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Definition (Hausdor↵ dimension)

For E ⇢ Rn

dimH(E ) = sup{s |Hs(E ) =1}

= inf{s |Hs(E ) = 0}.

Lemma

dimH is invariant under isometries.
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Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2 be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

Theorem (N. Lutz and Stull (2018))

If E ⇢ R2 and dimH(E ) = dimP(E ) then Marstrand’s theorem
applies.

Theorem (Davies (1979))

(CH) There exists E ⇢ R2 such that dimH(E ) = 1 while
dimH(p✓(E )) = 0 for all ✓.



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2 be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

Theorem (N. Lutz and Stull (2018))

If E ⇢ R2 and dimH(E ) = dimP(E ) then Marstrand’s theorem
applies.

Theorem (Davies (1979))

(CH) There exists E ⇢ R2 such that dimH(E ) = 1 while
dimH(p✓(E )) = 0 for all ✓.



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2 be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

Theorem (N. Lutz and Stull (2018))

If E ⇢ R2 and dimH(E ) = dimP(E ) then Marstrand’s theorem
applies.

Theorem (Davies (1979))

(CH) There exists E ⇢ R2 such that dimH(E ) = 1 while
dimH(p✓(E )) = 0 for all ✓.

ne



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2 be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

Theorem (N. Lutz and Stull (2018))

If E ⇢ R2 and dimH(E ) = dimP(E ) then Marstrand’s theorem
applies.

Theorem (Davies (1979))

(CH) There exists E ⇢ R2 such that dimH(E ) = 1 while
dimH(p✓(E )) = 0 for all ✓.



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2 be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

Theorem (N. Lutz and Stull (2018))

If E ⇢ R2 and dimH(E ) = dimP(E ) then Marstrand’s theorem
applies.

Theorem (Davies (1979))

(CH) There exists E ⇢ R2 such that dimH(E ) = 1 while
dimH(p✓(E )) = 0 for all ✓.
-



Question

What is the “simplest” set failing Marstrand’s theorem?
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String complexity  ! description length

Definition

For any p.c. function f , define

Cf (⌧) =

(
min{`(�) | f (�) = ⌧} if such � exists;

1 otherwise.

Definition (Solomono↵ (1964); Kolmogorov (1965); Chaitin

(1966))

C (⌧) = Ch(⌧) where h is universal

1 C is within a constant of every Cf

2 C (�⌧)  C (�) + C (⌧) + 2 log(C (�)) + c
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What if codes should be uniquely decodable?

message codeword
a 0

b 1

c 01

What does 01 decode to?

01 = c
0& 1 = ab

Definition (Levin (1973); Chaitin (1975))

K (⌧) = min{`(�) | h0(�) = ⌧} where h0 is universal for prefix-free
machines

1 K is within a constant of every Cf

2 K (�⌧)  K (�) + K (⌧) + c

Definition (Chaitin (1975); Levin (1976))

f 2 2! is Kolmogorov random if there exists a constant c for which
K (f [n]) � n � c .
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Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2! given by

dim(f ) = lim inf
n!1

K (f [n])

n

Lemma

• If f 2 2! is computable then dim(f ) = 0.

• If f 2 2! is Kolmogorov random then dim(f ) = 1.
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Theorem (Hitchcock (2003))

If X ✓ 2! is a union of ⇧0
1-sets then

dimH(X ) = sup
f 2X

dim(f ).

Can this characterisation be extended:

• to other spaces (R,R2, . . .)?

• beyond ⇧0
1 sets?
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Point-to-set Principle (J. Lutz, N. Lutz (2018))

For E ⇢ Rn we have

dimH(E ) = min
A22!

sup
x2E

dimA(x).0
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The first counterexample

Recall Marstrand’s theorem

If E ⇢ R2 is analytic and dimH(E ) = 1 then dimH(p✓(E )) = 1 for
almost all ✓.

Theorem (R)

(V=L) There exists a co-analytic E ⇢ R2 such that dimH(E ) = 1
and dimH(p✓(E )) = 0 for all ✓.



The first counterexample

Recall Marstrand’s theorem

If E ⇢ R2 is analytic and dimH(E ) = 1 then dimH(p✓(E )) = 1 for
almost all ✓.

