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Abstract. Assuming V=L, we construct a plane set E of Hausdorff dimension 1 whose
every orthogonal projection onto straight lines through the origin has Hausdorff dimen-
sion 0. This is a counterexample to J. M. Marstrand’s seminal projection theorem [30].
While counterexamples had already been constructed decades ago, initially by R. O.
Davies [8], the novelty of our result lies in the fact that E is co-analytic. Following
Marstrand’s original proof [30] (and R. Kaufman’s newer, and now standard, approach
[18] based on capacities), a counterexample to the projection theorem cannot be analytic,
hence our counterexample is optimal. We then extend the result in a strong way: we
show that for each ϵ ∈ (0, 1) there exists a co-analytic set Eϵ of dimension 1 + ϵ, each
of whose orthogonal projections onto straight lines through the origin has Hausdorff di-
mension ϵ. The constructions of E and Eϵ are by induction on the countable ordinals,
applying a theorem by Z. Vidnyánszky [42].

1. Introduction

Hausdorff measure is one of the fundamental notions of classical fractal geometry. While
Lebesgue measure limits itself to well-behaved structures such as planes or lines, or re-
mains uninformative otherwise, Hausdorff measure is much finer (in particular, it extends
Lebesgue measure). Hausdorff measure is defined similarly to Lebesgue measure: one
considers covers of a set. However, for Hausdorff measure, there are two important differ-
ences: (1) the covers need not be open; and (2), the diameter of the cover sets is raised to
a chosen power α > 0. It is easily seen that for every set X there exists s ≥ 0 such that
the α-dimensional Hausdorff measure of X is 0 if α > s; and that it is infinite if α < s.
What value the α-dimensional Hausdorff measure of X takes with α = s is anyone’s guess.
It could be 0, infinite, or take on some other finite value. For this reason, s is called the
critical value—it is also called the Hausdorff dimension of X.

An illuminating quote explaining the intuition behind the critical value is the following
[10, p. 168]:

This idea of dimension is an abstraction of what we already know from
elementary geometry. If A is a [...] curve, then its length is a useful way
to measure its size; but its “area” and “volume” are 0. The dimensions 2
and 3 are too large to help in measuring the size of A. If B is the surface
of a sphere, then its area is positive and finite. We can say its “length”
is infinite (for example, since it contains curves that are as long as we like
which spiral around); its “volume” is 0, since it is contained in a solid
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spherical shell whose thickness is as small as we like. So for the set B, the
dimension 1 is too small, the dimension 3 is too large, and the dimension
2 is just right. The α-dimensional Hausdorff measure give us a way of
measuring the size of a set for dimensions α other than the integers 1, 2,
3, . . .

Since the early development of fractal geometry, a few theorems have turned out to be
foundational. Marstrand’s projection theorem [30] dating back to 1954 is one of them: it
forms a cornerstone of classical fractal geometry today. While ignored for decades (with
the term “fractal geometry” only arriving in the 1970s), fractal geometry, and projection
theorems like Marstrand’s, are researched intensively nowadays [12].

In essence, the theorem states that orthogonal projections of analytic sets cannot drop
too far in dimension—but there are exceptions. The first to notice this was R. O. Davies
[8], who constructed a counterexample non-constructively, assuming the Continuum Hy-
pothesis CH. Simplifications [18] and generalisations [32] of Marstrand’s theorem followed
over the subsequent decades. Nowadays, the standard argument to prove Marstrand’s
projection theorem is Kaufman’s proof [18] which is based on energy potential characteri-
sations of Hausdorff dimension. Refinements of the theorem are sought after today [2, 13].

While fractal geometry traditionally depended on measure arguments, other approaches
have advanced over the last decades. With the first such being R. Kaufman’s aforemen-
tioned proof [18] of Marstrand’s Theorem, more recently, advances in bridging fractal
geometry to information theoretical tools have succeeded [22, 33, 15, 24]: standing out
is the recent point-to-set principle of Lutz and Lutz [25], which relates the Hausdorff di-
mension of a set to the dimensions of its constituent points. The dimension of points, in
this context, is given using tools of algorithmic information theory: one considers com-
putability theory, and in particular, Kolmogorov randomness. We present the required
background in subsequent sections.

The point-to-set principle has already proven to be a very useful tool in the theory of
orthogonal projections. This applies to both Hausdorff dimension dimH as well as pack-
ing dimension dimP : Lutz and Stull [28] have shown using algorithmic arguments that
if X ⊂ R2 satisfies dimH(X) = dimP (X) then Marstrand’s theorem applies, and so the
requirement of being analytic can be dropped. They also give a new bound on the packing
dimension of orthogonal projections under packing dimension, and provide a new proof
of Marstrand’s theorem in the same paper. It is noted that it was already known that
packing dimension does not admit a Marstrand-like result [17].

In the present paper we show that being analytic is in fact sharp for Marstrand’s theo-
rem, a fact previously unknown: we construct an optimal counterexample to Marstrand’s
projection theorem using non-classical tools. In particular, we use Lutz’ and Lutz’ point-
to-set principle [25] to construct a set of Hausdorff dimension 1, all of whose projections
vanish. Using a result by Vidnyánszky [42] we show that the constructed set is co-analytic.
We then extend our result to produce a co-analytic Marstrand-failing set of dimension
1 + ϵ for each ϵ ∈ (0, 1) in a strong way: for each ϵ we produce a co-analytic set X
such that dimH(X) = 1 + ϵ while its projection onto every line through the origin has
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dimension ϵ, the minimal allowable value.

Throughout our work we make the set-theoretic assumption that V=L. This is for
combinatorial reasons, as it allows us to argue by transfinite induction in our construc-
tion, following Vidnyánszky’s theorem.

We would like to note that the results in this paper have independently been obtained
by T. Slaman and D. Stull.

1.1. Marstrand’s Projection Theorem. The original statement of John Marstrand’s
Projection Theorem is as follows (we have flipped the order from how it appears in the
source).

Theorem 1.1 (MPT, [30, Thm I & II]). Let E ⊂ R2 be analytic. Let projθ(E) denote
the projection of E onto the unique line passing through the origin at angle θ with the first
axis. Let µ denote the one-dimensional Lebesgue measure.

(1) If dimH(E) ≤ 1 then for almost all θ ∈ [0, π) we have dimH(projθ(E)) = dimH(E).

(2) If dimH(E) > 1 then for almost all θ ∈ [0, π) we have µ(projθ(E)) > 0.

It is noted that item 2 is strictly stronger than an assertion about Hausdorff dimension
[3]. This follows from the standard fact that, in Rm, Hausdorff measure generalises m-
dimensional Lebesgue measure (the proof is a straightforward measure argument [10,
6.1]). In particular, if A ⊂ R has positive Lebesgue measure, then dimH(A) = 1. An easy
Corollary of item 2 is hence:

Corollary 1.2. If E ⊂ R2 is analytic and dimH(E) > 1 then for almost all θ ∈ [0, π) we
have dimH(projθ(E)) = 1.

1.2. Our Theorems. We provide co-analytic counterexamples to both items 1 and 2
of theorem 1.1. Since analytic sets satisfy theorem 1.1, our results are sharp. The first
theorem is proven in section 5, the second in section 6. Recall that we assume V=L.

Theorem 5.1. There exists a co-analytic set E ⊂ R2 such that dimH(E) = 1 while, for
every θ ∈ [0, 2π) we have dimH(projθ(E)) = 0.

The construction is carried out via a theorem due to Z. Vidnyánszky [42], which allows
us to build co-analytic sets using co-analytic conditions by recursion. Let D denote the
first quadrant of the unit disc, which we shall consider in more detail in section 3.

Given F ⊂ D≤ω × [0, π/2] × D, a set X = {xα |α < ω1} is compatible with F if the
following exist:

• an enumeration {pα |α < ω1} of B; and
• an enumeration {Aα |α < ω1} ⊂ D≤ω such that if α < ω1 then Aα = X ↾ α

such that for each α < ω1 we have (Aα, pα, xα) ∈ F .

Theorem 4.3 ([42]). Let F ⊂ D≤ω × [0, π/2] × D. If F is co-analytic and if for all
(A, p) ∈ D≤ω × [0, π/2] the section

F (A, p) = {x ∈ D | F (A, p, x)}
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is cofinal in the Turing degrees, then there exists a co-analytic set X ⊂ D that is compatible
with F .

We revisit Vidnyánszky’s theorem in more detail in section 4.
Our second contribution is the following stronger result, which we prove in section 6.

Theorem 6.1. For every ϵ ∈ (0, 1), there exists a co-analytic set E ⊂ R2 such that
dimH(E) = 1 + ϵ while, for every θ ∈ [0, 2π) we have dimH(projθ(E)) = ϵ.

The arguments in the proof of this more general theorem are similar to those prior;
however, the coding procedure is more involved.

Acknowledgments. I would like to thank my doctoral advisor Daniel Turetsky for bring-
ing the question around counterexamples to Marstrand’s theorem to my attention, as well
as for his continuous advice provided throughout the development of this paper, and for
his very informative feedback on earlier versions of this manuscript.

2. Preliminaries

In this section, we give some necessary preliminaries on Hausdorff measure and dimen-
sion, as well as computability theory and the theory of complexity. These are required in
order to use the point-to-set principle theorem 2.13 in our construction.

2.1. A review of Hausdorff measure and dimension. While classically geometric
measure theory formed the backbone of fractal geometry, this is not necessarily so today.
When working with the point-to-set principle, measure theory is mostly unnecessary.
However, we occasionally switch between one and the other; some proofs are expressed
and proven more simply in the language of measures than in that of computability theory.
Hence we provide a very brief introduction to Hausdorff measure, dimension, and in
particular Lipschitz maps below.

Consider a subset E ⊂ R2. In order to define Hausdorff measure, we first consider

Hs
δ(E) = inf

{∑
i<ω

|Ui|s
∣∣∣∣∣ E ⊂

⋃
i<ω

Ui ∧ (∀i < ω)(|Ui| < δ)

}
where d is the usual Euclidean distance and |U | = sup{d(x, y) | x, y ∈ U}, the diameter
of U .

Remark 2.1. Observe that as δ increases, we get to include more covers in our infimum,
and hence

if 0 < δ < δ′ then Hs
δ′ < Hs

δ.

So, as δ decreases, the term Hs
δ(E) increases. In particular, the limit limδ→0+ Hs

δ(E)
always exists (it might be infinite!).

Definition 2.2. Let E ⊂ R2. We define the s-dimensional Hausdorff measure of E as
follows:

Hs(E) = lim
δ→0+

Hs
δ(E).

It is easily seen that there must exist a critical value for s at which the s-dimensional
Hausdorff measure changes from ∞ to 0—this is the Hausdorff dimension.
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Definition 2.3. Let E ⊂ R2. Then the Hausdorff dimension dimH(E) is defined as

dimH(E) = sup{s ≥ 0 | Hs(E) = ∞} = inf{s ≥ 0 | Hs(E) = 0}.

Finally, and quite importantly, Hausdorff dimension is well-behaved under Lipschitz
maps. Recall that a map f : Rm → Rm is Lipschitz with constant M > 0 if for all
x, y ∈ Rm we have |f(x) − f(y)| ≤ M |x − y|. (Here, | · | denotes the Euclidean norm on
Rm.) Fixing m = 2 it is noted that Lipschitz maps cannot increase dimension:

Lemma 2.4. Let E ⊂ R2. If f : R2 → R2 satisfies a Lipschitz condition then dimH(f(E)) ≤
dimH(E).

We use the following simple lemma.

