
MATHEMATICAL MODAL LOGIC:

A VIEW OF ITS EVOLUTION

Robert Goldblatt

. . . there is no one fundamental logical no-
tion of necessity, nor consequently of possi-

bility. If this conclusion is valid, the subject
of modality ought to be banished from logic,
since propositions are simply true or false . . .

[Russell, 1905]

1 INTRODUCTION

Modal logic was originally conceived as the logic of necessary and possible truths.
It is now viewed more broadly as the study of many linguistic constructions that
qualify the truth conditions of statements, including statements concerning knowl-
edge, belief, temporal discourse, and ethics. Most recently, modal symbolism and
model theory have been put to use in computer science, to formalise reasoning
about the way programs behave and to express dynamical properties of transi-
tions between states.

Over a period of three decades or so from the early 1930’s there evolved two
kinds of mathematical semantics for modal logic. Algebraic semantics interprets
modal connectives as operators on Boolean algebras. Relational semantics uses
relational structures, often called Kripke models, whose elements are thought of
variously as being possible worlds, moments of time, evidential situations, or states
of a computer. The two approaches are intimately related: the subsets of a re-
lational structure form a modal algebra (Boolean algebra with operators), while
conversely any modal algebra can be embedded into an algebra of subsets of a
relational structure via extensions of Stone’s Boolean representation theory. Tech-
niques from both kinds of semantics have been used to explore the nature of modal
logic and to clarify its relationship to other formalisms, particularly first and sec-
ond order monadic predicate logic.

The aim of this article is to review these developments in a way that provides
some insight into how the present came to be as it is. The pervading theme is
the mathematics underlying modal logic, and this has at least three dimensions.
To begin with there are the new mathematical ideas: when and why they were
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introduced, and how they interacted and evolved. Then there is the use of methods
and results from other areas of mathematical logic, algebra and topology in the
analysis of modal systems. Finally, there is the application of modal syntax and
semantics to study notions of mathematical and computational interest.

There has been some mild controversy about priorities in the origin of relational
model theory, and space is devoted to this issue in section 4. An attempt is made
to record in one place a sufficiently full account of what was said and done by early
contributors to allow readers to make their own assessment (although the author
does give his).

Despite its length, the article does not purport to give an encyclopaedic coverage
of the field. For instance, there is much about temporal logic (see [Gabbay et al.,
1994]) and logics of knowledge (see [Fagin et al., 1995]) that is not reported here,
while the surface of modal predicate logic is barely scratched, and proof theory
is not discussed at all. I have not attempted to survey the work of the present
younger generation of modal logicians (see [Chagrov and Zakharyaschev, 1997],
[Kracht, 1999], and [Marx and Venema, 1997], for example). There has been little
by way of historical review of work on intensional semantics over the last century,
and no doubt there remains room for more.

Several people have provided information, comments and corrections, both his-
torical and editorial. For such assistance I am grateful to Wim Blok, Max Cress-
well, John Dawson, Allen Emerson, Saul Kripke, Neil Leslie, Ed Mares, Robin
Milner, Hiroakira Ono, Amir Pnueli, Lawrence Pedersen, Vaughan Pratt, Colin
Stirling and Paul van Ulsen.

This article originally appeared as [Goldblatt, 2003c]. As well as corrections
and minor adjustments, there are two significant additions to this version. The
last part of section 6.6 has been rewritten in the light of the discovery in 2003 of a
solution of what was described in the first version as a “perplexing open question”.
This was the question of whether a logic validated by its canonical frame must be
characterised by a first-order definable class of frames. Also, a new section 7.7
has been added to describe recent work in theoretical computer science on modal
logics for “coalgebras”.

2 BEGINNINGS

2.1 What is a Modality?

Modal logic began with Aristotle’s analysis of statements containing the words
“necessary” and “possible”.1 These are but two of a wide range of modal connec-
tives, or modalities that are abundant in natural and technical languages. Briefly,
a modality is any word or phrase that can be applied to a given statement S to
create a new statement that makes an assertion about the mode of truth of S:

1For the early history of modal logic, including the work of Greek and medieval scholars, see
[Bochenski, 1961] and [Kneale and Kneale, 1962]. The Historical Introduction to [Lemmon and
Scott, 1966] gives a brief but informative sketch.
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about when, where or how S is true, or about the circumstances under which S
may be true. Here are some examples, grouped according to the subject they are
naturally associated with

tense logic: henceforth, eventually, hitherto, previously, now,
tomorrow, yesterday, since, until, inevitably, finally,
ultimately, endlessly, it will have been, it is being . . .

deontic logic: it is obligatory/forbidden/permitted/unlawful that
epistemic logic: it is known to X that, it is common knowledge that
doxastic logic: it is believed that
dynamic logic: after the program/computation/action finishes,

the program enables, throughout the computation
geometric logic: it is locally the case that
metalogic: it is valid/satisfiable/provable/consistent that

The key to understanding the relational modal semantics is that many modalities
come in dual pairs, with one of the pair having an interpretation as a universal
quantifier (“in all. . . ”) and the other as an existential quantifier (“in some. . . ”).
This is illustrated by the following interpretations, the first being famously at-
tributed to Leibniz (see section 4).

necessarily in all possible worlds
possibly in some possible world
henceforth at all future times
eventually at some future time
it is valid that in all models
it is satisfiable that in some model
after the program finishes after all terminating executions
the program enables there is a terminating execution such that

It is now common to use the symbol 2 for a modality of universal character, and
3 for its existential dual. In systems based on classical truth-functional logic, 2

is equivalent to ¬3¬, and 3 to ¬2¬, where ¬ is the negation connective. Thus
“necessarily” means “not possibly not”, “eventually” means “not henceforth not”,
a statement is valid when its negation is not satisfiable, etc.

Notation

Rather than trying to accommodate all the notations used for truth-functional
connectives by different authors over the years, we will fix on the symbols ∧,
∨, ¬, → and ↔ for conjunction, disjunction, negation, (material) implication,
and (material) equivalence. The symbol ⊤ is used for a constant true formula,
equivalent to any tautology, while ⊥ is a constant false formula, equivalent to ¬⊤.
We also use ⊤ and ⊥ as symbols for truth values.
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The standard syntax for propositional modal logic is based on a countably
infinite list p0, p1, . . . of propositional variables, for which we typically use the
letters p, q, r. Formulas are generated from these variables by means of the above
connectives and the symbols 2 and 3. There are of course a number of options
about which of these to take as primitive symbols, and which to define in terms of
primitives. When describing the work of different authors we will sometimes use
their original symbols for modalities, such asM for possibly, L or N for necessarily,
and other conventions for deontic and tense logics.

The symbol 2
n stands for a sequence 22 · · ·2 of n copies of 2, and likewise

3
n for 33 · · ·3 (n times).
A systematic notation will also be employed for Boolean algebras: the symbols

+ , · , − denote the operations of sum (join), product (meet), and complement
in a Boolean algebra, and 0 and 1 are the greatest and least elements under the
ordering ≤ given by x ≤ y iff x · y = x. The supremum (sum) and infimum
(product) of a set X of elements will be denoted

∑

X and
∏

X (when they exist).

2.2 MacColl’s Iterated Modalities

The first substantial algebraic analysis of modalised statements was carried out
by Hugh MacColl, in a series of papers that appeared in Mind between 1880 and
1906 under the title Symbolical Reasoning,2 as well as in other papers and his book
of [1906]. MacColl symbolised the conjunction of two statements a and b by their
concatenation ab, used a+b for their disjunction, and wrote a : b for the statement
“a implies b”, which he said could be read “if a is true, then b must be true”, or
“whenever a is true, b is also true”. The equation a = b was used for the assertion
that a and b are equivalent, meaning that each implies the other. Thus a = b is
itself equivalent to the “compound implication” (a : b)(b : a), an observation that
was rendered symbolically by the equation (a = b) = (a : b)(b : a).

MacColl wrote a′ for the “denial” or “negative” of statement a, and stated that
(a′ + b)′ is equivalent to ab′. However, while a′ + b is a “necessary consequence” of
a : b (written (a : b) : a′ + b ), he argued that the two formulas are not equivalent
because their denials are not equivalent, claiming that the denial of a : b “only
asserts the possibility of the combination ab′ ”, while the denial of a′ + b “asserts
the certainty of the same combination”.3

Boole had written a = 1 and a = 0 for “a is true” and “a is false”, giving a tem-
poral reading of these as always true and always false respectively [Boole, 1854, ch.
XI]. MacColl invoked the letters ǫ and η to stand for certainty and impossibility,
initially describing them as replacements for 1 and 0, and then introduced a third
letter θ to denote a statement that was neither certain nor impossible, and hence

2A listing of these papers is given in the Bibliography of [Lewis, 1918] and on p. 132 of Church’s
bibliography in volume 1 of The Journal of Symbolic Logic. A comprehensive bibliography of
MacColl’s works is given in [Astroh and Klüwer, 1998].

3This appears to conflict with his earlier claim that the denial of a′ + b is equivalent to ab′.
“Actuality” may be a better word than “certainty” to express what he meant here (see [MacColl,
1880, p. 54].
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was “a variable (neither always true nor always false)”. He wrote the equations
(a = ǫ), (b = η) and (c = θ) to express that a is a certainty, b is an impossibility,
and c is a variable. Then he changed these to the symbols aǫ, bη, cθ, and went
on to write aτ for “a is true” and aι for “a is false”, noting that a true statement
is “not necessarily a certainty” and a false one is “not necessarily impossible”. In
these terms he stated that a : b is equivalent both to (a.b′)η (“it is impossible that
a and not b”) and to (a′ + b)ǫ (“it is certain that either not a or b”).

Once the step to this superscript notation had been taken, it was evident that
it could be repeated, giving an easy notation for iterations of modalities. MacColl
gave the example of Aηιǫǫ as “it is certain that it is certain that it is false that it is
impossible that A”, abbreviated this to “it is certain that a is certainly possible”,
and observed that

Probably no reader—at least no English reader, born and brought up in
England—can go through the full unabbreviated translation of this symbolic
statement Aηιǫǫ into ordinary speech without being forcibly reminded of
a certain nursery composition, whose ever-increasing accumulation of thats

affords such pleasure to the infantile mind; I allude, of course, to “The House
that Jack Built”. But trivial matters in appearance often supply excellent
illustrations of important general principles.4

There has been a recent revival of interest in MacColl, with a special issue of the
Nordic Journal of Philosophical Logic5 devoted to studies of his work. In par-
ticular the article [Read, 1998] analyses the principles of modal algebra proposed
by MacColl and argues that together they correspond to the modal logic T, later
developed by Feys and von Wright, that is described at the end of section 2.4
below.

2.3 The Lewis Systems

MacColl’s papers are similar in style to earlier nineteenth century logicians. They
give a descriptive account of the meanings and properties of logical operations but,
in contrast to contemporary expectations, provide neither a formal definition of
the class of formulas dealt with nor an axiomatisation of operations in the sense of
a rigorous deduction of theorems from a given set of principles (axioms) by means
of explicitly stated rules of inference. The first truly modern formal axiom systems
for modal logic are due to C. I. Lewis, who defined five different ones, S1–S5, in
Appendix II of the book Symbolic Logic [1932] that he wrote with C. H. Langford.
Lewis had begun in [1912, p. 522] with a concern that

the expositors of the algebra of logic have not always taken pains to indicate
that there is a difference between the algebraic and ordinary meanings of
implication.

4Mind (New Series), vol. 9, 1900, p. 75.
5Volume 3, number 1, December 1998, available at

http://www.hf.uio.no/filosofi/njpl/vol3no1/index.html.
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He observed that the algebraic meaning, as used in the Principia Mathematica of
Russell and Whitehead, leads to the “startling theorems” that a false proposition
implies any proposition, and a true proposition is implied by any proposition.
These so-called paradoxes of material implication take the symbolic forms

¬α→ (α→ β)
α→ (β → α).

For Lewis the ordinary meaning of “α implies β” is that β can be validly inferred6

from α, or is deducible7 from α, an interpretation that he considered was not
subject to these paradoxes. Taking “α implies β” as synonymous with “either
not-α or β”, he distinguished extensional and intensional meanings of disjunction,
providing two meanings for “implies”. Extensional disjunction is the usual truth-
functional “or”, which gives the material (algebraic) implication synonymous with
“it is false that α is true and β is false”. Intensional disjunction

is such that at least one of the disjoined propositions is “necessarily”
true.8

That reading gives Lewis’ “ordinary” implication, which he also dubbed “strict”,
meaning that “it is impossible (or logically inconceivable9) that α is true and β is
false”.

The system of Lewis’s book A Survey of Symbolic Logic [1918] used a primitive
impossibility operator to define strict implication. This later became the system
S3 of [Lewis and Langford, 1932], which introduced instead the symbol 3 for
possibility, but Lewis decided that he wished S2 to be regarded as the correct
system for strict implication. The systems were defined with negation, conjunction,
and possibility as their primitive connectives, but he made no use of a symbol for
the dual combination ¬3¬.10 For strict implication the symbol 3 was used,
with α 3 β being a definitional abbreviation for ¬3(α ∧ ¬β). Strict equivalence
(α = β) was defined as (α 3 β) ∧ (β 3α).

Here now are definitions of S1–S5 in Lewis’s style, presented both to facili-
tate discussion of later developments and to convey some of the character of his

6[Lewis, 1912, p. 527]
7[Lewis and Langford, 1932, p. 122]
8[Lewis, 1912, p. 523]
9[Lewis and Langford, 1932, p. 161]

10The dual symbol 2 was later devised by F. B. Fitch and first appeared in print in 1946 in a
paper of R. Barcan. See footnote 425 of [Hughes and Cresswell, 1968, fn. 425].
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approach. System S1 has the axioms11

(p ∧ q) 3 (q ∧ p)
(p ∧ q) 3 p
p 3 (p ∧ p)
((p ∧ q) ∧ r) 3 (p ∧ (q ∧ r))
((p 3 q) ∧ (q 3 r)) 3 (p 3 r)
(p ∧ (p 3 q)) 3 q,

where p, q, r are propositional variables, and the following rules of inference.

• Uniform substitution of formulas for propositional variables.

• Substitution of strict equivalents : from (α = β) and γ infer any formula
obtained from γ by substituting β for some occurrence(s) of α.

• Adjunction: from α and β infer α ∧ β.

• Strict detachment : from α and α 3 β infer β.12

System S2 is obtained by adding the axiom 3(p ∧ q) 33p to the basis for S1.
S3 is S1 plus the axiom (p 3 q) 3 (¬3q 3¬3p). S4 is S1 plus 33p 33p, or
equivalently 2p 322p. S5 is S1 plus 3p 323p.

The axioms for S4 and S5 were first proposed for consideration as further pos-
tulates in a paper of Oskar Becker [1930]. His motivation was to find axioms
that reduced the number of logically non-equivalent combinations that could be
formed from the connectives “not” and “impossible”. He also considered the for-
mula p 3¬3¬3p, and called it the “Brouwersche axiom”. The connection with
Brouwer is remote: if “not” is translated to “impossible” (¬3), and “implies” to
its strict version, then the intuitionistically acceptable principle p→ ¬¬p becomes
the Brouwersche axiom.

2.4 Gödel on Provability as a Modality

Gödel in [1931] reviewed Becker’s 1930 article. In reference to Becker’s discussion
of connections between modal logic and intuitionistic logic he wrote

It seems doubtful, however, that the steps here taken to deal with this prob-
lem on a formal plane will lead to success.

He subsequently took up this problem himself with great success, and at the same
time simplified the way that modal logics are presented. The Lewis systems contain
all truth-functional tautologies as theorems, but it requires an extensive analysis

11Originally p 3¬¬p was included as an axiom, but this was shown to be redundant by
McKinsey in 1934.

12Lewis used the name “Inference” for the rule of strict detachment. He also used “assert”
rather than “infer” in these rules.
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to demonstrate this.13 Such effort would be unnecessary if the systems were de-
fined by directly extending a basis for the standard propositional calculus. That
approach was first used in the note “An interpretation of the intuitionistic propo-
sitional calculus” [Gödel, 1933], published in the proceedings of Karl Menger’s
mathematical colloquium at the University of Vienna for 1931–1932. Gödel for-
malised assertions of provability by a propositional connective B (from “beweis-
bar”), reading Bα as “α is provable”. He defined a system which has, in addition
to the axioms and rules of ordinary propositional calculus, the axioms

Bp→ p,
Bp→ (B(p→ q)→ Bq),
Bp→ BBp,

and the inference rule: from α infer Bα. He stated that this system is equivalent
to Lewis’ S4 when Bα is translated as 2α.14 Then he gave the following two
translations of propositional formulas

p p
¬α ¬Bα

α→ β Bα→ Bβ
α ∨ β Bα ∨Bβ
α ∧ β α ∧ β

p p
¬α B¬Bα

α→ β Bα→ Bβ
α ∨ β Bα ∨Bβ
α ∧ β Bα ∧Bβ

and asserted that in each case the translation of any theorem of Heyting’s intuition-
istic propositional calculus 15 is derivable in his system, adding that “presumably”
the converse is true as well. He also asserted that the translation of p ∨ ¬p is not
derivable, and that a formula of the form Bα ∨Bβ is derivable only when one of
Bα and Bβ is derivable. Proofs of these claims first appeared in [McKinsey and
Tarski, 1948], as is discussed further in section 3.2.

Those familiar with later developments will recognise the pregnancy of this brief
note of scarcely more than a page. Its translations provided an important connec-
tion between intuitionistic and modal logic that contributed to the development
both of topological interpretations and of Kripke semantics for intuitionistic logic.
Its ideas also formed the precursor to the substantial branch of modal logic con-
cerned with the modality “it is provable in Peano arithmetic that”. We will return
to these matters below (see §3.2, 7.5, 7.6).

It is now standard practice to present modal logics in the axiomatic style of
Gödel. The notion of a logic refers to any set Λ of formulas that includes all
truth-functional tautologies and is closed under the rules of uniform substitution
for variables and detachment for material implication. The formulas belonging to
Λ are the Λ-theorems, and are also said to be Λ-provable. A logic is called normal

13See [Hughes and Cresswell, 1968, pp. 218–223]
14More precisely, he stated that it is equivalent to Lewis’s System of Strict Implication sup-

plemented by Becker’s axiom 2p 3 22p. It is unlikely that he was aware of the name “S4” at
that time.

15Heyting published this calculus in 1930.
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if it includes Gödel’s second axiom, which is usually presented (with 2 in place of
B) as

2(p→ q)→ (2p→ 2q),

and has the rule of Necessitation: from α infer 2α. S5 can be defined as the
normal logic obtained by adding the axiom p → 23p to Gödel’s axiomatisation
of S4. Following [Becker, 1930], p → 23p is called the Brouwerian axiom. The
smallest normal logic is commonly called K, in honour of Kripke. The normal
logic obtained by adding the first Gödel axiom 2p→ p to K is known as T. That
system was first defined by Feys16 in 1937 by dropping Gödel’s third axiom from
S4. T is equivalent to the system M of [von Wright, 1951]. TheBrouwerian System
B is the normal logic obtained by adding the Brouwerian axiom to T.

The first formulation of the non-normal systems S1–S3 in the Gödel style was
made in [Lemmon, 1957], which also introduced a series of systems E1–E5 designed
to be “epistemic” counterparts to S1–S5. These systems have no theorems of the
form 2α, and in place of Necessitation they have the rule from α→ β infer 2α→
2β. Lemmon suggests that they capture the reading of 2 as “it is scientifically
but not logically necessary that”.

3 MODAL ALGEBRAS

Modern propositional logic began as algebra, in the thought of Boole. We have
seen that the same was true for modern modal logic, in the thought of MacColl.
By the time that the Lewis systems appeared, algebra was well-established as a
postulational science, and the study of the very notion of an abstract algebra was
being pursued [Birkhoff, 1933; Birkhoff, 1935]. Over the next few years, algebraic
techniques were applied to the study of modal systems, using modal algebras :
Boolean algebras with an additional operation to interpret 3. During the same
period, representation theories for various lattices with operators were developed,
beginning with the Stone representation of Boolean algebras [1936], and these were
to have a significant impact on semantical studies of modal logic.

3.1 McKinsey and the Finite Model Property

J. C. C. McKinsey in [1941] showed that there is an algorithm for deciding whether
any given formula is a theorem of S2, and likewise for S4. His method was to
show that if a formula is not a theorem of the logic, then it is falsified by some
finite model which satisfies the logic. This property was dubbed the finite model
property by Ronald Harrop [1958], who proved the general result that any finitely
axiomatisable propositional logic Λ with the finite model property is decidable.
The gist of Harrop’s argument was that finite axiomatisability guarantees that Λ
is effectively enumerable, while the two properties together guarantee the same for
the complement of Λ. By enumerating the finite models and the formulas, and at

16Who called it “t”.
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the same time systematically testing formulas for satisfaction by these models, a
list can be effectively generated of those formulas that are falsifed by some finite
model which satisfies the axioms of Λ. By the finite model property this is just a
listing of all the non-theorems of Λ.

McKinsey actually showed something stronger: the size of a falsifying model for
a non-theorem α is bounded above by a number that depends computably on the
size of α. Thus to decide if α is a theorem it suffices to generate all finite models
up to a prescribed bound. However this did not yield a feasible algorithm: the
proof for S2 gave an upper bound of 22n+1

, doubly exponential in the number n
of subformulas of α.

McKinsey’s construction is worth outlining, since it was an important innova-
tion that has been adapted numerous times to other propositional logics (as he
suggested it might be), and has been generalised to other contexts, as we shall
see. He used models of the form (K,D, − , ∗ , ·), called matrices, where − , ∗ , ·

are operations on a set K for evaluating the connectives ¬, 3, and ∧, while D is
a set of designated elements of K. A formula α is satisfied by such a matrix if
every assignment of elements of K to the variables of α results in α being evalu-
ated to a member of the subset D. These structures abstract from the tables of
values, with designated elements, used to define propositional logics and prove the
independence of axioms. Their use as a general method for constructing logical
systems is due to Alfred Tarski.17

A logic is characterised by a matrix if the matrix satisfies the theorems of the
logic and no other formulas. Structures of this kind had been developed for S2 by
E. V. Huntington [1937], who gave the concrete example of K being the class of
“propositions” and D the subclass of those that are “asserted” or “demonstrable”,
describing this subclass as “corresponding roughly to the Frege assertion sign”.

A matrix is normal if

x, y ∈ D implies x · y ∈ D,
x, (x⇒ y) ∈ D implies y ∈ D,

(x⇔ y) ∈ D implies x = y,

where (x⇒ y) = −∗(x · .− y) and (x⇔ y) = (x⇒ y) · (y ⇒ x) are the operations
interpreting strict implication and strict equivalence in K. These closure condi-
tions on D are intended to correspond to Lewis’ deduction rules of adjunction,
strict detachment, and substitution of strict equivalents. In a normal S2-matrix,
(K, − , ·) is a Boolean algebra in which D is a filter. Hence the greatest ele-
ment 1 is always designated. McKinsey showed that there exists an infinite18

normal matrix that characterises S2, using what he described as an unpublished
method due to Lindenbaum that was explained to him by Tarski and which applies
to any propositional calculus that has the rule of uniform substitution for vari-
ables. Taking (K, − , ∗ , ·) as the algebra of formulas, with −α = ¬α, ∗a = 3α

17The historical origins of the “matrix method” are described in [ Lukasiewicz and Tarski, 1930].
See footnotes on pages 40 and 43 of the English translation of this article in [Tarski, 1956].

18Dugundji [1940] had proved that none of S1–S5 has a finite characteristic matrix.
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and α · β = α ∧ β, and with D as the set of S2-theorems, gives a characteristic
S2-matrix which satisfies all but the last normality condition on D. Since that
condition is needed to make the matrix into a Boolean algebra, it is imposed by
identifying formulas α, β whenever (α ⇔ β) ∈ D. The resulting quotient matrix
is the one desired, and is what is now widely known as the Lindenbaum algebra of
the logic. Its designated elements are the equivalence classes of the theorems.

Now if α is a formula that not an S2-theorem, then there is some evaluation
in this Lindenbaum algebra that fails to satisfy α. Let x1, . . . , xn be the values
of all the subformulas of α in this evaluation, and let K1 be the Boolean subalge-
bra generated by the n + 1 elements x1, . . . , xn,

∗0. Then K1 has at most 22n+1

members. Define an element of K1 to be designated iff it was designated in the
ambient Lindenbaum algebra. McKinsey showed how to define an operation ∗

1 on
K1 such that ∗

1 x = ∗x whenever x and ∗x are both in K1:

∗
1 x =

∏

{∗y ∈ K1 : x ≤ y ∈ K1}.

The upshot was to turn K1 into a finite S2-matrix in which the original falsifying
evaluation of α can be reproduced.

This same construction shows that S4 has the finite model property, with the
minor simplification that the element ∗0 does not have to be worried about, since
∗0 = 0 in any normal S4-matrix (so the computable upper bound becomes 22n

).
The Lindenbaum algebra for S4 has only its greatest element designated, i.e.
D={1}, because (α 3β)∧(β 3α) is an S4-theorem whenever α and β are, putting
all theorems into the same equivalence class. This is a fact that applies to any
logic that has the rule of Necessitation, and it allows algebraic models for normal
logics to be confined to those that just designate 1.

3.2 Topology for S4

Topological interpretations of modalities were given in a paper of Tang Tsao-
Chen [1938], which proposed that “the algebraic postulates for the Lewis calculus
of strict implication” be the axioms for a Boolean algebra with an additional
operation x∞ having x∞ · x = x∞ and (x · y)∞ = x∞ · y∞. The symbol 3 was
used for the dual operation 3x = −(−x)∞. The notation ⊢ x was defined to mean
that 1∞ ≤ x, and it was shown that ⊢ x holds whenever x is any evaluation of
a theorem of S2. In effect this says that putting D = {x : 1∞ ≤ x} turns one of
these algebras into an S2-matrix. In fact if 1∞ = 1, or equivalently 30 = 0, it also
satisfies S4. But S4 was not mentioned in this paper.

A “geometric” meaning was proposed for the new operations by taking x∞ to be
the interior of a subset x of the Euclidean plane, in which case 3x is the topological
closure of x, i.e. the smallest closed superset of x. If the greatest element 1 of the
algebra is the whole plane, or any open set, then in that case 1∞ = 1, but it is
evident that Tang did not intend this, since the paper has a footnote explaining
that another geometric meaning of x∞ can be obtained by letting 1∞ be some
subset of the plane, possibly even a one-element subset, and defining x∞ to be
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x · 1∞. (This construction could be carried out in any Boolean algebra by fixing
1∞ arbitrarily.) It appears then that the best way to understand Tang’s first
geometric meaning is that the ambient Boolean algebra should be the powerset
algebra P(S) of all subsets of some subset S of the Euclidean plane, with “interior”
and “closure” being taken in the subspace topology on S.

Now a well-known method, due to Kuratowski, for defining a topology on an
arbitrary set S is to give a closure operation X 7→ CX on subsets X of S, i.e.
an operation satisfying C∅ = ∅, C(X ∪ Y ) = CX ∪ CY and X ⊆ CX = CCX .
Then a set X is closed iff CX = X , and open iff its complement in S is closed.
Any topological space can be presented in this way, with CX being the topological
closure of X .

