Co-analytic Counterexamples to Marstrand's Projection Theorem

Linus Richter

Victoria University of Wellington

Hausdorff dimension: motivation

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$ dim_H(E) = sup{s | $\mathcal{H}^s(E) = \infty$ } Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$

$$\dim_H(E) = \sup\{s \mid \mathcal{H}^s(E) = \infty\} = \inf\{s \mid \mathcal{H}^s(E) = 0\}.$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^n$

$$\dim_H(E) = \sup\{s \mid \mathcal{H}^s(E) = \infty\} = \inf\{s \mid \mathcal{H}^s(E) = 0\}.$$

Lemma

 \dim_H is invariant under isometries.

Marstrand's Projection Theorem

dimy 15 = 32

 $\dim_{H}(F) = \frac{1}{2}$

Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_\theta(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

• Also holds if $\dim_H(E) = \dim_P(E)$ (N. Lutz and Stull 2018)

Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_\theta(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Also holds if dim_H(E) = dim_P(E) (N. Lutz and Stull 2018)
...but—assuming CH—does *not* hold for all sets (Davies 1979)

Question

What is the "simplest" set failing Marstrand's theorem?

Question

What is the "simplest" set failing Marstrand's theorem?

We use descriptive set theory. Duvies analytic Σ_2^1 . . . Π^1_1

Strings with long descriptions are complicated

Question

What is the complexity of 01101?

Strings with long descriptions are complicated

Question

What is the complexity of 01101?

We ask: how long is the shortest description of 01101 in a prefix-free machine?

Strings with long descriptions are complicated

Definition (Levin; Chaitin (1970s))

The prefix-free complexity of a string τ is $K(\tau) = C_U(\tau)$.

EZKW

Extend randomness to 2^ω

Definition (Chaitin; Levin (1970s))

A real $f \in 2^{\omega}$ is Kolmogorov random if $K(f[n]) \ge n - c$ for some constant c.

Extend randomness to 2^ω

Definition (Chaitin; Levin (1970s))

A real $f \in 2^{\omega}$ is Kolmogorov random if $K(f[n]) \ge n - c$ for some constant c.

The following definitions of randomness are all equivalent!

- **1** effective open covers \rightarrow Martin-Löf (1966)
- **2** complexity of strings \rightarrow Chaitin; Levin (1970s)
- **3** martingales \rightarrow Schnorr (1973)

Extend randomness to 2^ω

Definition (Chaitin; Levin (1970s))

A real $f \in 2^{\omega}$ is Kolmogorov random if $K(f[n]) \ge n - c$ for some constant c.

The following definitions of randomness are all equivalent!

- **1** effective open covers \rightarrow Martin-Löf (1966)
- **2** complexity of strings \rightarrow Chaitin; Levin (1970s)
- **3** martingales \rightarrow Schnorr (1973)

So: random reals do not have (long) patterns!

Phil 50000 2005"

Kolmogorov complexity

Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2^{ω} given by

$$\dim(f) = \liminf_{n \to \infty} \frac{K(f[n])}{n}$$

This relativises!

- If $f \in 2^{\omega}$ is Kolmogorov random then dim(f) = 1.
- If $f \in 2^{\omega}$ is computable then dim(f) = 0.

From 2^{ω} to $\mathbb R$

XER EZ $\mathcal{X} = \chi_0, \chi_1, \chi_2, \chi_3, \chi_4, \dots$ in binary

Extension of result due to Hitchcock (2003) for lightface Π⁰₁ classes on 2^ω.

Marstrand's theorem (special case)

For every analytic $E \subset \mathbb{R}^2$ for which $\dim_H(E) = 1$ we have $\dim_H(p_{\theta}(E)) = 1$ for almost all θ .

Marstrand's theorem (special case)

For every analytic $E \subset \mathbb{R}^2$ for which $\dim_H(E) = 1$ we have $\dim_H(p_{\theta}(E)) = 1$ for almost all θ .