Lemma 2.5. Suppose f : R2 → R2 is Lipschitz with constant M > 0. Then

Hs(f(E)) ≤ M sHs(E)

for all s ≥ 0.

Proof. Suppose f has Lipschitz constantM , and that (Ui) is a δ-cover for E. Then (f(Ui))
is an Mδ-cover for f(E). Thus

Hs
Mδ(f(E)) ≤

∑
i<ω

|f(Ui)|s ≤
∑
i<ω

M s|Ui|s

since, for any f(x), f(y) ∈ f(Ui) we have |f(x)−f(y)| ≤ M |x−y|, whence |f(Ui)| ≤ M |Ui|
follows after taking suprema. Finally, taking limδ→0+ above yields the result. □

Proof of Lemma 2.4. This follows straight from the lemma above: suppose dimH(E) = s,
and assume f is Lipschitz with constant M > 0. Then

Hs(f(E)) ≤ M sHs(E) < ∞.

Since dimH(E) = sup{s | Hs(E) = ∞} we haveHs(f(E)) < ∞. Therefore dimH(f(E)) ≤
s, as needed. □

As a special (but extremely useful) case we note that if f is an isometry then Hausdorff
measure is in fact fixed. This yields that:

Corollary 2.6. Hausdorff dimension is preserved under isometries. In particular, it is
preserved under rotation and translation.

2.2. Kolmogorov complexity. Our main arguments rely on the notion of information
density, which we describe in terms of prefix-free Kolmogorov complexity. Standard, and
very comprehensive, references for Kolmogorov complexity are Downey and Hirschfeldt
[9] as well as Li and Vitány [21]. A very short but very readable introduction is Fortnow
[14]. We give a brief account of the most relevant notions and some history below.

We choose to express the basic notions of algorithmic information theory using Turing
machines. In particular, we pick universal prefix-free machine as our reference machine
U . Such a machine exists by construction: the meat of the argument lies in the standard
result that every prefix-free p.c. (partial computable) function has a prefix-free machine
that computes it (e.g. [9, 3.5]). Our universal machine U satisfies the following: every
prefix-free p.c. function f : 2<ω → 2<ω has a program code pf for which U(pf , x) = f(x).
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The machine U has two tapes: an input tape and a condition tape (it also has a work
tape, but this will be of no consequence to our arguments, so we shall ignore this fact).
Define a p.c. function h such that whenever pf is a prefix-free program for a prefix-free
p.c. function f then

h
(
0|pf |1pfx

)
= U(pf , x) = f(x).

Observe that h is prefix-free. If A ∈ 2ω is an oracle, let UA be the universal prefix-free
machine that has access to the oracle A (this means, the machine can perform a step
of the type “does k belong to A?” for any k < ω, and branch accordingly), and define
hA analogously. Further, if τ ∈ 2<ω then let U τ be the machine with τ written on the
condition tape.

We introduce the following notation: if σ ∈ 2<ω let ℓ(σ) denote the length of σ. To
avoid confusion with the absolute value on R which we use heavily in later section, we
reserve the symbol | · | for the space R.

Definition 2.7. Let σ ∈ 2<ω. The Kolmogorov complexity of σ is

K(σ) = min{ℓ(ρ) |h(ρ) = σ}.

If τ ∈ 2<ω then the conditional Kolmogorov complexity of σ given τ is

K(σ | τ) = min{ℓ(ρ) |hτ (ρ) = σ}.

If A is an oracle, KA(σ) is defined analogously, with hA in place of hτ . In that case, the
condition tape is empty (accessing the oracle does not require any tapes), and hence we
can define KA(σ | τ) as above.

From now on, we need to take the prefix-freeness of all machines into account. Note that
all log in this paper are log2. As a result of prefix-freeness we immediately obtain thatK is
subadditive up to a constant : for all strings σ, τ ∈ 2<ω we have K(στ) ≤ K(σ)+K(τ)+ c.
Similarly, the following fact is basic yet useful.

Lemma 2.8. Let σ ∈ 2<ω. Then K(σ) ≤ ℓ(σ) + 2 log(ℓ(σ)) + c for some constant c.

2.3. Randomness. We give a brief introduction to the basic notions of randomness. For
in-depth reviews see Downey and Hirschfeldt [9, 6.2] and Li and Vitányi [21, 3.5]. We
give one important result here: fortunately, the two definitions given above are equivalent.
(This is not the only equivalence: Martin-Löf [31], Schnorr [38], Levin [20], and Chaitin
[7] all yield equivalent notions of randomness. This is strong evidence that the notion is,
in fact, “correct”.)

The central objects of discussion in Kolmogorov complexity on 2ω comprise random
sequences : elements of 2ω that defy short descriptions up to a constant for all of its
initial segments. This definition goes back to Kolmogorov [19] and Solomonoff [40] who
simultaneously and independently developed the early theory of algorithmic information.
Another definition of randomness for sequences uses statistical (measure-theoretic) tests,
the Martin-Löf-tests (or ML-tests), and goes back to Martin-Löf [31].

Recall that an open subset of 2ω is the countable union of basic clopen sets, and that
every basic clopen set is determined by some σ ∈ 2<ω. A set U ⊂ 2ω is (lightface) Σ0

1, or
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effectively open, if the set of finite strings that determine U is computably enumerable.
A sequence U = {Un |n < ω} of sets Un ⊂ 2ω is uniformly Σ0

1 if every Un is Σ0
1 witnessed

by some c.e. set Vn ⊂ 2<ω, and the sequence V = {Vn |n < ω} is uniformly c.e. itself.
Martin-Löf randomness uses the natural Lebesgue measure generated by the clopen sets:
if σ ∈ 2<ω then λ({σf | f ∈ 2ω}) = 2−ℓ(σ). An ML-test is then a computably enumer-
able sequence of effectively open sets Un of decreasing diameter. A Martin-Löf-random
sequences is not captured by any ML-test.
The following proposition connects the two notions.

Proposition 2.9. Let f ∈ 2ω. The following notions are equivalent:

(1) f ∈ 2ω is Kolmogorov random: there exists a constant c such that for all n < ω
we have K(f ↾ n) ≥ n− c;

(2) f is Martin-Löf-random: for any uniformly Σ0
1 sequence U = {Un |n < ω} of sets

Un ⊂ 2ω for which λ(Un) ≤ 2n we have f ̸∈
⋂
U (so f passes the test).

These results relativise (see [9, 6.4]).

Definition 2.10. Let A ∈ 2ω be an oracle. A string f ∈ 2ω is Kolmogorov random relative
to A if there exists a constant c such that for all n < ω we have KA(f ↾ n) ≥ n− c.

It is a standard result that a universal ML-test V exists, from which it follows imme-
diately that the Kolmogorov random sequences have measure 1 in 2ω: every ML-test is
Lebesgue null, and hence 2ω \ V has measure 1. If f passes the universal test V , it passes
all ML-tests, and hence 2ω \ V is the set of ML-randoms. Thus every σ ∈ 2<ω has a
Kolmogorov random extension. Further, if A ∈ 2ω is an oracle, then we can construct a
universal ML-test relative to A. Hence every σ ∈ 2<ω has a Kolmogorov random extension
relative to A.

2.4. Coding objects in 2<ω. While, formally, our arguments take place in 2<ω, we
naturally identify certain finite strings with objects in the domain of discourse; these
are usually rational numbers (elements of Q) and natural numbers (elements of ω). As is
common, this identification takes place in the meta-theory; however, determining whether
a certain string is to be identified as a rational or natural number is computable. We
normally denote the string representation of such objects using an overline: if x is an
object in the domain of discourse, then x denotes the string which we shall identify as x.

Fixing a particular coding is illustrative—we code objects in the domain of discourse
as follows. The implied operation on finite strings below is always concatenation. We
remark that these codings are not necessarily optimal.

• If k < ω then let k be the string whose digits are given by the binary expansion
of k.

• If n ∈ Z then let w be the binary expansion of n with each digit doubled (n = 101
becomes w = 110011). Then let n = w01 if n ≥ 0, and n = w10 otherwise.

• If q ∈ Q then suppose q = a/b. Then let q = ab.
• If q = (q1, . . . , qm) ∈ Qm then let q = q1 · · · qm.
• If x ∈ R, suppose k < ω, and express x in binary. Take the integer part of x and
double each digit; denote this string by w. Take the first k bits of x after the binary
point, denoted by z. If x ≥ 0, let x[k] = w01z; otherwise define x[k] = w10z.

• If x = (x1, . . . , xm) ∈ Rm, suppose k < ω. Then let x[k] = x1[k] · · ·xm[k].
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• If x ∈ R then let x ∈ 2ω be the limit of x[k] in the obvious fashion. If x =
(x1, . . . , xm) ∈ Rm then interweave x1, . . . , xm bit by bit.

Observe that, using this coding, if k < ω then ℓ(k) ≤ log(k) + 1.
The distinction between strings and objects is particularly important when we discuss

real numbers (i.e. objects in R), and their truncated approximations. In other cases we
are more casual; for instance, we normally write K(k) and K(q) instead of the formally
correct K(k) and K(q).

2.5. Dimension of points and the point-to-set principle. Using effective tools in
order to answer geometrical and measure-theoretical questions has been an avenue for
research for a couple of decades. This development goes back at least to the beginning
of this century [22, 33, 24]. Among others, further discoveries were made by Hitchcock
[15, 16] and Mayordomo [33], who related the notion of effective dimension of reals (in 2ω)
away from the notion of gales towards Kolmogorov complexity (the connection between
martingales and Hausdorff dimension had previously been investigated by Ryabko [36, 37],
Staiger [41], and Cai and Hartmanis [5]; gales, a generalisation of martingales, are due to
Lutz [23]). As a result of their work, we may now determine the Hausdorff dimension of
a set solely form its elements, using randomness notions.

Definition 2.11. Let f ∈ 2ω. We define the dimension of f by

dim(f) = lim inf
r→∞

K(f ↾ r)
r

This relativises: if A ∈ 2ω is an oracle then define

dimA(f) = lim inf
r→∞

KA(f ↾ r)
r

.

This notion can be naturally extended to Euclidean space: first, consider the complexity
of a point.

Definition 2.12. Let x = (x1, . . . , xm) ∈ Rm. Then we define the Kolmogorov complexity
of x at precision t < ω by

Kt(x) = min{K(q) | q ∈ Qm ∩B2−t(x)}

where Bs(y) is the open ball with respect to the Euclidean metric, with radius s and
centre y. The effective Hausdorff dimension of x is then given by

dim(x) = lim inf
t→∞

Kt(x)

t
.

Both of these notions relativise.

The ideas behind the definitions stem from effectivising Hausdorff dimension, an idea
that is due to Lutz [23] and their notion of gales. An investigation of effective packing di-
mension followed suit [1], also in terms of gales. The characterisation of effective Hausdorff
dimension of reals given in definition 2.12 is due to Mayordomo [33]. We also remark that
replacing lim inf by lim sup in definition 2.12 yields a characterisation of effective packing
dimension [27], which is denoted by Dim(x).
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We can now state Lutz’ and Lutz’ point-to-set principle, which forms a cornerstone of
our subsequent arguments.

Theorem 2.13 (Point-to-set Principle, [25, Thm. 1]). Let n < ω and E ⊂ Rn. Then

dimH(E) = min
A∈2ω

sup
x∈E

dimA(x).

Using this theorem, we are now in a position to control the dimension of a set by
focussing on individual points. Lutz and Lutz [25] and Lutz and Stull [28] provide outlines
and applications of the point-to-set principle. Recently, the point-to-set principle has been
extended to arbitrary separable metric spaces [26].