McKinsey and Tarski in [1944] undertook an abstract algebraic study of closure
operations by defining a closure algebra to be any Boolean algebra with a unary
operation C satisfying Kuratowski’s axioms. The operation ∗ on an S4-matrix
satisfies these axioms, and McKinsey had shown in his work [1941] on S4 that any
finite normal S4-matrix can be represented as the closure algebra of all subsets
of some topological space, using the representation of a finite Boolean algebra as
the powerset algebra of its set of atoms. McKinsey and Tarski now extended this
representation to arbitrary closure algebras. Combining the Stone representation
of Boolean algebras with the idea of the ∗

1-operation from McKinsey’s finite model
construction they showed that any closure algebra is isomorphic to a subalgebra
of the closure algebra of subsets of some topological space. They gave a deep
algebraic analysis of the class of closure algebras, including such results as the
following.

1. The closure algebra of any zero-dimensional dense-in-itself subspace of a
Euclidean space (e.g. Cantor’s discontinuum or the space of points with
rational coordinates) includes isomorphic copies of all finite closure algebras
as subalgebras.

2. Every finite closure algebra is isomorphic embeddable into the closure algebra
of subsets of some open subset of Euclidean space.

3. An equation that is satisfied by the closure algebra of any Euclidean space
is satisfied by every closure algebra.

4. An equation that is satisfied by all finite closure algebras is satisfied by every
closure algebra (this is an analogue of McKinsey’s finite model property for
S4).

5. If an equation of the form Cσ · Cτ = 0 is satisfied by all closure algebras,
then so is one of the equations σ = 0 and τ = 0.

The proof of result (5) involved taking the direct product of two closure algebras
that each reject one of the equations σ = 0 and τ = 0, and then embedding this
direct product into another closure algebra that is well-connected, meaning that if
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x and y are non-zero elements, then Cx · Cy 6= 0. The result itself is equivalent to
the assertion that if the equation Iσ + Iτ = 1 is satisfied by all closure algebras,
then so is one of the equations σ = 1 and τ = 1, where I = −C− is the abstract
interior operator dual to C. This is an algebraic version of one of the facts about
S4 stated in [Gödel, 1933] (see later in this section).

In a sequel article [1946], McKinsey and Tarski studied the algebra of closed (i.e.
Cx = x) elements of a closure algebra. These form a sublattice with operations
x . y = C(x·−y) and ⊖x = 1 . x = C−x. An axiomatisation of these algebras was
given in the form of an equational definition of certain Brouwerian algebras of the
type (K, + , · , . , 1), and a proof that every Brouwerian algebra is isomorphic to
a subalgebra of the Brouwerian algebra of closed sets of some topological space.
Results were proven for Brouwerian algebras that are analogous to results (1)–(5)
above for closure algebras, with the analogue of (5) being:

1. If the equation σ · τ = 0 is satisfied by all Brouwerian algebras, then so is
one of the equations σ = 0 and τ = 0.

Brouwerian algebras are so named because they provide models of the intuitionistic
propositional calculus IPC. This works in a way that is dual to the method that has
been described for evaluating modal formulas, in that 0 is the unique designated
element; ∧ is interpreted as the lattice sum/join operation + ; ∨ is interpreted as
lattice product/meet · ;→ is interpreted as the operation÷ defined by x÷y = y . x;
and ¬ is interpreted as the unary operation x÷ 1 = ⊖x.

The algebra of open (i.e. Ix = x) elements of a closure algebra also form a
sublattice that is a model of intuitionistic logic. It relates more naturally to the
Boolean semantics in that 1 is designated and ∧ and ∨ are interpreted as · and
+. Implication is interpreted by the operation x ⇒ y = I(−x + y) = −C(x · −y)
and negation by −x = x ⇒ 0 = I−x. This topological interpretation had been
developed in the mid-1930’s by Tarski [1938] and Marshall Stone [1937–1938] who
independently observed that the lattice O(S) of open subsets of a topological space
S is a model of IPC under the operations just described. Tarski took this further
to identify a large class of spaces, including all Euclidean spaces, for which O(S)
exactly characterises IPC.

The abstract algebras (K, + , · , ⇒ , 0) that can be isomorphically embedded
into ones of the type O(S) form an equationally defined class. They are commonly
known as Heyting algebras, or pseudo-Boolean algebras. The relationship between
Brouwerian and Heyting algebras as models is further clarified by the description
of Kripke’s semantics for IPC given in section 7.6.

McKinsey and Tarski applied their work on the algebra of topology to S4 and
intuitionistic logic in their paper [1948], which uses closure algebras with just one
designated to model S4, and Brouwerian algebras in the manner just explained
to model Heyting’s calculus. Using various of the results (1)–(4) above, it follows
that S4 is characterised by the class of (finite) closure algebras, as well as the
closure algebra of any Euclidean space, or of any zero-dimensional dense-in-itself
subspace of Euclidean space. Hence in view of result (5), the claim of [Gödel,
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1933] follows: if 2α ∨ 2β is an S4-theorem, then so is one of α and β, therefore
so is one of 2α and 2β by the rule of Necessitation. Similarly, result (6) gives a
proof of the disjunction property for IPC: if α∨β is a theorem, then so is one of α
and β. The final section of the paper uses the relationships between Brouwerian
and closure algebras to verify the correctness of the two translations of IPC into
S4 conjectured in Godël’s paper, and introduced a new one:

p 2p
¬α 2¬α

α→ β 2(α→ β) (i.e. α 3 β)
α ∨ β α ∨ β
α ∧ β α ∧ β.

It is this translation that inspired Kripke [1965a] to derive his semantics for intu-
itionistic logic from his model theory for S4 (see section 7.6).

Another significant result of the 1948 paper is that S5 is characterised by the
class of all closure algebras in which each closed element is also open. Structures
of this kind were later dubbed monadic algebras by Halmos in his study of the
algebraic properties of quantifiers [Halmos, 1962]. The connection is natural: the
modalities 2 and 3 have the same formal properties in S5 as do the quantifiers
∀ and ∃ in classical logic. The polyadic algebras of Halmos and the cylindric
algebras of Tarski and his co-researchers [Henkin et al., 1971] have a family of
pairwise commuting closure operators for which each closed element is open.

Any Boolean algebra can be made into a monadic algebra by defining C0 = 0
and otherwise Cx = 1. These are the simple19 monadic algebras. Let An be
the simple monadic algebra defined on the finite Boolean algebra with n atoms,
viewed as a matrix with only 1 designated. Then S5 is characterised by the set of
all these An’s. This was shown by Schiller Joe Scroggs in his [1951], written as a
Masters thesis under McKinsey’s direction, whose analysis established that every
finite monadic algebra is a direct product of An’s. Scroggs used this to prove that
each proper extension of S5 is equal to the logic characterised by some An, and
so has a finite characteristic matrix. By “extension” here is meant any logic that
includes all S5-theorems and is closed under the rules of uniform substitution for
variables and detachment for material implication. Scroggs was able to show from
this characterisation that any such extension of S5 is closed under the Necessitation
rule as well, and so is a normal logic.

Another notable paper on S5 algebras from this era is [Davis, 1954], based on a
1950 doctoral thesis supervised by Garrett Birkhoff. This describes the correspon-
dence between equivalence relations on a set and S5 operations on its powerset
Boolean algebra; a correspondence between algebras with two S5 operations and
the projective algebras of Everett and Ulam [1946]; and the use of several S5
operators to provide a Boolean model of features of first-order logic.

19In the technical algebraic sense of having no non-trivial congruences.
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3.3 BAO’s: The Theory of Jónsson and Tarski

The notion of a Boolean algebra with operators (BAO) was introduced by Jónsson
and Tarski in their abstract [1948], with the details of their announced results being
presented in [1951]. That work contains representations of algebras that could
immediately have been applied to give new characterisations of modal systems.
But the paper was overlooked by modal logicians, who were still publishing re-
discoveries of some of its results fifteen years later.

A unary function f on a Boolean algebra is an operator if it is additive, i.e.
f(x + y) = f(x) + f(y). f is completely additive if f(

∑

X) =
∑

f(X) whenever
∑

X exists, and is normal if f(0) = 0. A function of more than one argument
is an operator/is completely additive/is normal when it is has the corresponding
property separately in each argument. A BAO is an algebra A = (B, fi : i ∈ I),
where the fi’s are all operators on the Boolean algebra B.

The Extension Theorem of Jónsson and Tarski showed that any BAO A can be
embedded isomorphically into a complete and atomic BAO Aσ which they called a
perfect extension of A. The construction built on Stone’s embedding of a Boolean
algebra B into a complete and atomic one Bσ, with each operator fi of A being
extended to an operator fσ

i on Bσ that is completely additive, and is normal if fi

is normal. The notion of perfect extension was defined by three properties that
determine Aσ uniquely up to a unique isomorphism over A and give an algebraic
characterisation of the structures that arise from Stone’s topological representation
theory. These properties can be stated as follows.

(i) For any distinct atoms x, y of Aσ there exists an element a of A with x ≤ a
and y ≤ −a.

(ii) If a subset X of A has
∑

X = 1 in Aσ, then some finite subset X0 of X has
∑

X0 = 1.

(iii) fσ
i (x) =

∏

{fi(y) : x ≤ y ∈ An} when fi is n-ary and the terms of the
n-tuple x are atoms or 0.

Property (i) corresponds to the Hausdorff separation property of the Stone space
of B, while (ii) is an algebraic formulation of the compactness of that space. The
meaning of (iii) will be explained below.

Jónsson and Tarski showed that any equation satisfied by A will also be satisfied
by Aσ if it does not involve Boolean complementation (i.e. refers only to +, ·, 0, 1
and the operators fi). More generally, perfect extensions were shown to preserve
any implication of the form (t = 0 → u = v) whose terms t, u, v do not involve
complementation. They then established a fundamental representation of normal
n-ary operators in terms of n+ 1-ary relations. This was based on a bijective cor-
respondence between normal completely additive n-ary operators f on a powerset
Boolean algebra P(S) and n+ 1-ary relations Rf ⊆ Sn+1. Here

Rf (x0, . . . , xn−1, y) iff y ∈ f({x0}, . . . , {xn−1}).
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Under this bijection an arbitrary R ⊆ Sn+1 corresponds to the n-ary operator fR

on P(S), where

y ∈ fR(X0, . . . , Xn−1) iff R(x0, . . . , xn−1, y) for some elements xi ∈ Xi.

Thus any relational structure S = (S,Ri : i ∈ I) whatsoever gives rise to the
complete atomic BAO

CmS = (P(S), fRi
: i ∈ I)

of all subsets of S with the completely additive normal operators fRi
. Conversely,

any complete and atomic BAO whose operators are normal and completely additive
was shown to be isomorphic to CmS for some structure S [1951, theorem 3.9]. This
representation is relevant to an understanding of the incompleteness phenomenon
to be discussed later in section 6.1. When applied to the perfect extension Aσ of
a BAO A, it can be seen as defining a relational structure on the Stone space of
A. This is now known as the canonical structure of A, denoted CstA, and its role
will be explained further in section 6.5. The above property (iii) expresses the fact
that in CstA, if R is the relation corresponding to some n-ary operator fσ

i , then
for each point y the set

{〈x0, . . . , xn−1〉 : R(x0, . . . , xn−1, y)}

is closed in the n-fold product of the Stone space topology.
CmS is the complex algebra of S, and any subalgebra of CmS is a complex

algebra. This terminology derives from an old usage of the word “complex” intro-
duced into group theory by Frobenius in the (pre-set-theoretic) 1880’s to mean a
collection of elements in a group. The binary product

HK = {hk : h ∈ H and k ∈ K}

of subsets (complexes) H,K of a group G is precisely the operator fR on P(G)
corresponding to the ternary graph R = {(h, k, hk) : h, k ∈ G} of the group
operation.

Combining the Extension Theorem with the representation of a complete atomic
algebra (like Aσ) as one of the form CmS, Jónsson and Tarski established that

every BAO with normal operators is isomorphic to a subalgebra of the
complex algebra of a relational structure.

The case n = 1 of this analysis of operators is highly germane to modal logic:
the algebraic semantics discussed so far has been based on interpreting 3 as an
operator on a Boolean algebra, and a normal one in the case of S4 and S5. Jónsson
and Tarski observed that basic properties of a binary relation R ⊆ S2 correspond
to simple equational properties of the operator fR. Thus R is reflexive iff the
BAO (P(S), fR) satisfies x ≤ fx, and transitive iff it satisfies ffx ≤ x. Hence
Cm(S,R) is a closure algebra iff R is reflexive and transitive, i.e. a quasi-ordering.
Since these conditions x ≤ fx and ffx ≤ x are preserved by perfect extensions,
it followed [1951, Theorem 3.14] that
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every closure algebra is isomorphic to a subalgebra of the complex al-
gebra of a quasi-ordered set.

This result, along with the Extension Theorem and the representation of a normal
BAO as a complex algebra, were all stated in the abstract [1948].

A number of other properties of R were discussed in [1951], including symme-
try. This was shown to be characterised by self-conjugacy of fR, meaning that
Cm(S,R) satisfies the condition f(x)·y = 0 iff x·f(y) = 0, which can be expressed
equationally, for example by f0 = 0 and fx · y ≤ f(x · fy). The characterisation
was used to give a representation of certain two-dimensional cylindric algebras as
complex algebras over a pair of equivalence relations. Self-conjugacy of an operator
is also equivalent to the equation x · f−fx = 0, corresponding to the Brouwerian
modal axiom p → 23p. In closure algebras this is equivalent to every closed ele-
ment being open: a self-conjugate closure algebra is the same thing as a monadic
algebra.

As already mentioned, this study of BAO’s was later overlooked. [Dummett
and Lemmon, 1959] makes extensive use of complex algebras over quasi-orderings
in studying extensions of S4, but makes no mention of the Jónsson–Tarski article,
taking its lead instead from the McKinsey–Tarski papers and a construction in
[Birkhoff, 1948] that gives a correspondence between partial orderings (i.e. anti-
symmetric quasi-orderings) and closure operations of certain topologies on a set.
The same omission occurs in [Lemmon, 1966b], which re-proves the representation
of a unary operator on a Boolean algebra as a complex algebra over a binary rela-
tion, although it does extend the result by allowing the operator to be non-normal
(see section 5.1).

3.4 Could Tarski Have Invented Kripke Semantics?

A question like this can only remain a matter of speculation. But it is not just idle
speculation, given that Tarski had worked on modal logic during the same period,
and given his pioneering role in the development of model theory, including the
formalisation of the notions of truth and satisfaction in relational structures.

The Jónsson–Tarski work on closure algebras applies directly to the McKinsey–
Tarski results on modal logic to show that S4 is characterised by the class of
complex algebras of quasi-orderings. It can also be applied to show that S5 is
characterised by the class of complex algebras of equivalence relations. Now the
complex algebra of an equivalence relation R is a subdirect product of the com-
plex algebras of the equivalence classes of R, each of which is a set on which R
is universal. Moreover, the complex algebra of a universal relation is a simple
monadic algebra. These observations could have been used to give a more acces-
sible approach to the structural analysis of S5-algebras that appears in [Scroggs,
1951].

But the Jónsson–Tarski paper makes no mention of modal logic at all. Jónsson
[1993] has explained that their theory evolved from Tarski’s research on the algebra
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of binary relations, beginning with the finite axiom system in [Tarski, 1941] which
was designed to formalise the calculus of binary relations that had been developed
in the nineteenth century by De Morgan, Peirce and Schröder. The primitive
notions of that paper were those of Boolean algebra together with the binary
operation R1;R2 of relational composition, the unary operation R˘ of inversion,
and the distinguished constant 1’ for the identity relation. Tarski asked whether
any model of his axiom was representable as an algebra of actual binary relations.
He later gave an equational definition of a relation algebra as an abstract BAO
(B, ; , ,̆ 1’ ) that forms an involuted monoid under ; , ,̆ 1’ and satifies the condition
x̆ ;−(x; y) ≤ −y. Concrete examples include the set P(S×S) of all binary relations
on a set S and, more generally, the set P(E) of subrelations of an equivalence
relation E on S. Any algebra isomorphic to a subalgebra of the normal BAO
(P(E), ; , ,̆ 1’ ) is called representable, and Tarski’s representation question became
the problem of whether every abstract relation algebra is representable in this
sense.20

Late in 1946 Tarski communicated to Jónsson a proof that every relation algebra
is embeddable in a complete and atomic one. That construction became the pro-
totype for the Jónsson–Tarski Extension Theorem for BAO’s (see [Jónsson, 1993,
§1.2]). The second part of their joint work [1952] is entirely devoted to relation
algebras and their representations.

It appears then that in developing his ideas on BAO’s Tarski was coming from
a different direction: modal logic was not on the agenda. According to [Copeland,
1996b, p. 13], Tarski told Kripke in 1962 that he was unable to see a connection
with what Kripke was then doing.

4 RELATIONAL SEMANTICS

Leibniz had a good deal to say about possible worlds, including that the actual
world is the best of all of them. Apparently he never literally described necessary
truths as being “true in all possible worlds”, but he did say of them that

Not only will they hold as long as the world exists, but also they would have
held if God had created the world according to a different plan.

He defined a truth as being necessary when its opposite implies a contradiction, and
also said that there are as many worlds as there are things that can be conceived
without contradiction (see [Mates, 1986, pp. 72–73, 106–107]).

This way of speaking has provided the motivation and intuitive explanation
for a mathematical semantics of modality using relational structures that are now
often called Kripke models. A formula is assigned a truth-value relative to each
point of a model, and these points are thought of as being possible worlds or states
of affairs.

20This was answered negatively by Lyndon [1950]. Work of Tarski, Monk and Jónsson eventu-
ally showed that the representable relation algebras form an equational class that is not finitely
axiomatisable, with any equational definition of it requiring infinitely many variables.
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An account will now be given of the contribution of Saul Kripke, followed by a
survey of some of its “anticipations”.

4.1 Kripke’s Relatively Possible Worlds

Kripke’s first paper [1959a] on modal logic gave a semantics for a quantificational
version of S5 that included propositional variables as the case n = 0 of n-ary
predicate variables. A complete assignment for a formula α in a non-empty set D
was defined to be any function that assigns an element of D to each free individual
variable in α, a subset of Dn to each n-ary predicate variable occurring in α, and a
truth-value (⊤ or ⊥) to each propositional variable of α. A model of α inD is a pair
(G,K), where K is a set of complete assignments that all agree on their treatment
of the free individual variables of α, and G is an element of K. Each member H
of K assigns a truth value to each subformula of α, by induction on the rules of
formation for formulas. The truth-functional connectives and the quantifiers ∀, ∃
behave as in standard predicate logic, and the key clause for modality is that

H assigns ⊤ to 2β iff every member of K assigns ⊤ to β.

A formula α is true21 in a model (G,K) over D iff it is assigned ⊤ by G; valid over
D iff true in all of its models in D; and universally valid iff valid in all non-empty
sets D.

An axiomatisation of the class of universally valid formulas was given, with
the completeness proof employing the method of semantic tableaux introduced in
[Beth, 1955]. It was then observed that for purely propositional logic this could
be turned into a truth table semantics. A complete assignment becomes just an
assignment of truth values to the variables in α, i.e. a row of a truth table, and
a model (G,K) is just a classical truth table with some (but not all) of the rows
omitted and G some designated row. Formula 2β is assigned ⊤ in every row
if β is assigned ⊤ in every row of the table; otherwise it is assigned ⊥ in every
row. The resulting notion of “S5-tautology” precisely characterises the theorems
of propositional S5, a result that Kripke had in fact obtained first, before, as he
explained in [1959a, fn. 4],

aquaintance with Beth’s paper led me to generalize the truth tables to se-
mantic tableaux and a completeness theorem.

Kripke’s informal motivation for these models was that the assignment G rep-
resents the “real” or “actual” world, and the other members of K represent worlds
that are “conceivable but not actual”. Thus 2β is “evaluated as true when and
only when β holds in all conceivable worlds”. The lack of any further structure
on K reflects the assumption that “any combination of possible worlds may be
associated with the real world”.

The abstract [Kripke, 1959b] announced the availability of “appropriate model
theory” and completeness theorems for a raft of modal systems, including S2–S5,

21Actually “valid in a model” was used here, but changed to “true” in [Kripke, 1963a].
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the Feys–von Wright system T (or M), Lemmon’s E-systems, systems with the
Brouwerian axiom, deontic systems, and others. Various extensions to quantifica-
tional logic with identity were described, and it was stated that “the methods for S4
yields a semantical apparatus for Heyting’s system which simplifies that of Beth”.
The details of this programme appeared in the papers [1963a; 1963b; 1965a; 1965b].

The normal propositional logics S4, S5, T and B are the main focus of [Kripke,
1963a], which defines a normal model structure as a triple (G,K,R) with G ∈ K
and R a reflexive binary relation on K. A model for a propositional formula α on
this structure is a function Φ(p,H) taking values in {⊤,⊥}, with p ranging over
variables in α and H ranging over K. This is extended to assign a truth value
Φ(β,H) to each subformula β of α and each H ∈ K, with

Φ(2β,H) = ⊤ iff Φ(β,H ′) = ⊤ for all H ′ ∈ K such that HRH ′.

α is true in the model if Φ(α,G) = ⊤.
In addition to the introduction of the relation R, the other crucial conceptual

advance here is that the set K of “possible worlds” is no longer a collection of
value assignments, but is permitted to be an arbitrary set. This allows that there
can be different worlds that assign the same truth values to atomic formulas. As
to the relation R, Kripke’s intuitive explanation is as follows [1963a, p. 70]:

we read “H1RH2” as H2 is “possible relative to H1”, “possible in H1” or
“related to H1”; that is to say, every proposition true in H2 is to be possible
in H1. Thus the “absolute” notion of possible world in [1959a] (where every
world was possible relative to every other) gives way to relative notion, of
one world being possible relative to another. It is clear that every world H

is possible relative to itself; for this simply says that every proposition true

in H is possible in H . In accordance with this modified view of “possible
worlds” we evaluate a formula A as necessary in a world H1 if it is true in
every world possible relative to H1. . . . Dually, A is possible in H1 iff there
exists H2, possible relative to H1, in which A is true.

Semantic tableaux methods are again used to prove completeness theorems: a
formula is true in all models iff it is a theorem of T; true in all transitive models
iff it is an S4-theorem, true in all symmetric models iff a B-theorem, and true in
all transitive and symmetric models iff an S5-theorem. The arguments also give
decision procedures, and show that attention can be restricted to models that are
connected in the sense that each H ∈ K has GR∗H , where R∗ is the ancestral or
reflexive-transitive closure of R. Kripke notes that

in a connected model in which R is an equivalence relation, any two worlds
are related. This accounts for the adequacy, for S5, of the model theory of
[1959a].

An illustration of the tractability of the new model theory is given by a new proof
of the deduction rule in S4 that if 2α ∨ 2β is deducible then so is one of α and
β. If neither α nor β is derivable then each has a falsifying S4-model. Take the
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disjoint union of these two models and add a new “real” world that is R-related to
everything. The result is an S4-model falsifying 2α∨2β. This argument is much
easier to follow than the McKinsey–Tarski construction involving well-connected
algebras described in section 3.2., and it adapts readily to other systems.

Other topics discussed include the presentation of models in “tree-like” form,
and the association with each model structure of a matrix, essentially the modal
algebra of all functions ρ : K → {⊤,⊥}, which are called propositions, with the
ones having ρ(G) = ⊤ being designated. A model can then be viewed as a device
for associating a proposition H 7→ Φ(p,H) to each propositional variable p. The
final section of the paper raises the possibility of defining new systems by imposing
various requirements on R, and concludes that

[i]f we were to drop the condition that R be reflexive, this would be equivalent
to abandoning the modal axiom 2A → A. In this way we could obtain
systems of the type required for deontic logic.

Non-normal logics are the subject of [Kripke, 1965b], which focuses mainly on
Lewis’s S2 and S3 and the corresponding systems E2 and E3 of [Lemmon, 1957].
The E-systems have no theorems of the form 2α, and this suggests to Kripke the
idea of allowing worlds in which any formula beginning with 2 is false, and hence
any beginning with 3, even 3(p∧¬p), is true. A model structure now becomes a
quadruple (G,K,R,N) with N a subset of K, to be thought of as a set of normal
worlds, and R a binary relation on K as before, but now required to be reflexive
on N only. The semantic clause for 2 in a model on such a structure is modified
by stipulating that

Φ(2β,H) = ⊤ iff H is normal, i.e. H ∈ N , and Φ(β,H ′) = ⊤ for all
H ′ ∈ K such that HRH ′;

and hence

Φ(3β,H) = ⊤ iff H is non-normal or else Φ(β,H ′) = ⊤ for some
H ′ ∈ K such that HRH ′.

This has the desired effect of ensuring Φ(2β,H) = ⊥ and Φ(3β,H) = ⊤ whenever
H is non-normal. Thus in a non-normal world, even a contradiction is possible.

These models characterise E2, and the ones in which R is transitive characterise
E3. Requiring that the “real” world G belongs to N gives models that characterise
S2 and S3 in each case.22 A number of other systems are discussed and applications
given, including a proof of a long-standing conjecture that the Feys–von Wright
system has no finite axiomatisation with detachment as its sole rule of inference.

Kripke’s semantics for quantificational modal logic is presented in his [1963b].
A model structure now has the added feature of a function assigning a set ψ(H)
to each H ∈ K. Intuitively, ψ(H) is the set of all individuals existing in H , and

22A semantics for S1 was devised in 1969 by Max Cresswell, modifying Kripke’s S2-models to
allow some formulas 3β to be false in a non-normal world under certain restrictions, defined with
the help of a neighbourhood relation R′ ⊆ K × P(K). See [Cresswell, 1972; Cresswell, 1995].
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it provides the range of values for a variable x when a formula beginning with ∀x
is evaluated at H . A model now assigns to each n-ary predicate letter and each
H ∈ K an n-ary relation on the set

⋃

{ψ(H ′) : H ′ ∈ K} of individuals that exist
in any world. Axioms are given for quantificational versions of the basic modal
logics and it is stated that the completeness theorems of [1963a] can be extended
to them. An indication of how that would work can be obtained from Kripke’s
[1965b], which gives a tableaux completeness proof for his semantics for Heyting’s
intuitionistic predicate calculus.

4.2 So Who Invented Relational Models?

Kripke’s abstract [1959b] notes that “for systems based on S4, S5, and M, similar
work has been done independently and at an earlier date by K. J. J. Hintikka”.
This acknowledgement is repeated in [1963a, fn. 2] where he draws attention to
prior work by a number of researchers, including Bayart, Jónsson and Tarski, and
Kanger, explaining that his own work was done independently of all of them. He
states that the modelling of [Kanger, 1957b] “though more complex, is similar to
that in the present paper”, and also records that he discovered the Jónsson–Tarski
paper when his own was almost finished.

Key ideas surrounding relational interpretations of modality had occurred to
several people. In the next few sections we survey some of this background, before
expressing a view about the relative significance of Kripke’s work.

As mathematics progresses, notions that were obscure and perplexing become
clear and straightforward, sometimes even achieving the status of “obvious”. Then
hindsight can make us all wise after the event. But we are separated from the past
by our knowledge of the present, which may draw us into “seeing” more than was
really there at the time. This should be borne in mind in reading what follows.

