
Program Equivalence through Trace Equivalence

Tim Wood
Imperial College London
tim@lexicalscope.com

Sophia Drossopoulou
Imperial College London

s.drossopoulou@imperial.ac.uk

Abstract
Often when programmers modify source code they intend to
preserve some parts of the program behaviour. We propose
a formal criterion by which to characterise the preserved
part of the program behaviour. Two program versions are
equivalent up to a set of affected objects A, if executions of
the two versions correspond at each execution step when we
do not consider the objects in A.

We propose a sufficient condition for this criterion. It suf-
fices to establish that traces of method calls and returns be-
tweenA objects and other objects are equivalent. Examining
the stack and heap at each execution step is not necessary.

We give a proof of the sufficiency of this condition, much
of which we have automatically verified using Dafny. We
also discuss our experiences with Dafny and detail how some
interesting parts of our Dafny proof work.

1. Introduction
Program maintenance dominates the program lifecycle; fix-
ing bugs and adding features is recurring, expensive, and
error-prone: a study of operating system bugs [1] found that
at least 14.8%-24.4% of patches were incorrect; a study of
application bugs that took more than one attempt to fix [2]
found that for 15% of patches there is no direct relationship
between the location of the original patch and the location
of subsequent supplementary patches. Typically, several pro-
grammers over many years maintain overlapping parts of a
program, making it difficult to keep a consistent mental view
of the whole program.

Our long-term objective is to produce automated tools
that help developers to modify programs in a safer, faster
and cheaper manner. We are developing a Differential Static
Analysis [3] tool, which will automatically check characteri-
sations of the differences between two versions of a program
(V1,V2). By using a previous version of the program as a
behavioural base-line, these techniques can reduce the need
for extensive programmer-generated specifications.

In this paper we propose a novel formal criterion for
equivalence between parts of the behaviour of V1 and V2.
We then give a sufficient condition for establishing such an
equivalence. This condition depends only on some of the
method calls from execution traces. Thus establishing this

condition does not require the whole heap to be precisely
tracked, some parts of the heap can be approximated, making
checking more practical.

We are building a tool which uses approximation and
symbolic execution to automatically check our condition,
but we do not describe this tool further here.

We give a formal description of the criterion, and a proof
of the sufficiency of the condition. We used the Dafny [4]
program verifier to automatically prove much of this work,
so we discuss our automated proof and experiences with
Dafny in some detail.

In section 2 we give a motivating example where our
criterion is used to detect a problem in a modification. In
section 3 we illustrate with an example how we infer our
criterion of equivalence between states from our condition
of equivalence between observations taken from execution
traces. To reduce the size of the trace that we have to con-
sider, we use knowledge of which part of the state the pro-
grammer expects to be affected by a modification. In sec-
tion 4 we illustrate the abstract model of execution that we
will use to prove the soundness of our inference. We give
a concrete operational semantics and concrete equivalences,
and construct a refinement of the abstract model using the
concrete model in section 5. We detail the automated Dafny
proof of our theorem and important lemmas in section 6.
And we describe our experiences using Dafny to construct
this proof, the techniques we used for the more interesting
parts, and what we learnt from the process. Finally we dis-
cuss related and future work in section 7.

This paper builds on our previous work published in
a short paper at the Imperial College Computing Student
Workshop 2013 [15]. That paper was primarily concerned
with refactorings, contained only some parts of the defini-
tions presented here, and did not contain a proof, automated
or otherwise.

2. Motivating Example
Listing 1 contains a small example program, and Listing 2
contains a modification to it. The example illustrates how
our technique detects a problem with the modification. The
problem is detected without the programmer having to un-
derstand the part of the program which exhibits the problem.

1
c
l
a
s
s

M
a
i
n

{
2

S
t
u
d
e
n
t
D
b

db
=

n
e
w

S
t
u
d
e
n
t
D
b
()

;
3

L
o
g
g
e
r

l
o
g
g
e
r

=
n
e
w

L
o
g
g
e
r
()

;
4

P
r
i
z
e
s

p
r
i
z
e
s

=
n
e
w

P
r
i
z
e
s
()

;
5

v
o
i
d

m
a
i
n
()

{
6

List
<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s

=
db

.
o
r
d
e
r
e
d
B
y
G
r
a
d
e
()

;
7

l
o
g
g
e
r
.
c
o
n
s
i
d
e
r
e
d
(
s
t
u
d
e
n
t
s
)
;

8
p
r
i
z
e
s
.
a
w
a
r
d
T
o
(
s
t
u
d
e
n
t
s
)
;

}}
910

c
l
a
s
s

P
r
i
z
e
s

{
11

v
o
i
d

a
w
a
r
d
T
o
(
List

<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s
)

{
12

a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
0
)
)
;

13
a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
1
)
)
;

14
a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
2
)
)
;}

15
v
o
i
d

a
w
a
r
d
(
f
i
n
a
l

S
t
u
d
e
n
t

s
t
u
d
e
n
t
)

{
/*

.
.
.

*/
}}

1617
c
l
a
s
s

S
t
u
d
e
n
t

{
18

S
t
r
i
n
g

n
a
m
e
()

{
/*

.
.
.

*/
}}

1920
c
l
a
s
s

S
t
u
d
e
n
t
D
b

{
21

List
<
S
t
u
d
e
n
t
>

o
r
d
e
r
e
d
B
y
G
r
a
d
e
()

{
/*

.
.
.

*/
}}

2223
c
l
a
s
s

L
o
g
g
e
r

{
24

v
o
i
d

c
o
n
s
i
d
e
r
e
d
(
List

<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s
)

{
25262728

f
o
r

(
S
t
u
d
e
n
t

s
:

s
t
u
d
e
n
t
s
)

{
29

p
r
i
n
t
l
n
(
"
c
o
n
s
i
d
e
r
e
d
:

"
+

s
.
n
a
m
e
()

)
;

}
}
}

L
isting

1.
V

ersion
1.T

his
Java

program
aw

ards
prizes

to
top

students.Italso
logs

w
hich

students
w

ere
considered

fora
prize.

1
c
l
a
s
s

M
a
i
n

{
2

S
t
u
d
e
n
t
D
b

db
=

n
e
w

S
t
u
d
e
n
t
D
b
()

;
3

L
o
g
g
e
r

l
o
g
g
e
r

=
n
e
w

L
o
g
g
e
r
()

;
4

P
r
i
z
e
s

p
r
i
z
e
s

=
n
e
w

P
r
i
z
e
s
()

;
5

v
o
i
d

m
a
i
n
()

{
6

List
<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s

=
db

.
o
r
d
e
r
e
d
B
y
G
r
a
d
e
()

;
7

l
o
g
g
e
r
.
c
o
n
s
i
d
e
r
e
d
(
s
t
u
d
e
n
t
s
)
;

8
p
r
i
z
e
s
.
a
w
a
r
d
T
o
(
s
t
u
d
e
n
t
s
)
;

}}
910

c
l
a
s
s

P
r
i
z
e
s

{
11

v
o
i
d

a
w
a
r
d
T
o
(
List

<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s
)

{
12

a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
0
)
)
;

13
a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
1
)
)
;

14
a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
2
)
)
;}

15
v
o
i
d

a
w
a
r
d
(
f
i
n
a
l

S
t
u
d
e
n
t

s
t
u
d
e
n
t
)

{
/*

.
.
.

*/
}}

1617
c
l
a
s
s

S
t
u
d
e
n
t

{
18

S
t
r
i
n
g

n
a
m
e
()

{
/*

.
.
.

*/
}}

1920
c
l
a
s
s

S
t
u
d
e
n
t
D
b

{
21

List
<
S
t
u
d
e
n
t
>

o
r
d
e
r
e
d
B
y
G
r
a
d
e
()

{
/*

.
.
.

*/
}}

2223
c
l
a
s
s

L
o
g
g
e
r

{
24

v
o
i
d

c
o
n
s
i
d
e
r
e
d
(
List

<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s
)

{
252627

s
o
r
t
(
s
t
u
d
e
n
t
s
,

c
o
m
p
a
r
e
S
t
u
d
e
n
t
s
B
y
N
a
m
e
()

)
;

28
f
o
r

(
S
t
u
d
e
n
t

s
:

s
t
u
d
e
n
t
s
)

{
29

p
r
i
n
t
l
n
(
"
c
o
n
s
i
d
e
r
e
d
:

"
+

s
.
n
a
m
e
()

)
;

}
}
}

L
isting

2.
V

ersion
2.

