifications [16].

I maintain that a “wildcard” essentially expresses non-committal,
and that it is hence more elegant to instead draw on the notion of
underspecification by interpreting the lack of any potency constraint
as the absence of any restriction of an element’s potency. This
approach avoids

(1) clarifying the difference between “no potency value” and
∗-potency.

(2) a proliferation of elements with ∗-potencies, as these are not
just found at the top level but may occur at any lower level
due to the possibility of repeatedly deferring a commitment
to a numeric potency by retaining “∗” as the potency value
in an incarnation.

(3) an inadequate sense of arbitrariness regarding the potency
value of the top element with a ∗-potency and an inadequate
sense of all elements with a ∗-potency in an incarnation
chain to posses the “same” potency.

(4) complicating potency semantics, since no special cases for
handling a “∗” value need to be defined.

A downside to the use of underspecification is that the absence
of any potency constraint can no longer represent a potentially
convenient context-specific default value, e.g. the level value an
element resides on. Given the fundamental importance of an ele-
ment’s potency, though, I argue it is beneficial to use respective
constraints explicitly, rather than only recording deviations to a
context-dependent default value.

For these reasons, elements should have unlimited potency (bound-
ed by their order), in the absence of any explicit potency constraints:

PD2: The potency of a clabject is equal to its order unless
further restricted by a potency constraint.

Addressing the second challenge listed above, requires fully
embracing explicit potency values as constraints, rather than dis-
playing (a potentially diminished) order. Classic potency was re-
quired to reduce by exactly one upon instantiation, as it was es-
sentially treated as an instantiation depth counter. In contrast,
characterization-potency only represents an upper bound on char-
acterization depth. The third new potency definition is therefore:

PD3: The potency of an incarnation is nonnegative and
smaller than the potency of its characterizer.

Overall, the new foundation for characterization-potency allows
Breed’s potency to be “two” in Fig. 2, despite the fact that Corgi’s
potency needs to be “zero” due to the generalization set constraint
(cf. Sect. 3.1), meaning that all issues associated with the “Interme-
diate Abstract Class Inconsistency” challenge can be resolved by
applying characterization-potency instead of classic potency.

4.4 Addressing the Potency Zero Ambiguity
Addressing the potency zero ambiguity discussed in Sect. 3.2 could
be achieved by adding an additional language feature to indicate
either abstractness or objectness. However, this would compromise
R4. Fortunately, a close examination of the suspected ambiguity
reveals that there are other options.

Note that the potency-zero element Corgi0 in Fig. 3 is declared
to be an instance of Breed2. Using characterization-potency instead
of classic potency it becomes possible to replace the question mark
in Fig. 3 with a “2” (cf. Fig. 2), as there is no longer an issue with
instantiating a potency-zero Corgi from a potency-two metatype
Breed. This apparent “jump” in potency values would only con-
stitute a problem if characterization-potency were locked with
order, as classic potency was. Even though classic potency was
already allowed to deviate from order in terms of absolute values,
it had to decrease exactly like order regarding relative decrements
(∆potency = ∆order). This was in accordance with sanity-enforcing
constraints, such as strict metamodeling ([5]) or the level-respecting
principle ([22]), that prevent an individual from being directly ob-
tained from a metatype. As such, classic potency intentionally for-
bids directly incarnating an order-zero element Corgi0 from an
order-two metatype Breed2. The new characterization-based foun-
dation for characterization-potency further decouples potency from
order, though, and thus supports Corgi0 : Breed2 and sanity-enforcing
frameworks at the same time. The crucial insight is that tightening
a characterization depth constraint more than strictly necessary
(i.e., decreasing potency more than by one) is not in conflict with
the order of the element being reduced by exactly one.

