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Suppose P is a combinatorial property of sets.
Question: how do we construct a set satisfying P? Transfinite recursion!

Example 1. There exists a two-point set : a subset of R2 which intersects every line
in exactly two points. Proof [15] and [3, Theorem 6.1.2]: do recursion on all lines (Lα)α<κ

where κ = |R|; choose points at each stage that satisfy the current condition, then later
put them all together. Three conditions: at each stage α

(1) choose at most two points;
(2) make sure no three points in our partial solution so far are collinear;
(3) satisfy that there are exactly two points on Lα in our set.

At stage α, suppose Pβ is the set of points chosen at stage β for β < α; let P be the
union of all sets Pβ for β < α. Since no three points in P are collinear, |Lα ∩ P | ≤ 2. If
it’s 2 we are done.

If not, consider the set L of all lines spanned by any non-degenerate pair of points in
P . Then since |P | ≤ 2|α| = |α| < κ, we have |L| ≤ |P |2 = |α| < κ (we overcount by
taking every pair of points). Each L ∈ L intersects Lα at most once (if it hit it twice,
then L = Lα, so there are already two points of P in Lα); how many points are left?
|Lα ∩

⋃
L| = |

⋃
L∈L(Lα ∪ L)| ≤ |α| < κ. Thus pick one (or two) points from Lα \

⋃
L.

Note 2. Recursion has length 2ℵ0 , so probably not Borel. Original proof due to Mazurkiewicz
(1914) [16] (for a French translation), more results by Chad et al [2].

Can a two-point set be Borel? Asked by Erdős [14], still open! (Can’t be Σ0
2 (or in

other words Fσ) by [12]; also, if it’s Σ1
1 then it’s Borel [17, Section 7].)

Example 3. There exists a partition of R3 into disjoint circles. Proof [3, Theorem
6.1.3]: well-order R3 and argue by induction: well-order R3 = {xα |α < κ} for κ = |R|;
at stage α pick a circle on a plane Pα that doesn’t yet contain any previous circle (exists
since |α| < κ and there are κ many planes containing xα); previous circles meet Pα in at
most two points, so let S ⊂ Pα be the set of points that lie on a previously enumerated
circle in Pα. Take a line L ⊂ Pα containing xα, and consider all circles tangent to L that
contain xα (think of the Hawaiian earring). All of these only intersect at xα, and since
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|S| ≤ 2|α| = |α| < κ (each prev. enum. circle meets Pα in at most two points, and there
are ≤ |α|-many such circles) there must be a circle disjoint from it. Pick that one.

We can do even better: There exists a partition of R3 into disjoint unit circles.
Proof: same as above; just note that at stage α each point x that lies in Pα and a
previously enumerated circle shares at most two unit circles in Pα with xα; this disqualifies
4|α| = |α| < κ many unit circles that contain xα and lie in Pα; pick any of the remaining
unit circles on Pα to complete the proof.

What is the complexity? Tricky question! Is radius fixed? If not, there is a simple
construction:

Example 4. Due to Szulkin [21]: place circles on the x-y-plane of unit radius on the
points (4k + 1, 0, 0) for all k ∈ Z; let C be the union of all the circles. Sr is the sphere
of radius centred at the origin, then every Sr meets C in exactly two points (either it’s
tangent to two distinct circles in C, or it intersects a single circle twice). Consider the
sphere Sr minus the two points of intersection with C. Cut it in two halves, each missing
a single point, by removing a great circle (a circle through the centre of Sr, so of maximal
radius r); each half is an open hemisphere.

The problem now lies in the poles of each hemisphere; it cannot be easily covered by a
circle. But each hemisphere misses a point! Hence take the plane tangent to the sphere
containing the missing point on the sphere; move that plan across the sphere; each plane
intersects with the sphere in a circle; which yields the partition.

Otherwise it’s more difficult and might require AC [9]! More thoughts at [5].

