
Multi System Qualitative Planner
 James Bebbington Project Report, February 2010

Table of Contents

1 Introduction ... 1

1.1 Qualitative Representation of Learned Behaviour .. 1

1.2 The objectives of and uses for the Planning Agent ... 1

1.3 Document Structure ... 2

2 Single System Planner ... 3

2.1 More detailed reasoning as to why the Algorithm works ... 3

2.2 A Problem with the Algorithm .. 5

2.3 Efficiency of the Updated Algorithm .. 6

3 Multi System Planner ... 8

3.1 Description of the Algorithm ... 8

3.1.1 Matching (and Scoring) a system ... 8

3.1.2 Overview of how Regression Planning is performed ... 11

3.1.3 Details of the Algorithm .. 14

3.1.3.1 The “must be true” set of assertions .. 14

3.1.3.2 Entry and Exit Conditions .. 14

3.1.3.3 Inference .. 15

3.1.3.4 Object types and dealing with created and deleted objects 16

3.1.3.5 Dealing with “move” actions ... 17

3.1.4 Time Complexity .. 18

3.1.5 Issues .. 19

3.2 Enhanced Representation of Models ... 20

3.3 Example Models and Plans ... 21

3.3.1 Boiling Water in Cup ... 21

3.3.2 Drying a Towel with fan on Exercise Bike.. 21

3.3.3 Using Shower to produce Steam .. 21

3.3.4 Apply Change Tyre system to get item out from under Car 21

3.3.5 Building an unusual Mechanism (vibrating sand in box) 21

3.3.6 Other Models .. 22

3.4 Discussion ... 22

3.4.1 Using a system even though several assertions are unmatched 22

3.4.2 Concurrency Issues .. 23

3.4.3 Specialised versus General Models ... 23

3.4.4 Specifying values as Variables ... 24

3.4.5 Several Other Points .. 24

3.4.6 Probabilities and Costs .. 25

3.4.7 .. 25

4 Conclusion .. 26

5 Appendix .. 27

5.1 Qualitative Best & Worst Expression Evaluation Tables .. 27

5.2 Pseudo-code of the Single System Algorithm .. 27

5.3 Pseudo-code of the Multi System Algorithm ... 28

1

1 Introduction
This report discusses the design, implementation, and review of a planning algorithm that

attempts to produce good contingent plans to achieve goals (specified as a set of assertions),

given an initial world state, and using a specific type of knowledge representation. The

knowledge is represented as a collection of system models, which are able to be generated

by a learning agent using actual observations in a simulated 3D world (as developed in

Adam Clarke’s PhD). These models capture the state changes of a small set of objects given a

number of possible actions on some of these objects. The knowledge is represented using

finite state automata, first-order logic, and qualitative physics.

1.1 Qualitative Representation of Learned Behaviour
Description of systems (can be taken directly from Honours report).

Aside: Using the planning algorithm on alternative representations.
Note that in this report we do not focus specifically on the problem of how to best represent

knowledge in a particular system (what specific assertions should be considered, etc.).

Various papers *Davis08 (“Pouring Liquids”), etc+ provide detailed specifications of this.

Instead we focus on planning; our planner should be capable of constructing short plans that

are as detailed as the systems it is planning in are – note that the maximum amount that can

be achieve by a plan that can be produced in a feasible time frame will be dependent on how

detailed the systems are. How detailed systems are will depend on how careful the

observations were. Detailed observations will allow very specific plans. For example, a plan

might be as low level as “tilt the pitcher so that it is beyond the point where the height of the

water inside is over the edge of the spout, will cause the water to flow out of the pitcher into

whatever is below it”, or as high level as “pour the water out of the pitcher”.

We do, however, require that systems use a representation at least somewhat similar to that

described above: assertions must be described using first order logic (additionally

qualitative—potentially partially quantitative—reasoning is imperative to restrict the

number of states that need to be evaluated) and knowledge must be encapsulated in

modular finite state machines (this is key to restricting the amount of places the planning

algorithm will need to look in order to come up with plans).

1.2 The objectives of and uses for the Planning Agent
Single system objectives (can be taken directly from Honours report).

The second task of the planning agent is to construct plans that go through several systems.

Again, the initial (current) and goal assertions will be specified by a set of assertions. These

assertions may, however, span multiple systems. Not only will the planning algorithm have

to find a plan that achieves each of the goal assertions, but it will also take generalised

models that have assertions specified in terms of variables which it will need to bind to the

specific objects mentioned in the goal (and initial) assertions.

Producing plans that span multiple systems within a pool of knowledge that may contain a

very large number of systems is an extremely difficult task. Realising this, we only aim to

produce reasonably short plans that involve between one and around six systems, and we

will only try to find one plan (any plan that achieves the goal assertions, not necessarily the

2

shortest one). Note that these goals align with what we feel are the potential uses for the

planning algorithm. We imagine the planning algorithm would only ever need to be used to

fill in the gaps of a hierarchical planner (as it is always preferable to follow rules learned via

a hierarchical planner when available). This may mean performing unusual tasks, or

performing tasks in an unusual way (such as using the sink in the bathroom to clean dishes

if the sink in the kitchen becomes blocked). As such, when evaluating the algorithm, we

attempted to consider several examples of unusual tasks that people are not likely to have

learned standard rules for. Note that after a plan is produced and executed, it should be

converted into a new decomposition rule and incorporated into a hierarchical planner.

Section 3.4 presents some ideas on how this could be done.

The algorithm we have come up with is an amalgamation of several standard planning

techniques implemented with the specific kind of knowledge representation in mind, with

the addition of some novel aspects.

1.3 Document Structure
Section two discusses the design, implementation, and review of the single system planning

algorithm. Section three discusses the design, implementation, and review of the multi

system planning algorithm. Section four provides some concluding remarks, and suggests

possible future work that could be taken to extend the planner’s functionality.

3

2 Single System Planner
See section 4.3 of the honours report. This section describes a problem with the original algorithm, and the changes that

were made to solve this problem, as well as giving additional details as to why the algorithm works (also see the new

pseudo code in the appendix).

2.1 More detailed reasoning as to why the Algorithm works
First, we give some reasoning as to why the original algorithm works (this is unrelated to

the problem that we describe in the following section).

The (original) algorithm labels each node in the graph with an expression in terms of the

values of other nodes that it has transitions pointing to. We then traverse through the graph.

Figure 1 shows the way in which a graph is traversed. We follow a particular kind of path

(shown in red) through the graph. This path will go from the initial (starting) node, ending

at a node that only has transitions that lead to either a goal state, or back to nodes that have

already been visited. The path will not necessarily be just a straight line. There may be any

number of branches that end at a node that only has transitions that lead to either a goal

state, or back to nodes that have already been visited (also note, that there can be branches

off of branches, etc.). In Figure 1, the red lines going from node 4 to node 6, and from node

12 to node 15 show such sub-branches (similarly, the straight line from node 1 to node 17 is a

branch—the main branch). A key point to note is that all of the nodes in a given branch can

only point to a goal state or nodes that have already been visited.

When considering a particular node (for example, node 8), which nodes will already have

been visited? Any nodes that occur earlier on the same branch (nodes 1 to 4, and 7 to 8), and

any nodes that occur on sub-branches that have been visited before the branch that this node

is on (in Figure 1, sub-branch 4 to 6 must have been visited before the branch beginning at

node 7, as node 8 has a transition to node 6, meaning nodes 5 and 6 have been visited before

node 8—the traversal could just as easily have been performed the other way, in which the

traversal could look like the one shown in Figure 2).

This allows us to draw the conclusion that any visited node must either:

a) Have a grounded value; or

b) Have a path that leads back to the node that is currently being evaluated.