Note that since the order difference (∆order) between two ele-
ments in an instance-of relationship must be exactly one, one can
infer that Corgi0 cannot be an object, if Breed’s has potency two. An
element with potency two (here Breed2) must have an order of at
least two (cf. P1 in Sect. 2.3). This means that any of its incarnations
(here Corgi0) must have at least order one. In other words, if Breed
is a potency-two element, there is no potency zero ambiguity, as
the possibility for Corgi to be an object is ruled out.

A case could be made that a modeler should not be asked to
perform such inferences, but this demur could be met by tools that
support the (optional) display of an element’s order. The latter can
be mechanically computed from the incarnation tree in many cases
(if there are level-zero “anchors” to start from) and in others either a
lower bound could be shown or the multi-level modeling language
in question could be extended to support specifying objectness in
which case order could always be fully determined (see Sect. 5).

An ambiguity regarding Corgi’s nature could still occur if Breed’s
potency is chosen to be “one”. In the absence of any order infor-
mation about Breed1 this could technically allow entertaining the
idea of Corgi0 as an object. Even then, however, it is still possible to
ascertain whether Corgi is an object or an abstract type, with the
exception of one (rather pathological) case.

If Corgi0 were to represent an abstract type, one would expect it to
have a type facet, i.e., declare features, e.g., those that are common
to all its subtypes (cf. Fig. 2), such as age1(), coatColor1(), etc. From
the presence of such potency-one features one would immediately
be able to determine that Corgi0 cannot be an object but must be an
abstract type instead. In other words, the potency zero ambiguity
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may only arise if a potency-zero type has a vacuous type facet,
i.e. when it has no features with a potency higher than zero. Yet,
the absence of an effective type facet that imposes constraints on
instances, would imply that the only classifier role the type could
play would be a degenerate one. The utility of such a universal
classifier that does not stipulate any kind of requirements on its
instances is debatable and represents a weak case to support the
introduction of an additional language feature to capture objectness.

Finally, regarding the above described pathological case, ambi-
guity should not be immediately regarded as a shortcoming. Ambi-
guity can be an advantage when it can be usefully interpreted as
underspecification in order to avoid premature overcommitment.
Just as deep modeling employs level-agnosticism in order to obtain
a uniform notation and application of principles across all classi-
fication levels, one can regard rare occurrences of potency zero
ambiguity as a useful form of avoiding overspecification. In Fig. 3
it does not really matter whether Corgi has order zero, i.e., is an
object, or not. All that matters is that Corgi is referenced by the
queen as one of her favorite things. There is no natural require-
ment that the queen must only prefer particulars as opposed to
universals. Not even the strict metamodeling doctrine ([5]), which
is sometimes viewed as “too restrictive”, establishes a requirement
that all elements in a level need to have the same order.

4.5 Addressing the Implicit Subclass Anomaly
In Sect. 3.3, I questioned whether conflicting forces on Dog’s po-
tency in Figures 4(a) & 4(b) imply that the notion of potency is not
ontologically stable. The first insight towards addressing this chal-
lenge concerns the recognition of the actual property in question,
which is Dog’s abstractness rather than its potency. If there is no
resolution of the conflicting forces of whether or not Dog should be
an abstract class, a wider issue would be at stake in which case an
issue with potency – note that the new definition still subsumes
abstractness – would just constitute collateral damage.

The following analysis reveals that there is no need to modify
the new definition of characterization-potency. Instead, the analysis
ultimately suggests a potential symbiotic cohabitation between po-
tency and generalization set completeness rather than the hitherto
assumed mutually constraining feature interaction. First, however,
I resolve the conflicting forces on Dog’s abstractness.

In order to see why Figures 4(a) & 4(b) do not endanger the
stability of Dog’s abstractness (and hence potency value), it is nec-
essary to understand that they do not show equivalent scenarios.
Although Fig. 4(a) implies a complement-set, i.e., the set of all dogs
that are neither collies nor poodles, it does not imply a respective
(complement-) type. In particular in a nominal typing paradigm, the
existence of a set does not imply that there is a type – anonymous
or not – with said set as an extension.

