
A Unifying Approach to Connections
for Multi-Level Modeling

Colin Atkinson, Ralph Gerbig
University of Mannheim

Software Engineering Group
Mannheim, Germany

Email: {atkinson, gerbig}@informatik.uni-mannheim.de

Thomas Kühne
Victoria University of Wellington

School of Engineering and Computer Science
Wellington, New Zealand
Email: tk@ecs.vuw.ac.nz

Abstract—Capturing relationships between concepts in a do-
main is as important as capturing the concepts themselves.
Modeling languages reflect this by providing connections with
rich semantics, such as associations and links, thus providing a
key advantage over approaches that support relationships with
simple references only. While connections for two-level modeling
(e.g. in the UML) have enjoyed a stable design for a considerable
time, the same cannot be said for connections in multi-level
modeling languages. As interest in multi-level modeling grows, it
is important to provide a comprehensive design for connections
that not only adheres to multi-level principles such as level-
agnosticism and explicit level organization, but also supports
deep characterization, i.e., the ability to specify level content
beyond one level boundary. In this paper we propose a unifying
conceptual model for connections whose expressiveness and
scalability does not come at the cost of concept proliferation.

I. INTRODUCTION

As the principles and features of multi-level modeling [1]
crystallized over the years from papers published by the mod-
eling community, attention naturally focused on elaborating
the core features of the approach first. Thus, ideas such as us-
ing an explicit level organization principle, integrating instance
and type facets, and deep characterization, were naturally first
elaborated around entities (clabjects) that are typically at the
center of discussions in modeling. The relationships between
these entities, however, have generally received much less
attention and are therefore comparatively under-explored. This
lack of attention to the structure and semantics of relationships
in multi-level modeling has not posed a significant problem
until now because the vast majority of multi-level models pub-
lished to date have been small examples devised to illustrate
features of a particular language or tool. While these examples
made use of relationships, the latter were not expanded upon,
with modelers simply applying the concepts and conventions
associated with UML relationships in the way that seemed the
most appropriate for their particular modelling situation. Most
approaches have opted to treat relationships as clabjects [2],
[3], [4] but only a few authors have given relationships explicit
consideration [5], [6], [7].

This historical “second class” treatment of relationships in
multi-level modeling has led to a divergence of relationship
modeling approaches, with differences regarding both the
conceptual structure of relationships and their presentation.

To provide a solid foundation for the continued evolution and
adoption of multi-level modeling it is therefore desirable to
define a unified approach for conceptualizing and representing
relationships in multi-level modeling which is compatible to
the greatest extent possible with UML concepts and conven-
tions, and clarifies the semantics of relationship features that
have to date not be defined in a multi-level context.

Pursuing these goals requires a number of challenges to
be tackled: First, any successful design for relationships in
multi-level modeling should be able to support the creation
of large scale models. This means devising a relationship
referencing scheme that goes beyond traditional simple nam-
ing conventions which only work for small models. Second,
opportunities for the consolidation and unification of current
UML relationship concepts within an overall simpler level-
agnostic conceptualization should be exploited. Just like the
single notion of a multi-level clabject subsumed UML classes,
stereotypes, powertypes, and tagged values in the past [8], a
well-designed multi-level relationship approach has the poten-
tial of providing conceptual simplification while retaining, or
even increasing, expressiveness. Third, features from multi-
level modeling, such as deep characterization [2], should be
adapted for relationships in a manner that is intuitive and
expressive at the same time. Fourth, new terminology is
required that acknowledges the different requirements of a
multi-level modeling context compared to traditional two-level
approaches. This will enable future discussions to be held with
more precision and clarity.

The goal of this paper is to discuss the issues involved
in meeting these challenges and identify the key features
of a unified conceptualization of relationships in multi-level
modeling, which include –

• natural terminology,
• a clean and simple conceptual underpinning,
• sound and expressive semantics, and
• an intuitive notation.

In the rest of the paper we refer to explicit relationships
between entities at any level as connections. This serves to
distinguish them from mere object-owned references/pointers
and avoids any traditional absolute type/instance connotations
that are attached to terms like “association” and “link”.

We regard any such UML relationship as a connection,
including dependencies, specializations, higher-arity associa-
tions, etc. and capture their different nature, i.e., intra-level
significance only vs impact on levels below, through the notion
of connection potency, analogous to entities [2].

We refer to the ends of connections as monikers because
they are essentially origin-specific aliases to entities that may
be known through other names to other entities. We prefer this
to the widely used term “role name” since the latter implies a
“role” / “player” distinction with “roles” having much deeper
semantics compared to aliases [9]. We are not arguing against
an explicit recognition of proper “roles”, though, and our
proposal is designed to allow their incorporation in the future.

In the following we identify challenges associated with
connections in multi-level modeling (Sect. II), present a uni-
fying connections approach (Sect. III), evaluate the proposed
approach (Sect. IV), discuss related work (Sect. V), and finally
conclude (Sect. VI).

II. ISSUES WITH EXISTING CONNECTION APPROACHES

In this section we identify open challenges in how connec-
tions are supported in multi-level models to date with a focus
on scalability and expressiveness.

A. Existing Connection Usage Styles

car

carType

myCar

Beetle

CarType

B53

WheelType

wheel

wheel

wheel
frontRight

SteelWheel

Fig. 1. Two Common Connection Identification Styles

The UML provides two basic ways to adorn connections
with names. The first is to label the association itself with
its association name, which is often used in combination
with a triangular reading-direction indicator [10]. The second
is to label the ends of the connection with their so called
“association end names” or “role names” in order to define
the names by which connectees refer to each other [10].
As discussed earlier, we will use the terms connection name
and connection monikers for connection names and their end
names respectively.