Theorem (R)

(V=L) There exists a co-analytic E ⇢ R2 such that dimH(E ) = 1
and dimH(p✓(E )) = 0 for all ✓.
I

-



The idea

Recall: dimH(E ) = min
A22!

sup
x2E

dimA(x)
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The idea

Recall: dimH is invariant under isometries.
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How do we construct co-analytic sets?

Z. Vidnyánszky’s co-analytic recursion principle (2014)

(V=L) Recursion on co-analytic subsets of Polish spaces with
su�ciently nice candidates produces co-analytic sets.



How do we construct reals?
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How do we control dimension?

Recall: dimH(E ) = min
A22!

sup
x2E

dimA(x)

Lemma

If E ⇢ R2 meets every line through O then dimH(E ) � 1.

Proof.

Let A 2 2!. Take ✓ random relative to A. There exists r 2 R such
that (r , ✓) 2 E . Hence

dimA(r , ✓) � dimA(✓) = 1.

A is arbitrary, so PTS completes the argument.
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Constructing E by recursion

• use co-analytic recursion on lines ✓

• at step ✓, take all previous lines ✓0, ✓1, ✓2, . . .

• find r so that dim(p✓i (r , ✓)) = dim(ai r) = 0

• enumerate (r , ✓) into E

(v=L =CH
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Stage ↵: constructing r on line ✓

1 Suppose E � ↵ = {(ri , ✓i ) | i < !}, A↵ = {ai | i < !}

2 Build r in stages:
Stage 0: start with the empty string r0

Stage k + 1: decode k + 1 = hi , ni; find extension ⇢k of rk such
that an[⇢k ] ⇢ [⌧ ], where ⌧ ends in enough zeroes

3 Let r =
S
rk . Enumerate (r , ✓) into E .

How many zeroes are enough? Ensure `(⇢k) = 22
k+1

.
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The verification

Suppose E = {(r↵, ✓↵) |↵ < !1}.
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The second counterexample

Recall Marstrand’s theorem

If E ⇢ R2 is analytic and for some ✏ 2 (0, 1) we have
dimH(E ) = 1 + ✏ then dimH(p✓(E )) = 1 for almost all ✓.

Theorem (R)

(V=L) For every ✏ 2 (0, 1) there exists a co-analytic E✏ ⇢ R2 such
that dimH(E✏) = 1 + ✏ and dimH(p✓(E✏)) = ✏ for all ✓.
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Similar ideas, but obstacles

Fix ✏ > 0.

Problems

• meeting every line only ensures the set has dimension at least
1, not 1 + ✏

• controlling the dimension of the projection is more intricate:
long zero strings do not su�ce

Instead, find a complicated T 2 2!, code pieces into all
projections!
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A few open questions

• What about dimH(E ) < 1?

• Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

dimP(E ) = min
A22!

sup
x2E

DimA(x)

where

Dim(x) = lim sup
r!1

Kr (x)

r

...does not admit Marstrand-like result (Järvenpää (1994);
Howroyd and Falconer (1996))

• Extensions of point-to-set principle? Generalisations using
gauge functions?

• Other applications: Kakeya sets, Furstenberg sets
(applications to harmonic analysis)...
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Howroyd and Falconer (1996))

• Extensions of point-to-set principle? Generalisations using
gauge functions?

• Other applications: Kakeya sets, Furstenberg sets
(applications to harmonic analysis)...



Thank you



Thm 1: verification details dimH(E )

Suppose E = {(r↵, ✓↵) |↵ < !1}.

Lemma

Fix a line '. Let k↵ be the projection factor of (r↵, ✓↵) onto '.

There exists X such that sup↵<!1
dimX (r↵k↵) = 0.

Proof.

The line ' appeared in the induction: suppose '1,'2,'3, . . .
appeared before '. Then

L
riki computes all projections of points

of E enumerated before '. All points (r� , ✓�) after ' were defined
so that their projection r�k� has dimension 0. Thus X =

L
riki

works.

Now the point-to-set principle gives

dimH(p'(E )) = min
A22!

sup
↵<!1

dimA(r↵k↵)

 sup
↵<!1

dimX (r↵k↵) = 0.
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No.

How many bits of r are needed to determine 1 bit of rai?

Depends on ai ! Can be fixed by saving blocks.
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