The explicit introduction of type Mongrel in Fig. 4(a) therefore
establishes a qualitative difference that explains why Dog’s abstract-
ness/potency has to change. Instances of relevance to the modeler
must be associable with types contained in a model. Hence, in the
absence of any other dog breeds in Fig. 4(a), Dogmust have potency
“one” in order to accommodate dog incarnations that could be mon-
grels or, as a matter of fact, instances of an as yet unmentioned
pure breed, such as Labrador.

In contrast to Fig. 4(a), Fig. 4(b) specifies that all possible dog
kinds have been enumerated (through the “{complete}” tag), implying
that no dog should be accommodated as “just a dog”, meaning that
Dog’s potency should be “zero”. Note how cleanly the new definition
of characterization-potency handles the fact that while Dog0 is
unavailable as a characterizer (i.e., for creating dog incarnations or
accommodating instances that are “just dogs”), it may still be used
as an order-one classifier (i.e., can be used to generically refer to all
kinds of dog instances of a more specific type).

The above reasoning explains why an apparently “inconsistent”
potency assignment to Dog in Figures 4(a) & 4(b) is not a sign of an
ontologically unstable Dog conceptualization but rather accurately
reflects different modeler intents. As a matter of fact, however, a
further analysis suggests that a “{complete}” tag could be associated
with a more useful interpretation in frameworks that only allow
single classification, i.e., do not support instances with multiple
direct types.

4.5.1 Completeness Coupling. If completeness of a generaliza-
tion set is interpreted in the sense of the UML’s “covering” prop-
erty [29, Sect. 9.9.8.4, Tab. 9.1] then it establishes a strong coupling
between the completeness of a generalization set and the abstract-
ness of the superclass. It does not make sense for the superclass
to be concrete if at least one of its associated generalization sets
is marked as {complete}. Any instance of the superclass would be
forced to have a more specific type, i.e., one that is at least as spe-
cific as one of the subclasses in the {complete} generalization set. If,
on the other hand, all associated generalization sets are marked as
{incomplete} then the superclass cannot be abstract because it would
be impossible to accommodate instances that do not fit any of the
subclasses. Technically, such accommodation could be provided if
the abstract superclass had concrete superclasses. This would not
make any sense from an ontological perspective, though, as one
would characterize an instance with a generic type but deny it a
more specific characterization despite the fact that it is recruited
from the more specific sub-domain implied by the supertype and its
associated subtypes. As a result, I propose a different interpretation
of {complete} and {incomplete} tags which lifts the notion of an open
world assumption from the level of instances to the level of types.

Discussions regarding the completeness of generalization sets
are trivial when a closed world assumption can be made and the
modeler is omniscient. In this case all generalization sets could be
made complete without loss of generality. However, particularly
in exploratory contexts with an open world assumption, there is no
a priori knowledge about which instances exist in the universe of
discourse and which types may be needed to properly accommo-
date them. Only in special cases will it be possible to make an a
priori stipulation as to which generalization sets are complete. For
instance, an exclusive partitioning of the concept Screw into Left-
HandedScrew and RightHandedScrew is safe because there is absolute
certainty that no other forms of screws will require accommodation.

I propose to use “{complete}” tags in such cases only. In other
words, “completeness” would no longer be concerned with whether
instances need to potentially be accommodated by the supertype
or not. The latter aspect is addressed by making the supertype
either abstract or concrete. This frees the “completeness” of a gen-
eralization set to make an ontological commitment as to whether
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the specified subclasses are known to reliably exclude any other
possible subtypes, in all possible worlds.

The four possible combinations of generalization set complete-
ness and superclass abstractness are briefly discussed below.