Crucial to our arguments in this paper is the following technical lemma, which allows us
to work with finite strings instead of approximating rationals. As we will be working with
sequences in Cantor space 2ω while talking about reals in R, a convenient identification
is useful. Instead of moving back and forth between 2ω and R, we use an observation by
Lutz and Stull [28, p. 6].

Lemma 2.14 ([29, Corollary 2.4]). For every m < ω there exists a constant c such that
for all t < ω and x ∈ Rm we have

|Kt(x)−K(x[t])| ≤ K(t) + c.

The proof uses the fact that x[t] provides a reasonable approximation to x, in the sense
that its distance to x is bounded by a function that depends on m. In section 3, we
provide a similar identification argument for polar coordinates; see proposition 3.1. We
note an important corollary right here.

Corollary 2.15. If m ≥ 1 and x ∈ Rm then dim(x) = lim infr→∞
K(x[r])

r
.

3. Arguing in polar Coordinates

In the course of our constructions in both theorems 5.1 and 6.1, it will be easier to work
in polar coordinates than in Euclidean coordinates. A point (x, y) in Euclidean space has
polar coordinates (r, θ) if and only if x = r cos θ and y = r sin θ. We will restrict our
attention to the first quadrant of the unit disc, which we denote by

D =
{
(x, y) ∈ R2

∣∣∣x, y ≥ 0 ∧
√

x2 + y2 ≤ 1
}
.

Thus r ∈ [0, 1] and θ ∈ [0, π/2]. Importantly, all points expressed in the proofs below are
given in Euclidean coordinates. When we write (r, θ) we do not mean (r cos θ, r sin θ).

The following lemma can be considered an analogue to lemma 2.14; its proof follows
the proof of lemma 2.14 from [29, Corollary 2.4].

Proposition 3.1. Suppose (x, y) ∈ D has polar coordinates (r, θ). Then

dim(x, y) = dim(r, θ).

This argument relativises.

We provide proofs to both directions of proposition 3.1 individually below. We require
the following result, which is due to Casey and J. Lutz [6].
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Lemma 3.2. There exists a constant c such that for all m, s,∆s < ω and all x ∈ Rm we
have

Ks(x) ≤ Ks+∆s(x) ≤ Ks(x) +K(s) + cm(∆s) + c

where cm(∆s) = K(∆s)+m∆s+2 log(⌈1
2
log(m)⌉+∆s+3)+(⌈1

2
log(m)⌉+3)m+K(m)+

2 log(m).

Observe that the term cm(∆s) does not depend on s.
Before we commence with the proofs of the directions of proposition 3.1, we require the

following lemma. This is a standard result [4, p. 151]).

Lemma 3.3. Suppose C ⊂ R2 is compact and convex. If the function f : C → R2 sending
(x, y) to f(x, y) is continuously differentiable on C then it satisfies a Lipschitz condition
on C.

The first halves of the proofs below follow the same argument as Lutz and Stull [29,
Lemma 2.3]. We briefly observe that the map (r, θ) 7→ (r cos θ, r sin θ) is continuously
differentiable everywhere, and that [0, 1]× [0, π/2] is of course compact and convex.

Lemma 3.4 (First half of Proposition 3.1). There exists a constant c such that whenever
(x, y) ∈ D has polar coordinates (r, θ) then for all s < ω we have

Ks(x, y) ≤ K(r[s]θ[s]) +K(s) + c.

Proof. By lemma 3.3, the map translating polar into Cartesian coordinates satisfies a
Lipschitz condition as [0, 1] × [0, π/2] is compact and convex: there exists M > 0 such
that if (r, θ), (r′, θ′) ∈ [0, 1]× [0, π/2] then

(∗) |(r cos θ, r sin θ)− (r′ cos θ′, r′ sin θ′)| ≤ M |(r, θ)− (r′, θ′)|.

Let (r, θ) ∈ [0, 1]× [0, π/2], and suppose (x, y) = (r cos θ, r sin θ). We define the follow-
ing:

• let rs = r[s], and θs = θ[s], the truncation of r and θ to s bits after the binary
point;

• we will consider the approximation rs cos θs of r cos θ (and similarly rs sin θs for
r sin θ); however, this approximation will in general not yield a finite string; hence
we define

x[s] = (rs cos θs)[s] and y[s] = (rs sin θs)[s]

which are the truncations to s bits after the binary point of such approximations.

These truncations allow us to approximate the point (x, y) effectively:

Claim 1. (x[s], y[s]) ∈ B2−s(1+M
√
2)(x, y)

Proof of Claim 1. Recall that x = r cos θ and y = r sin θ, and that x[s] = (rs cos θs)[s];
hence |(x[s], y[s]) − (rs cos θs, rs sin θs)| ≤ 2−s, by construction. Using the nomenclature
introduced and the Lipschitz condition (∗) above we can compute the maximum error
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when (x[s], y[s]) approximates (x, y):

|(x[s], y[s])− (x, y)| = |(x[s], y[s])− (rs cos θs, rs sin θs) + (rs cos θs, rs sin θs)− (x, y)|
≤ |(x[s], y[s])− (rs cos θs, rs sin θs)|+ |(rs cos θs, rs sin θs)− (x, y)|
≤ 2−s + |(rs cos θs, rs sin θs)− (r cos θ, r sin θ)|
≤ 2−s +M |(rs, θs)− (r, θ)|

≤ 2−s +M
√

(r − rs)2 + (θ − θs)2

< 2−s +M
√

(2)2−2s

= 2−s +
√
2M2−s

= 2−s(1 +M
√
2)

as required. ⊣

Observe that 2−t = 2−s(1+M
√
2) if and only if t = s− log(1+M

√
2). Therefore, if we

can compute (x[s], y[s]) then we can compute (x, y) at precision t = s − log(1 +M
√
2).

Letting ∆t = log(1 +M
√
2) we hence have

Ks−∆t(x, y) ≤ K(x[s], y[s]) ≤ K(x[s]y[s]) + c′

where c′ is the machine constant that turns the string representations x[s] and y[s] into
the real approximations, and hence rationals, x[s] and y[s].

Now, t+∆t = s, so the right-hand side of lemma 3.2 implies

Ks(x, y) ≤ Ks−∆t(x, y) +K(t) + c2(∆t) + c

≤ K(x[s]y[s]) + c′ +K(t) + c2(∆t) + c

where c2(∆t) is as in lemma 3.2 and hence does not depend on t, and thus not on s.
Finally, we prove the following claim:

Claim 2. K(x[s]y[s]) ≤ K(r[s]θ[s]) + c′′ for some constant c′′.

Proof of Claim 2. Recall that rs = r[s] and θs = θ[s]. Then x[s] = (rs cos θs)[s], which (as
well as y[s]) is easily computable via approximations and Taylor’s Theorem (multiplication
and cos are obviously computable, with associated machine constant c′′). ⊣

To recap, we established so far that

Ks(x, y) ≤ K(x[s]y[s]) + c′ +K(t) + c2(∆t) + c.

By the claim we now have

≤ K(r[s]θ[s]) + c′ + c′′ +K(t) + c2(∆t) + c.

Recall that ∆t = log(1 +M
√
2) which is constant. Further, t = s −∆t, and thus there

exists a constant c′′′ (which only depends on ∆t, and hence only on M and not on s) for
which K(t) = K(s−∆t) ≤ K(s) + c′′′. Hence we have

Ks(x, y) ≤ K(r[s]θ[s]) +K(s) + d

where d = c′ + c′′ + c′′′ + c2(∆t) + c as required. □



12 LINUS RICHTER

For the second half, we make the following brief observation. The argument below will
focus on points in D that do not lie on the first axis; this is necessary for a bounding
argument involving Lipschitz conditions: for each point (x, y) not on the first axis, we can
find a nice neighbourhood on which the coordinate transformation map from Euclidean
to polar coordinates is nicely behaved. What about the points on the first axis? There is
nothing to do, for if x ≥ 0, the polar coordinates and Euclidean coordinates of the point
(x, 0) coincide. Hence proposition 3.1 holds on the first axis trivially.

Lemma 3.5 (Second half of Proposition 3.1). There exists a constant c such that whenever
(x, y) ∈ D has polar coordinates (r, θ) then there exist N(x,y) < ω and ∆ < ω such that if
s > N(x,y) then

K(r[s−∆]θ[s−∆]) ≤ Ks(x, y) +K(s) + c.

Proof. First, we make an approximating observation.

Claim 1. For a ∈ Q2 ∩B2−r(x, y) we have (x[r], y[r]) ∈ B2−r(1+
√
2)(a).

Proof of Claim 1. By assumption, |(x, y)−a| < 2−r, so by the triangle inequality we have

|(x[r], y[r])− a| ≤ |(x[r], y[r])− (x, y)|+ |(x, y)− a|

=
√
(x[r]− x)2 + (y[r]− y)2 + |(x, y)− a|

≤
√
2(2−2r) + 2−r

≤ 2−r
√
2 + 2−r

= 2−r(1 +
√
2)

as required. ⊣

Further, in the notation of Lutz and Stull [29], let Q2
r = {2−rz | z ∈ Z2} denote the

set of r-dyadics. Observe that r-dyadics have at most r-many non-zero post-binary-point
bits. It is easy to bound the number of r-dyadics in any open ball. In particular, we have:

Claim 2. For any a ∈ Q2 and r < ω, we have

|Q2
r ∩B2−r(1+

√
2)(a)| ≤ (4(1 +

√
2))2.

Proof of Claim 2. Let C2 be the square with side length 2(1 +
√
2)2−r that is centred at

a. It is clear that B2−r(1+
√
2) ⊂ C2 and thus

|Q2
r ∩B2−r(1+

√
2)| ≤ |Q2

r ∩ C2|.

Observe that C2 has area (2(1+
√
2))22−2r. Now, if x, y ∈ Q2

r and x ̸= y then |x−y| ≥ 2−r

(since the elements in Q2
r have at most r-many non-zero post-binary-point bits). Hence

consider a small square: a square of side length 2−r. Such a small square has area 2−2r

and cannot contain more than 4 r-dyadics: one on each of its vertices. Hence, dividing
the area of C2 by the area of a small square and multiplying by 4 for each vertex gives an
upper bound for the number of r-dyadics:

|Q2
r ∩B2−r(1+

√
2)| ≤

(2(1 +
√
2))22−2r

2−2r
22 = (2(1 +

√
2))222 = (4(1 +

√
2))2

as required. ⊣
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Let M with program P be a machine that does the following: on input π = π1π2π3 if
h(π1) = k with k < ω, and h(π2) = t with t < ω, and h(π3) = a with a = (p, q) ∈ Q2,
then M outputs the k-th dyadic rational in B2−t(1+

√
2)(a). Suppose a ∈ Q2 witnesses the

complexity of Ks(x, y); then the claims together imply that (x[s], y[s]) is the k-th element
in Q2

r ∩B2−r(1+
√
2)(a) for some k < (4(1+

√
2))2. Let the programs π1, π2, π3 be witnesses

for K(k), K(s) and K(a) = Ks(x, y), respectively. Then

h
(
0ℓ(P )1Pπ1π2π3

)
= x[s]y[s]

and thus

K(x[s]y[s]) ≤ ℓ(π1) + ℓ(π2) + ℓ(π2) + c

= K(k) +K(s) +Ks(x, y) + c′

≤ Ks(x, y) +K(s) + c

where K(k) can be bounded above and hence only contributes a constant term.
Let f : R2 → R2 be the computable function mapping a point in Euclidean coordinates

to its polar coordinates. On D (excluding the first axis), this map is given by (x, y) 7→(√
x2 + y2, tan−1(y/x)

)
, and is continuously differentiable. Hence take some ϵ > 0 such

that the closed ball B of radius ϵ centred at (x, y) does not intersect the first axis. By
lemma 3.3, the map f satisfies a Lipschitz condition on B. Now suppose s < ω is such
that 2−s < ϵ; thus B2−s(x, y) ⊂ B. Suppose (p, q) ∈ Q2 ∩ B2−s(x, y). Recalling that
f(x, y) = (r, θ) we have

|(r, θ)− f(p, q)| = |f(x, y)− f(p, q)|
≤ M |(x, y)− (p, q)|
≤ M2−s

= 2−(s−logM).