T
his

Java
program

is
a

m
odification

of
the

program
in

1.
Students

are
now

logged
in

nam
e

order.H
ow

ever,this
version

aw
ards

prizes
to

the
w

rong
students

because
the

sort
in

L
ogger

unintentionally
m

utates
the

list.
T

he
m

odified
parts

are
highlighted.

1
c
l
a
s
s

M
a
i
n

{
2

S
t
u
d
e
n
t
D
b

db
=

n
e
w

S
t
u
d
e
n
t
D
b
()

;
3

L
o
g
g
e
r

l
o
g
g
e
r

=
n
e
w

L
o
g
g
e
r
()

;
4

P
r
i
z
e
s

p
r
i
z
e
s

=
n
e
w

P
r
i
z
e
s
()

;
5

v
o
i
d

m
a
i
n
()

{
6

List
<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s

=
db

.
o
r
d
e
r
e
d
B
y
G
r
a
d
e
()

;
7

l
o
g
g
e
r
.
c
o
n
s
i
d
e
r
e
d
(
s
t
u
d
e
n
t
s
)
;

8
p
r
i
z
e
s
.
a
w
a
r
d
T
o
(
s
t
u
d
e
n
t
s
)
;

}}
910

c
l
a
s
s

P
r
i
z
e
s

{
11

v
o
i
d

a
w
a
r
d
T
o
(
List

<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s
)

{
12

a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
0
)
)
;

13
a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
1
)
)
;

14
a
w
a
r
d
(
s
t
u
d
e
n
t
s
.
g
e
t
(
2
)
)
;}

15
v
o
i
d

a
w
a
r
d
(
f
i
n
a
l

S
t
u
d
e
n
t

s
t
u
d
e
n
t
)

{
/*

.
.
.

*/
}}

1617
c
l
a
s
s

S
t
u
d
e
n
t

{
18

S
t
r
i
n
g

n
a
m
e
()

{
/*

.
.
.

*/
}}

1920
c
l
a
s
s

S
t
u
d
e
n
t
D
b

{
21

List
<
S
t
u
d
e
n
t
>

o
r
d
e
r
e
d
B
y
G
r
a
d
e
()

{
/*

.
.
.

*/
}}

2223
c
l
a
s
s

L
o
g
g
e
r

{
24

v
o
i
d

c
o
n
s
i
d
e
r
e
d
(
List

<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s
)

{
25

List
<
S
t
u
d
e
n
t
>

s
t
u
d
e
n
t
s
C
o
p
y

=
26

n
e
w

A
r
r
a
y
L
i
s
t
<
>(

s
t
u
d
e
n
t
s
)
;

27
s
o
r
t
(
s
t
u
d
e
n
t
s
C
o
p
y
,

c
o
m
p
a
r
e
S
t
u
d
e
n
t
s
B
y
N
a
m
e
()

)
;

28
f
o
r

(
S
t
u
d
e
n
t

s
:

s
t
u
d
e
n
t
s
C
o
p
y
)

{
29

p
r
i
n
t
l
n
(
"
c
o
n
s
i
d
e
r
e
d
:

"
+

s
.
n
a
m
e
()

)
;

}
}
}

L
isting

3.
V

ersion
3.

T
his

Java
program

is
a

m
odification

of
the

program
in

1.
Students

are
now

logged
in

nam
e

order.T
his

version
aw

ards
prizes

to
the

rightstudents
by

copying
the

listof
students

before
sorting

it.T
he

m
odified

parts
are

highlighted.

The program awards prizes to the top three eligible stu-
dents ordered by grade, and also logs which students were
considered for prizes. Users complain that it is hard to see
who was and was not considered for a prize in a list ordered
by grade. The modified program logs students in name order
instead. Unfortunately the programmer makes a mistake and
the modified program award prizes to the wrong students.

Our technique can avoid problems like this. It allows the
programmer to establish that the modification only affects
parts of the program concerned with logging.

According to our criterion the programmer will describe
the set of objects A she expects to be affected by the modi-
fication. Our criterion requires that both versions of the pro-
gram reach equivalent states at every execution step, when
the objects in A are not considered.

For the rest of the paper we often use the term affected as
an abbreviation for expected to be affected, and unaffected
to mean not expected to be affected. The objective of our
approach is to check our criterion — that the allegedly unaf-
fected objects really are unaffected by the modification.

The developer specifies the affected set as objects of
class Logger, PrintStream, List1 and Student. This is a
reasonable expectation as she expects to impact: the Logger
and PrintStream due to changing the order in which

the students are logged; the List due to sorting the list of
students by name; and the Students due to reading their
names in a different order for output to the logger. Note
that the affected objects are a superset of the objects with
modified code.

Contrary to the developer’s expectations, the modification
in Listing 2 does impact some allegedly unaffected objects.
The call to sort on line 27 mutates the list of students. Thus
the values returned by calls to List.get from the Prizes
object will sometimes be different in executions of Listing 1
and Listing 2, which may cause the prizes to be awarded
incorrectly on lines 12-14. Our criterion does not hold due
to the allegedly unaffected Prizes object sometimes having
references to different students in executions of the two
versions.

Note that the problem is detected without the programmer
mentioning, or even needing to be aware of, the existence of
the Prizes object.

The modification in Listing 3 corrects the problem. This
version copies the list before sorting it, so both prints the
students in the desired order and still awards the prizes in
the intended manner. Our criterion is satisfied because there
is always an equivalence between the unaffected objects in
executions of Listing 1 and Listing 3.

3. Equivalences and Traces
We will informally describe our program equivalence crite-
rion, and our condition. We will use an illustrative example,
small enough to draw the whole stack and heap at interesting

1 Also internal classes used in the representation of Lists

points in the execution. The example used in this section is
different from the example in the previous section.

3.1 Equivalence between Unaffected Objects
We consider states to be equivalent if they have the same
shape when only the unaffected objects are considered.

Listing 5 shows a version v1 of a fifo queue consisting of
two classes FiFo and Node. Listing 4 shows a test program
which uses the fifo queue. Listing 6 shows a modification of
v1, to produce a new version v2. In v2 the implementation
and representation of the queue has changed. We use the
same test program for both v1 and v2.

The allegedly affected objects are those of class FiFo or
Node.

Figure 1 shows the stack and heap when execution of the
test program is just about to return from the second call to
add — on line 2 of Listing 4. States are shown for executions
of the test program with both versions of the fifo queue.

In figure 1 the states do not have the same shape when all
objects are considered, due to the change in representation
of the queue. The states are equivalent when only the unaf-
fected objects are considered, as shown in the third diagram.

Our criterion for program equivalence is that executions
of both versions have equivalent states at each execution
step.

Generally, if an interesting property of the program is
encapsulated by an object or set of objects that are actually
unaffected, we know that the interesting property will be
unaffected by the modification.

3.2 Establishing Equivalence
States may be large, and executions may reach a large num-
ber of states. Traversing the whole stack and heap at each ex-
ecution step is computationally expensive, and requires the
whole heap to be tracked. We have discovered a condition
for our criterion that does not rely on the whole heap and
may totally ignore many execution steps.

Our condition depends only on method calls and returns
between unaffected objects and affected objects. It simply
requires that method call traces are equivalent in executions
of the two versions.

Traces comprise only the sequence of constructor calls,
method calls and method returns that occur between the
affected objects (here objects of class FiFo or Node) and
the unaffected objects (everything else).

Figure 2 shows traces from executing the test program
in Listing 4. A trace from running the test program against
the fifo queue from Listing 5 is compared to a trace from
running the test program against the modified fifo queue
from Listing 6. A mapping exists between addresses such
that all parameters which are aliases in one trace are aliases
in the other, so we consider the traces to be equivalent.

The traces are equivalent so our condition holds, and
thus we conclude that our criterion also holds. States are
always equivalent when only unaffected objects are consid-

1 class Test { FiFo fi = new FiFo(); Object o1 = new Object (), o2 = new Object ();
2 void test() { fi.add(o1); fi.add(o2); fi.remove (); fi.remove ();}}

Listing 4. Test program for the FiFo queue.

1 class FiFo {
2 Node f;
3 void add(final Object o) {
4 if(f == null) { f=new Node(o); }
5 else { f.add(o); }}
6 Object remove () {
7 Object r=f.value (); f=f.next(); return r;}}
8

9 class Node {
10 Object o; Node n;
11 Node(Object o) { this.o=o; }
12 Node next() { return n; }
13 Object value () { return o; }
14 void add(final Object o) {
15 if(n == null) { n=new Node(o); }
16 else { n.add(o); }}}

Listing 5. Queue version v1 — a fifo queue with a
recursive implementation of add.