The UML places no constraints on how these labeling
mechanisms can be used, so for a binary connection any
combination is possible, ranging from a name with two
monikers to no label at all. In the latter case the names of the
connectees need to be sufficient to distinguish one connection
from others in a model. The UML furthermore specifies no
constraints on label names for instance specifications, e.g. links
that are supposed to be instances of connection types such as
associations. Even the use of underlining of labels for such

instances is optional when the context already indicates that
an instance is being labeled [10, p. 84]

As a result, two main styles of using connection names
and/or monikers can be observed in modeling practice. The
right hand side of Fig. 1 show the widely used approach of us-
ing the same moniker (here “wheel”) at all levels. The advan-
tage of this approach is that it naturally communicates which
connections are meant to be in a type-instance relationship.
Its disadvantage is that the required name constancy prevents
natural monikers for intra-level navigation. For instance, in
Fig. 1 every navigation at any level must use the same wheel
moniker whether this is suitable for this particular level or not.

The left hand side of Fig. 1 show the alternative of allowing
moniker flexibility, i.e., supporting level-dedicated moniker
choices. This allows new monikers to be introduced for every
individual connection, and thus intra-level navigation to be
expressed using natural names. The downside, however, is
that instance-of relationships between connections now have
to be indicated in a different manner as it is no longer clear
whether there is an intended classification relationship, and if
so, between which connections.

These aforementioned “name constancy” vs “flexibilty”
styles have been used frequently for both connection names
and monikers to date because the models were so small that
it was possible to use explicit instance-of dependencies as in
Fig. 1 or address a lack of name constancy for monikers by
choosing name constancy for connection names, or vice versa.
However, these approaches do not scale up to larger models
with a high proliferation of connections.

B. Connection Type Identification

A model does not need to get much larger than the
previous example for it to become a challenge to achieve
an instance/type correspondence between connections without
resorting to explicit instance-of arrows which would in turn
lead to an opaque criss-crossing of lines, making this ap-
proach unscaleable. Fig. 2 shows a slightly elaborated version
of the previous example and demonstrates that resorting to
name constancy for connection names in order to establish
instance/type connections for connections that use a flexible
moniker scheme is not viable in general. In the example, the
connection name “has” cannot be used to uniquely identify
the type of a connection between instances of Beetle and
SteelWheel because there are two connections with the name
“has” between Beetle and SteelWheel and while the use of
“front” and “rear” prefixes in the monikers at the instance
level provide a clue to a human reader, they do not to a tool.

C. Connection Diversification

Figure 2 highlights a further challenge which we refer to
as connection diversification. Note how the name constancy
employed in the right hand side of Fig. 1 is highly suggestive
of the modeler’s intent to specify at the level of WheelType
that navigation to wheels such as frontRight at the bottom
level should be supported through the wheel moniker. In
other words, the modeler’s intent is guaranteeing intra-level

WheelType

front

wheel car

car

car has rear

frW
car

car

car

car

SeatType
has seatType car

front

rear

frontRight car

frontLeft car

rearRight car

rearLeft car

CarType

B53
flW

rrW

rlW

frS

flS

rrS

rlS

car

car

frontRight

frontLeft

rearRight

rearLeft

has

has

has

has

has

has

has

has

has

has

has

has

wheel car has

Beetle SteelWheel

N

M1

M2

S

FoamSeat

Fig. 2. Connection Proliferation

navigability at the bottom level from two levels above, i.e.,
achieve deep characterization [2].

It is not immediately clear how the same generic bottom-
level navigation can be supported in the model shown in Fig. 2.
Here, bottom-level navigation to instances of SteelWheel from
instances of Beetle is naturally supported through both the
front and rear monikers, each referencing a set of two steel
wheels respectively when navigating from B53. Yet, due to
the diversification of the car–has–wheel connection between
CarType and WheelType into both car–has–front and car–has–
rear between Beetle and SteelWheel, it is not clear how a
modeler can specify that B53 .wheel should reference all four
instances of SteelWheel unless they add a super-connection
car–has–wheel between Beetle and SteelWheel. Note that here
we are using “B53 .wheel” as a shortcut for “evaluating an
OCL expression self .wheel in the context of Beetle for the
particular B53 instance” but also believe that a multi-level
version of OCL should support the use of “B53 .wheel”, i.e.,
allow a specific navigation origin to be nominated.

We refer to a modeling scenario as featuring connection
diversification when the intent of introducing more specialized
connections is not to replace a more general connection but
to essentially partition the general connection so that the
same instances can be navigated to via a general navigation
path (here wheel) or (to subsets of them) through specialized
navigation paths (here front & rear).

Clearly, modelers should be able to express whether they
intend connection diversification versus other cases like letting
general and specialised connection instances coexist, or letting
the latter completely replace the former, i.e., disallow general
navigation paths altogether. For two-level technology such as
the UML, association inheritance (c.f. Fig. 2) and/or associa-
tion end “{subsets . . .}” & “{redefines . . .}” constraints have
been used to express one of the above modeling alternatives.
We aim to allow modelers to make the same choices in a more
intuitive manner (c.f. Sect. III).

D. Deep Multiplicities

Another feature of modeling languages that needs to be con-
servatively embedded in a multi-level classification hierarchies
is multiplicity constraints. The simplest approach is to interpret
them purely in the traditional, shallow way as only affecting
the level immediately below. Under this interpretation, an
appropriate multiplicity value for N in Fig. 2 would be two,
because the respective connection is intended to be the type
for both car–has–front and car–has–rear.

However, it is desirable to allow modelers to specify mul-
tiplicity constraints that target levels beyond the immediate
level below them (c.f. Nivel [7]). For example, it would be
useful at the top level of Fig. 2 to specify that any instance of
an instance of CarType needs to be connected to four wheels.
In this case, N should be interpreted as a deep multiplicity
constraint and should receive the value four. A complete design
for connections should address both of these conflicting goals.

