
FOOL 2014

The Problem of Structural Type Tests in a Gradual-Typed Language

John Tang Boyland
University of Wisconsin-Milwaukee

boyland@uwm.edu

Abstract
The Grace programming language includes structural type
tests and gradual typing. We demonstrate that this combina-
tion results in a mismatch. In particular, structural type tests
(but not structural type assertions) can cause programs to
give different results after typing annotations are added. We
review the current uses of type tests in Grace programs and
propose potential ways forward, all of which have their own
drawbacks.

1. Introduction
Grace [2, 3] is a new language specifically tailored to teach-
ing Computer Science. It has a simple syntax and a powerful
yet minimal type system. For power and simplicity, it uses
a structural type system. In order to make the system usable
for rapid prototyping and scripting, Grace supports gradual
typing.

Gradual typing [6] bridges dynamically and statically
typed code by adding type assertions at the boundary be-
tween them. Even more important than implementation ef-
ficiency, static typing gives the ability to find errors sooner
in the development process, either at compile-time, or dy-
namically, when execution enters a subsystem with particu-
lar explicit expectations. Furthermore, many gradually typed
systems use types as contracts in which one can track blame,
locating the code that breaks a contract [9].

In this paper, I argue that the combination of the three
features (structural types, type tests and gradual types) leads
to a serious problem. One cannot provide continuity between
dynamically typed and statically typed programs, because
adding a (valid) type annotation can change a program’s
behavior.

The problem I describe turns on how type tests are per-
formed. In a nutshell, if more precise type information en-
ables the type test to more precisely determine the type be-

[Copyright notice will appear here once ’preprint’ option is removed.]

ing tested, then a type test’s result may switch from positive
to negative (or vice versa). If a program can use the result of
the type test in a conditional branch, then the addition of a
type annotation can change its (non-error) behavior.

If, on the other hand, type tests only lead to possible run-
time errors, and if type tests are implemented to err on the
side of lenience in the case of missing type information, then
the addition of a type annotation can only make a previously
running program fail with a type error. It cannot change its
non-error behavior.

I discuss this situation in the case of Grace, extend-
ing TinyGrace [4] (a statically-typed minimal dialect of
Grace) with gradual features, keeping in mind the current
(dynamically-typed) implementation, minigrace. Section 2
starts by presenting a definition of TinyGrace, modified to
be more amenable to gradual typing. Then Section 3 dis-
cusses minigrace and considers an example of a type test in
the example corpus of Grace programs distributed with min-
igrace. Section 4 discusses how to define a gradually-typed
version of Grace, thus attempting to connect minigrace and
TinyGrace. It gives a simple artificial program that demon-
strates the problems with type tests. It also discusses the
possibility of doing away with type tests altogether.

2. Syntax and Semantics
Figure 1 gives the syntax of TinyGrace, copied with mi-
nor variation from Jones and Noble [4] with an additional
highlighted form for the “Dynamic” (or “Unknown”) type.

Jones and Noble further define a well-formedness relation on
types that ensures that all recursive references are in scope
and signatures have unique method names. In this paper, we
assume these restrictions are fulfilled.

In examples as a shorthand and for clarity, I will use
named type definitions and named objects in place of the
recursive types and anonymous objects in Figure 1.

Figure 2 gives typing rules for TinyGrace, modified from
Jones and Noble, by making the type system algorithmic
(and dropping an explicit T-SUB rule) and in T-REQ, explic-
itly substituting the recursive type into the parameter types
(τ1) and the result type (τ2).

For the current purposes, the type rule for matches, T-
CASE, is the most relevant: the expression being matched
over must be one of the types being matched (to make sure

FOOL 2014: Portland OR, October 20, 2014 1 2014/10/11

M ::= method S { e } method
O ::= object { M } object creation
C ::= case { x : τ -> e } branch
S ::= m(x:τ) -> τ signature

e ::= expression:
O object
x variable use
e.m(e) method call
match (e) C type test

τ ::= type:
rec X.type { S } object type
X recursive reference
τ | τ union type
τ & τ intersection type
? dynamic type

Π ::= · | Π, X type context
Σ ::= · | Σ, τ <: τ subtype context
Γ ::= · | Γ, x : τ variable context

Figure 1. TinyGrace syntax with an addition .

