Co-analytic Counterexamples to Marstrand's Projection Theorem

Linus Richter
Victoria University of Wellington

1 March 2023

Hausdorff measure, Hausdorff dimension, Marstrand's theorem

Hausdorff
dimension via

Kolmogorov
complexity

Kolmogorov complexity

Hausdorff measure, Hausdorff dimension, Marstrand's theorem

Hausdorff
dimension via

Kolmogorov
complexity

Kolmogorov complexity

Hausdorff dimension: motivation

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}
$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}=\inf \left\{s \mid \mathcal{H}^{s}(E)=0\right\} .
$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}=\inf \left\{s \mid \mathcal{H}^{s}(E)=0\right\}
$$

Lemma

dim_{H} is invariant under isometries.

Marstrand's Projection Theorem

Marstrand's Projection Theorem (J. Marstrand (1954))

Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

Marstrand's Projection Theorem (J. Marstrand (1954))
Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

Marstrand's Projection Theorem (J. Marstrand (1954))
Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

Marstrand's Projection Theorem (J. Marstrand (1954))

Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.
Theorem (N. Lutz and Stull (2018))
If $E \subset \mathbb{R}^{2}$ and $\operatorname{dim}_{H}(E)=\operatorname{dim}_{P}(E)$ then Marstrand's theorem applies.

Marstrand's Projection Theorem (J. Marstrand (1954))

Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

Theorem (N. Lutz and Stull (2018))

If $E \subset \mathbb{R}^{2}$ and $\operatorname{dim}_{H}(E)=\operatorname{dim}_{P}(E)$ then Marstrand's theorem applies.

Theorem (Davies (1979))
(CH) There exists $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}(E)=1$ while $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=0$ for all θ.

Question

What is the "simplest" set failing Marstrand's theorem?

Hausdorff measure,

 Hausdorff dimension, Marstrand's theorem$$
\begin{aligned}
& \begin{array}{l}
\text { Hausdorff } \\
\text { dimension } \\
\text { via }
\end{array} \\
& \text { Counterexamples }
\end{aligned}
$$

Kolmogorov complexity

Kolmogorov complexity

String complexity \longleftrightarrow description length

String complexity \longleftrightarrow description length

Definition

For any p.c. function f, define

$$
C_{f}(\tau)= \begin{cases}\min \{\ell(\sigma) \mid f(\sigma)=\tau\} & \text { if such } \sigma \text { exists; } \\ \infty & \text { otherwise }\end{cases}
$$

String complexity \longleftrightarrow description length

Definition

For any p.c. function f, define

$$
C_{f}(\tau)= \begin{cases}\min \{\ell(\sigma) \mid f(\sigma)=\tau\} & \text { if such } \sigma \text { exists; } \\ \infty & \text { otherwise }\end{cases}
$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))
$C(\tau)=C_{h}(\tau)$ where h is universal

String complexity \longleftrightarrow description length

Definition

For any p.c. function f, define

$$
C_{f}(\tau)= \begin{cases}\min \{\ell(\sigma) \mid f(\sigma)=\tau\} & \text { if such } \sigma \text { exists; } \\ \infty & \text { otherwise }\end{cases}
$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))
$C(\tau)=C_{h}(\tau)$ where h is universal
(1) C is within a constant of every C_{f}
(2) $C(\sigma \tau) \leq C(\sigma)+C(\tau)+2 \log (C(\sigma))+c$

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
01=\mathrm{c}
$$

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

Definition (Levin (1973); Chaitin (1975))
$K(\tau)=\min \left\{\ell(\sigma) \mid h^{\prime}(\sigma)=\tau\right\}$ where h^{\prime} is universal for prefix-free machines

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

Definition (Levin (1973); Chaitin (1975))

$K(\tau)=\min \left\{\ell(\sigma) \mid h^{\prime}(\sigma)=\tau\right\}$ where h^{\prime} is universal for prefix-free machines
(1) K is within a constant of every C_{f}
(2) $K(\sigma \tau) \leq K(\sigma)+K(\tau)+c$

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

Definition (Levin (1973); Chaitin (1975))

$K(\tau)=\min \left\{\ell(\sigma) \mid h^{\prime}(\sigma)=\tau\right\}$ where h^{\prime} is universal for prefix-free machines
(1) K is within a constant of every C_{f}
(2) $K(\sigma \tau) \leq K(\sigma)+K(\tau)+c$

Definition (Chaitin (1975); Levin (1976))

$f \in 2^{\omega}$ is Kolmogorov random if there exists a constant c for which $K(f[n]) \geq n-c$.

Hausdorff measure,

Hausdorff dimension,

Marstrand's theorem

Kolmogorov
complexity

Theorem (J. Lutz; Mayordomo (2003))
There exists dim on 2^{ω} given by

$$
\operatorname{dim}(f)=\liminf _{n \rightarrow \infty} \frac{K(f[n])}{n}
$$

Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2^{ω} given by

$$
\operatorname{dim}(f)=\liminf _{n \rightarrow \infty} \frac{K(f[n])}{n}
$$

Lemma

- If $f \in 2^{\omega}$ is computable then $\operatorname{dim}(f)=0$.
- If $f \in 2^{\omega}$ is Kolmogorov random then $\operatorname{dim}(f)=1$.