Some transfinite recursions can be abbreviated via Zorn’s lemma1:

Example 5. Considering R as a vector space over Q, it’s an infinite dimensional vector
space. It has a Hamel basis . Proof: take collection F of all sets that are lin. indep.
and only allow a unique representation; this has finite character. Tukey’s lemma [7] says
a maximal element exists; it does the job.

Example 6. Consider N. There exists a MAD family of sets . Proof: First build
an almost disjoint family A of size c (e.g. [11]: take for each f ∈ 2N the set Sf = {σ ∈
2<N |σ ≺ f}, the set of finite initial segments of f ; if f(i) ̸= g(i) with i < ω minimal then
|Sf ∩Sg| = i, the set of common initial segments of f and g). Then make it maximal via
Zorn’s lemma, since the union of increasing a.d. families is also an a.d. family.

1the more complicated arguments above don’t follow immediately from Zorn’s lemma as the maximal
element need not satisfy the required conditions
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Structure of proofs. Often these proofs are of the following structure:

(1) well-order the set of conditions (lines for two-point set, points for partition of R3

into circles, etc.)
(2) at stage α: extend partial solution to bigger partial solution without breaking the

construction, and satisfy condition α
(3) put all parts together

This is called the diagonalisation technique [3, Section 6.1]: list all conditions, satisfy
each of them one at a time (for cardinality reasons we can always extend: there are only
so many lines intersecting a given line, only so many circles in the plane, etc.).

Even the arguments that use Zorn’s lemma work this way: partial solutions are glued
together to obtain a maximal solutions.

Note 7. A useful observation due to Chad et al [2]: recursions with length 2ℵ0 usually
ensure that at each stage the set of points satisfying that stage’s requirement has also
cardinality 2ℵ0 . Hence we actually produce not one set satisfying P but 22

ℵ0 -many.
If P is such that the collection of sets satisfying P has cardinality < 22

ℵ0 then no such
recursion will do the trick; new tools needed!

What’s the role of AC? They all use AC in a very obvious manner! In fact, MAD
family requires AC, and Hamel basis requires some choice! E.g. in [13, Section 5]
it’s shown that ZF+ DC has a model without MAD families (assuming large cardinals).
Two-point set: A. Miller showed there are two-point sets in models of ZF where R is

not well-orderable [18]; an earlier construction that deals with all conditions in one step
also exists [2].

Szulkin’s construction does not require choice.
For Hamel bases: one can construct a model of ZF that doesn’t well-order the reals

and contains a Hamel basis [1] (in the Cohen-Halpern-Lévy model [20]).

In all of these cases, one can wonder: what is the complexity of these sets? The
transfinite recursion gives us no handle.

Consider them as subsets of their ambient spaces:

• two-point set: ambient space is R2

• Hamel basis: ambient space is R
• MAD family: ambient space is P(N) = 2N

• covering of R3 for fixed radius: ambient space is (R3)3 (just consider centres of
circles and two other points on them)

...and all of these are Polish spaces! Now we can classify sets with these combinatorial
properties using the Borel or the projective hierarchy! So a natural question follows:

Question 8. What are the “simplest” sets satisfying any of these properties?

Consider the projective hierarchy: Suslin’s theorem says: every ∆1
1-set is Borel, so

that’s a useful lower bound. We have the usual inclusions via universal sets:

∆1
1 ⊂ Σ1

1,Π
1
1 ⊂ ∆2

1 ⊂ Σ1
2,Π

1
2 ⊂ ∆1

3 ⊂ . . .

So, the first step would be to attempt to construct Borel sets with these properties.

Why no Borel sets? Rather difficult: all of the examples above naturally quantify over
reals (or second-order objects), which is hard-coded into the definition of analytic sets:
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Definition 9. If X is uncountable Polish and A ⊂ X then A ∈ Σ1
1 if and only if there

exists a closed F ⊂ X × ωω such that

x ∈ A ⇐⇒ (∃α)((x, α) ∈ F )

Further, we use a well-ordering in the process of building these sets transfinitely; it is
well-known that no Borel well-ordering of the reals exists [6, Lemma 25.41].