Theorem (R.)

(V=L) There exists a co-analytic $E \subset \mathbb{R}^2$ such that $\dim_H(E) = 1$ and $\dim_H(p_{\theta}(E)) = 0$ for all θ .

The idea

Recall: \dim_H is invariant under isometries.

Recall: dim_{*H*}(*E*) = min sup dim^{*A*}(*x*)
$$_{A \in 2^{\omega}} \sup_{x \in E} dim^{A}(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma If $E \subset \mathbb{R}^2$ meets every line through O then $\dim_H(E) \ge 1$. Proof. Let $A \in 2^{\omega}$. Take θ random relative to A.

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$.

Recall: dim_{*H*}(*E*) = min sup dim^{*A*}(*x*)
$$_{A \in 2^{\omega}} \sup_{x \in E} dim^{A}(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence $\dim^{A}(r, \theta) \geq \dim^{A}(\theta) = 1.$

Recall:
$$\dim_H(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \dim^A(x)$$

Lemma

If $E \subset \mathbb{R}^2$ meets every line through O then dim_H(E) ≥ 1 .

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$\dim^{\mathcal{A}}(r,\theta) \geq \dim^{\mathcal{A}}(\theta) = 1.$$

A is arbitrary, so PTS completes the argument.

How do we construct co-analytic sets?

By recursion!

How do we construct co-analytic sets?

By recursion! How we normally do recursion:

How do we construct co-analytic sets?

Constructing E by recursion

- do recursion on all lines θ through the origin
- V=L+CH • at step θ , take all previous lines $\theta_0, \theta_1, \theta_2, \ldots$
- find r so that $\dim(p_{\theta_i}(r,\theta)) = \dim(a_i r) = 0$
- enumerate (r, θ) into E

We assund

Constructing r

Constructing r

The verification

The general result

Theorem (R.)

(V=L) For every $\epsilon \in [0,1)$ there exists a co-analytic $E_{\epsilon} \subset \mathbb{R}^2$ such that $\dim_H(E_{\epsilon}) = 1 + \epsilon$ and $\dim_H(p_{\theta}(E_{\epsilon})) = \epsilon$ for all θ .

In fractal geometry:

• What about dim_H(E) < 1?

In fractal geometry:

- What about dim_H(E) < 1?
- Packing dimension?

In fractal geometry:

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018)) $\dim_{P}(E) = \min_{A \in 2^{2}} \sup_{x \in E} \min^{A}(x)$ where $\dim(x) = \limsup_{r \to \infty} \frac{K_{r}(x)}{r}$

In fractal geometry:

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018)) $\dim_{P}(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \operatorname{Dim}^{A}(x)$ where $\operatorname{Dim}(x) = \limsup_{r \to \infty} \frac{K_{r}(x)}{r}$

...does not admit Marstrand-like result (Järvenpää; Howroyd and Falconer (1990s))

In fractal geometry:

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018)) $\dim_{P}(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \operatorname{Dim}^{A}(x)$ where $\operatorname{Dim}(x) = \limsup_{r \to \infty} \frac{K_{r}(x)}{r}$

...does not admit Marstrand-like result (Järvenpää; Howroyd and Falconer (1990s))

In set theory:

• What about the other extreme? Is it consistent that *every* set of reals satisfies Marstrand's theorem?

In fractal geometry:

- What about dim_H(E) < 1?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018)) $\dim_{P}(E) = \min_{A \in 2^{\omega}} \sup_{x \in E} \operatorname{Dim}^{A}(x)$ where $\operatorname{Dim}(x) = \limsup_{r \to \infty} \frac{K_{r}(x)}{r}$

...does not admit Marstrand-like result (Järvenpää; Howroyd and Falconer (1990s))

In set theory:

- What about the other extreme? Is it consistent that *every* set of reals satisfies Marstrand's theorem?
- Is there a co-analytic set failing Marstrand's theorem that is not thin?

Thank you