1 class FiFo {
2 Node f, l;
3 void add(final Object o) {
4 if(f == null) { l=f=new Node(o); }
5 else { l=l.add(o); }}
6 Object remove () {
7 Object r=f.value(); f=f.next(); return r;}}
8

9 class Node {
10 Object o; Node n;
11 Node(Object o) { this.o=o; }
12 Node next() { return n; }
13 Object value() { return o; }
14 Node add(Object o) {
15 return n=new Node(o); }}
16

Listing 6. Queue version v2 — fifo queue with last element
pointer. A modification of the Queue in Listing 5. The
modified parts are highlighted.

this 3

o 2

this 0

0

1

2

3

4

5

o1 o2

fi

f

n

o

o
state v1

U A
Key:

stack

boundary

1 object

pointer

U unaffected

A affected

this 2

o 9

this 4

4

8

9

2

3

7

o1 o2

fi

f

n

o

o

l

state v2

U A

this 2

o 9

this 4

4

8

9

2

3

7

o1 o2

fi

f

n

o

o

l

unaffected part only

U A

Figure 1. Two states of the test (Listing 4) are shown. The
top state, v1, is from execution of the test with the code from
Listing 5. The middle state, v2, is from execution of the test
with the code from Listing 6.

States v1 and v2 differ when all of the state is considered.
The pointer l only appears in state v2.

When only the unaffected objects are considered, then the
states are equivalent. The bottom diagram shows the states
with the affected objects elided.

ered. Note that we do not inspect the unaffected part of the
heap to establish the criterion, nor do we need to inspect ev-
ery execution step.

We prove the sufficiency of the condition in the follow-
ing sections. But an intuition is that the traces capture the
complete interaction between the unaffected and affected
objects, and that the behaviour of the unaffected objects is
not sensitive to differences that only relate to the actual ad-
dresses of affected objects.

4. Labelled Transition System Equivalences
We want to prove that our condition is sufficient to establish
our program equivalence criterion. We prove this theorem
(4.3) with an abstraction of program execution, considering
abstract equivalences between abstract states and abstract la-
bels in a labelled transition system (LTS). Then in section 5
we refine the abstract model to a concrete model of execu-
tion, with concrete equivalences, and thus can use theorem
4.3 to reason about concrete executions.

Large parts of this work have been checked with the
Dafny verifier. To make our proof more amenable to Dafny
we have structured it into several abstract modules which
we then refine. We will follow the same structure here. More
discussion of our use of refinement is in section 6.2.

4.1 Abstract Semantics
We abstract execution as a deterministic labelled transition
system over abstract states and abstract labels (definition
4.1). Given a single step transition relation we construct a
multi-step relation and define traces as sequences of labels
encountered during multi-step execution.

Method Params

Fifo this: 3

return 3

add this: 3 o: 1

return

add this: 3 o: 2

return

remove this: 3

return 1

remove this: 3

return 2

t1

t1 ∼= t2 using mapping t2 6∼= t3(1,8),(3,10),(2,9)

Method Params

Fifo this: 10

return 10

add this: 10 o: 8

return

add this: 10 o: 9

return

remove this: 10

return 8

remove this: 10

return 9

t2
Method Params

Fifo this: 7

return 7

add this: 7 o: 4

return

add this: 7 o: 6

return

remove this: 7

return 6

remove this: 7

return 4

t3

Figure 2. Three traces. Trace t1 is from an execution of the test in Listing 4 with the queue from Listing 5. Trace t2 is from an
execution of the same test, but run against the modified queue from Listing 6. Trace t3 is for illustration, it is fictional and does
not come from either version. Trace t1 is equivalent to trace t2 under the address bijection shown. Trace t3 is not equivalent to
t1 or t2, because there exists no bijection between the addresses of t1 and t3 that preserves the aliasing structure of the traces.

Definition 4.1 A tuple LT S = (S ,L,) is an abstract
labelled transition system if

• S is the set of states, ranged over by s
• L is the set of labels, ranged over by l
• ⊆ S×L×S is the transition relation written s1 ls2
• is deterministic:

∀s, l1, l2, s3, s4 :

s
l1 s3 ∧ s

l2 s4 =⇒ l1 = l2 ∧ s3 = s4

NOTATION

• is the transitive reflexive closure of
• We say trace to mean the sequence of labels ls encoun-

tered in a multi-step execution, and write ls.

4.2 Abstract Equivalence
Here we give an abstract definition of equivalence between
states and between traces for an LTS. We require that equiv-
alence between traces is preserved by execution. If from
equivalent states which produce equivalent traces, we take
a single execution step from each, then the reached states
must also be equivalent and produce equivalent traces.
Definition 4.2 A tuple C = (',∼=, A) is an abstract la-
belled transition system equivalence for some abstract la-
belled transition system LT S = (S ,L,) if

(i) A is a set, ranged over by α
(ii) '⊆ S × A × S is an equivalence relation over states,

which we write s1 'α s2.

(iii) ∼=⊆ L∗ ×A× L∗ is an equivalence relation over traces,
and is written ls1 ∼=α ls2

(iv) If ∼= holds the traces are the same length:

∀ls1, ls2, α : ls1 ∼=α ls2 =⇒ |ls1| = |ls2|

(v) Execution preserves ' and ∼=

∀s1, s2, s3, s4, l1, l2, ls3, ls4, α :(
s1

l1 s3 ∧ s2
l2 s4 ∧ s1 'α s2 ∧ l1 · ls3 ∼=α l2 · ls4

)
=⇒
(∃α′ : s3 'α′ s4 ∧ ls3 ∼=α′ ls4)

4.3 Theorem
We show that execution from equivalent states, via equiva-
lent traces, will reach equivalent states.
Theorem 4.3 Given an abstract labelled transition system
equivalence C = (',∼=, A) for an abstract labelled transi-
tion system LT S = (S ,L,):

∀s1, ls1, s3, s2, ls2, s4, α :

s1
ls1

s3 ∧ s2
ls2

s4 ∧ s1 'α s2 ∧ ls1 ∼=α ls2
=⇒
∃α′ : s3 'α′ s4

Proof. Automatically checked by Dafny. Sketch: Since '
and ∼= are preserved by execution, and by induction on

.

5. Refinement and Concrete Semantics
We give semantics for a simple object-oriented language we
call Lver. Then we consider how its objects can be parti-
tioned into unaffected and affected objects. We give concrete
equivalences for its traces and states, considering only the
unaffected objects. Finally, we will show that a refined ab-
stract labelled transition system and abstract labelled transi-
tion system equivalence can be constructed for this language
and equivalences. This refinement allows us to use theorem
4.3, with programs written in Lver, i.e. to establish our crite-
rion by establishing our condition.

Of particular interest will be: picking a useful equivalence
between the unaffected objects; and dealing with differences
in the number of executions steps due to the modification.

5.1 Language
Our language, Lver, is similar to but much smaller than
Java bytecode. States have a stack of stack frames and a
heap of objects. Stack frames have local variables for the
receiver and parameter as well as an operand stack, and a
continuation in lieu of the program counter. Our language
does not have loops but does have recursion, so loops could
be encoded.

We represent two versions (V1,V2) of the program di-
rectly in the semantics of Lver. States contain the version of
the program they are from, and method lookup is indexed by
version as well as class and method name.

The transition relation of Lver is labelled. Transitions that
add or remove a stack frame (i.e. NEW, CALL and RET) have
a label containing information about the transition. All other
transitions have the empty label τ .

Only fields of the current method receiver can be read
or written, i.e. all fields are private. The only values in
our language are addresses, although an extension of our
approach to a language with other types of values, such as
ints, is straightforward.
Definition 5.1 Our language Lver is

• The set of versions Version
def
= {V1,V2}. Ranged over

by v.
• Enumerable sets, Field ranged over by f, Method ranged

over by m, Class ranged over by c.
• Wellordered2 enumerable set Address , ranged over by a.
• The set of local variable names Var

def
= {this, x}.

Ranged over by x.
• Expressions Expr are ranged over by e and have the

grammar:
e := e; e | write f | read f | push x | callm |

new c | if{e}else{e} | nop | except
• A stack, ranged over by σ̃, is a sequence of stack frames
Stack

def
= StackF ∗ where

StackF
def
= Method × Expr ×Vars ×Operands

2 Totally ordered, and each non-empty subset has a least element. Allows us
deterministic allocation.

Vars
def
= Var ⇀ Address

Operands
def
= Address∗

• A heap maps addresses to objects. Ranged over by h.
Heap

def
= Address ⇀ Object where:

Object
def
= Class × (Field ⇀ Address)

• A state is the program version, a stack, and a heap.
Ranged over by s. S def

= Version × Stack ×Heap
• Labels are either empty or associated with a constructor

call, a method call or a return. L
def
= τ ∪ (Class ×

Address × Address) ∪ (Class ×Method × Address ×
Address) ∪ (Address)

• A total functionM : Version×Class×Method → Expr
for looking up method bodies for version V1 or V2.
We model missing methods as methods having a body
consisting of the expression except, which is a stuck
expression.

