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Abstract
This thesis investigates the use of Genetic Programming (GP) in solving

object classi�cation tasks of three or more classes (multiclass). Methods are

developed to improve the performance of the GP system at four multiclass

object classi�cation tasks of varying dif�culty, by invest igating two aspects

of GP.

The �rst aspect of GP is the classi�cation strategy, or the method used

to translate a real program output into a class label for clas si�cation. Pre-

vious classi�cation strategies typically arrange the prog ram output space

into class regions, which in some methods can change position or class

during evolution. We have developed a new classi�cation str ategy that

does not deal with the regions directly, but instead models t he output of

a program using normal distributions. Advantages of the new approach

include the use of improved �tness measures, and the possibi lity of mul-

tiple programs being used together to predict the class of a t est example.

In experiments, this method performs signi�cantly better t han the three

other classi�cation strategies it was tested against, especially on dif�cult

tasks.

We have also developed a method which decomposes the multicl ass

classi�cation task into many binary subtasks. Unlike previ ous approaches,

this method solves all binary subtasks in one evolution usin g a modi�ed,

multi-objective �tness function. The multiclass task is so lved by com-

bining expert programs, each able to solve one subtask. In experiments,

this method outperforms the basic approach, and a previous ' divide-and-

conquer' approach, especially on dif�cult problems.

The second aspect of GP investigated is the use of hybrid searches, in-

volving both evolutionary search and gradient-descent sea rch. By adding



weights to the links of genetic programs, we have enabled a si milar search

to that of neural networks, within each generation of a GP sea rch. The

weights control the effect of each subtree in a program, and m ay be ef�-

ciently optimized using gradient-descent. The use of weigh ts was found

to improve accuracy over the basic approach, and slightly im prove on the

gradient-descent search of numeric terminals alone.

We have also developed a novel hybrid search in which changes to each

program's �tness occur only through gradient-descent, tho ugh the evolu-

tionary search still modi�es program structure. This is pos sible through

modi�ed genetic operators and inclusion factorswhich allow certain sub-

trees in a program to be `mapped-out' of the program's calcul ations. Un-

fortunately, the new search is found to decrease accuracy and increase time

per run for the GP system.

The aim of this thesis, to improve the performance of GP at mul ticlass

object classi�cation tasks, has been achieved. This thesiscontains methods

that signi�cantly improve the performance of a GP system for these prob-

lems, over the basic approach. The work of this thesis serves to improve

GP as a competitive method on multiclass object classi�cati on tasks.
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Chapter 1

Introduction

Vision is for many the most important sense, and in time this m ay include

computers. Sight gives us a channel of communication with th e outside

world that far surpasses in bandwidth, distance and focus, a ny other pre-

sented to us. Many tasks that have been conventionally done by humans

are now being passed to machines; one may therefore expect there are now

an abundance of vision problems posed to computers. Compute rs often

have advantages over humans. Relative to a computer, a human expert

may demand higher pay, take longer, or have lower endurance i n repeti-

tive jobs.

Object classi�cation is a fundamental computer vision prob lem. Gen-

erally the form of an object classi�cation problem is the lea rning of a re-

lationship between features extracted from training objec ts and the class

labels of the objects. The result is a classi�er that can predict the class

of an unseen object using features extracted from it by using this learned

relationship.

Many object classi�cation problems are naturally multicla ss (three or

more classes). Some examples of multiclass classi�cation tasks are: the

recognition of faces, the classi�cation of satellite image pixels, and the

recognition of characters for optical character recogniti on and zip code

recovery. These are just some of the many tasks we would like computer

1



2 CHAPTER 1. INTRODUCTION

vision systems to perform.

While there are an abundance of multiclass classi�cation ta sks, there

are also many methods to solve them: neural networks, decisi on trees,

Bayesian classi�ers and support-vector machines are some popular ap-

proaches. By the very nature of the problem, each method will generally

be suited to a limited range of tasks; therefore having a dive rse range of

methodologies is essential.

Genetic programming (GP) [21, 22] is another method used for classi-

�cation. GP is a new and fast developing method for automatic learning,

where evolutionary methods are used to search for a computer program

that can solve a task. The powerful evolutionary search and e xpressive

computer program representation make GP an important resea rch area.