Thus, computing (x[s], y[s]) yields, after applying the machine that computes f with
machine constant c′′ (compare with claim 2 of the proof of lemma 3.4), the polar coordi-
nates (r, θ) up to precision s− logM . In other words,

K(r[s− logM ]θ[s− logM ]) ≤ K(x[s]y[s]) + c′′

≤ Ks(x, y) +K(s) + c′′ + c

as needed. □

Proof of Proposition 3.1. The proof is an easy consequence of the previous two lemmas
and the following claim, which is easily seen to be true.

Claim 1. If ∆ < ω then |K(r[s]θ[s])−K(r[s−∆]θ[s−∆])| ≤ c for some constant c.

Proof of Claim 1. It is easy to compute r[s − ∆]θ[s − ∆] from r[s]θ[s]. For the other
direction, let r(∆) be such that r[s] = r[s−∆]r(∆), and equally for θ. Suppose h(π1) =
r[s−∆]θ[s−∆], and h(π2) = r(∆) and h(π3) = θ(∆), and all such programs are optimal.
Let p be a program that on input π = π1π2π3, merges the two strings obtained by π2 and
π3 with the string from π1 in the obvious way (recall the coding from section 2.4). Then

h
(
0ℓ(p)1pπ1π2π3

)
= r[s]θ[s]
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and thus

K(r[s]θ[s]) ≤ ℓ(π1) + ℓ(π2) + ℓ(π3) + c

= K(r[s−∆]θ[s−∆]) +K(r(∆)) +K(θ(∆)) + c

by optimality. Observe that ℓ(r(∆)) = ∆, and recall that K(σ) ≤ ℓ(σ) + 2 log(ℓ(σ)) + c′

if σ ∈ 2<ω; thus

K(r[s]θ[s]) ≤ K(r[s−∆]θ[s−∆]) + 2ℓ(∆) + 4 log(ℓ(∆)) + c

which, since ∆ < ω is fixed, is as required. ⊣

The claim now yields the result from the previous two lemmas: let (x, y) ∈ D with
polar coordinates (r, θ). Suppose ∆ is as in lemma 3.5. Then

dim(r, θ) = lim inf
s→∞

Ks(r, θ)

s

= lim inf
s→∞

K(r[s]θ[s])

s

= lim inf
s→∞

K(r[s−∆]θ[s−∆])

s

= lim inf
s→∞

Ks(x, y)

s
= dim(x, y)

using the fact that K(s) ≤ log(s) + 2 log(log(s) + 1) + c for some constant. □

We may now pass to polar coordinates as required. In particular, the points of the
co-analytic sets we build in theorem 5.1 will be determined by their radius, which we will
construct explicitly.

From now on, if we write (r, θ) below, we usually mean the point that has Euclidean
coordinates (r cos θ, r sin θ); in such cases, (r, θ) ∈ D. We will occasionally return to
Euclidean coordinates, however, and we will explicitly mention when we do so.

3.1. Projections in polar coordinates. The focus of this paper is on projections of
points onto straight lines. We make some simple geometric observations below that will
simplify arguments later on. Consider θ ∈ [0, π], and let Lθ be the straight line that
passes through the origin at angle θ with the first coordinate axis. It is clear that [0, π]
exhausts all straight lines through the origin. Let (s, ρ) ∈ D and denote by projθ(s, ρ)
the projection of (s, ρ) onto Lθ: the unique point of intersection of Lθ with the unique
perpendicular-to-Lθ line containing (s, ρ). Recall that if (s, ρ) ∈ D then 0 ≤ s ≤ 1. See
fig. 1.

There are two cases: either |θ − ρ| ≤ π/2 or |θ − ρ| > π/2. If |θ − ρ| ≤ π/2 then the
length of the projection is given by | projθ(s, ρ)| = s cos(θ − ρ); otherwise | projθ(s, ρ)| =
s cos((θ + π)− ρ). Since cos(x+ π) = − cos(x) and 0 ≤ s ≤ 1, we conclude:

Lemma 3.6. For every (s, ρ) ∈ D and every θ ∈ [0, π] we have

| projθ(s, ρ)| = s|cos(θ − ρ)|.
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Lρ

(s, ρ)

Lθ1Lθ2

Lθ3

ρ

Lρ

(s, ρ)

Lθ4 ρ

π − θ4
(d, θ′4)

Figure 1. With (s, ρ) ∈ Lρ, the projections onto lines with angles θ1, θ2
are straightforward. For θ3, θ4, the projections meet in the fourth quadrant.
There, θ′4 = π − θ4, and the definition of cos yields d = s cos(ρ+ π − θ4) =
s|cos(θ4 − ρ)|.

In particular, the polar coordinates of the projection of (s, ρ) onto Lθ are

projθ(s, ρ) =

{
(s|cos(θ − ρ)|, θ) if |θ − ρ| ≤ π/2

(s|cos(θ − ρ)|, θ + π) otherwise.

Now suppose E ⊂ D and fix some θ ∈ [0, π]. Define

E(θ) = {s|cos(θ − ρ)| | (s, ρ) ∈ E} ⊂ R.
We show below that, in fact, dimH(E(θ)) = dimH(projθ(E)).

We need the following notions: a real number x ∈ R is computable if there exists a
machine that uniformly on input k < ω (or rather k) outputs a rational q ∈ Q (or rather
q) such that q ∈ B2−k(x); this naturally extends to Rm for m ≥ 1.

Lemma 3.7. Let m ≥ 1. Every computable real x ∈ Rm has dimension 0.

Proof. Suppose M with program p is a machine that on input s for s < ω computes qs for
some qs ∈ Qm ∩B2−s(x). Then h

(
0ℓ(p)1ps

)
= qs ∈ Qm ∩B2−s(x) and so Ks(x) ≤ ℓ(s)+ c.

Recall that ℓ(s) ≤ log(s) + 1 and thus

dim(x) ≤ lim inf
s→∞

log(s) + 1 + c

s
= 0

as needed. □

Lemma 3.8. Every countable set E ⊂ R2 has Hausdorff dimension 0.

Proof. Suppose E = {xi | i < ω}, and letX =
⊕

xi, the infinite join. LetM with program
p be a machine with oracle to access to X that on input (i, s) computes xi[s]. Then it
is clear that M computes all xi, and hence by lemma 3.7 and the point-to-set principle
theorem 2.13 we have

dimH(E) ≤ sup
x∈E

dimX(x) = 0

as needed. □
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Lemma 3.9. Let r ∈ R. Then for every oracle A ∈ 2ω the following hold.

(1) dimA(r) = dimA(r, 0)
(2) dimA(r) = dimA(−r)

Proof. It is easily seen, modulo machine constants, that

K(r[s]) ≤ K(r[s]0[s]) ≤ K(r[s]) +K(0[s]).

Since 0 is computable, lemma 3.7 implies lims→∞
K(0[s])

s
= 0. Applying lim inf yields

item 1. For item 2, observe that it is easy to compute −r[s] from r[s], from which the
result follows immediately. Both arguments relativise. □

Lemma 3.10. Let θ ∈ [0, π). If E ⊂ D then

dimH(projθ(E)) = dimH(E(θ)).

Proof. Fix θ ∈ [0, π] and suppose (s, ρ) ∈ D. For brevity, define p(s, ρ) so that

p(s, ρ) = | projθ(s, ρ)| = s|cos(θ − ρ)|

by lemma 3.6. Now item 1 of lemma 3.9 implies

dimA(p(s, ρ)) = dimA(p(s, ρ), 0)

for every oracle A ∈ 2ω. Hence let

Pθ(E) = {(p(s, ρ), 0) | (s, ρ) ∈ E} ⊂ R2.

It is now easy to see that dimH(E(θ)) = dimH(Pθ(E)) by the point-to-set principle theo-
rem 2.13.

We now aim to appeal to corollary 2.6: Hausdorff dimension is invariant under rotations.
However, rotating Pθ(E) by θ anti-clockwise is not necessarily equal to projθ(E): if there
exists (s, ρ) ∈ E for which |θ− ρ| > π/2 then projθ(s, ρ) = (p(s, ρ), θ+π), not (p(s, ρ), θ).
This is easily accounted for: whenever (s, ρ) ∈ E and |θ − ρ| > π/2 then, passing to
Euclidean coordinates, consider (−p(s, ρ), 0) instead. To this end, let

p∗(s, ρ) =

{
p(s, ρ) if |θ − ρ| ≤ π/2

−p(s, ρ) otherwise.

and hence define, in Euclidean coordinates, the set

P ∗
θ (E) = {(p∗(s, ρ), 0) | (s, ρ) ∈ E};

see fig. 2. By items 1 and 2 of lemma 3.9, it is immediate that dimA(p(s, ρ), 0) =
dimA(p∗(s, ρ), 0) for all oracles A ∈ 2ω. Hence the point-to-set principle implies that
dimH(Pθ(E)) = dimH(P

∗
θ (E)). Further, rotating P ∗

θ (E) by θ yields projθ(E). Hence
applying corollary 2.6 shows

dimH(E(θ)) = dimH(Pθ(E)) = dimH(P
∗
θ (E)) = dimH(projθ(E))

as required. □
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Lθ1Lρ2

Lρ1(r1, θ1)

(r2, θ1)

r1
r2

Lθ2 Lρ3

Lρ4

r3 (r3, θ2 + π)

(r4, θ2)

Figure 2. If |ρ − θ| ≤ π/2 then it suffices to consider the length of the
projections on the first axis, and rotate (see ρ1, ρ2 and θ1). Otherwise, we
need to mirror along the second axis and then rotate by θ; see θ2 and ρ3.

4. Constructing co-analytic sets by recursion

Z. Vidnyánszky [42] has developed a general recursive construction of co-analytic sets
using co-analytic conditions, assuming V=L. While their result is very general (it uses
descriptive set theoretical tools and applies to all Polish spaces), we only focus on a special
case, which we describe below. The result is a generalisation of a method used by A. Miller
[35]. The earliest version of the method is due to Erdős, Kunen, and Mauldin [11].

For notational simplicity, if X = {xα | α < ω1} we define X ↾ α = {xβ | β < α}.

Definition 4.1. Given F ⊂ D≤ω × [0, π/2] × D, a set X = {xα |α < ω1} is compatible
with F if the following exist:

• an enumeration {pα |α < ω1} of [0, π/2]; and
• an enumeration {Aα |α < ω1} ⊂ D≤ω such that if α < ω1 then Aα = X ↾ α

such that for each α < ω1 we have (Aα, pα, xα) ∈ F .

Observe that since Aα ∈ D≤ω each Aα has order type ≤ ω. This is well-defined since ω1

is the least uncountable ordinal, hence for every ω ≤ β < ω1 there is a bijection between
β and ω, providing the bounded ordering of order type ω.

Definition 4.2. A set X ⊂ 2ω is cofinal in the Turing degrees if it is cofinal in the partial
ordering of Turing degrees. If m ≥ 1 and X ⊂ Rm then X is cofinal in the Turing degrees
if the set {x |x ∈ X} is.