Figure 1: Traversing a Graph

1

goal
15

6

17

8

4

12

5

7

2

9

3

4

Proof of the conclusion above:

If, on the first branch visited after a split point (such as the branch 4 to 6, which splits at

node 4 in Figure 1), there is a sequence of nodes that have no transitions leading back to

nodes before the starting point of the branch or to earlier nodes in the same branch that have

such a transition themselves (such as node 6 on its own), then these nodes must all achieve

grounded values by the time we move on from the branch and begin evaluating other

nodes. This is because the value of these nodes will only depend on each other, and goal

states (we already inferred above that there cannot be any transitions leading from any

nodes on a branch to nodes on a later branch). Recall that once we reach the end of a branch

we will begin backtracking and updating the values of nodes. This corresponds to (a) above.

If, on the other hand, there is a transition from a node on a given branch that leads back to a

node that is on a part of the path that occurs before the branch off point (such as the

transition from node 5 to node 2), then this node and any earlier nodes on the branch will

not have grounded values, at least not until the earlier node is evaluated. But this means that

any nodes on branches that begin after this earlier node (node 2) can be reached by all nodes

in this branch before the node that had the transition pointing back to the earlier node (node

5). This corresponds to (b) above.

Finally, if there is a transition from a node on a given branch (we now consider the given

branch, as the branch 7 to 17 in Figure 1) that leads back to a node that is on an earlier

branch (such as the transition from node 8 to node 6), then since the value of the node that

this transition points to (node 6) is either grounded or has a path that leads back a node

before the branching point, it does not change the fact that the value of the node that

contains this transition (node 8) will have a value that is either grounded or leads back to a

node before the branching point (node 6 will have a grounded value by the time node 8 is

being evaluated, so this will be able to be substituted directly—node 8 itself will not actually

be immediately grounded itself, due to the transition from node 9, which comes after node 8,

to node 3).

The same logic can be applied to branches off of branches, etc. (see Figure 3). In this

example, node 12 has a transition leading to node 5 initially preventing nodes 6, 9, and 10

from being updated. Once we being updating and eventually backtrack to node 5, however,

all the values will be able to be updated (as no nodes in any branch beyond this point have a

Figure 2: An Alternative Traversal

1

goal
14

7

16

6

4

11

17

5

5

transition pointing back to an earlier node), and so when we go on to evaluate the final

branch which includes node 14, the transition from node 14 to node 12 will be updated with

grounded values.

Why was it important to prove this? Because our algorithm makes the important

assumption that if a node ever links back to an earlier node that does not have a grounded

value, then we can insert the at-least-loop value. This is the key as to why the technique of

substituting in at-least-loop values works.

2.2 A Problem with the Algorithm
We now move on to explaining the problem with the original algorithm. Note that the

problem had nothing to do with the reasoning in section 2.1. The problem was instead to do

with the way node values were being updated. Consider Figure 4 below. Since node 3 has a

transition leading back to node 1, neither node 3 nor node 2 can obtain a grounded value

until node 1 is evaluated (this is true for node 2 because it has a transition leading to node 3).

Previously, once node 3 was reached, we would substitute in the value at-least-loop (as node

3 only loops back to earlier nodes). This would give nodes 1 and 2 a temporary value for

node 3 that could be used to evaluate their values (node 3 would itself be updated again

later once node 1 and 2 have grounded values). The problem was that after backtracking to

node 2, we discover some information about node 3 that node 1 needs to use to update its

value properly. Thus, we cannot fully evaluate node 2 or 3 (because node 3 has a transition

leading back to node 1)—but we can partially evaluate them. We would have automatically

partially evaluated node 2 as part of the backtracking process (substitute in at-least-loop for

node 3), but we ignored the fact that node 3 should be partially evaluated based on node 2

as well. When evaluating node 1 it must use the updated value of node 3 (that is, the value

of node 3 updated with the value of node 2)!

Figure 3: Branches off of Branches

1

11

6

8

4

12

5

10

goal

9

13

14

6

To resolve this problem, we need to ensure that every time a node updates (and improves) its

value (either by evaluating itself for the first time as is the case for node 2 in Figure 4, or as a

result of receiving an updated value from another node), that it updates all nodes that occur

later in the current path (as well as then passing its value back to earlier nodes).

To achieve this, we have altered the algorithm substantially. All nodes now maintain a

“current value”, as well as the “expression” of how this value was derived. Every time a

node receives an updated value from another node, it looks at this expression and

substitutes in the new value accordingly. The value produced from this expression is the

new current value for this node. If the node’s current value improves, then all other nodes1

are updated (from the last node visited to the first node visited) with the improved value

(and so on).

For example, consider the graph shown in Figure 1Figure 4. Node 3 will begin with the

expression value(3) = best(node1,node2)+1. When we backtrack to node 1, node 3 will be

evaluated first. Both variables will be substituted for the value at-least-loop (as both node 1

and node 2 will have already been visited—refer to the original algorithm or pseudo code

for more details):

value(3) = best(at-least-loop{node1},at-least-loop{node2})+1 = at-least-loop

Now that node 3 has an updated current value (at-least-loop), it will initiate a cascading

update of all the other nodes, starting with node 2. Evaluating node 2’s expression, which is

value(2) = best(0,node3)+1, will give a current value of no-loop,1. Now that node 2 has an

updated, and grounded, value this new value will in turn result in updates to node 3 and

node 1. When updating node 3 a second time, we again look at its original representation:

value(3) = best(at-least-loop{node1},no-loop,1{node2})+1 = no-loop,2

As this is a new value for node 3 (improves upon the old value of at-least-loop), more updates

will be initiated. Note that we ignored updates to node 1 in the above example, but it should

be clear to see that node 1 will end receiving the correct values from both node 2 and node 3.

2.3 Efficiency of the Updated Algorithm
It may at first seem like the updating process could go on forever, although it is fairly easy

to realise that the structure of the graphs will prevent this from being the case. In order to

determine the efficiency of the algorithm, however, we need to work the maximum number

1 In fact, we only update nodes which have been traversed (on the path so far). This will not include

nodes that are to be traversed on later branches. Because of the reasons discussed in section 2.1, we

know this is not an issue.

Figure 4: A Problem with the Algorithm

1

3

2

goal

Node 1 is updated with the incorrect

value of [at-least-loop] for node 3, where

the correct value that should be used is

[no-loop,2]. Thus, node 1 returns the

value [loop,2] instead of [no-loop,3].

7

of updates may be carried out for any given graph. We show below that the updating part of

the algorithm is guaranteed to terminate and that it will do so in polynomial time efficiency.

Before we begin, note that in section 2.2 we stated that updates are only carried out when a

node’s value is updated and improved. By determining when it is not possible for a series of

updates to result in a nodes value improving we can infer when a cascading update must

terminate.

The key insight is that if node x updates node y and causes an improvement, then no later

updates that were a result of updating any other node z with the value of node y can result

in an improved value for node x (or node y). This is because all improvements to values as a

result of the update must arise due to paths going through x. If x were to receive an update

from z, then there must be a loop (x→z→...→y→x), and the value of x cannot improve by

following a loop back to itself. The exception is in when we are updating values for the first

time (rather than improving values) as in the example given in the previous section, but

subsequent updates must still abide by this rule.

Consider a node, node x, that has just received an updated value. Now any other nodes in

the graph that have a transition going to this node can potentially be updated and may be

improved with the new value—that is a maximum of n-1 updates. Each of these nodes could

potentially update all the rest of the nodes (n-2 updates). Using the insight above, however,

we can see that if node y updates node z, then node z cannot update node y or node x. This

limits the number of possible updates to n-1 + n-2 + ... + 1 =

; node y can improve all

other nodes other than node x, but then node z can only improve all the other nodes except

node x and node y, and so on—note that the second node to apply its updates can improve

some of the same nodes that the first node improved if it improves them by a larger amount

(if, for example, the transition going from the second node to node x is part of a non

deterministic action, where the path cost down one of the other transitions is worse than

value(x)+1). This is taken account of in the equation above, but is likely to be a quite rare

occurrence in actual system models.