E. Connection Inheritance

If N is interpreted as a deep multiplicity constraint (i.e.
a constraint on instances of instances of WheelType) more
questions about the relationship of N to S, M1, and M2 in
Fig. 2 arise. In case the modeler intends connection diversi-
fication, i.e., a partitioning of the car–has–wheel connection
at the top level by the two specialized connections then it
would seem appropriate to require that S = M1 + M2 and
N = S. It would be possible to enforce such constraints
between multiplicity values if it were possible for modelers
to unambiguously specify that connection diversification is
indeed intended instead of one of the alternatives mentioned
in Sect. II-C.

In the following two sections we propose ways of enhancing
connections in multi-level modeling to allow users to be more
expressive about their exact intent, i.e., specify more precise
constraints about when connection instances can be considered
well-formed.

III. UNIFYING CONNECTIONS DESIGN

In order to attain the best possible modeling pragmatics we
considered simplicity, parsimony, expressiveness, stability, and
level-agnosticism to be the main forces in the design space.
We also aimed at conservatism, i.e. achieving compatibility
to the UML and other established languages. Without loss of
generality, in the following we will consider binary relation-
ships only.

A. Unifying Conceptual Model

Connection
name : String
level : Int
potency : Int
readDirection : Bool
type : Connection
moniker [2] : String
endPotency [2] : Int
mult-lower [2] : Int
mult-upper [2] : Int
connectee [2] : Object

(a) atomic model

Connection
name : String
level : Int
potency : Int
readDirection : Bool
type : Connection

name : String
level : Int
potency : Int
mult-lower : Int
mult-upper : Int
connectee : Object

2

(b) reified model

Connection End

Connection
name : String
level : Int
potency : Int
readDirection : Bool
type : Connection

name : String
potency : Int
mult-lower : Int
mult-upper : Int
connectee : Object

2

Connection End

(c) composite model

Fig. 3. Possible Conceptual Models for Connections

In order for a notation to be used by modelers to correctly
express their modeling intents and allow them to correctly read
multi-level models produced by others, modelers need to have
an adequate mental model of the conceptual underpinning of
the notation. In the following discussion, we are expressly not
concerned with representation choices at the implementation
level, and only focus on how modelers may best understand
and apply the mechanics of connections.

A key question that arises when defining the conceptual
model for multi-level connections is whether to regard con-
nection ends as intrinsic features of the connection (atomic
approach), or whether to treat them as first-class entities in
their own right (reified approach). These two alternatives are
depicted schematically in Figs. 3 (a) & (b).

1) Connection Ends as Attributes: Gutheil et. al. discussed
the merits of these approaches in the context of designing
a multi-level modeling language and came to the conclusion
that the atomic model was the more suitable [5]. According
to Gutheil et. al. its advantages include –

a) more natural subsumption of atomic dependencies and
association classes.

b) no need to manage the consistency between a connection
and its separate ends.

c) more natural error reporting as errors will always be
associated with the connection rather than potentially
being focused on a connection end only.

wheel1 has0

has1 car1 : car2

car1

front 1: wheel2

has1 car1 : car2

Beetle Steel
Wheel

rear1 : wheel2

B53 53rS1
: has1 car0 53rearRight0 : rear1

WheelType
has2 car2 wheel2

CarType

Fig. 4. Connection Specialisation

2) Connection Ends as First-Class Citizens: One of the
main disadvantages of the atomic model described above is
that it does not lend itself to addressing the connection type
specification challenge raised in Sect. II-B by using an instan-
tiation notation “name:type” in conjunction with monikers. De
Lara et al. use this natural style of adding a type specification
to the name of a moniker [3, Fig. 6] and thus essentially open
up the way for achieving moniker naming flexibility while
supporting a means for connection type identification. Fig. 4
shows how B53 can refer to 53rS1 through 53rearRight while
the type specification “: rear1” contributes to identifying car1–
has1–rear1 as the connection type at the level above.

The typing fragments “: has1” and “: rear1 “ for the bottom-
most connection in Fig. 4 can be regarded as partial type spec-
ifications that in combination identify the intended connection
type at the level above. This view is difficult to reconcile
with the atomic model that assumes connections to be opaque
entities and as such would always require a connection to
be fully identified, e.g., as “: car1–has1–rear1”, instead of
supporting separate references to name and monikers.

Simply adopting the view that connection ends should be
regarded as first-class entities, however, would not only imply
losing the advantages of the atomic approach (c.f. Sect. III-A1)
but would also have undesirable consequences for the meaning
of connection end potencies. We argue that in order to be of
optimal value in the context of connections, deep monikers
should make guarantees about supported navigation paths
at levels further down. Just like an association end name
“rearWheel” in the UML supports navigation to rear wheel
instances at the instance level, a moniker with potency two
(e.g., “wheel2”) should define the same navigation support
at two levels further down. Yet, this existential semantics for
potency values is only associated with fields, i.e., dependent
features. In contrast, the semantics for potency values for first-
class entities (e.g., clabjects) is just an instantiation depth limit,
with no existential guarantees involved.

As a result, an approach that attempts to be parsimonious
and unifying with respect to entities and connections must
assume connection ends to be dependent features of connec-

tions if monikers are intended to have potency values on their
own. Overall, this poses the dilemma of whether to opt for the
atomic or the reified model, both having obvious advantages,
but being apparently incompatible with each other.

3) Connection Ends as Essential Parts: We posit it is pos-
sible to get the “best of both worlds” by adopting a conceptual
model where connections are indeed only represented by one
clabject, but where this clabject has connection ends within it
as internal structure.

Figure 3 (c) shows the respective conceptual model in
which the connections are reified but are regarded as strict
components of the connection clabject which, according to
composition semantics [10] cannot be created or deleted
independently. From one perspective such a conceptual model
adheres to the atomic model, since there is only one outer
clabject per connection, but from another perspective it can be
seen as supporting the reified approach and hence adequately
support individual referencing of ends.