Theorem 4.3 ([42, Thm. 1.3], V=L). Let F ⊂ D≤ω × [0, π/2] × D. If F is co-analytic
and if for all (A, p) ∈ D≤ω × [0, π/2] the section

F (A, p) = {x ∈ D | F (A, p, x)}
is cofinal in the Turing degrees, then there exists a co-analytic set X ⊂ D that is compatible
with F .

It should be noted that the theorem above has been proven to hold for all Polish spaces
and all uncountable Borel subsets of an arbitrary Polish space [42].
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Theorem 4.3 proves a type of recursion principle: if [0, π/2] = {pα |α < ω1} is consid-
ered the set of conditions, then D is the set of candidates. The theorem guarantees the
existence of a set X = {xα | α < ω1} which, a posteriori, can be considered as being con-
structed in stages: at each stage a particular condition is satisfied (by picking a suitable
candidate) without violating already satisfied conditions.

We outline the intuition: at stage α we have access to Aα (the set of elements we have
already enumerated into X) and to the current condition to be satisfied, pα. The section
F (Aα, pα) now gives the set of suitable candidates which both satisfy condition pα and
respect Aα. Since Aα = X ↾ α, we see that X satisfies all conditions and is coherent (in
a sense similar to that of coherence in inverse limits in category theory).

In our particular case, we think of D as the set of candidates, and of [0, π/2] as the
set of conditions: these are the angles we project on. We satisfy conditions differently
in theorems 5.1 and 6.1: let θ ∈ [0, π/2] be the current condition to be satisfied. In
theorem 5.1, we pick a suitable candidate on the straight line through the origin at angle
θ; in theorem 6.1, we use θ as an oracle to find a point (lying on a different line) that is
sufficiently complicated relative to it.

We then show that the sections containing suitable candidates are cofinal in the Turing
degrees. We prove that for every X ∈ 2ω there exists x ∈ F (A, p) such that x codes
some Y ≥T X via some m-reduction; we incorporate those reductions via what we call
folding maps in section 5.2. (For an introduction to computability theoretic notions such
as m-reductions see Soare [39].)

Vidnyánszky and Medini have provided applications of theorem 4.3 [42, 34]: among
others, they construct a co-analytic two-point set as well as a co-analytic Hamel basis and
MAD (maximally almost disjoint) family of sets. All of these results had been obtained
previously by A. Miller [35].

5. The Proof of Theorem 5.1

In this section, we construct the following counterexample: a plane set of Hausdorff
dimension 1, all of whose projections have dimension 0. Using the results from section 3,
we will argue in polar coordinates.

Theorem 5.1 (V=L). There exists a co-analytic set E ⊂ R2 such that dimH(E) = 1
while, for every θ ∈ [0, π] we have dimH(projθ(E)) = 0.

We make use of the following classical theorem. We give a proof using effective dimen-
sion, and the point-to-set principle theorem 2.13.

Lemma 5.2. If E ⊂ R2\{0} intersects every line through the origin in D, then dimH(E) ≥
1.

Proof. Let A ∈ 2ω be an oracle. There exists B ∈ 2ω random relative to A. Thus
θ = 0001B ∈ 2ω codes a real θ ∈ (0, 1). Since B is random relative to A, we know
KA(B ↾ s) ≥ s− c for some constant c. As B ↾ s is easily computable from θ[s] we have

s− c ≤ KA(B ↾ s) ≤ KA(θ[s]) + c′
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for some machine constant c′. Thus

dimA(θ) = lim inf
s→∞

KA(θ[s])

s
≥ lim inf

s→∞
KA(B ↾ s)

s
≥ lim inf

s→∞
s− c

s
= 1.

Since E intersects the line with angle θ, there exists r > 0 such that (r, θ) ∈ E. Therefore

dimA(r, θ) = lim inf
s→∞

KA(r[s]θ[s])

s
.

We can easily compute θ[s] from r[s]θ[s], soKA(θ[s]) ≤ KA(r[s]θ[s])+c′′ for some machine
constant c′′. Hence

dimA(r, θ) = lim inf
s→∞

KA(r[s]θ[s])

s
≥ lim inf

s→∞
KA(θ[s])

s
= dimA(θ) = 1.

Since A was arbitrary, the result follows. □

5.1. The roadmap towards a proof. We assume V=L, and hence letB = {θα |α < ω1}
be an enumeration of [0, π/2]. We want to argue by induction on ω1 and hence build
E ⊂ D satisfying theorem 5.1 in stages; we think of the angles in B as the conditions
(or requirements) which need to be satisfied. During our construction, when considering
condition φ, we also handle φ + π/2 at the same time. By theorem 4.3, at stage α we
have access to all points (ri, θi) already enumerated into E. We aim to satisfy condition
θα. As a shorthand, denote θ = θα. We argue as follows:

(1) Let Aα = {(ri, θi) | i < ω}, the set of points already enumerated into E. For each
i < ω the angular coordinate θi tells us which condition we have already satisfied.

(2) Construct r ∈ (0, 1) such that dim(r|cos(θ − θi)|) = 0 and dim(r|cos(θ + π/2 −
θi)|) = 0 for all i < ω. This suffices by lemma 3.10.

(3) Enumerate the pair (r, θ) into E.

Observe that the set of reals in item (2) must be cofinal in the Turing degrees for
theorem 4.3 to apply. The following proposition is essential.

Proposition 5.3. Suppose ai ∈ (0, 1) for all i < ω. There exists r ∈ (0, 1) such that
dim(air) = 0 for all i < ω. The set of such r is cofinal in the Turing degrees.

We will postpone the proof of proposition 5.3 to section 5.2. However, having it in
hand we may already give a proof of theorem 5.1. One additional lemma is needed before
we do so.

Lemma 5.4. For every A ∈ 2ω and a ∈ R the set {x ∈ R | dimA(x) = a} is Borel.

Proof. We need to show that dim as a function of x is Borel measurable. Recall its
definition

dim(x) = lim inf
n→∞

Kn(x)

n
= lim inf

n→∞
min{K(q) | q ∈ Q ∩B2−n(x)}

n
.

Since the lim inf of a sequence of Borel measurable functions is itself Borel measurable, it
suffices to show that Kn(x) = min{K(q) | q ∈ Q ∩ B2−n(x)} is Borel measurable. This is
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easily seen: observe that

Kn(x) < c ⇐⇒ ∃q ∈ Q ∩B2−n(x)(K(q) < c)

⇐⇒ x ∈
⋃

q∈K(c)

B2−n(q)

where K(c) = {p ∈ Q |K(p) < c}. Hence Kn is Borel measurable, and thus so is dim.
This argument relativises. □

Proof of Theorem 5.1. We use theorem 4.3 and define F ⊂ D≤ω × [0, π/2]× D such that

(A,φ, (r, θ)) ∈ F if and only if
φ = θ and for all (r′, θ′) ∈ ran(A) we have

dim(r|cos(φ− θ′)|) = dim(r|cos(φ+ π/2− θ′)|) = 0.

In particular, observe that every point witnessing that condition φ is satisfied lies on the
line Lφ.
In order to apply theorem 4.3, we must show that F is co-analytic; but this follows

immediately from lemma 5.4. Hence let φ ∈ [0, π/2]. We now focus on the sections of F :
by definition, given α < ω1 we have

F (A,φ) = {(r, θ) | (A,φ, (r, θ)) ∈ F}.

Suppose A = {(ri, θi) | i < ω} ∈ D≤ω, and hence countable. Let

ai = |cos(φ− θi)| and bi = |cos (φ+ π/2− θi)| .

Observe that, by construction, we have (r, θ) ∈ F (A,φ) if and only if θ = φ and dim(rai) =
dim(rbi) = 0 for all i < ω. Now proposition 5.3 implies that this section is cofinal in the
Turing degrees. Therefore, using lemma 5.4, we see that theorem 4.3 is applicable: there
exists a co-analytic set

E = {(rα, θα) |α < ω1} ⊂ R2

which is compatible with F . In particular, there exist enumerations {φα |α < ω1} =
[0, π/2] and {Aα |α < ω1} of Aα = {(ri, θi) | i < ω} = E ↾ α such that for each α < ω1,

(rα, θα) ∈ F (Aα, φα).

In particular, θα = φα.
For the verification, let φ ∈ [0, π]. We show that dimH(projφ(E)) = 0. By lemma 3.10,

it suffices to show that dimH(E(φ)) = 0, where E(φ) = {r|cos(φ− θ)| | (r, θ) ∈ E}. This
is what we show below.

Firstly, observe that either φ = φδ ∈ [0, π/2] for some δ < ω1; or φ = φδ+π/2 ∈ (π/2, π]
for some φδ ∈ [0, π/2]. Let δ be such, and recall that E = {(rα, θα) |α < ω1}. We
consider the points that were enumerated before condition φδ and those enumerated after
φδ separately.

≤ δ: At condition φδ, define (analogous to lemma 3.8) the oracle

X =
⊕{

rβ|cos(φδ − θβ)|, rβ|cos(φδ + π/2− θβ)|
∣∣∣ β ≤ δ

}
.
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Then X computes rβ|cos(φδ − θβ)| and rβ|cos(φδ + π/2− θβ)| for all β ≤ δ. Since
either φ = φδ or φ = φδ + π/2, lemma 3.7 implies in particular that

dimX(rβ|cos(φ− θβ)|) = 0

for all β ≤ δ.
> δ: We show that for every β > δ we have dim(rβ|cos(φ− θβ)|) = 0. Let δ < β < ω1.

Then (rβ, θβ) ∈ F (Aβ, φβ) = F (E ↾ β, φβ). But the conditions we have already
attended to at stage β are exactly the angular coordinates of the points enumerated
into E ↾ β; in particular, E ↾ β = {(rα, φα) |α < β}. So for all γ < β, again by
definition of F , we have

dim(rβ|cos(φγ − θβ)|) = dim(rβ|cos(φγ + π/2− θβ)|) = 0.

Since δ < β and either φ = φδ or φ = φδ + π/2 we have in particular

dim(rβ|cos(φ− θβ)|) = 0.

We picked δ < β < ω1 arbitrarily, hence this holds for all such β, as required.

Thus, by the point-to set principle theorem 2.13 and lemma 3.10, we have

dimH(projφ(E)) = dim(E(φ))

= min
A∈2ω

sup
α<ω1

dimA(rα|cos(φ− θα)|)

≤ sup
α<ω1

dimX(rα|cos(φ− θα)|)

= 0.

Now dimH(E) ≥ 1 by lemma 5.2. □

Finally, the fact that dimH(E) = 1 is a consequence of the following corollary.

Corollary 5.5. Suppose E ⊂ D. Then dimH(projθ(E)) ≥ dimH(E)− 1.

Proof. Suppose (r, θ) ∈ projθ(E). By lemma 3.6, we know that r = s|cos(θ − ρ)| for
some (s, ρ) ∈ E. But this means there is only one piece of information missing: from
(r, θ), we can compute s from ρ, and vice versa. Hence suppose dim(r, θ) = ϵ. Since
dim(s), dim(ρ) ≤ 1 we see that dim(s, ρ) ≤ dim(r, θ) + 1, which is as desired. □

5.2. Proving Proposition 5.3. An interval is (open) dyadic if it is of the form (j/2k, (j+
1)/2k). Intervals of the form [j/2k, (j + 1)/2k] are closed dyadic. Observe that if x ∈
(j/2k, (j +1)/2k) then |x− j/2k| ≤ 2−k, and hence x and j/2k agree on the first k bits in
their binary expansion: both start with the binary expansion of j.

