Co-analytic"Counterexamples" to Marstrand's Projection Theorem

Linus Richter

Victoria University of Wellington

15 September 2023
20

Kolmogorov complexity

Kolmogorov complexity

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}
$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}=\inf \left\{s \mid \mathcal{H}^{s}(E)=0\right\} .
$$

Definition (Hausdorff dimension)

For $E \subset \mathbb{R}^{n}$

$$
\operatorname{dim}_{H}(E)=\sup \left\{s \mid \mathcal{H}^{s}(E)=\infty\right\}=\inf \left\{s \mid \mathcal{H}^{s}(E)=0\right\}
$$

Lemma

dim_{H} is invariant under isometries.

Marstrand's Projection Theorem
$\operatorname{dim}_{B} L E=\frac{3}{2}$

$$
\operatorname{dim}_{H}(F)=\frac{1}{2}
$$

 $=1$

Marstrand's Projection Theorem (J. Marstrand (1954))
Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

Marstrand's Projection Theorem (J. Marstrand (1954))
Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

Marstrand's Projection Theorem (J. Marstrand (1954))
Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

Marstrand's Projection Theorem (J. Marstrand (1954))
Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

- Also holds if $\operatorname{dim}_{H}(E)=\operatorname{dim}_{P}(E)$ (N. Lutz and Stull 2018)

Marstrand's Projection Theorem (J. Marstrand (1954))

Let $E \subset \mathbb{R}^{2}$ be analytic. For almost all θ

$$
\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=\min \left\{\operatorname{dim}_{H}(E), 1\right\}
$$

where p_{θ} is the orthogonal projection onto the line θ.

- Also holds if $\operatorname{dim}_{H}(E)=\operatorname{dim}_{P}(E)$ (N. Lutz and Stull 2018)
- ...but-assuming CH -does not hold for all sets (Davies 1979)

Question

What is the "simplest" set failing Marstrand's theorem?

Question
What is the "simplest" set failing Marstrand's theorem?
We use descriptive set theory.

Hausdorff dimension

Kolmogorov complexity

Strings with long descriptions are complicated

Question

What is the complexity of 01101 ?

Strings with long descriptions are complicated

Strings with long descriptions are complicated

Strings with long descriptions are complicated

$l(\sigma)=K(\tau) \leqslant$ minimal learth.

\downarrow

Definition (Levin; Chaitin (1970s))
The prefix-free complexity of a string τ is $K(\tau)=C_{U}(\tau)$.

$$
\epsilon_{2}<W
$$

Extend randomness to 2^{ω}

Definition (Chaitin; Levin (1970s))

A real $f \in 2^{\omega}$ is Kolmogorov random if $K(f[n]) \geq n-c$ for some constant c.

Extend randomness to 2^{ω}

Definition (Chaitin; Levin (1970s))

A real $f \in 2^{\omega}$ is Kolmogorov random if $K(f[n]) \geq n-c$ for some constant c.

The following definitions of randomness are all equivalent!
(1) effective open covers \rightarrow Martin-Löf (1966)
(2) complexity of strings \rightarrow Chaitin; Levin (1970s)
(3) martingales \rightarrow Schnorr (1973)

Extend randomness to 2^{ω}

Definition (Chaitin; Levin (1970s))

A real $f \in 2^{\omega}$ is Kolmogorov random if $K(f[n]) \geq n-c$ for some constant c.

The following definitions of randomness are all equivalent!
(1) effective open covers \rightarrow Martin-Löf (1966)
(2) complexity of strings \rightarrow Chaitin; Levin (1970s)
(3) martingales \rightarrow Schnorr (1973)

So: random reals do not have (long) patterns!

11

Hausdorff dimension

Theorem (J. Lutz; Mayordomo (2003))
There exists dim on 2^{ω} given by

$$
\operatorname{dim}(f)=\liminf _{n \rightarrow \infty} \frac{K(f[n])}{n} .
$$

"in formation density

Theorem (J. Lutz; Mayordomo (2003))

There exists dim on 2^{ω} given by

$$
\operatorname{dim}(f)=\liminf _{n \rightarrow \infty} \frac{K(f[n])}{n} .
$$

dusts

This relativises!

- If $f \in 2^{\omega}$ is Kolmogorov random then $\operatorname{dim}(f)=1$.
- If $f \in 2^{\omega}$ is computable then $\operatorname{dim}(f)=0$.

$$
\begin{aligned}
& x \in \mathbb{R} \quad \in 2^{\omega} \\
& x=\sqrt{x_{0}, x_{1} x_{2} x_{3} x_{4} \cdots}
\end{aligned}
$$

in binary

Point-to-set Principle (J. Lutz, N. Lutz (2018))
For $E \subset \mathbb{R}^{n}$ we have

$$
\operatorname{dim}_{H}(E)=\min _{A \in 2^{w}} \sup _{x \in E} \operatorname{dim}^{A}(x) .
$$

- Extension of result due to Hitchcock (2003) for lightface Π_{1}^{0} classes on 2^{ω}.