Note that composite connection ends do not have their own
“level” field, as they are always at the same level as the
enclosing connection. It is also easy to extend this model
to n-ary connections by simply changing the multiplicity on
Connection End to “2..*”. The details of Fig. 3 are to be
considered as indicative only as its purpose is to illustrate
major differences between the alternatives.

B. Basic Connection End Semantics

We treat connection ends just like connections and clabjects
in that we allow them to have potency values of their own.
Hence, a connection has an overall potency, denoted with the
potency value associated with the connection name, and its
ends have their particular potency values as well.

Fig. 4 shows an example of connection specialization which,
like in the UML, allows modelers to introduce special connec-
tion cases (here car1–has1–front1 and car1–has1–rear1) while
still expressing that they can be understood as flavors of a
general connection type (car1–has0–wheel1). Unlike in the
UML, however, the use of potency values for car1–has0–
wheel1 in Fig. 4, clearly communicates that it is not possible
for beetles and steel wheels to participate in any car1–has0–
wheel1 connections, as the respective connection type itself has
potency zero, expressed by choosing “has0” as the connector
designator.

The potency-one connection ends of car1–has0–wheel1,
however, communicate that any concrete specialization of
car1–has0–wheel1, such as car1–has1–rear1, will support ac-
cess to connectees at the level below via names car and front
respectively, in addition to the connection names that are
introduced by the specialized connection. A modeler using
the navigation path car1–has0–wheel1 starting from a Beetle
instance, would obtain access to the union of all front and rear
wheels connected to the Beetle instance.

Had the “wheel” moniker of car1–has0–wheel1 been spec-
ified with potency zero as well, no such general navigability
would have been enabled. Steel wheels would only be reach-
able from beetles through front and rear respectively.

C. Connection Conformance

Both clabjects and connections resolve the traditional
type/instance duality by comprising instance as well as type
facets [2]. The conformance of a connection instance to a
connection type is hence analogous to conformance of entity
instances to their entity types [11].

In Fig. 4, connection instance car0– –53rearRight0 con-
forms to car1–has1–rear1 because –

• the connection instance makes a partial type specification
(“: has1”) in its “name” compartment that matches the
name and potency of the connection type (“has1”),

• the connection instance end 53rearRight0 makes a partial
type specification (“: rear1”) that matches the name and
potency of the corresponding connection end of the
connection type (“rear1”),

• the connection instance end car does not make a partial
type specification that is incompatible with the name of
the corresponding connection end of the connection type
(“car1”).

The general principle used to determine conformance is that an
instance must satisfy all constraints implied by its type. Hence
the absence of a type specification fragment is not an issue, as
long as the combination of all partial type specifications still
uniquely identifies a connection type (c.f. Sect. III-D).

As to be expected, the incrementation of potency values
for connections and their ends works according to standard
clabject semantics [2], i.e., analogously to entities and their
features respectively. Fig. 4 shows a connection car2–has2–
wheel2 at the top level with potency two and a corresponding
connection instance car1–has1–front1 with potency one.

Note that the car1–has1–front1 connection is declared both
to be an instance of car2–has2–wheel2 at the level above and
to be a specialization of connection car1–has0–wheel1 in its
own level. Fig. 4 thus demonstrates the occurrence of the
powertype pattern [12] for connections rather than for entities.
The potency-zero connection car1–has0–wheel1 ensures that
car1–has1–front1 and car1–has1–rear1 are partitioning the su-
perset implied by car1–has0–wheel1, thus giving the modeller
a means to declare that both “front” and “rear” connection
specializations are meant to be a diversification of the top-
level connection car2–has2–wheel2.

Analogous to clabjects, however, the use of a powertype
pattern configuration is not mandatory to support connection
diversification. Deep connections such as car2–has2–wheel2 do
not need additional supertypes, such as car1–has0–wheel1, in
order to characterize connection instances beyond one level
boundary. In the example in Fig. 4, a connection instance
with the type car1–has1–front1 would support bottom-level
navigation using a wheel moniker, even in the absence of the
supertype connection, as the former type is declared to be
an instance of car2–has2–wheel2. In other words, the use of
potency two for car2–has2–wheel2 at the topmost level in the
example ensures that the car0–has0–wheel0 access path from
beetles to their wheels is available at the bottommost level in
addition to the “front” and “right” paths.

D. Connection Identification

has1 car1

SteelWheel rear1

53rS1 : SteelWheel
: has1 53b : car1 53rR0 : rear1

connector
name & potency

connectee1
name & potency

end1
name & potency

connectee2
name & potency

end2
name & potency

B53 : Beetle

Beetle

Fig. 5. Connection Designation

As mentioned earlier, using explicit “instance-of ” depen-
dencies between connection instances and their types is neither
practical nor desirable in terms of keeping diagrams unclut-
tered. Therefore the challenge arises as to how to specify
a connection’s type without “pointing” at the latter with an
explicit “instance-of ” relationship.

We propose a type specification approach in which the
intended connector type is uniquely identified by combining
fragments of information from the connector’s parts and, if
necessary, the names of the connectees. Fig. 5 illustrates the
approach by showing a connection instance (big shaded area at
the bottom) and its intended connector type (big shaded area
at the top). The connection instance uses information from the
connection type parts “: Beetle”, “: car1”, “: has1”, “: rear1”,
and “: SteelWheel” to uniquely specify the connector type
car1–has1–rear1 with the connectees Beetle and SteelWheel.
In general, a connection designator can include potency values
as well as names from these parts.

The modeler should be able to provide only as much of a
connection type specification as needed in a particular scenario
by supplying a partial type specification only. In some cases it
will be sufficient to simply specify the connection type’s name
(here “has”) and potentially its potency in order to uniquely
identify it. In general, however, the specification of connection
type end names and/or their potencies, and even consideration
of the connectee types (here Beetle & SteelWheel) may be
necessary to completely disambiguate the intended connection
type. Thus, any partial connection type specification involving
one or more of the specification fragments highlighted in
Fig. 5 is valid as long as in combination they uniquely
identify a connection type (c.f. Fig. 6, containing a variety of
examples for partial type specifications). There is no need to
unconditionally mandate the presence of any of the fragments
or assign higher significance to one of them. In practice,
however, we expect the quality of error messages by a tool
to be improved by introducing a matching heuristic. The goal
of such a heuristic would be to increase the likelihood that
the fragment an error is reported on is indeed the one that
the user would want to change in order to identify an existing
connection type.

