Co-analytic Counterexamples to Marstrand's Projection Theorem

Linus Richter

Victoria University of Wellington

1 March 2023

Hausdorff dimension: motivation

~ + (' = ~

Hausdorff dimension: motivation

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$ dim_H(E) = sup{ $s \mid \mathcal{H}^s(E) = \infty$ } Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$

$$\dim_{\mathcal{H}}(E) = \sup\{s \mid \mathcal{H}^{s}(E) = \infty\} = \inf\{s \mid \mathcal{H}^{s}(E) = 0\}.$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$

 $\dim_{\mathcal{H}}(E) = \sup\{s \mid \mathcal{H}^{s}(E) = \infty\} = \inf\{s \mid \mathcal{H}^{s}(E) = 0\}.$

Lemma

 \dim_H is invariant under isometries.

Marstrand's Projection Theorem

Marstrand's Projection Theorem (J. Marstrand (1954)) Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Marstrand's Projection Theorem (J. Marstrand (1954)) Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Marstrand's Projection Theorem (J. Marstrand (1954))

Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Marstrand's Projection Theorem (J. Marstrand (1954)) Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_\theta(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Theorem (N. Lutz and Stull (2018))

If $E \subset \mathbb{R}^2$ and $\dim_H(E) = \dim_P(E)$ then Marstrand's theorem applies.

Marstrand's Projection Theorem (J. Marstrand (1954)) Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_\theta(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Theorem (N. Lutz and Stull (2018))

If $E \subset \mathbb{R}^2$ and $\dim_H(E) = \dim_P(E)$ then Marstrand's theorem applies.

Theorem (Davies (1979))

(CH) There exists $E \subset \mathbb{R}^2$ such that $\dim_H(E) = 1$ while $\dim_H(p_{\theta}(E)) = 0$ for all θ .

Definition

For any p.c. function f, define

$$C_f(\tau) = \begin{cases} \min\{\ell(\sigma) \mid f(\sigma) = \tau\} & \text{if such } \sigma \text{ exists;} \\ \infty & \text{otherwise.} \end{cases}$$

Definition

For any p.c. function f, define

$$C_f(\tau) = \begin{cases} \min\{\ell(\sigma) \mid f(\sigma) = \tau\} & \text{if such } \sigma \text{ exists;} \\ \infty & \text{otherwise.} \end{cases}$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))

 $C(\tau) = C_h(\tau)$ where h is universal

Definition

For any p.c. function f, define

$$C_f(\tau) = \begin{cases} \min\{\ell(\sigma) \mid f(\sigma) = \tau\} & \text{if such } \sigma \text{ exists;} \\ \infty & \text{otherwise.} \end{cases}$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))

 $C(\tau) = C_h(\tau)$ where h is universal

1 C is within a constant of every C_f **2** $C(\sigma\tau) \le C(\sigma) + C(\tau) + 2\log(C(\sigma)) + c$

message	codeword
а	0
b	1
С	01

What does 01 decode to?

message	codeword
а	0
b	1
С	01

What does 01 decode to? $01 = c \label{eq:constraint}$

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
С	01	0&1 = ab

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
с	01	0&1=ab

Definition (Levin (1973); Chaitin (1975))

 $K(\tau) = \min\{\ell(\sigma) \mid h'(\sigma) = \tau\}$ where h' is universal for prefix-free machines

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
с	01	0&1=ab

Definition (Levin (1973); Chaitin (1975))

 $K(\tau) = \min\{\ell(\sigma) \mid h'(\sigma) = \tau\}$ where h' is universal for prefix-free machines

1 K is within a constant of every C_f **2** $K(\sigma\tau) \le K(\sigma) + K(\tau) + c$

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
с	01	0&1=ab

Definition (Levin (1973); Chaitin (1975))

 $K(\tau) = \min\{\ell(\sigma) \mid h'(\sigma) = \tau\}$ where h' is universal for prefix-free machines

1 K is within a constant of every
$$C_f$$

2 $K(\sigma\tau) \le K(\sigma) + K(\tau) + c$

Definition (Chaitin (1975); Levin (1976))

 $f \in 2^{\omega}$ is Kolmogorov random if there exists a constant c for which $K(f[n]) \ge n - c$.

Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2^{ω} given by

$$\dim(f) = \liminf_{n \to \infty} \frac{K(f[n])}{n}$$

Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2^{ω} given by

$$\dim(f) = \liminf_{n \to \infty} \frac{K(f[n])}{n}$$

Lemma

- If $f \in 2^{\omega}$ is computable then dim(f) = 0.
- If $f \in 2^{\omega}$ is Kolmogorov random then dim(f) = 1.

Theorem (Hitchcock (2003))

If $X \subseteq 2^{\omega}$ is a union of Π_1^0 -sets then

$$\dim_H(X) = \sup_{f \in X} \dim(f).$$

Theorem (Hitchcock (2003)) If $X \subseteq 2^{\omega}$ is a union of Π_1^0 -sets then $\dim_H(X) = \sup_{f \in X} \dim(f).$

Can this characterisation be extended:

- to other spaces $(\mathbb{R}, \mathbb{R}^2, \ldots)$?
- beyond Π_1^0 sets?