GP has been used to evolve many types of structure such as decision

trees and classi�cation rule sets. The numerical expression classi�er has

also been developed recently, and has been seen to be applicable to a wide

range of problems. Each numeric expression classi�er programtypically

returns as its output a single �oating-point value, which is a high level

representation of the feature inputs.

We identify two main problems with previous methods applyin g the

problem of multiclass classi�cation to GP.

The �rst problem is that the classi�cation strategies used b y these meth-

ods are not suf�ciently powerful. The term classi�cation strategyhere refers

to the method for translating the single �oating-point prog ram output into

a class label.

In past research, there have been attempts to address this problem

[24, 60]. Methods such as program classi�cation map [60], and dynamic

range selection [24], divide the space of the real output int o class regions,

A set of features classi�es according to the region that a pro gram output

falls into, using the features as inputs. Static methods [60] prede�ne the

class regions, and require hand-crafting of the region boun daries. Dy-

namic methods [24, 41] automatically learn the class regions. While both
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approaches have achieved some success, when applied to dif�cult tasks

they often took a long time for the search, or resulted in unne cessarily

complex programs and sometimes poor performance. Accordin gly, an in-

teresting area of investigation is developing new classi�c ation strategies

that aim to avoid these problems.

The second problem is that the search technique in these methods is

not suf�ciently powerful. In these methods, the GP evolutio nary search

has typically been used as the sole search technique. While this search

is good at searching a wide area in the search space, the �tness heuristic

is used only indirectly on the individual genetic programs. For example,

the distance between a program's output and its desired outp ut is only

indirectly used by the application of a �tness to the program . The �tness

holds no direct information on how to improve the program.

Gradient-descent is a long established search technique, and is com-

monly used to train neural networks [37]. A property of the se arch is that

it can use the heuristic to effectively optimize the paramet ers of the net-

work. In our previous work, gradient-descent has been used t o optimize

the numeric terminals of genetic programs locally within ea ch generation

of a global GP evolutionary search [42]. While in this search the gradient-

descent was speci�cally targeted at only the numeric termin als, the results

indicate the potential of this form of hybrid search. Accord ingly, an in-

teresting area of investigation is developing new methods t o apply the

hybrid evolutionary and gradient-descent search within GP .

1.1 Goals

This thesis investigates a novel approach to multiclass object classi�cation

in Genetic Programming (GP), with the goal of improving clas si�cation

performance over the basic standard GP approach.

This approach will consider two technique aspects. One is th e program

classi�cation strategy which converts the output of a genet ic program for
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an object input into a class label, and the other is search algorithms in

the evolutionary process. To examine the new methods, a sequence of

multiclass object classi�cation tasks of varying dif�cult y will be used as

the test bed.

Speci�cally, this thesis seeks to investigate the followin g research ques-

tions/hypotheses.

1.1.1 Research Questions

1. Will a new GP method with a probabilistic classi�cation st rategy

outperform the basic GP method on a sequence of multiclass ob -

ject classi�cation problems? (In this approach, each progr am still

solves the entire multiclass problem)

This research question is broken up in this thesis to the foll owing

�ner research questions, which are answered in chapter 5:

– How can a probabilistic model be developed for the output dis -

tribution of a program on training data, allowing the classe s to

be distinguished?

– How can the �tness function be constructed using the proba-

bilistic model?

– How can the classi�cation accuracy be calculated using the p rob-

abilistic model?

– Will the method achieve better performance than the basic ap -

proach on a sequence of multiclass object classi�cation prob-

lems?

2. Can a new Communal Binary Decomposition (CBD) method im-

prove the object classi�cation performance over the basic a pproach

on the same problems?

This research question is broken up in this thesis to the foll owing

�ner research questions, which are answered in chapter 6:
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– How can a new �tness function be constructed, enabling CBD

to evolve programs spread across many subtasks in one popu-

lation?

– How can programs, each solving a particular subtask, be com-

bined to solve the wider multiclass classi�cation task?

– Will CBD have better performance than the basic approach on

the same problems?

– Will CBD have better performance than a previous binary de-

composition method on the same problems?

3. Can weights be introduced into GP programs, and be automat i-

cally learned by gradient-descent locally within each gene ration in

evolution leading to an improvement of classi�cation perfo rmance

on the same problems over the basic approach?

This research question is broken up in this thesis to the foll owing

�ner research questions, which are answered in chapter 7:

– How can weights be added to the links of evolved programs,

and be ef�ciently learned through gradient-descent?

