Co-analytic Counterexamples
 to Marstrand's Projection Theorem

Linus Richter

Victoria University of Wellington

31 January 2023

Hausdorff measure, Hausdorff dimension, Marstrand's theorem

Hausdorff
dimension via

Kolmogorov
complexity

Kolmogorov complexity

Hausdorff measure, Hausdorff dimension, Marstrand's theorem

Hausdorff
dimension via

Kolmogorov
complexity

Kolmogorov complexity

Hausdorff dimension: motivation

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}
$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}=\inf \left\{s \mid \mathcal{H}^{s}(E)=0\right\} .
$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}=\inf \left\{s \mid \mathcal{H}^{s}(E)=0\right\}
$$

Lemma
dim_{H} is invariant under isometries.
$p_{\theta}=$ orthogonal projection onto line through O at angle θ.
$p_{\theta}=$ orthogonal projection onto line through O at angle θ.
Marstrand's Projection Theorem (J. Marstrand (1954), P. Mattila (1975))

Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ we have

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\} .
$$

This also holds for \mathbb{R}^{n} and projections onto \mathbb{R}^{m}.
$p_{\theta}=$ orthogonal projection onto line through O at angle θ.
Marstrand's Projection Theorem (J. Marstrand (1954), P. Mattila (1975))

Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ we have

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\} .
$$

What do we know?

Theorem (N. Lutz and Stull (2018))
If $E \subset \mathbb{R}^{2}$ and $\operatorname{dim}_{H}(E)=\operatorname{dim}_{P}(E)$ then Marstrand's theorem applies.

What do we know?

Theorem (N. Lutz and Stull (2018))
If $E \subset \mathbb{R}^{2}$ and $\operatorname{dim}_{H}(E)=\operatorname{dim}_{P}(E)$ then Marstrand's theorem applies.

Theorem (Davies (1979))
(CH) There exists $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}(E)=1$ while $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=0$ for all θ.

Question
What is the "simplest" set failing Marstrand's theorem?

Hausdorff measure,

 Hausdorff dimension, Marstrand's theorem$$
\begin{aligned}
& \begin{array}{l}
\text { Hausdorff } \\
\text { dimension } \\
\text { via }
\end{array} \\
& \text { Counterexamples }
\end{aligned}
$$

Kolmogorov complexity

Kolmogorov complexity

String complexity \longleftrightarrow description length

String complexity \longleftrightarrow description length

Definition

For any p.c. function f, define

$$
C_{f}(\tau)= \begin{cases}\min \{\ell(\sigma) \mid f(\sigma)=\tau\} & \text { if such } \sigma \text { exists; } \\ \infty & \text { otherwise }\end{cases}
$$

String complexity \longleftrightarrow description length

Definition

For any p.c. function f, define

$$
C_{f}(\tau)= \begin{cases}\min \{\ell(\sigma) \mid f(\sigma)=\tau\} & \text { if such } \sigma \text { exists; } \\ \infty & \text { otherwise }\end{cases}
$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))
$C(\tau)=C_{h}(\tau)$ where h is universal

String complexity \longleftrightarrow description length

Definition

For any p.c. function f, define

$$
C_{f}(\tau)= \begin{cases}\min \{\ell(\sigma) \mid f(\sigma)=\tau\} & \text { if such } \sigma \text { exists; } \\ \infty & \text { otherwise }\end{cases}
$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))
$C(\tau)=C_{h}(\tau)$ where h is universal
(1) C is within a constant of every C_{f}
(2) $C(\sigma \tau) \leq C(\sigma)+C(\tau)+2 \log (C(\sigma))+c$

What if codes should be uniquely decodable?

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
01=\mathrm{c}
$$

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

Definition (Levin (1973); Chaitin (1975))
$K(\tau)=\min \left\{\ell(\sigma) \mid h^{\prime}(\sigma)=\tau\right\}$ where h^{\prime} is universal for prefix-free machines

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

Definition (Levin (1973); Chaitin (1975))

$K(\tau)=\min \left\{\ell(\sigma) \mid h^{\prime}(\sigma)=\tau\right\}$ where h^{\prime} is universal for prefix-free machines
(1) K is within a constant of every C_{f}
(2) $K(\sigma \tau) \leq K(\sigma)+K(\tau)+c$

What if codes should be uniquely decodable?

message	codeword
a	0
b	1
c	01

What does 01 decode to?

$$
\begin{gathered}
01=c \\
0 \& 1=a b
\end{gathered}
$$

Definition (Levin (1973); Chaitin (1975))

$K(\tau)=\min \left\{\ell(\sigma) \mid h^{\prime}(\sigma)=\tau\right\}$ where h^{\prime} is universal for prefix-free machines
(1) K is within a constant of every C_{f}
(2) $K(\sigma \tau) \leq K(\sigma)+K(\tau)+c$

Definition (Chaitin (1975); Levin (1976))

$f \in 2^{\omega}$ is Kolmogorov random if there exists a constant c for which $K(f[n]) \geq n-c$.