In fact it turns out that some of the examples given earlier cannot possibly be Borel!
Here are some negative results: there is no Σ1

1

• MAD family [13]
• Hamel basis (there’s a proof in [8, Theorem 9]; uses measurability considerations)

Two-point-set (already mentioned)? Still an open question!

On the other hand: there exists a Π1
1

• two-point set [17]
• MAD family (ibid.)
• Hamel basis (ibid.)

What do these have in common? All were shown under V = L!

Question 10. With AC we have: all conditions can be well-ordered, and we can diago-
nalise if the set of “good” candidates is large enough (cardinality-wise). But we have no
control over the complexity of the resulting set.

With V = L we have: AC + lots more structure! What do we get in return?

Using V = L. Use (effective descriptive) set theory! First approaches due to Erdős,
Kunen, and Mauldin [4], and later by A. Miller [17].

Contrast the “classical” case:
AC: suppose M is Polish space.

(1) suppose we build a set E ⊂ M
(2) set of conditions P = {pα |α < κ} where κ = |M |
(3) argue by recursion: at α < κ, we have only enumerated < κ many points (so

there are cardinality-many options left!)
(4) given partial solution Aα (the choices we’ve already made) pick x ∈ M such that:

(P) {x} ∪ Aα does not fail the construction2

(D) {x} ∪ Aα satisfies the condition3 pα

Here is an alternative:
V = L: suppose M is perfect4 Polish, computably presented5.

(1) suppose we build a set E ⊂ M
(2) set of conditions P (must be uncountable)
(3) define F so that (A, p, x) ∈ F iff

EITHER: A is a partial solution and p is not satisfied and x satisfies p and respects6 A

2this often means: don’t enumerate too many points
3this often means: don’t enumerate too few points
4so each of its points is a limit point
5one needs a recursive Borel isomorphism from M to 2N; this is possible if M is computably presented

[19, 3I.4]
6this means A ∪ {x} is a partial solution
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OR: A is a partial solution and p is satisfied and x respects A
ELSE: A is not a partial solution.

Note 11. A few important notes:

• Any “path” through F constructed by recursion will satisfy all conditions!
• Since V = L, every partial solution is countable!
• The set of conditions P is well-orderable!

We never argue by recursion; instead the following theorem does the hard work for us:

Theorem 12 (V = L, [22, Theorem 1.3]). Let P be uncountable Borel. If F is Π1
1 and

each section F(A,p) is cofinal in the Turing degrees then the recursion along F yields a Π1
1

set X. By transfinite induction, X satisfies all conditions P .

Note 13. It is now clear why we need the ELSE-case: we must achieve cofinality for
all pairs (A, p), not just the partial solutions (but of course, those partial solution cases
EITHER and OR are the only ones invoked in the construction).

A few words on the proof: only cofinality in hyperdegrees is needed. Builds a set of
self-constructible reals7 S where

S =
{
α
∣∣∣α ∈ L

ω
(α)
1

}
.

Importantly,

y ≤h x ⇐⇒ y ∈ L
ω
(x)
1
[x] and if x ∈ S then L

ω
(x)
1
[x] = L

ω
(x)
1
.

It is also known [10] that

L ∩ ωω = {α | (∃β)(β ∈ S ∧ α ≤T β)}.
Finally, observe that if V = L and X is Π1

1 then X is cofinal in HYP iff X ∩ S is.

(1) take F as above, suppose (A, p, x) ∈ F ;
(2) augment F to some F ′ of tuples (c, A, p, x) where c codes a well-ordering of con-

ditions which have already been satisfied (still Π1
1; only pick x ∈ S s.t. c ≤h x

and L
ω
(x)
1

agrees that c has coded all conditions so far w.r.t. ≤L, and that p is the

next one; possible since all sections are cofinal in Turing degrees)
(3) uniformise to get single “solutions”; not all are, so only keep those tuples which

are “paths” through F ′ (so the history coded by c and A is correct)
(4) pick all x for which there is a partial solution plus history (c, A, p) ≤h x for which

x is the unique solution (still Π1
1 by Spector-Gandy).

