1. INTRODUCTION

Suppose $\alpha = \{e_1, e_2\}$ is the standard basis in \mathbb{R}^2 . We can express any vector $v \in \mathbb{R}^2$ as a linear combination of vectors in α : there exist real numbers $x_{\alpha}, y_{\alpha} \in \mathbb{R}$ such that

$$x_{\alpha}e_1 + y_{\alpha}e_2 = v.$$

The coefficients x_{α}, y_{α} are called the *coordinates of* v with respect to α .

Of course, we may use a different basis: for instance, consider the basis $\beta = \{g_1 = (1, 1), g_2 = (2, 1)\}$. It is easily verified that β is a basis; and hence, we can, again express v as a linear combination of vectors in β : there exist reals x_{β}, y_{β} such that

$$x_{\beta}g_1 + y_{\beta}g_2 = v.$$

Example 1. Suppose v = (2,3). Then

$$v = 2e_1 + 3e_2$$

so $x_{\alpha} = 2$ and $y_{\alpha} = 3$, and

$$v = 4g_1 - g_2$$

and hence $x_{\beta} = 4$ and $y_{\beta} = -1$.

This note covers the question: how can we transform (x_{α}, y_{α}) into (x_{β}, y_{β}) ?

2. Always remember the basis

Whenever we consider a "point" in \mathbb{R}^2 , we implicitly express the point with respect to some basis. Most of the time, this fact stays under the radar as there is a canonical choice for said basis: the standard basis α , mentioned above.

Once we introduce a second basis, β , things get tricky. What is important to remember is that the idea of expressing points with respect to some basis is not new – it is mostly taken for granted.

Consider the example above. We could express the expression of v using the basis α , i.e.

$$v = 2e_1 + 3e_2$$

as the matrix equation

$$v = \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

which, of course, looks unnecessarily complicated: normally we wouldn't care to write down the identity matrix. But now look what happens when we do the same with the basis β : we obtain

$$v = \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 1 & 2\\1 & 1 \end{bmatrix} \begin{bmatrix} 4\\-1 \end{bmatrix}$$

and here it is clear why we cannot omit the matrix.

June 13, 2022 (linus.richter@sms.vuw.ac.nz).

3. Now transform

With the matrix equation above in mind, we may write

$$v = \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 1 & 2\\1 & 1 \end{bmatrix} \begin{bmatrix} 4\\-1 \end{bmatrix}$$

from which we isolate the equation

$$(*) \qquad \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

This is the equation we always want to keep in mind. What is it saying: it says that the point whose coordinates are (2,3) with respect to the standard basis α is the same point point whose coordinates are (4, -1) with respect to the basis β !

We will now give these matrices names: let

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A_{\alpha} \qquad \text{and} \qquad \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = A_{\beta}$$

In particular, observe that the columns of A_{α} are exactly the basis vectors of α , and, similarly, for β . Moreover, the vectors (2,3) and (4,-1) are, in fact, the coordinates of v with respect to α and β ! So we have

(†)
$$A_{\alpha} \begin{bmatrix} x_{\alpha} \\ y_{\alpha} \end{bmatrix} = A_{\beta} \begin{bmatrix} x_{\beta} \\ y_{\beta} \end{bmatrix}$$

which is true in general, for any bases α, β , and any size square matrix (and not just n = 2).

To emphasise how useful equation (*) and its more general version (†) above is, we stick with our bases α and β but consider a new point w. Assume we have the coordinates for w with respect to α , let's say they are (-3, 1), but not with respect to β . What can we do? Recall that we have

$$A_{\alpha} \begin{bmatrix} -3\\1 \end{bmatrix} = A_{\beta} \begin{bmatrix} x_{\beta}\\y_{\beta} \end{bmatrix}$$

and hence

$$A_{\beta}^{-1}A_{\alpha}\begin{bmatrix}-3\\1\end{bmatrix} = \begin{bmatrix}x_{\beta}\\y_{\beta}\end{bmatrix}$$

which allows us to transform the coordinates of w (or any point) from α to β . Hence, we define the *change of basis matrix from* α *to* β *by*

$$A_{\alpha \to \beta} = A_{\beta}^{-1} A_{\alpha}$$

and, for the other direction, we have

$$A_{\beta \to \alpha} = A_{\alpha}^{-1} A_{\beta}$$

as needed.

4. CONCLUSION

For any two bases α and β , consider the matrix A_{α} , whose columns are exactly the vectors of α , and similarly A_{β} , which is constructed from β in the same way. The change of basis matrices $A_{\alpha\to\beta}$ and $A_{\beta\to\alpha}$ are constructed from them via

$$A_{\alpha \to \beta} = A_{\beta}^{-1} A_{\alpha}$$
 and $A_{\beta \to \alpha} = A_{\alpha}^{-1} A_{\beta}$

If there is one equation to remember for this construction, it is equation (\dagger) : it emphasises how every expression of a vector comes with a basis – even though it may be implicit.