T-VAR
(x : τ) ∈ Γ

Γ ` x : τ

T-OBJ

τ = rec X.type{m(x:τ1)->τ2}

Γ, self : τ, x : τ1, ` e : τ2

Γ ` object{method m(x:τ1) -> τ2 { e }} : τ

T-REQ

Γ ` es : rec X.type{ S } m(x:τ1)->τ2 ∈ S
Γ ` ep : τp τp ≤ τ1[X 7→ rec X.type{S}]

Γ ` es.m(ep) : τ2[X 7→ rec X.type{S}]

T-CASE

Γ ` e : τ τ ≤ or(τ1) Γ, x : τ1 ` e2 : τ2

Γ ` match(e) case x:τ1 -> e2 : or(τ2)

or(τ1 . . . τn) = τ1|...|τn

Figure 2. (Algorithmic) Type System for TinyGrace.

S-ASSUM
X ≤ X ′ ∈ Σ

Σ ` X ≤ X ′

S-LIT

Σ, X ≤ X ′ ` S ≤ S′

Σ ` rec X.type{S,S0} ≤ rec X ′.type{S′}

S-UNIONL
Σ ` τ ≤ τ1

Σ ` τ ≤ τ1|τ2

S-UNIONR
Σ ` τ ≤ τ2

Σ ` τ ≤ τ1|τ2

S-UNION
Σ ` τ1 ≤ τ
Σ ` τ2 ≤ τ

Σ ` τ1|τ2 ≤ τ

S-INTERL
Σ ` τ1 ≤ τ

Σ ` τ1&τ2 ≤ τ

S-INTERR
Σ ` τ2 ≤ τ

Σ ` τ1&τ2 ≤ τ

S-INTER
Σ ` τ ≤ τ1
Σ ` τ ≤ τ2

Σ ` τ ≤ τ1&τ2

S-SIG

Σ ` τ ′1 ≤ τ1 Σ ` τ2 ≤ τ ′2
Σ ` m(x:τ1)->τ2 ≤ m(x′:τ ′1)->τ

′
2

Figure 3. Subtyping in TinyGrace: Σ ` τ ≤ τ .

one of the branches match), and in the body of the case, one
can assume that the match variable has the chosen type. The
resulting type is the union of all the body types.

The subtyping relation τ ≤ τ is defined in Fig. 3. It
differs significantly from that of Jones and Noble only in the
(stricter) way recursive types are handled. Here we use the
“Amber” rule for simplicity, but since recursive types aren’t
the focus of this work, the difference is irrelevant. Following
Jones and Noble, in S-LIT, the signatures are assumed to
be freely reorderable so that we can assume that all the
matching methods are in the same order at the front of the
type. For now, since TinyGrace doesn’t use the dynamic type
?, we define no subtyping rules for ?.

Jones and Noble concede the subtyping of intersection
types is not complete because a signature with a single
method whose return type is an intersection type is not
a supertype of the intersection of two object types with
signatures with the same method having the individual return
types. The same argument applies mutatis mutandi to union
types, although Jones and Noble do not mention this fact.

Figure 4 repeats evaluation rules from Jones and Noble,
with the addition of “type assertions” on actual parameters in
R-REQ to match the semantics implemented by minigrace.1

The type assertion O ∈ τ consists of getting the type of
the object and then testing the resulting type with subtyping.
The static type system of TinyGrace ensures that the type

1 It would also make sense to add type assertions on the method return, but
as this would require more machinery (an explicit cast syntax) and because
minigrace currently doesn’t check return values, I do not do so in this paper.

FOOL 2014: Portland OR, October 20, 2014 2 2014/10/11

R-RECV
e1 −→ e′1

e1.m(e2) −→ e′1.m(e2)

R-PRM
e2 −→ e′2

e1.m(O,e2,e3) −→ e1.m(O,e′2,e3)

R-REQ

(method m(x:τ1) -> τ2 {e}) ∈M O ∈ τ1
object{M}.m(O) −→ e[self 7→ object{M}, x 7→ O]

R-MATCH
e −→ e′

match (e) C −→ match (e′) C

R-CASE
O ∈ τ

match (O) case {x:τ->e}C −→ e[x 7→ O]

R-MISS
O /∈ τ

match (O) case {x:τ->e}C −→ match (O) case C

Figure 4. Evaluation for TinyGrace (and minigrace).

R-INST

rec X.type{S} ≤ τ
object{method S{e}} ∈ τ

Figure 5. Evaluation of Type Assertions for TinyGrace.

assertions that I added to R-REQ always succeed, and that a
match always has a case that works.