Theorem (Hitchcock (2003))
If $X \subseteq 2^{\omega}$ is a union of Π_{1}^{0}-sets then

$$
\operatorname{dim}_{H}(X)=\sup _{f \in X} \operatorname{dim}(f) .
$$

Theorem (Hitchcock (2003))
If $X \subseteq 2^{\omega}$ is a union of Π_{1}^{0}-sets then

$$
\operatorname{dim}_{H}(X)=\sup _{f \in X} \operatorname{dim}(f) .
$$

Can this characterisation be extended:

- to other spaces $\left(\mathbb{R}, \mathbb{R}^{2}, \ldots\right)$?
- beyond Π_{1}^{0} sets?
\mathbb{R}^{2}
least cumplexity rabonal

$$
K_{r}(x)=K(q)
$$

Point-to-set Principle (J. Lutz, N. Lutz (2018))

For $E \subset \mathbb{R}^{n}$ we have

$$
\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x) .
$$

The first counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^{2}$ is analytic and $\operatorname{dim}_{H}(E)=1$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

The first counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^{2}$ is analytic and $\operatorname{dim}_{H}(E)=1$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

Theorem (R)

$(V=L)$ There exists a co-analytic $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}(E)=1$ and $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=0$ for all θ.

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$ $A \in 2^{\omega} x \in E$

Recall: dim_{H} is invariant under isometries.

How do we construct co-analytic sets?

Z. Vidnyánszky's co-analytic recursion principle (2014)
($V=L$) Recursion on co-analytic subsets of Polish spaces with sufficiently nice candidates produces co-analytic sets.

How do we construct reals?

$$
\{x=x_{0} \cdot \underbrace{x_{1} x_{2} \ldots x_{1}} \cdots\}
$$

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup \operatorname{dim}^{A}(x)$

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$
Lemma
If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$
Lemma
If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.
Proof.
Let $A \in 2^{\omega}$. Take θ random relative to A.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$
\operatorname{dim}^{A}(r, \theta) \geq \operatorname{dim}^{A}(\theta)=1
$$

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$
\operatorname{dim}^{A}(r, \theta) \geq \operatorname{dim}^{A}(\theta)=1
$$

A is arbitrary, so PTS completes the argument.

Constructing E by recursion

- use co-analytic recursion on lines θ
- at step θ, take all previous lines $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$
- find r so that $\operatorname{dim}\left(p_{\theta_{i}}(r, \theta)\right)=\operatorname{dim}\left(a_{i} r\right)=0$
- enumerate (r, θ) into E

Constructing E by recursion

- use co-analytic recursion on lines θ
- at step θ, take all previous lines $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$
- find r so that $\operatorname{dim}\left(p_{\theta_{i}}(r, \theta)\right)=\operatorname{dim}\left(a_{i} r\right)=0$
- enumerate (r, θ) into E

because $V \in L \rightarrow C H$

Stage α : constructing r on line θ
(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$

Stage α : constructing r on line θ
(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}

Stage α : constructing r on line θ

(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find extension ρ_{k} of r_{k} such that $a_{n}\left[\rho_{k}\right] \subset[\tau]$, where τ ends in enough zeroes

Stage α : constructing r on line θ

(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find extension ρ_{k} of r_{k} such that $a_{n}\left[\rho_{k}\right] \subset[\tau]$, where τ ends in enough zeroes
(3) Let $r=\bigcup r_{k}$. Enumerate (r, θ) into E.

Stage α : constructing r on line θ

(1) Suppose $E \mid \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find extension ρ_{k} of r_{k} such that $a_{n}\left[\rho_{k}\right] \subset[\tau]$, where τ ends in enough zeroes
(3) Let $r=\bigcup r_{k}$. Enumerate (r, θ) into E.

How many zeroes are enough? Ensure $\ell\left(\rho_{k}\right)=2^{2^{k+1}}$.

The verification
le co-avicy tic
Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.
before x :
after a:
by definitiow tak joic@t: proj. has dimesion projertions

The second counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^{2}$ is analytic and for some $\epsilon \in(0,1)$ we have $\operatorname{dim}_{H}(E)=1+\epsilon$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

The second counterexample

Recall Marstrand's theorem

If $E \subset \mathbb{R}^{2}$ is analytic and for some $\epsilon \in(0,1)$ we have $\operatorname{dim}_{H}(E)=1+\epsilon$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

Theorem (R)

$(V=L)$ For every $\epsilon \in(0,1)$ there exists a co-analytic $E_{\epsilon} \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}\left(E_{\epsilon}\right)=1+\epsilon$ and $\operatorname{dim}_{H}\left(p_{\theta}\left(E_{\epsilon}\right)\right)=\epsilon$ for all θ.

Similar ideas, but obstacles

Fix $\epsilon>0$.

