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CA-COUNTEREXAMPLES TO MARSTRAND’S THEOREM

LINUS RICHTER

This talk is based on the paper [16]. By “counterexamples” I mean sets that fail the
theorem.

History. Dimension is a measure of complexity.
For instance, take Lebesgue measure and the cube. Measuring tool are open coverings.
If I choose the wrong measure, I can’t determine its volume! Dimension is funda-

mental: it’s the correct measure of the building blocks of a set!

Was augmented by Hausdorff (1919) [4] to include non-integer dimension by introducing
a type of scaling factor d: the contribution of each component of the covering as it grows
is measured by d.

Note 1. One can also think of the dimension as the “scaling factor” of the set. If we
insist all components of the covering have the same size, we recover the box-counting, or
Minkowski dimension. If there are no restrictions, we get Hausdorff dimension.

A brief example for box-counting dimension: let E ⊂ R2 and ϵ > 0. then denote by
N(ϵ) the number of boxes of side-length ϵ needed to cover E. Then

dimbox(E) = lim
ϵ→0

logN(ϵ)

log(1/ϵ)
.

So if I2 is the unit square then it’s easily seen that N(1/2n) = 2(2n) for every n < ω. Thus

dimbox(I2) = lim
n→∞

logN(1/2n)

log 2n
= lim

n→∞

log 22n

log 2n
= lim

n→∞

2n log 2

n log 2
= 2

as expected.
One can even define intermediate dimensions, where the restriction on covering sizes

can be fixed. See [2] for examples.

Fact 2. Hausdorff dimension is invariant under isometries.

This follows since dimH is also (implicitly) defined using open coverings.
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Marstrand’s Projection Theorem.

Theorem 3 (John Marstrand [13]). Let E ⊂ R2 be analytic. For almost all θ

dimH(pθ(E)) = min{1, dimH(E)}.

Important: proof uses geometric measure theory, that’s why the “for almost all”. There
is a newer proof due to Kaufman (1968) [7], and Mattila has extended1 the result to or-
thogonal projections from Rm to Rn in [14].

What else do we know?

Theorem 4 ([12]). If dimH(E) = dimP (E) then Marstrand’s Projection Theorem applies
to E.

Importantly, this is not a characterisation of analytic sets! And the proof
uses effective methods!

Theorem 5 ((CH), Roy O. Davies [1]). There exists a set E such that dimH(E) = 1
while dimH(pθ(E)) = 0 for all θ.

What is least possible?

Σ1
1 Σ1

2

∆1
1 ∆1

2 ∆1
3

Π1
1 Π1

2

Connecting dimH with K. Long history connecting classical notions of dimension with
effective versions.

Began in earnest with J. Lutz’ early 2000’s work (2003) [8]: introduces effective dimen-
sion on elements of 2N, via term gales, generalisations of martingales (were used to define
resource bounded measure, which alludes to Ville’s original definition of martingale [20] as
well as Schnorr’s characterisation of Kolmogorov-randomness in terms martingales [17]).

• proved that gales in fact characterise dimH on Cantor space! [8, Theorem 3.6]
• introduced constructive dimension on subsets of 2N, and used2 that to define dim
on individual strings in 2N (again using gales)! [9]

1in detail: if 0 < m ≤ dimH(E) = s ≤ n then for almost all hyperplanes L we have dimH(pL(E) = m;
and if 0 ≤ s ≤ m then dimH(pL(E)) = s for almost all L

2this is similar in nature to how Schnorr used constructive martingales to recover ML-randomness
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This dim on 2N satisfies what we would naturally expect!

• if A ∈ 2N is computable then dim(A) = 0
• if A ∈ 2N is (Kolmogorov/Chaitin) random then dim(A) = 1

...and both relativise!

Also gives reals of all dimensions in between! Augments ML-randomness
just like Hausdorff measure augments Lebesgue measure [15]

Note 6. Lutz already hoped for a deep connection: in [5] Hitchcock remarks that “Lutz
conjectured that there should be a correspondence principle stating that the constructive
dimension of every sufficiently simple set X coincides with its classical Hausdorff dimen-
sion.” in lectures at Iowa State university in 2000. This would turn out to be true in a
big way: see the point-to-set principle below.

It turns out: we don’t need gales!

Theorem 7 ([15, Corollary 3.2]). For every A ∈ 2N

dim(A) = lim inf
n→∞

K(f ↾ n)
n

where K denotes prefix-free Kolmogorov complexity.

Hence we also speak of algorithmic information density !

So we have:

• characterisation of dimension of reals in terms of prefix-free complexity K
• characterisation of Hausdorff dimension in terms of dimension of reals.

Can we get a characterisation of dimH in terms of K? YES!

Theorem 8 ([5, Corollary 4.3]). If X ⊂ 2N is a union (arbitrary!) of Π0
1-sets (lightface)

then

dimH(X) = sup
s∈X

dim(s).

Can this be extended? YES!

• First: beyond Cantor space.

...but it can be done more easily:

Theorem 9 ([12]). If x is the binary expansion of x ∈ R then

|Kr(x)−K(x ↾ r)| ≤ K(r) + c
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This also works3 in Rn and in polar coordinates! [16, Proposition 3.1] So now we can
build reals by determining the binary expansion!

dim(x) = dim(x)

Hence define

dim(x) = lim inf
r→∞

Kr(x)

r

= lim inf
n→∞

K(x ↾ n)
n

which also relativises. Also, observe this is the lim inf; so to get dim = 0 we only need
infinitely many drops!