The rule R-MISS uses the negation of of a type assertion
to determine whether to move on to the next case. Not
surprisingly, this negation lies at the heart of the problem
of combining case matching with gradual typing.

3. Dynamically-Typed Grace
Grace is being used in instruction for the first time in Fall
20142 using its dynamically-typed implementation, mini-
grace. The implementation supports a language that is a su-
perset of TinyGrace with many additional features (includ-
ing primitives, mutable state and much more). In particular,
types are not checked statically, and in any case are optional:
type annotations of the form “: τ” or “-> τ” can be omit-
ted. In this paper, however, I will use “?” as the dynamic
type, and so share the syntax figure (Fig. 1)

2 At Pomona College with Kim Bruce.

L ⊇ {m}
L ≤ rec X.type{m(τ1)->τ2}

L ≤ τ1
L ≤ τ1|τ2

L ≤ τ2
L ≤ τ1|τ2

L ≤ τ1 L ≤ τ2
L ≤ τ1&τ2

R-INST’
{m} ≤ τ

object{method m(. . .)->. . .{e}} ∈ τ

Figure 6. Evaluation of Type Assertions for minigrace.

Being dynamically-typed, minigrace does not use a static
type system (no equivalent of Fig. 2), but (in my feather-
weight conception of minigrace), it shares the evaluation re-
lation given in Fig. 4, with one difference seen in Fig. 6.
Assertions are implemented by simply checking whether the
set of labels in the object covers those required by the type.3

An important property of this system is that the evaluation of
type assertions do not depend on type annotations on meth-
ods of the object being tested or on methods of the type being
test against.

As a result, one property enjoyed by minigrace is that
type annotations cannot change the no-error semantics of a
program. As just explained, adding a type annotation makes
no difference in the evaluation of “match” expressions, and
can only lead to evaluation getting stuck in R-REQ. This
property is highly desirable in a gradually typed language,
although minigrace is not a true gradually typed language
implementation, but rather dynamic typing with the addition
of type assertions. Vitousek and others [8] observe that sim-
ply adding dynamic type assertions to a dynamically typed
language is not sufficient to detect all contract failures. And
without static type checking, one cannot achieve even the
relative type-safety of a gradually-typed language.

Almost all Grace programs that are currently being used
are untyped since minigrace does not perform any static typ-
ing. For instance, in the entire corpus (3000 lines) of demon-
stration programs for Kim Bruce’s programming class at
Pomona, there is not a single use of match that tests a type
(the few uses of match are used for value matching). This
makes it harder to find motivating examples.

The syntax of Grace’s catch clauses hints that (as with
Java), type tests are used, but a fuller reading of the current
draft specifiecation [3] indicates that exceptions are classi-
fied by “kinds” which are simply objects created in a con-
trolled way from a base kind. In other words, there are no
user-defined exception classes.

Type tests are actually used for ad hoc polymorphism, for
example (in code from the minigrace compiler):

3 Personal communication, Michael Homer.

FOOL 2014: Portland OR, October 20, 2014 3 2014/10/11

type LinePos = {

line -> Number

linePos -> Number

}

type RangeSuggestions = {

line -> Number

posStart -> Number

posEnd -> Number

suggestions

}

...

match (e.data)

case { lp : LinePos -> ...

atPosition(e.data.line, e.data.linePos)

}

case { rs : RangeSuggestions -> ...

atRange(rs.line, rs.posStart, rs.posEnd)

...

}

case { _ -> }

The behavior of this code depends on whether the data in the
object e is a line position or a range suggestion. The empty
clause at the end prevents an error from being raised, at the
cost of silently doing nothing.

4. Gradual Typing
In this section, I describe some ways to define gradual typ-
ing for Grace. First, I describe how TinyGrace can be made
gradual and then how minigrace can incorporate static typ-
ing. For each proposal, I show examples that demonstrate a
problem with the proposal.

The issues discussed here are not an issue for a nominal
type system (such as with Java) because testing membership
in a class simply uses the class named at creation (and
its declared supertypes) and does not need to consider the
methods of the instance (let alone their declared types).

4.1 Adding dynamic types to TinyGrace
The static type system currently does not permit anything of
declared dynamic type (?) to be used. This can be changed
by updating subtyping by adding two rules:

S-DYNTOP

Σ ` τ ≤ ?