– Will a hybrid GP search with gradient-descent search of weig hts

outperform the basic approach over the same problems?

– Will a hybrid GP search with gradient-descent search of weig hts

outperform gradient-descent search of numeric terminals o ver

the same problems?

4. Can changes in program �tness in a GP system be made solely b y

gradient-descent, while still allowing a search over all pr ograms,

leading to an improvement of classi�cation performance on t he

same problems over the basic approach?

This research question is broken up in this thesis to the foll owing

�ner research questions, which are answered in chapter 8:
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– How can inclusion factors and modi�ed genetic operators be

developed, ensuring that each child program's �tness is the same

as one of its parents' �tnesses?

– Will the continuous GP search outperform the basic approach

over the same problems?

– Will a hybrid GP search with gradient-descent search of incl u-

sion factors, with standard genetic operators, outperform the

basic approach over the same problems?

1.2 Contributions

This thesis has made the following major contributions.

1. This thesis has shown how to use a probabilistic model of a pro -

gram's output distribution to form the classi�cation strat egy and

construct the �tness function in genetic programming for mu lticlass

classi�cation.

Instead of searching for multiple thresholds which divide p rogram

output space into regions for different classes, this metho d uses nor-

mal (Gaussian) distributions to model the output distribut ions of the

program on the classes. The model is then used in the �tness fu nc-

tion, and for predicting the class of an unseen test example. Two

�tness measures, overlap area and separation distance, have been

developed. The results indicate that this new approach perf orms

better than the basic approach, in terms of both training tim e and

�nal classi�cation accuracy.

Part of the work has been published in:

Will Smart and Mengjie Zhang. Probability Based Genetic Pro-

gramming for Multiclass Object Classi�cation. In Proceedings

of 8th Paci�c Rim International Conference on Arti�cial Intelligence.
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Lecture Notes in Arti�cial Intelligence,Vol 3157. Pages 251-261.

August 2004, Springer.

2. This thesis has shown how, when a multiclass classi�cation t ask is

decomposed into a number of component binary classi�cation sub-

tasks between each pair of classes, programs can be evolved to solve

all subtasks in a single evolutionary run, with each program only re-

quired to solve a single subtask. This work also shows how to c om-

bine programs that can solve the binary subtasks into a multi class

classi�er.

In this “divide-and-conquer” technique, instead of dividi ng the mul-

ticlass task into a small number of subtasks, and then solvin g them in

separate evolutionary runs, the task is divided into a large number

of subtasks and all are solved in one evolutionary run. The �t ness

function ensures each program is encouraged to do well at any sin-

gle subtask, and is rewarded for doing the subtask better tha n other

programs. A group of expert programsis assembled during evolu-

tion, with one per subtask, and these are combined mathemati cally

into a multiclass classi�er. Results indicate that this new approach

signi�cantly outperforms the basic approach.

Part of the work has been published in:

Will Smart and Mengjie Zhang. Using Genetic Programming for

Multiclass Classi�cation by Simultaneously Solving Compone nt

Binary Classi�cation Problems. In Proceedings of 8th European

Conference on Genetic Programming. Lecture Notes in ComputerSci-

ence,Vol 3447. Pages 227-239. March 2005, Springer.

3. This thesis has shown how numeric weights can be introduced i nto

genetic programs, and be optimized through gradient-desce nt within

each generation of the evolution in GP.

Using this approach, weights were added to all links between two
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nodes in the GP programs, and acted as multipliers for values pass-

ing through the links. In a way similar to neural networks, th e weights

were optimized using gradient-descent, which was applied t o all

programs once per generation. The global evolutionary search was

performed the same as in the basic approach. This new method

performed signi�cantly better than the basic approach, and slightly

better, on some data sets, than the previous technique of applying

gradient-descent to numeric terminals only.

4. This thesis has shown how to make changes in program �tness fu lly

continuous during a GP search, while still allowing a search over all

programs.

In this method, gradient-descent is applied to inclusion factorsat-

tached to the nodes of the programs. The inclusion factors determine

the level of inclusion for different parts of the program, wi th a value

of zero indicating the part is not included at all in the progr am's cal-

culations. New genetic operators were created which do not a ffect

the program output from parent to child, by using inclusion f actors

with values of zero. Two forms of genetic operator were forme d:

static genetic operatorswhich replaced the standard genetic operators,

and on-zero operators.