• Second: no restrictions.

Theorem 10 (Jack Lutz, Neil Lutz [10, Theorem 1]). For all E ⊂ R2 we have4

dimH(E) = min
A∈2N

sup
x∈E

dimA(x).

(A similar theorem for Packing dimension is proven in the same paper.)

First counterexample. We assume V = L, and use the point-to-set principle!

Theorem 11 ((V = L), [16]). There exists a co-analytic set E ⊂ R2 such that dimH(E) =
1 while dimH(pθ(E)) = 0 for all θ.

Note 12. Observe this is for all θ!

Three questions:

(1) How do we control the dimension of each point in the projection?
(2) How do we control the dimension of E?
(3) How do we make sure the resulting set is co-analytic?

(1). This requires some work. How do we compute the projection?

In fact it’s even easier: dimH is invariant under isometries! So can only consider
r| cos(θ − φi)| = rai! This introduces projection factors!

And we already know we can construct reals by specifying their binary expansion!

3provided reasonable coding
4in fact holds for Rn
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(2). We want to ensure E has dimH = 1. How do we force that? Here is the power
of the point-to-set principle (usual proofs use geometric measure theory):

Theorem 13 (Folklore). Suppose E ⊂ R2 intersects every straight line through the
origin. Then dimH(E) ≥ 1.

This proof is messy in geometric measure theory, but very straightforward here!

Proof. Work in polar coordinates. Fix some A ∈ 2N, take θ random relative to A. Then
dimA(θ) = 1. By assumption, there exists (r, θ) ∈ E. Thus

dimA(r, θ) ≥ dimA(θ) = 1.

Since A is arbitrary, the point-to-set principle yields the lower bound. □

So if we pick one point from each straight line through the origin then (2) is satisfied!

(3). Use Vidnyánszky’s theorem [19] (just like last week), and argue by recursion.

The key idea: the point-to-set principle only needs the “best” oracle! By V = L,
if we ensure at each step that the point we add projects “simply” onto all previous
(countably many!) lines (i.e. all such projections have dimension 0), we are done!

Here is the structure of the recursion:

• conditions P = [0, π/2]
• suppose below α < ω1 we are done, θ is the current condition.
• partial solution {(ri, φi) | i < ω} ← since V = L
• let ai = | cos(θ − φi)| ← projection factors

Observe: every line appears as a condition in the recursion!

Goal: find r such that dim(rai) = 0 for all i < ω ← this is the
difficult part! Also must be cofinal in Turing degrees!

Idea: build r in stages, by specifying the binary expansion.
• start with r0 the empty string;
• at stage k, decode as ⟨i,m⟩, so we deal5 with condition ai;
• find an extension of rn+1 such that a[rn] contains enough zeroes. ← recall that
dim is given by lim inf!

What does enough mean? Recall that dim is given by the lim inf! So if at stage k we
can force the complexity below 1/k then we’re good!

Figure 1. Taken from [16]. Important: dyadic intervals contain reals that
are extensions of each other’s binary expansions!

This costs bits, but not too many! In fact, if ℓ(rn+1) = 22
n
then we’re done!

5we must ensure to deal with all conditions infinitely often, hence the double coding
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Verifying it works. To show the projection of E onto θ has dimension 0: consider
(r, φ) ∈ E:

EITHER: (r, φ) appeared after condition θ was satisfied. Then, by construction, dim(ra) = 0
where a is the projection factor from Lφ onto Lθ;

OR: (r, φ) appeared before θ was satisfied. Take all (countably many!) points (ri, φi)
in E that appeared before θ, and take the join A of riai (where ai is the proj.
factor of (ri, φi) onto θ). Then A computes all projections onto θ.

By the point-to-set principle

dimH(pθ(E)) ≤ sup
x∈E

dimA(pθ(x)) = 0.

Second counterexample.

Theorem 14 ((V = L), [16]). For every ϵ ∈ [0, 1] there is a co-analytic set E ⊂ R2 such
that dimH(E) = 1 + ϵ yet dimH(pθ(E)) = ϵ for all θ.

This is optimal!

Note 15. Note this is obvious for ϵ = 1 (projections can at most lose 1 “unit of dimen-
sion”), and the case ϵ = 0 is the first counterexample above.

This is more complicated.

The difficulty is: how do we force the dimensions to be exactly what we need?

The idea: for partial solution (ai), code a string T ∈ 2N (such that dimZ(T ) = ϵ for
some suitable Z) into each projection rai; later, long pieces of T can be recovered from
r with knowledge of the partial solution, which gets us what we need.

Open questions.

• What about dimH(E) < 1?
• Packing dimension dimP ? This is the dual to Hausdorff dimension, due to Tricot
[18]. Algorithmic randomness characterisations exist!

Theorem 16 (Jack Lutz, Neil Lutz [10, Theorem 2]). If E ⊂ R2 then

dimP (E) = min
A∈2N

sup
x∈E

DimA(x)

where

Dim(x) = lim sup
r→∞

Kr(x)

r



VUW LOGIC SEMINAR: CA-COUNTEREXAMPLES TO MARSTRAND’S THEOREM 7

...but this does not admit Marstrand-like result (Järvenpää (1994) [6]; Howroyd
and Falconer (1996) [3])
• Extensions of point-to-set principle? Generalisations using gauge functions? [11]
• Other applications: Kakeya sets, Furstenberg sets (applications to harmonic anal-
ysis)...
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