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ABSTRACT
Structural type systems provide an interesting alternative to the
more common nominal typing scheme. Several existing languages
employ structural types in some form, including Modula-3, Scala
and various extensions proposed for Java. However, formalising a
recursive structural type system is challenging. In particular, the
need to use structural coinduction remains a hindrance for many.
We formalise in Agda a simple recursive and structural type sys-
tem with products and unions. Agda proves useful here because it
has explicit support for coinduction and will raise an error if this
is misused. The implementation distinguishes between inductively
and coinductively defined types: the former corresponds to a fi-
nite representation, such as found in source code or the internals
of a compiler, while the latter corresponds to a mathematical ideal
with which we can coinductively define relations and proofs that
are easily applied back to the inductive interpretation. As an appli-
cation of this, we provide a mechanised proof of subtyping sound-
ness against a semantic embedding of the types into Agda.

CCS Concepts
•Theory of computation→ Type structures;

1. INTRODUCTION
Statically typed programming languages typically lead to pro-

grams which are more efficient and where errors are easier to detect
ahead-of-time [1, 2]. Static typing forces some discipline on the
programming process. For example, it ensures at least some doc-
umentation regarding acceptable function inputs is provided. One
aspect affecting the flexibility of a static type system is the choice
to employ a nominal or structural type system. In a nominal type
system, relationships between types must be declared explicitly by
the programmer. In a structural type system, on the other hand, re-
lationships between types are implicit, based on their structure. The
key advantage of structural typing is that the programmer need not
identify all subtyping relationships beforehand [3, 4, 5]. This frees
them from having to plan for all possible scenarios, and exposes
the possibility of unanticipated reuse.
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Whilst numerous mainstream languages employ nominal typing,
there are relatively few which employ structural typing. Exam-
ples include OCaml [6], Modula-3 [7], Strongtalk [8], Scala [9],
Whiley [10] and Grace [11]. One reason for this is that such lan-
guages are (typically) much harder to formalise and implement. In
this paper, we focus on the former — that is, in the formalisation of
recursive structural type systems.

The use of structural induction in proving properties of languages
and their type systems is, by now, well established. Formalising the
subtype relation for a recursive type system requires some mecha-
nism for ensuring termination. That is, since recursive types de-
scribe infinite structures, the subtype algorithm could (in principle)
recurse forever. Coinduction offers a good solution here which has
proved useful for defining and reasoning about properties of re-
cursive type systems [12, 13, 14, 15]. Compared with structural
induction, however, structural coinduction is not as widespread or
as well understood. Kozen and Silva recently argued that [16]:

“Coinduction, on the other hand, is still mysterious
and unfamiliar to many”

Kozen and Silva were interested in promoting the use of coinduc-
tion in Computer Science, and identified a simple motto:

“A property holds by induction if there is good reason
for it to hold; whereas a property holds by coinduction
if there is no good reason for it not to hold”

With induction, one establishes a base case and inductive step but,
with coinduction, one need only establish the coinductive step.

The main contribution of this paper is an Agda formalisation of
a simple recursive structural type system involving products and
unions.1 Agda is particularly suited to this task due to its support
for coinduction: an Agda program will not type check if coinduc-
tion is used incorrectly. With Agda, we establish a mechanised
soundness proof of subtyping with respect to a semantic interpre-
tation of types. However, the dual proof of completeness is not
upheld by the relation and remains as future work. This improves
upon the previous work of Danielsson and Altenkirch who also for-
malised a recursive type system with Agda, but did not establish
soundness or completeness with respect to a semantic interpreta-
tion [17]. Furthermore, they did not consider products and unions,
but only function types with > and ⊥.

Our formalism distinguishes inductively defined types from coin-
ductively defined types: the former corresponds to a finite represen-
tation, such as found in a program’s source code or in the internals
of a compiler, whereas the latter corresponds to a mathematical

1Available at https://github.com/zmthy/recursive-types/tree/ftfjp16



ideal with which we can coinductively formulate the subtype oper-
ator. With Agda, we establish a formal connection between these
two representations of types, thereby ensuring that results obtained
for coinductive types also hold for the inductive form.