• A total function next : Heap → Address , where next(h)
gives the least element of Address that is greater than
all elements in the domain of h, or the least element of
Address if h is empty.

• The transition relation → is defined by the rules in Fig-
ure 3.

NOTATION

• StackF ranged over by σ
• σ(meth) for the method σ↓1
• σ(exp) for the expression σ↓2
• σ(x) for the local variable σ↓3(x)
• σ(ops) for the operands σ↓3
• head(σ(ops)) for the 0th operand (σ↓3)0
• tail(σ(ops)) for the remaining operands (σ↓3)1...n
• h(a, class) to mean the class of the object at address a in

heap h
• h(a, f) to mean the value of the field f of the object at

address a in heap h
• sf (s) to mean the topmost stackframe of s
• depth(s) to mean the number of stack frames in s
• heap(s) to mean the heap of s
• � to mean the transitive reflexive closure of→

5.2 Partitioning into Affected and Unaffected Objects
We assume a predicate that determines for every heap ad-
dress whether the object is allegedly unaffected3. This pred-
icate must be preserved by execution. The methods of unaf-
fected objects must be identical in both versions of the pro-
gram. The methods, and even the classes of affected objects,
can be arbitrarily different between the versions.

3 We leave this predicate uninterpreted here, but in our tool it is imple-
mented by a programmer-provided side-effect free Java expression over the
whole program state. For example: a predicate may be based on the class of
objects, or where in the program the objects were constructed.

σ(exp) = write f ; e h′ = h[σ(this), f 7→ head(σ(ops))]
WRITEF

v, σ · σ̃, h→ τv, σ[exp 7→ e, ops 7→ tail(σ(ops))] · σ̃, h′
σ(exp) = nop; e

NOP
v, σ · σ̃, h→ τv, σ[exp 7→ e] · σ̃, h

σ(exp) = read f ; e a = h(σ(this), f)
READF

v, σ · σ̃, h→ τv, σ[exp 7→ e, ops 7→ a · σ(ops)] · σ̃, h
σ(exp) = ε a = head(σ(ops)) l = (a)

RET
v, σ · σ′ · σ̃, h→ lv, σ′[ops 7→ a · σ′(ops)] · σ̃, h

σ(exp) = push x; e
PUSH

v, σ · σ̃, h→ τv, σ[exp 7→ e, ops 7→ σ(x) · σ(ops)] · σ̃, h

σ(exp) = callm; e

c = h(σ(this), class)

a = head(tail(σ(ops)))

a′ = head(σ(ops))

l = (c,m, a, a′)

e′ =M(v, c,m)
CALL

v, σ · σ̃, h→ lv, [exp 7→ e′, this 7→ a, x 7→ a′] · σ[exp 7→ e, ops 7→ tail(tail(σ(ops)))] · σ̃, h

σ(exp) = new c; e h′ = h[a, class 7→ c] a = nexth l = (c, a, a′)
NEW

v, σ · σ̃, h→ lv, [this 7→ a, x 7→ a] · σ[exp 7→ e] · σ̃, h′

σ(exp) = if{e}else{e′} e′′ =

{
e if head(σ(ops)) = head(tail(σ(ops)))

e′ otherwise
COND

v, σ · σ̃, h→ τv, σ[exp 7→ e′′, ops 7→ tail(tail(σ(ops))] · σ̃, h

Figure 3. Operational Semantics

Definition 5.2 For language Lver, U is a partitioning pred-
icate if

• U is a predicate on addresses and heaps

U ⊆ Address ×Heap

• U is preserved by execution

∀s1, l1, s3, a :

a ∈ heap(s1) ∧ a ∈ heap(s3) ∧ s1
l1→ s3

=⇒
(U (a, heap(s1)) ⇐⇒ U (a, heap(s3)))

• Unaffected objects don’t have modified code

∀s, a,m :

U (a, heap(s))

=⇒
code(V1, s, a,m) = code(V2, s, a,m)

where

code(v, s, a,m)
def
=M(v, heap(s)(a, class),m)

NOTATION

• U (s, σ) is short for the receiver of the stack frame σ is
unaffected

U (s, σ)
def
= U (σ(this), heap(s))

• U (s) means the receiver of the top stack frame is unaf-
fected. We call such an s an unaffected state

U (s) ⇐⇒ U (sf (s), s)

• Uheap is short for the part of the heap containing only
the unaffected objects

Uheap(s)(a) def
=

{
heap(s)(a) if U (heap(s), a)

undef otherwise

5.3 Abstracting differences in the number of affected
execution steps

The modification may cause executions of version V1 to
differ from executions of V2 in the number of execution
steps from affected states. Such executions may however
still be considered equivalent when only the unaffected states
are considered. We abstract steps between affected states by
squashing series of consecutive steps from affected states
into a single step, and by replacing some labels with τ .
Consequently no two adjacent states in the abstract labelled
transition system are both affected. And only transitions
between affected and unaffected states have labels.

Figure 4 shows an example execution and its abstraction.
States s1 and s3 are unaffected, so the transition is preserved
but the label is replaced by τ . State s5 is affected, so the
transition and label from s3 to s5 is preserved. States s7 and
s9 are affected, but state s11 is unaffected, so the transitions
are squashed into a single step and the label of the last
transition is used.

s1

U

s3

U

s5

¬U

s7

¬U

s9

¬U

s11

U

l1 l3 l5 l7 l9

⌜s1 � l1·...·l9s11⌝ = s1
τ ·l3·l9 s11

s1 s3 s5 s11
τ l3 l9

Figure 4. Squashing an execution fromLver into an abstract
labelled transition system execution. Consecutive transitions
from ¬U states are combined. And labels on transitions
between U and U states are replaced with τ .

We can think of this squashing abstraction as analogous
to a havoc command [5]. The abstract transition from an af-
fected state represents arbitrary work that the affected ob-
jects do on the affected part of the state.
Lemma 5.3 By taking S, L and → from Lver and a parti-
tioning predicate U we can construct an abstract labelled
transition system LT S = (S ,L,), where:

s1
l
 s2

def⇐⇒(
U (s1) ∧ U (s2) ∧ l = τ ∧ ∃l′ : s1

l′→ s2

)
∨
(
U (s1) ∧ ¬U (s2) ∧ s1

l→ s2

)
∨
(
¬U (s1) ∧ U (s2) ∧ s1

l→ s2

)
∨
(
¬U (s1) ∧ U (s2) ∧

∃l1, s3 :¬U (s3) ∧ s1
l1→ s3 ∧ s3

l
 s2

)
Definition 5.4 Squashed Execution
Given LT S = (S ,L,), for Lver and U . Then a squashed
execution is

⌜s1 ls1� s3⌝ def
= s1

ls′1
s′3

whenever s1 � ls1s3 ∧ s1
ls′1 s′3 and either of

• U (s3) ∧ s3 = s′3
• ¬U (s3) ∧ ∀s : s′3 � s ∧ s� s3 =⇒ ¬U (s)

Corollary 5.5 Every concrete execution s1 � ls1s3 has a
squashed execution.

5.4 Equivalences
To complete our refinement, and thus show that theorem 4.3
applies to Lver, it is necessary to provide concrete equiva-
lences that are preserved by execution. An equivalence be-
tween states for our criterion, and an equivalence between
traces for our condition.

The equivalence definitions must be carefully constructed
with reference to the desired properties and the operational
semantics of the language. It was not immediately obvious
to us exactly how the equivalences should be defined. We
started by trying to work out the equivalence definition by
looking at the definition of states. But we did not produce a

useful equivalence between stacks. By careful thought about
how the proof would work, we realised that by considering
each rule in the operational semantics we could systemati-
cally create a sufficient equivalence definition.

The critical aspect of selecting the equivalence between
states is to consider exactly the structure of the unaffected
part of each state.

The critical aspect of selecting the equivalence between
traces is that the labels on transitions between unaffected
and affected states must uniquely determine the effect that
the transition has on the unaffected part of the state.

Equivalence between heaps is discussed in section 3.1,
and illustrated in figure 1. We establish a bijection on the ad-
dresses of objects that preserves aliasing between the fields
of the unaffected objects.

We also need to consider when the stacks are equiva-
lent. Figure 5 illustrates which stacks we consider to have
equivalent structure. We ignore differences in the number
of affected stack frames while requiring that the number of
changes from affected to unaffected remains the same. This
is very similar to the squashing process we used to abstract
execution in section 5.3.

