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Hausdorff dimension: motivation
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Definition (Hausdorff dimension)

For E C R"
dimy(E) = sup{s|H*(E) = oo} = inf{s | H*(E) = 0}.
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Lemma
dimy is invariant under isometries.
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Marstrand’s Projection Theorem
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Marstrand's Projection Theorem (J. Marstrand (1954))

Let E C R? be analytic. For almost all 6
dimy(pg(E)) = min{dimy(E), 1}

where py is the orthogonal projection onto the line 6.
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Marstrand's Projection Theorem (J. Marstrand (1954))

Let E C R? be analytic. For almost all 6
dimy(pg(E)) = min{dimy(E), 1}
where py is the orthogonal projection onto the line 6.

e Also holds if dimy(E) = dimp(E) (N. Lutz and Stull 2018)
° ...but—assumin4 CH{—does not hold for all sets (Davies 1979)
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Question

What is the “simplest” set failing Marstrand’s theorem?



Question

What is the “simplest” set failing Marstrand’s theorem?

We use descriptive set theory. DCA Vies
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Strings with long descriptions are complicated

Question

What is the complexity of 011017



Strings with long descriptions are complicated

Question
What is the complexity of 011017

We ask: how long is the shortest description of 01101 in a
prefix-free machine?
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Strings with long descriptions are complicated




Strings with long descriptions are complicated
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Definition (Levin; Chaitin (1970s))

The prefix-free complexity of a string 7 is K(7) = Cy(7).

€ Z<N’



Extend randomness to 2%

Definition (Chaitin; Levin (1970s))

A real f € 2¥ is Kolmogorov random if K(f[n]) > n — c for some
constant c. -
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A real f € 2¥ is Kolmogorov random if K(f[n]) > n — c for some
constant c.
The following definitions of randomness are all equivalent!
@ effective open covers — Martin-Lof (1966)
@® complexity of strings — Chaitin; Levin (1970s)
©® martingales — Schnorr (1973)



Extend randomness to 2%

Definition (Chaitin; Levin (1970s))
A real f € 2¥ is Kolmogorov random if K(f[n]) > n — c for some
constant c.
The following definitions of randomness are all equivalent!
@ effective open covers — Martin-Lof (1966)
@® complexity of strings — Chaitin; Levin (1970s)
©® martingales — Schnorr (1973)

So: random reals do not have (long) patterns!
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Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2% given by

dim(f) = Iinrlioréf@. Hin F“’W;'J"“‘
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Th J. Lutz; Mayord 2003 ' .
eorem (J. Lutz; Mayordomo ( ) M“"Arlﬁﬂ&l)u‘

There exists dim on 2% given by
& dugh”
dim(#) = ot <UD, 5t

n—o0

This relativises!

e If f € 2* is Kolmogorov random then dim(f) = 1.
e If f € 2% is computable then dim(f) = 0.
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From 2¥ to R
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Point-to-set Principle|(J. Lutz, N. Lutz (2018))

For E C R" we have
min|sup

o=
® Extension of result due to Hitchcock (2003) for lightface M9
classes on 2.

dimp(E) =
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Marstrand’s theorem (special case)

For every analytic E € R? for which dim;(£) — 1 we have
dimy(pg(E)) = 1 for almost all 6.



Marstrand’s theorem (special case)

For every analytic E C R? for which we have
dimy(pg(E)) = 1 for almost all 6.

Theorem (R.)

(V=L) There exists a co-analytic E C R? such that
and dimy(py(E)) = 0 for all 6.
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Recall: dimy(E)
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The idea

Recall: dimy is invariant under isometries.
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Lemma
If E C R? meets every line through O then dimy(E) > 1.
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How do we control dimension?

Recall: dimy(E) = min sup dim”(x)
€2¥ xcE

Lemma
If E C R? meets every line through O then dimy(E) > 1.

Proof.

Let A € 2¢. Take 6 random relative to A. There exists r € R such
that (r,0) € E. Hence

dim”(r,0) > dim”(9) = 1.

A is arbitrary, so PTS completes the argument. Ol



How do we construct co-analytic sets?

By recursion!



How do we construct co-analytic sets?

By recursion! How we normally do recursion:

Example (Mazurkiewicz 1914)

(AC) There exists a subset B C R? that intersects every straight

line in exactly two points. TW r"'k{' ot
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How do we construct co-analytic sets?

Theorem (Z. Vidnyanszky (2014))

nder certain conditions on the set of triples (A, p, x), the
a

bove recursion produces a co-analytic set.
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Constructing E by recursion

® do recursion on all lines 6 through the origin l//L %M

® at step 6, take all previous lines 6, 01,05, ... \/s\_ l— CH
e find r so that dim(pg,(r,0)) = dim(ajr) =0

® enumerate (r,6) into E
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The verification

Suppose E = {(ra,0a) | o < w1} D\P‘U‘ 9
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The general result

Theorem (R.)

(V=L) For every ¢ € [0,1) there exists a co-analytic E. C R? such
that and dimy(py(E:)) = € for all 6.
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Open questions

In fractal geometry:
® What about dimy(E) < 17
® Packing dimension? Characterisations exist!
PTS for packing dimension (J. Lutz, N. Lutz (2018))
di E) = mi Dim”#
imp(E) Jmin, )s(:g im”(x)
where
K (x)

Dim(x) = lim sup —
r—o00 r

...does not admit Marstrand-like result (Jarvenpaa; Howroyd
and Falconer (1990s))

In set theory:
® What about the other extreme? Is it consistent that every set
of reals satisfies Marstrand'’s theorem?
® |s there a co-analytic set failing Marstrand’s theorem that is
not thin?
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