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These files contain R code for fitting mixture models to discrete data, as in Hui et al. 2014.

The data are assumed to occur as a matrix with n sites (rows) and p species (columns). The data
are either presence/absence (binary, 0/1) or counts of the numbers of each species at each site.
Ordination of the sites into a 2D scatterplot is the main objective. There are assumed to be no
covariates, making this unconstrained ordination.

There are three basic probability distributions used as building blocks for the models, Bernoulli
for presence/absence (binary) data, and either Poisson or negative binomial for count data.
With the negative binomial, the dispersion parameter is assumed to be species-specific, to al-
low for the different amounts of spatial clustering over different species. The Poisson model
assumes spatial independence, and the Bernoulli model allows for spatial clustering by simply
recording presence, regardless of the actual number of species j present at site i.

For each probability distribution, the same suite of models is used. Each model has a linear
predictor, on the logit scale for binary data, and on the log scale for count data.

If Yij is the random variable for the observation in row (site) i and column (species) j, we write
E(Yij) = µij . Then either logit(µij) or log(µij) is modelled by a linear predictor.

Generalized Linear Models

Firstly, four generalized linear models are fitted, with linear predictors as follows.

Generalized linear models

Model Linear Predictor for log(µij) or logit(µij)

Null θ constant

A αi row effects only

B βj column effects only

AB αi + βj additive row and column effects, no association,
assume

∑n
i=1

αi = 0.

Mixture Models

Next, three different mixture models are fitted. By clustering the columns (species) into two
groups, two centroids in n dimensions are obtained. The n × 2 matrix with centroids in the
columns may also be viewed the other way, as n points (the sites) in two dimensions.
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The EM algorithm is used to fit the mixture models, as in Pledger and Arnold (2014). This
provides not only the parameter estimates needed for the plot of sites, but also information
on the clustering of species. If we specify C clusters of species, κc is the prior probability that
any species is in cluster c (c = 1, . . . , C), and xjc is the posterior probability that species j is in
cluster c, given the data in column j (j = 1, . . . , p, c = 1, . . . , C). If species j is in cluster c, the
linear predictor for logit(µij) or log(µij) is modelled as follows.

Mixture models when j ∈ c

Model Linear Predictor for log(µij) or logit(µij)

C γic An n× C matrix, with C = 2 giving a 2D plot of sites.

BC βj + γic If C = 2, matrix (γic) gives a 2D plot of sites
after allowing for common versus rare species.
Assume

∑p
j=1

βj = 0.

ABC αi + βj + δic Assume
∑p

j=1
βj = 0 and for each i,

∑C
c=1

δic = 0.

The matrix (δic) gives a site ordination after allowing for
both species and site effects.

Ordination from Model C is driven by species commonness, site richness and species compo-
sition (turnover).

Model BC has allowed for common versus rare species, which is similar to standardising the
data before ordination. Here the ordination is determined by rich versus poor sites and by
species turnover, so two sites are similar if they have similar richness and similar species com-
position.

Model ABC has also allowed for rich versus poor sites, which is similar to a double standard-
isation. In this case the ordination is driven solely by species composition, so two sites are
different if they have different species composition.

Model ABC is obtained from Model BC by decomposing the matrix (γic) into the vector αi of
row sums of (γic) and a matrix of deviations (δic) found by subtracting the row means from
(γic):

δic = γic −
1

C

C∑

c=1

γic.

This implies that δic has row sums all zero. Hence if C = 2, any row of δic plotted in 2D is a
point on the line x + y = 0. There is a loss of one dimension. In order to obtain a 2D plot of
sites, we fit the ABC model with C = 3. The points in 3D are all on the plane x+ y+ z = 0, and
a rotation places them into an x− y plane.

Model ABC3 is the same as Model BC3; it just has a different parameterisation.
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Model Comparison

Since all the models are likelihood-based, they may be compared by likelihood ratio tests
(which may be non-standard), or by information criteria (AIC = Akaike’s Information Crite-
rion, AICc = modification of AIC for small samples, BIC = Bayes’ Information Criterion, etc.)

Comparison of models with differing numbers of clusters indicates if it is reasonable to rep-
resent the data in two dimensions. This is similar to the stress measures used in non-metric
multidimensional scaling (nMDS).

Comparing model BC2 (two clusters) with ABC3 (three clusters, equivalent to BC3) shows if
there is any need to allow for different sites richness separately. If model BC3 is preferred,
we have a choice of two ordinations of sites: a 3D ordination driven by site differences which
include both site richness and species composition (using (γic) from BC3), or a 2D ordination
driven only by species composition differences (using (δic) from ABC3).

Running the Models

The zip file MIXORD.zip contains files for fitting the models. For each type of probability
distribution (Bernoulli, Poisson or negative binomial), open the “run” file and paste code from
that file into R. There is an associated “fun” file containing the functions.

The Bernoulli models use files runBERN.R, funBERN.R and TikusData.csv.

The Poisson models use files runPOIS.R,funPOIS.R,spiderAbund.csvand spiderin.R.

The negative binomial models use files runNB.R,funNB.R,spiderAbund.csvand spiderin.R.
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