4.3 Carnap and Bayart on S5

A state-description is defined by Rudolf Carnap in [1946; 1947] to be set of sen-
tences which consists of exactly one of α and ¬α for each atomic α. State-
descriptions are said to “represent Leibniz’s possible worlds or Wittgenstein’s
possible states of affairs”. A sentence is called L-true if it holds in every state-
description, this being “an explicatum for what Leibniz called necessary truth and
Kant analytic truth” [1947, p. 8].

Of course it needs to be explained what it is to hold in a state-description.
An atomic sentence holds in a state description iff it belongs to it, the conditions
for the connectives ¬, ∧, and ∨ are as expected, and the criterion for Carnap’s
necessity connective N is that

Nα holds in every state-description if α holds in every state-description;
otherwise, Nα holds in no state-description

[1946, D9-5i], [1947, 41-1]. His list of L-truths ([1946, p. 42], [1947, p. 186]) includes
the axioms for S5, and he also notes the similarity between N and ∀, and between
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3 and ∃ under this semantics. The 1946 paper observes that there is a procedure
for deciding L-truth that is “theoretically effective”: if a sentence α has n atomic
components then there are 2n state-descriptions that have to be considered in
evaluating it, and therefore 22n

possibilities for the range of α, which is the set of
state-descriptions in which α holds. We can examine all possibilities to see if the
range includes all state-descriptions. Carnap defines a version of S5 which he calls
MPC and proves that it is complete with respect to his semantics, by a reduction
of formulas to a normal form23 which also gives a decision procedure that is

practicable, i.e. sufficently short for modal sentences of ordinary length.

He attributes the completeness result to a paper of Mordchaj Wajsberg from 1933.
Footnote 8 of [1946] gives a description of Wajsberg’s system and also contains the
information that Carnap constructed MPC independently in 1940 and later found
that it was equivalent to Lewis’s S5.

A contribution to possible worlds model theory that has been largely overlooked
is the work of the Belgian logician A. Bayart, whose papers of [1958] and [1959]

gave a semantics for a version of second order quantificational S5, and a complete
axiomatisation of it using a Gentzen-style sequent calculus. The models used al-
low a restricted range of interpretation of predicate variables. This idea had been
introduced in [Henkin, 1950] to give a completeness result for non-modal higher or-
der logic, and Bayart commented [1959, p. 100] that he had just adapted Henkin’s
theorem to S5.24 The other source of motivation he gives [1958, p. 28] is Leibniz’s
definition of necessity as truth in all possible worlds,25 and his bibliography cites
the items [Carnap, 1946; Carnap, 1947].

In Bayart’s theory a universe U is defined to be a disjoint pair A,B of sets, with
members of A called individuals and members of B called worlds (“mondes”). An
n-place intensional predicate is a function of n + 1 arguments, taking the values
“true” or “false”, having a world as its first argument, and having individuals as
the remaining arguments when n 6= 0. A value system relative to U is a function
S assigning a member of A to each individual variable, and an n-place intensional
predicate to each n-place predicate variable. The notion of a formula being true
or false for the universe U , the world M and the value system S — or more
briefly for UMS — is defined in the expected way for the non-modal connectives
and quantifiers, including quantifiers binding predicate variables. For modalized
formulas Lp and Mp it is declared that

Lp is true for UMS iff for every world M ′ of U , p is true for UM ′S;

Mp is true for UMS iff for some world M ′ of U , p is true for UM ′S.

23Called modal conjunctive normal form in [Hughes and Cresswell, 1968, p. 116], where a
variant of the proof is given.

24“En réalité notre exposé n’est qu’une adaptation du théorème de Henkin à la logique modale
S5.”

25“. . . en nous inspirant de la définition Leibnizienne du nécessaire, comme étant ce qui est vrai
dans tous les mondes possibles.”
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A formula is valid in the universe U if it is true for UMS for every world M and
value system S of U .

Bayart used the notation ä, I, ë for a Gentzen sequent, with ä (the antecedent)
and ë (the consequent) being finite sequences of formulas, and I a separating
symbol. The sequent is true in UMS if some member of ä is false or else some
member of ë is true. He adopted the axiom schema p̈, I, p̈ and a system of twenty-
five deduction rules, showing in [1958] that all deducible sequents are valid in all
universes. There are four modal rules, allowing the introduction of the modalities
L and M into antecedents and consequents:

p, ä, I, ë

Lp, ä, I, ë

p, ä, I, ë

Mp, ä, I, ë

ä, I, ë, p

ä, I, ë, Lp

ä, I, ë, p

ä, I, ë,Mp
.

The last two rules are subject to the restriction that any formula appearing in ä
or ë must be “couverte”, meaning that it is formed from formulas of the types Lq
and Mq using only the non-modal connectives and quantifiers. Such a formula has
the same truth value in UMS and UM ′S for all worlds M,M ′.

The [1959] paper proved the completeness of this sequent system for validity in
certain quasi-universes obtained by allowing predicate variables to take values in
a restricted class of intensional predicates. From this it was shown that the first
order fragment of the system is complete for validity in all universes. The method
used was subsequently generalised in [Cresswell, 1967] to obtain a completeness
theorem for the relational semantics of a first order version of the modal logic T
(see section 5.1).

It is worth recording Bayart’s explanation of why the set of worlds of a universe
U = A,B is essential to this theory. He considered the possibility of dispensing
with B, requiring a value system S to interpret an n-place predicate variable as
an extensional predicate (i.e. a truth-valued function on An), and modelling the
necessity modality by declaring that

Lp is true of US iff p is true of US′ for every value system S′.

He noted that this interpretation fails to validate the formula

∃y L(bx ∨ ¬by)

(where b is a unary predicate variable), a formula that is valid according to the
above semantics. His explanation of the flaw in this alternative approach is that
it gives Lp the same meaning as the universal closure of p (i.e. ∀v1 · · · ∀vnp, where
v1, . . . , vn are the free variables of p), and confuses necessity with validity.

4.4 Meredith, Prior and Geach

Arthur Prior [1967, p. 42] wrote that

In some notes made in 1956, C. A. Meredith related modal logic to what he
called the ‘property calculus’.
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This material was made available by Prior as a one-page departmental mimeo-
graph [Meredith, 1956] which was published much later in the collection [Copeland,
1996a]. Its basic idea was to express modal formulas in the first-order language of
a binary predicate symbol U , beginning with the following definitions, in which L
and M are connectives for necessity and possibility (but the other notation is that
of this paper rather than the original Polish):

(¬p)a = ¬(pa)

(p→ q)a = (pa)→ (qa)

(Lp)a = ∀b(Uab→ pb)

(Mp)a = (¬L¬p)a = ∃b(Uab ∧ pb).

Possible axioms for U are then listed:

1. Uab ∨ Uba
2. Uab→ (Ubc→ Uac)
3. Uab→ (Ucb→ Uac)
4. Uaa
5. Uab→ Uba,

and it is noted that “1 gives 4”; “3, 4 give 5”; and “3, 5 give 2”. The notes
are written in this telegraphic style with no interpretation of the symbolism, but
presumably “pa” may be read “a has property p”.

It is stated that quantification theory alone allows the derivation of

(

L(p→ q)→ (Lp→ Lq)
)

a,

and then formal deductions are given of (Lp→ p)a using 4; of (Lp→ LLp)a using
2; of (MLp → Lp)a using 2 and 5; and of ∀apa from (Lp)a using 1 and 5. The
conclusion is as follows:

Thus 1, or 4, gives T; 1, 2 or 4, 2 gives S4; 1, 3 or 4, 3 gives S5; and 1, 3 (but
not 4, 3) gives the equivalence of the above (Lp)a with the usual S5 (Lp)a,
i.e. ∀apa.

Prior’s article “Possible Worlds” [1962a, p. 37] gives a fuller exposition of this
U -calculus, saying “This whole symbolism I owe to C. A. Meredith”. He applies
an interpretation of the predicate U , suggested to him by P. T. Geach in 1960,26

as a relation of accessibility. Here is Prior’s account of that interpretation.

Suppose we define a ‘possible’ state of affairs or world as one which can be
reached from the world we are actually in. What is meant by reaching or
travelling to one world from another need not here be amplified; we might
reach one world from another merely in thought, or we might reach it more
concretely in some dimension-jumping vehicle dreamed up by science-fiction

26This date is given in [Prior, 1962b, p. 140], where the acknowledgement of Meredith is
repeated once more.
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(the case originally put by Geach), or we might reach it simply by the passage
of time (one important sense of ‘possible state of affairs’ is ‘possible outcome
of the present state of affairs’). What I want to amplify here is the idea
(the core of Geach’s suggestion) that we may obtain different modal systems,
different versions of the logic of necessity and possibility, by making different
assumptions about ‘world-jumping’.

Prior was the founder of tense logic (also known as temporal logic). He wanted to
analyse the arguments of the Stoic logician Diodorus Chronos, who had defined a
proposition to be possible if it either is true or will be true. Prior conceived the
idea of using a logical system with temporal operators analogous to those of modal
logic, and thus introduced the connectives

F it will be the case that
P it has been the case that
G it will always be the case that
H it has always been the case that.

Here F and P are “diamond” type modalities, with duals G and H respectively.
In the paper “The Syntax of Time-Distinctions” [Prior, 1958] a propositional logic
called the PF -calculus is defined.27 It is a normal logic with respect to G and H ,
has the axioms Gp→ Fp, FFp→ Fp and Fp→ FFp, as well as an “interaction”
axiom p → GPp and a Rule of Analogy allowing that from any theorem another
may be deduced by replacing F by P and vice versa.

This system is then interpreted into what Prior calls the l-calculus, a first-order
language whose variables x, y, z range over dates, and which has a binary symbol
l taking dates as arguments, with the expression lxy being read “x is later than
y”.28 Variables p, q, r stand for propositions considered as functions of dates, with
the expression px being read “p at x”. The following interpretations are given
of propositional formulas, using an arbitrarily chosen date variable z to represent
“the date at which the proposition under consideration is uttered”.

Fp ∃x(lxz ∧ px)
Pp ∃x(lzx ∧ px)
Gp ∀x(lxz → px)
Hp ∀x(lzx→ px).

Prior observes that the interpretations of some theorems of the PF -calculus are
provable in the l-calculus just from the usual axioms and rules for quantificational
logic. This applies to any PF -theorem derivable from the basis for normal logics
together with the interaction axiom p → GPp and the rule of Analogy. He then
states that the interpretation of Gp → Fp requires for its proof the axiom ∃x lxz
(“infinite extent of the future”), and that FFp → Fp depends similarly on tran-
sitivity: lxy → (lyz → lxz), while Fp → FFp depends on the density condition
lxz → ∃y(lxy ∧ lyz).

27The contents of this paper are reviewed on [Prior, 1967, pp. 34–41].
28Prior notes that the structure of the calculus would be unchanged if l were read “is earlier

than”.
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The modality M of possibility is given a temporal reading by defining Mp to be
an abbreviation for p∨Fp∨Pp, i.e. “p is true at some time, past present or future”.
This makes the dual Lp equivalent to p ∧ Gp ∧ Fp, “at all times, p”. Prior notes
that to derive the S5-principle M¬Mp → ¬Mp, which is “clearly a law” under
this interpretation of M , requires trichotomy: x = y ∨ lxy ∨ lyx. His explorations
here are quite tentative. For instance he defines asymmetry: lxy → ¬lyx, but
makes no use of it, and he fails to note that the S4-principle MMp → Mp also
depends on trichotomy and not just transitivity.

Why did Prior give such unequivocal credit to Meredith for the 1956 U -calculus?
The puzzle about this is that his paper on the l-calculus, although published in
1958, was presented much earlier, on 27 August 1954, as his Presidential Address
to the New Zealand Philosophy Congress at the Victoria University of Wellington.
Perhaps he was crediting Meredith with the extension of the symbolism to modal
logic as he understood it, i.e. the logic of necessity and possibility, as distinct from
tense logic. The l-calculus was intended to describe a very specific situation: an
ordered system of dates or moments in time that forms an “infinite and continuous
linear series” [1958, p. 115]. In the absence of any corresponding interpretation of
the U -predicate, the purely formal application of the symbolism by Meredith may
have been seen by Prior as a significant advance.

Prior made much use of l and U calculi in his papers and books on tense logic.
He did not however pursue their implicit relational model theory, and would not
have thought it philosophically worthwhile to do so. Although he described the
l-calculus as “a device of considerable metalogical utility” [1958, p. 115], he went
on to deny that the interpretation of the PF -calculus within the l-calculus has
any metaphysical significance as an

explanation of what we mean by “is”, “has been” and “will be”.

On the contrary he proposed that what was needed was an interpretation in the
reverse direction [1958, p. 116]:

the l-calculus should be exhibited as a logical construction out of the PF -
calculus.

This proposal became a major programme for Prior. He used formulas like p ∧
¬Pp ∧ ¬Fp which can be true at only one point of the linear series of moments,
or instants. If M(p ∧ ¬Pp ∧ ¬Fp) is true at some time, the variable p must itself
be true at exactly one instant and may be identified with that instant. Then the
formula L(p → α) expresses that “it is the case at p that α”, and so if p and q
are both such instance-variables, L(p→ Pq) asserts that it is true at p that it has
been q, i.e. p is later than q, and q is earlier than p.

Systems having variables identified with unique instants or worlds are developed
most fully in the book of [Prior and Fine, 1977, p. 37], where Prior gives an
emphatic statement of his metaphysical propensity:

. . . I find myself quite unable to take ‘instants’ seriously as individual entities;
I cannot understand ‘instants’, and the earlier-than relation that is supposed
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to hold between them, except as logical constructions out of tensed facts.
Tense logic is for me, if I may use the phrase, metaphysically fundamental,
and not just an artificially torn-off fragment of the first-order theory of the
earlier-than relation.

4.5 Kanger

A semantics is given by Stig Kanger in [1957b] for a version of modal predicate
logic whose atomic formulas are propositional variables and expressions of the
form (x1, . . . , xn) ε y, where n ≥ 1 and the xi and y are individual variables or
constants. The language included a list of modal connectives M1, M2, . . . .

A notion of a system is introduced as a pair (r, V ) where r is a frame and
V a primary valuation. Here r is a certain kind of sequence of non-empty sets
whose elements provide values of individual symbols of various types. V is a
binary operation that assigns a truth value V (r, p), belonging to {0, 1}, to each
propositional variable p and frame r, as well as interpreting individual symbols
and the symbol ε in each frame in a manner that need not concern us. Then
a “secondary” truth valuation T (r, V, α) is inductively specified, allowing each
formula α to be defined to be true in system (r, V ) iff T (r, V, α) = 1. For this
purpose each modalityMi is assumed to be associated with a class Ri of quadruples
(r′, V ′, r, V ), and it is declared that

T (r, V,Miα) = 1 iff T (r′, V ′, α) = 1 for each r′ and V ′ such that
Ri(r

′, V ′, r, V )

(so Mi is a “box” type of modality).
Kanger states the following soundness results. The theorems of the Feys–von

Wright system T are valid (i.e. true in all systems) iff Ri(r, V, r, V ) always holds.
S4 is validated iff Ri(r, V, r, V ) always holds and so does the condition

Ri(r, V, r
′, V ′) and Ri(r

′′, V ′′, r, V ) implies Ri(r
′′, V ′′, r′, V ′).

S5 is validated iff the S4 conditions hold along with

Ri(r, V, r
′, V ′) and Ri(r

′′, V ′′, r′, V ′) implies Ri(r
′′, V ′′, r, V ).

Proofs of these assertions are not provided. (In fact it is readily seen that the
given conditions on Ri imply validity for the corresponding logics in each case,
but the converses are dubious.) A result is proved that equates the existence of
an Ri fulfilling the above definition of T (r, V,Miα) to the preservation of certain
inference rules involving Mi. Kanger says of this that

[s]imilar results in the field of Boolean algebras with operators may be found
in [Jónsson and Tarski, 1951].

Completeness theorems are not proved, or even stated, for this modal semantics.
But there is a completeness proof for the non-modal fragment of the language
which has a remarkable aspect. Kanger wishes to have the symbol ε interpreted as
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the genuine set membership relation, and he applies the (much-overused) adjective
normal to a primary valuation V which does give this interpretation to ε in every
frame. Since his language allows atomic formulas like x ε x, normal systems must
have non-well-founded sets. He introduces a new set-theoretical principle to ensure
that enough such sets exist to give the completeness theorem with respect to
normal structures.29

Different definitions of R allow the modelling of different notions of necessity.
Kanger [1957a, p. 35] defines set-theoretical necessity to be the modality given by
requiring

Ri(r
′, V ′, r, V ) iff V ′ is normal with respect to ε.

This means that Mi gets the reading “in all normal systems”. Analytic necessity
is modelled by the Ri having

Ri(r
′, V ′, r, V ) iff V ′ = V ,

and logical necessity arises when Ri(r
′, V ′, r, V ) always holds. Thus “logically

necessary” means “true in all systems”, which is reminiscent of the modelling of
the S5 necessity connective by Carnap and Bayart (section 4.3).

There is no doubt much scope for defining other modalities in this way, and
Kanger offers one other brief suggestion:

We may, for instance, define ‘geometrical necessity’ in the way we defined
set-theoretical necessity except that (roughly speaking) V ′ shall be normal
also with respect to the theoretical constants of geometry.

The paper [Kanger, 1957a] addresses difficulties raised by Quine (in [1947] and
other writings) about the possibility of satisfactorily interpreting quantificational
modal logic. One such obstacle concerns the principle of substitutivity of equals,
formalised by the schema

x ≈ y → (α→ α′)

where α′ is any formula differing from α only in having free occurrences of y in
some places where α has free occurrences of x. Taking α to be the valid 2(x ≈ x),
this allows derivation of

x ≈ y → 2(x ≈ y),

which is arguably invalid. For example, it is an astronomical fact that the Morning
Star and the Evening Star are the same object (Venus), but this equality is not a
necessary truth.

Kanger pointed out that his new semantics for quantification and modality made
it possible to “recognize and explain the error in the Morning Star paradox”: the
principle of substitutivity of equals is not valid without restriction, but only in the
weaker form

2(x ≈ y)→ (α→ α′).

Jaakko Hintikka [1969] later expressed the opinion that this discussion by Kanger
of the Morning Star paradox will

29This principle is discussed further in [Aczel, 1988, pp. 28–31 and 108].
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remain a historical landmark as the first philosophical application of an ex-
plicit semantical theory of quantified modal logic.

4.6 Montague

Kanger’s quaternary relation Ri might equally well be viewed as a binary relation
(r′, V ′)Ri (r, V ) between systems. Such a notion appears in a paper by Richard
Montague [1960] which was originally presented to a philosophy conference at the
University of California, Los Angeles, in May of 1955. Montague did not initially
plan to publish the paper because “it contains no results of any great technical
interest”, but eventually changed his mind after the appearance of Kanger’s and
Kripke’s ideas.

The aim of the paper is to interpret logical and physical necessity, and the de-
ontic modality “it is obligatory that”, and to relate these to the use of quantifiers.
Tarski’s model theory for first-order languages is employed for this purpose: a
model is taken to be a structure M = (D,R, f) where D is a domain of indi-
viduals, R a function fixing an interpretation of individual constants and finitary
predicates in D in the now-familiar way, and f is an assignment of values in
D to individual variables. Montague uses these models to provide a semantics
for formulas that are constructible from atomic first-order formulas by using the
propositional connectives and 2, but not quantifiers.30 His approach is to take a
relation X between such models, and then inductively define

M satisfies 2α iff for every model M′ such thatMXM′,M′ satisfies α.

His first example shows that the Tarskian semantics for ∀ fits this definition.
Taking X to be the relation Qx specified by

MQxM′ iff D = D′, R = R′ and f and f ′ agree except on x

gives 2 the interpretation “for all x”. Thus quantification could be handled by
associating a modality with each variable, and Montague suggests that this should
dispel Quine’s uneasiness about combining modality with quantification.

The relation

MLM′ iff D = D′ and f = f ′

gives 2α the interpretation “it is logically necessary that α”, meaning that α holds
no matter what its individual constants and predicates denote.

To interpret physical necessity, Montague uses the idea that a statement is
physically necessary if it is deducible from some set of physical laws specified in
advance. This is formalised by fixing a set K of first-order 2-free sentences and
specifying a relation P by

MPM′ iff D = D′, f = f ′ and M′ is a model of K.

30Montague uses several symbols for various kinds of modality, but 2 will suffice here.
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Similarly, “it is obligatory that α” is taken to mean that α is deducible from some
set of ethical laws specified in advance. This is formalised by fixing a class I of
ideal models, those in which the constants and predicates mean what they ought
to according to these laws. Montague suggests as an example that I could be

the class of models which, in Tarski’s sense, satisfy the ten commandments
formulated as declarative, rather than imperative, sentences.

The deontic modality then corresponds to the model-relation E such that

MEM′ iff D = D′, f = f ′ andM′ belongs to I.

If a model-relation X fulfills the conditions

for all M there exists M′ with MXM′,

MXM′ andM′XM′′ implies MXM′′,

MXM′ andMXM′′ implies M′XM′′,

(the last two mirror Kanger’s conditions) then every S5-theorem is valid, i.e. sat-
isfied by every model. Montague states that the converse is true, and that there
is a decision method for the class of formulas valid in this sense.

4.7 Hintikka

IfM is a model for predicate logic, of the kind used by Montague, let µM be the set
of all formulas that it satisfies. In Jaakko Hintikka’s approach to semantics, such
models M are in effect replaced by the sets µM. These sets can be characterised
by their syntactic closure properties, obtained by replacing “M satisfies α” by
“α ∈ µM” in the clauses of the inductive definition of satisfaction of formulas. A
model set is defined as a set µ of formulas that has certain closure properties, such
as

if α is atomic then not both α ∈ µ and ¬α ∈ µ,

if α ∧ β ∈ µ, then α ∈ µ and β ∈ µ,

if α ∨ β ∈ µ, then α ∈ µ or β ∈ µ,

if ∃xα ∈ µ, then α(y/x) ∈ µ for some variable y,

that are sufficient to guarantee that µ can be extended to a maximal model set
which has all such closure properties corresponding to the conditions for satisfac-
tion for the truth-functional connectives and the quantifiers.31

Hintikka’s article [1957] gives a definition of satisfaction for formulas of quanti-
fied deontic logic using model sets whose conditions

may be thought of as expressing properties of the set of all statements that
are true under some particular state of affairs.

31In fact it is assumed that formulas are in a certain normal form, but we can overlook the
technicalities here.
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He notes [1957, p. 10] that his treatment derives from a

new general theory of modal logics I have developed.

This general modelling of modalities was published in [1961], where he views a
maximal model set as the set of all formulas that hold in some state-description
in the sense of Carnap, and says that

a model set is the formal counterpart to a partial description of a possible
state of affairs (of a ‘possible world’). (It is, however, large enough a de-
scription to make sure that the state of affairs in question is really possible.)

The point of the last sentence is that for non-modal quantificational logic, every
model set is included in µM for some actual modelM. Hence a set of non-modal
formulas is satisfiable in the Tarskian sense if it is included in some model set.

The 1957 article deals with a system that has quantifiable variables ranging over
individual acts, and dual modalities for obligation and permission, with formulas
Oα and Pα being read “α is obligatory” and “α is permissible”, respectively.
The paper makes very interesting historical reading, especially on pages 11 and
12 where one can almost see the notion of a binary relation between model sets
quickening in the author’s mind as he grapples with the question of what we mean
by saying that α is permitted. His answer is that

we are saying that one could have done α without violating one’s obligations.
In other words, we are saying that a state of affairs different from the actual
one is consistently thinkable, viz. a state of affairs in which α is done but in
which all the obligations are nevertheless fulfilled.

Thus if the actual state is (partially) represented by a model set µ, then to represent
this different and consistently thinkable state we need

another set µ∗ related to µ in a certain way. This relation will be expressed
by saying that µ∗ is copermissible with µ.

Hintikka is thus led to formulate the following rules.

If Pα ∈ µ, then there a set µ∗ copermissible with µ such that α ∈ µ∗.

If Oα ∈ µ and if µ∗ is copermissible with µ, then α ∈ µ∗.

The second rule addresses the requirement that all actual obligations be fulfilled
in the state in which a permissible act is done. Then there are two more rules:

If Oα ∈ µ∗ and if µ∗ is copermissible with some other set µ, then
α ∈ µ∗.

If Oα ∈ µ and if µ∗ is copermissible with µ, then Oα ∈ µ∗.

Motivation for third rule is as follows.
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But not only one must be thought of in µ∗ as fulfilling the obligations one
has now. Sometimes one is permitted to do something only at the cost of
new obligations. These must be thought of as being fulfilled in µ∗ in order to
be sure that all the obligations one has really are compatible with α’s being
done.

The fourth rule is justified because

there seems to be no reason why the actually existing obligations should
not also hold in the alternative state of affairs contemplated in µ∗. What is
thought of as obligatory in µ must hence also be obligatory in µ∗.

Hintikka is well aware that the relation between µ and µ∗ cannot be functional:
there may be different acts that are each permissible in µ but cannot or must not
be performed together, hence must be done in different states copermissible with
µ. Also, µ∗ may have its own formulas of the form Pα, requiring further model
sets µ∗∗ copermissible with µ∗, and so on. The upshot is that a set λ of formulas
is defined to be satisfiable iff it is included in some model set which itself belongs
to a collection of model sets that carries a binary relation (called the relation of
copermission) obeying the closure rules for P and O.32 A formula α is valid if
{¬α} is not satisfiable in this sense.

This approach gives a method for demonstrating satisfiability and validity, by
starting with a set λ and attempting to build a suitable collection of model sets by
repeatedly applying all the closure rules. New sets are added to the collection when
the rule for P is applied. The other rules enlarge existing sets. If at some point
a violation of the rule of consistency is produced, in the form of a contradictory
pair α, ¬α in some set, then the original λ is not satisfiable.

Hintikka gives a striking illustration of the effectiveness of this technique for
analysing the subtleties of denotic logic. He demonstrates the invalidity of the
principle

Oα ∧ (α→ Oβ)→ Oβ,

which Prior had thought was a “quite plain truth”, by observing that its negation
is satisfied in the simple collection consisting of the two model sets

{Oα, ¬α ∨Oβ, P¬β, ¬α} {Oα, ¬β, α}.

However the principle can be turned into a valid one by making it obligatory:

O[Oα ∧ (α→ Oβ)→ Oβ].

Any attempt to build a satisfying structure for the negation of this formula leads
to violation of consistency. Several other applications like this are given, analysing
complex principles involving the interchange of quantifiers and deontic modalities.

With the advantage of hindsight we can see that the notion of a collection of
model sets with closure rules is reminiscent of the notion of a collection of semantic

32Note that the second rule is a consequence of the third and fourth.
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tableaux used in Kripke’s completeness proofs. Hintikka did not however take up
an axiomatic development of his system.

The paper [1961] deals with the necessity (N) and possibility (M) modalities,
and here the description of satisfiability is essentially the same, but more crisply
presented. A model system is defined a pair (Ω,R) with R being a binary relation
of “alternativeness” on Ω, and Ω being a collection of model sets that satisfies the
following conditions.

If Mα ∈ µ ∈ Ω, then there is in Ω at least one alternative ν to µ such
that α ∈ ν.

If Nα ∈ µ ∈ Ω, and if ν ∈ Ω is an alternative to µ, then α ∈ ν.

If Nα ∈ µ ∈ Ω, then α ∈ Ω.