There are also additional redundant updates that may be performed. Node b could update

node c, then receive a better value from node a, and so have to update node c again. In the

worst case, one update could be redundantly performed n-1 times, two updates could be

redundantly performed n-2 times, etc. This would result in the potential maximum number

of updates being of order n3. It is unlikely, however, that redundant updates will ever occur

this often in practice, as they will only occur when the order in which we update nodes

happens to be the opposite of how they are linked.

Thus, the algorithm’s overall efficiency could potentially be O(n4), as there could be up to n

updates, each affecting a maximum of from 1 to n nodes, which are all reasonably expensive.

In reality, the efficiency is more likely to be O(n3) in almost all (if not all) cases.

8

3 Multi System Planner
This section begins with a description of the multi system planning algorithm that was

developed. It then reiterates the features added to models for use by this algorithm (most of

these features are first mentioned in the description of the algorithm where appropriate).

Finally, a collection of example systems and plans are provided to demonstrate the ability of

the algorithm.

Note that the term model is used to describe the structure of a system (our modular graphical

representation of knowledge). These words are often used interchangeably.

3.1 Description of the Algorithm
To begin, the algorithm is given a set of assertions that it needs to ensure are true.

Additionally, a set of assertions that are true in the current world state are given (if used in

practice, these assertions would not need to be specified, but instead could be directly

observed from the world, when required).

The algorithm, after first removing any goal assertions that are true in the current state, will

start by matching goal assertions to assertions found in models.

3.1.1 Matching (and Scoring) a system
Matching describes the process of mapping variables in a system to specific objects (where

these objects are specified in the goal assertions, are observable in the current state of the

world, or are temporary objects that will be created at some point in the plan). The matching

process is difficult because there are an exponentially large number of ways that we could

look at mapping variables to objects, and we get more information on how good our

matching is as we move from looking at a single state to an initial and goal state pair. We

always start off by matching a set of goal assertions to a system, which significantly limits

the number of possible matchings, but leaves enough possibilities to prevent an exhaustive

search. This has led us to develop a tiered binding process—we only keep the best looking

bindings at each of several steps (where more information becomes available)—which is

described below.

Also note that there are some interesting properties when finding matchings in our systems

that we have tried to take advantage of in the design of the algorithm. For example, where

one state in a model matches a goal assertion, it’s likely that there will be several other states

that also match this goal assertion. As such, we perform most of the matching work only

once per model.

Note on notation: where we refer to binding below, we are referring to the mapping of one

variable to an object. Where we refer to matching, we are referring to the mapping of several

variables to corresponding objects (a set of bindings that map different variables to objects).

The first step is to find any states that contain an assertion that can potentially match at least

one of the goal assertions. An assertion can potentially match another assertion if it has the

same type, name, and value, and for each corresponding object, either one or both of the

assertions contain a variable (or both contain the exact same object). A hash function would

be required to find states with possible matching assertions in an efficient manner.

9

Aside: Using a Hash Function
A hash function that is capable of taking us directly to potentially matching assertions

should not be particularly difficult to implement. We would simply need to maintain a map

of hashed assertion signatures (an assertion excluding the variable / object) to sets of states

that contain an assertion with the corresponding signature. As the total amount of

knowledge (number of systems) gets very large, this data structure would increase in size

proportionally, but would also become more important. More advanced techniques, perhaps

similar to those used by web search engine indexes, may be needed to determine which

states to return when the number of results is large.

Note that in the version of the algorithm that has been implemented, we have not produced

such a hash function. Instead, we pre-produce a list of all possible assertions in each system,

and examine the list for each system in the world to find matching assertions. Once a

potentially matching system is found, we then examine all the states in the system to

determine which states could match at least one goal assertion.

When an assertion is found that potentially matches a goal assertion, a corresponding

binding (or multiple bindings for a relational assertion) will be inferred—that is, a mapping

of one or more variables to objects such that the matching assertion will become the same as

the goal assertion. With this matching as a base, we then need to go on and match all the

remaining variables specified in a system to objects that exist in the current world

observations (the exception being for objects that are created in the model, or for objects that

we believe may be created at an earlier step in the plan, since the planning algorithm

constructs plans backwards).

Before moving on, it should be noted that we divide assertions into changeable and

unchangeable assertions. Assertions that are unchangeable (such as assertions that describe

what an object is—“this object is a pen”) will only show up in the context of a model, and

these must be matched. It is desirable to match as many changeable assertions as possible, but

those that cannot be matched can be altered (or added if an object is created) in earlier steps

in the plan (note that all goal assertions should be changeable). Additionally, some

changeable assertions may not be true in all states of the model. If a changeable assertion is

not true in the initial state we end up selecting to begin this model from, it would not end up

being necessary to have matched this assertion at all. When learning systems, it would be

possible, and not too difficult, to maintain a list of which assertions are unchangeable. This

system could be enhanced further by labelling assertions with how “difficult” they are likely

to be to change, based on previously cached plans where changing the given assertion was

the goal.

For each model that contains an assertion that potentially matches a goal assertion, we build

lists of assertions (made up of assertions found in states, or in the context) that refer to each

variable mentioned in the system. From these lists, we can generate a set of possible objects

(from our current observations) that could match all of the unchangeable assertions (or at

least one changeable assertion if there are no unchangeable assertions) in each list.

Considering all possible combinations of objects that could be matched to each variable is

too expensive, so at this point we generate a score for each possible object, per variable.

10

The score generated for an object represents its closeness to the list of assertions that are true

of the variable in question. The less assertions that are untrue in the current state of the

world, the less work the planner will have to do at earlier steps in the plan to make them

true. Assertions that don’t match a current observation, but instead match one of the other

goal assertions (this can often be true of context assertions) are also valued. The score is

currently inversely proportional to the number of assertions that are untrue—that is,

assertions that do not match a current observation or goal assertion (where an assertion has

several different values across different states in the model, we only enforce that an assertion

that can match it must match one of these values—we are lenient here because we have not

yet worked out what our initial state will be). After scoring each potential object for a given

variable, we keep only the best couple. Additionally, we add the possibility that a temporary

object could match the variable—that is an object that will be created either in this system or

at an earlier step in the plan.

Next, we look at each of the different matchings that were inferred earlier from matching

goal assertions in this model, as well as each combination of matchings that were inferred

from matching goal assertions that belong to the same state. Each of these partial matchings

(partial because they don’t bind every variable in the system) will satisfy at least one goal

assertion. For each of these partial matchings then, we follow the process described below.

(Note that applying this process to large models with many objects can result in many

different possible matchings being produced. In such cases, a limited number of the largest

matchings—those that contain the most variables—should be used.)

For each variable that does not have a corresponding object in the partial matching, we

consider a combination of this matching with each possible combination of bindings for each

of the remaining variables (these combinations are constructed from the lists of objects that

can match each variable, that we described two paragraphs earlier). Finally, once we have a

set of possible full matchings for a model, we score each of these full bindings.

Once we have a collection of the full matchings, we first remove any duplicate bindings and

remove invalid bindings (ones where context assertions conflict with other goal assertions,

etc). Next, to score a given matching, we begin by finding the best goal states. For each of the

matching goal states that were used to construct the partial matching that this full matching

was constructed from, we find the one that has the most assertions satisfied in the final

matching. To further distinguish between states that match the same number of assertions,

we rank states that can be reached by more states in the model as better than states that are

can be reached by fewer states. The set of states that can be reached by a given state could be

pre-computed and stored at each state in each system, or can generated reasonably quickly

by the algorithm as it goes—an O(n2) operation. The reasoning behind using the number

will become clear later in this section. We only keep the best couple of states per matching to

use potential goal states.

Now that we have a set of possible goal states (and their corresponding matchings) that each

match at least one of the goal assertions we started with, we can generate a more detailed

score than before, and only retain the best looking states. This time, when computing a

state’s score, we take into account not only the number of changeable assertions in the model

that aren’t matched to a current observation or goal assertion, but also the number of goal

11

assertions that may be achieved by the state (note that the number of assertions that may be

achieved does not include context assertions as they cannot change in the system).