Part of the work has been published in:

Will Smart and Mengjie Zhang. Continuously Evolving Pro-

grams in Genetic Programming Using Gradient Descent. In Pro-

ceedings of 2004 Asia-Paci�c Workshop on Genetic Programming.De-

cember 2004.

1.3 Thesis Structure

The remainder of this thesis starts with a survey of relevant literature in

chapter 2.
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Chapter 3 contains a description of the data sets used.

A description of the basic approach to GP for classi�cation t asks is in

chapter 4.

The �rst of the contributions follows in chapter 5 where the p robabilis-

tic approach of modeling program output distributions is de scribed and

compared empirically with previous approaches.

In chapter 6 the new method of decomposing a multiclass classi�cation

task into many binary classi�cation subtasks, and solving t hem all in one

evolution is described and compared to a previous approach.

In chapter 7 gradient-descent is applied to weights attache d to node

links in programs.

In chapter 8 a new method is used to make all movement of progra ms

through search space continuous.

Finally, in chapter 9 the thesis conclusions are given, and possible fu-

ture directions given.
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Chapter 2

Literature Survey

This chapter reviews the research areas that inspired and support the work

in this thesis. In the �rst part of this chapter, we give a revi ew of ma-

chine learning, neural networks, evolutionary algorithms and �nally ge-

netic programming. Then we review the problem domain of obje ct clas-

si�cation. Finally, we give a survey of previous work relate d to genetic

programming for multiclass classi�cation.

2.1 Overview of Machine Learning

In this thesis, an evolutionary algorithm is used to solve mu lticlass object

classi�cation problems, which is an application of machine learning.

One might expect that any intelligent machine would possess traits

such as learning from mistakes, and learning to �nd reward; t hus one

might also expect that the ability to learn is essential to in telligence. Ma-

chine learning is a branch of arti�cial intelligence to auto matically im-

prove algorithms learning from experience [29].

In machine-learning, the general goal is to �nd some implici t knowledge

in a set of data. Various learning strategies are used, depending on the data

used for training the algorithm.

11
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2.1.1 Learning Strategies

Some learning strategies include: supervised, reinforcement, unsupervised,

and hybrid.

Supervised Learning Strategy

In supervised learning, the system is provided with the corr ect answer for

each training example. The task of the system is to learn the relationship

between the input examples, and the answers.

For example, a system could be shown a number of images of faces,

each with a name. The system could then be shown a different im age of

one of the faces, and would output the name of the face.

Reinforcement Learning Strategy

In reinforcement learning, the system is provided with hint s toward the

correct answers, but not the exact answers. The aim of the system is to use

the hints over time, which point toward the correct answers o r actions.

For example, an elevator could be given a reward each time it correctly

predicts which �oor to go to.

Unsupervised Learning Strategy

In unsupervised learning, the system is not provided with an y answers,

or correct outputs. The learning process usually aims to �nd patterns and

correlations in the data.

For example, a shop could record the items that people buy; a l earn-

ing system could then �nd correlations between different it ems that are

bought together.

Hybrid Learning Strategy

Hybrid learning involves a mixture of the previous strategi es.
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In this thesis we used supervised learning.

2.1.2 Data Sets

In order to train and test a machine learning method, it is nor mally applied

to a data set, which has many instances of the task to which the method

will be applied. For example, an object classi�cation data s et will have

many objects, each with a class label.

Training, Test and Validation Sets

In machine learning, the aim is often to evaluate how good the learning

method is compared to previous methods. In this case, only a p ortion of

the entire data set, called the training set, is used to train the algorithm.

The rest of the data set, called thetest set, is used to evaluate how good the

method is on unseen data (data it wasn't trained on).

The training set may be further divided into a training and a v alida-

tion part, in order to control over-�tting . As training progresses, a learning

algorithm will �t the data in the training set increasingly w ell. At some

stage, the ability of the algorithm to generalize to the test set may suffer,

in what is termed over-�tting or over-training.

The purpose of the validation set is to control over-�tting. The perfor-

mance of the learning method on the validation set is used as a barometer

for the method's performance on the test set.

2.1.3 Cross-Validation

Cross-Validation [54] is a common method to increase the tra ining set size

of a data set, while still having an adequate test set size. For N -fold cross-

validation the data set is partitioned into N separate, equal-sized groups.