Hausdorff measure,

Hausdorff dimension,

Marstrand's theorem

Kolmogorov
complexity

Lutz (2003)
Hausdorff dimension on 2^{ω} can be characterised in terms of gales.
It can also be effectivised, and yields dim for all reals in 2^{ω}.

Lutz (2003)

Hausdorff dimension on 2^{ω} can be characterised in terms of gales. It can also be effectivised, and yields dim for all reals in 2^{ω}.

Theorem (Mayordomo (2003))

$$
\operatorname{dim}(f)=\liminf _{n \rightarrow \infty} \frac{K(f[n])}{n}
$$

Lutz (2003)

Hausdorff dimension on 2^{ω} can be characterised in terms of gales. It can also be effectivised, and yields dim for all reals in 2^{ω}.

Theorem (Mayordomo (2003))

$$
\operatorname{dim}(f)=\liminf _{n \rightarrow \infty} \frac{K(f[n])}{n}
$$

Lemma

- If $f \in 2^{\omega}$ is computable then $\operatorname{dim}(f)=0$.
- If $f \in 2^{\omega}$ is Kolmogorov random then $\operatorname{dim}(f)=1$.

Theorem (Hitchcock (2003))
If $X \subseteq 2^{\omega}$ is a union of Π_{1}^{0}-sets then

$$
\operatorname{dim}_{H}(X)=\sup _{f \in X} \operatorname{dim}(f) .
$$

Theorem (Hitchcock (2003))
If $X \subseteq 2^{\omega}$ is a union of Π_{1}^{0}-sets then

$$
\operatorname{dim}_{H}(X)=\sup _{f \in X} \operatorname{dim}(f) .
$$

Two questions

Can this characterisation be extended:

- to other spaces (\mathbb{R}^{n}, for instance)?
- beyond Π_{1}^{0} sets?
"Definition"

$$
K_{r}(x)=\min \left\{K(q) \mid q \in \mathbb{Q} \cap B_{2^{-r}}(x)\right\}
$$

and so

Point-to-set Principle (J. Lutz, N. Lutz (2018))

For $E \subset \mathbb{R}^{n}$ we have

$$
\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x) .
$$

The first counterexample

Recall Marstrand's theorem (1)

If E is analytic and $\operatorname{dim}_{H}(E) \geq 1$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

The first counterexample

Recall Marstrand's theorem (1)

If E is analytic and $\operatorname{dim}_{H}(E) \geq 1$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

Theorem (R)

$(V=L)$ There exists a co-analytic $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}(E)=1$ and $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=0$ for all θ.

The idea

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

$$
A \in 2^{\omega} \quad x \in E
$$

Idea
Ensure all projections have dimension 0
Recall: dim_{H} is invariant under isometries.

$$
\left(r_{2}, \varphi_{2}\right)
$$

How do we construct co-analytic sets?

$$
\begin{aligned}
& X=\left\{x_{\alpha} \mid \alpha<v,\right\} \quad \forall \alpha: \\
& B=\left\{\rho_{\alpha} \mid \alpha<v,\right\} \quad x_{\alpha} \in F\left(x \mid \alpha, p_{\alpha}\right) .
\end{aligned}
$$

Z. Vidnyánszky's co-analytic recursion principle (2014) ($V=L$) Recursion on co-analytic subsets of Polish spaces with sufficiently nice candidates produces co-analytic sets.
जaverybic

$$
\begin{aligned}
& { }^{2} F \subseteq M^{K X} \times B \times M \quad 匕^{\text {coping }} \\
& F_{(x, p)}=\{x \in \mu((A, p, x) \in f)
\end{aligned}
$$

How do we construct reals?

How do we construct reals?

Lemma (N. Lutz, Stull (2020))
If $x \in \mathbb{R}$ and $\bar{x} \in 2^{\omega}$ is x coded in its binary expansion, then $\operatorname{dim}(x)=\operatorname{dim}(\bar{x})$. This also works in \mathbb{R}^{n}.

How do we construct reals?

Lemma (N. Lutz, Stull (2020))
If $x \in \mathbb{R}$ and $\bar{x} \in 2^{\omega}$ is x coded in its binary expansion, then $\operatorname{dim}(x)=\operatorname{dim}(\bar{x})$. This also works in \mathbb{R}^{n}.

Also works in polar coordinates!

