
THE BOREL-DEFINABLE GROUP COHOMOLOGY OF Rn IS
(HOPEFULLY) SIMPLE

Abstract. I will motivate group extensions, which allow us to decompose any finite group
into a set of finite simple groups, its building blocks. Using descriptive set theory, we can
study the special class of definable group extensions: those induced by Borel functions.
Kanovei and Reeken have made inroads into classifying these Borel extensions—I will
outline their result for abelian Borel extensions of (R,+) by any countable abelian group,
and present work in progress on the case Rn. This is joint work with Dan Turetsky.

Introduction

Definability (especially the first-order kind) plays an important role in mathematical
logic: classically from Russell’s paradox, over the contemporary pillars of logic in Com-
putability Theory (Post’s theorem, and extensions to higher computability theory on
admissible ordinals), Set Theory (absoluteness, V=L, the definability of forcing), to
Model Theory, arguably the study itself of definable objects.
Applications to classical mathematics can also easily be found: one active of area

concerns Descriptive Set Theory: in particular, Borel equivalence relations. There,
we augment objects with a natural Polish structure. This allows us to think of definable
objects as being those that can be obtained from Borel considerations: either, they
are Borel sets themselves, or they are induced by Borel functions in some way (similar
approaches can be applied to Baire-measurability).

One reason why definable examples are important (and useful) is because they often
sidestep the trivial existence by AC—those usually do not inform about the inherent
structure of an object at all; their existence is given straight from the axiom. The
definable examples lie on the other end of this spectrum: not only are they normally
constructive (in a general sense), they also spell out why they satisfy a given property.

Building Groups From Simple Groups

In this talk, we consider the context of group extensions. By way of analogy, consider
the primes in Z. Each non-zero k ∈ Z can be written as a product of primes (and
units), which up to order of the factors, is unique. Further, the decomposition of k into
integers can be carried out in stages: first divide k by a prime appearing in its prime
decomposition; then take the divisor and divide by the next prime, and carry on in this
manner. Since the prime decomposition of k is finite, after finitely many steps we arrive
at a prime p; and one more division yields 1, and we are done. For instance, for k = 12
we have

12 6 3 1

2 2 3

>

12/6

>

6/3

>

3/1

Figure 1.
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which shows us immediately that the set of prime factors of k = 12 is given by {2, 2, 3},
counting multiplicity. Further, observe that the order of decomposition does not matter.
Indeed, we can define the following finer notion of maximality:

Definition 1. We call m < k maximal in k if m|k and for all m < m′ < k, if m′ | k
then we have m ∤ m′.

For example, 4 is maximal in 12. From this definition, we recover the prime decompo-
sition of 12 in a second, slightly different way: namely it is clear that we can choose any
maximal integer to obtain the prime factors; clearly, the following sequence also works

12 4 2 1

3 2 2

>

12/4

>

4/2

>

2/1

Figure 2.

which recovers, importantly, the same decomposition, albeit in a different order. This
importance of maximal notions is a recurring theme.

Assuming we do not know the prime decomposition a priori (in which case the above
process is trivial), how de we actually decompose an integer into primes? Practically,
how exactly do we find the factors? One way of doing so involves searching: given k find
the largest l < k that divides it. Then divide; e obtain the factors.

This idea is very important, and can be applied to groups in the following way. Let G
be a group. Recall that G is simple if G has no normal subgroups save G and 1 itself.
Importantly:

Lemma 2. If N ◁G is a maximal subgroup (under inclusion) then G/N is simple.

So we can do the following: fix a finite group G and take any maximal normal subgroup
ofG; consider its quotient, and continue. In finitely many steps we will arrive at the trivial
subgroup 1. By lemma 2, the quotients (or factors of course) we obtain along the way
are all simple (compare with prime in the ring-case Z above).
Again, an example helps: consider the finite group S4. A maximal normal subgroup

is A4, and the quotient has order 2, and hence is (isomorphic to) Z2—which is simple,
as promised. Now, A4 has as maximal normal subgroup K4, the Klein Four Group, with
quotient of order 3, hence isomorphic to Z3—again simple. Finally, K4 has a normal
subgroup of order 2, and their quotient has order 2 itself, which completes the decompo-
sition.

