Co-analytic Counterexamples to Marstrand's Projection Theorem

Linus Richter

Victoria University of Wellington

31 January 2023

Hausdorff measure, Hausdorff dimension, Marstrand's theorem Hausdorff dimension via → Counterexamples Kolmogorov complexity

Kolmogorov complexity

Hausdorff dimension: motivation

Hausdorff dimension: motivation

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$

$$\dim_H(E) = \sup\{s \mid \mathcal{H}^s(E) = \infty\}$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$

$$\dim_H(E)=\sup\{s\,|\,\mathcal{H}^s(E)=\infty\}=\inf\{s\,|\,\mathcal{H}^s(E)=0\}.$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$

$$\dim_H(E)=\sup\{s\,|\,\mathcal{H}^s(E)=\infty\}=\inf\{s\,|\,\mathcal{H}^s(E)=0\}.$$

Lemma

 dim_H is invariant under isometries.

 $p_{ heta}=$ orthogonal projection onto line through O at angle heta.

 $p_{ heta}=$ orthogonal projection onto line through O at angle heta.

Marstrand's Projection Theorem (J. Marstrand (1954), P. Mattila (1975))

Let
$$E \subset \mathbb{R}^2$$
 be analytic. For almost all θ we have

 $\dim_{\mathcal{U}}(p_{0}(F)) = \min\{\dim_{\mathcal{U}}(F) \mid 1\}$

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}.$

This also holds for \mathbb{R}^n and projections onto \mathbb{R}^m .

 $p_{\theta} = \text{orthogonal projection onto line through } O \text{ at angle } \theta.$

Marstrand's Projection Theorem (J. Marstrand (1954), P. Mattila (1975))

Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ we have

$$\dim_H(p_\theta(E))=\min\{\dim_H(E),1\}.$$

This also holds for \mathbb{R}^n and projections onto \mathbb{R}^m .

What do we know?

Theorem (N. Lutz and Stull (2018))

If $E \subset \mathbb{R}^2$ and $\dim_H(E) = \dim_P(E)$ then Marstrand's theorem applies.

What do we know?

Theorem (N. Lutz and Stull (2018))

If $E \subset \mathbb{R}^2$ and $\dim_H(E) = \dim_P(E)$ then Marstrand's theorem applies.

Theorem (Davies (1979))

(CH) There exists $E \subset \mathbb{R}^2$ such that $\dim_H(E) = 1$ while $\dim_H(p_\theta(E)) = 0$ for all θ .

Question

What is the "simplest" set failing Marstrand's theorem?

String complexity \longleftrightarrow description length

String complexity ←→ description length

Definition

For any p.c. function f, define

$$C_f(\tau) = \begin{cases} \min\{\ell(\sigma) \mid f(\sigma) = \tau\} & \text{if such } \sigma \text{ exists;} \\ \infty & \text{otherwise.} \end{cases}$$

String complexity ←→ description length

Definition

For any p.c. function f, define

$$C_f(\tau) = egin{cases} \min\{\ell(\sigma) \,|\, f(\sigma) = \tau\} & ext{if such } \sigma ext{ exists;} \\ \infty & ext{otherwise.} \end{cases}$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))

 $C(\tau) = C_h(\tau)$ where h is universal

String complexity \longleftrightarrow description length

Definition

For any p.c. function f, define

$$C_f(\tau) = egin{cases} \min\{\ell(\sigma) \, | \, f(\sigma) = \tau\} & ext{if such } \sigma ext{ exists;} \\ \infty & ext{otherwise.} \end{cases}$$

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin (1966))

$$C(\tau) = C_h(\tau)$$
 where h is universal

- **1)** C is within a constant of every C_f
- $2 C(\sigma\tau) \leq C(\sigma) + C(\tau) + 2\log(C(\sigma)) + c$

message	codeword
а	0
b	1
С	01

What does 01 decode to?