4.5.2 Complete with Abstract/Concrete Supertype.
In Fig. 4(b), using the proposed revised understanding of “{complete}”,
the respective model just conveys that dog breeds not mentioned in
the model are irrelevant for all stakeholders involved. This denies
any dog of an unmentioned breed (such as Labrador) to ever be
characterized more specifically than Dog. However, there is still
a choice as to whether or not such dogs can be accommodated
(i.e., be accepted as an incarnation of a type in the model) or not.
If such dogs are considered to be inadmissible as Dogs then one
would choose Dog0 (cf. Fig. 4(b)); if they are admissible, one would
choose Dog1. Only the former case could hitherto be expressed
using the traditional interpretation based on “covering” subtypes.
The latter, new case represents the choice to make an ontological
commitment that the listed subtypes are the only ones that will
ever matter for any specific characterization while still allowing
the accommodation of incarnations that are “just dogs”.

Particularly in exploratory contexts, the above described control
supports an a priori determination of whether found instances are
going to be of relevance to the modeler or not, and if so, at what
level of specificity.

4.5.3 Incomplete with Abstract/Concrete Supertype.
The case of an incomplete generalization set and a concrete su-
pertype corresponds to Fig. 4(a). It is very similar to the case of
having a complete generalization set and a concrete supertype but
differs from the latter by not rejecting any other subtypes from
ever making sense. Thus one would choose “{incomplete}” rather
than “{complete}” whenever one wants to communicate that a fu-
ture extension to already mentioned subtypes is possible, if not
expected.

The remaining case, comprising an incomplete generalization set
and an abstract supertype, cannot be expressed with UML’s “cover-
ing” semantics either. A motivating example is a context (e.g., an
animal shelter) in which it is necessary to have specific knowledge
about a dog, i.e., what its actual breed is, because treating it generi-
cally as a Dog would be inadequate. In this case, assigning potency
zero to Dog in Fig. 4(a), makes Dog unavailable as a characterizer,
thus ruling out inadequate treatment, with the understanding that
only fully characterized dogs can be treated. Yet, such a choice now
does not imply the (false) ontological overcommitment of claiming
that the specified subtypes are “{complete}”, i.e., that all dogs in all
worlds may only have one of the mentioned breeds.

4.6 Summary
The analysis of the “implicit subclass anomaly” resulted in the
recognition of the fact that variable potency choices – affecting the
abstractness of a superclass – are not a sign of ontological instability
but a reflection of model semantics. This gives modelers the highly
desirable ability to explicitly communicate their intent. Further-
more, assuming a single classification framework, it became clear
that there is an unnecessary coupling between superclass abstract-
ness and generalization set completeness which could be addressed
by letting “completeness” refer to the exclusivity of subtypes, rather

than the coverage of subtypes. In a multiple classification frame-
work and the presence of multiple generalization sets associated to
one superclass, it would become necessary to restore some way to
mandate that an incarnation has to be recruited from a particular
generalization set. The “covering” approach accomplishes that, but
it appears that a separate notion, e.g., using a “{one-of}” tag, would
be preferable. The advantage would be that “{one-of}” could be com-
bined with either “{complete} or “{incomplete}, thus allowing to force
recruitment from a particular branch while giving the modelers the
option to specify whether or not the subtypes in that branch are
exclusive or open to future extension.

Overall, independently of the finer choices available for onto-
logical commitments regarding generalization sets, it has become
clear that the new foundation chosen for characterization-potency,
derived from ideas originally developed for unifying constructive
and exploratory typing disciplines, not only makes characterization-
potency fit for use in unified multi-level frameworks supporting
both constructive and exploratory modeling modes, it furthermore
addresses all issues that were previously identified regarding classic
potency (see Sect. 3).

5 COMPARISON
Analyzing the literature of potency-based multi-level modeling ap-
proaches reveals that there are four different categories of potency
interpretations:

level-potency: potency = level, e.g., [27].
order-potency: potency = order, e.g., [14, 25].

order-locked-potency: ∆potency = ∆order, e.g., [4].
decoupled-potency: potency ≤ order (cf. Sect. 4).

All of them support R1 (cf. Sect. 3.4), therefore the following dis-
cussion will focus on R2-R4.

