ONE WAY TO THINK ABOUT: CHANGE OF BASIS MATRICES

1. Introduction

Suppose $\alpha=\left\{e_{1}, e_{2}\right\}$ is the standard basis in \mathbb{R}^{2}. We can express any vector $v \in \mathbb{R}^{2}$ as a linear combination of vectors in α : there exist real numbers $x_{\alpha}, y_{\alpha} \in \mathbb{R}$ such that

$$
x_{\alpha} e_{1}+y_{\alpha} e_{2}=v .
$$

The coefficients x_{α}, y_{α} are called the coordinates of v with respect to α.
Of course, we may use a different basis: for instance, consider the basis $\beta=\left\{g_{1}=(1,1), g_{2}=\right.$ $(2,1)\}$. It is easily verified that β is a basis; and hence, we can, again express v as a linear combination of vectors in β : there exist reals x_{β}, y_{β} such that

$$
x_{\beta} g_{1}+y_{\beta} g_{2}=v .
$$

Example 1. Suppose $v=(2,3)$. Then

$$
v=2 e_{1}+3 e_{2}
$$

so $x_{\alpha}=2$ and $y_{\alpha}=3$, and

$$
v=4 g_{1}-g_{2}
$$

and hence $x_{\beta}=4$ and $y_{\beta}=-1$.
This note covers the question: how can we transform $\left(x_{\alpha}, y_{\alpha}\right)$ into $\left(x_{\beta}, y_{\beta}\right)$?

2. Always remember the basis

Whenever we consider a "point" in \mathbb{R}^{2}, we implicitly express the point with respect to some basis. Most of the time, this fact stays under the radar as there is a canonical choice for said basis: the standard basis α, mentioned above.

Once we introduce a second basis, β, things get tricky. What is important to remember is that the idea of expressing points with respect to some basis is not new - it is mostly taken for granted.

Consider the example above. We could express the expression of v using the basis α, i.e.

$$
v=2 e_{1}+3 e_{2}
$$

as the matrix equation

$$
v=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

which, of course, looks unnecessarily complicated: normally we wouldn't care to write down the identity matrix. But now look what happens when we do the same with the basis β : we obtain

$$
v=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

and here it is clear why we cannot omit the matrix.

[^0]
3. NOW TRANSFORM

With the matrix equation above in mind, we may write

$$
v=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

from which we isolate the equation
(*)

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

This is the equation we always want to keep in mind. What is it saying: it says that the point whose coordinates are $(2,3)$ with respect to the standard basis α is the same point point whose coordinates are $(4,-1)$ with respect to the basis β !

We will now give these matrices names: let

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=A_{\alpha} \quad \text { and } \quad\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]=A_{\beta}
$$

In particular, observe that the columns of A_{α} are exactly the basis vectors of α, and, similarly, for β. Moreover, the vectors $(2,3)$ and $(4,-1)$ are, in fact, the coordinates of v with respect to α and β ! So we have

$$
A_{\alpha}\left[\begin{array}{l}
x_{\alpha} \\
y_{\alpha}
\end{array}\right]=A_{\beta}\left[\begin{array}{l}
x_{\beta} \\
y_{\beta}
\end{array}\right]
$$

which is true in general, for any bases α, β, and any size square matrix (and not just $n=2$).
To emphasise how useful equation (*) and its more general version (\dagger) above is, we stick with our bases α and β but consider a new point w. Assume we have the coordinates for w with respect to α, let's say they are $(-3,1)$, but not with respect to β. What can we do? Recall that we have

$$
A_{\alpha}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]=A_{\beta}\left[\begin{array}{l}
x_{\beta} \\
y_{\beta}
\end{array}\right]
$$

and hence

$$
A_{\beta}^{-1} A_{\alpha}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]=\left[\begin{array}{l}
x_{\beta} \\
y_{\beta}
\end{array}\right]
$$

which allows us to transform the coordinates of w (or any point) from α to β. Hence, we define the change of basis matrix from α to β by

$$
A_{\alpha \rightarrow \beta}=A_{\beta}^{-1} A_{\alpha}
$$

and, for the other direction, we have

$$
A_{\beta \rightarrow \alpha}=A_{\alpha}^{-1} A_{\beta}
$$

as needed.

4. Conclusion

For any two bases α and β, consider the matrix A_{α}, whose columns are exactly the vectors of α, and similarly A_{β}, which is constructed from β in the same way. The change of basis matrices $A_{\alpha \rightarrow \beta}$ and $A_{\beta \rightarrow \alpha}$ are constructed from them via

$$
A_{\alpha \rightarrow \beta}=A_{\beta}^{-1} A_{\alpha} \quad \text { and } \quad A_{\beta \rightarrow \alpha}=A_{\alpha}^{-1} A_{\beta} .
$$

If there is one equation to remember for this construction, it is equation (\dagger): it emphasises how every expression of a vector comes with a basis - even though it may be implicit.

[^0]: June 13, 2022 (linus.richter@sms.vuw.ac.nz).