Once we determine that stacks have equivalent structure,
we require that structurally related stack frames have the
same continuation and that the locals and operands are re-
lated by the same bijection on addresses as the heap.

U

U

¬U
¬U
U

U

U

U

¬U
¬U
¬U
¬U
U

U

U

U

U

U

U

U

U

U

U

U

¬U
U

U

¬U

(a) (b) (c) (d) (e)
maybe equivalent not equivalent with a/b/c

Figure 5. Four stacks, labelled with U if the receiver of the
frame is unaffected, and ¬U if the receiver of the frame
is affected. Stacks (a) and (b) have equivalent structure,
even though they differ in the number of affected frames.
We consider both (a) and (b) to have the same structure as
diagram (c). However stack (d) does not have equivalent
structure with any of the others, because it has no affected
frames between the unaffected frames. Stack (e) also does
not have equivalent structure with any of the others, because
of the additional unaffected frame at the top of the stack.

Definition 5.6 For language Lver and a partitioning predi-
cate U we define a tuple CLA = (',∼=, A) of equivalences
where:
The set of mappings A is the set of injective mappings be-
tween addresses.

We write α(a) to mean the address that α maps a to, but
also when as is a set of addresses we write α(as) to mean
the set obtained by applying alpha to every element of as,
and similarly when ã is a sequence of address α(ã) is the
sequence obtained by applying alpha to every element of ã.

A
def
= {α |α : Address → Address ∧ α is injective}

STATE EQUIVALENCE

States s1, s2 are equivalent under α, written s1 'α s2, iff

HEAP

α preserves the structure of the unaffected part of the heap:

• α preserves U

α(dom(Uheap(s1))) = dom(Uheap(s2))

• α preserves field aliasing for the unaffected objects

∀a, f :α(Uheap(s1)(a, f)) = Uheap(s2)(α(a), f)

• α preserves class of unaffected objects

∀a :Uheap(s1, a, class) = Uheap(s2, α(a), class)

STACK

α preserves the structure of the stacks, stack(s1) 'α
stack(s2)

where σ1 · σ̃1 'α σ2 · σ̃2
def⇐⇒

• The top frames σ1, σ2 are unaffected, and equivalent, and
the remaining frames are equivalent:
σ1 'α σ2
σ̃1 'α σ̃2 ∨ σ̃1 = σ̃2 = ε

• Or the top frames σ1, σ2 are affected and if we skip down
each stack until the next unaffected frames then the stacks
from there are equivalent. ∃σ̃3, σ̃4, σ3, σ4, σ5, σ6 :
σ̃1 = σ̃3 · σ3 · σ̃5
σ̃2 = σ̃4 · σ4 · σ̃6
all frames in σ̃3 and σ̃4 are affected.
σ3 and σ4 are unaffected
σ3 · σ̃5 ∼=α σ4 · σ̃6

• Or the top frames σ1, σ2 are affected and all the remain-
ing frames σ̃1, σ̃2 are affected

Where individual stack frames are equivalent σ1 'α σ2
def⇐⇒

• they have the same continuation:
σ1(exp) = σ2(exp)

• local variables are mapped by α:
∀x :α(σ1(x)) = σ1(x)

• operands are mapped by α:
α(σ(opers)) = σ(opers)

TRACE EQUIVALENCE

Traces ls1 and ls2 are equivalent under α when alpha pre-
serves the aliasing structure of the traces
ls1 ∼=α ls2

def⇐⇒
• |ls1| == |ls2|

• ∀i :

ls2(i) = (c, α(a), α(a′)) if ls1(i) = (c, a, a′)

ls2(i) = (c,m, α(a), α(a′)) if ls1(i) = (c,m, a, a′)

ls2(i) = (α(a)) if ls1(i) = (a)

ls2(i) = τ if ls1(i) = τ

5.5 Equivalences preserved by Execution
We must now show that the defined equivalences are pre-
served by execution, as defined in definition 4.2(v).
Lemma 5.7 CLA is an abstract labelled transition system
equivalence for Lver and U

Proof. Checked by Dafny. To prove: equivalence is pre-
served by execution. Sketch:

First, we show by case analysis, for any s1 → l1s3 if
U (s1) 6= U (s3) then the transition must be a method call,
method return or new object construction.

Then, for arbitrary s1, s2, s3, s4, l1, l2, ls1, ls2, α assume
s1 l1s3 ∧ s2 l2s4, and l1 · ls1 ∼=α l2 · ls2 and
s1 'α s2. To Show ∃α′ : ls1 ∼=α′ ls2 ∧ s1 'α′ s2 By
cases:

• U (s1) — is a single→ step. And→ from unaffected
states preserves ∼=, by case analysis on the → rewrite
rules we show that all rules are agnostic to the actual
values of addresses.

• ¬U (s1) — is a � step within the affected part, fol-
lowed by a single → step from the affected part to the
unaffected part.

Evaluation steps in the affected part do not affect the
U part of the heap, so preserve ∼= by case analysis on
→ and induction on�.
The evaluation step from the affected part to the un-
affected part changes the U part of the heap, but it
does so in a way uniquely determined by the labels, l1
and l2. By case analysis on the kind of label, we use
the fact that α is also a mapping between the labels,
and the rules for method call, object construction and
method return. We are able to show that α is still a
mapping after the transition.

5.6 Observing labels on calls between unaffected and
affected is sufficient

The following corollary guarantees for equivalent states s1
and s2 whose executions lead to s3 and s4, with traces
ls1 and ls2 respectively, that equivalence of the squashed

(definition 5.4) traces is sufficient to establish equivalence
of s3 with s4.
Corollary 5.8 Given some U and CLA = (',∼=, A) for
Lver. For any states s1, s2, s3, s′3, s4, s′4, and traces ls1,
ls′1, ls2, ls2. If

• ⌜s1 � ls1s3⌝ = s1
ls′1 s′3

• ⌜s2 � ls2s4⌝ = s2
ls′2 s′4

• ∃α : s1 'α s2 ∧ ls′1
∼=α ls′2

then ∃α′ : s3 'α′ s4

Consequently, in order to establish our criterion, it is
sufficient to establish trace equivalence. Specifically, it must
be established that for the initial states, for every execution
with some trace in the first version there exists an equivalent
trace in the second version. And also the other way around.

6. Using Dafny
We have checked much of our formalism automatically us-
ing the Dafny verification system. Our experience using
Dafny gave us a lot of feedback on the design of our for-
malism. Often the feedback caused us to think about how to
structure the definitions to make the proofs simpler, leading
to an overall increase in clarity. However, considerable effort
was taken up by trying to understand how to write the for-
malism so that the verifier could check it reasonably quickly.

In this section we report on how we structured our proof.
Many parts of our formalism could be translated quite di-
rectly into Dafny. Other parts required more inventiveness.
So we also look in detail at some particularly interesting
parts of the proof.

6.1 Verifier Timeouts and Debugging
When implementing our proof in Dafny a critical issue for
us, and others [6], was how quickly Dafny gave feedback on
failed verification. Verifiable lemmas often go through very
fast. But when developing and debugging lemmas, timeouts
or long delays occur often. Thus, the need to reduce feed-
back delays influenced the design of many parts of our proof.

We encountered timeouts and long delays when:

• proof insufficiently detailed
• proof contained an error
• lemma large or using many definitions, see section 6.9.

Verification can fail by a timeout or by counter exam-
ple. The feedback that Dafny gives after a verifier timeout
is poor, at best only indicating what line it was working
on when the timeout occurred. Even this is not so helpful,
because sometimes some earlier part of the lemma is very
slow to verify but the solver timeout happens to occur whilst
the verifier is working on some later part. Or sometimes the
proof is incorrect or insufficiently detailed. But the Dafny
feedback after timeout does not distinguish these cases.

Our proof contains two large definitions, the semantics of
Lver and the concrete definition of state equivalence. These
definitions are core to the proof and widely used throughout,
sometimes in the same lemma. We often experienced poor
performance when working with these definitions.

To mitigate this problem we split the definitions into mul-
tiple smaller predicates, and marked them with the annota-
tion {:opaque true}. This annotation instructs Dafny not
to automatically reveal the definition of the predicate when
the predicate is used. We selectively revealed the definitions
when needed using the reveal_MyPredicate() construct.

We discuss further specific strategies for improving how
quickly we got feedback in context in sections 6.2, 6.3, 6.4,
6.7 and 6.9.