The first two of these are the same as the first two rules for P and O. The third
reflects the requirement that any necessary truth be actually true. Hintikka’s
description of the new alternativeness relation is that µRν when ν is a partial
description of

some other state of affairs that could have been realised instead of µ.

A set λ of formulas is satisfiable (as before) iff there is such a model system with
λ ⊆ µ for some µ ∈ Ω, and a formula α is valid if {¬α} is not satisfiable. Hintikka
states that the valid formulas are precisely the theorems of the logic T. Restrict-
ing to transitive model systems gives a characterisation of the theorems of S4,
while the symmetric systems determine B and the ones that are both transitive
and symmetric determine S5. These assertions apply to the propositional version
of the logics. To prove them would require showing in each case that a deduc-
tively consistent formula is a member of some model set that belongs to a model
system of the appropriate kind, but again the issue of axioms and proof theory
is not taken up. The paper is mainly devoted to a discussion of the problem of
combining modalities with quantifiers, and proposes various modifications on the
closure properties of Ω depending on whether it is required that whatever exists
in a particular state of affairs should do so necessarily.

4.8 The Place of Kripke

The earlier efforts to develop the seminal ideas of Kripke semantics have inevitably
raised questions of priority. In fact, as the above material is intended to show,
the idea of using a binary relation to model modality occurred independently to a
number of people, and for different reasons, with Hintikka being the first to explain
it in terms of conceivable alternatives to a given state of affairs. Kanger was the
first to recognise the relevance of [Jónsson and Tarski, 1951] to modal logic,33 and
the first to apply this kind of semantical theory to the resolution of philosophical
questions about existence and identity.

33As Føllesdal [1994] emphasis.
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But it is only in Kripke’s writings that we see such seminal ideas developed into
an attractive model theory of sufficent power to fully resolve the long-standing issue
of a satisfactory semantics for modality and of sufficient generality to advance the
field further. A fundamental point (mentioned in section 4.1) is that he was the first
to propose, and make effective use of, arbitrary set-theoretic structures as models.
The methods of Hintikka, Kanger and Montague are all variations on the theme
of a binary relation between models of the non-modal fragment of the predicate
languages they use. Also, they did not present complete axiomatisations of their
semantics. Kripke was the first to do this, and by allowing R to be any relation
on any set K, he opened the door to all kinds of model constructions, which were
rapidly provided by himself and then others. (His models for non-normal logics
appear to lack any historical antecedents.) It is due to his innovation that we now
have a model theory for intensional logics.

As already noted in section 4.2, Kripke developed his ideas independently. His
analysis of S5 was inititiated in 1956 when he was still at high-school (he turned
16 years old on November 13th of that year). From the paper [Prior, 1956] he
learned of the axioms for S5, and began to think of modelling that system by
truth tables with missing rows (see section 4.1). Early in 1957 E. W. Beth sent
him his papers on the method of semantic tableaux, which provided Kripke with
a technique for proving completeness theorems. By 1958 Kripke had worked out
his relational semantics for modal and intuitionistic systems, as announced in his
abstract [1959b] which was received by the editors on 25 August 1958. It was
through exploring different conditions connecting tableaux in order to model the
different subsystems of S5 that Kripke came to the idea of using a binary relation
between worlds as the basis of a model theory.

Kripke had been introduced to Beth by Haskell B. Curry, who wrote to Beth
on 24 January 1957 that

I have recently been in communication with a young man in Omaha Ne-
braska, named Saul Kripke. . . . This young man is a mere boy of 16 years;
yet he has read and mastered my Notre Dame Lectures and writes me let-
ters which would do credit to many a professional logician. I have suggested
to him that he write you for preprints of your papers which I have already
mentioned. These of course will be very difficult for him, but he appears to
be a person of extraordinary brilliance, and I have no doubt something will
come of it.34

The Notre Dame Lectures of [Curry, 1950] presented a number of deductive sys-
tems of modal logic, including one equivalent to Lewis’s S4 for which a cut elimi-
nation theorem was demonstrated in [Curry, 1952]. Other such sources that were
influential for Kripke included the McKinsey–Tarski papers and the paper of Lem-
mon [1957] which showed how to axiomatize the Lewis systems in the style of
Gödel.

In late 1958 Kripke entered Harvard University as an undergraduate, and en-
countered a philosophical environment that was hostile to modal logic. He was

34Quoted from [de Jongh and van Ulsen, 1998–1999, pp. 290–291].
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advised to abandon the subject and concentrate on majoring in mathematics.
This caused the evident delay in publication of his work until the appearance of
the major articles of 1963 and 1965.

Looking back over the intervening decades we see the strong influence of Kripke’s
ideas on many areas of mathematical logic, ranging across the foundations of
constructive logic and set theory, substructural logics (including relevance logic,
linear logic), provability logic, the Kripke-Joyal semantics in topos theory and
numerous logics of transition systems in theoretical computer science.

A proposition is defined in [Kripke, 1963a] to be a function from worlds to truth
values, while in [1963b] an n-ary predicate letter is modelled as a function from
worlds to n-ary relations. Those definitions formed a cornerstone of Montague’s
approach to intensional logic,35 and stimulated the substantial development of for-
mal semantics for natural languages in the theories of Montague [1974], Cresswell
[1973], Barwise [1989] and others. Kripke’s models, and his intuitive descriptions of
them, also stimulated many philosophical and formal investigations of the nature
of possible worlds, and the questions of existence and identity that they generate
(see [Loux, 1979]).

5 THE POST-KRIPKEAN BOOM OF THE SIXTIES

The 1960’s was an extraordinary time for the introduction of new model theories.
At the beginning of the decade Abraham Robinson created nonstandard analy-
sis by constructing models of the higher-order theory of the real numbers. Then
Paul Cohen’s invention of forcing revolutionized the study of models of set the-
ory, and freed up the log-jam of questions that had been building since the time
of Cantor. Kripke related forcing to his models of Heyting’s predicate calculus,
and Dana Scott and Robert Solovay re-formulated it as the technique of Boolean-
valued models. Scott then replaced “Boolean-valued” by “Heyting-valued” and
extended the topological interpretation from intuitionistic predicate logic to in-
tuitionistic real analysis. F. William Lawvere’s search for categorical axioms for
set theory and the foundations of mathematics and his collaboration with Miles
Tierney on axiomatic sheaf theory culminated at the end of the decade in the
development of elementary topos theory. This encompassed, in various ways, both
classical and intuitionistic higher order logic and set theory, including the models
of Kripke, Cohen, Scott, and Solovay, as well as incorporating the sheaf theory of
the Grothendieck school of algebraic geometry. Scott’s construction of models for
the untyped lambda calculus in 1969 was to open up the discipline of denotational
semantics for programming languages, as well as stimulating new investigations in
lattice theory and topology, and further links with categorical and intuitionistic
logic.

The introduction of Kripke models had a revolutionary impact on modal logic
itself. Binary relations are much easier to visualise, construct, and manipulate than

35As acknowledged in several places, e.g. [Montague, 1970, fn. 5].
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operators on Boolean algebras. They fall into many naturally definable classes that
can be used to define corresponding logics. Here then were the tools that would
enable an exhaustive investigation of the subject, and some important new ideas
were developed during this period.

5.1 The Lemmon and Scott Collaboration

Pioneers in this investigation were John Lemmon and Dana Scott, who conducted
an extensive collaboration. They planned to write a book called Intensional Logic,
for which Lemmon had drafted some inital chapters when he died in 1966. Scott
then made this material available in a mimeographed form [Lemmon and Scott,
1966] which was circulated informally for a number of years, becoming known
as the “Lemmon Notes”. Eventually it was edited by Scott’s student Krister
Segerberg, and published as [Lemmon, 1977]. Scott also investigated broad is-
sues of intensional logic (individuals and concepts, possible worlds and indices,
intensional relations and operators etc.) in discussion with Montague, Kaplan and
others. Some of his ideas were presented in [Scott, 1970]. His considerable influ-
ence on the subject has been disseminated through the publications of Lemmon
and Segerberg, and is also reported in [Prior, 1967] in relation to tense logic, and
in a number of Montague’s papers.

The relationship between modal algebras and model structures was first sys-
tematically explored in Lemmon’s two part article [1966a; 1966b]. Here a model
structure has the form S = (K,R,Q), with Q playing the role of the set of non-
normal (“queer”) worlds.36 Notably absent is Kripke’s real world G ∈ K. Instead
a formula α is said to be valid in S if in all models on S, α is true (i.e. assigned
the value ⊤) at all points of K.

Associated with S is the modal algebra S+ comprising the powerset Boolean
algebra P(K) with the additive operator

f(X) = {x ∈ K : x ∈ Q or ∃y ∈ X(xRy)}

to interpret 3. Note that f(∅) = Q, so f is a normal operator iff K has only
normal members. Lemmon proved the result that a formula is valid in S iff it
is satisfied in the algebra S+ with just the element 1 (= K) designated. This
follows from the natural correspondence between models Φ on S and assignments
to propositional variables in S+, under which a variable p is assigned the set
{x : Φ(p, x) = ⊤} ∈ S+. The result itself is an elaboration of the construction in
[Kripke, 1963a] of the matrix of propositions associated with any model structure.
It remains true for S2-like systems if validity in S is confined to truth at normal
worlds, and also all elements of S+ that include K −Q are designated.

Any finite modal algebra A = (B, f) is readily shown to be isomorphic to one
of the form S+, with S based on the set of atoms of B. Combining that observa-
tion with McKinsey’s finite algebra constructions enabled Lemmon to deduce the

36At the time this work was done [Kripke, 1965b] had not appeared, but Lemmon had learned
about non-normal worlds in conversation with Kripke.
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completeness of a number of modal logics with respect to validity in their (finite)
model structures. For an arbitrary A he gave a representation theorem, “due in
essentials to Dana Scott”, that embeds A as a subalgebra of some S+. This was
done by an extension of Stone’s representation of Boolean algebras, basing S on
the set K of all ultrafilters of B, with uRt iff {fx : x ∈ t} ⊆ u for all ultrafilters
u, t, while Q = {x ∈ K : f0 ∈ x}. Each x ∈ A is represented in S+ by the set
{u ∈ K : x ∈ u} of ultrafilters containing x, as in Stone’s theory.

In the Lemmon Notes there is a model-theoretic analogue of this representation
of modal algebras that has played a pivotal role ever since. Out of any normal
logic Λ is constructed a model

MΛ = (KΛ, RΛ, ΦΛ)

in which KΛ is the set of all maximally Λ-consistent sets of formulas, with

uRΛt iff {3α : α ∈ t} ⊆ u iff {α : 2α ∈ u} ⊆ t,

and ΦΛ(p, u) = ⊤ iff p ∈ u. The key property of this construction is that an
arbitrary formula α is true in MΛ at u iff α ∈ u. This implies that MΛ is
a model of α, i.e. α is true at all points of MΛ, iff α is an Λ-theorem. Thus
MΛ is a single characteristic model for Λ, now commonly called the canonical
Λ-model. Moreover, the properties of this model are intimately connected with
the proof-theory of Λ. For example, if (2α→ α) is an Λ-theorem for all α, then it
follows directly from properties of maximally consistent sets that RΛ is reflexive.
This gives a technique for proving that various logics are characterised by suitable
conditions on models, a technique that is explored extensively in [Lemmon and
Scott, 1966].

If Scott’s representation of modal algebras is applied to the Lindenbaum algebra
of Λ, the result is a model structure isomorphic to (KΛ, RΛ). The construction
can also be viewed as an adaptation of the method of completeness proof in-
troduced in [Henkin, 1949], and first used for modal logic in [Bayart, 1958] (see
section 4.3). There were others who independently applied this approach to the
relational semantics for modal logic, including David Makinson [1966] and Max
Cresswell [1967], their work being completed in 1965 in both cases. Makinson dealt
with propositional systems, while Cresswell’s appears to be the first Henkin-style
construction of relational models of quantificational modal logic. David Kaplan
outlined a proof of this kind in his review [1966] of [Kripke, 1963a], explaining that
the idea of adapting Henkin’s technique to modal systems had been suggested to
him by Dana Scott.

Another construction of lasting importance from the Lemmon Notes is a tech-
nique for proving the finite model property by forming quotients of the modelML.
To calculate the truth-value of a formula α at points inMΛ we need only know the
truth-values of the finitely many subformulas of α. We can regard two members of
MΛ as equivalent if they assign the same truth-values to all subformulas of α. If
there are n such subformulas, then there will be at most 2n resulting equivalence
classes of elements ofMΛ, even thoughMΛ itself is uncountably large. Identifying
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equivalent elements allows MΛ to be collapsed to a finite quotient model which
will falsify α if MΛ does. This process, which has become known as filtration,37

was first developed in a more set-theoretic way in [Lemmon, 1966b, p. 209] as an
alternative to McKinsey’s finite algebra construction. In its model-theoretic form
it has proven important for completeness proofs as well as for proofs of the finite
model property. Some eighteen modal logics were shown to be decidable by this
method in [Lemmon and Scott, 1966].

5.2 Bull’s Tense Algebra

A singular contribution from the 1960’s is the algebraic study by Robert Bull, a
student of Arthur Prior,38 of logics characterised by linearly ordered structures.
Prior had observed that the Diodorean temporal reading of 2α as “α is and always
will be true” leads, on intuitive grounds, to a logic that includes S4 but not S5.
In his 1956 John Locke Lectures at Oxford on Time and Modality (published as
[Prior, 1957]) he attempted to give a mathematical precision to this reading by
interpreting formulas as sets of sequences of truth values. In effect he was dealing
with the complex closure algebra Cm(ω,≤), where ω = {0, 1, 2, . . .} is the set of
natural numbers viewed as a sequence of moments of time. The question became
one of identifying the logic that is characterised by this algebra, or equivalently
by the model structure (ω,≤). Prior called this logic D.39

In 1957 Lemmon observed that D includes the formula

2(2p→ 2q) ∨ 2(2q → 2p),

which arises from the intuitionistically invalid formula (p → q) ∨ (q → p) by
applying the translation of [McKinsey and Tarski, 1948]. Lemmon’s formula is
therefore not an S4-theorem, and when added as an axiom to S4 produces a system
called S4.3. In 1958 Michael Dummett showed that the formula

2(2(p→ 2p)→ 2p)→ (32p→ 2p)

also belongs to D, and then Prior [1962b] pointed out that this is due to the
discreteness of the ordering ≤ on ω: if time were a continuous ordering then
Dummett’s formula would not be valid, but Lemmon’s would. In fact the property
used by Prior to invalidate Dummett’s formula was density (between any two
moments there is a third) rather than continuity in the sense of Dedekind (no
“gaps”).

Kripke showed in 1963 that D is exactly the normal logic obtained by adding
Dummett’s formula as an axiom to S4.3. His proof, using semantic tableaux,

37This term was first used in [Segerberg, 1968a], where “canonical model” was also introduced.
38Initially at Christchurch, New Zealand, and then at Manchester, England. Bull was one of

two graduate students from New Zealand who studied with Prior at Manchester at the beginning
of the 1960’s. The other was Max Cresswell, who later became the supervisor of the present
author.

39The letter D later became a label for the system K+(2p → 3p), or equivalently K+3⊤,
because of its connection with Deontic logic.
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is unpublished. Dummett conjectured to Bull that taking time as “continuous”
would yield a characterisation of S4.3.40 Bull proved this in his paper [1965] which,
in addition to giving an algebraic proof of Kripke’s completeness theorem for D,
showed that S4.3 is characterised by the complex algebra of the ordering (R+,≤)
of the positive real numbers. He noted that R+ could be replaced here by the
positive rationals, or any linearly ordered set with a subset of order type ω2. In
particular this shows that propositional modal formulas are incapable of expressing
the distinction between dense and continuous time under the relational semantics.

Bull made effective use of Birkhoff’s fundamental decomposition [Birkhoff, 1944]

of an abstract algebra into a subdirect product of subdirectly irreducible alge-
bras. Birkhoff had observed that subdirectly irreducible closure algebras are well-
connected in the sense of [McKinsey and Tarski, 1944] (see section 3.2). Applying
this to Lindenbaum algebras shows that every normal extension of S4 is charac-
terised by well-connected closure algebras, and in the case of extensions of S4.3
the closed (Cx = x) elements of a well-connected algebra are linearly ordered.
Bull used this fact, together with the strategy of McKinsey’s finite algebra con-
struction, to build intricate embeddings of finite S4.3-algebras into Cm(R+,≤) or
Cm(ω,≤). He later refined this technique to establish in [Bull, 1966] one of the
more celebrated meta-theorems of modal logic:

every normal extension of S4.3 has the finite model property.

Proofs of this result using relational models were subsequently devised by Kit Fine
[1971] and H̊akan Franzén (see [Segerberg, 1973]). Fine gave a penetrating analysis
of finite S4.3 models to establish that there are exactly ℵ0 normal extension of
S4.3, all of which are finitely axiomatisable and hence decidable. Segerberg [1975]

proved that in fact every logic extending S4.3 is normal.

The indistinguishability of rational and real time is overcome by passing to the
more powerful language of Prior’s PF -calculus for tense logic (section 4.4). A
model structure for this language would in principle have the form (K,RP , RF ),
with RP and RF being binary relations on K interpreting the modalities P and
F . But for modelling tense logic, with its interaction principles p → GPp and
p→ HFp, the relations RP and RF should be mutually inverse. Thus we continue
to use structures (K,R) with the understanding that what we really intend is
(K,R−1, R). For linearly ordered structures, the ability of the two modalities
to capture properties “in each direction” of the ordering produces formulas that
express the Dedekind continuity of R, a fact that was first realised by Montague
and his student Nino Cocchiarella.41

Bull applied his algebraic methodology in the [1968] paper to give complete
axiomatisations of the tense logics characterised by each of the strictly linearly
ordered structures (Z, <), (Q, <) and (R, <). In addition to a common set of
axioms for linear orderings without first or last element, for integer time Z he used

40See [Prior, 1967, ch. II] as well as [Bull, 1965] for this historical background.
41See [Prior, 1967, pp. 57, 72].
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the special axiom
2(Gp→ p)→ 2Gp ∨ 2¬Gp,

where 2 is the S5-modality defined by 2α = α ∧ Gα ∧Hα. For rational time Q
this was replaced by the density axiom Fp → FFp. The axiomatisation of real
time required the density axiom as well as

2(Gp→ PGp)→ 2Gp ∨ 2¬Gp.

(The reader may find it instructive to verify that validity of this last formula in
any model on (R, <) depends on the fact that there are no unfilled Dedekind cuts
in the real line.) Bull also established that the tense logics of rational and real
time have the finite model property, but that the logic of integer time does not.42

This is not quite the end of the story about Diodorean modality. Prior made
an interesting observation in [Prior, 1967, p. 203] about the (non-linear) tempo-
ral ordering of locations in relativistic spacetime. In the Minkowskian spacetime
of special relativity theory, this ordering is directed : for any two locations x, y
there is a third that is in the future of both x and y. This is because any two
future light-cones eventually intersect (but not so in general relativity, where the
effect of gravitation can prevent light-cones overlapping). Directedness causes the
Diodorean interpretation of 2 to validate the formula 32p → 23p, which is it-
self equivalent in the field of S4 to the formula 2¬2p ∨ 232p that arises by the
McKinsey–Tarski translation of the intuitionistically invalid ¬p ∨ ¬¬p. Adding
32p → 23p to S4 gives the logic S4.2. Both S4.2 and S4.3 were introduced in
[Dummett and Lemmon, 1959], and shown to have the finite model property in
[Bull, 1964].

In [Goldblatt, 1980] a completeness proof is given to show that S4.2 is exactly
the Diodorean logic of n-dimensional Minkowski spacetime for all n ≥ 2, as well
as being the logic of the product structure (R,≤)× (R,≤).43 But the problem of
axiomatising the PF -calculi characterised by these spacetimes remains open.

5.3 Segerberg’s Essay

Krister Segerberg’s dissertation, An Essay in Classical Modal Logic [1971], pro-
vided a comprehensive semantic analysis of whole families of modal logics, as well
as developing important new concepts, some of which had been announced in his
papers of [1968a] and [1970]. These works established some notational and ter-
minological conventions that have been lasting. For instance the term frame44

was used in place of model structure, and the Lemmon–Scott satisfaction notation
|=M

x α was used throughout in place of Kripke’s Φ(α, x) = ⊤, whereM = (S, Φ).
Later authors have tended to reduce the use of superscripts and write M |=x α
instead of |=M

x α. M |= α then means that α is true in M, i.e. true at all points
ofM, and S |= α means that α is valid in the frame S.

42An error in the proof for rational time is corrected in [Bull, 1969].
43The latter result was obtained independently by V. B. Shehtman [1983].
44This term was suggested to Segerberg by Scott.
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The weakest system discussed in the Essay is E, the smallest logic that is closed
under the rule from α↔ β infer 2α↔ 2β. An algebraic semantics for this logic
would employ algebras A = (B, f) having f as a unary function on B satisfying no
particular conditions. The corresponding “relational” models use neighbourhood
semantics, the idea of which is attributed to Montague [1968] and Scott [1970].
Segerberg presents this by the device of a neighbourhood frame S = (K,N), where
N , the neighbourhood system, is a function assigning to each x ∈ K a collection
Nx of subsets of K, called neighbourhoods of x.45 Writing M(α) for the “truth
set” {y ∈ K : M |=y α} interpreting α in M, the satisfaction clause for 2 in a
model M on such a frame S is

M |=x 2α iff M(α) ∈ Nx.

A topology on K has a naturally associated neighbourhood system in which X ∈
Nx iff x is interior to X , i.e. x ∈ U ⊆ X for some open set U . In this case
M(2α) is the topological interior of M(α), and the result is an S4-model. But
different logics can be characterised by validity in frames with weaker conditions
imposed on their neighbourhoods. A relational frame (K,R) is equivalent to the
neighbourhood frame (K,N) having U ∈ Nx iff {y : xRy} ⊆ U .

Any neighbourhood frame (K,N) has an associated algebra (P(K), fN), where
the operation fN , interpreting 2 on the powerset algebra P(K), is given by

fN(X) = {x ∈ K : X ∈ Nx}.

Inversely, any function f : P(K)→ P(K) induces the neighbourhood system Nf

on K, where
X ∈ Nf

x iff x ∈ f(X).

Thus, whereas Jónsson and Tarski’s analysis shows that relational semantics cor-
responds to completely additive and normal operators on powerset algebras (see
section 3.3), neighbourhood systems can be used to represent arbitrary operations
on such algebras. The relationship between neighbourhood frames and modal
algebras has been systematically investigated by Kosta Došen [1989].

Filtration (see section 5.1) was used extensively by Segerberg to prove com-
pleteness theorems. This technique can be effective in dealing with logics whose
canonical model does not satisfy some desired property, and comes into its own
when seeking to axiomatise logics defined by some condition on finite frames. For
example, Segerberg showed [1971, p. 68] that the normal logic K4W,46 with axioms

4 : 2p→ 22p

W : 2(2p→ p)→ 2p,

is characterised by the class of finite frames (K,R) in which R is transitive and
irreflexive, i.e. a strict ordering. (This logic later proved important in studies of

45Some authors use a relation R ⊆ K × P(K) in place of N , where xRU iff U ∈ Nx.
46K4W could be called KW, since the axiom 4: 2p → 22p is deducible from W, as was shown

independently by several people, including de Jongh, Kripke and Sambin.
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the provability interpretation of modality. See section 7.5.) The basic method was
to obtain a falsifying model for a given non-theorem by filtration of the canonical
model, and then to “deform” this into a model of the desired kind without affecting
the truth value of the formula concerned. This involved an analysis of the way
a transitive relations presents itself as an ordered set of connected components,
called clusters. The method was applied in the Essay and the [1970] paper to
axiomatise a whole range of logics, including those characterised by the classes of
finite partial orderings, finite linear orderings (both irreflexive and reflexive), and
the modal and tense logics of the structures (K,R) where K is any of ω, Z, Q,
and R, while R is any of <, >, ≤, and ≥.

The logic characterised by the class of all finite partial orderings is particularly
significant. Segerberg proved [1971, p. 101] that it is S4Grz, the normal logic
axiomatised by adding to S4 the axiom

Grz : 2(2(p→ 2p)→ p)→ p.

He named this for Andrzej Grzegorczyk whose paper [1967] added a further insight
to the relationship between intuitionistic and modal logic. Grzegorczyk showed
that the formula

[((p 32q) 32q) ∧ ((¬p 32q) 3 2q)] 32q

is not a theorem of S4 (nor indeed of S5), and when added to S4 gives a system
into which the intuitionistic logic IPC can be translated by the Gödel–McKinsey–
Tarski procedures. The translation of a propositional formula is an S4-theorem iff
it is a theorem of Grzegorczyk’s stronger logic, which is deductively equivalent to
S4Grz.

Segerberg initiated the use of truth-preserving maps between relational models
and frames in [1968a]. Given models M and M′ on frames S = (K,R) and
S′ = (K ′, R′) respectively, a function ϕ from K onto K ′ was called a pseudo-
epimorphism fromM toM′ if

(i) xRy implies ϕ(x)R′ϕ(y),

(ii) ϕ(x)R′ϕ(y) implies ∃z ∈ K(xRz & ϕ(z) = ϕ(y)), and

(iii) M |=x p iffM′ |=ϕ(x) p.

For such a function every formula α has M |=x α iff M′ |=ϕ(x) α, so if M is a
model of α, then M′ will be also. From this it can be shown that if α is valid in
S, then the existence of a function from K onto K ′ satisfying (i) and (ii) implies
that α is valid in S′ as well.47

The name “pseudo-epimorphism” was shortened to “p-morphism” by Segerberg
in [1970; 1971] and this uninformative term has been very widely adopted, even
for functions that are not surjective but, in place of (ii), satisfy

47A surjection between partial orderings that satisfies (i) and (ii) was defined to be strongly
isotone in [de Jongh and Troelstra, 1966], where the notion was used to demonstrate connections
between partial orderings and certain algebraic models for intuitionistic propositional logic.
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(ii′) ϕ(x)R′w implies ∃z ∈ K(xRz & ϕ(z) = w).

The notion was generalised by Johan van Benthem [1976a] to that of a “p-relation”
between models, which is itself intimately related to the concept of a bisimulation
relation that has been fundamental to the study of computational processes (see
section 7.2).

There is another explanation of why functions of this type are natural and
important in the modal context. Any function ϕ : K → K ′ induces the function
ϕ+ : P(K ′) → P(K) in the reverse direction, taking each subset X of K ′ to its
inverse image {x ∈ K : ϕ(x) ∈ X}. This ϕ+ is a Boolean algebra homomorphism.
The conditions (i) and (ii’) are precisely what is required for it to preserve the
operators fR and fR′ , and hence be a homomorphism between the modal algebras
Cm(K ′, R′) and Cm(K,R). If ϕ is surjective, then ϕ+ is injective and so makes
CmS′ isomorphic to a subalgebra of CmS. Hence all modal-algebraic equations
satisfied by CmS will be satisfied by CmS′. But a propositional modal formula
α can be viewed as a term in the language of the algebra CmS, with α being
valid in the frame S precisely when the algebraic equation “α ≈ 1” is satisfied by
CmS. This gives another perspective on why validity is preserved by surjective
p-morphisms.