In the results below, we work with open intervals in (0, 1). All reals are expressed in
binary. Instead of manipulating intervals directly, we will argue in terms of dyadic reals,
which we will express by their finite binary expansion. For this, we introduce the following
notation. If σ ∈ 2≤ω, let σ̃ = 0.σ ∈ R. If σ ∈ 2<ω, let σ̃+ = 0.σ1∞ ∈ R; let [σ̃] denote the
open interval (σ̃, σ̃+). If a ∈ R then a[σ̃] = (aσ̃, aσ̃+).

Some basic facts that follow directly from our definitions are:

• If σ ∈ 2<ω then [σ̃] is a dyadic interval; so if x ∈ [σ̃] then x and σ̃ agree on the
initial segment of length ℓ(σ). We can think of x extending σ̃.
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Figure 3. We start on the left and argue anti-clockwise: considering a[σ̃]
yields an open interval; the largest closed dyadic interval inside is I. Picking
a suitable τ̃ ∈ I yields a−1[τ̃ ]. The largest dyadic interval contained in it is
J with left end-point d = ρ̃. Hence [ρ̃] ⊂ J , where in fact the interior of J
equals [ρ̃].

• Conversely, if I is dyadic and σ ∈ 2<ω is such that σ̃ is the left-end point of I,
then I = [σ̃].

• If I is dyadic and σ ∈ 2<ω is such that σ̃ ∈ I then [σ̃] ⊂ I.
• In particular, if σ, ρ ∈ 2<ω then σ ≺ ρ if and only if ρ̃ ∈ [σ̃].

Lemma 5.6. Let σ ∈ 2<ω and a ∈ (0, 1). Suppose 0 < ϵ < 1. There exist ρ, τ ∈ 2<ω such
that:

(1) σ ≺ ρ
(2) a[ρ̃] ⊂ [τ̃ ]
(3) K(τ)/ℓ(τ) < ϵ

Proof. Let σ, a and ϵ be given. Consider a[σ̃]. Since [σ̃] is open, so is a[σ̃], and thus it
contains a closed dyadic interval. Take the largest (in diameter) such interval I, and pick
τ ′ ∈ 2<ω such that τ̃ ′ is the left end-point of I. By closedness, τ̃ ′ ∈ a[σ̃]. By standard
results on Kolmogorov complexity, there exists a smallest s < ω such that τ = τ ′0s

satisfies
K(τ)

ℓ(τ)
< ϵ.

In particular, τ̃ ′ = τ̃ ∈ I. Now consider [τ̃ ], which is open and hence so is a−1[τ̃ ]. Let J
denote the largest closed dyadic interval contained in a−1[τ̃ ], and call its left end-point d.
Again by closedness, d ∈ a−1[τ̃ ]. Let ρ ∈ 2<ω be such that ρ̃ = d.

Now σ ≺ ρ: by construction, ρ̃ = d ∈ J ⊂ a−1[τ̃ ]. The string τ properly extends τ ′,
thus [τ̃ ] ⊂ [τ̃ ′]. Since τ̃ ′ is the left end-point of I, the interior of I equals [τ̃ ′]. Hence
[τ̃ ] ⊂ [τ̃ ′] ⊂ I ⊂ a[σ̃], and so ρ̃ ∈ a−1[τ̃ ] ⊂ a−1(a[σ̃]) = [σ̃] as needed. Further, a[ρ̃] ⊂ [τ̃ ],
since [ρ̃] ⊂ J ⊂ a−1[τ̃ ] with all inclusions proper. This completes the argument. □

In order to achieve cofinality in the Turing degrees when constructing a suitable r ∈
(0, 1), we need to satisfy each condition (as per item (2) in section 5.1) while coding a
given oracle A ∈ 2ω into r. Let

ν(k) = 22
k

determine at which bits of r to code A. We will use the gaps in between the range of ν
to satisfy the conditions. We call ν the folding map.
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5.2.1. The construction of r. Suppose (ai) is the set of conditions, where ai ∈ (0, 1) for
all i < ω. We construct r ∈ (0, 1) in stages, by determining its binary expansion, which is
given by successive extensions x0 ≺ x1 ≺ x2 ≺ . . . with xi ∈ 2<ω. We argue by induction
on ω.

(1) Let A ∈ 2ω be given.
(2) Let x0 = ∅, the empty string.
(3) Let xk be given. At stage k+1, decode k+1 = ⟨i, n⟩ via Cantor’s pairing function,

for instance, and attend to requirement i. Hence we attend to each requirement
infinitely often.

(4) Apply lemma 5.6 with a = ai and ϵ = 1
k
to obtain a suitable extension ρk ≻ xk.

(5) Let t = ν(k + 1)− ℓ(ρk)− 1 and d = A(k) and define

xk+1 =

{
ρk0

td if ℓ(ρk) < ν(k + 1)

(ρk ↾ (ν(k + 1)− 1))d otherwise.

Therefore, if k > 0 then ℓ(xk) = ν(k) by induction.
(6) Define x =

⋃
k<ω xk, and hence let r = x̃.

(7) Observe that A is computably folded into x: for all k < ω, we have x(ν(k+1)−1) =
A(k).

In order to complete the proof of proposition 5.3, we need to ensure that the second
case in the equation in item (5) only occurs finitely often for each requirement ai. The
following lemma assures us that this is indeed the case.

Before we proceed with the proof, another couple of useful facts about intervals follow.
Let (x, y) ⊂ (0, 1).

(i) By diam((x, y)) = y − x we denote the diameter of (x, y). If σ ∈ 2<ω then
diam([σ̃]) = 2−ℓ(σ). In particular, − log(diam([σ̃])) = ℓ(σ).

(ii) If k < ω is such that k ≥ − log(diam((x, y)))+2 then there exists j < ω such that
the closed dyadic interval [j/2k, (j + 1)/2k] ⊂ (x, y).

Lemma 5.7. For each ai ∈ (0, 1) there exists Mi < ω such that if k + 1 > Mi and
k + 1 = ⟨i, n⟩ attends to requirement ai, then ℓ(ρk) < ν(k + 1).

Proof. Fix some ai = a and suppose we are at stage k + 1 = ⟨i, n⟩. Let ρ = ρk. Recall
that ρ̃ ∈ J ⊂ a−1[τ̃ ]. Observe that diam(a−1[τ̃ ]) = a−12−ℓ(τ). Now, since J is defined to
be the maximal (in diameter) closed dyadic interval inside a−1[τ̃ ], and since ρ̃ is the left
end-point of J , items (i) and (ii) imply

ℓ(ρ) ≤ − log(diam(a−1[τ̃ ])) + 2

= log(a)− log
(
2−ℓ(τ)

)
+ 2 = log(a) + ℓ(τ) + 2.

Recall that τ = τ ′0s, and hence

ℓ(ρ) ≤ log(a) + ℓ(τ ′) + s+ 2.

Recall that ρ is an extension of xk (so xk = σ in lemma 5.6). By construction, τ̃ ′ ∈ I ⊂
a[x̃k], where I is dyadic maximal in a[x̃k]. Therefore

ℓ(τ ′) ≤ − log(diam(a[x̃k])) + 2 = − log(a) + ℓ(xk) + 2
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from which we obtain via item (5) that

ℓ(ρ) ≤ ℓ(xk) + s+ 4 = ν(k) + s+ 4

Consider some stage k + 1. We are building xk+1 ≻ xk, where ℓ(xk+1) = ν(k + 1). Our
construction is successful if we need not truncate ρ (as in the latter case in item (5)).
In such a case, ℓ(ρ) < ℓ(xk+1) = ν(k + 1). Hence it suffices to show that, eventually,
s < ν(k + 1)− ν(k)− 4.

Recall that s is chosen so that K(τ)
ℓ(τ)

= K(τ ′0s)
ℓ(τ ′)+s

< 1
k
. Simplify this as follows:

K(τ ′0s)

ℓ(τ ′) + s
≤ K(τ ′) +K(0s) + c′

s

≤ K(τ ′)

s
+

K(s)

s
+

c′′

s

≤ ℓ(τ ′) + 2 log(ℓ(τ ′))

s
+

log(s) + 2 log(log(s) + 1)

s
+

c

s

for a sum of machine constants c.
These terms are easily bounded. Clearly, c

s
< 1

3k
if s > 3kc. For the middle term,

observe that if s ≥ 2 then log(s) + 2 log(log(s) + 1) < 3 log(s). Hence,

log(s) + 2 log(log(s) + 1)

s
<

3 log(s)

s
.

Since log(s)/s is monotonically decreasing, if s > 2k then

3 log(s)

s
<

3 log
(
2k
)

2k
=

3k

2k
.

Then 3k
2k

< 1
3k

if 9k2 < 2k which holds for k ≥ 10. Hence, for large enough k, the bound

s > 2k suffices.
For the first term, recall that ℓ(τ ′) ≤ − log(a) + ν(k) + 2. Since a ∈ (0, 1) we know

− log(a) > 0. So, for large enough k, it follows that

ℓ(τ ′) + 2 log(ℓ(τ ′))

s
≤ − log(a) + ν(k) + 2 + 2 log(− log(a) + ν(k) + 2)

s

≤ − log(a) + 3ν(k)

s

Since a is fixed we have, for large enough k, that

ℓ(τ ′) + 2 log(ℓ(τ ′))

s
≤ − log(a) + 3ν(k)

s
≤ 4ν(k)

s
.

Now observe that 4ν(k)
s

≤ 1
3k

if s > 12kν(k). Choosing a large enough k we hence see that

s > max
{
3kc, 2k, 12kν(k)

}
suffices, which, again, reduces to s > 12kν(k) once k is large

enough.
Finally, note that 12kν(k) + 1 < ν(k + 1) − ν(k) − 4 for k ≥ 3. Thus, once k is

sufficiently large to satisfy all conditions above, s = 12kν(k)+1 satisfies K(τ ′0s)
s

< 1
k
while

s < ν(k + 1)− ν(k)− 4. So, eventually, ℓ(ρ) is small enough, as required. □
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Proof of Proposition 5.3. Let A ∈ 2ω be given, and suppose (ai) is the countable sequence
of requirements. Construct x =

⋃
k<ω xk as in section 5.2.1. Let r = x̃. From section 2.4

and definition 4.2 it is easily seen that A can be obtained computably from the binary
expansion of r. Hence we only need to show that the dimension of air is minimal. Fix
i < ω and consider ai. By lemma 5.7 there exists M such that if k > M and k = ⟨i, n⟩
then ρk ≺ x. For each such k, let τk be as obtained from lemma 5.6 alongside ρk. Now

dim(air) = lim inf
s→∞

K(air[s])

s

by corollary 2.15. By construction, ai[ρ̃k] ⊂ [τ̃k] and aiρ̃k ∈ [τ̃k]. Thus air = aix̃ ∈ [τ̃k].
Further, K(τk)/ℓ(τk) < 1/k. Let D = {k > M | k = ⟨i, n⟩ for some n}. Then

dim(air) ≤ lim inf
k→∞, k∈D

K(air[ℓ(τk)])

ℓ(τk)

≤ lim inf
k→∞, k∈D

K(τk) + c

ℓ(τk)

≤ lim inf
k→∞, k∈D

1

k
= 0

where c is the machine constant obtaining τk from air[ℓ(τk)] (as per section 2.4). This
completes the proof. □

6. The Proof of Theorem 6.1

In this section provide a proof to the following result, which is optimal by corollary 5.5.

Theorem 6.1. For every 0 < ϵ < 1, there exists a co-analytic set E ⊂ R2 such that
dimH(E) = 1 + ϵ while, for every θ ∈ [0, 2π) we have dimH(projθ(E)) = ϵ.