2. MOTIVATION
Our interest in reasoning about and implementing recursive types

stems from our work on developing the Whiley [10, 18, 19] and
Grace [11, 20, 21] programming languages.

2.1 Whiley
Whiley supports recursive structural types with records, unions,

and more. As such, the compiler requires efficient representations
of recursive types, and sound decision procedures for reasoning
about contractiveness, inhabitability, and subtyping. The following
illustrates the syntax for recursive types:

type Node is { any data, List next }
type List is null | Node

Here, the type {any data, List next} indicates a record with
two fields, data and next, while the combinator | indicates a
union type. Thus, a List is either null or a record with the struc-
ture {any data, List next}.

A simple function operating over Lists is given as follows:

function length(List list) → int:
if list is null:

return 0
else:

return 1 + length(list.next)

This counts the number of nodes in a list. The type test opera-
tor, is, distinguishes the two cases. Whiley employs flow typing,
meaning list is retyped to {any data, List next} automati-
cally on the false branch [22, 23].

To illustrate subtyping of recursive types, consider:

// A list with at least one node
type NonEmptyList is { any data, List next }

// A list containing integer data
type IntList is {int data, IntList next} | null

As data is immutable, both of the above types are implicit subtypes
of List. Thus, any variable of type NonEmptyList or of type
IntList can be passed into the function length. The Whiley
Compiler accepts the above recursive types without trouble.

It is possible to write recursive types which should be rejected:

type Invisible is Invisible | Invisible

This type does not sensibly describe any type, as it never actually
describes the structure of a value, and the compiler should report
an error. Likewise, consider another example:

type InfList is { int data, InfList next }

function get(InfList l) → (int d, InfList r):
return l.data, l.next

In languages with lazy evaluation or implicit references, such a
type would be perfectly reasonable [24]. However, in Whiley, all
values are trees of finite depth and, hence, it is impossible construct
a value of type InfList. Again, the compiler should report an er-
ror in such case.

2.2 Grace
As a language with structural typing, Grace uses recursive types

in the standard manner to permit methods to accept and return val-
ues of the object they are defined in. The infinite list type from
above is defined as:

type InfList = { data → Int; next → InfList }

Unlike Whiley, the body of a Grace type consists of method sig-
natures rather than field declarations, so rather than being empty,
this type includes any object which implements the appropriate
methods. Field declarations with def implicitly introduce the ap-
propriate getter method, so the following declaration is well-typed:

def ones : InfList = object {
def data : Int = 1
method next → InfList { self }

}

As values in an object-oriented language tend to be references,
they make it simple to implement cyclic values. We can also imple-
ment the InfList type using only fields: the conceptual structure
is infinite, but the actual runtime structure is a finite tree whose
leaves are object references. The next method could be replaced
with def next : InfList = self, and the resulting code would
have the same behaviour, without requiring an infinite amount of
time to construct the (conceptually) infinite structure.

3. SYNTAX, SEMANTICS & SUBTYPING
We now present our calculus for formalising recursive structural

types and related operators (e.g. subtyping). The calculus is pre-
sented in the usual manner, alongside our mechanical Agda imple-
mentation. A key aspect of our calculus is the distinction between
inductive and coinductive interpretations of recursive types.

3.1 Inductive Syntax
We begin by considering recursive types with a finite represen-

tation. Such types are those which have a physical machine repre-
sentation. For example, they might be written in the source code
of a programming language or implemented using a data structure
within a compiler. Either way, they are described in some finite
notation. The language of inductively defined types is as follows:

T̂ ::= Int | T̂1 ×̂ T̂2 | T̂1 ∨̂ T̂2 | µX. T̂ | X

Unions of the form T̂1 ∨̂ T̂2 represent types whose values are
in at least one of the two component types. Recursive types are
described syntactically using the common notation, µX. T̂ [25, 26,
27, 13], with recursive variables X referring back to the type ex-
pressed by its binder. For example, µX. Int ∨̂ (Int ×̂ X) describes
a non-empty list. The inductive form carries the artefacts of being a
physical representation: the recursive type µX. Int ∨̂ (Int ×̂ X) is
syntactically distinct from µX. Int ∨̂

(
Int ×̂ (Int ∨̂ (Int ×̂ X))