6.2 Modules and Refinement In Dafny
We used modules and refinement [6] to split our formalism
across files. Our original motivation for doing so was perfor-
mance. However, interestingly, using refinement in this way
allowed us to prove a more general result than we may oth-
erwise have attempted.

Dafny supports concrete and abstract modules. Ab-
stract modules can contain lemmas and functions without
bodies. Dafny does not attempt to prove bodyless lemmas,
so these lemmas function as axioms within that module. Ab-
stract modules can also contain opaque type definitions, e.g.
type T.

Modules can be refined by other modules: by providing
bodies for any bodyless lemmas and functions; by provid-
ing concrete datatype definitions for opaque type definitions;
or by adding additional definitions. Concrete modules must
not contain any bodyless lemmas or opaque type definitions.
Thus making the bottom-most module in a series of refine-
ments concrete ensures that no bodies are missing.

Within a module, Dafny normally reveals function bod-
ies some number of times at the call site [16]4. Dafny does
not reveal functions bodies across module boundaries. Thus
modules are a useful abstraction boundary, where we can
be sure that a proof does not depend on some implementa-
tion detail of a function. Modules also seems to offer some
performance advantages: hiding irrelevant definitions some-
times seems to help the verifier work faster.

In an abstract module, we often choose to split the mean-
ing of a bodyless predicate or function from its definition by
defining it with no postcondition and giving the postcondi-
tions as separate axioms (bodyless lemmas) that we expect
to follow from the concrete implementation of the predicate.
This split allows us to use the predicate in contracts or in as-
sertions without making the whole postcondition of the pred-
icate available. We can selectively reveal, what is in effect,
the exact part of the postcondition that we need by calling the

4 although this automation can be restricted by marking functions with the
annotation :opaque true, and selectively revealing the definitions by
writing reveal_functionname()

relevant axiom. In a refining module we are obliged to pro-
vide bodies and prove that the lemmas hold for the concrete
implementation, but Dafny can often do this automatically.

Listing 7 shows such a bodyless predicate and bodyless
lemma. We use the predicate Wf throughout our proof to
require that execution produces states that are well-formed in
some sense. In the listing one of the axioms for Wf is shown.
The axiom says that if a state is Wf then each stack frame has
a this pointer.

1 predicate Wf(s:SC)
2

3 lemma wfImpliesThisDefined(s:SC)
4 requires Wf(s);
5 ensures ∀d :: inRangeStackDepth(s, d)=⇒
6 local(s,d,This).Some?

Listing 7. Abstract well-formedness predicate on states,
illustrating separating of the predicate postcondition into
axioms

6.3 Modules and Refinement Structure of our Proof
Our strategy is to create abstract modules to act as interfaces
between the various parts of our system. This strategy has
four main effects. Firstly, it splits the proof so that we do not
have to always wait for the verifier to verify everything all
at once. Secondly, it prevents knowledge of irrelevant imple-
mentation details affecting the verifier performance. Thirdly,
it creates a clean separation of concerns helping us to under-
stand more exactly which behaviour of the implementation
is relevant to other parts of the proof. Fourthly, it potentially
allows us to reuse parts of our proofs for different implemen-
tations. For example, should we be interested in a different
language semantics we should be able to reuse some parts of
our proof.

Figure 6 shows how our proof is structured into modules.
The module Auxiliary is not shown as it is imported by all
other modules. It contains some auxiliary lemmas about the
built in Dafny datatypes set, map and sequence.

Module TheoremProof contains a proof of theorem 4.3
using the definitions from AbstractLts and Abstract-
Equiv. The module is 80 lines long and proceeds by induc-
tion over traces from the abstract labelled transition system
transition relation. Module AbstractLts is around 90 lines
long and contains the definition of abstract labelled transi-
tion system, very similar to how it is given in definition 4.1.
Module AbstractEquiv is 30 lines long and contains the
definition of our abstract labelled transition system equiva-
lence, similar to how it is given in definition 4.2

Module AbstractLang contains an abstract definition of
the language Lver and its transition relation, and is around
1200 lines long. It mostly contains predicates that relate con-
secutive execution states. For example, Listing 8 shows a
predicate that relates state s1 to state s2, designed to capture
the effect of s1 executing a return to produce state s2. We
use module AbstractLang to abstract the concrete repre-

1 predicate
2 stacksEqualApartFromOperandsAndRemovedFrame
3 (s1:SC, s2:SC)
4 requires Wf(s1);
5 ensures
6 stacksEqualApartFromOperandsAndRemovedFrame(s1,s2)
7 =⇒topCont(s1).Some?
8 ∧ topCont(s1).o= []
9 ∧ depth(s1)-1= depth(s2)

10 ∧ equalLocals(s2, s1)
11 ∧ (∀d :: inRangeStackDepth(s2, d)=⇒
12 d 6= depth(s2)-1=⇒equalOperandsD(s1,s2,d))
13 ∧ equalMeth(s2 , s1)
14 ∧ equalCont(s2 , s1)
15 ∧ operands(s1, depth(s2) -1).Some?
16 ∧ operands(s2, depth(s2) -1).Some?
17 ∧ operands(s2, depth(s2) -1).o 6= []
18 ∧ topOperands(s1).Some?
19 ∧ topOperands(s1).o 6= []
20 ∧ operands(s1, depth(s2) -1).o = =
21 [topOperands(s1).o[0]] +
22 operands(s2 , depth(s2) -1).o;

Listing 8. Dafny predicate describing the relation between
a state s1 that executes a return to produce state s2

AbstractEquiv

ConcreteEquiv

AbstractLts

ConcreteLts

AbstractLang

Lang

TheoremProof imports

refines

Figure 6. Module structure of our automatically checked
proof.

sentation of Lver states, and to hide the concrete operational
semantics which are contained in module Lang. Section 6.4
covers this in more detail.

Module ConcreteLts is a refinement of module Abstract
Lts. It contains the definition of U and is around 1200 lines
long. Its primary role is to prove lemma 5.3, and squash mul-
tiple sequential steps from affected states into a single step.
Specifically, it proves by refinement that an abstract labelled
transition system transition relation can be constructed from
the Lver transition relation given in module AbstractLang.

Module ConcreteEquiv gives concrete equivalences for
Lver and is around 2500 lines long. Its primary role is to
prove lemma 5.7, that the equivalences are preserved by
execution. To do this, given some pair of equivalent states,
we use the predicates from module AbstractLang to pick a
relation α such that the successor states are also equivalent.

6.4 Partial Functions
We use Dafny’s built in datatypes to represent the concrete
states of our language Lver, but we do most of the proof
using an abstraction of this representation. The abstraction
is expressed using functions and predicates. To illustrate

we will describe our representation of heaps, but we did
similarly for the stack.

Listing 9 shows how maps represent the heap and objects
in a natural way. It was difficult to prove some of our com-
plex lemmas using this representation directly. In particular
we needed to prove that given two heaps which differ in the
unaffected objects, that after arbitrary changes to the affected
objects there remains the same difference in the unaffected
objects. When using a map representation directly we con-
tinually experienced verification timeouts.

We created accessor functions around the maps. These
functions are defined in module AbstractLang and used
by other modules. Function definitions are not revealed over
module boundaries so this hides the concrete representation
of the heap whilst proving the lemmas in those modules. The
accessor functions are implemented in module Lang where
we discharge the obligation to prove their properties.

Listing 10 shows the functions we use to abstract our
heap representation. Since Dafny maps are partial, we use
a datatype Option to encode partial functions as total func-
tions. The value Some is used for parameters that are in
the domain, and None otherwise. For example, function
KlassOf(s,a) returns the class of the object at address
a in state s wrapped in Some iff address a is in the heap of
s, and will return None otherwise.

This design makes it easy to assert certain properties that
are important for our proof. The reason for this simplicity is
that None is equal to itself. The code in Listing 11 asserts
that two states have equal heaps. Note that we do not have to
quantify over existent addresses and fields.

1 datatype Heap =
2 createHeap(objs:map <Addr , Obj >, next:int)
3 datatype Obj =
4 createObj(klass:Klass , fields:map <Field , Addr >)

Listing 9. Concrete representation of Lverheaps in Dafny,
taken from module Lang

1 datatype Option <O> = Some(o:O) | None
2 function heap(s:SC, a:Addr , f:Field)
3 : Option <Addr >
4 function KlassOf(s:SC, a:Addr)
5 : Option <Klass >
6 predicate inHeap(a:Addr , s:SC)
7 ensures inHeap(a,s)⇐⇒ KlassOf(s,a).Some?;

Listing 10. Abstracted representation of Lverheaps in
Dafny, taken from module AbstractLang

1 assert (∀a,f :: heap(s1,a,f)= heap(s2,a,f))∧
2 (∀a :: KlassOf(s1 ,a)= KlassOf(s2 ,a));

Listing 11. Asserting that two Lver states have equal heaps
in Dafny

6.5 Termination Preproofs
It is possible to write non-terminating programs in Lver. So
when squashing a series of affected steps as in definition
5.4, we have to consider the case where execution continues
forever, and each subsequently reached state is an affected
state. We cannot construct an abstract transition from such an
affected state to a successor unaffected state, because there
is no such successor.