Why cofinal in ≤h? If x ∈ S then L
ω
(x)
1

is a true initial segment of L. So if L
ω
(x)
1

thinks c is a history (of the first α reals w.r.t. ≤L), then it actually is in L, too!

Why V = L? Then all reals are constructible, so by the end we will have exhausted
all conditions—hence the construction is complete.

Note 14. Is V = L necessary? If Theorem 12 holds then every real is constructible [22,
Theorem 4.4]. It’s open whether “every real is constructible” suffices [22, Problem 5.7].

7these form the largest thin Π1
1-set, so it’s an open question whether any of the constructed sets below

can contain perfect subsets [22, Problem 5.8]
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Two applications.

Example 15. (V = L) There exists a co-analytic two-point-set. [22, Theorem 5.2]
Conditions are lines coded by reals so that each line appears at least twice.

Let (A, p, x) ∈ F if and only if

EITHER: there are no three collinear points in A (So A is a partial solution) and the intersection
of A with the line p has at most 1 element (So p is not satisfied yet) and x ∈ p and not
collinear with any two points in A (So x satisfies p and respects A)

OR: there are no three collinear points in A (So A is a partial solution) and the intersection
of A with the line p has 2 elements (So p is already satisfied) and x is not collinear with
any two points in A (So x respects A)

ELSE: there are three collinear points in A (So A is not a partial solution)

This set is Borel; must show each section F(A,p) cofinal in ≤T .

Take a real r ∈ R. Only interesting cases are the EITHER-OR cases (the ELSE case
is obvious; pick any real.

EITHER: we picked ≤ ℵ0-many points, so p has ℵ1-many points left (similar as in AC-
case); since we can pick one coordinate arbitrarily, that set is cofinal in Turing degrees;
it must contain a point that computes r.

OR: just pick any point not breaking the construction (again ℵ1-many).

Hence the theorem applies! Since every line appears at least twice we get a two-point-
set that is Π1

1.

Note 16. One can easily build co-analytic n-point sets for any n < ω by the same
argument!

Example 17. (V = L) There exists a co-analytic MAD family. [22, Theorem 5.1]
Conditions are subsets of ω.

The naive approach: iterate over all subsets p; at each stage, if p is almost disjoint from
our partial solution, find a superset of p that is also almost disjoint from our solution.
This will work, but won’t achieve cofinality in Turing degrees! Hence:

Let B = {Bi | i < ω} be a computable partition of ω into infinite sets.
Let (A, p, x) ∈ F if and only if

EITHER: A ∪B is a.d. and p is a.d. from A ∪B and x ⊃ p is a.d. from A ∪B
OR: A ∪B is a.d. and p is not a.d. from A ∪B and x respects A ∪B

ELSE: A ∪B is not a.d.

This set is Borel; must show each section F(A,p) cofinal in ≤T . Fix u ⊂ ω.

The idea: code u into finite intersections with B!

EITHER-case: partial solution A = {Ai | i < ω}, condition p. If i < ω find finite
Fi ⊂ Bi such that

if j < i then Aj ∩ Fi = ∅
and

|(p ∪ Fi) ∩Bi| is even ⇐⇒ u(i) = 0.

Then put

x = p ∪
⋃

Fi.
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Why does this work?

• x is a.d. from B: B is a partition and each Fi ⊂ Bi is finite; since p is a.d. from
each Bi the result follows

• x is a.d. from A: since p is a.d. from A the infinite intersection must be contributed
by

⋃
Fi; but each Aj only meets finitely many Fi (once i > j then Fi ∩ Aj = ∅),

and each Fi is finite
• each Fi exists: p ∩ Bi and Aj ∩ Bi are finite for each j < i; so can pick Fi large
enough

• u ≤h x: recall that Theorem 12 holds when sections are cofinal in the hyperde-
grees. This is clearly true since8 u ≤T x′, hence u ≤h x.

The OR-case is very similar, the ELSE-case is trivial: the section is P(ω).

Hence Theorem 12 applies! We get a co-analytic MAD family of sets.
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