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Hausdor↵ dimension: motivation
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Definition (Hausdor↵ dimension)

For E ⇢ Rn

dimH(E ) = sup{s |H
s
(E ) = 1}

= inf{s |H
s
(E ) = 0}.

Lemma

dimH is invariant under isometries.
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Marstrand’s Projection Theorem

dimp(E) = I dim
,
(F) = I

F

... min maitA

dim (P(El dimn(P(FI)
=I -I



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2
be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

• Also holds if dimH(E ) = dimP(E ) (N. Lutz and Stull 2018)

• ...but—assuming CH—does not hold for all sets (Davies 1979)



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2
be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

• Also holds if dimH(E ) = dimP(E ) (N. Lutz and Stull 2018)

• ...but—assuming CH—does not hold for all sets (Davies 1979)



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2
be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

• Also holds if dimH(E ) = dimP(E ) (N. Lutz and Stull 2018)

• ...but—assuming CH—does not hold for all sets (Davies 1979)



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2
be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

• Also holds if dimH(E ) = dimP(E ) (N. Lutz and Stull 2018)

• ...but—assuming CH—does not hold for all sets (Davies 1979)



Marstrand’s Projection Theorem (J. Marstrand (1954))

Let E ⇢ R2
be analytic. For almost all ✓

dimH(p✓(E )) = min{dimH(E ), 1}

where p✓ is the orthogonal projection onto the line ✓.

• Also holds if dimH(E ) = dimP(E ) (N. Lutz and Stull 2018)

• ...but—assuming CH—does not hold for all sets (Davies 1979)I
-

·dimn

edinyD1 = 0ii "



Question

What is the “simplest” set failing Marstrand’s theorem?

We use descriptive set theory.
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Strings with long descriptions are complicated

Question

What is the complexity of 01101?

We ask: how long is the shortest description of 01101 in a

prefix-free machine?
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Strings with long descriptions are complicated
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Strings with long descriptions are complicated

Definition (Levin; Chaitin (1970s))

The prefix-free complexity of a string ⌧ is K (⌧) = CU(⌧).

e(s) = k(t) = minimal length .
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Extend randomness to 2!

Definition (Chaitin; Levin (1970s))

A real f 2 2
!
is Kolmogorov random if K (f [n]) � n � c for some

constant c .

The following definitions of randomness are all equivalent!

1 e↵ective open covers ! Martin-Löf (1966)

2 complexity of strings ! Chaitin; Levin (1970s)

3 martingales ! Schnorr (1973)

So: random reals do not have (long) patterns!
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Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2
!
given by

dim(f ) = lim inf
n!1

K (f [n])

n
.

This relativises!

• If f 2 2
!
is Kolmogorov random then dim(f ) = 1.

• If f 2 2
!
is computable then dim(f ) = 0.

↳ "information
- A desity"
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From 2! to R
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Point-to-set Principle (J. Lutz, N. Lutz (2018))

For E ⇢ Rn
we have

dimH(E ) = min
A22!

sup

x2E
dim

A
(x).

• Extension of result due to Hitchcock (2003) for lightface ⇧
0
1

classes on 2
!
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Marstrand’s theorem (special case)

For every analytic E ⇢ R2
for which dimH(E ) = 1 we have

dimH(p✓(E )) = 1 for almost all ✓.

Theorem (R.)

(V=L) There exists a co-analytic E ⇢ R2
such that dimH(E ) = 1

and dimH(p✓(E )) = 0 for all ✓.
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The idea

Recall: dimH(E ) = min
A22!

sup

x2E
dim

A
(x)
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The idea

Recall: dimH is invariant under isometries.
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How do we control dimension?

Recall: dimH(E ) = min
A22!

sup

x2E
dim

A
(x)

Lemma

If E ⇢ R2
meets every line through O then dimH(E ) � 1.

Proof.

Let A 2 2
!
. Take ✓ random relative to A. There exists r 2 R such

that (r , ✓) 2 E . Hence

dim
A
(r , ✓) � dim

A
(✓) = 1.

A is arbitrary, so PTS completes the argument.
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How do we construct co-analytic sets?

By recursion!

How we normally do recursion:

Example (Mazurkiewicz 1914)

(AC) There exists a subset B ⇢ R2
that intersects every straight

line in exactly two points.

(A, p) �! x
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How do we construct co-analytic sets?

Theorem (Z. Vidnyánszky (2014))

(V=L) Under certain conditions on the set of triples (A, p, x), the
above recursion produces a co-analytic set.

(A, p, x)
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Constructing E by recursion

• do recursion on all lines ✓ through the origin

• at step ✓, take all previous lines ✓0, ✓1, ✓2, . . .

• find r so that dim(p✓i (r , ✓)) = dim(ai r) = 0

• enumerate (r , ✓) into E

We assumed
X V=L + CH

a·

X find r



Constructing r
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The verification

Suppose E = {(r↵, ✓↵) |↵ < !1}. after O
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The general result

Theorem (R.)

(V=L) For every ✏ 2 [0, 1) there exists a co-analytic E✏ ⇢ R2
such

that dimH(E✏) = 1 + ✏ and dimH(p✓(E✏)) = ✏ for all ✓.



Open questions

In fractal geometry:

• What about dimH(E ) < 1?

• Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

dimP(E ) = min
A22!

sup

x2E
Dim

A
(x)

where

Dim(x) = lim sup
r!1

Kr (x)

r

...does not admit Marstrand-like result (Järvenpää; Howroyd

and Falconer (1990s))

In set theory:

• What about the other extreme? Is it consistent that every set

of reals satisfies Marstrand’s theorem?

• Is there a co-analytic set failing Marstrand’s theorem that is

not thin?
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