5.1 Level-Potency
If an approach chooses to let potency coincide with level, it follows
(from P1 (cf. Sect. 2.3) and either LS1 or LS2 (cf. Sect. 2.2)) that
potency = order = level. All left-hand-side elements in Fig. 1, with
the exception of Product, comply to this scheme.

The notion of level-potency is distinguished from all other ap-
proaches in that it does not allow the two classes on the right hand
side of Fig. 1 to reside that high in the level hierarchy. This pair
would have to move down one level to comply with a level-potency
approach. Although HardwareItem appears to be a regular object
to all intents and purposes and would thus appear to be better
placed at the bottom level, not allowing the placement in Fig. 1 is
undesirable for a number of reasons.

First, HardwareItem has a different ontological foundation than or-
dinary objects, such as MobyDick. The categoryCount value captured
by HardwareItem (333) represents an abstract count (an aggregate
over all hardware sales). An analogous count value at the level of
an object residing at the level below would represent a concrete
count, such as the number of sales of a book. Second, HardwareItem
could entertain an association with Product or another class at Prod-
uct’s level. In a level-potency scheme, this would violate the strict
metamodeling doctrine, or other similar sanity-enforcing princi-
ples, because HardwareItem could not reside at the same level as its
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associated classes. Third, it would be a very reasonable design to
make ProductType a subclass of ProductCategory, and HardwareItem a
subclass of Product (cf. [24, Fig. 8]). Again, well-formedness schemes
intended to provide a means for sanity-checking models (such as
strict metamodeling), would only permit these subclass relationships
if they are intra-level relationships. Note that Brasileiro et al. found
that over 87% of the classes in Wikidata multi-level taxonomies
were involved in ill-formed configurations that could have been
picked up by employing sanity checking [8], giving credence to
the utility of establishing and enforcing well-formedness rules for
classification hierarchies.

5.2 Order-Potency
If an approach chooses to let potency coincide with order, it follows
– from P1 (cf. Sect. 2.3) and LS2 (cf. Sect. 2.2) – that potency = or-
der, and order ≤ level (choosing LS1 instead of LS2 would result
in the more constraining level-potency approach). By decoupling
potency and order from level, order-potency is therefore more
flexible and does not entail the aforementioned disadvantages of
level-potency. Furthermore, both order-potency and level-potency
– unlike classic potency – satisfy R2, i.e., they both cater to ex-
ploratory modeling as their foundation on order aligns well with
the classifier semantics assumed in exploratory modeling. On the
downside, however, they do not cater to constructive modeling, as
they do not support any notion of characterization, i.e., the distinc-
tion between the incarnations of a class and its (indirect) instances.
Only characterization-potency provides exploratory as well as con-
structive modelers with a means to differentiate between different
type roles – from pure abstractions, over to general descriptions, to
sufficiently characterizing types (see Sect. 4.1) – with all associated
benefits [23].

Note that both order-potency and level-potency would force
order-one class Product in Fig. 1 to have potency one and it would
therefore no longer be possible to encode abstractness of types with
a potency zero value. As a result, to enable abstractness of Prod-
uct, a different mechanism (e.g. employing an “{abstract}” tag) is re-
quired. This impacts negatively on R4, compared to characterization-
potency.

5.2.1 Ease of Use. Arguably though, language minimality as
represented by R4 is only a proxy for the ultimate goal of a lan-
guage/framework that modelers can use competently and with ease.
Solely considering the number of language constructs could be too
simplistic as it may also matter how easily language constructs can
be adequately applied.

Indeed, both order-potency and level-potency – due to offering
fewer degrees of freedom – would have made the potency value
discussions in Sect. 3 superfluous and thus may suggest superior
ease of use. All potency values would have been mechanically
derivable from the context, thus allowing the modeler to focus on
other activities. In this sense, level-potency is the easiest to apply
since it simplifies the potential handling of three variables – level,
order, and potency – to the handling of a single variable.