Finally, we further refine the information obtained by constructing initial and goal state

pairs—in order to achieve a goal, we have to start from some state in the system. For each

goal state that remains, we look at each state that can reach the goal state as a potential initial

state. For the state to be considered, at least one of the goal assertions that are achieved in

the goal state must not be true in the initial state (this means the assertion will actually be

achieved). Once we have a list of state pairs, we have all the information needed to consider

one step of the plan. Thus we can perform a final round of scoring and retain only the

number of pairs that we want to evaluate further.

When scoring an initial and goal state pair, we can now consider only the relevant

assertions—that is, those that are true in the context and the initial state. Assertions that are

true in other states cannot be used to inflate scores (as they may have in earlier steps).

Additionally, we limit the number of state pairs that can come from the same matching. The

final number of state pairs we retain will depend on several factors as described in the

following section.

Aside: Improving the Heuristic Used
Heuristics are obviously extremely important when constructing a planning algorithm of

this type. The better the heuristic is the more likely it will be to find a solution quickly. The

heuristic we currently use could almost certainly be improved upon. Our heuristic is based

upon what we expect a regression planner should aim for, and some significant, but limited

testing on constructed examples. A better heuristic would examine assertions in more detail.

It could potentially include consideration of typical initial and goal states in certain systems,

ensure that variables are only ever matched to objects that “potentially” have a value for

each of the possible assertions that describe properties of that variable (note that this has

been partially implemented), and consider a wide range of other factors. This could

potentially have an enormous impact on the performance of the algorithm. Note that simply

using the number of matching or non-matching assertions as a heuristic, as we currently do,

is not necessarily the best indicator of closeness (as several non important assertions may be

less valuable than one important one).

3.1.2 Overview of how Regression Planning is performed
The planning algorithm starts from a set of goal assertions and works backwards to get to a

set of states where all assertions match assertions that are true in the current world state.

Aside: Regression Planner versus Partial Order Planner
Planning in reverse is significantly easier than planning from the current world state

forwards to a goal. Planning in a forward direction would be extremely difficult because not

only can states from many systems match the initial current world state, but we also may

have no idea where to head from a given starting point (in order to achieve our goal

assertions we are likely to have to achieve other unknown assertions first). When working

backwards, we are always beginning from at least a state that achieves one of the goal

assertions. We then try to find systems that are closer to our initial world state, but we also

look for systems that appear to be potential last steps involved in achieving the goal (recall

12

our heuristic that looked for systems that achieve part of a goal, while requiring other goal

assertions to be true).

The justification behind using a regressive planner as opposed to a partial order planner (or

other algorithms with different kinds of orderings such as Stackplan) is that we expect the

goal assertions in our plans will have lots of interactions—that is, we expect that each system

should solve quite a few assertions at once, as opposed to having several independent parts

to a plan that could be solved in either order. Even if certain goal assertions can be solved in

different orders, we would face the issue of how many assertions can be solved together. By

using a regressive planning approach, we simply need to find one order that works, which is

all we are trying to achieve (after achieving a task once, it would become significantly easier

to work out other possible ways of achieving it if desired).

As mentioned earlier, the first step involved is to remove any goal assertions that are already

true in the current world state. The algorithm then performs the matching process described

above to find a list of initial and goal state pairs that achieve at least one goal assertion. Note

that no planning work needs to be performed in a single system (except for a reachability

analysis) to generate these pairs.

After generating this list, the algorithm selects the first pair and updates certain values: any

goal assertions that are achieved by the pair (goal assertions that are true in the goal state,

but not the initial state) are removed from the set of goal assertions remaining, and any

context or initial state assertions that are not true in the current world state are added to the

same set of goal assertions remaining.

After updating these sets, the planning algorithm simply repeats this step recursively. If we

reach a point where one of the assertions in the set of remaining goal assertions can't be

achieved, this branch fails and we backtrack to the last set of state pairs we had and try the

next option.

With each step taken, the set of remaining goal assertions should eventually decrease until

all assertions are achieved. Note, though, that there is no guarantee this process will actually

come to an end. It may be that at least as many assertions continue to be added to the set of

remaining goal assertions as are removed from it. If the agent does, however, have enough

knowledge about the systems involved in completing a task, then a solution should be able

to be found. We rely on the heuristic to guide the algorithm down paths that are likely to

achieve all assertions as early as possible. Of course, it's likely the heuristic will often lead us

down non-optimal paths. To take this into account, the planning algorithm performs

dovetailed iterative deepening and widening.

Aside: Reasons for using dovetailed iterative deepening and widening
Iterative deepening means we evaluate paths up to a certain max depth, then if we do not

find any paths of this length or shorter, we increase the max depth by one, and repeat. This

limits the work done evaluating non-optimal paths. Iterative widening means we restrict the

number of alterative solutions (width) evaluated to a fairly small number, then if no paths

are found within these limits, we increase the width by a specified amount, and repeat. This

limits the amount of backtracking required, preventing lots of work being carried out to

evaluate paths that score poorly. To obtain the benefits of both approaches, dovetailed

13

deepening and widening involves evaluating all paths within a given depth and width, then

if no paths are found, we increase both the depth and width, and repeat.

The justification for using iterative deepening is that, since we are attempting to find just one

plan of a reasonably short length, we can begin by checking short paths, and then slowly

increase the length of plans we check if we cannot find any plans at a given length. The

justification for using iterative widening is that since we have a good heuristic to guide our

search, we can begin by restricting the number of alternative solutions evaluated to a fairly

small number.

Also note that for each iteration with a fixed depth and width, we reduce the number of

additional paths (the width) that are examined as we go further down each path (add more

systems to it). This is because we expect that as our paths get longer, and we get closer to

our initial world state, the planner becomes more likely to select good systems, so we can

reduce the search space at little cost.

When the set of remaining assertions eventually becomes empty, we know we have a

solution to the plan. At this point, we evaluate a single system plan (from the specified

initial state to the specified goal state) in each system involved. We know this plan cannot

fail as the goal state is reachable from the initial state. The worst case is that the plan type

will be unsafe, but it cannot be none. The final plan returned is the sequential combination of

each of these single system plans. The overall cost of the plan is the sum of the costs of each

of the single system plans, and the plan type is the worst type of plan out of each these

single system plans.

Aside: Cleaning up unsafe and other plans
After the algorithm is completed, it may return a plan that is unsafe (or that involves loops).

It is possible (and indeed, quite likely) that there are alternative plans that are not unsafe,

but we are unlikely to detect these. Because we have limited our algorithm to selecting only

one goal state per system, we never considered the fact that states that were dead ends in one

system may match to states in other systems that can return us to a step in the plan (whether

it be an earlier step that creates a loop or a later step) and produce a plan that is safe overall.

An example of this can occur in the pour water system. When pouring water from one cup

into another, if the agent accidentally pours too much water fills up receiving cup, when its

goal was to have only some water in the cup, it will arrive at a dead end state in this model,

producing an unsafe plan. To improve the plan, the agent should be able to realise that if it

arrives at this state, it can move to the tip out water system, and tip a little water out of the

cup. Note that similarly, it may be possible that in some cases plans that involve loops could

be converted into non loop plans (although this is likely to be a rare occurrence).

This cleanup of plans could be implemented as a post processing step that activates after the

planning algorithm has found a successful plan. The planner would then find all dead end

states in each system, and attempt to find a plan from this state to any other state in another

system that is in the plan.

14

3.1.3 Details of the Algorithm

3.1.3.1 The “must be true” set of assertions
After selecting an initial and goal state pair, any assertions that are in the context or initial

state of a system and are true in the current world state are added to a set of assertions

denoted the “must be true” assertions. This includes any assertions that are in the set of goal

assertions the planning algorithm is given to start with, but happen to already be true in the

current world state. Assertions are never removed from this set, though they will be altered

(or potentially turned into explicit not assertions) if an assertion in the initial state of an

earlier system in the plan contains an assertion with the same signature (has the same type,

name, and object(s)) but a different value.