One approach would be to associate priority values to the
type specification fragments in order to achieve matching

precedence. For instance, if a connection type’s name (here
“has”) is specified, it could reduce the candidate set of
connection types first, before any more fragment matching
is undertaken. The tool could thus report non-conformance
of a specified connection type end as opposed to matching
the end specification with a different connection type first
and hence regarding the specified type name to be non-
conforming. An alternative matching heuristic would be to
select the connection type that yields the largest matching
fragment set and report any non-matching fragments as the
erroneous ones. Which of these, or another heuristic, is most
desirable depends on user expectations and needs to be fine-
tuned in future experiments.

Our approach implies that the combination of connection
fragments of any connection must be unique within the same
level in order to enable textual connection type identification.
Strictly speaking, there is no need to enforce such a uniqueness
constraint as modelers could still resolve ambiguities by using
the explicit instance-of dependency connection approach. It
may, however, be helpful to modelers to require that connec-
tions must be distinguishable by a complete type specification
in order to prevent misinterpretation when, for instance, the
type level is not shown or instance-of dependencies are
temporarily filtered out by the tool for clarity of presenta-
tion. Future work will show whether uniqueness of complete
connection type specifications should be suggested through
respective warnings or enforced through respective errors.

E. Connection Navigation

With respect to navigation, connection ends with potency
one correspond to association ends in the UML [10]. They
enable navigation between instances at the level below. In
Fig. 4, for instance, the connection end name rear enables
navigation from Beetle instances to their rear wheels. In the
example we just have B53 .rear = 53rS1 but in general the
whole set of wheels attached to B53 would be returned. For
example the OCL fragment “self .rear” in an OCL constraint
using Beetle as a context would reference the whole set of
rear seats connected to a Beetle instance.

Should the need arise to navigate to a specific rear wheel of
the B53 instance, it is possible to specify the respective rear
wheel moniker, e.g., with B53.53rearRight .

Note that an instance such as rrW is accessible to B53
through several aliases, i.e., those connection end names that
have potency zero at B53’s level. Depending on the poten-
cies of the higher level connection ends, other instances are
included as well. For the model in Fig. 6 navigations from
B53 using the connection end names “wheel”, “rear”, and
“53rearRight” would respectively yield {frW flW rrW rlW },
{rrW rlW }, and rrW . The last result is not a set, as the extent
of the potency-zero moniker 53rearRight is just an element, as
opposed to the sets defined by wheel and rear which both have
potency one at the level above.

The approach suggested here naturally supports intra-level
navigation at any level. Should the need arise to navigate
from Beetle to SteelWheel, e.g., in order to check whether

the supplier information registered at SteelWheel satisfies the
requirements specified by the Beetle type, then the expression
Beetle.rear can be used.

Navigation expressions as used above may also involve
potencies themselves, e.g., as in Beetle.rear1 that references
the set of all rear wheels that can be accessed from Beetle,
i.e., all rear seats of all Beetle instances. Note that the default
value in navigation expressions for connection ends is zero
to support the much more frequent case of pure intra-level
navigation.

Figure 6 shows a range of examples of using connection po-
tencies. In this context, the expression B53 .(front : wheel2)
yields the set containing the two front wheels attached to B53 ,
i.e., {frW flW } (note the disambiguation of “front” to wheels
rather than seats by referencing the corresponding moniker of
the connection type). These two wheels are recognizable as
front wheels since their connection type specifications refer-
ence the car1–hf1:has2–front1 connection from the level above
them. The expression B53 .(rear : wheel2) yields {rrW rlW }
because even though the connection end “::wheel2” of the
connection between B53 and rlW does not reference the
connection end “rear1” of its type explicitly, the name of its
connection (“hrl0:hr1:has2”) ensures that car1–hr1:has2–rear1

is uniquely identified as the latter’s type.
If the car0–hrl0:hr1:has2–::wheel2 connection had omitted

the “hr1” component, the identified connection type would
have been car1–has1–wheel1 from the level above. The latter
is not explicitly visible in the model but exists due to the
top level connection car2–has2–wheel2. Due to the fact that
this top-level connection has potency two, it is possible for
instances two levels down to participate in connections of this
kind. Note again that all wheels connected to B53 are reachable
via B53 .wheel . Since both car1–hf1–front1 and car1–hr1–rear1

reference car2–has2–wheel2 as their type, all their respective
connection instances are deep instances of car2–has2–wheel2.

Note that it is not necessary for connection car1–hr1–rear1

between Beetle and SteelWheel to declare its “rear1” moniker
to be a specialization of “wheel1”, as it already has a “wheel”
alias by virtue of the wheel2 connection end of its connection
type car2–has2–wheel2, just like its connection end sibling
front. We only included the specialization as an example of
how one could introduce a generalized connection end without
utilizing a potency-two connection end at the level above.

We regard the use of “<” in “rear1<wheel1” to denote
specialization, as a candidate shortcut notation for the vi-
sual alternative to explicitly adding a general car1–hw1:has2–
wheel1 connection between Beetle and SteelWheel which
car1–hr1:has2–rear1 would have to specialize from.

F. Connection Multiplicities

As in the UML, connection multiplicities impose constraints
on the out-degrees and in-degrees of connection instances
between clabject instances that engage in the respective con-
nection. Going beyond Nivel [7], we suggest that modelers
should be able to specify multiplicity constraints for multiple
levels at the same time.