message	codeword		
а	0	What doe	
b	1	(
С	01		

What does 01 decode to? 01 = c

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
С	01	0&1=ab

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
С	01	0 & 1 = ab

Definition (Levin (1973); Chaitin (1975))

$$K(\tau) = \min\{\ell(\sigma) \mid h'(\sigma) = \tau\}$$
 where h' is universal for prefix-free machines

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
С	01	0&1=ab

Definition (Levin (1973); Chaitin (1975))

$$K(\tau) = \min\{\ell(\sigma) \mid h'(\sigma) = \tau\}$$
 where h' is universal for prefix-free machines

- **1)** K is within a constant of every C_f
- $2 K(\sigma\tau) \leq K(\sigma) + K(\tau) + c$

message	codeword	
а	0	What does 01 decode to?
b	1	01 = c
С	01	$0\&1={\sf ab}$

Definition (Levin (1973); Chaitin (1975))

$$K(\tau) = \min\{\ell(\sigma) \mid h'(\sigma) = \tau\}$$
 where h' is universal for prefix-free machines

- **1** K is within a constant of every C_f
- $2 K(\sigma\tau) \leq K(\sigma) + K(\tau) + c$

Definition (Chaitin (1975); Levin (1976))

 $f \in 2^{\omega}$ is *Kolmogorov random* if there exists a constant c for which $K(f[n]) \ge n - c$.

Lutz (2003)

Hausdorff dimension on 2^{ω} can be characterised in terms of gales. It can also be effectivised, and yields dim for all reals in 2^{ω} .

Lutz (2003)

Hausdorff dimension on 2^{ω} can be characterised in terms of gales. It can also be effectivised, and yields dim for all reals in 2^{ω} .

AEZW

Theorem (Mayordomo (2003))

$$\dim(f) = \liminf_{n \to \infty} \frac{K(f[n])}{n}$$

Lutz (2003)

Hausdorff dimension on 2^{ω} can be characterised in terms of gales. It can also be effectivised, and yields dim for all reals in 2^{ω} .

Theorem (Mayordomo (2003))

$$\dim(f) = \liminf_{n \to \infty} \frac{K(f[n])}{n}$$

Lemma

- If $f \in 2^{\omega}$ is computable then $\dim(f) = 0$.
 - If $f \in 2^{\omega}$ is Kolmogorov random then $\dim(f) = 1$.

Theorem (Hitchcock (2003))

If $X
\subseteq 2^{\omega}$ is a union of Π_1^0 -sets then

$$\dim_H(X) = \sup_{f \in X} \dim(f).$$

Theorem (Hitchcock (2003))

If $X \subseteq 2^{\omega}$ is a union of Π_1^0 -sets then

$$\dim_H(X) = \sup_{f \in X} \dim(f).$$

Two questions

beyond Π₁⁰ sets?

Can this characterisation be extended:

- to other spaces (\mathbb{R}^n , for instance)?

"Definition"

 $K_r(x) = \min\{K(q) \, | \, q \in \mathbb{Q} \cap B_{2^{-r}}(x)\}$ and so

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r}.$$
At previous x

with unal x

partition x

partition x

Point-to-set Principle (J. Lutz, N. Lutz (2018))

For $E \subset \mathbb{R}^n$ we have

 $\dim_H(E) = \min_{A \in 2^\omega} \sup_{x \in E} \dim^A(x).$

The first counterexample

Recall Marstrand's theorem 1

If E is analytic and $\dim_H(E) \geq 1$ then $\dim_H(p_{\theta}(E)) = 1$ for almost all θ .

The first counterexample

Recall Marstrand's theorem 1

If E is analytic and $\dim_H(E) \geq 1$ then $\dim_H(p_\theta(E)) = 1$ for almost all θ .

Theorem (R)

(V=L) There exists a co-analytic $E \subset \mathbb{R}^2$ such that $\dim_H(E) = 1$ and $\dim_H(p_\theta(E)) = 0$ for all θ .

Recall: $\dim_H(E) = \min_{A \in 2^\omega} \sup_{x \in E} \dim^A(x)$

Idea

Ensure all projections have dimension 0

Recall: dim_H is invariant under isometries.