Marstrand's theorem (special case)

For every analytic $E \subset \mathbb{R}^{2}$ for which $\operatorname{dim}_{H}(E)=1$ we have $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

Marstrand's theorem (special case)

For every analytic $E \subset \mathbb{R}^{2}$ for which $\operatorname{dim}_{H}(E)=1$ we have $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=1$ for almost all θ.

Theorem (R.)

$(V=L)$ There exists a co-analytic $E \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}(E)=1$ and $\operatorname{dim}_{H}\left(p_{\theta}(E)\right)=0$ for all θ.

point - to - set
The idea
Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$ pricućple
in polar cosedruate.

Recall: dim_{H} is invariant under isometries.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup \operatorname{dim}^{A}(x)$

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$
Lemma
If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$
Lemma
If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.
Proof.
Let $A \in 2^{\omega}$. Take θ random relative to A.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$.

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$
Lemma
If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$
\operatorname{dim}^{A}(r, \theta) \geq \operatorname{dim}^{A}(\theta)=1
$$

How do we control dimension?

Recall: $\operatorname{dim}_{H}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{dim}^{A}(x)$

Lemma

If $E \subset \mathbb{R}^{2}$ meets every line through O then $\operatorname{dim}_{H}(E) \geq 1$.

Proof.

Let $A \in 2^{\omega}$. Take θ random relative to A. There exists $r \in \mathbb{R}$ such that $(r, \theta) \in E$. Hence

$$
\operatorname{dim}^{A}(r, \theta) \geq \operatorname{dim}^{A}(\theta)=1
$$

A is arbitrary, so PTS completes the argument.

By recursion!

How do we construct co-analytic sets?
By recursion! How we normally do recursion:
Example (Mazurkiewicz 1914)
(AC) There exists a subset $B \subset \mathbb{R}^{2}$ that intersects every straight line in exactly two points. Two point set

How do we construct co-analytic sets?
Theorem (Z. Vidnyánszky (2014))
$V=L$ Under certain conditions on the set of triples (A, p, x), the above recursion produces a co-analytic set.

The $F=\{(A, p, x)\} t^{\text {cosarangtic }}$

coping in
nigpodgreen fibs or
ufial in HYP dares

Constructing E by recursion

- do recursion on all lines θ through the origin
- at step θ, take all previous lines $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$

We assumed $V=L \vdash C H$

- find r so that $\operatorname{dim}\left(p_{\theta_{i}}(r, \theta)\right)=\operatorname{dim}\left(a_{i} r\right)=0$
- enumerate (r, θ) into E

The general result

Theorem (R.)
$(V=L)$ For every $\epsilon \in[0,1)$ there exists a co-analytic $E_{\epsilon} \subset \mathbb{R}^{2}$ such that $\operatorname{dim}_{H}\left(E_{\epsilon}\right)=1+\epsilon$ and $\operatorname{dim}_{H}\left(p_{\theta}\left(E_{\epsilon}\right)\right)=\epsilon$ for all θ.

Open questions

In fractal geometry:

- What about $\operatorname{dim}_{H}(E)<1$?

Open questions

In fractal geometry:

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension?

Open questions

In fractal geometry:

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{d}} \sup _{x \in E} \operatorname{sim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

Open questions

In fractal geometry:

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää; Howroyd and Falconer (1990s))

Open questions

In fractal geometry:

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää; Howroyd and Falconer (1990s))
In set theory:

- What about the other extreme? Is it consistent that every set of reals satisfies Marstrand's theorem?

Open questions

In fractal geometry:

- What about $\operatorname{dim}_{H}(E)<1$?
- Packing dimension? Characterisations exist!

PTS for packing dimension (J. Lutz, N. Lutz (2018))

$$
\operatorname{dim}_{P}(E)=\min _{A \in 2^{\omega}} \sup _{x \in E} \operatorname{Dim}^{A}(x)
$$

where

$$
\operatorname{Dim}(x)=\underset{r \rightarrow \infty}{\limsup } \frac{K_{r}(x)}{r}
$$

...does not admit Marstrand-like result (Järvenpää; Howroyd and Falconer (1990s))
In set theory:

- What about the other extreme? Is it consistent that every set of reals satisfies Marstrand's theorem?
- Is there a co-analytic set failing Marstrand's theorem that is not thin?

Thank you