Training occurs N times, with each using a different group as the test set,
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and the other N � 1 groups as the training set. The performance of the

system is then the average performance of theN trainings.

2.1.4 Main Learning Paradigms

There are many forms of machine learning; in the following, f our main

paradigms are described:

� Evolutionary Paradigm

Using evolutionary search, a large number of individuals are kept in

a population. Every time period, a new population is made fro m

the best individuals of the previous population, after they have been

altered by operators.

Evolutionary search is modeled on Darwinian natural select ion. Evo-

lutionary Algorithms (EAs) such as Genetic Algorithms (GAs ) [14]

and Genetic Programming (GP) [22] use evolutionary search. The

exact solution representation depends on the task, and many differ-

ent representations are possible.

� Connectionist Paradigm

In connectionist methods of machine learning a solution is r epre-

sented by a network of nodes, normally with a predetermined s truc-

ture. The values of parameters attached to the network are opti-

mized through a learning process, until inputing the correc t values

into the network produces the correct output.

Connectionist learning systems include Neural Networks (N Ns) [37]

or Parallel Distributed Processing Systems (PDPs) [38]. The networks

of NNs were based on mathematical models of groups of neurons in

nerve tissue.

� Case-Based Learning Paradigm
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In case-based learning algorithms, the training data is com pared di-

rectly with test data, using �exible matching mechanisms. C ase-

based learning algorithms include algorithms such as nearest neigh-

bour.

� Inductive Learning Paradigm

Induction learning algorithms derive a rule from the traini ng data,

and use this on the test data directly. These include decision trees

[33] and similar knowledge structures.

In this thesis the connectionist and evolutionary paradigm s are used.

2.2 Overview of Neural Networks

Neural networks (NNs) describes a method in connectionist m achine learn-

ing. In NNs, the aim is to �nd values of parameters attached to a network

of nodes that allow the correct output when a set of features i s input.

2.2.1 Network Structure

In many systems, a neural network is a network of nodes that is formed

into a Directed Acyclic Graph (DAG), like that in �gure 2.1. T he nodes
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of the network are arranged in layers. The bottom layer conta ins the in-

put nodes, the middle layers contain the hidden nodes, and th e top layer

contains the output nodes. Each edge of the graph, called a link, carries

a weight, which is a real value. Each hidden or output node in the graph

carries a bias, which is a real value. There is one input node per feature

in the task. The number of output nodes re�ects the number of d esired

outputs.

2.2.2 Network Computations

The aim of network training is to �nd a set of weight values tha t allows

correct output when a feature-vector is input.

Each node outputs a value to the nodes above it that are connected to

it by links. Each input node outputs the value of a feature. Th e output

of each node in the output and hidden layers in the network is c omputed

from the values of the nodes in lower layers, according to equ ation 2.1 [17].

oi = f (
X

j

(wij vj ) + bi ) (2.1)

where the output of the hidden or output node i is oi . The bias of node i is

bi . f is a transfer function such as a sigmoid. The sum covers all nodes j

that input to node i . The weight between nodes i and j is wij .

The output of the network is computed by computing the values of

each node from the input nodes up.

2.2.3 Error Propagation Learning Method

The common learning method for NNs is called the error propagation algo-

rithm [37]. Error propagation uses the gradient-descent search method.
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Gradient-Descent

When using gradient-descent, the gradient of a cost functio n is used to

determine the relative changes to parameters in order to mov e to a lower

cost. The lower cost means better performance at the task, and is often the

Total Sum-Squared error (TSS) or Mean Squared Error (MSE).

The gradient vector includes the @C
@wij

for all weights wij and a cost of C.

The values of the weights can be altered proportionally to th e components

of the vector, leading to a lowering of the cost.

Error-Propagation

The error propagation algorithm moves from the weights of th e output

layer down to the weights of the input layer. We can �nd @C
@oi

for output oi

of any output node i . We can also �nd @oi
@oj

and @oi
@wij

for any node i receiving

input from node j via weight wij , Using the chain rule, we can combine

these derivatives into @C
@wij

for any weight wij , which is what we require.

In [38], Rummelhart et alderived formulae for using error propagation

in NNs. The change in a weight value wij is dependent on a learning rate

� , an error value � j at the receiving node, and the output of the sending

node oi . The formula is shown in equation 2.2.