The top right hand multiplicity constraints in Fig. 6 show
how a modeler may stipulate that instances of CarType (such
as Beetle) must have instances themselves (such as B53) that
must always have exactly four wheels attached to them. The
modeler uses a potency value of two for the respective “4”
multiplicity constraint. The regular (potency-one) multiplicity
constraint of “2” stipulates that instances of CarType must
have exactly two “has”-connections to WheelType instances.
The model in Fig. 6 satisfies this constraint by establishing the
two car1–hf1–front1 and car1–hr1–rear1 connections between
Beetle and SteelWheel as instances of car2–has2–wheel2.

IV. DESIGN DISCUSSION

After presenting a design for multi-level connections, we
now discuss to what extent the design satisfies the goal of
being unifying while maintaining expressiveness.

A. Concept Coverage

Our design is unifying in the sense that it covers a number
of traditional language constructs with fewer concepts. For
instance, we can accommodate association classes and higher-
arity associations by virtue of interpreting connections as
clabjects with a special purpose in the same vein as Gutheil
et al. [5].

We can furthermore subsume the “instance facet only”
nature of type-level links such as UML dependency and
specialization relationships by modeling them with potency-
zero values for the connection and its monikers.

Qualified associations in the UML can be understood as
representing intra-level navigation with object-category spe-
cific monikers (e.g., “leftWheel” vs “rightWheel) playing the
role of keys.

Establishing a specialization relationship between these
specific access paths and a general path provides a name
for the overall navigation. The criterion used to partition this
general access into multiple qualification subsets may even
be explicitly named by a corresponding potency-two type
at the level above. The notational convenience of qualified
associations in the UML may be retained in potential future
developments of our approach but at least there is a way to
understand the mechanics of a qualified association within
the existing framework without needing to introduce it as a
primitive construct.

B. Parsimony

Our design is also unifying in the sense that it uses the
same principles for entities (clabjects and their features) as it
does for connections (connections proper and their monikers).
Once a modeler understands the former, the implications for
the latter follow without the need to learn a separate set of
rules or mechanisms.

Despite this minimalism, the design provides a high degree
of expressiveness. For instance, the potency of monikers can
be interpreted as controlling over how many levels further
down the moniker is available to support navigability between
instances. As a result, the potency value zero excludes any

42 | 21
WheelType

has2

front1

wheel2 car2

car1

car1

hf1 : has2

hr1 : has2 rear1 < wheel1

53frontRight0:front1:wheel2
frW

car0

car0

car0

car0

SeatType
has2 seat2 car2

front1

FoamSeat

hf1:has2

hr1:has2 rear1

53fR0 : front1 car0 hfr0:hf1:has2

53fL0 : front1 car0 hfl0:hf1

53rR0 : rear1 car0 hrr0::has2

53rL0 : rear1 car0 ::has2

hfr0:hf1:has2

hfl0:hf1:has2

hrr0:hr1:has2

hrl0:hr1:has2

Beetle

CarType

B53
flW

rrW

rlW

53frontLeft0:front1

53rearRight0::wheel2

::wheel2

frS

flS

rrS

rlS

SteelWheel
car1

car1

21

21

Fig. 6. Connection Navigation

navigability further down and thus amounts to a navigability
restriction, analogous to the “cross” notation for association
ends in the UML. Intra-level access to the connectee itself
(rather than its instances at a certain depth) through a potency-
zero moniker is still possible. This is analogous to the way
UML navigability restrictions only applies to instances, not to
a traversal of the connection at the type level.

C. Expressiveness

Being able to choose the potency values for connections
and their monikers independently from each other provides
fine-grained but nevertheless intuitive control over model well-
formedness. Table I lists the four main distinguishing cases of
potency value combinations. Potencies higher than one are not
considered, nor cases where monikers have different potency
values (c.f. the “Mi” columns in Tab. I). Such mixed cases are
obviously allowed and well-defined as the resulting meaning
is implied by the semantics of deep instantiation [2], [11].

Note that in the context of connection specialization,
potency-zero super-connections still provide an abstract view
on connection instances of sub-connections. The potency of
a super-connection provides control over whether it only has
indirect instances (i.e., is a strict union of the subsets implied

M1 C M2 Connection kind

0 0 0 pure intra-level connection, analogous to a UML link

1 0 1 abstract connection with a “derived union” semantics

0 1 0 connection with no navigability

1 1 1 regular connection

TABLE I
POTENCY VALUE COMBINATIONS AND THEIR MEANING

by its subconnections, (c.f. rows 1 & 2 in Tab. I) or has direct
instances as well (c.f. rows 3 & 4 in Tab. I).

The previously discussed case of connection diversification
is represented by row 2 in Tab. I. It supports generic navi-
gability to entities (e.g., using “frontWheel”) through potency-
one monikers, despite the fact that actual connection instances
use diverse monikers such as “frontLeftW” vs “frontRightW”.
Having such diverse monikers can be important in order
to model structure or rule out illegal combinations such as
mounting a directional tire to the wrong side.

Row 3 in Tab. I may seem like a pathological case as it
defines connection instances that do not support any naviga-
bility at all. While actual usage of this case in practice may
be rare, the UML infrastructure specification explicitly allows
and discusses it [13, Fig. 11.8].

D. Conservatism

We maintained UML backward-compatibility in three ways:

1) A multi-level model using only the two traditional type
and instance levels with no use of extra features such
as deep characterization, can be read like regular UML
notation but with notational simplifications to support
level-agnosticism and without UML constructs that have
become redundant due to unification.

2) Our support for navigation between entities is richer than
that of the UML but is a conservative extension of it.
In other words, current conventions, e.g., assumed by the
OCL [14], still hold and have only been augmented with
additional capabilities.

3) We require no limitations that would reduce the current
expressiveness of the UML. While initial investigations
are promising, future work will have to demonstrate that
certain UML constructs such as navigability restrictions
on association ends have been truly made redundant in
each conceivable case.