When finding possible goal states (states that match at least one goal assertion), the planning

algorithm will check to make sure that none of the assertions in the “must be true” set

conflict with assertions in the goal state. This prevents the planning algorithm from

producing invalid plans, where it requires the value of some assertion to change, even

though no action is taken by the agent to causes this change.

3.1.3.2 Entry and Exit Conditions
It will usually be the case that an action in one system will have an effect on several (often

many) other systems. When determining which of a system's assertions are valid, we require

a way of ensuring that actions taken in other systems do not have undesired effects in this

system. For example, consider a system that represents information about what happens

when a container is filled with water from a tap. If in another system an action is performed

that moves the container so that it is no longer under the tap, then we will have exited out of

this system. The effect will be that the water level in the container will no longer be rising (if

it was beforehand).

One possible way to take into account these kinds of effects would be to add any actions we

have noted that cause us to enter or exit the model directly into the model itself as

transitions that lead to new states. Whenever we encounter an action that effects this model,

we would simply add a new state to the model that describes the effect (in terms of

assertions, or partial assertions—a partial assertion gives the new value for a value or

derivative that has changed in a qualitative property, but not both) and add a transition to

(or from) any relevant states to (from) this new state, with the corresponding action taken

specified on the transition. This technique would, however, greatly reduce the benefit we

gain by modularising our knowledge into models in the first place. Each model would

potentially need to have very large numbers of exit and entry transitions and states added.

Instead, we specify entry and exit effects in terms of the context assertions that are made

false or true. Recall that context assertions are those which must be true in order for the

model to be valid. Thus, we can only enter (or exit) a system when at least one of these

assertions becomes true (false). Whenever we encounter an action that effects this model,

we note which context assertions are made true or false by the action, and specify effects (in

the same way as above) against these assertions. This prevents us from having to specify

actions explicitly and thus stops the models from dramatically increasing in size. Note that

this approach relies on the fact that regardless of the action taken, when a certain subset of

context assertions are validated (or invalidated), the same effects will take place in this

15

system. This should always be the case, although different actions may have different effects

outside of this one system (this information will be represented in other systems).

To take account of entry and exit effects in the planning algorithm, we add several steps.

Firstly, to take into account exit effects, whenever we are considering a new system to add to

the beginning of the plan, we check the exit effects of that system. We begin moving along

the rest of the plan that has been calculated so far (a system at a time). If a system causes an

exit effect to trigger by invalidating all of the specified assertions (usually just one assertion),

then from that point onwards we check to see if the “effect” part of the exit effect invalidates

the plan. If it does, we cannot use this model.

Taking account of entry effects if more problematic, because we are planning in reverse. If

we want to take advantage of an entry effect, the planner is able to add as goal assertions the

assertions that need to become valid to cause the effect (in addition to any context assertions

that aren't true as well). This is not currently implemented in our version of the algorithm.

Also note that because move actions are handled in a unique way (see section 3.1.3.5), the

entry effects of any move action that is used to achieve a context assertion in this model can

be considered immediately.

It is also worth pointing out that there may (and almost certainly will) be many effects of

actions (that are part of a plan) that occur in systems that we do not consider. Usually these

effects won't interfere with our plan, but in some cases these effects may prevent the

computed plan from working correctly. When executing plans, if an unexpected change in

state means the plan can no longer be carried out, then a new plan will need to be

constructed from that point. Alternatively, if we want the plan to be robust before

performing it, we could check for conflicts by performing a symbolic execution of the plan,

and considering what other systems could be active at each step.

Aside: Checking for plan conflicts in other systems
At each state in the plan, we have a set of assertions that are true of the world (made up of

the initial assertions with any assertions that have been changed, added, or removed up

until this point in the plan). We can use this set of assertions to infer other models that are

active. For each state in the plan, we would need to perform a matching process to find other

models whose context (and default) assertions are contained in this list—note that we would

only need to look for exact matches so this would be less difficult than the matching process

undertaken when discovering plans. Discovering which models might match the set would

again require the use of some kind of hashing function (as there would be too many models

in the world to examine them all).

Without having implemented this step, it is difficult to make a judgement as to how

expensive this operation might be (clearly the cost would be proportional to the number of

systems that make up the agent’s total knowledge). Performing this process in full would

ensure that a given plan does not fail because of effects that may occur in other systems that

are running at the same time as some part of the plan.

3.1.3.3 Inference
Certain types of assertions can be inferred from others, particularly when considering

relationships. For example, if object A is inside object B, and object B is inside object C, then

16

object A is inside object C. At a high level, inference essentially just tells us that, when some

set of assertions are all true, there is some other set of additional assertions that are also true.

Additionally, it can be used to infer when a set of assertions is invalid (due to conflicting

assertions being present). There is a large amount of standard inference rules that the

planning algorithm could perform to aid it in determining if goal assertions are true. In our

implementation, we have limited inference to only basic relational properties; for example,

we infer transitive assertions for inside, above, and below relations (as shown above), as

well as ensuring these relations are nonsymmetric (if object A is inside object B, object B

cannot be inside object A), and we also infer symmetric relations for nearby and connected

(if object A is nearby to object B, then object B is nearby to object A).

Inference is performed on demand—that is, when evaluating a set of assertions, the planner

will perform inference to see if any additional assertions are true or if the new set of

assertions will be invalid. Since inference is performed on demand, we do not need to worry

about when to remove inferred assertions (as we never always calculate and never store

them).

Also note that since we are planning backwards, inference is difficult. We are only able to

combine a set of assertions with the current world state assertions to see what additional

assertions are inferred. It may be that to achieve a goal, we need to combine a set of

assertions with other assertions that will be achieved at an earlier step in the plan. This kind

of inference is currently not considered by the planning algorithm, except in the case of move

actions that lead to a system, due to the special way in which move actions are represented

(see section 3.1.3.5).

3.1.3.4 Object types and dealing with created and deleted objects
The representation of objects is important in our systems, as the systems are usually

describing the relationships between several objects (and the effects of actions an agent can

perform on them). A rich hierarchy of classes would aid in inference and the ability to

construct concise systems—for example, we would like to be able to specify the assertion

“property is-a vehicle” and have assertions such as “property is-a car” match to this

without having to do any more work explicitly. Our implementation currently does not have

any class information built into it, as it was not necessary to consider when developing

specific example systems. If, however, there was a large amount of knowledge (lots of

systems) being represented, involving many different types of objects, then a well

constructed class hierarchy is likely to be essential.

A somewhat related issue arises when we consider how to handle the creation and deletion

of objects. An example of a created object can be found in the fill a sink model where water

is effectively created (as far as the agent is concerned). When an object like this is created, it

can have a very large range of properties that become true (its temperature, saltiness, etc).

Currently, we have to specify each of these properties explicitly in the model. In order to

avoid having to specify each of these properties on each state where the object exists, we

have a separate set of assertions which represent assertions that do not change in the model,

other than being added when an object is created and/or removed with the object is

destroyed.

17

Objects that are created and destroyed can be quite problematic for the planning algorithm;

it can be quite difficult to score systems that involve the creation or destruction of an object

because we only need to attempt to match assertions that relate to a created or deleted object

to the current world state if the object exists in an initial state, and similarly we can only

match goal assertions to assertions that related to a created or deleted object if the object

exists in a goal state. We won't know which if this is the case until we produce initial and

goal state pairs. Depending on the structure of a given system, it may only be possible to

create or only destroy an object (invalidating our earlier matching that assumed the

opposite). To deal with these issues, we give weights to the scoring of assertions, and set the

weight of scorings that are generated from created and deleted assertions to a much lower

value than the weights of other assertions (in the earlier scoring phases). Additionally, we

ensure destroyed objects cannot be recreated (this prevents the planning algorithm from

attempting to construct some foolish plans).