How do we construct co-analytic sets?

Z. Vidnyánszky's co-analytic recursion principle (2014)

(V=L) Recursion on co-analytic subsets of Polish spaces with sufficiently nice candidates produces co-analytic sets.

How do we construct reals?

How do we construct reals?

Lemma (N. Lutz, Stull (2020))

If $x \in \mathbb{R}$ and $\overline{x} \in 2^{\omega}$ is x coded in its binary expansion, then $\dim(x) = \dim(\overline{x})$. This also works in \mathbb{R}^n .

How do we construct reals?

Lemma (N. Lutz, Stull (2020))

If $x \in \mathbb{R}$ and $\overline{x} \in 2^{\omega}$ is x coded in its binary expansion, then $\dim(x) = \dim(\overline{x})$. This also works in \mathbb{R}^n .

Also works in polar coordinates!

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Recall:
$$\dim_H(E) = \min_{A \in 2^\omega} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then $\dim_H(E) \geq 1$.

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then $\dim_H(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A.

Recall:
$$\dim_H(E) = \min_{A \in 2^\omega} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then $\dim_H(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$.

Recall:
$$\dim_H(E) = \min_{A \in 2^\omega} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then $\dim_H(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$\dim^A(r,\theta) \ge \dim^A(\theta) = 1.$$

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then $\dim_H(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r,\theta) \in E$. Hence

$$\dim^A(r,\theta) \ge \dim^A(\theta) = 1.$$

A is arbitrary, so PTS completes the argument.

Constructing *E* by recursion

- ullet use co-analytic recursion on lines heta
- at step θ , take all previous lines $\theta_0, \theta_1, \theta_2, \dots$
- find r so that $\dim(p_{\theta_i}(r)) = \dim(a_i r) = 0$
- enumerate (r, θ) into E

Constructing *E* by recursion

- ullet use co-analytic recursion on lines heta
- at step θ , take all previous lines $\theta_0, \theta_1, \theta_2, \dots$
- find r so that $\dim(p_{\theta_i}(r)) = \dim(a_i r) = 0$
- enumerate (r, θ) into E

tage a. constructing / on mic

1 Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$

- Stage a. constructing / on line
 - **1** Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$

Stage 0: start with the empty string r_0

 \bigcirc Build r in stages:

- **1** Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$

Stage k+1: decode $k+1=\langle i,n\rangle$; find extension ρ_k of r_k such

that $a_n[\rho_k] \subset [\tau]$, where τ ends in *enough* zeroes

- - **1** Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$
- ② Build r in stages:
- Stage 0: start with the empty string r_0

3 Let $r = \bigcup r_k$. Enumerate (r, θ) into E.

Stage k + 1: decode $k + 1 = \langle i, n \rangle$; find extension ρ_k of r_k such that $a_n[\rho_k] \subset [\tau]$, where τ ends in *enough* zeroes

- **1** Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$
 - 2 Build r in stages:
 - Stage 0: start with the empty string r_0 Stage k+1: decode $k+1=\langle i,n\rangle$; find extension ρ_k of r_k such that $a_n[\rho_k]\subset [\tau]$, where τ ends in *enough* zeroes
 - **3** Let $r = \bigcup r_k$. Enumerate (r, θ) into E.

How many zeroes are enough?

- - 1 Suppose $E \upharpoonright \alpha = \{(r_i, \theta_i) \mid i < \omega\}, A_\alpha = \{a_i \mid i < \omega\}$
 - \bigcirc Build r in stages: Stage 0: start with the empty string r_0
 - Stage k+1: decode $k+1=\langle i,n\rangle$; find extension ρ_k of r_k such that $a_n[\rho_k] \subset [\tau]$, where τ ends in *enough* zeroes
 - 3 Let $r = \bigcup r_k$. Enumerate (r, θ) into E.

How many zeroes are enough? Ensure $\ell(\rho_k) = 2^{2^{k+1}}$.