Of equal importance is the validity-preserving notion of subframe. This orig-
inated in Kripke’s definition in [1963a] of a model structure (G,K,R) as being
connected when K = {H : GR∗H}, where R∗ is the reflexive-transitive closure
of R. Lemmon adapted this in his [1966b] to the notion of the connected model
structure Sx generated from S by an element x, which is the substructure of S

based on {y : xR∗y}. He observed that a formula falsified by CmS must be falsi-
fied by CmSx for some x. Segerberg showed in [1971, p. 36] that a model M on
S can be restricted to a model Mx on Sx (the submodel of M generated by x)
in such a way that in generalMx |=y α iffM |=y α. From this it follows that any
formula valid in S will be valid in Sx, and conversely a formula valid in Sx for all
x in S will be valid in S itself (as essentially observed by Lemmon). This notion
of point-generated substructure turned out to be the relational analogue of the
notion of subdirectly irreducible algebra. Indeed the algebra CmS is subdirectly
irreducible iff S is equal to Sx for some x, a fact that was first demonstrated by
Wim Blok [1978b, p. 12], [1980, Lemma 4.1].

A frame S is a subframe of frame S′ if it is a substructure of S′ that is closed
under R′, i.e. if x ∈ K, then {y ∈ K ′ : xR′y} ⊆ K (some authors call this
a “generated” subframe even though there is no longer any generator involved).
Then the inclusion function ϕ : K →֒ K ′ is a p-morphism inducing ϕ+ as a
surjective homomorphism from CmS′ to CmS. Since equations are preserved by
surjective homomorphisms, modal-validity is preserved in passing from S′ to the
subframe S.

The disjoint union
∐

J Sj of a collection {Sj : j ∈ J} of frames also preserves
validity. The construction was first applied to modal model theory in [Goldblatt,
1974] and [Fine, 1975b].

∐

J Sj is simply the union of a collection of pairwise
disjoint copies of the Sj’s. Each Sj is isomorphic to a subframe of

∐

J Sj, and
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so the above properties of subframes guarantee that a formula is valid in
∐

J Sj

iff it is valid in every Sj .

These observations about morphisms, subframes and disjoint unions form the
basis of a theory of duality between frames and modal algebras that is discussed
in section 6.5.

6 METATHEORY OF THE SEVENTIES AND BEYOND

The semantic analysis of particular logics eventually gave way to investigations of
the nature of the relational semantics itself: the strengths and limitations of its
techniques, and its relationship to other formalisms, particularly first-order and
monadic second-order predicate logic. Some of the questions raised have yet to be
answered.

Throughout chapter 6 the term “logic” will always mean a normal logic.

6.1 Incompleteness

A logic Λ is sound with respect to a class C of frames if every member of C is a
Λ-frame, i.e. validates all Λ-theorems. By definition Λ is sound with respect to the
class Fr(Λ) of all Λ-frames. In the converse direction, Λ is complete with respect
to C if any formula that is valid in all members of C is a Λ-theorem. For example,
every normal logic is complete with respect to C = {SΛ}, where SΛ = (KΛ, RΛ)
is the canonical frame of Λ as defined in section 5.1. For if a formula is valid in
SΛ, then it is true in the canonical model MΛ on SΛ, and so is a Λ-theorem.
Whether or not Λ is sound with respect to SΛ is an important issue that will be
discussed in section 6.6.

A logic Λ is characterised by a class C if it is both sound and complete with
respect to C. Λ is complete per se if it is complete with respect to some class C of
Λ-frames, in which case it is characterised by that C, as well as by the class Fr(Λ)
of all Λ-frames. It is important to recognise that a given logic may be characterised
by many different classes. For example, S4 is characterised by each of the class of
all quasi-orderings, the class of finite quasi-orderings, and the class of all partial-
orderings (but not the finite partial-orderings, which characterise S4Grz as we saw
in section 5.3).

Lemmon was sufficiently taken with the power of Kripke semantics to conjecture
that every normal logic is characterised by some class of relational frames [Lem-
mon, 1977, p. 74]. It turned out that this was as far from the truth as it could
be. Wim Blok showed that, in a manner which will be explained below, “most”
logics Λ are not characterised by any class of frames, and hence are incomplete
in the sense that there exist formulas that are valid in all Λ-frames but are not
Λ-theorems.

The first example of an incomplete logic was devised by Steven Thomason
[1972b], and is a readily described tense logic in Prior’s PF -language. In addition
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to a set of postulates for linearly-ordered frames it has the axioms

Gp→ Fp

Pp→ P (p ∧ ¬Pp)

GFp→ FGp.

The first of these is valid in a frame (K,R) only if the “endless time” condition
∀x∃y(xRy) is satisfied. The second axiom is equivalent to H(Hp → p) → Hp,
which is Segerberg’s axiom W for the past modality H . Its validity entails that
R is irreflexive. Thus if x0 is a point in any frame validating the first two axioms,
{y : x0Ry} is an irreflexive linear ordering with no last element. Interpreting p
as a set such that both it and its complement are unbounded in {y : x0Ry} then
gives a model on the frame that falsifies the third axiom at x0. In this model the
truth-value of p alternates forever over time.

Thus Thomason’s logic is not valid on any frame whatsoever! In other words it
is indistinguishable in terms of frame-validity from the inconsistent logic in which
all formulas are theorems. But it is not itself inconsistent, because it is satisfied
by the algebra which consists of all the finite and cofinite subsets of the structure
(ω,<). In this algebra the interpretation of each formula is constrained to cease
changing with time.

It proved more difficult to devise incomplete 2-logics, i.e. propositional logics
in a language with just one modality 2. Unlike tense logic, any consistent normal
2-logic is validated by some frame, and in fact by some one-element frame. There
are two such structures: S◦ is the one consisting of a single reflexive point, while
S• consists of a single irreflexive point. S◦ characterises the normal logic Λ◦ =
K + (2p ↔ p) and S• characterises Λ• = K + 2⊥, both of which are maximal
logics in the sense of having no proper consistent extensions. Makinson [1971]

proved that every consistent normal 2-logic is either valid in S◦ or valid in S•

and so is a sublogic of one of Λ◦ and Λ•.
The first incomplete 2-logics were found by Thomason [1974a] and Kit Fine

[1974], who independently constructed some rather complicated examples. Later
van Benthem [1978; 1979] found some simpler ones. The simplest unearthed to
date is the normal logic with axiom

2(2p↔ p)→ 2p.

Lon Berk showed that any frame validating this formula also validates Segerberg’s
axiom W, while Roberto Magari showed that W is not a theorem of the logic.
Proofs of these results are presented in [Boolos and Sambin, 1985].

The degree of incompleteness of a logic Λ was defined by Fine [1974] as the
number of logics that are valid in exactly the same frames that Λ is. For any
class C, the set ΛC = {α : C |= α} of all formulas validated by C is, by definition,
characterised by C. If some other logic Λ is valid in all members of C and no
other frames, then Λ must be a proper sublogic of ΛC , with both having degree
of incompleteness ≥ 2. The logic K has degree 1: it is the only logic valid in all
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frames whatsoever. Any Λ that has degree 1 must be complete, since it must be
equal to ΛC where C is the class of all Λ-frames. Fine asked which cardinals can
occur as the degree of incompleteness of some logic, and whether there are any
logics other than K that are “intrinsically complete” in the sense of having degree
1.

Those questions were resolved in a remarkable way by Blok, who proved that
any logic Λ containing the axiom 2p→ p must have degree of incompleteness 2ℵ0 ,
so that there are uncountably many different logics which are indistinguishable
from Λ by the Kripke relational semantics. The same applies whenever Λ contains
the axiom 2

np ↔ 2
n+1p for some natural number n. As just one illustration of

this situation, consider the case of Λ◦ itself. The only connected Λ◦-frame is the
one-element reflexive frame S◦ (and any other Λ◦-frame is just a disjoint union of
copies of S◦). But there are uncountably many other (incomplete) logics whose
only connected validating frame is also S◦.

These results were obtained in 1979–1977, and published in [Blok, 1980]. The
report [Blok, 1978b] then gave the following complete answer to Fine’s two ques-
tions: every normal logic is either of degree 1 or of degree 2ℵ0 , and there are 2ℵ0

logics of degree 1. The degree 1 logics all have the finite model property. More-
over Blok provided a semantic characterisation of these degree 1 logics, using the
notion of a splitting logic. This is a logic Λs for which there is some other logic
Λ′

s such that every logic Λ has either Λs ⊆ Λ or Λ ⊆ Λ′
s, but not both. Thus the

collection of all normal logics is split into the two disjoint collections {Λ : Λs ⊆ Λ}
and {Λ : Λ ⊆ Λ′

s}. A simple example is given by putting Λs = K + 3⊤ and
Λ′

s = Λ• = K + 2⊥. If Λ * Λ•, then by the maximality of Λ•, 2⊥ cannot be con-
sistently added to Λ, hence its negation 3⊤ is a Λ-theorem, showing K+3⊤ ⊆ Λ.

Let Λ/S be the intersection of all logics that are not validated by frame S.
Then a logic is a splitting logic iff it is equal to the logic Λ/S for some finite
frame S that is generated from a point and has S |= 2

n⊥ for some n. The last
condition holds for a finite S iff S is circuit-free, i.e. it includes no sequence of
the form x1Rx2 · · ·RxkRx1 for any k. If Λs = Λ/S is a splitting logic, then the
corresponding Λ′

s is the logic {α : S |= α} characterised by S.

Every splitting logic is of degree 1, and is finitely axiomatisable. A logic Λ is
of degree 1 if and only if it is a join of splitting logics, i.e. is equal to the least
logic that includes the splitting logics Λ/S for all S in some collection C of finite
generated circuit-free frames. This is the same as requiring that Λ be the least
logic not validated by any member of C.

Blok used algebraic methods, studying varieties, or equationally defined classes,
of modal algebras rather than normal logics directly. He applied some powerful
new techniques, including the splitting notion that had been developed in lattice
theory by Ralph McKenzie [1972], and an important lemma of Jónsson [1967]

characterising subdirectly irreducible algebras in congruence distributive varieties.

Blok’s resolution of the issue of incompleteness for Kripke semantics was an-
nounced in his abstract [1978a], but his report [Blok, 1978b] giving the detailed
proofs was not published. Model-theoretic accounts of the results may be found
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in [Chagrov and Zakharyaschev, 1997, ch. 10] and [Kracht, 1999, ch. 7].
The issue of the adequacy of neighbourhood semantics (see section 5.3) was

investigated in a series of papers by Martin Gerson [1975a; 1975b; 1976], who
showed that the two logics of [Thomason, 1974a] and [Fine, 1974], which are
not characterised by their relational frames, are also incomplete with respect to
their neighbourhood frames. He then gave examples of normal logics that are
complete under the neighbourhood semantics but not complete for any class of
relational frames. These possibilities can also be revealingly expressed in terms
of algebraic semantics, beginning with the observation that complete and atomic
Boolean algebras are, up to isomorphism, the same thing as powerset algebras.
As we observed in section 5.3, relational frames correspond to completely additive
and normal operators on powerset algebras, while neighbourhood frames represent
arbitrary operations on such algebras. Thus a logic that is incomplete for the
relational semantics is one that is not characterised by those of its complete and
atomic algebras whose operators are completely additive and normal; while a logic
that is incomplete for the neighbourhood semantics is one that is not characterised
by complete and atomic algebras at all.

6.2 Decidability and Complexity

The finite model property does not give a universal method for proving the decid-
ability of modal logics. Although every finitely axiomatisable logic with the finite
model property is decidable, the converse is not true. This was shown by Dov
Gabbay, building on some earlier work of Makinson [1969] which had exhibited
the first example of a normal logic that lacked the finite model property. Makin-
son’s example is a proper sublogic of S4, but all of its finite algebras satisfy S4 as
well.

Gabbay’s paper [1972] extended Makinson’s idea to produce finitely axiomatis-
able modal and tense logics that lacked the finite model property, but could still be
shown to be decidable by appealing to a powerful result of Michael Rabin [1969].
This concerns the decidability of monadic second-order theories of successor func-
tions, and has many applications. For each ordinal n with 2 ≤ n ≤ ω, consider
the structure

Sn = (Tn, {sm : m < n}, ≤ , 4 ),

where Tn is the n-ary branching tree of all finite sequences of elements of the set
[n) = {m ∈ ω : m < n}, sm is the successor function x 7→ xm on the tree, ≤ is
the “initial segment” ordering of sequences, and 4 is their lexicographical ordering
induced by the natural ordering < on [n). Rabin proved that the monadic second-
order theory SnS of the structure Sn is decidable. To do this he developed a
theory of finite-state automata that process infinite labelled trees, and established
the decidability of the emptiness problem of whether any given automaton accepts
at least one tree. The decidability of SnS was then reduced to this emptyness
problem. It was later shown that the decision problem for SnS is intractable:
Albert Meyer [1975] proved that no algorithm for deciding if a sentence is in
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SnS can run in elementary time, i.e. time bounded by some fixed number of
compositions of exponential functions.

Gabbay developed a method of coding Kripke models into the structure Sω and
thereby reducing the decidability problem for certain logics to Rabin’s decidability
results for SωS. The technique is explained in Part 5 of the book [Gabbay, 1976],
where it is used to establish decidability results for many modal systems.

Gabbay’s method was later used by Cresswell [1984] in adapting an incomplete
logic from [van Benthem, 1979] to construct a decidable modal logic that is finitely
axiomatisable but incomplete with respect to Kripke frames (and hence lacks the
finite model property). Cresswell’s example is a proper sublogic of the logic charac-
terised by the class of finite strict linear orderings, but the two logics are validated
by exactly the same frames.

For any logic Λ, the problem of deciding if a given formula is Λ-provable is the
same as the Λ-validity problem of deciding if a given formula is true in all models
M such that M |= Λ. The Λ-satisfiability problem of whether a given formula is
true at some point of some Λ-model is equivalent to the validity problem in the
sense that α is Λ-satisfiable iff its negation ¬α is not Λ-valid. Thus a deterministic
algorithm that solved the validity problem could be used to solve the satisfiability
problem, and vice versa. But if nondeterministic algorithms are considered, the
two problems may differ as to their computational complexity. The classic example
of this concerns the set of non-modal propositional formulas. Satisfiability of any
of these can be tested in nondeterministic polynomial time. But the same is not
known for validity: to test the validity of a formula with n variables appears to
require examination of all 2n truth-value assignments to these variables.

To discuss this further, recall that NPTIME, or more briefly NP, is (informally)
the class of all problems that are solvable by a nondeterministic algorithm whose
running time for any execution is bounded above by some polynomial function of
the length of the input. Co-NP is the class of problems whose complement is in
NP. The Λ-satisfiability problem is in NP iff the Λ-validity problem is in co-NP.
The satisfiability of non-modal formulas is NP-hard, meaning that any problem
in NP has a polynomial-time reduction to this problem [Cook, 1971]. The Λ-
satisfiability problem for any consistent modal logic Λ is therefore also NP-hard.
Since non-modal satisfiability itself belongs to NP, it is said to be an NP-complete
problem.

PSPACE is the class of problems solvable by a deterministic algorithm using
an amount of space that is polynomially bounded by the length of the input.
PSPACE includes NPTIME and is closed under complementation. It is also known
that any nondeterministic polynomially space-bounded algorithm is equivalent to
a deterministic one [Savitch, 1970]. Thus

NP ⊆ PSPACE = co-PSPACE = NPSPACE.

It is not known if the stated inclusion is proper, but it is widely believed that
PSPACE-complete problems are not in NP.
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Richard Ladner [1977] applied these concepts to determine computational com-
plexities of some of the basic normal modal logics. He showed that the satisfiability
problem for each of the logics K, T, and S4 is in PSPACE, by optimising the space
requirements of the decision procedures from [Kripke, 1963a]. Hence the prov-
ability problems for these logics is in PSPACE as well. He proved further that
any problem in PSPACE has a polynomial time reduction48 to the provability
problem of any normal sublogic of S4. Thus provability for any of these logics is
PSPACE-hard, and for K, T, and S4 it is PSPACE-complete. The method used
was to reduce to Λ-provability a known PSPACE-complete problem, namely the
validity of quantified non-modal propositional formulas.

The logic S5 is more tractable than the sublogics of S4. Ladner showed that
S5-satisfiability is in NP, and therefore is NP-complete. The key to this result
is that S5 has the poly-size model property: poly-size model property any non-
theorem is falsifiable in a model whose size is a polynomial in the size of the
formula. Edith Spaan [1993] extended this to prove that every one of the (ℵ0

many) extensions of the logic S4.3 has the poly-size model property and has an
NP-complete satisfiability problem. On the other hand Joseph Halpern and Yoram
Moses [1985; 1992] showed that satisfiability for any logic having at least two S5-
modalities is PSPACE-hard.

As to undecidability, there must be undecidable logics because there are un-
countably many logics altogether but only countably many algorithms. In [Thoma-
son, 1975d] an undecidable modal logic is exhibited that is finitely axiomatisable,
and so cannot have the finite model property. This was produced by encoding a
presentation of a recursive function with undecidable range into a model of a logic
with a large number of temporal modalities, and then reducing this to a logic with
one modality by methods that are described below in section 6.4.

The question of how undecidable a logic can be was answered by Alasdair
Urquhart [1981] who showed that for any set X of natural numbers there ex-
ists a normal modal logic ΛX such that the decision problem for X is reducible to
that of ΛX . Urquhart used this to construct a logic with the finite model property
that has a decidable set of axioms but is undecidable. Spaan [1993] showed that
there are (uncountably many) undecidable logics that have the poly-size model
property.

Undecidability of quantificational modal logic was considered by Kripke [1962]

in an early application of his model theory from [1959a]. Whereas the first-order
calculus of monadic predicates is decidable, the modal monadic calculus turns
out to be undecidable. Kripke showed that the decision problem for provability
of non-modal first-order formulas in a binary predicate R, which is known to be
undecidable, is reducible to that of modal formulas in two monadic predicates
P and Q, by replacing R(x, y) by 3(P (x) ∧ Q(y)). This applies to any modal

48Actually he showed that these reductions are in “log-space”: they have a space requirement
bounded by a logarithmic function of the length of the input. This implies a polynomial time-
bound. Ladner originally proved the reduction result for T and for S4, and subsequently used
an argument of S. K. Thomason to extend it to all normal sublogics of S4.
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system which is a sublogic of the quantificational version of S5 of [Kripke, 1959a]

and which obeys certain general rules satisfied by all then known systems and
“probably by the vast majority of those that will be proposed in the future”.

6.3 First-Order Definability

Validity of a modal formula α in a relational frame S = (K,R) is an intrinsically
second-order concept. α is valid when true at all points in all models on S. Since a
model interprets each propositional variable p in α as a subset of K, this amounts
to treating p as a set variable, or a monadic predicate variable. Meredith’s U -
calculus associates with α a formula (α)x in the first-order language of S, with x
as its sole free individual variable. If the propositional variables of α are p1, . . . , pk,
then regarding these as set variables we have that α is valid in S iff S is a model
of the sentence

∀p1 · · · ∀pk∀x (α)x

of the monadic second-order language of a binary predicate, i.e. the second-order
language in which all the second-order variables are monadic. This is a simple
kind of second-order sentence, technically known as Π1

1, with all its second-order
quantifiers being universal and at the front.

Some modal formulas express properties that are well-recognised as being second-
order in nature. For example, Segerberg’s axiom W is valid in S iff R−1 is tran-
sitive and well-founded (see [Boolos, 1979, p. 82]). However, a substantial reason
for the great success of the relational semantics is that many logics were shown to
be to be characterised by frames satisfying simple first-order conditions on R, like
reflexivity, transitivity, linearity etc. To consider this phenomenon, recall that a
class of relational frames is called elementary if it is definable in first-order logic,
i.e. if it is the class of all models of some set of sentences in the first-order language
of a binary predicate R. A basic elementary class is one that is defined by a single
first-order sentence.49 A modal logic is (basic) elementary if it is characterised by
some (basic) elementary class of frames.

The Lemmon Notes provided many examples of basic elementary logics, and
formulated a conjecture about the situation, which will now be briefly described.
First we say that a modal formula is positive if it can be built from propositional
variables using only the connectives ∧, ∨, 3, and 2. If β is any positive formula
with variables p1, . . . , pk and m = (m1, . . . ,mk) and n = (n1, . . . , nk) are any
k-tuples of natural numbers, consider the formula

βm
n : 3

m12
n1p1 ∧ · · · ∧3

mk2
nkpk → β.

Associated with βm
n is a certain first-order condition Rβm

n on binary relations,
which can be read off from the formation of βm

n itself. The conjecture was that
the normal logic axiomatised by adding βm

n to K is characterised by the basic

49Some authors use “∆-elementary” in place of “elementary”, and “elementary” in place of
“basic elementary”.
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elementary class of frames satisfying Rβm
n (see [Lemmon, 1977, p. 78]). This

was confirmed independently by the present author and Henrik Sahlqvist in 1973
[Goldblatt, 1974; Goldblatt, 1975b; Sahlqvist, 1975], but Sahlqvist generalised the
result considerably to consider any formula of the type 2

n(α→ β) where n ≥ 0, β
is positive, and α is constructed from propositional variables and/or their negations
using only the connectives ∧, ∨, 3, 2 in such a way that no positive occurrence
of a variable is in a subformula that has ∧, ∨, or 3 within the scope of a 2. He
proved that the class of frames validating such a formula is definable by an explicit
first-order sentence, and that this basic elementary class characterises the normal
logic axiomatised by adding the formula to K. The result has been extensively
analysed and extended to “polymodal” logics and to equational classes of BAO’s in
general: see [Sambin and Vaccaro, 1989; Jónsson, 1994; de Rijke and Venema, 1995;
Givant and Venema, 1999].

The simplest formula not covered by Sahlqvist’s scheme is

M : 23p→ 32p,

commonly known as the McKinsey axiom.50 This is the 2-version of the formula
GFp → FGp that figures as an axiom in Thomason’s incomplete tense logic. In
the Lemmon Notes a proof was given that the normal logic S4+M is characterised
by the elementary class of all quasi-ordered frames satisfying the condition

∀x∃y(xRy ∧ ∀z(yRz → y = z)).

Segerberg [1968a] then showed that this logic has the finite model property and is
characterised by the finite quasi-orders satisfying this condition. But the status of
the logic K+M remained unresolved.

It turned out that the class of all frames validating the McKinsey axiom is
not elementary, let alone basic elementary. This was proved in [Goldblatt, 1974,
§17], which showed further that no elementary class can characterise the logic
K+M, and indeed any class that does characterise this logic must fail to be closed
under ultraproducts. Van Benthem [1975] gave a Löwenheim-Skolem argument to
show that the class of all frames validating M is not even closed under elementary
equivalence.51 On the other hand Fine [1975a] proved that the logic K+M is in
some respects quite well-behaved: it has the finite model property, so is decidable
and is characterised by its (finite) validating frames.

From such examples the question naturally arises of when the collection Fr(α) =
{S : S |= α} of all frames validating the formula α is an elementary class. To
answer this, note first that the complement of Fr(α) is always closed under ul-
traproducts. That can be shown directly, or by observing that the complement of
Fr(α) is defined by an existential second-order sentence

50This is something of a misnomer. The system S4+23p∧23q 3 3(p∧q) was investigated by
McKinsey [1945], who called it S4.1. Sobociński [1964] showed that it is the same as S4+(23p →

32p), and renamed it K1, since it is not a subsystem of S4.2.
51Two structures are elementarily equivalent when they satisfy the same first-order sentences.
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∃p1 · · · ∃pk∃x¬(α)x

of the kind (Σ1
1) that is always preserved by ultraproducts.52 From this it follows by

the Keisler-Shelah characterisation of elementary classes53 that Fr(α) is elemen-
tary iff it is basic elementary iff it is closed under ultraproducts [Goldblatt, 1974;
Goldblatt, 1975a]. But then van Benthem discovered a striking strengthening of
the result:

Fr(α) is basic elementary iff it is closed under elementary equivalence.

This means that any class of the form Fr(α) is quite special: if it is closed under
ultrapowers then it must be closed under ultraproducts. VanBenthem’s proof
was an interesting model-theoretic compactness argument,54 but in his published
version [van Benthem, 1976b] he used instead a subsequent argument of the present
author, namely that there is an injective p-morphism

(
∏

JSj) /F −→ (
∐

JSj)
J
/F

of any ultraproduct of frames Sj into the associated ultrapower of their disjoint
union

∐

J Sj , and this maps the ultraproduct isomorphically onto a subframe of
the ultrapower. Since Fr(α) is invariably closed under disjoint unions, subframes
and isomorphism, the desired result follows immediately from this embedding. But
the argument also works for the class Fr(Λ) of all frames validating a set Λ of
formulas, to show that

Fr(Λ) is elementary iff it is closed under elementary equivalence.

The study of the definability of modal formulas in predicate logic was dubbed
Correspondence Theory by van Benthem [1976a], who gave further expositions of
this theory in his works of [1983] and [1984].

6.4 Thomason’s Second-Order Reduction

A deep investigation of the expressive power of modal semantics was made by
Thomason in a series of papers [1974b; 1975b; 1975c; 1975d] reporting work, car-
ried out in 1973, that constitutes a tour de force of model-theoretical analysis in
combination with coding techniques of the kind used in recursion theory. This
confirmed his belief, expressed earlier in [1972a], that

propositional modal logic (with the usual relational semantics) must
be understood as a rather strong fragment of (classical) second-order
predicate logic.

52[Chang and Keisler, 1973, Corollary 4.1.14].
53[Chang and Keisler, 1973, Corollary 6.1.16].
54A discussion of van Benthem’s original proof is presented in [Goldblatt, 1999].
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A “logic” is taken to consist of a symbolic language together with a semantic
interpretation specifying when a formula is valid in a structure. M is the logic
given by the language of propositional modal logic with the semantics based on
frames (K,R) as structures, while T is the propositional tense logic of Prior’s PF -
language with structures (K,R−1, R). Each logic determines a logical consequence
relation Γ |= α between sets of formulas Γ and formulas α, meaning that α is
valid in every structure in which all members of Γ are valid. Thomason proved
in [1972a] that the Compactness Theorem fails in M for this relation: there is a
case of an α which is a logical consequence of some set Γ but not of any finite
subset of Γ . In the paper [1975b] he showed that there is a T-formula γ whose
set {α : γ |= α} of logical consequences is not effectively enumerable, and has a
high degree of undecidability—technically what is known as a complete Π1

1 set.
Moreover γ is categorical in the sense that all its connected validating structures
are isomorphic. In addition, for 0 ≤ m < ω + ω there is a categorical formula
γm whose unique validating structure has size im, where i0 = ℵ0, im+1 = 2im ,
and iω = lim{im : m < ω}. The formula γ describes a structure which encodes
presentations of certain recursive functions that define a complete Π1

1 set. The
formulas γm describe structures that encode copies of the iterated powersets ω,
P(ω), P(P(ω)),. . . . The proofs of these facts are reminiscent of the arithmetisation
procedures and expressibility results involved in Gödel’s incompleteness theorems,
and graphically illustrate the expressive power of T. The facts themselves are
quite contrary to the situation in first-order logic, where the logical consequences
of a given sentence are effectively enumerable, and no sentence with an infinite
model is categorical.

A logic L1 is said to be reducible to a logic L2 if there exists an L2-formula
δ and an effective transformation ψ of L1-formulas to L2-formulas such that for
every collection Γ ∪ {α} of L1-formulas,

Γ |= α iff {δ} ∪ {ψ(γ) : γ ∈ Γ} |= ψ(α).