 $K_r(x) = K(q)$

Point-to-set Principle (J. Lutz, N. Lutz (2018))

For $E \subset \mathbb{R}^n$ we have

$$\dim_{H}(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^{A}(x).$$

The first counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^2$ is analytic and $\dim_H(E) = 1$ then $\dim_H(p_\theta(E)) = 1$ for almost all θ .

The first counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^2$ is analytic and $\dim_H(E) = 1$ then $\dim_H(p_\theta(E)) = 1$ for almost all θ .

Theorem (R) (V=L) There exists a co-analytic $E \subset \mathbb{R}^2$ such that $\dim_H(E) = 1$ and $\dim_H(p_{\theta}(E)) = 0$ for all θ .

The idea

Recall: $\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$

The idea

How do we construct co-analytic sets?

Z. Vidnyánszky's co-analytic recursion principle (2014)

(V=L) Recursion on co-analytic subsets of Polish spaces with sufficiently nice candidates produces co-analytic sets.

How do we construct reals?

Minimal Complexity Vational 2 modulo K(r) $X = Y_0, X_1, X_2, \dots, X_r \dots$

Recall: dim_{*H*}(*E*) = min sup dim^{*A*}(*x*)
$$_{A \in 2^{\omega}} \sup_{x \in E} dim^{A}(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A.

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$.

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$\dim^{A}(r,\theta) \geq \dim^{A}(\theta) = 1.$$

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$\dim^{\mathcal{A}}(r,\theta) \geq \dim^{\mathcal{A}}(\theta) = 1.$$

A is arbitrary, so PTS completes the argument.

Constructing E by recursion

- use co-analytic recursion on lines θ
- 1 • at step θ , take all previous lines $\theta_0, \theta_1, \theta_2, \ldots$

V=L=)CH

- find r so that $\dim(p_{\theta_i}(r,\theta)) = \dim(a_i r) = 0$
- enumerate (r, θ) into E

Constructing E by recursion

- use co-analytic recursion on lines θ
- at step θ , take all previous lines $\theta_0, \theta_1, \theta_2, \ldots$
- find r so that $\dim(p_{\theta_i}(r,\theta)) = \dim(a_i r) = 0$
- enumerate (r, θ) into E

Constructing r

- **1** Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$
- 2 Build r in stages:

Stage 0: start with the empty string r_0

1 Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$

2 Build r in stages:

Stage 0: start with the empty string r_0 Stage k + 1: decode $k + 1 = \langle i, n \rangle$; find extension ρ_k of r_k such that $a_n[\rho_k] \subset [\tau]$, where τ ends in *enough* zeroes

1 Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$

2 Build r in stages:

Stage 0: start with the empty string r_0 Stage k + 1: decode $k + 1 = \langle i, n \rangle$; find extension ρ_k of r_k such that $a_n[\rho_k] \subset [\tau]$, where τ ends in *enough* zeroes

3 Let $r = \bigcup r_k$. Enumerate (r, θ) into E.

 Suppose E ↾ α = {(r_i, θ_i) | i < ω}, A_α = {a_i | i < ω}
Build r in stages: Stage 0: start with the empty string r₀ Stage k + 1: decode k + 1 = ⟨i, n⟩; find extension ρ_k of r_k such

that $a_n[\rho_k] \subset [\tau]$, where τ ends in *enough* zeroes

3 Let $r = \bigcup r_k$. Enumerate (r, θ) into E.

How many zeroes are enough? Ensure $\ell(\rho_k) = 2^{2^{k+1}}$.

The second counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^2$ is analytic and for some $\epsilon \in (0, 1)$ we have $\dim_H(E) = 1 + \epsilon$ then $\dim_H(p_{\theta}(E)) = 1$ for almost all θ .

The second counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^2$ is analytic and for some $\epsilon \in (0, 1)$ we have $\dim_H(E) = 1 + \epsilon$ then $\dim_H(p_{\theta}(E)) = 1$ for almost all θ .

Theorem (R)

(V=L) For every $\epsilon \in (0,1)$ there exists a co-analytic $E_{\epsilon} \subset \mathbb{R}^2$ such that $\dim_H(E_{\epsilon}) = 1 + \epsilon$ and $\dim_H(p_{\theta}(E_{\epsilon})) = \epsilon$ for all θ .

Similar ideas, but obstacles

Fix $\epsilon > 0$.

Similar ideas, but obstacles

Fix $\epsilon > 0$.

Problems

- meeting every line only ensures the set has dimension at least 1, not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Similar ideas, but obstacles

Fix $\epsilon > 0$.

Problems

- meeting every line only ensures the set has dimension at least 1, not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Instead, find a complicated $T \in 2^{\omega}$, code pieces into all projections!

• What about $\dim_H(E) < 1$?

- What about $\dim_H(E) < 1$?
- Packing dimension?

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \operatorname{Dim}^A(x)$$

where

$$\mathsf{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \operatorname{Dim}^A(x)$$

where

$$\mathsf{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \operatorname{Dim}^A(x)$$

where

$$\mathsf{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

• Extensions of point-to-set principle? Generalisations using gauge functions?