The verification

The second counterexample

Recall Marstrand's theorem 1

If E is analytic and $\dim_H(E) \geq 1$ then $\dim_H(p_\theta(E)) = 1$ for almost all θ .

The second counterexample

Recall Marstrand's theorem 1

If E is analytic and $\dim_H(E) \geq 1$ then $\dim_H(p_\theta(E)) = 1$ for almost all θ .

Theorem (R)

(V=L) For every $\epsilon \in (0,1)$ there exists a co-analytic $E_{\epsilon} \subset \mathbb{R}^2$ such that $\dim_H(E_{\epsilon}) = 1 + \epsilon$ and $\dim_H(p_{\theta}(E_{\epsilon})) = \epsilon$ for all θ .

Similar ideas, but obstacles

Fix $\epsilon > 0$.

Similar ideas, but obstacles

Fix $\epsilon > 0$.

Problems

- meeting every line only ensures the set has dimension at least 1, not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Similar ideas, but obstacles

Fix $\epsilon > 0$.

Problems

- meeting every line only ensures the set has dimension at least 1, not $1+\epsilon$
- controlling the dimension of the projection is more intricate: long zero strings do not suffice

Instead, find a complicated $T \in 2^{\omega}$, code pieces into all projections!

• What about $\dim_H(E) < 1$? Generalisations using gauge functions?

- What about $\dim_H(E) < 1$? Generalisations using gauge functions?
- Packing dimension?

- What about $\dim_H(E) < 1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \mathsf{Dim}^A(x)$$

where

$$Dim(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

- What about $\dim_H(E) < 1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \mathsf{Dim}^A(x)$$

where

$$\mathsf{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- What about $\dim_H(E) < 1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \mathsf{Dim}^A(x)$$

where

$$\mathsf{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

• Extensions of point-to-set principle?

- What about $\dim_H(E) < 1$? Generalisations using gauge functions?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$\dim_P(E) = \min_{A \in 2^\omega} \sup_{x \in E} \mathsf{Dim}^A(x)$$

where

$$\mathsf{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}$$

...does not admit Marstrand-like result (Järvenpää (1994); Howroyd and Falconer (1996))

- Extensions of point-to-set principle?
- Other applications: Kakeya sets, Furstenberg sets (applications to harmonic analysis)...

Thank you

Thm 1: verification details $\dim_H(E)$

Suppose $E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ .

Suppose $E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ .

There exists X such that $\sup_{\alpha<\omega_1}\dim^X(r_\alpha k_\alpha)=0$.

Suppose $E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha<\omega_1}\dim^X(r_\alpha k_\alpha)=0$.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \dots$

Proof.

appeared before φ .

Suppose $E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X (r_{\alpha} k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of E enumerated before φ .

Suppose $E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X (r_{\alpha} k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of E enumerated before φ . All points (r_β, θ_β) after φ were defined so that their projection $r_\beta k_\beta$ has dimension 0. Thus $X = \bigoplus r_i k_i$ works.

Suppose $E = \{(r_{\alpha}, \theta_{\alpha}) | \alpha < \omega_1\}.$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X (r_{\alpha} k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of E enumerated before φ . All points (r_β, θ_β) after φ were defined so that their projection $r_\beta k_\beta$ has dimension 0. Thus $X = \bigoplus r_i k_i$ works.

Now the point-to-set principle gives

$$\dim_{H}(p_{\varphi}(E)) = \min_{A \in 2^{\omega}} \sup_{\alpha < \omega_{1}} \dim^{A}(r_{\alpha}k_{\alpha})$$

Suppose $E = \{(r_{\alpha}, \theta_{\alpha}) \mid \alpha < \omega_1\}.$

Lemma

Fix a line φ . Let k_{α} be the projection factor of $(r_{\alpha}, \theta_{\alpha})$ onto φ . There exists X such that $\sup_{\alpha < \omega_1} \dim^X (r_{\alpha} k_{\alpha}) = 0$.

Proof.

