
Automating Gradual Typing

Timothy Jones
Victoria University of Wellington

tim@ecs.vuw.ac.nz

1. Introduction
Gradual typing [4] has become a standard mechanism for both pro-
gressively adding types to dynamically typed languages and liberal-
ising existing type systems, and recent developments have produced
the Gradualizer [1] and Abstracting Gradual Typing (AGT) [2] for
systematically lifting a typed language to a corresponding grad-
ual language. AGT applies the principles of abstract interpretation
to a language’s underlying predicates and functions: we have used
this technique to build a library in the dependently typed language
Agda [3] for automatically generating different type systems over
the same language of terms. Our mechanisation takes an abstract
description of a type system indexed by a functor and then gener-
ates a variety of different type systems, including gradual typing.

2. Mechanisation
As a dependently typed language, Agda allows the definition of
complex propositions about terms, including formal languages. If
we consider the Simply Typed Functional Language from AGT, the
syntax of its types would be encoded as:

data Type ∶ Set where
Int ∶ Type
Bool ∶ Type
_→_ ∶ (T1 T2 ∶ Type) Type

Then the syntax of terms such that each term includes a proof of its
own well-typedness, ensuring only well-formed terms can ever be
constructed (note that we omit implicit bindings in the listed Agda):

data Term (Γ ∶ Type n) ∶ Type → Set where
int ∶ ℤ → Term Γ Int
…

Applying AGT to this mechanisation to generate a correspond-
ing gradual language, we reproduce all of these definitions to work
under GType, which extends Type with an additional member to
represent the unknown type (?) and the equality relation (≡) lifted
into its consistent form (≅). In order to lift predicates like equality
into their consistent form, AGT defines a concretisation function
γ ∶ GType → ℙ Type to describe which concrete types ‘fit’ into a
gradual type. The resulting power sets may be infinite in size, and as
such the actual set values cannot be computed: instead, the function
must be encoded as a relation between gradual and concrete types.

data γ ∶ GType → Type → Set where
? ∶ γ ? T
Int ∶ γ Int Int
Bool ∶ γ Bool Bool
_→_ ∶ γ T̃1 T1 → γ T̃2 T2 → γ (T̃1 → T̃2) (T1 → T2)

Lifting a predicate from Types to GTypes using the concretisa-
tion function can then be defined exactly as in AGT.

data Lift2 (P ∶ BinRel Type) (T̃1 T̃2 ∶ GType) ∶ Set where
raise ∶ P T1 T2 → T1 ∈ γ T̃1 → T2 ∈ γ T̃2 → Lift2 P T̃1 T̃2

For instance, the consistent equality relation ≅ is Lift2 _≡_, and a
proof that (Int → ?) ≅ (? → Bool) first binds T1 and T2 to the type
(Int→ Bool), then proves that T1 and T2 are equal and that the type
is in γ of both of the given gradual types:

raise refl (Int → ?) (? → Bool)
Lift2 can equally be applied to other relations between types, such
as ≤ to produce consistent subtyping, and as in AGT the definition
can be generalised to any predicate of finite arity.

UnlikeAGT,we cannot implement such a lifting for partial func-
tions. The operation to translate a function from Type to GType re-
quires an abstraction function α ∶ ℙ Type → GType that reverses
the concretisation of γ: this requires translating a potentially infi-
nite input into a finite output, which cannot be expressed computa-
tionally. Fortunately, because the lifted functions are used in typing
judgments, we can replicate the desired behaviour by expressing
these functions as predicates of equality on their outcome:

data _≡−cod_ (T ∶ Type) ∶ Type → Set where
refl ∶ T ≡−cod (T′ → T)

For example, rather than asserting that the type of (t1 · t2) is cod T1,
the outcome is bound to a new variable T3, with T3 ≡−cod T1 as an
extra premise. This predicate can then be lifted into its consistent
form as normal. This does not preserve the optimality of α, as the
outcome is not necessarily the most precise type; we are currently
investigating the best mechanism to ensure an optimal lifting.

Applications of equality in the constructors of Term are then
replaced with consistent equality, as in AGT. Other language defi-
nitions, potentially with different type relations, can be lifted using
the same systematic approach. Currently, we do not address the lift-
ing of reduction relations, though we plan to mechanise the AGT
approach to this in the future.

3. Automation
So far we have discussed the application of the systematic lifting
of a language in Agda, but can we go further than this? Agda is
a programming language, so it would make sense that, rather than
manually applying the lifting operation, we provide an abstraction in
the form of a library that automatically transforms a typed language
into its corresponding gradually typed language. This is achieved by
defining a language with an abstracted type system.