S4 A4 K4 Z2 1

Z2 Z3 Z2 Z2

▷

S4/A4

▷

A4/K4

▷

K4/Z2

▷

Z2/1

Figure 3.

An instructive analogy with the ring Z from earlier: consider the group Z12: its de-
composition as groups yields exactly the composition of prime factors of the integer 12
in the ring Z.
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Z12 Z6 Z3 1

Z2 Z2 Z3

▷

Z12/Z6

▷

Z6/Z3

▷

Z3/1

Carrying the analogy further, comparing figs. 1 and 2, we would hope that the order
of decomposition of groups not matter. Luckily, this is in fact the case:

Theorem 3 (The Jordan-Hölder-Theorem). The set of composition factors is uniquely
determined, up to isomorphism.

What about going the other way? Suppose we have a set of decomposition factors, i.e.
a sequence of simple groups. How easy is it to find the original group? Not easy at all.

Firstly, in Z multiplication of primes (or of integers in general for that matter) is well-
defined, it of course yields a single integer (up to associates). This is not as clear here;
there is no reason to believe that there should only exist a single group which can be
composed from a given sequence of composition factors. Indeed, here is an example:
consider the sequence (Z3,Z2) of decomposition factors. We aim to find groups Gi such
that

G0 G1 1

Z2 Z3

▷

G0/G1

▷

Z3/1

Figure 4.

It is evident that G1
∼= Z3; there is no choice to be made. But what about G0? The

conditions we need G0 to satisfy are the following:

• G0 has a normal subgroup of order 3
• G0/G1

∼= G0/Z3
∼= Z2

We call them the extension conditions. In this case, G0 is an extension of Z2 by G1.
In our example, there is not much choice, but there is some: clearly, |G0| = 6, but

there are two groups of order 6 (up to isomorphism), and both have a normal subgroup
of order 3. These are

(1) Z2 × Z3
∼= Z6

(2) S3

which are, importantly, not isomorphic as groups. Hence, while decomposition is unique
(up to isomorphism), composition is not! And it isn’t easy either!

These sequences are called composition series and often denoted by

G = G0 ▷G1 ▷G2 = 1.

Its length is given by its number of composition factors (so the series in fig. 4 has length
2). It should be intuitively clear that, the longer the composition series is, the more
complicated is the composition of the possible groups from said sequence of composition
factors.

Remark 1. There is an important distinction between fig. 1 and fig. 3: the relation ◁ is
not normally transitive, while < (on Z) is! Something to be aware of.

The problem of reconstructing groups can be broken down as follows: suppose H,A
are fixed groups. We want to find a group E such that both of the following hold:
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• H ◁ E
• E/H ∼= A

This recovers exactly our extension conditions from above, which is clear form the fol-
lowing diagram:

E H

A

▷

E/H

This relation has a useful homological form in the shape of short exact sequences:

1 H E A 1
α1 α2 α3 α4

where all maps involved are group homomorphisms and, importantly

image(αi) = ker(αi+1).

This yields the following result straightforwardly.

Lemma 4. The map α1 is injective, α4 is surjective, and E/H ∼= A.

Proof. Firstly, image(α1) = 1, thus ker(α2) = 1, so α2 is injective. Similarly, image(α3) =
ker(α4) = A, and so α3 is surjective. Finally, let1 H ◁ E. Then since α3 is a group
homomorphism, the first isomorphism theorem implies that

E/ ker(α3) ∼= E/ image(α2) ∼= E/H ∼= image(α3) = A

since α3 is surjective, as required. □

Now plug in our example from before: we obtain the sequence

1 Z3 G0 Z2 1

whose solutions for G0 are exactly the compositions introduced above, as required. Its
solutions here are S3 and Z2×Z3, for instance. (However, observe that if we had attempted
to construct a group from composition factors (Z2,Z3) and started with Z2, then there
would have been only the extension Z2 × Z3 since S3 has no normal subgroup of order
2.) Hence we finally define group extensions:

Definition 5. Given groups A,H, the group E is an extension of A by H if the
sequence 1 −→ H −→ E −→ A −→ 1 is short exact (in the category of groups).