Similar ideas, but obstacles

Fix $\epsilon>0$.

Problems

- meeting every line only ensures the set has dimension at least 1 , not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Similar ideas, but obstacles

Fix $\epsilon>0$.

Problems

- meeting every line only ensures the set has dimension at least 1 , not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Instead, find a complicated $T \in 2^{\omega}$, code pieces into all projections!

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$?

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension?

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- Extensions of point-to-set principle? Generalisations using gauge functions?

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- Extensions of point-to-set principle? Generalisations using gauge functions?
- Other applications: Kakeya sets, Furstenberg sets (applications to harmonic analysis)...

Thank you

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ. All points $\left(r_{\beta}, \theta_{\beta}\right)$ after φ were defined so that their projection $r_{\beta} k_{\beta}$ has dimension 0 . Thus $X=\bigoplus r_{i} k_{i}$ works.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ. All points $\left(r_{\beta}, \theta_{\beta}\right)$ after φ were defined so that their projection $r_{\beta} k_{\beta}$ has dimension 0 . Thus $X=\bigoplus r_{i} k_{i}$ works.

Now the point-to-set principle gives

$$
\operatorname{dim}_{H}\left(p_{\varphi}(E)\right)=\min _{A \in 2^{\omega}} \sup _{\alpha<\omega_{1}} \operatorname{dim}^{A}\left(r_{\alpha} k_{\alpha}\right)
$$

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ. All points $\left(r_{\beta}, \theta_{\beta}\right)$ after φ were defined so that their projection $r_{\beta} k_{\beta}$ has dimension 0 . Thus $X=\bigoplus r_{i} k_{i}$ works.

Now the point-to-set principle gives

$$
\begin{aligned}
\operatorname{dim}_{H}\left(p_{\varphi}(E)\right) & =\min _{A \in 2^{\omega}} \sup _{\alpha<\omega_{1}} \operatorname{dim}^{A}\left(r_{\alpha} k_{\alpha}\right) \\
& \leq \sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0 .
\end{aligned}
$$

At condition θ :

Don't: find r and enumerate (r, θ)

At condition θ :

Don't: find r and enumerate (r, θ)
Do: find φ random relative to θ
code complicated T into r code θ into r enumerate (r, φ)

At condition θ :

Don't: find r and enumerate (r, θ)
Do: find φ random relative to θ
code complicated T into r code θ into r enumerate (r, φ)

What does a suitable r look like?
Let $\left\{a_{i} \mid i<\omega\right\}$ be projection factors, $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

At condition θ :

Don't: find r and enumerate (r, θ)
Do: find φ random relative to θ
code complicated T into r code θ into r enumerate (r, φ)

What does a suitable r look like?
Let $\left\{a_{i} \mid i<\omega\right\}$ be projection factors, $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$. If $\operatorname{dim}^{Y}(r)=\epsilon$ then

$$
\operatorname{dim}^{\theta}(r, \varphi) \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{\theta, \varphi}(r) \geq 1+\epsilon
$$

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

The construction of r (sketch)
Stage -1: find T with $\operatorname{dim}(T)=\operatorname{dim}^{Y}(T)=\epsilon$.
Stage 0: $r_{0}=\langle \rangle$
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find $\rho_{k} \succ r_{k}$ such that $a_{n}\left[\rho_{k}\right]$ contains long substrings of T

Are coded strings of T long enough?

Are coded strings of T long enough?

No.

Are coded strings of T long enough?

No.
How many bits of r are needed to determine 1 bit of $r a_{i}$?
Depends on a_{i} ! Can be fixed by saving blocks.

Bringing it all together

Recall $Y=\left(\oplus a_{i}\right) \oplus \theta \oplus \varphi$.

Given E we have:

- $\operatorname{dim}\left(r a_{i}\right)=\epsilon$, so as in counterexample 1 ,

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\epsilon .
$$

Bringing it all together

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

Given E we have:

- $\operatorname{dim}\left(r a_{i}\right)=\epsilon$, so as in counterexample 1,

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\epsilon .
$$

- for every θ there is $(r, \varphi) \in E$ such that

$$
\begin{aligned}
\operatorname{dim}^{\theta}(r, \varphi) & \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{\theta, \varphi}(r) \\
& \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{Y}(r) \\
& \geq 1+\epsilon
\end{aligned}
$$

Bringing it all together

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

Given E we have:

- $\operatorname{dim}\left(r a_{i}\right)=\epsilon$, so as in counterexample 1,

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\epsilon
$$

- for every θ there is $(r, \varphi) \in E$ such that

$$
\begin{aligned}
\operatorname{dim}^{\theta}(r, \varphi) & \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{\theta, \varphi}(r) \\
& \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{Y}(r) \\
& \geq 1+\epsilon
\end{aligned}
$$

So PTS and $\operatorname{dim}_{H}\left(p_{\theta}(E)\right) \geq \operatorname{dim}_{H}(E)-1$ imply

$$
\operatorname{dim}_{H}(E)=1+\epsilon .
$$