First, we define a gradual type which is abstracted over the con-
crete components of the types, which is equivalent to the standard
Maybe type constructor.

data Maybe A ∶ Set where
? ∶ Maybe A
type ∶ A → Maybe A

If we applied this directly to the previous Type, the result would be
a type which is either unknown or entirely concrete, but we want
to be able to embed the unknown type at any point of recursion
in Type. As such, we require that an abstracted language’s required



Type declaration be indexed by a unary type constructor. This gives
us the Abstractly Typed Functional Language, with the types:

data Type (F ∶ Set → Set) ∶ Set where
Int ∶ Type F
Bool ∶ Type F
_→_ ∶ (T1 T2 ∶ F (Type F)) → Type F

In the definition of the Terms of the language, we can require
that F is a unit functor, having the standard functor mapping oper-
ation lift ∶ (A → B) → F A → F B and an extra operation from the
applicative functor class unit ∶ A → F A, along with proofs of the
relevant functor and unit laws. The unit operation permits embed-
ding concrete types into the given functor.

data Term (Γ ∶ Vec (F (Type F)) n) ∶ F (Type F) → Set where
int ∶ ℤ → Term Γ (unit Int)
…

The abstract definition of the language allows the definition of both
the fullType as id (Type id) (or justType id) and the gradualGType
as Maybe (Type Maybe), with corresponding functors, and unit
defined as id and type respectively.

The missing component to interpret an abstract language as
gradually typed is the concretisation function γ. The systematic
approach of AGT relies on knowing the structure of the concrete
types, but the general idea is that types with the same shape are re-
lated to each other, with points of recursion (which for the STFL is
in the input and output of each function type) requiring correspond-
ing recursive applications of γ. Type is indexed by a functor, and so
may be mapped from one functor to another: it should be possible
to perform a mapping between any two indices given a function
between (Type specific) instances of the corresponding functors.

map ∶ (F (Type G) → G (Type G)) → Type F → Type G
For the ATFL, this function maps Int to Int and Bool to Bool (as
required by the associated laws), and for function types:

map f (T1 → T2) = f (lift (map f) T1) → f (lift (map f) T2)
The map function allows us to define γ in a way that is generic

over any language which defines its types with this form of functor
index. To achieve this, we observe that only the definition of Term
requires that F be a unit functor. If we instead bind F to be an
application of const to an Agda type (which is always a functor,
but not necessarily a unit functor) in Type, then we can ignore the
recursion of Type entirely and embed arbitrary values at the typical
points of recursion instead. In this case, the values wewish to embed
are pairs of gradual and concrete types, and accompanying proofs
that γ holds for each pair.

By applying this observation, we get a proof structure for types
essentially for free: Type (const (Σ (GType × Type) (uncurry γ)))
(referred to below as Tγ). This structure can be broken apart into
its gradual and concrete components with the map function.

data γ ∶ GType → Type → Set where
? ∶ γ ? T
type ∶ (T ∶ Tγ) → γ (type (map proj11 T)) (map proj12 T)

The expected behaviour is guaranteed by the functor laws. The
library can then use this generic form of γ to build Lift2 and family
for any participating abstract type system. The proofs are somewhat
more painful as a result. (Int → ?) ≅ (? → Bool) now requires:

raise refl
(type (((type Int , Int) , type Int) → ((? , Bool) , ?)))
(type (((? , Int) , ?) → (type Bool , Bool) , type Bool))

Fortunately, Agda can infer the values of the gradual and concrete
components, so ultimately the content is the same but with some
extra boilerplate.

raise refl
(type ((, type Int) → (, ?)))
(type ((, ?) → (, type Bool)))

If the Terms of the language are defined alongside an abstract
equality relation ≈, that relation can now be defined as ≡ for the
language indexed by the unit functor id, or as≅ for the language in-
dexed by the unit functorMaybe. As long as the typing judgements
follow the style required by AGT, this produces a gradual lifting
operation for any type system.

The main caveat is that Agda has trouble reasoning about ter-
mination and positivity in such an abstracted environment, and it is
difficult or outright impossible to communicate this information to
Agda using the type system. At the very least, the most recent re-
lease of Agda has added a pragma to turn off positivity checks, so we
can continue as described here and fall back on manually checking
that the definitions are well-founded.

We make one final observation that although our goal was to
build automated gradual type systems, there is no reason other type
systems could not be built from other unit functors: for instance, the
unit functor for const ⊤ immediately produces a dynamically typed
language, and there are more bizarre but potentially useful oppor-
tunities such as List (terms have zero or more types) or × (types
are tagged by some accompanying value). While the concretisation
function γ given here is specific to theMaybe functor, savvy readers
might have noticed that the structure of γ has a similar shape to the
definition of Maybe, implying that each functor may have its own
γ which can be generated automatically as well.

4. Conclusion
We have applied the principles of Abstracting Gradual Typing to
a mechanisation of gradual type systems, and extended this into
a library to build both concrete and gradual type systems from an
abstract description. This required dealing with non-computational
components of AGT, and finding the representation for types as in-
dexed by functors in the abstract language description that allows
for the definition of both the appropriate type values and their con-
cretisation. In the future, we intend to apply the same principles to
evaluation of typed terms as well.

Acknowledgments
Thanks to the anonymous reviewers for their comments. This work
was supported in part by the Royal Society of NewZealandMarsden
Fund.

References
[1] Matteo Cimini and Jeremy G. Siek. The Gradualizer: Gradual typing

for free. In Proc. ACM Symposium on Principles of Programming
Languages, pages 443–455, 2016.

[2] Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual
typing. In Proc. ACM Symposium on Principles of Programming Lan-
guages, pages 429–442, 2016.

[3] Ulf Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
2007.

[4] Jeremy Siek and Walid Taha. Gradual typing for function languages.
In Proc. Scheme and Functional Programming Workshop, pages 81–92,
2006.


	Introduction
	Mechanisation
	Automation
	Conclusion