� wj i = �� j oi (2.2)

The error � j is calculated using equation 2.3 for output nodes, and

equation 2.4 for hidden nodes.

� j = ( t j � oj )f 0
j (netj ) (2.3)

� j = f 0
j (netj )

X

k

� kwkj (2.4)

where f 0
j (netj ) is the derivative of the transfer function mapping the total

input to a node to an output value. t j is the ideal value of an output node.
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2.3 Overview of Evolutionary Computation

While its origins were in the 1950's [12, 13], Evolutionary C omputation

(EC) is recent as a recognized �eld. It is discussed here as a major con-

tributer to the Genetic Programming (GP) method which is the topic of

this thesis. This section seeks to review those areas of EC that are applica-

ble to GP.

2.3.1 Evolutionary Computation

Darwinian principles of natural selection form the primary inspiration for

EC [49].

Although EC covers a wide range of methods, the common steps u sing

EC are listed below:

� Initial Population of Individuals

The evolutionstarts with a collection, or population, of individuals.

Each individual is a single point in the search space, and rep resents

a potential solution to the problem. Often the initial popul ation is

comprised of randomly generated individuals.

� Selection of �t individuals

The �tness of individuals is evaluated at each time-step, or gener-

ation, during evolution. The �tness of an individual descri bes the

individual's quality as a solution to the problem. Fitter in dividuals

are selectedmore often, and contribute more to later generations.

� Generation of descendents

In each generation, a new population is generated; it is comp rised

of a stochastically sampled set of individuals from the prev ious gen-

eration, biased towards those individuals of better �tness , after they
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have been altered using various operators such as mutation and re-

combination. Some good-�tness individuals may also be copi ed di-

rectly into the new population in order to prevent the best �t ness

from decreasing.

Mutation is the random change of an individual to form a new in di-

vidual that bears similarity to the parent. Recombination i s the shar-

ing of information from two individuals, producing new indi viduals

that bear resemblance to both.

The process of generating a new population from the previous is it-

erated for some number of generations. The process ends when an in-

dividual is found that is considered �t enough, a maximum num ber of

generations occurs, or based on some other terminating criteria.

2.3.2 Aspects of EC

In order to apply EC to a problem, various aspects of the metho d need to

be addressed, which are discussed in the following sections.

Representation of Individuals

Each individual contains a possible solution to the problem , and as such

the representation used for individuals is vital to applyin g EC. Many rep-

resentations have been used, from bit-strings and vectors of real values to

more descriptive trees and graphs. The representation used must be de-

scriptive enough to contain a solution to the problem, and co ncise enough

to enable an ef�cient search. The representation used introduces a bias on

the exact mechanism of the evolutionary search. For example, the search

space of a �xed-length vector representation has a differen t shape to that

of a tree representation, and this leads to a different bias i n the evolution-

ary operators such as mutation.
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Individual Fitness

The �tness, a measure of the quality, of any individual must b e able to be

computed. For example, an effective �tness mechanism for cl assi�cation

is the accuracy of the individual on the training set.

Selection Mechanism

The �tter individuals should contribute more than poorer in dividuals to

later generations. This is achieved by the selection mechanism, which is

used whenever selecting an individual for use in a new popula tion.

Many selection methods could be used, including proportion al, rank,

and tournament [28].

� Proportional Selection

Proportional selection can be visualized as spinning a roul ette wheel.

The size of the segment on the wheel that applies to an individ ual is

proportional to its �tness. As such, the probability of an in dividual

being selected is proportional to its �tness.

� Rank Selection

When using rank selection, the rank of each individual is fou nd,

from �rst to last in the population. The probability of an ind ividual

being selected is based on a function of the rank of the invidi dual.

� Tournament Selection

When selecting an individual using tournament selection, t he indi-

vidual chosen is the one with the best �tness in a random group , of

a set size, from the population.

Producing a New Population

Three methods can be used to produce a new population based on the

individuals in the previous population: reproduction (dir ect copying of
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individuals), mutation and recombination.

Evolution Control Parameters

Some parameters must be set in order to use EC. These include the popu-

lation size, termination criteria, and the proportion of th e population com-

ing from each operator.

The parameters to evolution are often constant through evol ution; how-

ever, some methods have changed parameters such as population size and

mutation rate during evolution [25, 43].