However, as discussed in Sect. 5.1, such a simplification comes
at the price of losing the option to enforce sanity-checking through
well-formedness rules and, in general, expressiveness. While the
much less restrictive characterization-potency approach requires

modelers to make more choices, the outcome is also better ontolo-
gically-motivated (see Sect. 4.5 & 5.1). Ease of use (cf. R4) therefore
needs to be balanced with expressiveness (cf. R3).

5.2.2 Expressiveness. Characterization-potency is the most ex-
pressive variant since decoupling potency from order allows to
control the characterization versus the classification aspects of a
type independently from each other (cf. Sect. 4.1). Furthermore, it
does not require an additional abstractness concept which would
impact on R4. While in all examples shown in this paper it is possi-
ble to achieve the effect of a “characterization-potency = 0” scenario
by using an {abstract} tag with level- or order-potency, a modeler
has to manually assign such tags. In contrast, characterization-
potency supports the automatic, i.e., predetermined attribution of
abstractness once a certain incarnation depth is reached. This affords
support for “deep characterization” as it is possible to essentially
set a “timer” on an element that controls when – in terms of in-
carnation depth – it is no longer considered to be suitable as a
characterizer. The latter property will typically correlate with the
depth of the element’s type facet, i.e., how high its feature-potency
values are. Characterization-potency thus affords modelers control
from higher levels over lower levels that neither order-potency nor
level-potency provide.

Characterization-potency on its own, however, is less expressive
in terms of constraining an element to be purely an object. In
general, the following modeling needs may apply:

a) there is never a pragmatic need to distinguish between ob-
jects and abstract classes.

b) it is satisfactory to infer the absence of objectness from the
presence of a non-vacuous type facet and/or the type’s po-
tency (cf. Sect. 4.4).

c) it is sometimes necessary to narrow down the role of an
element to that of a pure object.

If the first alternative applies, it is – in the sense of underspecifi-
cation (cf. Sect. 4.4) – desirable that the model in Fig. 3 can simply
express the fact that Corgi cannot have incarnations without espous-
ing this fact by invoking (and thus committing to) either objectness
or abstractness. It may well be the case that Corgi is initially only
conceived as an object, until it is discovered that it is ideally suited
to be a classifier for instances like Susan as well. A potency-based
characterization of Corgi then requires no modification whereas
more committal specifications would have to be revised.

If the second alternative from the above list applies then char-
acterization-potency on its own would be sufficient. If the third
alternative applies then characterization-potency would have to be
enhanced with an objectness construct.

A straightforward objectness design would employ a simple {ob-
ject} tag, however, a more general approach would be to have the
option of constraining order, i.e., classification depth. An “order = 0”
constraint would fully constrain the role of an element to that of an
object (in contrast to “potency = 0” which would allow the element
to have subclasses). An alternative is to constrain cardinality, i.e.,
the maximum number of instances an element may have. An ele-
ment with “cardinality = 0” is an object, an element with “cardinality
= 1” is a singleton type. Higher values and cardinality ranges could
be useful in the context of embedded systems which often imply
limitations on the number of elements of a certain type [33]. With
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any of the aforementioned additions, it would be possible to use
characterization-potency constraints for underspecification when
useful and a tighter specification when it is absolutely necessary to
exclude (super-)type roles for modeling elements.

5.3 Order-Locked-Potency
Classic potency uses a notion of potency that is distinct, but not en-
tirely decoupled, from order. It uses P1 and LS2, therefore resulting
in potency ≤ order ≤ level. Classic potency instantiation rules, how-
ever, establish a further constraint: ∆potency = ∆order, i.e., potency
must decrease along with order in a lock-step fashion. So while
classic potency offers more flexibility than either level-potency or
order-potency, it does not satisfy R3 (cf. Sect. 3).