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \operatorname{Dim}^A(x)$$

where

$$\mathsf{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- Extensions of point-to-set principle? Generalisations using gauge functions?
- Other applications: Kakeya sets, Furstenberg sets (applications to harmonic analysis)...

Thank you

Suppose
$$E = \{(r_{\alpha}, \theta_{\alpha}) | \alpha < \omega_1\}.$$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ .

Suppose
$$E = \{(r_{\alpha}, \theta_{\alpha}) | \alpha < \omega_1\}.$$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X(r_{\alpha}k_{\alpha}) = 0$.

Suppose
$$E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X (r_{\alpha}k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ .

Suppose
$$E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X (r_{\alpha}k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of *E* enumerated *before* φ .

Suppose
$$E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X(r_{\alpha}k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of E enumerated before φ . All points (r_β, θ_β) after φ were defined so that their projection $r_\beta k_\beta$ has dimension 0. Thus $X = \bigoplus r_i k_i$ works.

Thm 1: verification details $\dim_H(E)$

Suppose
$$E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X(r_{\alpha}k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of E enumerated before φ . All points (r_β, θ_β) after φ were defined so that their projection $r_\beta k_\beta$ has dimension 0. Thus $X = \bigoplus r_i k_i$ works.

Now the point-to-set principle gives

$$\dim_{H}(p_{\varphi}(E)) = \min_{A \in 2^{\omega}} \sup_{\alpha < \omega_{1}} \dim^{A}(r_{\alpha}k_{\alpha})$$

Thm 1: verification details $\dim_H(E)$

Suppose
$$E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X(r_{\alpha}k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of E enumerated before φ . All points (r_β, θ_β) after φ were defined so that their projection $r_\beta k_\beta$ has dimension 0. Thus $X = \bigoplus r_i k_i$ works.

Now the point-to-set principle gives

$$\dim_{H}(p_{\varphi}(E)) = \min_{A \in 2^{\omega}} \sup_{\alpha < \omega_{1}} \dim^{A}(r_{\alpha}k_{\alpha})$$
$$\leq \sup_{\alpha < \omega_{1}} \dim^{X}(r_{\alpha}k_{\alpha}) = 0.$$

Don't: find r and enumerate (r, θ)

Don't: find r and enumerate (r, θ) Do: find φ random relative to θ code complicated T into r code θ into r enumerate (r, φ)

Don't: find r and enumerate (r, θ) Do: find φ random relative to θ code complicated T into r code θ into r enumerate (r, φ)

What does a suitable r look like?

Let $\{a_i \mid i < \omega\}$ be projection factors, $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Don't: find r and enumerate (r, θ) Do: find φ random relative to θ code complicated T into r code θ into r enumerate (r, φ)

What does a suitable r look like?

Let $\{a_i \mid i < \omega\}$ be projection factors, $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$. If dim $Y(r) = \epsilon$ then

 $\dim^{\theta}(r,\varphi) \geq \dim^{\theta}(\varphi) + \dim^{\theta,\varphi}(r) \geq 1 + \epsilon$

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

The construction of r (sketch)

Stage -1: find T with dim $(T) = \dim^{Y}(T) = \epsilon$. Stage 0: $r_0 = \langle \rangle$ Stage k + 1: decode $k + 1 = \langle i, n \rangle$; find $\rho_k \succ r_k$ such that $a_n[\rho_k]$ contains long substrings of T

Are coded strings of T long enough?

Are coded strings of T long enough?

No.

Are coded strings of T long enough?

No.

How many bits of r are needed to determine 1 bit of ra_i ?

Depends on a_i ! Can be fixed by saving blocks.

Bringing it all together

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Given *E* we have:

• dim $(ra_i) = \epsilon$, so as in counterexample 1,

 $\dim_H(p_\theta(E)) = \epsilon.$

Bringing it all together

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Given *E* we have:

• dim $(ra_i) = \epsilon$, so as in counterexample 1,

 $\dim_H(p_\theta(E)) = \epsilon.$

• for every θ there is $(r, \varphi) \in E$ such that

$$egin{array}{rl} {\sf dim}^{ heta}(r,arphi)&\geq&{\sf dim}^{ heta}(arphi)+{\sf dim}^{ heta,arphi}(r)\ &\geq&{\sf dim}^{ heta}(arphi)+{\sf dim}^{Y}(r)\ &\geq&1+\epsilon \end{array}$$

Bringing it all together

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Given *E* we have:

• dim $(ra_i) = \epsilon$, so as in counterexample 1,

 $\dim_H(p_\theta(E)) = \epsilon.$

• for every θ there is $(r, \varphi) \in E$ such that

$$\begin{split} \dim^{ heta}(r,arphi) &\geq \dim^{ heta}(arphi) + \dim^{ heta,arphi}(r) \ &\geq \dim^{ heta}(arphi) + \dim^{Y}(r) \ &\geq 1+\epsilon \end{split}$$

So PTS and $\dim_H(p_{\theta}(E)) \ge \dim_H(E) - 1$ imply

 $\dim_H(E)=1+\epsilon.$