S-DYNBOT

Σ ` ? ≤ τ

These rules add cycles to the subtyping relation, and cause it
not to be transitive, but these defects can be overlooked since
the type system is algorithmic, lacking a T-SUB rule.

Siek and Taha [6] take a different approach. Instead of
changing subtyping, they define a new relation <∼ that com-
bines subtyping with consistency “∼.”4 This relation is then

4 I conjecture that <∼ is the same as ≤ with the addition of the new rules
added in this section.

type Object = { }

type Boolean = {

choose(o1 : Object, o2 : Object) -> Object

}

type Nat = {

isZero() -> Boolean

pred() -> Nat

succ() -> Nat

}

type Window = {

draw(b : Boolean) -> Object

}

type Cowboy = {

draw(n : Nat) -> Cowboy

}

object a = { method a() -> Object { self } }

object b = { method b() -> Object { self } }

object c = { method c() -> Object { self } }

match (object {

method draw(x : Nat) -> Cowboy {

self

}

})

case { w:Window -> a }

case { c:Cowboy -> b }

case { o:Object -> c }

Figure 7. Problematic Code using Type Tests

used with T-REQ (and in type assertions) in the place of nor-
mal subtyping, with much the same effect.

These additions make TinyGrace’s type assertions more
lenient if a type annotation is removed, that is, more likely
to succeed. This is a problem for R-MISS because remov-
ing a type annotation can cause this rule to become less ap-
plicable. For example, if the code in Fig. 7 is executed in
TinyGrace, the result is “b.” But if the highlighted type an-
notations (on the match subject) are replaced with “?” then
the the match subject could be seen as either a Window or
a Cowboy, and since the first case is checked first, the result
will be “a.” Thus we see that the no-error behavior of this
program depends on the presence of type annotations.

Vitousek and others [8] define three ways of adding grad-
ual types, distinguished mainly by how they handle type as-
sertions. At the danger of over-simplification, these three
techniques are as follows:

guarded Objects with dynamic type passed to methods are
wrapped to check arguments and results of its uses.

FOOL 2014: Portland OR, October 20, 2014 4 2014/10/11

?	=	?				
τ1	τ2	=	τ1			τ2
τ1&τ2	=	τ1	&	τ2		

|recX.type{m(x:τ)->τ ′}| = recX.type{m(x:?)->?}

Figure 8. Type Erasure: |τ | = τ ′.

transient Every use of an object is checked against its de-
clared type.

monotonic Every type assertion on an object is put into
effect for all further uses of the object.

The example in Fig. 7 has the same behavior with all three
systems, mainly because the object of dynamic type is used
only in match. Of course a full definition of gradual typing
derived from TinyGrace, using these techniques would need
to handle their semantics: the “guarded” approach would
require the creation and handling of proxies; the monotonic
approach would see a type assertion as a side-effect on the
state of the object, thus requiring tracking of mutable object
state.

Another example of the problem of having semantics
depend on type annotations is type inference. If a tool is
used to automatically infer (say) return types for methods,
this may cause a program to execute differently. In a system
only using type assertions in a positive way, this problem
does not occur.

4.2 Extending minigrace into a gradual system
Next, we turn to extending minigrace into a true gradual
implementation. The main difficulty adding the static type
rules on top of minigrace is that type assertions merely test
the presence of certain labels and do not ensure even that
the methods have the correct arity, and the fact that types
are ignored means that we will need to use TinyGrace’s type
assertion alongside that of minigrace to do the checks needed
for gradual typing.

Thus I suggest that a updated version of minigrace use
TinyGrace’s type system, evaluation system and assertion
semantics (and the two new subtyping rules above), with a
simple change to the premise of the R-MISS rule:

R-MISS’
O /∈ |τ |

match (O) case {x:τ->e}C −→ match (O) case C

Here |τ | is the “type erasure” of τ (see Fig. 8).
Recall that the negative use of a type assertion is the

cause of the problem with type annotations causing changes
in the no-error behavior of programs. By using the erased
type in R-MISS, we maintain consistency. In the case of
the problematic code in Fig. 7, the evaluation without the
annotations on the match subject is “a” but the evaluation of

type Object = { }

type Number = { ... }

type Point = {

x -> Number

y -> Number

}

type Vector = {

dx -> Number

dy -> Number

}

...

method magn(o : Object) -> Number {

match(o)

case { p : Point ->

sqrt(p.x * p.x + p.y * p.y) }

case { v : Vector ->

sqrt(v.dx * v.dx + v.dy * v.dy) }

case { _ : Object -> 0 }

}

Figure 9. Type tests used for ad hoc polymorphism.

the fully-typed program is an error since the second branch
can only be chosen if the subject cannot match the erased
Window type (which is identical to the erased Cowboy type).