Observe that this is in fact a generalisation of theorem 5.1: the case ϵ = 0 is covered
there. Secondly, the case ϵ = 1 is trivial: if E ⊂ R2 satisfies dimH(E) = 2 then corol-
lary 5.5 implies 1 ≤ dimH(projθ(E)) ≤ 1 for each θ. Hence our theorems exhaust all
cases.

6.1. Roadmap towards a proof. Let 0 < ϵ < 1. Assuming V=L, we argue as follows.

(1) Fix an enumeration {φα |α < ω1} of [0, π/2].
(2) At stage α, let Aα = {(ri, θi) | i < ω}, the set of all points already enumerated into

our set.
(3) Let X ∈ 2ω be the sequence whose bits are made up of the binary expansion of

φα. In particular, X is φα with its first four bits removed (cf. section 2.4).
(4) We will not satisfy condition φα by enumerating a point on Lφα into our set.

Instead, we recover the already satisfied conditions by first coding them into r
using a suitable folding map: if (ri, θi) was enumerated into our set at stage β,
then φβ is folded into ri, and can hence be recovered computably. Let {φi | i < ω}
be the set of the conditions already satisfied.

(5) Pick θ ∈ [0, π/2] such that θ is random relative to X.
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(6) Let (ai) be an enumeration of all |cos(θ − φi)| and |cos(θ + π/2− φi)|. Let Y be
the join of X and all ai. We also assume that Y can compute ϵ.

(7) Construct r ∈ (0, 1) such that:
(a) the binary expansion of φα is folded computably into the binary expansion of

r;
(b) dim(rai) = ϵ for all i < ω;

(c) dimY,θ(r) = ϵ.

Remark 6.2. At first, it appears difficult how to control items 7b and 7c. In practice,

construct r so that dim(rai) ≤ ϵ and dimY,θ(r) ≥ ϵ. Equality then follows immediately
from corollary 5.5.

We will give some insight into the verification below. Let (ai) be an enumeration of all
|cos(θ − φi)| and |cos(θ + π/2− φi)|.

In our construction of a suitable r, we adapt the methods used in the proof of theo-
rem 5.1. However, instead of inserting long strings of zeroes into the binary expansions
of rai, we pick a suitable oracle T ∈ 2ω and fold it into rai.

The oracle T is suitable if it is random relative to Y ⊕θ (and hence all ai). Now suppose
r is as constructed. Then Y (which computes all ai) can compute an initial segment of
T from an initial segment of r: just compute an initial segment of rai for the correct i.

Since T is random relative to Y ⊕ θ, we can force dimY,θ(r) to not dip too low by coding
T not too sparsely.

The details can be found in section 6.5, and the theorem then follows by corollary 5.5.
Further, we use the following simple result, which follows from symmetry of information.

Lemma 6.3. Let A ∈ 2ω be an oracle. For any x, y ∈ R we have dimA(x, y) ≥ dimA(x)+
dimA,x(y).

For an in-depth account of the interplay between relativised dimension and conditional
dimension of elements of Rn see Lutz and Lutz [25, 4.3, 4.4], who introduced the latter
notion ibidem. The previous lemma is also a consequence of their arguments, and a proof
can be found there, too; it follows from the fact that K(x | y) ≥ Ky(x).

Recall that Y computes X, and hence dimX(r) ≥ dimY (r) for all r. In particular, we
now see that

dimX(r, θ) ≥ dimX(θ) + dimX,θ(r) ≥ dimX(θ) + dimY,θ(r) ≥ 1 + ϵ

since θ is random relative to X, and by our construction of r. The final steps of this
high-level verification are then as follows: suppose we construct E broadly as in the proof
of theorem 5.1. By the same argument as in said proof, using theorem 2.13 we see that

dimH(projθ(E)) = dimH(E(θ)) ≤ ϵ

since allowing oracles can only decrease the dimension of points. On the other hand,
every oracle X appears through some φα ∈ [0, π/2]. Hence there exists a point (rα, θα) for
which θ is random relative to X. Since such a point exists for every oracle, theorem 2.13
implies

dimH(E) ≥ dimX(rα, θα) ≥ dimX(θ) + dimX,θ(r) ≥ 1 + ϵ

by lemma 6.3. Then the conclusion follows from corollary 5.5.
We flesh out the details in the subsequent sections.
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6.2. Folding a suitable oracle into r. Fix ϵ ∈ (0, 1), and let

Z = Y ⊕ θ

recalling that Y already contains all ai. Instead of constructing a T ∈ 2ω random relative
to Z and then coding it sparsely to obtain dimension ϵ, we use a result first proved by
Athreya, Hitchcock, Lutz, and Mayordomo [1, Thm. 6.5]: for every 0 ≤ α ≤ 1 there exists
x ∈ R such that dim(x) = Dim(x) = α, which they obtain precisely by sparsely coding a
random sequence, interleaved with strings of zeroes. Their result relativises by choosing
a sequence random to the oracle we desire. Even more so, their construction shows that
we have dimZ(x) = dim(x) = ϵ, so letting T = x for a suitable x ∈ R is as required.

In the construction of theorem 5.1 we focused on satisfying requirements: we demanded
a particular number of consecutive zeroes to appear in the image in order to push the
complexity down sufficiently far; and in our verification, we showed that, eventually, the
gap between conditions will be large enough so that enough zeroes (read, a sufficiently
large s) can be accommodated. In the present argument, we need to be more careful as we
must at all times be able to give a good bound on how many bits of T can be computed.
Hence we fix the number of bits to be appended so that there is no “overspill”. The
following lemma yields such a bound.

Lemma 6.4. In the argument of lemma 5.6, if s = ν(k+1)−ν(k)−5 then ℓ(ρk) < ν(k+1).

Proof. This follows from the proof of lemma 5.7: with a, ρ, τ ′ as in said argument, we
have

ℓ(ρk) ≤ log(a) + ℓ(τ ′) + s+ 2 ≤ ν(k) + s+ 4.

Equating the term to ν(k + 1) and demanding strict inequalities yields the result. □

In particular, the following corollary shows that, if we have space for s bits to encode,
we can code s− 5 bits into the image.

Corollary 6.5. In the argument of lemma 5.6, with a ∈ (0, 1): if ℓ(ρ) = m and n > m
then if s = n−m− 5 we have that ℓ(ρ′) < n, where ℓ(ρ′) is the extension of ρ that codes
s bits into rρ̃′.

We choose the folding map

ν(k) = 22
k

+ k.

We introduce the shift summand k so as to make sure that the gaps between ν(k) and

ν(k + 1) have length 22
k+1

+ k + 1− 22
k − k = 22

k+1 − 22
k
+ 1; the last bit is reserved to

code a bit of φα into rai (as per item 7a). Now, the gap we have available to extend is
exactly of length

ν(k + 1)− ν(k)− 1 = 22
k+1 − 22

k

= 22
k
(
22

k − 1
)

(6.1)

which is divisible by 2(2
k−k). This fact will be useful in the following subsection.
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6.3. Coding and saving blocks. Näıvely, our argument should work as follows: at
each stage, we construct a radius r that, together with a suitable angle θ, satisfies the
requirement at hand. In order to preserve the high dimension of r (relative to Z) and
of the points rai, we code segments of T into each rai. In particular: if aj is attended
to right after ai, and the last bit of T coded into rai is T (k) for some k < ω, then the
first bit of T coded into raj at that stage is T (k + 1). Hence, with a long enough initial
segment of r, the oracle Z can compute a long initial segment of T by just picking the
correct ai (which Z computes), computing rai, and picking out the coded bits of T .

For the sake of exposition, suppose T ∈ 2ω and consider

T (m,n) = ⟨T (m), T (m+ 1), . . . , T (n− 1)⟩.
In particular, observe that ℓ(T (m,n)) = n −m, and that T (n) does not appear in T (m,n).
Now, the dimension of rai is bounded above by the dimension of T : taking a sufficiently
long initial segment rai[t] of rai, we easily find a long string of the form T (m,n) coded
into it. Provided that ℓ(T (m,n)) = n − m is large enough compared to t, this will force
the dimension down—this latter condition is easily ensured by choosing a sparse enough
folding map.

However, it is now difficult to show that the dimension of rai does not drop properly
below the dimension of T . The problem is that it is in general hard to tell how many bits
in the multiplication of reals are determined by a single bit: e.g. if a = 1/π and σ̃ = 0.σ
for some σ ∈ 2<ω, and τ ≻ σ, there is no bound on how many bits of the product aτ̃ are
correct in the sense that every extension yields the same initial segment.1

We circumvent this issue as follows: as we extend r, we save blocks of bits that are
coded into rai throughout the stage. We do this by pulling back the interval, as seen in
lemma 5.6. Hence we define the block map µ : ω → ω by

µ(k) = 2(2
k−k).

Recall that our folding map is given by ν(k) = 22
k
+ k. Hence, at stage k with rk at

hand, we have ν(k+1)− ν(k) many bits to extend rk. In particular, the number of blocks
fitting into the gap of stage k + 1 is given by

ξ(k) =
ν(k + 1)− ν(k)− 1

µ(k)
=

22
k
(
22

k − 1
)

2(2k−k)
= 2k

(
22

k − 1
)
.(6.2)

Note that, by our choices, we hence have ξ(k)µ(k) = ν(k + 1)− ν(k)− 1.
Now, a few lemmas are needed. Firstly, we need to have a good bound on how many

bits we can code into rai at each stage k, and in each block. And secondly, it is not
clear that saving blocks does not cost too many bits. The first is not an issue due to
corollary 6.5. We resolve the second later in the cost lemma 6.6, after introducing the
construction in detail.

As we code T in blocks, it is prudent to describe a suitable partitioning of T beforehand.
We do this here: by recursion reconstruct T into segments T j

k , where k denotes the last

1For an extreme case, one considers a and σ so that aσ̃ = 1/2−ϵ for some very small ϵ, and diam(a[σ̃]) >
1/4. Then each bit of precision added to σ shifts the interval a little bit to the right, and halves it. So
the number of bits it takes until the first bit is determined, i.e. until 1/2 does not appear in the interval,
depends on ϵ.
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completed stage (so if we see T j
k then we are in stage k + 1), and j the active block. In

summary, at stage k + 1:

• we code ξ(k) = 2k
(
22

k − 1
)
-many blocks, which follows from eq. (6.2);

• and each block of T coded into the image has length µ(k) − 5, as we lose 5 bits
each time as per corollary 6.5.

Hence we obtain

T =
⋃

3≤k<ω

 ⋃
1≤j≤ξ(k)

T j
k


where the union operator denotes concatenation. Hence

T = T 1
3 ∪ T 2

3 ∪ . . . ∪ T 2040
3 ∪ T 1

3 ∪ . . . T
ξ(k)
k ∪ T 1

k+1 . . .

since ξ(3) = 2040. As mentioned, we lose 5 bits each time we code a block of T , hence

ℓ(T j
k ) = µ(k)− 5 = 2(2

k−k) − 5.

This confirms why the outer union starts at k = 3: below, we have 2(2
2−2) − 5 < 0, so

there is no space to code any bits. In particular, the first stage at which bits are coded is
stage k + 1 = 4, with ℓ(T j

k ) = ℓ(T j
3 ) = 27 and ξ(k) = ξ(3) = 2040.

6.4. The construction. Recall that our folding and block map are ν(k) = 22
k
+ k and

µ(k) = 2(2
k−k), respectively. Now, the radius r is constructed as follows: suppose φα is

the active requirement.

(1) Let A ∈ 2ω.
(2) Let x0 = ∅, the empty string.
(3) Let xk be given. At stage k+1, decode k+1 = ⟨i, n⟩; we now attend to requirement

i.
(4) We iterate over all ξ(k)-many blocks. Let 0 ≤ j < ξ(k) = 2k(22

k − 1).
(a) Let x0

k = xk.