)
,

despite describing the same infinite tree.
When encoding syntactic types in Agda, our first challenge is

to avoid issues of variable capture. Rather than using named type
variables, we use De-Bruijn indices as is commonly done for the
λ-calculus [28]. Our definition is:

data InductiveType (n : N) : Set where
Int : InductiveType n
_×_ : (A B : InductiveType n)→ InductiveType n
_∨_ : (A B : InductiveType n)→ InductiveType n
µ_ : (A : InductiveType (suc n))→ InductiveType n
Var : (x : Fin n)→ InductiveType n



An InductiveType n represents a syntactic type nested within n
enclosing µ terms. For example, T̂ in µX. Int ∨̂ T̂ is nested within
one enclosing µ term. Such a type corresponds to the Agda term
µ Int ∨ T, where T is the Agda encoding of T̂. The body of a µ term
has type InductiveType (suc n) – i.e. is in the context of n + 1 en-
closing µ terms. A critical feature of our representation is that the
body of a Var term (which represents type variables) is a natural x
drawn from Fin n — that is, the finite set {0 . . . n−1}. This feature
ensures InductiveTypes never refer to unbound recursive variables.

Well-Formedness. Well-formed recursive types are required to be
contractive to prohibit non-sensical types of the form µX. X and
µX. X ∨̂ X, etc [25]. A contractive tree may have infinite depth, but
not infinite breadth, which applies to our types if we consider com-
binations of zero or more of the binary unions in a disjunctive nor-
mal form with arbitrary many branches: the types above respec-
tively correspond to no branches and infinite branches, neither of
which describe a sensible type.

DEFINITION 1 (INDUCTIVE WELL-FORMEDNESS). A type
T̂ is well-formed if every occurrence of a µ-bound variable in the
body is separated from its binder by at least one ×̂.

This definition is adapted from Pierce [28], though union types
were not part of the system he considered. It is useful to consider
why ×̂ is included, but not ∨̂. We refer to ×̂ as a concrete construc-
tor and ∨̂ as an abstract constructor. The distinction is that the
former is represented in the language of runtime values, whilst the
latter is not. Our definition does exclude some types that one might
consider sensible: for example, µX. Int ∨̂ X is not well-formed but
is otherwise equivalent to Int. We don’t believe this exclusion is
particularly concerning, and doing so enables a simple definition
of well-formedness. Likewise, our definition also includes types
which might not appear sensible: for example, µX. X ×̂ X is well-
formed but does not correspond to any runtime value (i.e. since they
must have finite height).

A key challenge with our inductive Agda encoding of syntactic
types lies in restricting them to be well-formed under Definition 1.
To do this requires an encoding of contractive types as follows:

data WF {n} (m : Fin (suc n)) : InductiveType n→ Set where
int : WF m Int
pair : ∀ {A B}→WF zero A→WF zero B→WF m (A × B)
union : ∀ {A B} →WF m A→WF m B→WF m (A ∨ B)
rec : ∀ {A}→WF (suc m) A→WF m (µ A)
ref : ∀ {x}→ m ≤ inject1 x→WF m (Var x)

The WF type is indexed by an InductiveType, and an element of
WF is a proof of well-formedness for that type. The intuition is that
we introduce an additional counter m ranging over the set {0 . . . n}
which indicates how many variables are currently invalid. That is,
the number of enclosing µ terms encountered in a traversal (indi-
cated by the use of suc in the rec rule) which have yet to reach a
× term. When a × term is encountered the counter is reset to zero
to indicate that all variables in scope are now valid.

Variable introductions such as ∀ {A B} indicate that the variables
A and B will be introduced implicitly (i.e. they will not appear in
introduction or elimination of these rules, with their values inferred
from the other arguments) and will have their types inferred from
their use later in the type of the rule. The inject1 function trivially
raises the upper bound of a Fin value: in order to compare m and x,
they must be of the same type, so the upper bound of x (n) is raised
to the upper bound of m (suc n).

WF is an important bridge between our inductive and coinduc-
tive interpretations: once you know that a type in its inductive form

is contractive, you can switch to reasoning in the more convenient
coinductive representation. Our mechanisation also demonstrates
that contractivity of an inductively defined type is decidable.