While this gradual system does ensure that the no-error
semantics of programs is unaffected by type annotation, it
does suffer from the fact that a well-typed program (such as
Fig. 7 or Fig. 9) can get stuck at run-time. For an example
for Fig. 9, consider calling the magn method with an object
that has x and y fields of type String. The first branch would
not match, but the modified R-MISS’ rule would not allow
other branches to be chosen.

So, this updated version of minigrace has most of type
safety, including type preservation, but lacks progress for
type matches, which can now fail to find a match in the
presence of ambiguity in erased selection. Full type safety
can only be retained using type negation which would give
safe but complex types to match expressions.

4.3 Removal
A third, more drastic proposal would be to remove type tests
from Grace altogether. The match syntax would remain but
only for values and patterns. Gradual typing could be used to
get the effect of a checked cast: cast(. . .) could be wrapped
around any expression whose type doesn’t match its context,
where cast has the following definition:

method cast(x : ?) -> ? { x }

Grace will have generics, and assuming that the dynamic
semantics includes assertions on return values as well, one
could instead define cast generically:

method cast<T>(x : ?) -> T { x }

FOOL 2014: Portland OR, October 20, 2014 5 2014/10/11

Of course, without type tests, there is no equivalent of
“instanceof” or else we would again have the situation
where no-error semantics could depend on type annotations.
And thus the language without type tests is strictly less pow-
erful.

Are type tests actually useful? Certainly Java programs
make extensive use of instanceof, which can be seen in the
equals methods of even very simple classes. Grace however
provides equality as a built-in, and supporting ad hoc poly-
morphism (static or dynamic overloading) is a weak reason
to include a feature. Usually defining a common interface is
cleaner than selecting a different behavior depending on the
type of a value.

Furthermore, type tests interfere with parametricity. In
Reticulated Python, type tests allow users to see supposedly
hidden proxy objects created in the Guarded implementa-
tion [8]. If Grace were to abandon type tests, one might be
able to build strong guarantees about abstraction. Indeed,
type tests can be seen as a weak form of reflection, break-
ing abstraction in a useful way.5

4.4 Summary
There seem to be two ways to define gradual typing in Grace:
one to extend TinyGrace with dynamic types, in which case
type annotations can change the program’s semantics, and
one in which minigrace is modified to check types more
precisely, but where statically typed programs can still get
stuck.

The problem is due to a negative use of a type asser-
tion in legal evaluation (R-MISS). If the type assertion de-
pends on type annotations (TinyGrace), program semantics
are changed by annotations. If it does not depend on type
annotations, it cannot guarantee type safety (as needed by
T-CASE). I am currently tempted to propose eliminating the
problematic construct altogether.

5. Related Work
I claim that gradual typing has as a goal the preservation of
semantics even as type annotations are added. For various
reasons, I have not seen this goal explicitly identified in
related work. Siek and Taha [6] come close, listing as the
first (albeit not necessarily primary) goal of gradual typing:

Programmers may omit type annotations on parame-
ters and immediately run the program; run-time type
checks are performed to preserve type safety.

Arguably “may omit type annotations” implies that the pro-
grams behavior should not change if this is done.

A formal statement of the property I claim should be
a goal of gradual typing relies on a definition of “partial
erasure” of annotations: I write e ≺ e′ if e′ is the same as
e except that 0 or more types are replaced with “?.”

5 Andrew Black, personal communication

PROPERTY 5.1 (Gradual Guarantee). If an expression e1
evaluates without error one step to e2, then any expression
e′1 with fewer annotations (e1 ≺ e′1) also evaluates in zero
or more steps to e′2 where e2 ≺ e′2.

The property of course would need to be modified for other
languages to handle mutable state and other aspects, but
hopefully the spirit of the concept is clear. In this section, we
review other gradual languages to see whether they provide
this guarantee.

Siek and Taha’s original gradual type system [5] (for
functional languages) as well as their OO system [6] ap-
parently both provide the gradual guarantee. Applying these
ideas to a real language in Python [8], Siek (with others)
investigated the three ways mentioned above to implement
the dynamic checks. The guarded approach used proxies and
suffered in two ways: the proxies were visible both at the ob-
ject identity level as well as at the type level (as mentioned
previously). As a result, the guarded system did not provide
the gradual guarantee. The authors clearly saw this lack as a
problem, which supports my thesis.