This definition captures the idea that L1 can be regarded as a fragment of the logic
L2, and is motivated by a notion of interpretation of one first-order theory in an-
other that appears in [Shoenfield, 1967]. Here δ may be thought of as describing a
certain structure, with ψ(γ) asserting that γ is valid in that structure. In [Thoma-
son, 1974b] it is shown that tense logic T is reducible to modal logic M. The
formula δ used for this has the property that for any T-structure S = (K,R−1, R)
there is an M-structure S′ that contains within it definable copies of (K,R) and
(K,R−1) in such a way that “P” statements about S can be interpreted as “3”
statements about S′. Applying this reduction to the results about T from [1975b],
Thomason concludes that there is an M-formula whose set of logical consequences
is a complete Π1

1 set.
The full monadic second-order theory S of a binary predicate is shown to be

reducible to M in [Thomason, 1975c]. For this purpose the logic Tn of n temporal
orderings is introduced. It has n pairs of modalities P1, F1, . . . , Pn, Fn, and struc-
tures having n binary relations and their inverses to interpret these connectives. It
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is shown that for n > 1, Tn is reducible to Tn−1. Since reducibility is a transitive
relation, it follows that each Tn is reducible to T (= T1), and hence reducible to
M. This is then applied to prove the reducibility of S. The argument involves
defining a T15-formula δ with the property that for each frame S = (K,R) there
is a model of δ with 15 temporal orderings that includes within it definable copies
of S; the powerset P(K); the membership relation from K to P(K); the set of all
(codes for) S-formulas, the set of all assignments in K and P(K) to the individ-
ual and set variables of S; and the satisfaction relation between S-formulas and
assignments in S as a second-order model. This leads to a reduction of S to T15,
which can then be combined with the reduction of T15 to M to give the desired
result. Thomason concludes that

the logical consequence relation of propositional modal logic (with the Kripke
relational semantics) is as complex as it could possibly be.

6.5 Duality and the Calculus of Class Operations

The keystone constructions in the general theory of algebras are homomorphic
images, subalgebras, and direct products. The famous Variety Theorem due to
Garrett Birkhoff [1935] states that a class of abstract algebras is a variety, i.e. is
definable by equations, iff it is closed under these three constructions. The stan-
dard convention in this subject is to use the letters H , S and P for the operations
that assign to each class of algebras its closure under homomorphic images, sub-
algebras, and direct products, respectively. Thus Birkhoff’s theorem states that a
class A of algebras is a variety if and only if HA ⊆ A and SA ⊆ A and PA ⊆ A. A
refinement due to Tarski [1946; 1955a] is that for each class A of algebras, HSPA
is the smallest variety that includes A. Hence HSPA is known as the variety
generated by A.

The corresponding constructions for relational modal semantics are subframes,
p-morphic images, and disjoint unions. As explained in section 5.3, a p-morphism
ϕ : S→ S′ induces an algebraic homomorphism ϕ+ : CmS′ → CmS, allowing us
to show that if S is (isomorphic to) a subframe of S′ then CmS is a homomorphic
image of CmS′, and if S′ is a p-morphic image of S then CmS′ is (isomorphic
to) a subalgebra of CmS. Disjoint unions of structures correspond naturally to
direct products of algebras via an isomorphism

Cm
∐

JSj
∼=

∏

JCmSj (1)

between the complex algebra of a disjoint union and the direct product of the
complex algebras of its factors.

The assignments S 7→ CmS and ϕ 7→ ϕ+ form a contravariant functor from the
category Frm of frames and p-morphisms to the category Malg of normal modal
algebras and homomorphisms. In the reverse direction there is a construction
that assigns to each normal BAO A a certain relational structure CstA, called
the canonical structure of A, whose points are the ultrafilters of A. The complex



56 Robert Goldblatt

algebra EmA = CmCstA of this structure is the canonical embedding algebra of
A, and is isomorphic to the perfect extension Aσ, as described in section 3.3. The
Jónsson–Tarski representation of A amounts to the fact that there is an injective
homomorphism A ֌ EmA.

When applied to modal algebras, the assignment A 7→ CstA gives rise to a
contravariant functor from Malg to Frm that takes each homomorphism θ : A→
A′ to a p-morphism CstA′ → CstA which maps each ultrafilter of A′ to its θ-
inverse image in A. These functors provide a duality between frames and modal
algebras. It is not however a dual equivalence, because we do not in general have S

isomorphic to CstCmS, or A isomorphic to CmCstA: the assignment S 7→ CmS

increases cardinality, as does A 7→ CstA for infinite A.
The category Frm is dually equivalent to the category of complete and atomic

modal algebras with
∑

-preserving homomorphisms [Thomason, 1975a]. To obtain
a category of structures equivalent to Malg it is necessary to modify the notion
of “frame”. A first attempt at this was made by Makinson [1970] who defined
a relational model as a structure (K,R,H), where H is a collection of truth-
valuations Φ on (K,R) in Kripke’s sense that satisfies certain closure properties.
That did not produce a full equivalence between algebras and models. A language
independent-approach was taken by Thomason [1972b] who defined a “first-order
semantics” using structures S = (K,R, P ), where P is a collection of subsets of K
that forms a subalgebra of the full complex algebra Cm(K,R). This subalgebra is
taken in place of Cm(K,R) as the algebra assigned to S. Validity in S is defined
as truth in all models M = (S, Φ) on S satisfying the constraint that the set
M(p) = {x : Φ(p, x) = ⊤} belongs to P for all variables p.

By imposing suitable restrictions on P , essentially set-theoretic versions of the
conditions (i)–(iii) of section 3.3 that defined the Jónsson-Tarski perfect extensions,
a notion of “descriptive” frame (K,R, P ) is arrived at. This theory was developed
in [Goldblatt, 1974], where the descriptive frames were shown to form a category
dually equivalent to Malg. A topological approach to duality for closure algebras
and quasi-orderings was independently investigated by Leo Èsakia [1974].

Connections between relational structures and algebras can be conveniently
expressed in the “calculus” of class operations. We use the symbols S , H , and
Ud for the operations of closing a class of structures under subframes, p-morphic
images, and disjoint unions, respectively. Pu and Pw are used for closure under
ultraproducts and ultrapowers, while

CmC = {A : A ∼= CmS for some S ∈ C}

is the class of all (isomorphic copies of) complex algebras of structures in the class
C. Then the isomorphism (1) above implies that CmUdC = PCmC for any class C
of frames. Similarly, the representation

(
∏

JSj) /F −→ (
∐

JSj)
J
/F

from section 6.3 of an ultraproduct of frames as a subframe of an ultrapower of a
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disjoint union yields the conclusion that in general

PuC ⊆ SPwUdC.

There are numerous properties that can be express in this way using class opera-
tions, for example

SHC ⊆ HSC, SCmHC = SCmC, SUdC = UdSC, PuSHC ⊆ HSPuC.

An inventory of such facts may be found in [Goldblatt, 1995; Goldblatt, 2000].
Dual to the formation of the algebra EmA = CmCstA is the association with

any structure S of its canonical extension ExS = CstCmS, a structure whose
points are the ultrafilters on the underlying set of S (hence ExS is sometimes
called the ultrafilter extension of S). There is a p-morphism

SJ/F ։ ExS

from a suitably chosen ultrapower of any given frame S onto ExS, yielding the
observation that in general

ExC ⊆ HPwC. (2)

The proof of this requires the choice of a sufficiently saturated ultrapower of S

[Goldblatt, 1989, §3.6] and is motivated by a model construction of [Fine, 1975b]

that is discussed further in the next section.
Duality can be used to bring methods of universal algebra to bear on relational

semantics. A notable example is the problem of characterising classes of the form
Fr(Λ), the class of all frames validating a set Λ of modal formulas. The question
of when Fr(Λ) is elementary was discussed in section 6.3. It is natural to ask,
conversely, for conditions under which a given elementary class of frames is equal
to the class Fr(Λ) for some Λ. The following answer was given in [Goldblatt
and Thomason, 1975], where the Ex construction was first introduced (see also
[Goldblatt, 1993, 1.20.6], [Goldblatt, 1989, 3.7.6(2)]).

If C is an elementary class of frames, then C is equal to Fr(Λ) for some
set Λ of modal formulas if, and only if,

1. C is closed under disjoint unions, p-morphic images and sub-
frames; and

2. the complement of C is closed under canonical extensions, i.e.
ExS ∈ C implies S ∈ C.

The proof applies the Birkhoff–Tarski analysis of varieties to the variety generated
by CmC, and uses the construction for (2) above to show that if C is elementary
and closed under p-morphic images then it is closed under canonical extensions.

Duality theory has been developed for arbitrary relational structures and BAO’s
by using suitable generalisations of p-morphisms and subframes, called “bounded”
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morphisms and “inner” substructures (Goldblatt [1989; 1995]). This provides al-
gebraic and relational semantics for polymodal languages having n-ary connectives
which generate formulas 2(α1, . . . , αn) for n > 1. Most of the ideas and results
we have discussed about completeness, canonicity, elementarity, class operations
etc. carry over to this broader context and apply to cylindric algebras, relation
algebras and other kinds of BAO’s in addition to modal algebras. This reveals
that, mathematically, much of modal semantics is just the case n = 1 of a broader
structural theory of finitary operators on lattices. A survey of this general theory
is given in [Goldblatt, 2000].

If Λ is a normal logic, then the class V (Λ) of modal algebras that satisfy all Λ-
theorems is a variety. Algebraic constructions in V (Λ) provide tools for studying
metalogical questions about Λ, such as whether it fulfills analogues of the Beth
Definability Theorem and the Craig Interpolation Theorem. This is related to
amalgamation properties of algebras in V (Λ), as has been shown by Larisa Maksi-
mova, whose article of [1992] gives an account of the subject and further references
to the literature.

6.6 Canonicity

A logic Λ is called canonical if it is valid in its canonical frame SΛ, in which case
it is characterised by this frame, and so is complete. Almost all proofs that a
particular logic is elementary have consisted of a demonstration that SΛ satisfies
some first-order conditions that imply validity of Λ. Such a proof establishes
also that Λ is canonical, a conclusion that is inescapable in view of the following
profound results of Kit Fine [1975b].

(i) If the class Fr(Λ) of all Λ-frames is closed under elementary equivalence and
characterises Λ (i.e. Λ is complete), then Λ is canonical.

(ii) If Λ is elementary (i.e. characterised by some elementary class), then Λ is
canonical.55

In fact something much stronger was proved. We have been using a language for
propositional modal logic that is based on a countably infinite set of variables, but
we could consider larger languages by assuming we have available a variable pξ for
each ordinal ξ. Then for a given ordinal η we can generate the set Form(η) of
modal formulas having variables from the set {pξ : ξ < η}. A logic Λ as originally
conceived is a subset of Form(ω), but it has a manifestation Λη ⊆ Form(η) for
each η, obtained by closing Λ under uniform substitution in Form(η) when ω < η,
and by putting Λη = Λ ∩ Form(η) when η < ω. Then we can define a canonical
frame SΛ

η for each η, based on the maximally Λη-consistent subsets of Form(η).

SΛ
η is of cardinality 2cardη. If it validates Λη, we say that Λ is η-canonical.

55At the time, (i) was not recognised as a consequence of (ii). However, as explained at the
end of section 6.3, it was later discovered that closure of Fr(Λ) under elementary equivalence
implies the ostensibly stronger assertion that Fr(Λ) is elementary. So (ii) does imply (i).
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Fine proved that under each of the hypotheses given in (i) and (ii), Λ is η-
canonical for all ordinals η. He also gave an example of a logic that is η-canonical
for all η, and is elementary, but for which Fr(Λ) is not closed under elementary
equivalence. Thus the converse of (i) is false.

The idea of the proof of (i) was to use disjoint unions to obtain a single model
M that characterised Λη and was based on a Λη-frame, then to viewM as a first-
order model and take a saturated elementary extension of it that could be mapped
onto the canonical frame SΛ

η by a p-morphism. This was the first application of
saturated models to modal logic, and it motivated the construction for result (2) of
the previous section. The proof of (ii) combined it with an additional ultraproduct
construction.

Canonicity of a logic Λ is intimately connected with the question of whether
satisfaction of Λ is preserved by perfect extensions EmA = CmCstA of algebras or
canonical extensions ExS = CstCmS of frames. VanBenthem [1980] refined the
proof of Fine’s result (ii) above to show that

if a logic Λ is elementary, then the class Fr(Λ) of all Λ-frames is closed
under canonical extensions, i.e. S |= Λ implies ExS |= Λ.

Another way to describe this conclusion is to say that if Alg(Λ) is the variety
(equational class) of all modal algebras satisfying Λ, then in general CmS ∈ Alg(Λ)
implies CmExS ∈ Alg(Λ). But CmExS = EmCmS, so the conclusion says that
Alg(Λ) contains the canonical embedding algebras of all its full complex algebras.
This can then be strengthened, by applying duality theory, to show that Alg(Λ)
contains the algebra EmA for any of its members A [Goldblatt, 1989, Theorem
3.5.5]. Actually, to conclude that Alg(Λ) is closed under canonical embedding
algebras it is enough to know that Λ is valid in the canonical frame SΛ

κ for all
infinite cardinals κ. This follows by duality from the fact that SΛ

κ is isomorphic to
the canonical structure CstAκ, where Aκ is the free algebra in Alg(Λ) on κ-many
generators, together with the fact that each member of Alg(Λ) is a homomorphic
image of some such free algebra.

Ultimately this analysis can be generalised to any kind of Boolean algebra with
operators, to yield the following result:

if C is any class of relational structures of the same type that is closed
under ultraproducts, then the variety of BAO’s generated by the class
of algebras CmC is closed under canonical embedding algebras.

This theorem was first formulated in [Goldblatt, 1989, Theorem 3.6.7], with a
proof that used the important result of [Jónsson, 1967] on subdirectly irreducible
algebras in congruence-distributive varieties and an obscure diagonal construction
on ultraproducts. An entirely different argument was given in [Goldblatt, 1991b]

and analysed further in [Goldblatt, 1995]. It used the fact (2) from the previous
section, i.e. ExC ⊆ HPwC, and another formula,

CstHSPCmC ⊆ SHUdPuC,
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which shows how the canonical structures of algebras from the variety generated
by CmC can themselves be built from members of C. When C is closed under
ultraproducts, so that PuC = C, this takes the form

A ∈ HSPCmC implies CstA ∈ SHUdC,

showing how canonical structures mediate between the dual operations on algebras
and structures. This result in turn depends on another fundamental fact,

PuUbC ⊆ UbPuC,

which states that the ultraproduct operation commutes with bounded unions. A
structure S is the bounded union of a collection {Sj : j ∈ J} if the Sj ’s are all
inner substructures (subframes) of S and their union is S itself. This notion is
dual to that of subdirect product, and indeed in the situation just described there
is a subdirect product representation

CmS ֌
∏

JCmSj

of CmS induced by the surjections CmS ։ CmSj [Goldblatt, 2000, §4.5].

The first example of non-canonicity in the modal context occurs in [Kripke,
1967], where it is stated that Dummett’s Diodorean axiom

2(2(p→ 2p)→ 2p)→ (32p→ 2p)

is not preserved by the Jónsson–Tarski representation of modal algebras. The
McKinsey axiom 23p→ 32p was shown not to be canonical in [Goldblatt, 1991a].

The formulas of Sahlqvist(see 6.3) define logics Λ for which the class Fr(Λ) is
elementary and includes all the canonical frames SΛ

η . These formulas have been

generalized by Maarten de Rijke and Yde Venema [1995], who defined Sahlqvist
equations for any type of BAO and showed that the structures S whose complex
algebras CmS satisfy such an equation form a basic elementary class. Jónsson
[1994] has refined the techniques of [Jónsson and Tarski, 1951] to develop an elegant
algebraic proof that varieties of BAO’s defined by Sahlqvist equations are closed
under canonical embedding algebras.

Fine’s theorem (ii) was strengthened by the present author to show that if Λ
is characterised by some elementary class then it is valid, not just in any canoni-
cal frame SΛ

η , but also in any frame that is elementarily equivalent to a canonical
frame. In fact an even stronger generalization of (ii) can be obtained by restricting
attention to quasi-modal sentences. These are first-order sentences of the syntac-
tic form ∀vϕ, with ϕ being constructed from amongst atomic formulas and the
constants ⊥ (False) and ⊤ (True) using at most ∧ (conjunction), ∨ (disjunction),
and the bounded universal and existential quantifiers forms ∀z(yRz → ψ) and
∃z(yRz ∧ ψ) with y 6= z. The relevance of quasi-modal sentences, and the reason
for the name, is that they are precisely those first-order sentences whose satisfac-
tion is preserved by the basic modal-validity preserving operations of S , H , and Ud
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[van Benthem, 1983; Goldblatt, 1989]. By the quasi-modal theory of a structure
S we mean the set of all quasi-modal first-order sentences that are true in S.

It transpires that there is no quasi-modally-expressible property that can dif-
ferentiate the canonical frames of a logic Λ: the structures SΛ

η have exactly the
same quasi-modal first-order theory for all η. We will denote this unique quasi-
modal theory of the canonical Λ-frames by ΨΛ. Moreover, if Λ is not canonical,
then it always has a largest canonical proper sublogic Λc and a largest elementary
sublogic Λe (with Λe ⊆ Λc), and the quasi-modal theories ΨΛe

and ΨΛc

of these
other logics are identical to ΨΛ. These results are all proven in [Goldblatt, 2001a].
The strengthening of Fine’s result is as follows [Goldblatt, 1993, 11.4.2]:

If a modal logic Λ is characterized by some elementary class of frames,
then it is characterized by the elementary class of all models of the
quasi-modal first-order theory ΨΛ (which includes all the canonical
frames of Λ).

Fine asked if the converse of his (ii) was true: if a logic is canonical, must it be
characterised by an elementary class? The algebraic version of this question asks
whether a variety of BAO’s that is closed under canonical embedding algebras
must be generated by the complex algebras of some elementary class of relational
structures. This remained a perplexing open problem for three decades, during
which time a positive answer was found for all of the canonically closed varieties of
modal algebras, cylindric algebras and relation algebras that had been investigated.
Eventually however it was discovered that the converse of (ii) fails in general, and
does so as badly as it could. This is shown by Goldblatt, Hodkinson and Venema
[2004; 2003], exhibiting 2ℵ0 different canonical logics that are not characterised by
any elementary class. These examples all have the finite model property. They
include logics of every degree of unsolvability, and in particular undecidable logics
with decidable sets of axioms. Some of the examples are based on ideas from the
proof of the non-canonicity of the McKinsey axiom, while others use constructions
from the theory of graph colouring, and are related to the modal logic KMT studied
by George Hughes [1990]. The validating frames for KMT can be described as those
directed graphs satisfying the non-elementary condition that the set {y : xRy} of
children of any node x has no finite colouring. The logic has an infinite sequence
of axioms whose n-th member rules out colourings that use n colours. But KMT is
also characterised by the elementary class of graphs whose edge relation R satisfies
∀x∃y(xRyRy), meaning that every node has a reflexive child. The canonical KMT-
frame satisfies this condition.

Some of the logics that violate the converse of (ii) also have axioms that impose
reflexive points on canonical frames. But now a canonical frame is essentially the
disjoint union of a family of directed graphs, and it is only the infinite members
of the family that are required to have a reflexive point to ensure canonicity. This
is a non-elementary requirement. The proof that the logics are never elementarily
characterised involves a famous piece of graph theory of Paul Erdős [1959], who
showed that for each integer n there is a finite graph Gn whose chromatic number
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and girth are both greater than n, the girth being the length of the shortest cycle
in the graph and the chromatic number being the smallest number of colours
needed to colour it. The essence of the application is that if a certain logic Λ were
characterised by an elementary class C, and infinitely many of the Gn’s validated
Λ, then by a compactness argument it would follow that C contained an infinite
graph that had no cycles of odd length. But such a graph can be coloured using
only two colours, a property that invalidates one of the axioms defining Λ. Hence
the existence of C is impossible.

7 SOME MATHEMATICAL MODALITIES

The seed of relational semantics sown in the 1950’s has grown into a tree with
many branches. The most notable new dimension of activity beyond that already
described has been the application of relational modal semantics to a range of
formalisms of computational and mathematical interest. This final section will
briefly survey some studies of this kind, providing a sketch of the key ideas and a
guide to the literature.

7.1 Dynamic Logic of Programs

Dynamic logic was invented by Vaughan Pratt, who described its origins in [1980a]

as follows.

In the spring of 1974 I was teaching a class on the semantics and axiomat-
ics of programming languages. At the suggestion of one of the students,
R. Moore, I considered applying modal logic to a formal treatment of a con-
struct due to C. A. R. Hoare, “p{a}q”, which expresses the notion that if p

holds before executing program a, then q holds afterwards. Although I was
skeptical at first, a weekend with Hughes and Cresswell convinced me that
a most harmonious union between modal logic and programs was possible.
The union promised to be of interest to computer scientists because of the
power and mathematical elegance of the treatment. It also seemed likely to
interest modal logicians because it made a well-motivated and potentially
very fruitful connection between modal logic and Tarski’s calculus of binary
relations.56

Pratt’s idea was to assign a box-modality [π] to each program π, with the formula
[π]α being read “after π, α”. Then Hoare’s construct57 p{π}q can be defined as
p→ [π]q, but more complex assertions about program correctness and termination
can be formalised by combining [π] with other connectives, including modalities
for other programs. The connective [π] is interpreted, not as an accessibility
relation between possible worlds, but as a transition relation Rπ between “possible
execution states”, with xRπy when there is an execution of π that starts in state

56The “weekend” reference is of course to the classic text of [Hughes and Cresswell, 1968].
57[Hoare, 1969].
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x and terminates in state y. The dual modality 〈π〉α, definable as ¬[π]¬α, asserts
that there is an execution of π that terminates with α true. In particular, 〈π〉⊤
asserts that there exists a terminating execution of program π.

Pratt’s first paper [1976] describes a predicate language with modalities for
a class of programs generated from basic assignments and tests by a number of
operations, including alternation π ∪ π′ and composition π;π′. The interpreting
relations for programs satisfy appropriate conditions, including Rπ∪π′ = Rπ ∪
Rπ′ and Rπ;π′ = Rπ ◦ Rπ′ . A complete axiomatisation was presented for the
language of these “loop-free” programs, and then the class of regular programs
was defined by adding the iteration construct π∗, with interpretation Rπ∗ =
reflexive transitive closure of Rπ. The universal quantifier ∀x was identified with
a modality [x← RANDOM] corresponding to a random assignment to the variable
x.

The purely propositional fragment of this language was isolated by Michael Fis-
cher and Richard Ladner [1977; 1979] who defined the system PDL of propositional
dynamic logic of regular programs. Its programs are generated from some set of
atomic commands by the operations of alternation, composition and iteration. A
Kripke model for PDL assigns a binary relation to each atomic program, and then
interprets complex programs by the above conditions on Rπ∪π′ , Rπ;π′ and Rπ∗ .
Fischer and Ladner proved that this semantically defined logic has the finite model
property by a version of the filtration construction. That method produces a falsi-
fying model for a given non-theorem α whose size is exponential in the length of α.
The result was used to establish an upper bound of nondeterministic exponential
time for the complexity of the satisfiability problem: there is a nondeterministic
algorithm for deciding PDL-satisfiability that runs in a time bounded above by
an exponential function cn of the length n of the formula concerned (for some
constant c). They also gave a lower bound of deterministic exponential time for
the complexity of this problem: there is a constant d > 1 such that no deter-
ministic algorithm can decide the satisfiability question for all formulas in time
less than dn. The technique used was to construct a PDL-formula that encodes
the computations of a certain kind of Turing machine that was known to require
exponential running time. The gap between these upper and lower bounds was
closed by Pratt [1980b], who used Hintikka’s model sets and tableaux methods to
give a deterministic exponential time algorithm for deciding satisfiability/validity
in PDL.

A finite axiomatisation of PDL was proposed in [Segerberg, 1977], the most
notable feature being the induction axiom

p→ ([π∗](p→ [π]p)→ [π∗]p).

The first proof of completeness for PDL was published by Rohit Parikh [1978a],
with other proofs being attributed to Gabbay, Segerberg [1982] and Pratt.58 The
first extensive study of quantificational dynamic logic was made in David Harel’s
1978 dissertation under Pratt’s supervision, published as [Harel, 1979].

58More background on the beginnings of dynamic logic is provided in [Goldblatt, 1986].
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Many variants of dynamic logic have been studied by varying the modelling,
the set of formulas, and the set of programs having associated modalities. De-
terministic programs are modelled by requiring Rπ to be a functional relation.
Program predicates may be used to express computational behaviour of particular
programs, such as loop(π), meaning that some execution of π fails to terminate,
and repeat(π), meaning that π can be repeatedly executed infinitely many times.
PDL programs can be viewed as regular sets of sequences of basic commands, but
allowing context-free sets of sequences as programs results in a stronger logic that
is Π1

1-complete and hence highly undecidable. This was shown by Harel, Pnueli
and Stavi [1983].

Dynamic algebras were introduced by Dexter Kozen and Pratt in 1979 and their
structure and representations investigated in a number of papers.59 They comprise
a “Kleene algebra” that abstracts the algebra of regular expressions and acts as
a collection of operators on a Boolean algebra. Concrete models are provided by
the complex algebras of Kripke models for PDL. But the relationship between the
operators interpreting π and π∗ in the algebra of a Kripke model is not equationally
expressible, and there are dynamic algebras that belong to the equational class
generated by the algebras of Kripke models but are not themselves representable
in such models.

Process logic was introduced in [Pratt, 1979] by interpreting a program, not
as a relation between states, but as the set of possible state-sequences that can
be generated by executing the program. In addition to “after”, he proposed the
following modalities

throughout π, α : α holds at every state of any sequence generated
in executing π.

during π, α : every π-computation has α true at some point.
π preserves α : in every π-computation, once α becomes true

it remains so thereafter.

Parikh [1978b] developed a decidable system of second-order process logic that sub-
sumed Pratt’s, and allowed quantification over states and state-sequences. Then
Nishimura [1980] combined PDL with some temporal connectives to devise a sys-
tem extending Parikh’s. All of these were subsumed by the powerful system of
process logic of Harel, Kozen and Parikh [1982] which was shown to be decidable
by reduction to the second-order decidability results of [Rabin, 1969].

The article [Harel, 1984] surveys the first decade of dynamic logic, and there is
a further review in [Kozen and Tiuryn, 1990].

7.2 Hennessy–Milner Logic

Matthew Hennessy and Robin Milner [1980; 1985] applied modal logic to process
algebra in a manner that is reminiscent of the Kripke modelling of PDL. They

59See [Kozen and Tiuryn, 1990] for references.
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used a modal language to express assertions about transitions between processes
in such a way that two processes prove to be “observationally equivalent” just
when they satisfy the same modal properties.