Additionally, there is the issue that a variable that exists in one system may be bound to an

object that is created in an earlier system. In section 3.1.1, we described how we might bind

temporary objects to systems. Even when examining an initial and goal state pair, however,

there is no way to determine what properties make sense for a temporary object (can we

create water that is coloured green?). With sophisticated class information (as mentioned

earlier), we could look at the default (common) values for objects of a certain type and may

even have more detailed information specified, such as “water is always transparent”. This

would greatly improve the ability of the planner.

Objects can also be created out of other objects—for example, splitting a piece of wood in

half creates two smaller pieces (or you could represent this as just one new piece and the

original piece is half as large as it was before). In our example systems, there is a case where

water is poured from one cup to another. We treat this as though the water from the pouring

cup is destroyed (if the cup empties), and the water in the receiving cup is created. When an

object is created from another object like this, it (usually) inherits all of properties of the

object it is created from: the water in the receiving cup will have the same temperature, and

saltiness, etc. as the water in the pouring cup.

In order to avoid having to specify that all these properties carry over to the new object, we

introduce a new kind of assertion that is specified in terms of objects for a whole system. We

say that the water in the receiving cup comes from the water in the pouring cup. This means

the water in the receiving cup receives all the properties of the water in the receiving cup,

except for any that may be explicitly overridden in the assertions that are present in states in

the model (a process somewhat similar to cloning). When matching objects to system

variables, we can carry over any properties referring to a given object to the object that it is

created from. So if our goal is to have boiling water in a particular cup, then we can achieve

this by pouring water into it from another cup, and our new goal is for the water in that

pouring cup to be boiling.

3.1.3.5 Dealing with “move” actions
The action of moving an object is special for a number of reasons. Move actions have a

starting location and a final location. Such actions don't usually represent the change in

relationship between objects (whereas almost all actions will generally represent changes in

the properties of or relationships between objects). Instead, move actions are a way of

18

getting an object to where it can be used for a given task—in terms of our representation,

they are essentially just used for transitioning between systems. Because of this, we treat

move actions differently from other actions.

When an assertion is found in the context or initial state of a system that is not true in the

current world state, we check to see if the assertion can be achieved by a move action. An

assertion will be achievable via move if it is a relation type assertion that specifies a

particular kind of relation (such as above, or below)—the specifics of what relations can be

achieved by move are configurable; in our system we allow above, below, inside, and

nearby to be achievable via move actions, but a more complex knowledge representation

may specify locations explicitly and provides more details about what objects will fit in

where, etc. Additionally, we require that objects be specified as movable objects. To

determine if an object is movable, we first check the current world state to see if the object

exists and is specified as being movable. If the object does not exist, we can still attempt to

achieve the assertion through a move operation, but require that when the object is created,

it is a movable object (see the previous section for more details on this). If the object does

exist, and is not specified as being movable, then we do not allow the assertion to be

achieved via a move action. Additionally, the assertion describing the object's current

location (if it does exist) must not be in the “must be true” list or else we cannot solve this

assertion via a move action.

After determining that an assertion can be achieved via a move action, we prefix the action

to the start of the plan (before the plan that will be generated in the single system that the

move action achieves an assertion for). Additionally, we annotate the assertion with

constraints specifying where the object is being moved to. If we want to ensure that objects

are only moved when they are able to be moved, we should add assertions such as

“property not-obstructed object” and “property not-obstructed location” to the “must

be true” list of assertions.

Note that we are only able to treat move in this way because it does not matter where we are

moving an object from (as long as it is not obstructed). Additionally, path finding is a fairly

low level task (as compared with the kinds of reasoning we tend to see in our systems), and

it makes sense that this kind of task would can be carried out via other planning methods.

Additionally, it is worth noting that there can be a somewhat grey line when determining

what actions should constitute as moves and which should not. Almost every action we

perform involves moving something (whether that is our own fingers, or a box we are

holding). The key insight given above was that moves do not really represent a relationship

change between two objects, and that it does not matter where an object is moved from. For

most actions, such as pouring water from one cup to another (which should not be

considered as a move), there is a clear relational property between the objects involved in

the action (one cup is above another).

3.1.4 Time Complexity
Clearly, the algorithm is exponential in terms of the time complexity it would take to

perform an exhaustive search. There is no possible way to avoid the fact that systems can be

bound to objects in a multitude of ways, and that plans can be found by combining systems

can be together in an exponential number of possible orderings. By using heurstics that aim

to achieve as many goal assertions as possible, while minimising the number of assertions

19

that will need to satisfied (earlier in the plan), we hope that we will be able to arrive at a

solution without having to explore too many paths that do not lead to a solution. Because

our goal was only to construct short plans that solve one conjunctive set of achievements at a

time, this does appear to be feasible.

Recall, however, that no single system planning needs to be performed (other than a

reachability analysis) until we have discovered a multiple system plan that will definitely

work. This significantly reduces the potential time taken by the algorithm.

Aside: Lots of knowledge (systems) leads to many possible solutions
It is worth noting that our experimenting with the system has so far only involved examples

that we have constructed by hand. Creating examples by hand allows us to ensure that

assertions are consistent across systems (ie: describing similar things at the same level of

detail). If we used systems that were constructed automatically by a learning agent, the

systems may not be as consistent. We believe, however, that with enough knowledge (lots of

systems), it is likely that valid matches should be able to be found for any set of goal

assertions and scored highly. If there are lots of systems available, then there are likely to be

many possible ways to achieve goals, and so at least some systems that are on a valid path

should score significantly higher than any invalid ones (as long as our matching heuristic is

reasonably good).

The current implementation of the algorithm does not incorporate a hashing function to

speed up the time it takes to match goal assertions to assertions in systems. This is not too

much of an issue as we have currently only been able to test it on reasonably small sets of

models at a time (it takes quite a while to construct systems, and the agent which learns

systems in a similar format is still under construction), so performing an exhaustive search

of all models doesn't slow things down much. To perform a complete search that fails to a

depth of six (a plan that goes through six systems not including move actions), with a

maximum top level width of eight state pairs, on the example sets of systems provided in

section 3.3, takes anywhere from a minute to fifteen plus minutes depending on the size of

the systems being examined and number of objects in each system.

3.1.5 Issues
There are a couple of minor issues with the current planning algorithm, which may or may

not be avoidable. Firstly, it is common for the planner to select the wrong initial state. This is

best explained through an example—if our goal is to obtain boiling water, the planning

algorithm might match to a goal state with boiling water and select as an initial state in that

model a state where the temperature of the water is between room temperature and boiling,

rather than at room temperature. This problem is mitigated by the fact that we select several

potential initial states per system (and if they both score highly, they can both be evaluated).

This problem is almost impossible to prevent—there is no way the planner can know if it

should start with water that is at room temperature or between room temperature and boiling.

First note though, that if the water that was to be boiled already existed in the initial world

state, our heuristic would give a better score to the initial state that specifies the temperature

that matches the current temperature of this water. A possible solution to the above

example, then, is to specify default created object values, as discussed in section 3.1.3.4. This

20

is somewhat analogous to caching the plan where we create the default water (pouring

water from a tap into a cup)—this process was discussed in the introduction—and may or

may not provide any additional benefits. Note that where we are evaluating an assertion

that the specified object does not have at all in the initial world state (which may be a

property or a relation), a similar problem (and possible solution) arises.

Another minor problem arises because we are only able to select a single goal state per

model—allowing multiple goal states to be selected per model produces the possibility of

plans branching to multiple systems, which we believed would decrease the efficiency of the

planner too much. Selecting only one goal state can often mean doing extra work within a

single system that is really needed. For example, if we are trying to fill a cup to a specific

level, then if we fill it too high, we must tip some out, and if we tip too much out we must

fill it back up a bit more. It may be that we did not actually need to fill the cup to a specific

level (the next higher level may have been fine as well), as the next step in the plan involves,

for example, doing something to the water and then pouring into another container.