The proposed approach is also compatible with various kinds
of connection specification styles currently used in multi-level
modeling, namely

a) the connection-only style [2],
b) the connection-only style with type specifications [15],
c) the moniker-only style [6],
d) the moniker-only style with type specifications [3], and
e) any combination of the above.

This is important because it means that the existing multi-level
models that use any of the above styles remain valid under the
proposed approach. It follows that the majority of multi-level
model tools currently support a valid subset of the proposed
approach and could be conservatively enhanced to full support.

V. RELATED WORK

In the following we compare our proposal to alternatives
that considered connections in multi-level modeling at least to
the extent of assigning potencies to connections.

Kennel [6], Melanee [16], MetaDepth [17], and the DPF
modeling environment [15] all support potency values for
connections, but do not allow monikers to have their own
independent potency values. They therefore do not afford
modelers with the same expressive power to document specific
scenarios, such as connection diversification.

Kennel advocated the principle of moniker constancy in
order to provide a systematic and efficient basis for exploratory
as well as constructive modeling [6]. The approach hence
features a simpler labeling scheme than the one advocated
in this paper, but can sometimes result in non-intuitive labels
as they cannot be level-specific.

MetaDepth is noteworthy in that it assumes reified connec-
tion ends and incorporates the “monikerName : Type” nota-
tion [3] that we found useful to obtain a connection identifi-
cation approach that is both intuitive and scales.

The Nivel language [7] does not support moniker potency
either, but supports deep multiplicities (i.e., multiplicity con-
straints with a potency value). In contrast to our proposal, there
is only one constraint per connection end, though, so the mod-
eler’s control over lower levels is not as comprehensive. On
the other hand, Nivel gives explicit consideration to roles, i.e.,
recognizes that participants in relationships can be regarded
as players that assume a certain role in the relationship [18].
We designed our approach to be extensible in this direction
but defer any further elaboration to future work.

The UML features association end subsetting, association
end redefinition, derived unions, and association end navigabil-
ity control which, in combination, can also be used to express
modeler intent with respect to connection diversification [10].
In our approach negative navigability control (cross notation
at association ends) corresponds to potency-zero monikers.
Positive navigability in the UML (arrow notation at association
ends) does not permit access but emphasizes that the latter
must be efficient [10]. We do not consider access efficiency
as a concern.

We surmise that one of the reasons that the other three of
the aforementioned UML mechanisms do not appear to be

widely used in common modeling is that it is challenging to
understand the subtleties of their semantic overlap and their
intended interaction with each other. The latter challenge was
reflected by UML specifications themselves as they declared
the interaction of these features with association specialization
as a “semantic variation point”, i.e. as undefined. This seman-
tic variation point has only recently been removed. We posit
that our approach using potencies for both connections and
their monikers supports the case of connection diversification
with a fewer number of concepts that are intuitively understood
by modelers familiar with the deep modeling (i.e., clabject
and potency-based) approach to multi-level modeling [1]. For
example, the UML’s derived union mechanism is a way of
expressing that a super-connection is fully partitioned by a
number of sub-connections, i.e., has no direct instances of
its own. This can be achieved in our approach by assigning
potency zero to the connection. Association end redefinition
appears to be a way of declaring that the sub-connections re-
place super-connections. The equivalent effect can be achieved
in our approach by introducing a new moniker name in the
sub-connection (which must have potency of at least one to
be instantiatable and may introduce further refinements, e.g.,
regarding multiplicity) and declaring it (either textually or
visually) to be a subtype of the redefined moniker. Whether
or not the resulting redefinition is exclusive, i.e., prevents the
sub-entities to participate in super-connections, is controlled
via the potency of the super-connection. Independently of
the actual mappings between our potency-based approach and
the UML’s various constructs, it can be observed that the
meaning of any model constructed based on our proposal
immediately and unambiguously follows from the semantics
of deep instantiation, without the need to clarify and define
the interaction of several semantically overlapping features.

Lars and Gogolla propose an endogenous metamodeling
approach to formally define the semantics of UML and include
UML subsetting and derived union constraints in their exam-
ples [19]. We interpret their virtual links as manifestations
of alternative navigation paths, i.e., as representing the fact
that some specialized connections are also indirect instances
of general connection types (as well as being direct instances
of their specialized connection types). We maintain that ex-
plaining the semantics of the scenarios they cover would have
been easier for them if they only had to formalize clabjects
and their instantiation semantics, instead of the variety of UML
constructs needed to achieve the same expressiveness.

The Deep OCL dialect [20] supports navigation over deep
monikers using “level casts”. For instance, it is possible to
access all wheels of B53 in Fig. 6 by explicitly casting the type
of B53 to reference its deep type CarType in order to enable the
use of the wheel moniker. In our approach the wheel moniker
is implicitly available to B53. The advantage of explicit level
casts is that they document within navigation expressions
which (deep) type introduced the utilized navigation path. The
disadvantage are more verbose navigation expressions. The
best of both worlds could be achieved by allowing level casts
for documentation purposes but not requiring them.

VI. CONCLUSION

In this paper we identified limitations in terms of scala-
bility and expressiveness in existing multi-level connection
approaches. We then presented a range of ideas to address
these limitations, achieving unification along several aspects.
We first proposed a conceptual model of connections that
unifies both the individually useful but apparently incompati-
ble views of “atomic connections” versus “reified connection
ends”. Achieving an accurate model in which connection ends
are recognized as parts that are separate from but uncon-
ditionally dependent on connections was critical in order to
allow modelers to have correct expectations about connection
semantics. To this end, we clarified the different semantics of
potency for first-class entities versus dependent features. Our
proposed composite connection end model naturally supports
a novel connection type identification style that scales in the
presence of connection proliferation.