A process is viewed as an agent that interacts with its environment by perform-
ing observable actions which cause it to change its state. Processes are identified
with their states, so an observation changes a process into a new process. The
notation 〈p, p′〉 ∈ Ri means that process p can become p′ by performing, or par-
ticipating in, the observation i. Thus Ri is a binary relation on a given set P of
processes, and we envisage a collection {Ri : i ∈ I} of such observation relations
corresponding to a set I of “types of observation”. A particular pair 〈p, p′〉 ∈ Ri

represents a single observation, and is also viewed as an “experiment” performed

by the observer on process p. (In subsequent literature the notation p
i
−→ p′ became

standard in place of 〈p, p′〉 ∈ Ri.)
The Hennessy–Milner modal language has no propositional variables, but con-

structs formulas from the constant ⊤ by the truth-functional connectives and the
modalities 〈 i 〉 for i ∈ I. The box modality [ i ] is defined to be ¬〈 i 〉¬. The relation
p |= α, meaning “process p satisfies formula α”, is defined inductively, with

p |= 〈 i 〉α iff for some i-experiment 〈p, p′〉, p′ |= α.

Two processes are regarded as equivalent if there is no observable action that either
can perform to distinguish them. Informally this means that to each observable
action that one can perform there is an action that the other can perform which
leads to an equivalent outcome, so each process can “simulate” the other. Spelling
this out,

p is equivalent to q if, and only if,

1. for every result p′ of an experiment on p, there is an equivalent result
q′ of an experiment on q; and

2. for every result q′ of an experiment on q, there is an equivalent result
p′ of an experiment on p

[Milner, 1980, p. 41]. As a definition of equivalence this appears to be circular,
since the word “equivalence” occurs on both sides of the “if and only if”. To
formalise the idea, a sequence of equivalence relations ∼n for n ≥ 0 is defined on
P . For each relation S ⊆ P × P , define a relation E(S) by putting 〈p, q〉 ∈ E(S)
if for every i ∈ I,

1. 〈p, p′〉 ∈ Ri implies, for some q′, 〈q, q′〉 ∈ Ri and 〈p′, q′〉 ∈ S; and

2. 〈q, q′〉 ∈ Ri implies, for some p′, 〈p, p′〉 ∈ Ri and 〈p′, q′〉 ∈ S.

Put p ∼0 q for all p, q ∈ P , and inductively p ∼n+1 q if 〈p, q〉 ∈ E(∼n). Then
p and q are defined to be observationally equivalent, written p ∼ q, if p ∼n q for
every n.
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Now a relation R ⊆ P ×P is image-finite if the set {p′ : 〈p, p′〉 ∈ R} is finite for
each p ∈ P . Hennessy and Milner gave a logical characterisation of observational
equivalence by showing that if each Ri is image-finite, two processes are equivalent
iff they satisfy the same formulas:

p ∼ q iff for all formulas α, p |= α iff q |= α. (∗)

Note that the operator E on relations is monotonic: R ⊆ S implies E(R) ⊆ E(S).
This property implies, by induction, that ∼n+1 ⊆ ∼n, and so iteration of E
generates a decreasing chain of relations

∼0 ⊇ ∼1 ⊇ ∼2 ⊇ · · · ⊇ ∼n ⊇ · · · · · ·

Let ∼ω=
⋂

{∼n: n ≥ 0} be the intersection of the chain. Then in the image-finite
case, ∼ω is the largest fixed point of the operator E, i.e. putting S =∼ω gives
the largest solution to the equation S = E(S) (see [Hennessy and Milner, 1985,
Theorem 2.1]). In that case 〈p, q〉 ∈ S iff 〈p, q〉 ∈ E(S), legitimizing the circular
definition of equivalence.

The monotonicity of E alone is enough to guarantee that E has a largest fixed
point (see section 7.4), but in the absence of image-finiteness this fixed point need
not be the relation ∼ω. It may be a proper subrelation of ∼ω that can only be
reached by iterating E transfinitely often. Consequently this largest fixed point
has become the general definition of the observational-equivalence relation ∼, and
it is only in the image-finite case that ∼ is identified with ∼ω.

This analysis indicates that standard induction on natural numbers n (applied
to the relations ∼n) may not be effective as a method for proving equivalence of
processes. Instead, as was first realised by David Park,60 a new kind of proof rule
is called for, based on the notion of a bisimulation. This is a relation S ⊆ P × P
satisfying S ⊆ E(S), i.e. 〈p, q〉 ∈ S implies (1) and (2) hold. The union of any
collection of bisimulations is a bisimulation, and so there is a largest bisimulation—
the union of all of them–which turns out to be the same as the largest fixed point of
E. In other words, the observational relation ∼ is the largest bisimulation on any
structure (P, {Ri : i ∈ I}). It is an equivalence relation in the mathematical sense
(reflexive, symmetric and transitive) and is known as bisimulation equivalence or
bisimilarity [Milner, 1989]. It

admits an elegant proof technique; to show p ∼ q, it is necessary and suffi-
cient to find some bisimulation containing the pair 〈p, q〉

[Milner, 1983, p. 283]. In the general setting, when ∼ is not equal to ∼ω, the
same modal-logical characterisation of bisimilarity as (∗) above can be obtained
by expanding the class of formulas to allow formation of the conjunction

∧

j∈J αj

for any set {αj : j ∈ J} (possibly infinite) of formulas.
The term “bisimulation” was first used in [Park, 1981] for a relation of mu-

tual simulation between states of two automata, with motivation from an earlier

60Information from Robin Milner, personal communication.
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notion of simulation of programs from [Milner, 1971]. Park showed that if two
deterministic automata are related by a bisimulation, then they accept the same
set of inputs. The concept and its use was systematically developed in [Milner,
1983]. It is closely related to the notion of “p-relation” of van Benthem [1976a]

mentioned in section 5.3. Segerberg’s p-morphisms are essentially bisimulations
(between Kripke models) that are total and functional.

Process algebra is now a substantial field, with many concepts and constructions
for building processes, and many important variations on the notion of observa-
tional equivalence or bisimilarity (see [Bergstra et al., 2001]). For any given family
of transition systems, i.e. systems of observation relations, we can seek to devise
modalities that generate formulas giving a logical characterisation of the bisimi-
larity relations for those systems in the manner of (∗). This programme has been
carried out for many cases. Logics for more recently developed theories of “mo-
bile” and “message-passing” processes are discussed in [Milner et al., 1993] and
[Hennessy and Liu, 1995]. They provide modalities that formalise complex struc-
tural assertions, for example the formula 〈c!x〉α expressing “it is possible to output
some value v on channel c and thereby evolve to a state in which α[v/x] is true”.

Axiomatisations of various modal process logics may be found, inter alia, in
[Stirling, 1987] and [Larsen, 1990]. Other work on modal aspects of process algebra
is collected in [Ponse et al., 1995].

7.3 Temporal Logic for Concurrency

In 1977 Amir Pnueli, motivated by a reading of [Rescher and Urquhart, 1971],61

proposed to use temporal logic to formalising reasoning about the behaviour of con-
current programs involving a number of processors acting in parallel and sharing
a memory environment, so that each can alter the values of variables used by the
others (see Pnueli [1977; 1981]). This is particularly relevant to the specification
and analysis of reactive programs, like operating systems and systems for airline
reservation or process control, that repeatedly interact with their environment
and are not expected to terminate. As such a program runs, each success state
is obtained by one processor being chosen to execute one instruction. Thus from
an initial state x0, many different sequences x0, x1,. . . of states may be generated
depending on which processors get chosen to act at each step.

Pnueli observed that temporal modalities could be used to formulate computa-
tionally significant properties of execution sequences, such as fair scheduling (no
processor is delayed forever), freedom from deadlock (when none can act), and
many others. He used Prior’s future-tense modality G (and its dual F ), but with
the Diodorean reading of “at all future states including the present”, as well as
a connective X with the reading “at the next state”. The latter had first been
introduced to tense logic for discrete time by Dana Scott (see [Prior, 1967, p. 66]).
Programs do not appear in the syntax in this approach. Instead, temporal formu-
las describe properties of a particular execution sequence of a single (concurrent)

61See [Hasle and Øhrstrøm, 2004, p. 222].
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program.
The paper of Gabbay, Pnueli, Shelah and Stavi [1980] added a binary connective

U to this formalism, with αUβ meaning “α until β”, i.e. “β will be true, and α
will be true at all times until β is”. This connective and its past-tense version
α since β had been studied by Hans Kamp [1968] who showed that they form
an expressively complete set of connectives in the sense that for models in which
time is a complete linear ordering, all tense-logical connectives can be defined in
terms of them. Gabbay et al. adapted this to show that U by itself plays a similar
role for the future-tense logic of state sequences. They gave an axiomatisation for
this extended logic, which they called DUX, and proved that it is decidable. By
way of illustration of the expressive completeness of U , they noted that Fα can be
defined as ⊤Uα, and then Gα as ¬F¬α, while Xα can be defined as ⊥Uα. DUX
is now more commonly known as PLTL (propositional linear temporal logic).

Since there are many different execution sequences with a given starting state
any particular sequence is just one “branch” or “path” of the “tree” of all possible
future states. Considering the tree as a whole gives rise to some interesting new
modalities that can formalise reasoning about future behaviour. This line was
pursued by Ben-Ari, Pnueli and Manna [Ben-Ari et al., 1983], defining a system
UB (the unified system of branching time), which combined G and X with the
symbols ∀, ∃ for quantification over paths to produce the following modal forms:

∀Gα : along all future paths, α is true at all states.
∃Gα : along some path, α is true at all states.
∀Xα : along all paths, α is true at the next state.

Dual modalities were defined by writing ∃F for ¬∀G¬, ∀F for ¬∃G¬, and ∃X for
¬∀X¬. The logic UB was shown to be finitely axiomatisable and have the finite
model property, using semantic tableaux methods. It was also stated that, in
contrast to PLTL, no temporal language for branching time with a finite number of
modalities could be expressively complete, this theorem being credited to Gabbay.

The until connective U was added to UB by Edmund Clarke and Allen Emerson
[1981] to define the system CTL of Computation Tree Logic, which was axioma-
tised and shown to have the finite model property by Emerson and Joseph Halpern
[1982; 1985]. CTL has the limitation that the path quantifiers ∀ and ∃ are tied
to a single linear-time state quantifier (modality) as in the forms ∀G, ∃F , or a
single instance of U as in ∃(αUβ) etc. It does not allow a combination like ∃GFα,
expressing “there is a path along which α is true infinitely often”, a property of
relevance to fair scheduling conditions. Emerson and Halpern [1983; 1986] devised
a new system CTL* that allows such formations. It distinguishes between state
formulas, which are true or false at each state, and path formulas, which are true
or false of each path. The path formulas include the state formulas and both cate-
gories are closed under the truth-functional connectives. If α, β are path formulas
then αUβ, Gα and Xα are path formulas, while ∀α and ∃α are state formulas.
∀α (respectively ∃α) is true at state s iff α is true of all (respectively some) paths
that start at s.
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In addition to being more expressive than CTL, CTL* is more complex. Whereas
CTL and PDL are decidable by algorithms that run in deterministic exponential
time, the complexity of CTL* is that of deterministic doubly exponential time. The
lower bound here was established by Moshe Vardi and Larry Stockmeyer [1985],
and the upper bound by Emerson and Charanjit Jutla [1988; 1999]. Methods from
tree automata theory are used to prove decidability results in this context. Models
can be viewed as infinite branching trees, or at least can be “unravelled” into such
tree structures. Associated with each formula α is an automaton Aα that accepts
a tree model iff it it satisfies α at its root. Thus the satisfiability problem for many
logics can be reduced to the emptiness problem for automata on infinite trees that
was shown to be decidable in [Rabin, 1969] (see section 6.2). This technique was
first developed in the 1980 Masters thesis of Robert Streett (see [1982]) who used
it to prove the decidability of PDL with the repeat construct.

The logic CTL* was defined semantically, and a sound and complete axioma-
tisation of it was hard to find. Eventually one was provided by Mark Reynolds
[2001].

A property of paths not expressible in linear time logic, or even in CTL*, is
that a formula be true at every even state along the path (and possibly at others).
Sets of sequences that have this property can be generated by formal grammars, or
characterised by finite-state automata that process infinite strings. Pierre Wolper
[1983] showed that any regular grammar gives rise to a temporal connective cre-
ating formulas that are true just of paths generated by that grammar in a certain
way. He also showed that the linear time connectives G, F , X and U can each
be expressed by such a grammar, and dubbed this formalism ETL for “Extended
Temporal Logic”. The idea can be applied to branching time systems, and leads
to a logic ECTL* into which CTL* can be translated (see [Thomas, 1989]).

Surveys of computational temporal logic, and its various applications to reason-
ing about programs, are given in [Emerson, 1990] and [Stirling, 1992].

A different kind of use of modalities of the branching-time type was made by
Glynn Winskel [1985] in constructing powerdomains. These structures arise in the
denotational semantics of programs, and are intended to provide domain-theoretic
analogues of powersets. In dynamic logic a non-deterministic program is modelled
as a binary transition relation R on a set S of possible program states. Alterna-
tively this can be viewed as a function from S to its powerset P(S), taking each
state x ∈ S to the set {y : xRy} of states that can be reached by different possible
executions of the program. Analogously, given a domain D, a non-deterministic
program may be modelled as a function from D to its powerdomain.

There are several different powerdomain constructions, and Winskel shows how
to build them out of formulas of some modal languages associated with D. This
involves tree-like models of the languages that represent certain computations.
For the “Smyth” powerdomain a modality 2 is used that it read “inevitably”. 2α
has the same meaning in these models as the CTL-modality ∀Fα, i.e. along every
future path there is a state at which α holds. The construction of the “Hoare”
powerdomain uses 3, for “possibly”, with 3α meaning that there is a future path
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with α true somewhere, i.e. ∃Fα. For the “Plotkin” powerdomain, both of these
modalities are involved.

7.4 The Modal µ-Calculus

Mathematics and computer science abound with concepts and objects that are
defined recursively, or self-referentially. Many of these have an elegant formulation
as special fixed points of certain operations. The µ-calculus Lµ of Kozen [1982;
1983] admits formulas that are interpreted as fixed points, and is expressively more
powerful than any of the modal program logics considered above.

Let Θ : P(S)→ P(S) be an operation on the powerset of a set S. Tarski applied
the term “fixpoint” to any subset T of S such that Θ(T ) = T . If Θ is monotonic
in the sense that T ⊆ T ′ implies Θ(T ) ⊆ Θ(T ′), then Θ has a least fixpoint µΘ
and a greatest fixpoint νΘ, given by

µΘ =
⋂

{T ⊆ S : Θ(T ) ⊆ T },

νΘ =
⋃

{T ⊆ S : T ⊆ Θ(T )}.

The fact that Θ has a fixpoint was first shown by Tarski and B. Knaster in 1927.
In 1939 Tarski generalised this to any monotonic function on a complete lattice,
showing that its fixpoints also form a complete lattice, with greatest and least
elements specified by the lattice versions of the definitions just given (see [Tarski,
1955b] for this historical background).

Pratt [1981] introduced the idea of using a “minimisation” operator in a PDL-
like context, but interpreted µ as a least root operator rather than a least fixpoint
one. He developed a language of terms intended to denote elements of a Boolean
algebra, with a term of the form µQ.τ(Q) interpreted as the least solution of the
equation “τ(Q) = 0”. A syntactic restriction was imposed on τ to ensure that
at least one solution exists. A translation of PDL into the resulting calculus was
given, and the system was shown to have the finite model property by a refinement
of the McKinsey method. A deterministic exponential time algorithm was given
for the problem of deciding satsfiability terms.

Pratt’s work provided the inspiration for Kozen’s development of the calculus
Lµ, whose language is generated from some collection Π of atomic programs (or
action labels) π. Lµ-formulas are constructed from propositional variables using
the truth-functional connectives, the modalities [π] and 〈π〉 for π ∈ Π , and the
constructions µp.α and νp.α, where p is a propositional variable and α is a formula.
The operations µp and νp function like quantifiers, binding occurrences of p in α.
µp.α and νp.α are only allowed to be formed when α is positive in the sense that all
free occurrences of p in α are within the scope of an even number of negations ¬.
This condition is satisfied for instance by any formula constructed from variables
using only ⊤, ⊥, ∧, ∨, [π], 〈π〉, µp and νp. The “binder” ν is definable in terms of
µ by taking νp.α as ¬µp.¬α(¬p/p). Vice versa, µ could be defined in terms of ν.

An Lµ modelM = (S, {
π
−→: π ∈ Π}, Φ) is just like a Kripke model for dynamic

logic, or a labelled transition system for Hennessy–Milner logic augmented by a
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valuation Φ to interpret the variables p. M gives each formula α the interpretation
M(α) = {x ∈ S : M |=x α}. If α contains the variable p, then varying the
interpretation of p causes the interpretation of α to vary, and in this way α induces
an operation on P(S). To make this precise, for T ⊆ S let Mp:=T be the model
that is identical toM except in interpreting p as T , i.e.Mp:=T (p) = T . Then the
operation induced by α on P(S) relative toM is the function

ΘM
α : T 7−→Mp:=T (α).

If α is positive, then Θα is monotonic. Assuming inductively that Θα has been
specified,M(µp.α) andM(νp.α) are defined to be the least and greatest fixpoints
µΘM

α and νΘM
α given by the Tarski–Knaster Theorem.

The meaning of µp.α and νp.α for particular α can be hard to fathom, but it
helps to think of them as solutions of the equation “p = α” and repeatedly replace
p by α in α itself. It turns out that µp.(α ∨ 〈π〉p) has the same interpretation in
a model as the PDL-formula 〈π∗〉α, while νp.(α ∧ [π]p) has the same meaning as

[π∗]α. Also µp.〈π〉p is true at x0 iff there is an infinite sequence x0
π
−→ x1

π
−→ · · ·

in M, which is the condition for truth of the formula repeat(π). Using these
observations it can be shown that the logic PDL with the repeat construct has a
simple translation into the µ-calculus.

A CTL-model can be viewed as an Lµ-model with a single transition relation
π
−→, and with a path being a sequence x0

π
−→ x1

π
−→ · · · in the model. CTL

translates into Lµ by translating ∃(αUβ) as µp.β ∨ (α ∧ 〈π〉p) and ∀(αUβ) as
µp.β ∨ (α∧ [π]p∧ 〈π〉⊤). The Lµ-formula νp.α∧ [π][π]p means “along all paths, α
is true at every even state”, a property expressible in ECTL* but not CTL*. Mads
Dam [1994] has constructed algorithms for translating both CTL* and ECTL* into
Lµ.

Kozen proposed a finite axiomatisation of Lµ which, for the binder µ, has the
axiom schema

α(µp.α/p)→ µp.α

and the inference rule:

from α(β/p)→ β infer (µp.α)→ β if p is not free in β.

Validity of the axiom follows from the fact that T = µΘM
α is a solution of the

“inequality” Θ(T ) ⊆ T , and soundness of the rule is due to µΘM
α being the least

such solution. Kozen was able to prove the completeness of a limited fragment of
Lµ for which he also showed the finite model property and an exponential time
decision procedure. The full Lµ was proved decidable by Kozen and Parikh [1984]

by reduction to Rabin’s SnS. Streett and Emerson [1984; 1989] used tree automata
to improve this to a deterministic triple-exponential time decision algorithm and
establish the full finite model property. Emerson and Jutla [1988; 1999] sharpened
the complexity result further to a deterministic exponential time algorithm, which
is the best possible result since it is the lower bound for PDL and therefore for
the µ-calculus. Kozen [1988] gave a different proof of the finite model property
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using techniques from the theory of well-quasi orders, and proved a completeness
theorem for Lµ using an infinitary rule of inference.

The problem of whether Lµ is complete for Kozen’s originally proposed axioma-
tisation proved challenging, and remained open for some time. It was eventually
solved in the affirmative by Igor Walukiewicz [1995; 2000].

The formalism of the µ-calculus originates in some unpublished notes of Jaco
de Bakker and Dana Scott from 1969. Kozen’s inference rule derives from the
Fixpoint Induction rule of [Park, 1969]. Another early independent formulation
of a modal program logic with a greatest and least fixpoint operators appears in
[Emerson and Clarke, 1980]. For a recent survey of the field of modal µ-calculi,
see [Bradfield and Stirling, 2001].

7.5 Solovay on Provability in Arithmetic as a Modality

Let PA be the first-order system of Peano Arithmetic that is the subject of Gödel’s
incompleteness theorems, and let PA ⊢ σ signify that sentence σ is provable in
PA. Gödel showed that this notion can be “arithmetised” and expressed in the
language of PA itself. There is a PA-formula Bew(v) with one free variable v such
that in general PA ⊢ σ iff the sentence Bew(pσq) is true (i.e. true of the standard
PA-model (ω,+, ·, 0, 1) ). Here pσq is the numeral for the Gödel number of σ. Now
all PA-provable sentences are true, so for every σ the sentence

Bew(pσq)→ σ

is true. But it is not always PA-provable, a fact which is a manifestation of
the first incompleteness theorem. Gödel gave an example of this in his [1933],
observing that if the modality “provable” is taken to mean provable in PA then
some principles of S4 do not hold:

For example, B(Bp → p) never holds for that notion, that is it holds for no
system S that contains arithmetic. For otherwise, for example, B(0 6= 0) →
0 6= 0 and therefore also ¬B(0 6= 0) would be provable in S, that is, the
consistency of S would be provable in S.

Provability in S of the consistency of S would contradict the second incompleteness
theorem.

The question therefore arises as to which modal principles do hold if 2 is read
as “PA-provable”. To make this precise, define a realisation to be a function φ
assigning to each propositional variable p some PA-sentence pφ. This extends
inductively to all modal formulas by taking ⊤φ to be (0 = 0), realising the non-
modal connectives as themselves, and defining

(2α)φ := Bew(pαφq).

A modal formula α is PA-valid if PA ⊢ αφ for every realisation φ. The question
becomes that of determining which modal formulas are PA-valid.
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The set of all PA-valid formulas is a normal logic, known as G (for Gödel).62 To
show that it is normal it is necessary to verify that the following hold in general:

PA ⊢ Bew(pσ → σ′q)→ (Bew(pσq)→ Bew(pσ′q);

If PA ⊢ σ, then PA ⊢ Bew(pσq).

These results were distilled by Martin Löb [1955] from properties of Bew that were
established in [Hilbert and Bernays, 1939]. Löb then proved

PA ⊢ Bew(pσq)→ Bew(pBew(pσq)q),

which shows that 2p → 22p is PA-valid and hence a G-theorem. However the
other S4-axiom 2p→ p is not PA-valid, and indeed not even the formula 2⊥ → ⊥
is a G-theorem, since (2⊥ → ⊥)φ is

Bew(p0 6= 0q)→ 0 6= 0,

which is not PA-provable by Gödel’s reasoning above.
Robert Solovay [1976] demonstrated that G is identical to Segerberg’s logic

K4W, discussed in section 5.3, which is characterised by the class of finite strictly
ordered (i.e. transitive and irreflexive) Kripke frames. The validity of the axiom
W, i.e.

2(2p→ p)→ 2p,

follows from an answer given in [Löb, 1955] to a question raised by Leon Henkin
in 1952 about the status of sentences that assert their own provability. Any PA-
formula F (v) has fixed points : sentences σ for which

PA ⊢ σ ↔ F (pσq)

(this is usually called the Diagonalisation Lemma). A fixed point of Bew(v) has

PA ⊢ σ ↔ Bew(pσq)

so is equivalent to the assertion of its own provability. Must it in fact be provable?63

Löb answered this in the affirmative by proving that

if PA ⊢ Bew(pσq)→ σ, then PA ⊢ σ.

Equivalently, if Bew(pBew(pσq) → σq) is true then so is Bew(pσq), i.e. the sen-
tence

Bew(pBew(pσq)→ σq)→ Bew(pσq)

is true. But more strongly it can be shown that this sentence is PA-provable for
any σ, including σ = αφ, giving the PA-validity of W.

Solovay’s completeness theorem for G is a remarkable application of the ma-
chinery of arithmetisation and recursive functions to show that any finite strictly

62Also known as GL for Gödel–Löb.
63This is a generalisation of Henkin’s question: see [Smoryński, 1991] for discussion.
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ordered frame (K,R) can be “embedded into Peano Arithmetic”. A recursive
function h : ω → K is defined that is in fact constant, but which cannot be proven
to be constant in PA. Each element x of K is represented by a sentence σx ex-
pressing “limn→∞ h(n) = x”. This sentence is consistent with PA, i.e. PA 0 ¬σx.
The construction has a flavour of self-referential paradox similar to that of Gödel’s
incompleteness proof, because the sentences σx are used to define the function h
itself. But that is resolved by some version of diagonalisation.64 The structure of
the ordering R is represented in PA by the fact that if xRy then

PA ⊢ σx → ¬Bew(p¬σyq),

and if not xRy then
PA ⊢ σx → Bew(p¬σyq).

Any model M on this frame determines a realisation φ by putting

pφ =
∨

{σx :M |=x p}.

Then the truth conditions in M are PA-representable by the fact that for any
modal formula α,

if M |=x α then PA ⊢ σx → αφ; while

if M 6|=x α then PA ⊢ σx → ¬αφ and so PA ⊢ αφ → ¬σx.

Since PA 0 ¬σx, the last case gives PA 0 αφ, showing α is not PA-valid. Therefore
any PA-valid formula must be true in all models on finite strictly ordered frames,
and therefore be a G-theorem.

A modal formula α is called ω-valid if αφ is true for all realisations φ. The
set G* of all ω-valid formulas is a logic that includes G, but also includes 2p →
p, since Bew(pσq) → σ is always true. However Gödel’s example shows that
Bew(pBew(p⊥φq) → ⊥φ q) is not true, so G* does not contain 2(2p → p), and
therefore is not a normal logic. Solovay extended his analysis of G to prove that
G* can be axiomatised by taking all theorems of G and instances of 2α → α as
axioms, and detachment as the only rule of inference.

Another natural reading of 2 in this context is “true and provable”, formalised
by modifying the definition of realisation to

(2α)φ := αφ ∧Bew(pαφq).

The fact that “provable” implies “true” might make it seem that “true and prov-
able” has the same status as “provable”, but this is not so because of the existence
of true but unprovable sentences of PA. In general, Bew(pσq) is PA-provable iff
σ ∧Bew(pσq) is PA-provable, and the two are equivalent in the sense that

Bew(pσq)↔ σ ∧Bew(pσq)

64Solovay’s argument used Kleene’s Recursion Theorem on fixed points in the enumeration of
partial recursive functions.
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is true, but this equivalence is not itself PA-provable unless σ is, by Löb’s theorem.

The modal logic of formulas PA-valid under this modified realisation turns out
to be the system S4Grz characterised by finite partial orderings (see section 5.3).
This was proved in [Goldblatt, 1978] by showing that replacing 2α by α∧2α gives
a proof-invariant translation of S4Grz into G, and then applying Solovay’s theorem
for G.65 Since the intuitionistic propositional calculus IPC can be translated into
S4Grz (by the result of Grzegorczyk mentioned in section 5.3), these translations
can be composed to obtain a translation α 7→ ατ of propositional formulas into
modal formulas such that α is provable in IPC iff ατ is PA-valid. In fact ατ is
PA-valid iff it is ω-valid [Goldblatt, 1978, theorem 5].

Research into the modal logic of provability since the 1970s has contributed
much to our understanding of the phenomena of self-reference and diagonalisation
that underly the incompleteness of PA and other systems. An account of the
origins of the subject has been given by George Boolos and Giovanni Sambin
[1991], and extensive expositions are provided in the books of Boolos [1979; 1993]

and Craig Smoryński [1985]. The most recent survey is that of Giorgi Japaridze
and Dick de Jongh [1998].