Characterising Group Extensions

Recall that we can classify all finite simple groups—hence if we were able to easily solve
the group extension problem then, by a process similar to the above, we could classify all
finite groups, simply from their composition of simple groups.

Sadly, finding (let alone characterising) all possible extensions to a given groups is a
very difficult problem. There are multiple approaches:

(1) The direct sum of the groups A and H is always an extension of A by H, with
the obvious injection and projection.

(2) Some extensions can be obtained by considering the actions via automorphisms
of A on H: these are the so-called semi-direct products [3, p. 68].

(3) One can use factor sets: these are related to short exact sequences, and are
originally due to Otto Hölder (1893). An introduction can be found in [2, p. 255].

1Of course, we are being sloppy here: technically, we require finding a normal subgroup N ◁H such
that H ∼= N ; but it is often much easier to conflate the isomorphic normal subgroups here. Fewer symbols
is better.
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(4) However, there is no unified theory that encompasses all approaches to the
group extension problem.

Here, we make our lives easier: we assume that all groups are abelian. In that case,
there is a nice approach to classifying the abelian extensions: via group cohomology.

Firstly, let us observe that in our quest to classify all group extensions, it is advisable
when exactly two extensions are “the same”. We say that two group extensions E,E ′ of
groups A,H are congruent if the following diagram commutes:

E

1 H A 0

E ′

A few facts about group extensions:

• It turns out that E and E ′ being isomorphic does not suffice for the extensions to
be congruent [2, p. 261]. For instance, consider the following diagram:

Z9

1 Z3 Z3 1

Z9

f

qi

i′ q

where i(1) = 3 and i′(1) = 6. Clearly, image(i) = image(i′) = {0, 3, 6} = ker(q).
But what is f? Observe that 6 = i′(1) = f(i(1)) = f(3) = 3f(1) implies that
f(1) ∈ {2, 5, 8}. But then q(1) = 1 ̸= q(2) = q(5) = q(8) = 2, a contradiction.

• It is further not true that all extensions of A,H are pairwise isomorphic: we
saw above that both S3 and Z2 × Z3 extend Z2 by Z3, but they are clearly not
isomorphic.

• It also follows immediately that extensions of abelian groups by abelian groups
need not be abelian themselves.

Fix abelian groups A,H as before, and let C : A2 → H be a function satisfying the
following conditions:

• C(x, y) = C(y, x)
• C(x, y) + C(x+ y, z) = C(x, z) + C(x+ z, y)

In such a case, we call C a symmetric cocycle. If there exists a function f : A → H
such that

C(x, y) = f(x) + f(y)− f(x+ y)

then we call C a coboundary. These notions are important elements of group coho-
mology—and they play an important part here for the following reason.

Theorem 6. Let A,H be abelian groups, and suppose C is a symmetric cocycle. Then
there exists an abelian group EC defined on A × H such that EC is an extension of A
by H. Equally, if E is an abelian extension of A and H, then there exists a symmetric
cocycle C for which E = EC.

Further, cohomology comes with its own structure—and that structure transfers nicely
into the theory of groups extensions: two cocycles C,C ′ are said to be cohomologous if
C−C ′ is a coboundary. It turns out that cohomologous cocycles induce congruent group
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extensions! Hence, in this simplified context, understanding group extensions reduces to
characterising all cocycles (up to cohomology).

This will be the focus of the remainder of this talk.

Introducing the Polish Context

The maps C : A2 → H (as well as the maps from A to H which induce coboundaries)
are defined on A and H as groups. Given the introduction of this talk, it is hoped
that after augmenting them with additional structure we might learn more about the
definability of present group extensions.