While this problem causes somewhat inflexible plans to be produced, it should be able to be

mostly solved via a post processing step that goes back to check systems in the plan that

outputted an unsafe or looping plan to see if they can be improved, as described in an aside

in section 3.1.2.

Finally, another issue is that pure regression planning prevents the heuristic from being able

to incorporate the use of entry transitions and inference from earlier steps in the plan. This is

a trade-off that seems acceptable. It would be interesting, however, to look at developing a

forwards or partial order planner to draw comparisons from.

3.2 Enhanced Representation of Models
Initially, we used the same models as in the single system planner. It soon became apparent,

however, that this representation would not be sufficient without several enhancements.

Most of the changes made have been mentioned above in section 3.1, but we reiterate these

here for clarity.

 Entry and exit effects (see section 3.1.3.2): The specification of the effects (in terms of

assertions that exist in the given system) of validating or invalidating a context assertion

(or a set of context assertions).

 Created and destroyed object context assertions (3.1.3.4): A set of assertions that are

always true of objects in this system once they are created, or before they are destroyed.

 Comes from object relations (see section 3.1.3.4): A set of assertions that describe any

objects that come from—that is, are produced out of and hence inherit the properties of—

another object.

 Ranges of values (see section 3.4.4): We allow the value of property assertions to be

specified as a range of qualitative landmarks and ranges (rather than just one). This

means the actual value for this property may be any one of the landmarks or ranges

specified. Similarly, we allow a range of possible relations to be specified in relational

assertions.

 Explicit negation (discussed below): Any assertion that is mentioned in one (or more)

state(s) in a system must be mentioned in all other states in that same system. This often

21

requires the use of not assertions. If, for example, the assertion “related connected

objectA objectB” is specified in one state, then the assertion “not related connected

objectA objectB” must be added to all other states in the system where the original

assertion is not true. Note that explicit negation does not add to the representation of

systems, but simply makes it substantially easier to plan with systems (as we do not have

to consider whether or not assertions exist). Also note that explicit negation can be added

to systems as a post-learning / pre-planning step (a learning agent would not need to

ensure it adds explicit negation to learned systems). Note that not assertions do not need

to be explicitly matched—they are simply assumed to be valid as long as they do not

conflict with any other assertions.

3.3 Example Models and Plans
We have produced a range of example sets of systems, and possible goal assertions (as well

as providing a set of initial assertions) with which to use to test to the planning algorithm. In

this section, we provide a description of most of these sets of systems and the corresponding

plans that were produced.

3.3.1 Boiling Water in Cup
Plug In Device (Kettle) -> Fill Container (Kettle) -> Boil Kettle -> Pour Water (Kettle to Cup)

or: Fill Container (Cup) -> Microwave Fluid (in Cup)

3.3.2 Drying a Towel with fan on Exercise Bike
Exercise Bike -> Dry Towel

Issue: The planning algorithm does not initially match the object that will be used to produce

airflow to the exercise bike.

Solution: Improve the heuristic to ensure that variables are matched to objects that

“potentially” have a value for each of the possible assertions that describe that variable (in

this case, airflow out of), as mentioned in the aside in section 3.1.1.

3.3.3 Using Shower to produce Steam
Shower -> Use Steam

3.3.4 Apply Change Tyre system to get item out from under Car
Change Tyre

Issue: We are forced to specify that a tyre is punctured in order to get planning algorithm to

match to the correct system.

Solution: Currently, we are just specifying that a tyre is punctured. In order to use this

system without doing so, we would need to implement the ability to use a system even

though some assertions are not matched. This is discussed in detail in section 3.4.1.

3.3.5 Building an unusual Mechanism (vibrating sand in box)
Eccentric Cam -> Sand in Container

22

3.3.6 Other Models
 Heating sand in Oven: Similarly to the Change Tyre system, we use the Oven system to

perform an unusual action. Normally we would put food in the oven, but in this case we

attempt to use it to heat sand.

 Mow Lawns and Plant Flowers systems: As a test, we constructed a pair of systems that

were entirely independent—one for mowing lawns, and another for planting flowers.

The planning algorithm performed surprisingly well, and was able to construct plans of

reasonable length (four plus systems).

 Driving and navigating Car systems: We also constructed systems that represented a car

driving around streets, and entered assertions representing a map into the initial

assertions. The planner performed, as expected, quite poorly. This is because in order to

solve a path planning type problem we would need to use a better heuristic involving

distance. This is a good example of what our planning algorithm is not attempting to

achieve.

3.4 Discussion
In this section, we will provide a discussion of several additional issues that have an effect

on the planning algorithm, and mention ways in which any problems could be addressed.

3.4.1 Using a system even though several assertions are unmatched
In some scenarios, given a set of goal assertions and initial world assertions, we should

match to a particular system, even though several of the context assertions are not satisfied.

It may be that it would be otherwise impossible to satisfy these assertions, or that they could

be achieved with more effort (by the planning algorithm or even by hierarchical rules).

Regardless, if we discover a situation where there is a good chance a system will work as

expected in spite of unmatched assertions, it is a good idea to attempt to use the system.

When executing the plan, its success or failure can be reported back to the learning agent to

refine the system information.

In order to work well, the ideal approach would be to have weights on each context

assertion stating how “important” they are believed to be. When learning, if a context

assertion is present in 95% of the cases in which the system was in use, it would be

considered very important, whereas if another context assertion was only present 70% of the

time, it would be given a smaller weighting. The planning algorithm could then ignore

matching assertions with smaller weightings if desired. An alternative that could be

implemented in the absence of any weighting information would be to first attempt to find a

plan looking for full matchings in all systems. If no short plans can be found, then try again,

but allow one (or possibly more) assertions to not be matched.

Also note that there are two different cases where we may want to use a system even though

several assertions are not matched:

 Removing the assertion(s) has no effect: This case will occur far more often. It occurs

when there are one or more assertions in the context that are not needed for the system to

run properly. For example, we may have a Fill the Sink system that has a context assertion

stating “property colour tap red”. This assertion is clearly irrelevant to the running of

the system, and so we could safely ignore it (leave it unmatched).

23

 Removing the assertion(s) means we also remove all related assertions in the model:

This case will occur when we want to use a system but a part of the system is irrelevant—

that is, we only need to use a certain parts of the system (it may highlight a case where

we would be better off having two separate systems). It may be that detecting such

systems would be better done during the learning process. For example, if we again have

a Fill a Sink system, and want to use this system to fill a container from the tap (for this to

be the case, we must not have a Fill Container and/or Turn Tap system), we would be able

to ignore (leave unmatched) any context assertions referring to the sink: “exists sink”,

“related under tapSpout sink”, etc. At each state in the model, we would also need to

remove any assertions that relate to the sink, such as “qproperty waterLevel sink ...”.

This would leave only assertions relating to the tap and the water flow out of it. The

effects of actions would remain unchanged so the system could still be used.

3.4.2 Concurrency Issues
We mentioned earlier that it is quite possible, in fact it will almost always be the case, that an

agent will be in multiple systems at once (concurrently). It is likely then, that performing an

action in one system may also cause changes in another system (either because that action is

explicitly in that other model or via an exit transition). Checking to see what other effects

our actions may cause is probably best handled via a post processing step (see the aside in

section 3.1.3.2).

Another possibility is that the only plan that can achieve a goal is one that acts concurrently

in two systems—that is, we need to interleave actions within two systems to achieve some

goal. It would be possible to infer this on the fly, but computationally extremely expensive.

Instead the planner should be able to determine that while each goal assertion can be

achieved in isolation, achieving either assertion prevents the achievement of the other (in

many cases, this could be inferred by analysing why the planner failed on certain branches).

A second phase planner that considers qualitative and timing information could then

explore the possibility of a concurrent plan.