The line φ appeared in the induction: suppose $\varphi_1, \varphi_2, \varphi_3, \ldots$ appeared before φ . Then $\bigoplus r_i k_i$ computes all projections of points of E enumerated before φ . All points (r_β, θ_β) after φ were defined so that their projection $r_\beta k_\beta$ has dimension 0. Thus $X = \bigoplus r_i k_i$ works.

Now the point-to-set principle gives

$$\dim_{H}(p_{\varphi}(E)) = \min_{A \in 2^{\omega}} \sup_{\alpha < \omega_{1}} \dim^{A}(r_{\alpha}k_{\alpha})$$

$$\leq \sup_{\alpha < \omega_{1}} \dim^{X}(r_{\alpha}k_{\alpha}) = 0.$$

At condition θ : Don't: find r and enumerate (r, θ)

At condition θ :

Don't: find r and enumerate (r, θ)

Do: find φ random relative to θ code complicated T into r code θ into r enumerate (r, φ)

At condition θ :

Don't: find
$$r$$
 and enumerate (r, θ)
Do: find φ random relative to θ
code complicated T into r
code θ into r
enumerate (r, φ)

What does a suitable
$$r$$
 look like?

Let
$$\{a_i \mid i < \omega\}$$
 be projection factors, $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

At condition θ :

Don't: find r and enumerate (r, θ) Do: find φ random relative to θ code complicated T into r

enumerate (r, φ)

What does a suitable r look like?

Let (a. i < v) be projection factors.

Let
$$\{a_i \mid i < \omega\}$$
 be projection factors, $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$. If $\dim^Y(r) = \epsilon$ then

$$\mathsf{dim}^{ heta}(r,arphi) \geq \mathsf{dim}^{ heta}(arphi) + \mathsf{dim}^{ heta,arphi}(r) \geq 1 + \epsilon$$

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

The construction of r (sketch)

Stage
$$-1$$
: find T with $\dim(T) = \dim^Y(T) = \epsilon$.

$$r_0 =$$

$$r_0 =$$

Stage 0:
$$r_0 = \langle \rangle$$

Stage $k + 1$: decode $k + 1 = \langle i, n \rangle$; find $\rho_k \succ r_k$ such that $a_n[\rho_k]$ contains long substrings of T

Are coded strings of T long enough?

No.

Are coded strings of *T* long enough?

No.

How many bits of r are needed to determine 1 bit of ra_i ?

Depends on a_i ! Can be fixed by saving blocks.

Bringing it all together

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Given E we have:

• $\dim(ra_i) = \epsilon$, so as in counterexample 1,

$$\dim_H(p_\theta(E)) = \epsilon.$$

Bringing it all together

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Given E we have:

• $\dim(ra_i) = \epsilon$, so as in counterexample 1,

$$\dim_H(p_\theta(E)) = \epsilon.$$

• for every θ there is $(r, \varphi) \in E$ such that

$$\dim^{\theta}(r, \varphi) \geq \dim^{\theta}(\varphi) + \dim^{\theta, \varphi}(r)$$

 $\geq \dim^{\theta}(\varphi) + \dim^{Y}(r)$
 $\geq 1 + \epsilon$

Bringing it all together

Recall $Y = (\bigoplus a_i) \oplus \theta \oplus \varphi$.

Given E we have:

• $\dim(ra_i) = \epsilon$, so as in counterexample 1,

$$\dim_H(p_{\theta}(E)) = \epsilon.$$

• for every θ there is $(r, \varphi) \in E$ such that

$$\begin{array}{ll} \dim^{\theta}(r,\varphi) & \geq & \dim^{\theta}(\varphi) + \dim^{\theta,\varphi}(r) \\ & \geq & \dim^{\theta}(\varphi) + \dim^{Y}(r) \\ & \geq & 1 + \epsilon \end{array}$$

So PTS and $\dim_H(p_{\theta}(E)) \geq \dim_H(E) - 1$ imply

$$\dim_H(E) = 1 + \epsilon$$
.