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup \operatorname{dim}^{A}(x)$

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$
Lemma
If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$
Lemma
If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.
Proof.
Let $A \in 2^{\omega}$. Take θ random relative to A.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$
\operatorname{dim}^{A}(r, \theta) \geq \operatorname{dim}^{A}(\theta)=1
$$

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{M \in 2^{W}} \sup ^{\sin } \operatorname{dim}^{A}(x)$ $A \in 2^{\omega} x \in E$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$
\operatorname{dim}^{A}(r, \theta) \geq \operatorname{dim}^{A}(\theta)=1 .
$$

A is arbitrary, so PTS completes the argument.

Constructing E by recursion

- use co-analytic recursion on lines θ
- at step θ, take all previous lines $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$
- find r so that $\operatorname{dim}\left(p_{\theta_{i}}(r)\right)=\operatorname{dim}\left(a_{i} r\right)=0$

- enumerate (r, θ) into E

Constructing E by recursion

- use co-analytic recursion on lines θ
- at step θ, take all previous lines $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$
- find r so that $\operatorname{dim}\left(p_{\theta_{i}}(r)\right)=\operatorname{dim}\left(a_{i} r\right)=0$
- enumerate (r, θ) into E

for all extensions of ρ !

Stage α : constructing r on line θ
(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$

Stage α : constructing r on line θ
(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}

Stage α : constructing r on line θ

(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}
Stage $k+1$: decode $k+1=\left\langle\langle, n\rangle ;\right.$ find extension ρ_{k} of r_{k} such that $a_{n}\left[\rho_{k}\right] \subset[\tau]$, winere τ ends in enough zeroes

Stage α : constructing r on line θ

(1) Suppose $E \upharpoonright \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find extension ρ_{k} of r_{k} such that $a_{n}\left[\rho_{k}\right] \subset[\tau]$, where τ ends in enough zeroes
(3) Let $r=\bigcup r_{k}$. Enumerate (r, θ) into E.

Stage α : constructing r on line θ

(1) Suppose $E \mid \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find extension ρ_{k} of r_{k} such that $a_{n}\left[\rho_{k}\right] \subset[\tau]$, where τ ends in enough zeroes
(3) Let $r=\bigcup r_{k}$. Enumerate (r, θ) into E.

How many zeroes are enough?

Stage α : constructing r on line θ

(1) Suppose $E \mid \alpha=\left\{\left(r_{i}, \theta_{i}\right) \mid i<\omega\right\}, A_{\alpha}=\left\{a_{i} \mid i<\omega\right\}$
(2) Build r in stages:

Stage 0: start with the empty string r_{0}
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find extension ρ_{k} of r_{k} such that $a_{n}\left[\rho_{k}\right] \subset[\tau]$, where τ ends in enough zeroes
(3) Let $r=\bigcup r_{k}$. Enumerate (r, θ) into E.

How many zeroes are enough? Ensure $\ell\left(\rho_{k}\right)=2^{2^{k+1}}$.

The second counterexample

Recall Marstrand's theorem (1)

If E is analytic and $\operatorname{dim}_{H}(E) \geq 1$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

The second counterexample

Recall Marstrand's theorem (1)

If E is analytic and $\operatorname{dim}_{H}(E) \geq 1$ then $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

Theorem (R)

$(V=L)$ For every $\epsilon \in(0,1)$ there exists a co-analytic $E_{\epsilon} \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}\left(E_{\epsilon}\right)=1+\epsilon$ and $\operatorname{dim}_{H}\left(p_{\theta}\left(E_{\epsilon}\right)\right)=\epsilon$ for all θ.

Similar ideas, but obstacles

Fix $\epsilon>0$.

Similar ideas, but obstacles

Fix $\epsilon>0$.

Problems

- meeting every line only ensures the set has dimension at least 1 , not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Similar ideas, but obstacles

Fix $\epsilon>0$.

Problems

- meeting every line only ensures the set has dimension at least 1 , not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Instead, find a complicated $T \in 2^{\omega}$, code pieces into all projections!

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$? Generalisations using gauge functions?

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$? Generalisations using gauge functions?
- Packing dimension?

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\underset{r \rightarrow \infty}{\limsup } \frac{K_{r}(x)}{r}
$$

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpäää (1994); Howroyd and Falconer (1996))

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- Extensions of point-to-set principle?

A few open questions

- What about $\operatorname{dim}_{H}(E)<1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- Extensions of point-to-set principle?
- Other applications: Kakeya sets, Furstenberg sets (applications to harmonic analysis)...

Thank you

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ. All points $\left(r_{\beta}, \theta_{\beta}\right)$ after φ were defined so that their projection $r_{\beta} k_{\beta}$ has dimension 0 . Thus $X=\bigoplus r_{i} k_{i}$ works.

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ. All points $\left(r_{\beta}, \theta_{\beta}\right)$ after φ were defined so that their projection $r_{\beta} k_{\beta}$ has dimension 0 . Thus $X=\bigoplus r_{i} k_{i}$ works.