3.2 Coinductive Syntax
We now consider the same syntax of types in a coinductive def-

inition. As discussed earlier, there are types which are distinct in
their inductive form, but describe the same infinite tree. In order
to avoid having to reason about folding and unfolding the inductive
representation, we present a coinductive form of the same syntax,
with recursive references represented by infinite depth. The lan-
guage of coinductive types is given as follows:

T ::= Int | T1 × T2 | T1 ∨ T2

As is common, we assume that coinductive types are finitely
branching regular terms which may have infinite depth. The re-
striction to finitely branching regular terms is essential as it en-
sures every coinductive type can be mapped to one (or more) in-
ductive types and vice versa. Furthermore, whilst inductive types
are always represented finitely, coinductive types may have infinite
depth. As an aside, coinductive types correspond to what is com-
monly referred to as equi-recursive types, whilst syntactic types are
perhaps more similar to the notion of iso-recursive types [28].

Our encoding of coinductive types in Agda is as follows:

data CoinductiveType : Set where
Int : CoinductiveType
_×_ : (A B :∞ CoinductiveType)→ CoinductiveType
_∨_ : (A B : CoinductiveType)→ CoinductiveType

Here, CoinductiveType describes a set of tree-like structures
which may be infinite in size. The∞ CoinductiveType indicates
the point at which this “infinity” can arise.

Well-Formedness. Recall from Definition 1 that types are restricted
to being contractive. This definition cannot directly apply to our
coinductive types as these do not include the concept of µ-bound
variables. However, we can easily adapt it as follows:

DEFINITION 2 (COINDUCTIVE WELL-FORMEDNESS). A
coinductive type T is well-formed if every infinite path contains in-
finite occurrences of ×.

An interesting observation is that, unlike for inductive types, we
require no special treatment for well-formedness in the Agda en-
coding. This is because our encoding already prohibits infinite
chains of ∨ terms. Thus, a CoinductiveType is, by construction,
guaranteed to be well-formed according to Definition 2 above.

Unfolding. An important property for our system is that any well-
formed inductive type can be infinitely unfolded to a well-formed
coinductive type. This establishes the necessary connection be-
tween syntactic and coinductive types.

LEMMA 1 (SYNTACTIC UNFOLDING). Let T̂ be a well-formed
inductive type, and T the result of infinitely unfolding T̂. Then, T is
well formed.

PROOF. See∞unfold in the Agda implementation. Because the
coinductive types are well-formed by construction, an implemen-
tation of unfolding from WF to CoinductiveType which preserves
the base constructors of the type suffices as a proof. As the un-
folding is constructing a coinductive structure, the operation is not
required to terminate, but it must be productive: all infinite oper-
ations must eventually appear behind a delay operator ], which is
responsible for the appearance of the∞ type constructor in×.



3.3 Runtime Values
Following others, we consider a coinductive type T̂ as semanti-

cally representing the set of all runtime values which any variable
of that type may hold [29, 26, 30, 31, 15]. To do this, we first define
the language of runtime values as follows:

ψ ::= (ψ1, ψ2) | . . . | -1 | 0 | 1 | . . .

Unlike the coinductive type definition, we require that runtime
values are finite in size. Although in principle we could support in-
finite regular terms here (e.g. for representing lazy non-terminating
computations [24] or cyclic object structures [15, 32]), we choose
not to for simplicity.

The encoding of runtime values in Agda is relatively straightfor-
ward as follows:

data Value : Set where
int : Z→ Value
_,_ : (x y : Value)→ Value

This simply represents values as trees terminated in the expected
fashion with integer values. Since the∞ operator is not used, we
know that these are necessarily finite in size.

3.4 Semantic Interpretation
The semantic interpretation of coinductive types gives them mean-

ing on which we can base subsequent operations (e.g. equivalence,
subtyping, etc). We say that JTK is the interpretation of type T: the
set of runtime values which inhabit this type.