We expect modelers familiar with deep modeling [1] to
quickly become competent users of the proposed approach due
to the second unifying aspect of our work: We ensured that the
semantics of connections and their monikers is consistent with
clabjects and their features respectively, i.e., that entities and
connections are viewed in a unifying manner. We did not fol-
low this approach dogmatically, however, but judged its merit
by evaluating whether the increased complexity compared
to earlier connection approaches is matched by a respective
increase in expressiveness. One of our key findings was that
important modeling intents such as connection diversification
can be naturally supported by using connection specialization
in conjunction with moniker potencies. We showed that the
powertype pattern known for entities [12] also occurs in the
context of connection diversification and observed that the use
of deep characterization for a top-level connection allows the
super-connection type in the pattern to become optional.

The aforementioned expressiveness of our design leads to
the third unifying aspect of this paper which is the potential
for subsuming a number of known diverse modeling constructs
with the flexible combination of a few basic ideas already
known from deep modeling [1]. Building on and improving on
earlier success in the reduction of separate modeling construct
required [5], we have earmarked constructs like qualified
associations, association end subsetting, derived unions, and
association end navigability control as candidates for being
demonstrated as being redundant within the proposed design.
Further work will be necessary to provide a definitive answer
to the question of which traditional constructs are truly ex-
pendable but the potential of mirroring the success story of
subsuming stereotypes, powertypes, and tagged values with
the notion of clabjects with potency [8] is clearly present.

Future work is required for determining currently unre-
solved details such as appropriate default rules that yield
the most natural meaning when certain features (e.g. names,
potencies, multiplicities, etc.) have not been provided by the
modeler. We expect respective choices to have an impact on
model readability and even model extensibility. In a similar

vein, decisions relevant for tool builders, such as which
heuristics to apply when reporting model inconsistencies, are
yet to be made.

We furthermore plan to investigate a proper integration of
roles [18]. The UML terminology for monikers, “role names”
already suggests that connection ends could serve a double
purpose of enabling navigation paths as well as referencing
role definitions. The latter may specify a contract for player
types and may even enhance the latter’s protocol and behavior.
We hope the large number of interesting questions opened
up by our proposal will help researchers to make multi-level
modeling a useful tool for mainstream modeling challenges.

REFERENCES

[1] C. Atkinson, R. Gerbig, and T. Kühne, “Comparing multi-level modeling
approaches,” Proceedings of MULTI 2014, vol. CEUR-WS.org/Vol-
1286, pp. 53–61, 2014.

[2] C. Atkinson and T. Kühne, “The essence of multilevel metamodeling,”
in The UML. Modeling Languages, Concepts, and Tools, ser. LNCS,
M. Gogolla and C. Kobryn, Eds. Springer, 2001, vol. 2185, pp. 19–33.

[3] J. D. Lara, E. Guerra, and J. S. Cuadrado, “When and how to use
multilevel modelling,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 2,
pp. 12:1–12:46, Dec. 2014.

[4] T. Kühne and D. Schreiber, “Can programming be liberated from the
two-level style: Multi-level programming with deepjava,” in 22nd ACM
SIGPLAN OOPSLA Proceedings. ACM, 2007, pp. 229–244.

[5] M. Gutheil, B. Kennel, and C. Atkinson, “A systematic approach to
connectors in a multi-level modeling environment,” in MoDELS 2008,
2008, pp. 843–857.

[6] B. Kennel, “A unified framework for multi-level modeling,” Ph.D.
dissertation, University of Mannheim, 2012.

[7] T. Asikainen and T. Männistö, “Nivel: A metamodelling language with
a formal semantics,” Software & Systems Modeling, vol. 8, no. 4, pp.
521–549, 2009.

[8] C. Atkinson and T. Kühne, “Reducing accidental complexity in domain
models,” Software & Systems Modeling, vol. 7, no. 3, pp. 345–359, 2008.

[9] F. Steimann, “Formale Modellierung mit Rollen,” Habilitationsschrift
(Universität Hannover), 2000.

[10] OMG, “OMG Unified Modeling LanguageTM, Superstructure Version
2.4.1,” http://www.omg.org/spec/UML/2.4.1, 2011.

[11] T. Kühne and F. Steimann, “Tiefe charakterisierung,” in Modellierung
2004, Proceedings zur Tagung, 23.-26. März 2004, Marburg, 2004, pp.
109–119.

[12] J. Odell, “Power types,” Journal of Object-Oriented Programming,
vol. 7, no. 2, pp. 8–12, May 1994.

[13] OMG, “Omg unified modeling languageTM, infrastructure version 2.4.1,”
http://www.omg.org/spec/UML/2.4.1, 2011.

[14] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1998.

[15] A. Rossini, “Diagram predicate framework meets model versioning and
deep metamodelling,” Ph.D. dissertation, University of Bergen, 2011.

[16] C. Atkinson and R. Gerbig, “Melanie: Multi-level modeling and ontol-
ogy engineering environment,” in Proceedings of the 2nd International
Master Class on Model-Driven Engineering: Modeling Wizards, ser.
MW ’12. New York, NY, USA: ACM, 2012, pp. 7:1–7:2.

[17] J. de Lara and E. Guerra, “Deep meta-modelling with metadepth,” in
Proceedings of the 48th TOOLS conference, ser. LNCS. Springer, 2010,
pp. 1–20.

[18] F. Steimann, “A radical revision of UML’s role concept,” in Proceedings
of UML 2000 - Third International Conference, York, UK, October 2000,
ser. LNCS, A. Evans, S. Kent, and B. Selic, Eds., vol. 1939. Springer,
2000, pp. 194–209.

[19] L. Hamann and M. Gogolla, “Endogenous metamodeling semantics for
structural uml 2 concepts,” in Model-Driven Engineering Languages and
Systems, ser. LNCS, A. Moreira, B. Schtz, J. Gray, A. Vallecillo, and
P. Clarke, Eds., vol. 8107. Springer, 2013, pp. 488–504.

[20] D. Kantner, “Specification and implementation of a deep ocl dialect,”
Master’s thesis, University of Mannheim, 2014.