Our abstract labelled transition system must only squash
finite series of affected steps which reach an unaffected state.
However, Dafny insists that we prove termination for all
parts of our proof. So we cannot simply write a function that
executes from an affected state in the hope of reaching an
unaffected one. Instead we must first produce a witness, or
preproof, that executing from the state we are interested in
does reach an unaffected state or terminate in a finite number
of steps.

We use a sequence of the states reached during execution
as our preproof. Because Dafny’s built in sequences are al-
ways finite, if such a sequence of states exists then we know
it is finite. Listing 12 shows the predicate CheckReaches-
UOrStuck over states and sequences of states that we use
to identify a preproof. Our predicate holds if execution from
the state proceeds through the steps in the sequence eventu-
ally terminating (i.e. stuck) or reaching an unaffected state.
We pick out terminating states using the predicate Reaches
UOrStuck which holds only if there exists such a preproof.

1 predicate CheckReachesUOrStuck(s:S, preproof:seq <S>)
2 decreases preproof;
3 requires Lang.Wf(s.sc);
4 {
5 if preproof = [] then
6 U(s)
7 else
8 preproof [0] = s∧ !U(s)∧
9 var t := ExpandedStep(s);

10 var tail := preproof [1..];
11 if t.Stuck? then tail = []
12 else
13 t.GoesTo?∧
14 CheckReachesUOrStuck(t.s, tail)
15 }
16

17 predicate ReachesUOrStuck(s:S)
18 requires Lang.Wf(s.sc);
19 {
20 ∃preproof ::
21 CheckReachesUOrStuck(s, preproof)
22 }
23

24 function Preproof(s:S) : Lang.Option <seq <S>>
25 requires Lang.Wf(s.sc);
26 ensures Preproof(s).Some?=⇒
27 CheckReachesUOrStuck(s, Preproof(s).o);
28 {
29 if ReachesUOrStuck(s) then
30 var preproof :| CheckReachesUOrStuck(s, preproof);
31 Lang.Some(preproof)
32 else Lang.None
33 }

Listing 12. Preproof predicate picks out terminiating
executions

Finally we also use a function Preproof which returns
an arbitrary preproof if one exists, or None otherwise. We
use this function to help us neatly write conditions that
distinguish terminating and non-terminating states.

We also found that we experienced fewer verifier time-
outs when producing preproofs using a function, rather than
directly via the let-such-that :| operator5. We hypothesise
that this is because using the function we get the same, arbi-
trary, preproof for each state rather than a potentially differ-
ent preproof each time we use the :| operator. Hence, once
we have proved a property using the preproof we can later
easily assert that property.

To prove determinism of execution in the unaffected part
we also prove that at most one such preproof exists for any
affected state.

Whenever we want to write a recursive function on such a
series of steps from affected states we have to produce a pre-
proof to show termination. Listing 13 shows such a pattern.
Function MyFn uses the function Preproof to obtain a pre-
proof if one exists. If it obtains one then it calls the recursive
function MyFn’, otherwise it returns the value None.

1 function MyFn(s:S) : Option <S>
2 {
3 var preproof := Preproof(s);
4 if preproof.None? then None
5 else Some(MyFn ’(s, preproof.o))
6 }
7

8 function MyFn ’(s:S, preproof:seq <S>) : S
9 decreases preproof;

10 requires CheckReachesUOrStuck(s, preproof);
11 { ... }

Listing 13. Using a preproof

6.6 Termination Proofs and Finite Datatypes
We create a multi-step abstract labelled transition relation
from the transitive reflexive closure of the abstract single
step relation. We insist that multi-step execution between
two states produces a sequence of labels, as shown in listing
14. Since Dafny sequences are finite, we can prove termi-
nation of inductive predicates and recursive functions over
multi-step executions without any additional effort.

1 predicate Steps(s1:S, ls:seq <L>, s2:S)

Listing 14. Multi-step abstract labeled transitition relation

6.7 Flat Stack Equivalence
In definition 5.6 we gave a recursive definition of equiva-
lence between stacks. We tried to use the same definition in
our Dafny proof, but we found that our proofs became com-
plex to write. We also experienced many verification time-
outs. So instead we used a modified definition which instead

5 deterministic ghost operator, gives an arbitrary value satisfying a predicate

of treating the stack as an inductively defined sequence, rep-
resents it directly as a partial function from integers to stack
frames. We found that it was often easier for us to prove
quantified assertions about such functions than to prove in-
ductively defined assertions about recursive structures. And
that we were less likely to run into verifier timeouts during
development.

Given this definition of equivalence between stacks, we
are able to represent the equivalence as maps between inte-
gers, which represent the depth of a stack frame. An addi-
tional benefit of this approach is that equivalence between
stacks and equivalence between heaps have very similar def-
initions. Stacks are equivalent when there exists a bijective
map between stack frame depths that preserves the structure
of the stack. And two heaps are equivalent when there exists
a bijective map between addresses that preserves the struc-
ture of the heap. Thus we are able to use lemmas that we
prove about generic maps to deal with both parts of the state
equivalence.

Listing 15 shows an example that asserts that pairs of
mapped stack frames have the same continuation.

In parts of the proof dealing with method call and method
return we have to reason about the top two stack frames. It
seems that usually Dafny only reveals recursively defined
predicates once [16]. When we used such recursively defined
predicates for the stack equivalence we had to manually
unroll the definitions to be able to reason about the second
stack frame. Using our flattened stack equivalence avoided
this.

1 var isos:map <int ,int >; var s1,s2:S;
2 assert ∀d :: d ∈ isos=⇒
3 cont(s1.sc ,d)= cont(s2.sc ,isos[d])
4

5 function cont(s:SC, d:int)
6 : Option <seq <Expr >>

Listing 15. Asserting that each pair of stack frames mapped
by the map isos have the same continuation. Also shown is
the cont(s,d) function which returns the continuation for the
dth stack frame of state s

6.8 Interesting Auxiliary Lemmas
In the process of proving our theorem we had to prove some
properties about the built-in Dafny datatypes set, sequence
and map. Most of these lemmas were straightforward to
prove. Some of them were quite trivial properties of the
datatypes that Dafny does not already know. Dafny offers
some neat approaches to writing such proofs. Dafny lemmas
are ghost methods, so can contain loops and other impera-
tive control structures. Lemmas being methods enables us to
prove a property of maps by: writing a method with a map
parameter and the property as its post condition; implement-
ing the method to calculate the property; and then proving
that the implementation does indeed entail the postcondition.

An illustrative example of this approach is shown in list-
ing 16, where we prove that injective maps have an inverse.
We have only shown the bodies of the most important lem-
mas. Lemma injectiveMapHasInverse proves that the
inverse exists by calling lemma canInvertMap. We also
provide a function invert which can be used to obtain the
inverse in other lemmas and contracts: it first proves that the
inverse exists, and then uses the "let such that" operator :|
to return the inverse map.

The main body of the proof is in the lemma canInvertMap
. The lemma returns a value m’ which should be read as ex-
istentially quantified, whereas the parameter of the lemma
should be read as universally quantified, i.e. ∀m∃m′. Dafny
maps are immutable. The lemma is implemented by: first
copy the input map and call it R; then loop, at each iteration
remove one key 7→value from R and put it into a map called
S, also put the inverse value 7→key into a map called I. We
maintain the loop invariant that I is the inverse of S, and at
the end of the loop all elements of m’ have been copied to S
so I is the inverse of m’.

6.9 Editing and IDE
We did most of our proof development using the Dafny IDE
plugin for the Microsoft Visual Studio IDE. We found the
IDE very useful. The incremental verification and relatively
rapid feedback it provides make it fun and relatively respon-
sive to use. But delays waiting for the verifier, still make the
experience frustrating at times, see section 6.1 for more.

We encountered two further difficulties. Firstly, the IDE
would become unresponsive after some hours of use and
need to be restarted in order to continue. Secondly, when
opening a Dafny file for editing in the IDE the whole file has
to be verified. For our large files this takes around 10 minutes
per file.

To counter the problem we used the Dafny :verify
false annotation. This annotation tells Dafny to skip ver-
ification of the particular lemma or function. We then only
enable verification on the lemmas we are currently chang-
ing. After completing the proof we remove all annotations
and run the Dafny command line verifier to ensure that us-
ing the annotation did not allow any errors through.