DEFINITION 3 (SEMANTIC INTERPRETATION). Every coin-
ductive type T is characterized by the set of values it accepts, given
by JTK and which satisfies the following equation:

JIntK = Z
JT1 × T2K = JT1K× JT2K
JT1 ∨ T2K = JT1K ∪ JT2K

The semantic interpretation of types given above can be defined
in either an inductive or coinductive fashion [24]. To better under-
stand this, let us consider solutions to the following equation:

JTK = JInt× TK

Under an inductive interpretation of types we are interested in
the least solution to the above equation (which is JTK = ∅ in this
case). As such, the above type is said to be uninhabited under an
inductive interpretation. In contrast, a coinductive interpretation
corresponds to the greatest solution to the above equation (which,
in this case, corresponds to the set of all lists of infinite length). For
this paper, we are interested in the inductive interpretation as this is
the natural choice for describing Whiley and Grace.

Our Agda encoding of the semantic interpretation is as follows:

mutual
J_K : CoinductiveType→ Set
J Int K = Z
J A × B K = [ A × [ B
J A ∨ B K = J A K ] J B K

data _×_ (A B : CoinductiveType) : Set where
_,_ : J A K→ J B K→ A × B

This encoding transforms each CoinductiveType into a standard
Agda type corresponding to the semantic embedding above. The
transformation on its own will not terminate for infinitely-sized
types, so we define it mutually with the × datatype, which natu-
rally delays the application of J A K until the , constructor. This is a

specialised form of the Rec type from ΠΣ [33]. The [ function re-
verses the ], forcing the evaluation of the otherwise delayed A and
B types.

The resulting types are disparate, and cannot be combined with
a union operator as with our semantic sets above (the ] is a tagged
sum). Instead, we can embed the values of these types into Value.

embed : ∀ {A}→ J A K→ Value
embed {Int} x = int x
embed {A × B} (x , y) = embed x , embed y
embed {A ∨ B} (inj1 x) = embed x
embed {A ∨ B} (inj2 y) = embed y

This way we have an equivalent transformation from coinductive
type to its underlying meaning, while ultimately interpreting the
recursive types as types of Values, erasing unions in between.

3.5 Subtyping
We now consider subtyping between coinductive types. The in-

tuition here is that we want T1 ≤ T2 (a relation between coinductive
types) to mean JT1K ⊆ JT2K (the subset relation between semantic
types). We face some challenges here because coinductive types
can have infinite depth. That is, when comparing two types of in-
finite depth, it can be unclear whether they should be subtypes or
not. However, since types are regular terms, it follows that any in-
finite derivation will repeat. Thus, the question of whether T1 ≤ T2
holds for two infinite types T1 or T2 will either yield a finite proof
that they do not, or will itself eventually reduce to the recursive
query T1 ≤ T2. To resolve this, we define our subtyping relation
coinductively, and do so regardless of whether the underlying in-
terpretation is inductive or coinductive. Intuitively, the use of coin-
duction means we can regard T1 ≤ T2 to hold unless we can prove
it does not [16].

The subtyping relation is give in Figure 1 where, following com-
mon convention, the use of a double line indicates a coinductive
definition. We have restricted our rules to the minimum needed to
show our main theorems (see below). In particular, there are no
explicit rules for reflexivity and transitivity. This is particularly im-
portant for transitivity, because an explicit coinductive transitivity
rule degenerates and, for example, can be used to show any two
types are subtypes of each other [17].

The subtype relation is encoded in Agda as follows:

data _≤_ : (A B : CoinductiveType)→ Set where
int : Int ≤ Int
pair : ∀ {A B C D}→∞ ([ A ≤ [ C)→∞ ([ B ≤ [ D)

→ A × B ≤ C × D
left : ∀ {A B C}→ A ≤ B→ A ≤ B ∨ C
right : ∀ {A B C}→ A ≤ C→ A ≤ B ∨ C
union : ∀ {A B C} → A ≤ C→ B ≤ C→ A ∨ B ≤ C

This definition does mix inductive and coinductive rules, but
only because this is natural in Agda. It is only necessary that the S-
PAIR rule be coinductive: the other rules are either axioms or de-
construct finite structures, and so may be interpreted as either in-
ductive or coinductive to the same effect. The definition does have
to juggle delayed types: anywhere a delayed type A is used as a
direct component of ×, it must be forced with [.