7.6 Grothendieck Topology as Intuitionistic Modality

By composing his semantic analysis of S4 with the McKinsey–Tarski translation of
IPC into S4, Kripke [1965a] derived a relational model theory for intuitionistic logic
based on structures S = (K,R) in which R is a quasi-ordering, i.e. reflexive and
transitive. He interpreted the members of K informally as “evidential situations”
temporally ordered by R. His paper presented a semantics for predicate logic,
proving completeness by the method of tableaux66. It also showed that attention
can be confined to structures that are partially ordered, i.e. antisymmetric as well.
By identifying elements x, y ∈ K whenever xRy and yRx we pass to a partially
ordered quotient S′ which validates the same intuitionistic formulas as S. More
strongly, any model on S has an equivalent model on S′. This contrasts with the
modal semantics on these structures: it can happen that S′ validates the modal
axiom Grz while S does not (see section 5.3).

Segerberg [1968b] studied the propositional fragment of this model theory, using
only partially ordered frames from the outset. He constructed canonical models
and applied the filtration method to prove the finite model property for a number
of logics, including some that are weaker than or independent of IPC. The fact that
IPC is characterised by the finite partially ordered frames, which also characterise
S4Grz under the modal semantics, provides a clear picture of why IPC translates
into S4Grz and not just S4.

65The result was independently found by A. Kuznetsov and A. Muzavitski (Abstracts of Reports
of the Fourth All-Union Conference on Mathematical Logic, Kishiniev, 1976, p. 73, in Russian).

66An extension of intuitionistic predicate logic that is incomplete for Kripke’s semantics was
found by Hiroakira Ono [1973], and an incomplete extension of intuitionistic propositional logic
was obtained by Valentin Šehtman [1977].
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Here is a brief description of the relational models for IPC. Given a partial
ordering S = (K,≤), a subset X of K will be called increasing if it is closed
“upwards” under the ordering, i.e. whenever x ∈ X and x ≤ y, then y ∈ X . The
definition of a model M = (S, Φ) requires that the set {x ∈ K : Φ(p, x) = ⊤} be
increasing for all propositional variables p. Formally this requirement is dictated
by the modal translation of p as 2p, while informally it conveys the idea that once
p is established as true in a given evidential situation then it remains true in the
future. The truth conditions for implication and negation are

M |=x α→ β iff for all y ≥ x, ifM |=y α then M |=y β,
M |=x ¬α iff for all y ≥ x, notM |=y α.

The modelling of ∧ and ∨ is as for classical logic. By induction it is demonstrable
that for each formula α the set M(α) = {x ∈ K :M |=x α} is increasing.

The topological and algebraic modellings of IPC from section 3.2 are in evidence
here. The increasing sets form a topology onK, and the associated Heyting algebra
of open sets satisfies a formula α iff α is valid in S, i.e. iffM(α) = K for all models
M on S. At the same time α is valid in S iff it is satisfied by the Brouwerian
algebra of closed subsets of this space, with the least element ∅ of the algebra
being designated. This follows from properties of the set

M(α) = {x ∈ K : notM |=x α}

of points at which α fails to hold in modelM. M(α) is closed, being the comple-
ment of the open set M(α), and takes the designated value ∅ iff α is true in the
model M. These “falsity sets” can be reconstructed by applying the Brouwerian
operations that correspond to the propositional connectives:

M(α ∧ β) =M(α) ∪M(β)

M(α ∨ β) =M(α) ∩M(β)

M(α→ β) =M(α)÷M(β)

M(¬α) =M(α)÷K.

This analysis accounts for the dual nature of the Brouwerian algebraic semantics.

Modal systems based on intuitionistic logic typically take 2 and 3 as indepen-
dent connectives that are not interdefinable using ¬. Logics of this kind, using
one or both of 2 and 3, have been studied by a number of authors, for a variety
of philosophical and technical motivations, beginning with a paper published by
F. B. Fitch in [1948]. The history of much of this work is reviewed in the disser-
tation of Alex Simpson [1994, §3.3]. Here we will consider another system which
has a particular mathematical significance associated with topos theory.

A topos is a category E that may be thought of, roughly speaking, as a model
of intuitionistic higher order logic or set theory. It includes a special entity Ω, the
object of truth values, with morphisms

∩,∪, ⇒: Ω ×Ω → Ω, ¬ : Ω → Ω (3)
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satisfying categorical formulations of the laws of Heyting algebra. A “global ele-
ment” of Ω is a morphism of the form 1 → Ω, where 1 is the terminal object of
E . In the category Set of all sets and functions 1 is a one-element set and mor-
phisms 1 → X correspond precisely to actual elements of the set X . Thus global
elements of Ω in a topos are also called truth values. The morphisms (3) induce
operations on the collection E(1, Ω) of truth values that make it into a Heyting
algebra, which is just the two-element Boolean algebra in the case of Set. But for
each topological space S there exists a topos in which E(1, Ω) is (isomorphic to)
the Heyting algebra O(S) of open subsets of S.

Grothendieck generalised the notion of a topology on a set to that of a topology
on a category, by generalising the notion of an open covering of a set. He used
this as a basis on which to formulate sheaf theory. F. William Lawvere and Miles
Tierney showed that the theory could be developed axiomatically by starting with
a topos E having a morphism j : Ω → Ω, called a topology on E , satisfying
properties that allow the construction of a certain sub-topos of “j-sheaves”. The
pair (E , j) will be called a site. The axioms for j are categorical versions of the
requirement that an operation on a lattice be

multiplicative : j(x · y) = jx · jy,
idempotent : j(jx) = jx, and
inflationary : x ≤ jx.

In the address at which he first announced this new theory Lawvere [1970] stated
that

A Grothendieck “topology” appears most naturally as a modal operator of
the nature “it is locally the case that”.

Intuitively, a property holds locally at a point x of a topological space if it holds
at all points “near” to x, or throughout some neighbourhood of x. Alternatively,
a property holds locally of an object if it is covered by open sets for each of which
the property holds. For example a locally constant function is one whose domain
is covered by open sets on each of which the function is constant.

Define a local operator67 on a Heyting algebra H to be any operation j that is
multiplicative, idempotent and inflationary, and call the pair A = (H, j) a local
algebra. The general theory of these algebras has been studied by Donald Macnab
[1976; 1981], who showed that local operators can be alternatively defined by the
single equation

(x⇒ jy) = (jx⇒ jy).

Any local algebra is a candidate for modelling a modal logic based on the intu-
itionistic calculus IPC. Since j is multiplicative and has j1 = 1, this will be a
normal logic when 2 is interpreted as j, but there has been some uncertainty
as to whether a modality modelled by j is of universal or existential character.
Note that a local operator has a mixture of the properties of topological interior

67Also known in the literature as a “nucleus”.
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and closure operators. It fulfills all of the axioms of an interior operator except
Ix ≤ x, satisfying instead the inflationary condition which is possessed by closure
operators. But topological closure operators are additive (C(x+ y) = Cx+ Cy), a
property not required of j.

Let J be the set of all modal propositional formulas satisfied by all local al-
gebras with 1 designated. The proof theory and semantics (algebraic, relational,
neighbourhood, topos-theoretic) of this logic was investigated in [Goldblatt, 1981]

where the symbol ∇ was used in place of 2 and interpreted as a “geometric”
modality. It was shown that J can be axiomatised by adding to the axioms and
rules for IPC the three axioms

∇(p→ q)→ (∇p→ ∇q)

∇∇p→ ∇p

p→ ∇p.

The last axiom allows derivation of the rule from α infer ∇α. There are a number
of alternative axiomatisations of J, one of which is to add to IPC the axioms

(p→ q)→ (∇p→ ∇q)

∇∇p→ ∇p

∇⊤.

As Macnab’s characterisation of local operators suggests, J can also be specified
by the single axiom

(p→ ∇q)↔ (∇p→ ∇q).

In the presence of classical Boolean logic, the middle axiom ∇∇p → ∇p in the
first group is deducible from the other two, and the logic becomes the rather
uninteresting system K+(p → ∇p) whose only connected validating frames are
the two one-element frames S• and S◦ (see section 6.1). But in the absence of the
law of excluded middle we have a modal logic with many interesting models. In
particular it has relational models based on structures S = (K,≤,≺) which refine
the Kripke semantics for IPC. Here ≤ is a partial ordering of K and ≺ is a binary
relation interpreting ∇ as a universal quantifier in the familar way:

M |=x ∇α iff M |=y α for all y such that x ≺ y.

To ensure that M(∇α) is ≤-increasing it is required that x ≤ y ≺ z implies
x ≺ z. The logic J is characterised by the class of such frames in which ≺ is a
subrelation of ≤ that is dense in the sense that x ≺ y implies ∃z(x ≺ z ≺ y).

There is a canonical frame SJ of this kind that characterises J, and the logic also
has the finite model property with respect to such frames. In addition there is a
characterisation of J by neighbourhood frames (K,≤, N) (see 5.3), where Nx is a
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filter in the lattice of ≤-increasing subsets of K, and the following conditions hold:

x ≤ y implies Nx ⊆ Ny,

{y : x ≤ y} ∈ Nx,

{y : U ∈ Ny} ∈ Nx implies U ∈ Nx.

If ∇α is defined to be the formula ¬¬α, then the axioms of J become theorems of
IPC. Lawvere [1970] observed that

There is a standard Grothendieck topology on any topos, namely double
negation, which is more appropriately put into words as “it is cofinally the
case that”.

Now if Y and Z are subsets of a partially ordered set (K,≤), then Z is cofinal
with Y if every element of Y has an element of Z greater than it, i.e.

∀y ∈ Y ∃z ∈ Z y ≤ z.

The Kripke modelling of IPC has

M |=x ¬¬α iff M(α) is cofinal with {y : x ≤ y},

which explains Lawvere’s interpretation of double negation as a modality. On
the algebraic level, putting j(x) = −−x in a Heyting algebra H defines a local
operator whose set {x : −−x = x} of fixpoints is a Boolean subalgebra of H.
On the categorical level, putting j = ¬ ◦ ¬ defines a topology on any topos E
for which the associated subtopos E¬¬ of sheaves is a model of classical Boolean
logic. These constructions are mathematical manifestations of the double-negation
translation of classical propositional calculus into IPC, originating in a paper of
A. N. Kolmogorov [1925], which works by inserting ¬¬ in front of each subformula.

For any partially-ordered set S = (K,≤) there is a topos ES whose objects are
certain “set-valued functors” (P,≤) → Set, and whose algebra ES(1, Ω) of truth
values is isomorphic to the Heyting algebra of all increasing subsets of S. In the
case that S is an appropriate set of “forcing conditions”, the topos (ES)¬¬ of
“double-negation sheaves” becomes a model showing that the continuum hypoth-
esis (for example) is independent of the axioms for topos theory including classical
logic (see [Tierney, 1972]).

If j : Ω → Ω is a Lawvere–Tierney topology on topos E , then the site (E , j) can
be used to interpret modal formulas as truth values 1→ Ω in E . The morphism j
induces a local operator f 7→ j ◦ f on the Heyting algebra E(1, Ω) of truth values
in E . If a formula is satisfied by the resulting local algebra then it is said to be
valid in the site (E , j).

The modal formulas that are valid in all sites are precisely the J-theorems. This
is shown in [Goldblatt, 1981] by the construction out of any J-frame S = (P,≤,≺)
of a particular site (ES, jS) that validates exactly the same modal formulas as does
S. ES is the topos of functors (P,≤) → Set as above. The relation ≺ is used
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to define jS. Applying this construction to the canonical frame SJ produces a
canonical site that characterises the logic J.

It is possible to study topoi from a logical perspective, building these categories
out of the syntactic and proof-theoretic machinery of formal languages of types.
By including a J-style modality in these languages the Lawvere–Tierney sheaf
categories can be constructed in such a way. This approach to the theory of
sheaves and topoi has been developed by John Bell [1988].

There have been several independently motivated introductions of versions of
the system J. A Gentzen-style calculus studied by Haskell Curry [1952] for proof-
theoretic purposes has rules for a possibility modality 3 that gives a variant of J

when 3 is identified with ∇. Recently the logic has re-emerged in a different guise
as the Propositional Lax Logic (PLL) of Matt Fairtlough and Michael Mendler
[1995; 1997]. This is a system based on intuitionistic logic that is intended to
formalise reasoning about the behaviour of hardware devices, like circuits, subject
to certain “constraints”. A modality © is used, with ©α having the intuitive
interpretation “ for some constraint c, α holds under c”. This appears to be an
existential reading of the modality, but the authors suggest that© “has a flavour
both of possibility and necessity”. Their proposed axioms are

(p→ q)→ (©p→©q)

©©p→©p

p→©p,

showing that the system is indeed a version of J with © in place of ∇. They
give a relational semantics for PLL using structures (K,≤, R) with R being a
quasi-ordered subrelation of ≤. The connective © is interpreted by the universal-
existential clause

M |=x ©α iff for all y ≥ x there exists z such that yRz andM |=z α.

It is shown that (K,≤, R) validates the same formulas as the neighbourhood J-
frame (K,≤ N) of the above kind, where a ≤-increasing set U is a neighbourhood
of x (i.e. U ∈ Nx) iff

for all y ≥ x there exists z such that yRz and z ∈ U .

In other words, U ∈ Nx iff U is R-cofinal with {y : x ≤ y}.
Yet another manifestation of J is the CL-logic of Nick Benton, Gavin Bierman

and Valeria de Paiva [1998]. This is designed to analyse a typed lambda calculus,
due to Eugenio Moggi [1991], which gives a denotational semantics for programs
using a constructor T that produces a type of computations. The denotation
of a program computing values of type A is itself an element of the type TA.
The CL-logic is an intuitionistic propositional calculus corresponding to this type
system, and has a “curious possibility-like modality 3” corresponding to the type
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constructor T . The axioms given for 3 are

3p→ ((p→ 3q)→ 3q)

p→ 3p,

again equivalent to the axiomatisation of J when 3 is identified with ∇.
Double negation constitutes just one way of combining non-modal connectives

to define a modality fulfilling the J axioms. Other possibilities are to define ∇α
to be any of β ∨α, β → α, or (β → α)→ α, where β is some fixed (but arbitrary)
formula. Peter Aczel [2001] has studied the interpretation of ∇α as the second-
order formula ∀p((α→ p)→ p), where the variable p ranges over all propositions.
He calls this the “Russell–Prawitz modality” because of its relevance to certain
definitions of the connectives ∧, ∨, ¬, ∃ in terms of→ and ∀ that were introduced
by Bertrand Russell and later shown by Dag Prawitz to be derivable as equivalences
in second-order intuitionistic logic.

7.7 Modal Logic for Coalgebras

The mathematics of modality has recently been applied in theoretical computer
science to the category-theoretic notion of a coalgebra. This application is still
“under construction” but can already be seen as a natural evolution of some of
the trends that have been described in this article.

If T : C → C is a functor on a category C, then an algebra for T is defined
to be a pair (A, τA) comprising a C-object A and a C-arrow τA from TA to A.

A morphism from T -algebra TA
τA−−→ A to T -algebra TB

τB−−→ B is a C-arrow

A
f
−→ B such that f ◦ τA = τB ◦Tf . This is a categorization of the classical notion

of a homomorphism of abstract algebras. To explain that properly is beyond
our scope, and the interested reader should consult such sources as [Mac Lane,
1971, especially §VI.8] and [Manes, 1976] for enlightenment. But the idea can
be illustrated by considering the category Malg of (normal) modal algebras and
their homomorphisms (section 6.5), which is the category of algebraic models of
the smallest normal modal logic K. There is a functor TK : Set → Set on the
category of sets and functions such that TKA is the underlying set of the free modal
algebra FA generated by the set A. If A is itself the underlying set of some modal
algebra A, then there is a unique function TKA

τA−−→ A that is a homomorphism
from FA onto A leaving members of A fixed. The map A 7→ (A, τA) then gives an
isomorphism between Malg and the category of TK-algebras and their morphisms.

Note that free modal algebras can be constructed as Lindenbaum algebras : if
a set A is viewed as a collection of propositional variables, then TKA is the set
of equivalence classes of propositional modal formulas in these variables, with
formulas α and β being equivalent when α↔ β is a K-theorem. This construction
is important even when A = ∅, for there are infinitely many variable-free formulas
constructible from the constants ⊤ and ⊥ by the truth-functional connectives and
the modalities 2 and 3. The free algebra F∅ is an initial object in the category
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Malg, because for each modal algebra A there a unique homomorphism from F∅

to A, since each constant formula has a uniquely determined value in A. The
TK-algebra corresponding to F∅ is an initial object in the category of TK-algebras.

Now category theory has a principle of duality that creates a new concept out
of a given one by “reversing the arrows”, with the new concept being named by
attaching the prefix “co” to the name of the old one. This leads to the notion of a
T -coalgebra as an arrow of the form A

τA−−→ TA, with a coalgebraic morphism from

coalgebra A
τA−−→ TA to coalgebra B

τB−−→ TB being an arrow A
f
−→ B such that

τB ◦ f = Tf ◦ τA, as in

A
f
−→ B

τA ↓ ↓ τB

TA
Tf
−→ TB

Any modal frame can be viewed as a coalgebra for the powerset functor P : Set→
Set. A P-coalgebra A

τA−−→ PA defines a binary relation R on the set A by

xRy if and only if y ∈ τA(x),

giving the frame (A,R), with τA(x) = {y : xRy} ∈ PA. But this last equation
can also be read as a definition of τA given R, so there is an exact correspondence
between frames and P-coalgebras. Moreover, a function f : A→ B is a coalgebraic
morphism from A

τA−−→ PA to coalgebra B
τB−−→ PB precisely when it is a p-

morphism (section 5.3) between the corresponding frames.
Refining this analysis shows that models on frames can be identified with coal-

gebras for a functor TΠ on Set that has TΠA = PA × PΠ, where Π is the set
of propositional variables. A model M = (A,R,Φ) corresponds to the coalgebra

A
τM−−→ PA× PΠ having

τM(x) =
〈

{y : xRy}, {p : Φ(p, x) = ⊤}
〉

.

Similar coalgebraic presentations can be given for a range of structures that arise
in the theory of computation. These include state-based systems from automata
theory and process algebra; various data structures like lists, trees and streams;
and classes in object-oriented programming languages. Many such examples can
be found in the papers of [Reichel, 1995; Jacobs, 1996; Jacobs and Rutten, 1997;
Rutten, 1995; Rutten, 2000; Jacobs, 2002]. Here we illustrate with the case of
a collection {Ri : i ∈ I} of observation relations associated with the Hennessy–
Milner logic described in section 7.2. This can be viewed as a coalgebra for a
functor (P−)I that takes each set A to the set (PA)I of all functions from I to

PA. Using the notation x
i
−→ y in place of 〈x, y〉 ∈ Ri, we find that a system

{Ri : i ∈ I} of relations on a set A corresponds to the coalgebra A
τI−→ (PA)I

for which τI(x) is the function i 7→ {y : x
i
−→ y}. A coalgebra for (P−)I can

also be regarded as providing the state-transition relation for a non-deterministic
automaton with input set I and state set A. For each state x in A, τI(x)(i) is
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the set of possible next states that can be reached by making a transition from x
on input i. For this reason, the τ -arrow of any kind of coalgebra is often called a
transition structure, and its domain is thought of as a state set. (We can identify
(A, τA) with its transition structure, since A is determined as the domain of τA.)

Examples such as these have spurred the establishment of a general theory of
Set-based coalgebras, by analogy with the classical theory of universal algebras,
This “universal coalgebra” was initiated and developed extensively by Jan Rutten
[1996; 2000]. Another valuable source of material is the lecture notes of Peter
Gumm [1999]. The theory makes significant use of a definition of bisimulation for
coalgebras that was introduced in [Aczel and Mendler, 1989]. A relationR ⊆ A×B
is a bisimulation from A

τA−−→ TA to B
τB−−→ TB when there exists a transition

structure R
τR−−→ TR on R such that the projection functions from (R, τR) to

(A, τA) and (B, τB) are coalgebraic morphisms. There is always a largest such
bisimulation ∼AB, known as the bisimilarity relation from (A, τA) to (B, τB).
This abstracts the relation of observational equivalence of processes discussed in
section 7.2.

Another fundamental notion is that of a final, or terminal, coalgebra, categor-
ically dual to the notion of initial algebra discussed for modal algebras above. A
T -coalgebra (F, τF ) is called final if for each T -coalgebra (A, τA) there is a unique

coalgebraic morphism (A, τA)
fA

−−→ (F, τF ). In the process algebra context the
states of a final coalgebra are thought of as representing all possible “observable
behaviours” of processes, because observationally equivalent processes are identi-
fied by the unique morphism to a final coalgebra. More precisely, for any states x
and y of coalgebra (A, τA), if x ∼ y then fA(x) = fA(y), and the converse is also
true under a mild restriction on T [Rutten and Turi, 1993, Corollary 2.9].

It is a well known observation of Joachim Lambek that the transition structure
τF of a final T -coalgebra is an isomorphism between F and TF . So it follows
from Cantor’s Theorem that there cannot exist any final P-coalgebra, since there
is no bijection from any set A onto its powerset PA. Thus the category of modal
frames and p-morphisms has no final object. More generally there is no final
coalgebra for the functor (P−)I whose coalgebras are non-deterministic transition
systems with input set I. On the other hand, we can model finitely branching
non-determinism by using the finitary powerset functor Pω, where PωA is the set
of all finite subsets of A. A (Pω−)I -coalgebra is an image-finite transition system

in the sense, described in section 7.2, that the set {y : x
i
−→ y} of possible next

states is finite for each state x and each input i. There does exist a final (Pω−)I -
coalgebra: this follows from general results about the existence of final coalgebras
[Aczel and Mendler, 1989; Barr, 1993; Kawahara and Mori, 2000; Rutten, 2000].
In particular, a final T -coalgebra exists whenever T is bounded, which means that
there is some cardinal number κ such that any state of a T -coalgebra belongs to
some subcoalgebra with no more than κ states. The functor Pω is bounded with
κ = ℵ0, and for each set I, (Pω−)I is bounded with κ = max{ℵ0, card I}.

Devising a suitable syntax and semantics for T -coalgebras is a matter that
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depends on the nature of the functor T involved. A natural desideratum is a
satisfaction relation τA, x |= α, expressing “formula α is true/satisfied at state
x in coalgebra τA”, that provides a logical characterisation of bisimilarity in the
following form:

x ∼AB y iff for all formulas α, τA, x |= α iff τB, y |= α.

If this holds we will say that the logic, or the functor T , has the Hennessy–Milner
(HM) property (see (∗) in section 7.2).

The first explicit coalgebraic logic with this property was introduced by Lawrence
Moss [1999] for a broad class of functors that have final coalgebras. The language
involved was infinitary, allowing formation of the conjunction of any set of formu-
las. For certain functors it was shown that this language has sufficient expressive
power to characterise each state of the final coalgebra uniquely by a single formula.

Finitary modal languages with the HM-property were developed by Alexan-
der Kurz [1998; 2001], Martin Rößiger [1998; 2001] and Bart Jacobs [2000] for
coalgebras of polynomial functors. A functor is polynomial if it can be induc-
tively constructed from the identity functor A 7→ A and functors A 7→ C with
some constant value C, by forming products A 7→ T1A × T2A, disjoint unions
A 7→ T1A + T2A, and “exponential” functors A 7→ (TA)I with fixed exponent
I. The value C of a constant functor can be thought of as a set of “outputs” or
“observable values” and an exponent I as an “input” set. For example, consider
the functor having TA = (C × A)I with fixed sets C and I. The corresponding
modal language has a modality [i] for each i ∈ I. Given a state x in a T -coalgebra
(A, τA), and an “input” i ∈ I, we obtain a pair τA(x)(i) ∈ C × A whose second
projection π2(τA(x)(i)) is a new state from A. We declare a modal formula [i]α to
be true at x when α is true at this next state:

τA, x |= [i]α iff τA, π2(τA(x)(i)) |= α.

Note that the first projection π1(τA(x)(i)) here is an output value from C. The
language for T -coalgebras in this case has formulas (i)c for each c ∈ C with the
semantics

τA, x |= (i)c iff π1(τA(x)(i)) = c.

Similarly, the logic for a general polynomial functor T has modal formulas [p]α and
“observational” formulas (p)c built from certain path expressions p that syntacti-
cally reflect the internal structure and inductive formation of T . The Lemmon–
Scott canonical model construction (section 5.1) can be adapted to such logics,
and Kurz and Rößiger proved that the canonical model is a final T -coalgebra in
the case that the constant sets C occurring in the definition of T are all finite.
Jacobs showed that under this same restriction a contravariant duality of the kind
considered in section 6.5 can be constructed between the category of T -coalgebras
and a certain category of Boolean algebras with operators corresponding to the
path-modalities [p].

Another approach to polynomial coalgebraic logic was introduced in [Goldblatt,
2001b; Goldblatt, 2003b] by working with terms for algebraic expressions, like
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π1(τA(x)(i)), that have a single state-valued variable x. Boolean combinations of
equations between observable-valued terms were shown to give a class of formulas
that has the Hennessy–Milner property. Bisimilar states were also characterised
as those that assign the same values to all observable-valued terms. Equations
with the same semantics as the above formulas [p]α and (p)c can be defined in this
language.

Of course the idea of a formula or term having a single state-valued variable
is an implicitly modal one, and goes all the way back to Meredith’s U -calculus
interpretation of propositional modal formulas as formulas of first-order logic that
have a single free variable (Sections 4.4 and 6.3). At the same time this equational
approach is closer to classical universal algebra and model theory, and leads to nat-
ural coalgebraic constructions of ultraproducts [Goldblatt, 2003d] and ultrafilter
extensions [Goldblatt, 2003a].

Coalgebras for polynomial functors can be thought of as generalised determinis-
tic automata. Non-determinism can also be accommodated by using the powerset
functor P along with the polynomial operations to form the so-called Kripke poly-
nomial functors of [Rößiger, 2000]. There are finitary modal logics for these as
well, but the HM-property now only holds for coalgebras that are imagine-finite,
which essentially means that the finitary powerset functor Pω is used in place of
P in their construction.

The original modal language and semantics of Hennessy and Milner (section
7.2) provides any functor of the form (Pω−)I with a finitary logic having the
HM-property. Its syntax can be extended by allowing formation of conjunctions
of sets of fewer than κ formulas, for some fixed infinite cardinal number κ. The
result is a logic with the HM-property for the functor (Pκ−)I , where PκA is the
set of all subsets of A with fewer than κ elements. (Pκ−)I is bounded and has a
final coalgebra, for any infinite κ. By going further and forming conjunctions of
arbitrary sets of formulas [Milner, 1989], an HM-logic is obtained for the functor
(P−)I . But now the collection of formulas becomes a proper class, rather than a
set. Also, there is no longer any final coalgebra. These two facts are connected: it
can be shown [Goldblatt, 2004] that if a functor T has an HM-logic whose class of
formulas is small (i.e. a set), then there must be a final T -coalgebra. Consequently,
there is no such small HM-logic for a functor of the form (P−)I .

The formulation and analysis of logics for various categories of coalgebras is the
subject of current research. The assessment of the impact of these investigations
on the evolution of modal logic is a task for the historians of the future.
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[Gödel, 1931] Kurt Gödel. Review of Becker 1930. Monatshefte für Mathematik und Physik
(Literaturberichte), 38:5, 1931. English translation in Solomon Feferman et al., editors, Kurt
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