7. Conclusion
We have described a method for establishing the existence
of equivalences between some parts of the behaviour of two
versions of a program. Our method does not require us to ex-
amine the stack and heap at each execution step. Instead we
are able to establish if the versions are equivalent by examin-
ing only some of the method calls from execution traces. We
have automatically checked a proof that our method is sound
using the Dafny program verifier. We detailed here some of
our experiences with and techniques for using Dafny.

Related: Regression verification uses bounded model
checking to verify the equivalence of some loop and re-

1 predicate mapInjective <U,V>(m: map <U,V>)
2 ensures mapInjective(m)⇐⇒∀a,b ::
3 a ∈ m∧ b ∈ m=⇒a 6= b=⇒m[a] 6= m[b];
4 ensures mapInjective(m)=⇒∀a,b ::
5 a ∈ m∧ b ∈ m=⇒m[a]= m[b]=⇒a= b;
6

7 predicate mapsAreInverse <U,V>
8 (m: map <U,V>, m’: map <V,U>)
9 ensures mapsAreInverse(m,m’)=⇒∀a ::

10 a ∈ m=⇒m[a] ∈ m’∧ m’[m[a]] = a;
11 ensures mapsAreInverse(m,m’)=⇒∀a ::
12 a ∈ m’=⇒m’[a] ∈ m∧ m[m’[a]] = a;
13

14 lemma canInvertMap <U,V>(m: map <U,V>)
15 returns (m’: map <V,U>)
16 requires mapInjective(m);
17 ensures mapsAreInverse(m,m’);
18 {
19 var R,S,I := m,map[],map[];
20 while R 6= map[]
21 decreases R;
22 invariant mapSmaller(R, m);
23 invariant mapSmaller(S, m);
24 invariant R !! S; // disjoint
25 invariant m= union(R, S);
26 invariant mapsAreInverse(S,I);
27 {
28 var a :| a ∈ R;
29 var v := R[a];
30 var r := map i |
31 i ∈ R∧ i 6= a :: R[i];
32 R,S,I := r,S[a:=v],I[v:=a];
33 }
34 m’ := I;
35 }
36

37 lemma injectiveMapHasInverse <U,V>(m: map <U,V>)
38 requires mapInjective(m);
39 ensures ∃m’ :: mapsAreInverse(m, m’);
40 {
41 var m’ := canInvertMap(m);
42 }
43

44 function invert <U,V>(m:map <U,V>) : map <V,U>
45 requires mapInjective(m);
46 ensures mapsAreInverse(m,invert(m));
47 {
48 injectiveMapHasInverse(m);
49 var m’ :| mapsAreInverse(m,m’);
50 m’
51 }
52

53 predicate mapSmaller <U,V>(m: map <U,V>, m’: map <U,V>)
54 ensures mapSmaller(m,m’)=⇒
55 (∀u :: u ∈ domain(m)=⇒u ∈ domain(m’));
56 ensures mapSmaller(m,m’)⇐⇒
57 (∀a :: a ∈ m=⇒a ∈ m’∧ m[a]= m’[a]);
58 function domain <U,V>(m:map <U,V>) : set <U>
59 ensures domain(m)= set u : U | u ∈ m :: u;
60 ensures ∀u :: u ∈ domain(m)=⇒u ∈ m;
61 function union <U, V>(m: map <U,V>, m’: map <U,V>):
62 map <U,V>
63 requires m !! m’;
64 ensures ∀i ::
65 i ∈ union(m, m’)⇐⇒ i ∈ m ∨ i ∈ m’;
66 ensures ∀i ::
67 i ∈ m=⇒union(m, m’)[i]= m[i];
68 ensures ∀i ::
69 i ∈ m’=⇒union(m, m’)[i]= m’[i];
70 ensures |m| + |m’| = |union(m, m’)|;
71 lemma sizeOfDomainIsSizeOfMap <U,V>
72 (m:map <U,V>, s:set <U>)
73 requires s= domain(m);
74 ensures |s|= |m|;

Listing 16. Proof that injective maps have an inverse

cursion free programs [7]. Program verification tools in con-
junction with automated theorem provers can be used to
check some programs for equivalence [8, 9]. These tools are
modular and fast but currently do not work well with mod-
ifications that result in different heaps states across many
method calls. Provers can also be used to check library
versions for backward compatibility [10]. Semantics aware
trace analysis [11] and BCT [12] use traces captured at run-
time to attempt to isolate the causes of regression failures.
Guru [13] uses sequences of message sends to define equiv-
alence of differently factored method implementations in an
object-oriented system. State based encapsulation provides
a method for reasoning about the equivalence of individ-
ual classes [14]. Our programs are deterministic so labelled
transition system trace equivalence suffices for our purpose,
but to extend our approach to the non-deterministic concur-
rent case it might be interesting to consider using the Weak
Bismulation up to [17] technique.

Future: We are using our theorem as the basis for a tool.
The tool is currently able to find automatically that V1 and
V2 from section 2 are not equivalent wrt. affected objects of
class Logger, PrintStream, List and Student. We plan
to describe and develop the tool further in future work.

Acknowledgments
K. Rustan M. Leino for discussions and extensive help with
Dafny including a new version of Dafny with some improve-
ments to module refinement. Reuben Rowe for discussions
about our proof. Nada Amin for the very helpful tutorial
video How to write your next POPL paper in Dafny, which
included the Option technique for encoding partial func-
tions.

References
[1] Yin, Zuoning and Yuan, Ding and Zhou, Yuanyuan and

Pasupathy, Shankar and Bairavasundaram, Lakshmi. 2011. How
do fixes become bugs?. Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations
of software engineering.

[2] Jihun Park and Miryung Kim and Ray, B. and Doo-Hwan Bae.
2012. An empirical study of supplementary bug fixes. Mining
Software Repositories (MSR), 9th IEEE Working Conference
on.

[3] Lahiri, Shuvendu K. and Vaswani, Kapil and Hoare, C. A. R..
2010. Differential static analysis: opportunities, applications,
and challenges. Proceedings of the FSE/SDP workshop on
Future of software engineering research.

[4] K. Rustan M. Leino. 2010. Dafny: An Automatic Program
Verifier for Functional Correctness. Proceedings of the 16th
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning.

[5] K. Rustan M. Leino. 2008. This is Boogie 2.

[6] Christakis, Maria and Leino, K. Rustan M. and Schulte,
Wolfram. 2014. Formalizing and Verifying a Modern Build
Language. FM 2014: Formal Methods.

[7] Godlin, B. and Strichman, O.. 2009. Regression verifica-
tion. Design Automation Conference, 2009. DAC ’09. 46th
ACM/IEEE.

[8] Hawblitzel, Chris and Kawaguchi, Ming and Lahiri, Shuvendu
K and Rebêlo, Henrique. 2013. Towards modularly comparing
programs using automated theorem provers. International
Conference on Automated Deduction.

[9] Shuvendu Lahiri and Ken McMillan and Rahul Sharma
and Chris Hawblitzel. 2013. Differential Assertion Checking.
Foundations of Software Engineering.

[10] Welsch, Yannick and Poetzsch-Heffter, Arnd. 2012. Verifying
backwards compatibility of object-oriented libraries using Boo-
gie. Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs.

[11] Hoffman, Kevin J. and Eugster, Patrick and Jagannathan,
Suresh. 2009. Semantics-aware trace analysis. Proceedings of
the 2009 ACM SIGPLAN conference on Programming language
design and implementation.

[12] Mariani, Leonardo and Pastore, Fabrizio and Pezze, Mauro.
2011. Dynamic Analysis for Diagnosing Integration Faults.
IEEE Trans. Softw. Eng..

[13] Moore, Ivan. 1996. Automatic inheritance hierarchy restruc-
turing and method refactoring. Proceedings of the 11th ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications.

[14] David Naumann and Anindya Banerjee. 2012. State Based
Encapsulation for Modular Reasoning about Behaviour-
Preserving Refactorings. Aliasing in Object-oriented Program-
ming. Springer State-of-the-art Surveys.

[15] Tim Wood and Sophia Drossopoulou. 2013. Refactoring
Boundary. Imperial College Computing Student Workshop

[16] Amin, Nada and Leino, K. Rustan M. and Rompf, Tiark.
2014. Computing with an SMT Solver. Proceedings of the 8th
International Conference on Tests and Proofs

[17] Sangiorgi, Davide and Milner, Robin. 1992. The problem of
“Weak Bisimulation up to”. CONCUR’92