We can extend this subtyping on coinductive types to well-formed
inductive types by applying the infinite unfolding of the inductive
form and then considering the coinductive subtyping.

_<:_ : ∀ {A B}→WF zero A→WF zero B→ Set
_<:_ p q =∞unfold p ≤∞unfold q

With WF as a bridge, we get relations and proofs for the inductive
syntax for free once they are defined for the coinductive syntax.



(S-INT)

Int ≤ Int
=========

(S-PAIR)
T1 ≤ T3 T2 ≤ T4

T1 × T2 ≤ T3 × T4

===================

(S-LEFT)
T1 ≤ T2

T1 ≤ T2 ∨ T3

============

(S-RIGHT)
T1 ≤ T3

T1 ≤ T2 ∨ T3

============

(S-UNION)
T1 ≤ T3 T2 ≤ T3

T1 ∨ T2 ≤ T3

===================

Figure 1: Coinductively defined subtyping rules.

3.6 Subtype Soundness
As a precursor to showing our main theorems, we first establish

reflexivity and transitivity. Our proofs rely on structural coinduc-
tion which is appropriate for a coinductively defined relation [16].
In essence, the key difference is that one need not establish a base
case, as would be required for a regular proof-by-induction. This
arises from the fact that T1 ≤ T2 is assumed to be true unless shown
otherwise (recall the motto of Kozen and Silva from §1).

LEMMA 2 (SUBTYPING IS REFLEXIVE). Let T be well-formed.
Then, for all T it follows that T ≤ T.

PROOF. See ≤-reflexive in the Agda implementation.

LEMMA 3 (SUBTYPING IS TRANSITIVE). Let T1, T2 and T3
be well-formed types where T1 ≤ T2 and T2 ≤ T3. Then, it follows
that T1 ≤ T3.

PROOF. See ≤-transitive in the Agda implementation.

At this point, we can now establish the standard theorem of sound-
ness with respect to our interpretation, J·K. Intuitively, soundness
implies that whenever T1 ≤ T2 by the rules of Figure 1 then this is
correct with respect to the interpretation (i.e. JT1K ⊆ JT2K).

THEOREM 1 (SUBTYPING IS SOUND). Let T1 and T2 be well-
formed types where T1 ≤ T2. Then, JT1K ⊆ JT2K.

PROOF. See ≤-sound in the Agda implementation.

As described above, all of these proofs are easily applied to <:.

3.7 Subtype (In)completeness
We now provide some discussion of the completeness theorem,

which is currently not shown for our system. Intuitively, complete-
ness requires that, whenever the interpretation implies T1 ≤ T2
should hold (i.e. because JT1K ⊆ JT2K), then the rules of Figure 1
can establish this. We can state the theorem as follows:

THEOREM 2 (SUBTYPING IS COMPLETE). Let T1 and T2 be
well-formed types where JT1K ⊆ JT2K. Then, T1 ≤ T2.

The rules of Figure 1 are not sufficient to show this theorem.
Unfortunately, there exist an infinite number of well-formed types
whose interpretation is empty. One such type is µX. X ×̂ X. Such
types are equivalent to ⊥ and, for any type T, it should follow that
⊥ ≤ T. Unfortunately, under the rules of Figure 1 we cannot show
that, e.g. the unfolding of µX. X ×̂ X is a subtype of Int. Extra rules
are also required to handle distributivity over pairs: we cannot show
that (Int∨ T)× Int ≤ T∨ (T× Int) holds when T = Int× Int.

To resolve these problems, we need rules of (roughly speaking)
the following form (including a second distributivity rule for when
the union is on the other side):

JT1K = ∅

T1 ≤ T2
=======

S = (T1 × T3) ∨ (T2 × T3)

(T1 ∨ T2)× T3 ≤ S
========================

The bottom rule relies on the ability to determine whether a type
is equivalent to ⊥ or not. Whilst this is challenging, existing so-
lutions are known [15, 24]. The challenge for Agda is that, as an
intuitionistic logic, it is not enough to know that a type is either
empty or not. Rather, it also requires a decidable operation to de-
termine if it is one or the other. One solution to this problem would
be to update the well-formedness definition to prohibit empty types.
For now, this is left as future work.