5.4 Summary
It turns out that all four potency categories considered in this sec-
tion can be ordered according to the degrees of freedom they pro-
vide to modelers. Order-potency strictly subsumes level-potency,
i.e., it supports the same scenarios plus additional ones, thus adding
expressiveness. Order-locked potency adds furthermodeling scenar-
ios that can be supported but is not strictly adding to expressiveness.
While the idea of potency as being distinct from order opens up
further scenarios, it also implies some limitations if one chooses to
forgo an orthogonal notion of abstractness (cf. Sect. 3).

By virtue of being based on a new foundation, characterization-
potency provides the highest level of flexibility without suffering
the limitations of any of the other alternatives.

6 CONCLUSION
The original potency notion for multi-level modeling ([4]) has not
received any radical updates to its definition since its inception over
almost two decades ago and still performs well in the constructive
modeling context it was conceived for. However, over time, a num-
ber of modeling challenges have been identified (see Sect. 3.1-3.3)
that raised questions as to whether the very idea of potency was
tenable, in particular in exploratory modeling scenarios.

Characterization-potency, as proposed in this paper, can be re-
garded as an evolution of classic potency that rests on a new founda-
tion, drawing on a distinction between characterization and classifi-
cation which was originally developed for the purpose of unifying
constructive and exploratory typing disciplines [23]. Transferring
these concepts to multi-level modelling allowed the insight that
potency should not be understood as merely allowing an element
to relinquish (some of) its instantiation depth (cf. Sect. 2.3), but
rather as a means to control an element’s characterization depth.
This seemingly subtle difference has a number of deep reaching
consequences (cf. Sect. 4 & 5):

• characterization-potency cannot be misunderstood as con-
founding order with abstractness: An element may meaning-
fully have different values for order (its classification depth)
and potency (its characterization depth).

• when ∆potency is not synchronized with ∆order, many is-
sues with classic potency are resolved.

• potency values do not enable deep instantiation, but con-
strain characterization depth, and thus obviate ∗-potency.

• characterization-potency is uniquely expressive while main-
taining a minimal language design.

• separating characterization depth from classification depth
supports potency-based deep characterization in unified con-
structive and exploratory frameworks.

Due to the last aspect, characterization-potency allows both ex-
ploratory and constructive modelers to acknowledge and express
different type roles; from pure abstractions, over general and con-
crete descriptions, to sufficiently characterizing types. Unlike any
of the other potency variants, characterization-potency is not only
compatible with exploratory modeling but enriches it with deep
characterization control. Note that characterization is a meaningful
idea even in the absence of any constructive notion of instantiation
([23]), which makes characterization-potency applicable even in
purely exploratory approaches, such as ontologies.

Although the new foundation for characterization-potency and
the associated novel ideas regarding generalization set complete-
ness (cf. Sect. 4.5) and generalizations of objectness specification
(cf. Sect. 5.2.2) are contributions in their own right, the comparison
of characterization-potency to existing potency variants may be at
least as significant for future multi-level research.

Many multi-level modeling languages/frameworks have taken
classic potency ([4]) as an inspiration, leading to the proposal of a
considerable number of potency variants. However, to date compar-
isons between these variants have only observed their usage with
respect to select modeling scenarios. This paper presents the first
systematic analysis of four different categories of potency schemes
at a fundamental level (cf. Sect. 5), and thus, for the first time, ex-
plicates fundamental differences that hitherto were only implicitly
manifested.

In my analysis I established that existing potency schemes can
be ordered according to the degrees of freedom they provide to
modelers in terms of decoupling potency from order and level. I then
discussed the trade-offs involved in terms of language minimality,
ease of use, and expressiveness.

Summarizing, the presented work should improve multi-level
modeling approaches through a new notion of characterization-
potency, further the unification of exploratory and constructive
modeling by providing deep characterization, and provide a new
basis for future comparisons and further developments. The novel
insights obtained through both designing characterization-potency
and investigating the relationships between potency, order, and level
should guide future efforts in language design and will hopefully
lead to a consolidation of potency notions rather than further pro-
liferation. Such an effect could prove to be crucial for the future
growth of multi-level modeling.
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