
R3 IS THE DISJOINT UNION OF UNIT CIRCLES, IF AC IS TRUE

We prove that, assuming AC , there exists a partition of R3 into disjoint unit circles. We also
show that such a decomposition cannot exist in R2.

Theorem 1 (AC). There exists a decomposition of R3 into unit circles.

This theorem appears quite difficult to appreciate constructively—and like many theorems
of ZF+AC , the fact that AC “gives” us functions and well-orderings without any need for
intuition as to why they should exist in the first place, the constructions are mysterious in that
sense, too.

We will need the following simple lemma.

Lemma 2 (AC). If |x| = κ and y ⊂ x with |y| < κ then |x \ y| = κ.

Proof. Otherwise |x| = |y|+ |x \ y| < κ by the Fundamental Theorem of Cardinal Arithmetic,
a contradiction. □

Before we embark on the formal proof, a little bit of notation: for any set x, let

gx : P(x) \ {∅} → x

denote a choice function: if y ⊂ x is non-empty then gx(y) ∈ y.

Proof of the theorem. All circles in this proof are unit circles.
Suppose {xα |α < c} is a well-ordering of R3. We argue in stages, by recursion. At each stage

α we pick a circle Cα containing the respective point in the well-ordering of R3. In particular,
we have two construction conditions: for all α < c we must have

(1) Cα ∩
(⋃

β<αCβ

)
= ∅

(2) xα ∈
⋃

β≤αCβ

We now argue by recursion.
Suppose we have already chosen the circles {Cβ |β < α} for α < c. Consider xα, the next

real. Note that it might be the case that xα is already covered by circles! In that case, we find
another point not yet covered by circles, and cover that one instead.

If xα ̸∈
⋃

β<αCβ, then put x = xα. Otherwise, xα is already covered by our chosen circles,
so we find some other point that is not covered by circles yet, and deal with that one instead:
we put

x = gR3

({
y ∈ R3

∣∣∣ y ̸∈
⋃

β<α
Cβ

})
.

We now find a circle that contains x and is disjoint from all previously chosen circles Cβ.

Let P denote the set of planes in R3 containing x.

Claim 1. |P| = c

Proof of Claim 1. Each plane P ∈ P is determined by a normal vector (since we know x ∈ P );
there are clearly c-many such normal vectors. ⊣

Of those planes, choose one plane that does not contain any previously enumerated circle.
Observe that every circle in R3 lies in exactly one plain; in other words, there is a bijection
between already enumerated circles and their planes. As we have only enumerated |α| < κ
circles so far, lemma 2 tells us that c-many1 planes without embedded circles remain; we choose
one of them formally: define

P = gP({P ∈ P | (∀β < α)(Cβ ̸⊂ P )})
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1Important here is only the fact that at least one plane remains.
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Even though P does not properly contain any of the circles Cβ, it might intersect some
of them; hence we cannot pick any circle containing x that lies in P to satisfy the recursive
construction. However, each Cβ can intersect P in at most two points, of course; avoiding those
points is easy by another counting argument. Define

D = {C ⊂ P |C is a circle ∧ x ∈ C}.

Claim 2. |D| = c

Proof of Claim 2. The set of origins of all circles in D forms a circle itself. Clearly each origin
determines a unique circle, and so there are c-many options. ⊣

Let Q be the set of points of intersections of P with any of the Cβ; in particular:

Q = {y ∈ R3 | (∃β < α)(y ∈ P ∩ Cβ)}.
It is now easily seen that |Q| ≤ |α| × 2 = |α|.

We need to pick our circle from D so that it avoids Q (because then it also avoids all Cβ).
We count again: for each y ∈ Q there exist at most two circles in P that contain both x and
y. Again, the set of origins of circles containing x form a circle Sx themself, and similarly for
y. Hence any circle containing both x and y must have its origin in Sx ∩ Sy. Since two circles
intersect each other in at most two points, there can be at most two circles containing both x
and y.

Hence we have an upper bound for the cardinality of the set of circles we need to avoid:

|{C ∈ D |x ∈ C ∧ C ∩Q = ∅}| ≤ |Q| × 2 ≤ |α| × 2 = |α| < c.

Thus there are plenty of circles left to choose in D (by lemma 2 and claim 2). Let

Cα = gD({C ∈ D |x ∈ C ∧ C ∩Q = ∅})
to continue the construction. This completes the proof. □

What if we do not insist on unit circles?

Theorem 3. There exists a decomposition of R3 into circles.

This result is due to Andrzey Szulkin from 1983, and can be found in his paper “R3 is
the Union of Disjoint Circles.” in The American Mathematical Monthly, 90(9), pp. 640–641.
Importantly, Szulkin’s construction is constructive (no pun intended): it does not require AC.

Clearly there is no disjoint union of unit circles covering R2. What if we allow circles of
all radii? Does such an extension of theorem 1 hold for R2? The answer is no. We need the
following classical result from point-set topology first.

Lemma 4 (Cantor’s Intersection theorem for R2). Let (Ci)i<ω be a nested sequence of compact
subsets of R2. Then the intersection

⋂
Ci is non-empty.

Theorem 5. There is no decomposition of R2 circles.

Proof. Here is a sketch. If there was one, then choose any point in R2 and find a nested sequence
of circles whose radius tends to 0. By Cantor’s Intersection theorem, the intersection of the
discs bounded by the family of nested circles is a singleton; it cannot be covered by any circle
without htting the boundary of some disc. □

For more results of this kind take a look at Jonsson and Wästlund’s “Partitions of R3 into
curves.” in Math. Scand. 83 (1998), no. 2, 192–204. General constructions of strange subsets of
Rn using AC can be found in Krzysztof Ciesielski’s “Set theory for the working mathematician.”
in London Mathematical Society Student Texts, 39. Cambridge University Press, Cambridge,
1997.