(b) At block j+1, suppose we have xj
k. We apply lemma 5.6, but instead of coding

zeroes, we code T j+1
k into aix̃

j
k. Let ρ

j+1
k be the resulting extension. By filling

up with s-many zeroes (courtesy of lemma 6.4), we hence find xj+1
k = ρj+1

k 0s

of length

ℓ(xj
k) + µ(k) = ℓ(xk) + 2(2

k−k)(j + 1).

(5) After the last block, we have one bit left to code A or φα (this follows from

eq. (6.1)). By construction, ℓ
(
x
ξ(k)
k

)
= ν(k + 1)− 1; hence define

xk+1 = x
ξ(k)
k d

where

d =

{
A(k/2) if k is even

φα((k − 1)/2) if k is odd;

hence ℓ(xk+1) = ν(k + 1), as intended. Further, we code the active line into the
real we are building, so that we can recover it later.
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Of course, we code A as in theorem 5.1 in order to be able to apply theorem 4.3. This
completes the construction.

6.5. The verification. In the present context, we have two results to prove: that dim(rai) ≤
ϵ and that dimZ(r) ≥ ϵ, where Z = Y ⊕ θ. Then the theorem follows from corollary 5.5.
We prove both results individually.

6.5.1. The dimension of rai. Both verification arguments are “bit counting” arguments:
we exhibit a piece of a complicated string coded inside rai, and show that said segment
is long enough in a precise sense: its length dwarves the length of all non-coded bits. Let
a = ai.

Consider ar[m] for some m such that

ar[m] = σ ∪

 ⋃
1≤j≤ξ(k)

σjT
j
k


for some k; hence stage k + 1 has just been completed.2 We also know that ℓ(σ) ≤
− log(a) + ℓ(xk) + 2 = − log(a) + ν(k) + 2, by lemma 5.7. Further, the cost of saving a
block is given by a bound on the length of each σj which we give here:

Lemma 6.6 (The cost lemma). Let a ∈ (0, 1) and rm ∈ 2<ω. As in lemma 5.6, find τ̃m
and Im dyadic such that [τ̃m] ⊂ Im ⊂ a[r̃m]; let τ

′
m be the left end-point of Im. Further,

let J ⊂ a−1[τ̃m] be dyadic, where ρ̃k is the left-endpoint of J . Let rm+1 = ρm0
t so that

ℓ(rm+1) = ℓ(rm) + µ(k) where k denotes the current stage. Finally, suppose τ ′m+1 is the
left end-point of Im+1 ⊂ a[r̃m+1].

Then |ℓ(τ ′m+1)− ℓ(τm)| ≤ 7.

Before we proceed with the proof, a few comments are in order. Firstly, consulting
fig. 3 alongside the statement and proof of the above lemma is useful, as the figure serves
as its motivation. Conceptually, one can think of the hypotheses of this lemma as the
intermediate step between moving from one block to the next within a given stage in our
construction: rm is the available string in block m inside some stage, and ρ ≻ σ is its
computed extension. Importantly, a[r̃m+1] contains τm as a substring. We are asking:
after saving τm in a[r̃m+1], how many bits are lost before we begin coding the next block?
In particular, if we construct a real r by such approximations rm and we have established
that

ar ≻ τmλτm+1

for some λ ∈ 2<ω by successive block saving, then how long can λ be at most?

Proof. By assumption we have [τ̃m] ⊂ Im ⊂ [r̃m], and so diam([τ̃m]) ≤ diam(Im) ≤
diam([r̃m]). Applying − log and by item (i) we have − log(diam(Im)) ∈ [− log(a) +
ℓ(rk), ℓ(τk)]. Since τ̃ ′k is the left end-point of Ik we have in particular that ℓ(τ ′m) ∈
[− log(a) + ℓ(rm), ℓ(τm)]. We can give an even better bound: by item (ii), we see that
ℓ(τ ′m) ≤ − log(diam(a[r̃m])) + 2 = − log(a) + ℓ(rm) + 2, and hence

ℓ(τ ′m) ∈ [− log(a) + ℓ(rm),− log(a) + ℓ(rm) + 2].

2Considering the strings at the end of stages is prudent as we easily have access to a long consecutive
segment of T (albeit interrupted).
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By construction, at stage k+1 we code µ(k)− 5 bits into the image for each block (we
lose 5 bits each block, as per corollary 6.5). Hence ℓ(τm) = ℓ(τ ′m)+ (µ(k)− 5). Therefore,
observing by construction that ℓ(τ ′m+1) ≥ ℓ(τm), we see that

ℓ(τ ′m+1)− ℓ(τm) = ℓ(τ ′m+1)− ℓ(τ ′m)− (µ(k)− 5)

≤ − log(a) + ℓ(rm+1) + 2 + log(a)− ℓ(rm)− (µ(k)− 5)

= (ℓ(rm+1)− ℓ(rm))− (µ(k)− 5) + 2

= µ(k)− (µ(k)− 5) + 2

= 7

where we use that the block size is µ(k), and hence ℓ(rm+1)− ℓ(rm) = µ(k). □

Hence ℓ(σj) ≤ 7. For simplicity, we let

Tk = T 1
k ∪ . . . ∪ T

ξ(k)
k ;

hence ℓ(Tk) = ξ(k)(µ(k)− 5). The next lemma provides the final technical detail in this
half of our verification. For simplicity of notation, let

Sk =
⋃

1≤j≤ξ(k)

σjT
j
k .

Lemma 6.7. For k < ω and σ, (σj) as above, we have

|K(Tk)−K(σSk)| ≤ O(22
k

).

Proof. This is an easy “bit counting” argument: the number of bits by which Tk and σSk

differ is given by ℓ(σ)+
∑

j ℓ(σj). If we also know where the σj’s are located, then we can
construct each string from the other. Thus,

|K(Tk)−K(σSk)| ≤ K(σ) +
∑

1≤j≤ξ(k)

K(σj,mj)

omitting constants, where mj denotes the index at which σj begins inside Sk. We know

ℓ(σj) ≤ 7 and ℓ(σ) ≤ − log(a) + ℓ(xk) + 2 = − log(a) + 22
k
+ k + 2. Further,

ℓ(σSk) = ℓ(σ) +
∑

1≤j≤ξ(k)

ℓ(σj) + ℓ(Tk)

≤ − log(a) + ℓ(xk) + 2 + 7ξ(k) + ξ(k)(µ(k)− 5)

= − log(a) + ℓ(xk) + 2 + ξ(k)(µ(k) + 2)

since each of the ξ(k)-many blocks codes µ(k)− 5-many bits. Observe that

ξ(k)µ(k) = 22
k

(22
k − 1)

and hence is of order 22
k+1

. As mj ≤ ℓ(Sk) we see that mj is thus at most of order 22
k+1

.
But now K(mj) is at most of order 2k+1. It is now easily seen that

∑
j K(σj,mj) is of

order at most ξ(k)2k+1, which is O(22
k
), as required. □
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We can now complete the argument: using the previous lemma, we see

K(ar[m]) = K(σSk) = K(Tk) +O(22
k

).

Further, observe that ℓ(Tk) is of order 22
k+1

, since ℓ(Tk) = ξ(k)(µ(k) − 5). As before,

limk→∞
22

k

22k+1 = 0, and so we may ignore terms of order at most 22
k
. This allows us to

simplify: let D be the set of m < ω at which requirement a = ai has just been attended
to. (In other words, ar[m] = σSk for some k.) Then

dim(ar) ≤ lim inf
m∈D

K(ar[m])

m
≤ lim inf

m∈D

K(Tk)

m
= ϵ

by definition of T .

6.5.2. The dimension of r with respect to Z. Recall that

Z = Y ⊕ θ

and that Y contains all ai. As we need to show that dimZ(r) ≥ ϵ, it does not suffice to
exhibit a set of favourable elements, such as our set D in the previous lemma. Instead,
we show we can decode enough elements of T from any initial segment of r.

Suppose

r[m] = σ1 · · ·σk+1b1 · · · bnτ
where

• σi denotes the initial segment of r that satisfied the stage i;
• bj denotes the substring of r that satisfied block j of stage k + 2; and
• τ is the initial segment of the substring satisfying block n+ 1.

Hence, observe we are at stage k + 2, and n blocks have already been satisfied.
Inside stage k + 1, the substring Tk has been coded into ar. Hence, using the oracle Z

which computes all ai, we can recover Tk from ar. Recall that

ℓ(Tk) = ξ(k)(µ(k)− 5).

Observe that since limk→∞
22

k

22k+1 = limk→∞
1
2k

= 0, the length of Tk already dwarves the

lengths of T1 + . . .+ Tk−1; hence, it suffices to compute the blocks saved at stage k + 1.
Secondly, the worst case to consider above is the case where n = 0: in that case the

initial segment σk+1 needs to carry enough information to survive against τ , where τ is
at most of length µ(k + 1)− 1. This is not an issue, since ℓ(Tk) = ξ(k)(µ(k)− 5) and

lim
k→∞

µ(k + 1)− 1

ξ(k)(µ(k)− 5)
= 0.

Hence, the information provided in Tk dwarves the unfinished block τ . It now suffices to
show that Tk and the completely coded substrings T 1

k+1, . . . , T
n
k+1 can be easily recovered

from ar[m]. This follows from an argument analogous to lemma 6.7:

• take a machine that trims r to length ν(k+1)−1, and denote the resultant string
by ρ (this is where stage k + 1 has just been completed);

• compute the correct projection factor ai = a for stage k+1 using Z (and from the
Cantor pairing function);
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• compute the largest dyadic interval in a[ρ̃], and let d denote its left end-point.
Now

d = σSkσ
′

where ℓ(σ′) ≤ 7, by the cost lemma 6.6.
• By the previous lemma 6.7, we know that the complexity of isolating Tk from
σSkσ

′ is not significant, as required. An identical argument recovers the n blocks.

It now follows from lemma 6.7 that

KZ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1) ≤ KZ(r[m]) +O(22
k

) +O(n2k+2)

where n < ξ(k + 1). Thus, in particular

KZ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1)

m
≤ KZ(r[m])

m
+

O(22
k
) +O(n2k+2)

m
(6.3)

where m = ν(k+1)+ nµ(k+1)+ ℓ(τ) and n < ξ(k+1). Next, we verify that the length
of T computed on the left-hand side of eq. (6.3) is sufficiently long: indeed,

|m− ℓ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1)| = ℓ(τ) + ν(k) + 1 + 5ξ(k) + 5n.

Now, m = ν(k + 1) + nµ(k + 1) + ℓ(τ) and n < ξ(k + 1) imply

ℓ(τ) + ν(k) + 5ξ(k) + 5n

m
≤ ℓ(τ) + ν(k) + 5(ξ(k) + ξ(k + 1))

ℓ(τ) + ν(k + 1) + ξ(k + 1)µ(k + 1)
;

applying limits as k goes to infinity shows that the term vanishes. Going back and ap-
plying lim inf to both sides of eq. (6.3) now proves that its left-hand side equals ϵ.

Finally, since m is of order ν(k+1)+nµ(k+1), i.e. of order at least 22
k+1

, the right-hand
side of eq. (6.3) simplifies to its first term. Putting it all together and applying lim inf we
hence obtain

ϵ = lim inf
k→∞

KZ(Tk ∪ T 1
k+1 ∪ . . . ∪ T n

k+1)

m
≤ KZ(r[m]

m
= dimZ(r)

as required. Theorem 6.1 now follows immediately from the same arguments as the proof
of theorem 5.1, and the overview we gave at the start of this section.
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