TypeScript [1] does not achieve type soundness, but
otherwise resembles a gradually-typed programming lan-
guage. It provides extra features not provided by JavaScript
(the untyped variant) but compiles down to (unannotated)
JavaScript. It uses “full erasure” in that the types cannot be
detected at run-time. In particular, type casts are not imple-
mented by dynamic checks. Thus it appears that TypeScript
supports the gradual guarantee.

Swamy and others [7] define a full gradually-typed ver-
sion of JavaScript. They include reflection functions remi-
niscent of type tests: isTag<t> and canTag<t>. The former
function permits the program to query the current (mono-
tonic) type of an object and the latter checks to see if it could
be legally updated. These functions indeed violate my grad-
ual guarantee.

Java, while not a gradual system, provides type annota-
tions that are also accessible through reflection. If Grace’s
type tests are seen as a reflection API, then the fact that they
do not satisfy the gradual guarantee is less disturbing.

6. Conclusions
Structural type tests have a surprising interaction with grad-
ual typing which makes the combination somewhat distaste-
ful. The cleanest solution seems to me to remove type tests
from the language, at the cost of expressive power.

While writing this paper, I was at first enamored of reg-
ularizing the minigrace approach, but the way in which this
can cause type errors in fully statically-typed code makes
this option less attractive to me.

Continuing with the semantics of type tests from Tiny-
Grace is also unattractive, especially when one considers
how type inference can exacerbate the problem, by chang-
ing the semantics of a program.

FOOL 2014: Portland OR, October 20, 2014 6 2014/10/11

In conclusion, I see no obvious solution to the problem
and can only hope that type tests will not be widely used.

Acknowledgments
I thank Andrew Black, Kim Bruce and James Noble for
discussing the issue with me and encouraging me to write
up my vague worries. I thank Michael Homer and Tim Jones
for helping me figure out how to execute minigrace, and for
clarifications on the intended semantics of minigrace. I thank
the anonymous reviewers for insightful comments that led to
major changes in the paper.

References
[1] Gavin Bierman, Martı́n Abadi, and Mads Torgersen. Under-

standing TypeScript. In Richard Jones, editor, ECOOP’14 —
Object-Oriented Programming, 28th European Conference,
volume 8586 of Lecture Notes in Computer Science, pages
257–281. Springer, Berlin, Heidelberg, New York, 2014.

[2] Andrew P. Black, Kim B. Bruce, Michael Homer, and James
Noble. Grace: The absence of (inessential) difficulty. In
Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! ’12, pages 85–98. ACM, New York, NY,
USA, 2012.

[3] Andrew P. Black, Kim B. Bruce, and James Noble. The Grace
programming language, draft specification version 0.5.1853.
August 2014.

[4] Timothy Jones and James Noble. Tinygrace: A simple, safe,
and structurally typed language. In Proceedings of 16th
Workshop on Formal Techniques for Java-like Programs,
FTfJP’14, pages 3:1–3:6. ACM, New York, NY, USA, 2014.

[5] Jeremy Siek and Walid Taha. Gradual typing for functional
languages. In Scheme and Functional Programming, pages
81–92. September 2006.

[6] Jeremy Siek and Walid Taha. Gradual typing for objects. In
Erik Ernst, editor, ECOOP’07 — Object-Oriented Program-
ming, 21st European Conference, volume 4609 of Lecture
Notes in Computer Science, pages 2–27. Springer, Berlin,
Heidelberg, New York, 2007.

[7] Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan
Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.
Gradual typing embedded securely in javascript. In Conference
Record of POPL 2014: the 41st ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages
425–438. 2014.

[8] Michael Vitousek, Andrew Kent, Jeremy Siek, and Jim Baker.
Abstracting design and evaluation of gradual typing for
Python. Presented at Dynamic Language Symposium, 2014.

[9] Philip Wadler and Robert Bruce Findler. Well-typed programs
can’t be blamed. In Giuseppe Castagna, editor, ESOP’09
— Programming Languages and Systems, 18th European
Symposium on Programming, volume 5502 of Lecture Notes in
Computer Science, pages 1–16. Springer, Berlin, Heidelberg,
New York, 2009.

FOOL 2014: Portland OR, October 20, 2014 7 2014/10/11