Now the point-to-set principle gives

$$
\operatorname{dim}_{H}\left(p_{\varphi}(E)\right)=\min _{A \in 2^{\omega}} \sup _{\alpha<\omega_{1}} \operatorname{dim}^{A}\left(r_{\alpha} k_{\alpha}\right)
$$

Thm 1: verification details $\operatorname{dim}_{H}(E)$

Suppose $E=\left\{\left(r_{\alpha}, \theta_{\alpha}\right) \mid \alpha<\omega_{1}\right\}$.

Lemma

Fix a line φ. Let k_{α} be the projection factor of $\left(r_{\alpha}, \theta_{\alpha}\right)$ onto φ. There exists X such that $\sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots$ appeared before φ. Then $\bigoplus r_{i} k_{i}$ computes all projections of points of E enumerated before φ. All points $\left(r_{\beta}, \theta_{\beta}\right)$ after φ were defined so that their projection $r_{\beta} k_{\beta}$ has dimension 0 . Thus $X=\bigoplus r_{i} k_{i}$ works.

Now the point-to-set principle gives

$$
\begin{aligned}
\operatorname{dim}_{H}\left(p_{\varphi}(E)\right) & =\min _{A \in 2^{\omega}} \sup _{\alpha<\omega_{1}} \operatorname{dim}^{A}\left(r_{\alpha} k_{\alpha}\right) \\
& \leq \sup _{\alpha<\omega_{1}} \operatorname{dim}^{X}\left(r_{\alpha} k_{\alpha}\right)=0 .
\end{aligned}
$$

At condition θ :

Don't: find r and enumerate (r, θ)

At condition θ :

Don't: find r and enumerate (r, θ)
Do: find φ random relative to θ
code complicated T into r code θ into r enumerate (r, φ)

At condition θ :

Don't: find r and enumerate (r, θ)
Do: find φ random relative to θ
code complicated T into r code θ into r enumerate (r, φ)

What does a suitable r look like?
Let $\left\{a_{i} \mid i<\omega\right\}$ be projection factors, $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

At condition θ :

Don't: find r and enumerate (r, θ)
Do: find φ random relative to θ
code complicated T into r code θ into r enumerate (r, φ)

What does a suitable r look like?
Let $\left\{a_{i} \mid i<\omega\right\}$ be projection factors, $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$. If $\operatorname{dim}^{Y}(r)=\epsilon$ then

$$
\operatorname{dim}^{\theta}(r, \varphi) \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{\theta, \varphi}(r) \geq 1+\epsilon
$$

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

The construction of r (sketch)
Stage -1: find T with $\operatorname{dim}(T)=\operatorname{dim}^{Y}(T)=\epsilon$.
Stage 0: $r_{0}=\langle \rangle$
Stage $k+1$: decode $k+1=\langle i, n\rangle$; find $\rho_{k} \succ r_{k}$ such that $a_{n}\left[\rho_{k}\right]$ contains long substrings of T

Are coded strings of T long enough?

Are coded strings of T long enough?

No.

Are coded strings of T long enough?

No.
How many bits of r are needed to determine 1 bit of $r a_{i}$?
Depends on a_{i} ! Can be fixed by saving blocks.

Bringing it all together

Recall $Y=\left(\oplus a_{i}\right) \oplus \theta \oplus \varphi$.

Given E we have:

- $\operatorname{dim}\left(r a_{i}\right)=\epsilon$, so as in counterexample 1 ,

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\epsilon .
$$

Bringing it all together

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

Given E we have:

- $\operatorname{dim}\left(r a_{i}\right)=\epsilon$, so as in counterexample 1,

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\epsilon .
$$

- for every θ there is $(r, \varphi) \in E$ such that

$$
\begin{aligned}
\operatorname{dim}^{\theta}(r, \varphi) & \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{\theta, \varphi}(r) \\
& \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{Y}(r) \\
& \geq 1+\epsilon
\end{aligned}
$$

Bringing it all together

Recall $Y=\left(\bigoplus a_{i}\right) \oplus \theta \oplus \varphi$.

Given E we have:

- $\operatorname{dim}\left(r a_{i}\right)=\epsilon$, so as in counterexample 1,

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\epsilon
$$

- for every θ there is $(r, \varphi) \in E$ such that

$$
\begin{aligned}
\operatorname{dim}^{\theta}(r, \varphi) & \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{\theta, \varphi}(r) \\
& \geq \operatorname{dim}^{\theta}(\varphi)+\operatorname{dim}^{Y}(r) \\
& \geq 1+\epsilon
\end{aligned}
$$

So PTS and $\operatorname{dim}_{H}\left(p_{\theta}(E)\right) \geq \operatorname{dim}_{H}(E)-1$ imply

$$
\operatorname{dim}_{H}(E)=1+\epsilon .
$$