4. RELATED WORK
Amadio and Cardelli were the first to show that subtype test-

ing for recursive structural types was decidable [25]. Their sys-
tem included function types, > and ⊥, but did not distinguish be-
tween syntactic and algorithmic representations. However, they did
separate semantic from algorithmic subtyping, and provided cor-
responding proofs of soundness and completeness. Amadio and
Cardelli also did not exploit coinduction, instead preferring to de-
fine their relation axiomatically with explicit assumptions. Amadio
and Cardelli established that subtyping in their system was decid-
able in exponential time. Kozen et al. improved on this by devel-
oping an O(n2) algorithm [27]. Brandt and Henglein simplified
the proof underlying the Amadio-Cardelli system by establishing a
strong connection with coinduction [12]. Gapeyev et al. give an
excellent overview of the relationship between subtyping and coin-
duction [13].

The work of Amadio and Cardelli established how to go about
developing a subtyping algorithm: one sets out a semantic interpra-
tion of types, determines an appropriate subtyping algorithm and,
finally, proves this algorithm sound and complete with respect to
the semantic model. Numerous works have since followed this
model. For example, the work of Damm [26] and similarly Aiken
and Wimmers [29] considered recursive subtyping with union and
intersection types. More recently, the XDuce system of Hosoya and
Pierce for representing XML schemas [34].

The work of Danielsson and Alternkirch on formalising subtyp-
ing of recursive types is perhaps the closest related work [17]. They
provided an Agda mechanisation of the recursive type system of
Brandt and Henglein, which included only function types with >
and⊥ [12]. Unlike us, they did not establish any soundness or com-
pleteness results with respect to a semantic interpretation. Instead,
they showed how a mixed use of induction and coinduction allows
the explicit transivity rule to be included. This contrasts with the
more usual approach (as we have followed) of establishing transi-
tivity as a property of the given rules, rather than as a rule itself.

With a semantic interpretation of types, a circularity can arise
between the interpretation and the corresponding subtyping algo-
rithm [14]. This occurs in the context of function types, whose
natural interpretation are the functions themselves. If the definition
of a function relies on the subtyping algorithm, the circularity is
exposed. Frisch et al. addressed this problem in CDuce, which ex-
tended XDuce with function types [14, 35, 31]. Their solution was
to provide a bootstrapping interpretation of function types. This
does not interpret function types using terms of the enclosing pro-
gramming language but, instead, views them simply as sets of tu-
ples mapping inputs to outputs. Their system included function,
union, intersection and negation types.

As part of their work on abstract compilation [36, 37, 38], An-
cona and Corradi were concerned with typing programs written in
untyped object-oriented programming languages (e.g. JavaScript,
Python, etc) [15]. In this context, structural typing provides a flex-
ible typing discipline which more closely matches the way dynam-
ically typed programs are written. The authors chose a semantic-
based approach to defining their subtyping relation which they ar-
gue is more intuitive. The key problem considered was the case for
types which cannot be inductively interpreted. For example, a nec-
essarily circular list cannot be soundly typed using an inductive



interpretation and, instead, requires a coinductive interpretation.
The authors presented a top-down algorithm for semantic subtyp-
ing over coinductively interpreted types. Their system supported
both record record and union types, and was shown to be sound
and complete.

An alternative approach to formalising recursive types was in-
vestigated by Bonsangue et al. [24]. Their coalgebraic foundation
provids a single framework for the formalisation of recursive types
employing either an axiomatic approach, or that based on a seman-
tic interpretation. This system included products and unions and
supported a coinductive interpretation of types.

5. CONCLUSION
In this paper, we have presented an Agda formalisation of a sim-

ple recursive and structural type system with products and unions.
Our formalism distinguishes between inductive and coinductive types.
The former correspond to a finite representation, such as found in
source code or in the internals of a compiler. The latter correspond
to a mathematical ideal with which we can coinductively formulate
the subtype operator. The benefit of using Agda is that we can ex-
ploit its support for coinduction to be sure that our formalisation is
correct. Our main result is a mechanised proof of subtyping sound-
ness with respect to an inductive interpretation of types. However,
completeness is left for future work. The mechanisation is available
at https://github.com/zmthy/recursive-types/tree/ftfjp16.
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