Suppose you hove some object. If it doesnit salis fo a property, by how unch does it fail?
E.g: If $f: \mathbb{R} \rightarrow \mathbb{R}$ (addifivur is Bory homovonos phisun, then it' continusus; it's of the form $f(x)=r x$ for $\sin \quad r \in \mathbb{R}$.
$B(x) \leftarrow$ Borl σ-alybion: algehm guvater by opan seb of x.

What it f subsifier
(t)

$$
f(x+y)-f(x)-f^{\prime}(y)<0
$$

for some contable groun 6 ?
Thus: Kanovei - Reclen (2000) If t is Bores cul (*) holds then theor is a Boerl hom. g.

$$
\text { s.t. } \quad f(x)-j(x) \in G \text {. }
$$

Geveral iden: can any almoor homomono oplism be approxiunted by a real hanowor phism?

C*-algebes, Boolen algebes, groups (Polish, because we con as deseriptive set theorg).

Finite groups:
simple (no wo ${ }^{-1}$ hivinl
hared shy youps

- Ctussificatior of fivile groups.
- evers ficite jroup is "carshehi" fran simple granps.

very had problem, no unifill theor.
If G is finite group, we cen unik

$$
G=E_{n} \geqslant E_{n-1} \geqslant \ldots D E_{1} \geqslant E_{0}=1
$$

Eny E_{4} is simple marivel normal
\composition factors. $\mathbb{Z}_{n}=\mathbb{Z} \mathbb{Z}_{k \mathbb{R}}$
with futon

$$
E_{1} \cong E_{1} / E_{0} \cong \mathbb{Z}_{3}
$$

$$
\left(i \dot{\vec{U}}_{3}, \nabla_{2}\right)
$$

$$
E_{2 / E_{1}} \cong \mathbb{T}_{2} \Rightarrow E_{2} / \mathbb{Z}_{3} \cong \mathbb{Z}_{2}
$$

$$
\begin{aligned}
& \text { - } \mathbb{Z}_{4} \geqslant \mathbb{Z}_{2} \geqslant 1 \\
& \text { - } S_{y} D_{1} A_{4} \geqslant \mathbb{Z}_{2} \times \mathbb{Z}_{2} \geqslant \mathbb{Z}_{2} \geqslant 1 \\
& \text { - } S_{5} D A_{5} \geqslant 1 E \text { not livable } \\
& \text { (third Galois } \\
& \text { theory) } \\
& G=E_{2} D, E_{1} \geqslant E_{0}=1
\end{aligned}
$$

So $\left|E_{2}\right|=G, \leftarrow^{5}$ lither S_{3} or $\mathbb{Z}_{6}=\mathbb{Z}_{2} \times \mathbb{Z}_{3}$

Dfri: E_{2} is an, petexion of

$$
E_{2} / e_{1} \text { by } E_{1}
$$

$$
G=E_{2} D E_{1} D E_{0}=1
$$

$N a G \Rightarrow G$ is an Pit. of O / N by N.
Eqiv:

$$
\begin{aligned}
& 1 \rightarrow H \underset{\uparrow}{\stackrel{i}{\rightarrow}} E \underset{\uparrow}{\stackrel{q}{i}} A \rightarrow 1 \\
& \text { injution sujaction } \\
& \text { imlil }=k e r(q) \text {. } \\
& 1 \rightarrow N \xrightarrow{1} 6 \xrightarrow{g} 6 / \pi \rightarrow 1
\end{aligned}
$$

Assme A H on dbelin.

You can have dishict Then $E_{1} \cong E_{2}$.
pathion will isom. middle groupt.

If evogthig is a belinht... wo car use cocycles:

$$
\begin{aligned}
& C: A^{2} \rightarrow H \\
& \cdot C(x, y)=C(y, x) \quad \text { coeple } \\
& \cdot((x, y)+C(x+y, z) \quad=\quad((x, z)+C(x+z, y) .
\end{aligned}
$$

EACH SUCH C ONES ME AN Extension of a by h. And vie vosa.
A cocget is a caboulay if

$$
c(x, y)=\eta(x)+\eta(y)-\eta(x+y) .
$$

leds at $H^{2}(A, H)$

$$
\begin{aligned}
& \left.C-C^{\prime}=n(x)+y b_{y}\right)-y(x+y)^{\text {r }} \text { leacty gim } \\
& \Rightarrow C, C^{\prime} \text { on } \\
& \text { colvenologon. } \\
& \text { group pxt of } \\
& A \text { b } H \text {. }
\end{aligned}
$$

Now look at Borul corgclas:
A,H are Polish spaces K reparable, comp. whase group op. is Borly metionbe. Look at Bael cocgeles:
$C: A^{2} \rightarrow H$ is Boal on a mop.

Thm: Kawneiw - Reek (2000)

$$
\begin{aligned}
& H_{B O r}^{2}\left(\mathbb{R}_{1}^{2} \sigma^{2}\right)^{2} \neq 0 \text { if } 0 \text { isctal } \\
& \underset{\sim}{C} \quad Z_{\operatorname{Bar}}^{2}\left(\mathbb{R} G / \beta_{\text {Bor }}^{2}(\mathbb{R}, G)\right.
\end{aligned}
$$

Thm: Lupini R.

$$
H_{\text {Bor }}^{2}\left(R^{n},(O)=0 \text { if } 0\right. \text { isetth). }
$$

Main oggmet of proof:
C is Bia! so it's nice on some open interval I., (Baire catejors thmil