Definition 7. Let A,H be Borel groups (i.e. Borel subsets of some Polish space, whose
group operations are Borel maps themselves). Then E is a Borel group extension
of A by H if and only if E = EC for some Borel cocycle C. A Borel coboundary is a
coboundary with a Borel witness.

Here it is also clear that if C is a Borel cocycle then EC is a Borel extension of A
by H—it is defined on A×H, and its group operation can be shown to be Borel, too, by
the fact that A,H are Borel groups themselves.

This opens up the following question: can we easily classify all Borel group
extensions? This is clearly a rather more logical than algebraic context, and one would
hope that the tools from descriptive set theory provide new tools here, for instance.

It turns out that there not many Borel-definable group extensions.

Theorem 8 (Kanovei, Reeken [6]). There are no non-trivial abelian Borel group exten-
sions of (R,+) by countable abelian G. In symbols:

H2
Bor(R, G) = 1

for countable abelian G.

Remark 2. The authors also remark that H2
Bor(2

ω, G) ̸= 1, not only for countable but
even for finite G [6, p. 265]; and that, based on an idea of Greg Hjorth, one can construct a
Borel subgroup G ≤ R and a Borel cocycle C such that C is a coboundary in H2

Bor(R,R)
but not in H2

Bor(R, G), showing that Theorem 8 fails in general for uncountable G. It
should be noted that a similar construction works for Cantor space 2ω [1, 5].

What does this Theorem 8 mean in terms of cocycles? Since the abelian Borel group
extensions are determined by the symmetric Borel cocycles, what Kanovei and Reeken
have shown is that: if C : R2 → G is a symmetric Borel cocycle then there exists
a Borel map f : R → G such that

C(x, y) = f(x) + f(y)− f(x+ y).

I will outline the proof: it uses forcing, but does not force over the ground model!
Instead, genericity is used to simplify C as follows:

• Let M be a countable transitive model of a sufficiently large finite fragment of
ZFC which also contains a code for C as well as the group G itself. Conditions
are non-empty open intervals of R, coded in M .

• C is simplified in multiple steps. This is generally done by localising : recall that
generics do not satisfy any special properties, and thus C can be manipulated to
be invariant on them.
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• Some detail: fix an open interval I > 0 (which can be considered a condition in
forcing parlance) on which C is invariant for generics. Every real greater than
I can be expressed as the sum of generics from I (the set of generics is Gδ, and
hence comeagre in I after all2 [4, Appendix A]). Hence C is nice on all copies of
I. Mirror this into the negative to obtain all of R.

What about Rn? This is joint work with Dan Turetsky, which grew out of an idea
with Martino Lupini. In this context, difficulties arise even in the case n = 2. Emulating
the argument from [6] seems reasonable but stalls early:

• A nice condition I in R2 under multiplication does not close a space under both
coordinates. So the original mirroring idea of Kanovei and Reeken needs fine-
tuning in R2. One way to do this is to fix two suitable conditions on which C is
invariant individually.

• A nice condition in R2 is more complicated: the second coordinate makes it harder
to prove an equivalently strong notion of invariance for M -Cohen generics (the
problem being that I in the case n = 1 is nice on all generics, whereas n = 2
requires conditions which might be nice in their own right, but might not work
well together).

• Some of these obstacles can be overcome, but the arguments are quite techni-
cal and don’t seem to immediately simplify the subsequent arguments needed to
complete the proof.

In Essence

The group extension problem is difficult. Using ideas from descriptive set theory yields
insights into the definable, or nice, extensions between Polish spaces. Some results indi-
cate that this investigation is a fruitful one: Kanovei and Reeken have shown [6] that

H2
Bor(2

ω, 2ω) ∼= HomC(2
ω, 2ω)

where the latter denotes the group of continuous homomorphisms. It is also not clear
how the topological properties affect the Borel cohomology groups—or what happens
generally when G is not countable. Plenty of open questions to consider in the future!
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