Aside: Constructing non concurrent systems
When evaluating how to handle concurrency, we determined that in most cases, systems can

and should (and given how information is learned, most likely will) be constructed in such a

way as to avoid tasks having to be performed concurrently. For example, we could have two

separate models, one for heating food and another for stirring food. When learning these

systems, however, the learning agent should notice the correlation between stirring and

cooking and so produce another system that examines the effects of performing both tasks

together. Similarly, if someone is told how to cook food, you would immediately construct a

joint system. Due to this fact, the importance of dealing with concurrency is reduced.

3.4.3 Specialised versus General Models
A specialised model is one that contains a super set of the assertions that are true in another

(more general) model—this means specialised models can always be inferred (although they

could and probably should be stated explicitly as well). Wherever a specialised model can be

matched, the more general model will be able to be matched as well. We should, however,

always use more specialised models (instead of rather than as well as generalised models)

where available, as they may contain more specific information about what will happen

24

when the agent performs certain actions. Note that the use of a regressive planner could

potentially cause issues as we may believe a generalised system is appropriate, but earlier

steps could unexpectedly satisfy the context assertions of a more specialised system instead

(which could produce a different result than the more general system).

3.4.4 Specifying values as Variables
A possible enhancement to the system models that we use could be to specify values as

variables. For example, the assertion “property temperature water X” states that the

temperature of water is some variable X. This would allow us to specify other values in

terms of X (for example, the same as X, less than X, in between X and Y). An example of where

this might want to be used is in a Microwave model; we could state that the temperature of

an object in the microwave will be greater than it was before after the microwave is turned on

for some time. Alternatively, we could specify X in terms of something that can be directly

inferred from the observations of the world (or from assertions in a plan). For example, in

the assertion “property direction X”, X could be specified as “facing objectA”. Thus, with

a little inference, we could work out the direction of X by observing the direction of A and

taking the opposite.

Our current implementation does not specify any values as variables. While using variables

for values does make some effects easier to express, the models become more complex (there

will be more work required to bind values to variables, etc). As an alternative, we allow a

range of values to be specified in any assertion. That is, the value of a property or qproperty

assertion can be specified as a set of qualitative landmarks and ranges. Similarly, we allow a

range of possible relations to be specified in relational assertions. This allows us to show

“disinterest” at certain times. For example, we may say the temperature of a fluid in the

microwave rises from room temperature to a value that is either in the between room

temperature and boiling or boiling (but we do not care which). We currently ignore the

possibility of specifying values as variables in terms of observations about the world. This is

an area that could be looked into further.

3.4.5 Several Other Points
 Cleaning up systems: When we perform almost any task, we inevitably have to clean

something up once we are done. Cleaning up is important as it generally involves

restoring systems to their “ready” state. The planner may be able to infer to how to clean

up systems without being told specifically, by performing certain exit transitions in

systems that it were traversed through in the plan (as a post processing step).

Alternatively, certain states, or exit effects could be explicitly specified as part of the

cleanup process, and we could ensure that these states are reached or that these exit

effects occur at some point in the planning process.

 Maintaining goals: Sometimes, we may want to specify that a set of goal assertions need

to be “maintained”. Essentially, this just requires checking to see if any of the goal states

(states that the agent ends up in and that were used to achieve a goal assertion) have an

outward time passing transition. If they do, then find a path back to the goal state from the

state that the time passing transition leads to. This means the goal assertions can be

maintained over time.

 Using models for inference: A possible way of incorporating inference into the system

directly is to construct models that have no actions. Instead, they would require context

25

assertions, entry and exit effects, and only a single state. Essentially these models would

denote that when the context assertions are achieved, the assertions in the state become

true, and when the context assertions are invalidated, the assertions in the state become

false. This technique has not been looked into in detail. It may turn out that representing

inference in this manner is much more inefficient than incorporating it more specifically

into the planning algorithm. At the same time, it may (or may not) be possible for a

learning agent to learn these kinds of inference systems (it may be that this information

could be extracted from a combination of other learned systems).

 Using partial order planning lookahead as a heuristic: This was not really considered.

Worth mentioning?

3.4.6 Probabilities and Costs
Another look at probabilities and costs versus qualitativeness.

3.4.7
Actions at one level as plans at lower level stuff (see note 36).

26

4 Conclusion
Can solve simple to moderately difficult tasks (that don't involve too many systems).

Improvements still need to be made.

Some notion that adding costs / probabilities, important but wouldn’t cover everything.

Concurrency is a bit of an issue.

27

5 Appendix

5.1 Qualitative Best & Worst Expression Evaluation Tables
See honours report—note that unsafe values still do not have numbers associated with them which will cause

problems in some systems that involve unsafe plans. Ideally, unsafe plans should be numbered with the path cost best

case path cost when loops are involved, and the worst case path cost if no loops are involved. Simply using best case

path costs only, however, should prevent errors (whilst not always make the best choices).

5.2 Pseudo-code of the Single System Algorithm
This section provides a pseudo-code overview of the updated single system planning

algorithm.

generate indistinguishable states (see honours report)

initialize all states with expressions (see honours report)

visitState(initialState)

highlight plan (see honours report)

1. visitState(currState)

 add currState to list of visited states

 for each neighbouring state (who has a corresponding variable in currState’s expression)

 if this neighbouring state has not yet been visited

 visitState(neighbouring state)

 update any occurrences of currState in currState’s expression with the value at-least-loop, and evaluate

 for each state visited so far, from the last state to the first

 update any occurrences of currState in the state’s expression with at-least-loop, and evaluate

 if currState’s value is now grounded

 cascadingUpdate(state)

1. cascadingUpdate(state)

2. update(state)

3. while the update queue is not empty

4. update(state)

1. update(state)

2. take the nextState off the queue

3. for each state visited so far, from the last state to the first

4. update any occurrences of nextState in the state’s expression with the updated value of nextState, and evaluate

5. if state’s expression became grounded or was already grounded and improved with the update

6. add the state to the update queue (and remove any occurrences of state already in the queue)

28

5.3 Pseudo-code of the Multi System Algorithm
This section provides a pseudo-code overview of the multi system planning algorithm. Note

that to make the following pseudo-code easier to understand, it ignores some of the more

complex steps, such as taking into account created and destroyed objects, and computing

scores (see the relevant sections of this report that describe the algorithm for more details):

1. find all systems that contain a state that matches at least one goal assertion, and the corresponding partial bindings

2. find all possible full bindings for each system that we have generated partial bindings for

3. retain the best looking bindings based on heuristic (section 3.1.1)

4.

5. for each system+binding, find all possible “goal” states that satisfy at least one goal assertion

6. for each “goal” state, check to ensure no “exit effects” cause conflict with actions later in the plan

7. for each “goal” state, check to ensure no “must be true” assertions are not true in the state (if so, ignore this state)

8. retain the top “goal” states per system based on number of satisfied goal assertions and number of states that can reach it

9. retain the best looking goal states based on more detailed heuristic

10.

11. for each goal state, find all possible initial+goal state pairs where at least one goal assertion is satisfied

12. for each initial+goal state pair, check to ensure no existing objects are being created or non existing objects destroyed

13. if there are no matching pairs, fail, and backtrack (see line 25)

14. retain, and order the best “widthAtLevel” initial+goal state pairs based on more detailed heuristic

15.

16. take the first initial+goal state pair off queue:

17. if all context and initial state assertions are satisfied, and no goal assertions remain

18. return a single system plan going from the initial to goal state specified in the pair

19. else if at “maxDepthForThisIteration”

20. fail, and backtrack (see 25)

21. for all context and initial state assertions that are satisfied, add them to the “must be true” set of assertions

22. for all context, initial state and remaining goal assertions that are not satisfied, recursively find a plan to satisfy them

23. if able to recursively find a plan to satisfy all these assertions

24. return recursively generated plan(s) with a single system plan based on this initial+goal state pair added to the front

25. if unable to satisfy these assertions recursively (fail was returned)

26. if the queue of initial+goal state pairs is not empty

27. go to the next initial+goal state pair in the queue

28. else

29. fail, and backtrack