2.3.3 Divisions in EC

Four main methods derived from EC are: genetic algorithms, e volutionary

strategies, evolutionary programming, and Genetic Progra mming (GP).

The �rst three are described in this section, and GP is descri bed in a sepa-

rate section.

Genetic Algorithms

Genetic Algorithms (GAs) is an EC method developed in 1975 by J. Hol-

land [18].

In GAs, the representation for solutions is typically a �xed length bit-

strings, or chromosomes. While GAs use mutation and reproduction, a

key distinguishing feature of GAs is the importance placed o n crossover,

which is used for recombination. Crossover involves exchan ging regions

of the parents' chromosomes to form the children.

Evolutionary Strategies and Evolutionary Programming

Evolutionary Strategies (ES) and Evolutionary Programmin g (EP) were

both created around 1964. Both use vectors of real values to represent

individuals. In ES the individuals are used directly as solu tions, in EP the
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individuals are interpreted as �nite-state machines. In bo th ES and EP,

mutation is often the most important evolutionary operator .

2.4 Overview of Genetic Programming

Genetic Programming (GP) is the method used in this thesis, and is a form

of evolutionary computation. GP was �rst proposed by John Ko za around

1989 [21, 22].

2.4.1 Program Representation

The main differences between GP and GAs are the representation of indi-

viduals, called programs in GP, and the subsequent changes to the muta-

tion and crossover operators. Several representations have been proposed

for GP.

Tree-Based GP

The most common, and original, representation for GP progra ms is as

trees, or LISP S-expressions; the tree-based representation and the LISP

S-expression representation are interchangeable.

A tree-based GP program is a single tree, an example of which is in

�gure 2.2. The internal nodes of the tree are functions. Each performs

some function on the values coming from lower child nodes, an d passes

the result to its parent immediately above. The leaf nodes ar e terminals,

which pass a value, such as a constant or feature value, to their parent

node. The output of the root node is the program output.

In the basic case, the values returned from nodes in a program are all

of the same type, often �oating-point numbers. In Strongly- Typed Genetic

Programming (STGP) [5] this is not the case, and there exist functions that

convert between types; an example is an if function that takes a boolean
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=3.2+(1.2*F1)

F1

*

+

Terminals

Functions

1.2

3.2 LISP S-expression:(+ 3.2 (* 1.2 F1))

Output

Figure 2.2: An example genetic program and its LISP S-expression.

and two �oating-point numbers and returns either �oating-p oint number

depending on the state of the boolean.

STGP allows for more natural use of some functions, such as condi-

tionals, but adds complexity to the sets of functions and ter minals used.

Linear GP

Programs in Linear Genetic Programming (LGP) [4, 6] are vari able length

sequences of instructions from an imperative programming l anguage. The

instructions, or operations, perform some function on registersand con-

stants, and assign the result to a register. For example, an operation could

be r0 = r1 + 2. Conditional branches (such as if (r1 < r 2)) cause the next

operation to be skipped.

In LGP, programs may contain redundant operations, these ar e called

non-effective, and can easily arise when, for example, a register is altered

that does not affect the output. The operations that do affec t the output are

called effective. Separating the operations into effective and non-effecti ve

can be done in linear time and this algorithm is performed bef ore program

execution.



24 CHAPTER 2. LITERATURE SURVEY

Grammar-based Representations

In Context-Free-Grammar Genetic Programming (CFG-GP) [55] program

tree structures are evolved, similarly to in tree-based GP. However, the

program trees evolved represent instances of a context-free-grammar (CFG).

While the programs are not themselves evaluatable, they may easily be

converted to the form of programs in tree-based GP for evalua tion. The

advantages of CFG-GP include:

� Closure. In tree-based GP, the functions and terminals used must

be chosen so that any combination of them can be evaluated. Due to

the use of grammars, CFG-GP controls the shape of the programtree,

and enforces that illegal combinations of functions and ter minals do

not occur.

� Bias. Bias is easily introduced to the grammar used, allowing onl y

those programs that are predicted to have better �tness. Thi s is harder

in tree-based GP.

Grammatical Evolution (GE) [30] is a process inspired by the way a

protein is generated from material in an organism's DNA. A va riable-

length string of integers is parsed according to a Backus-Naur Form gram-

mar (BNF), and forms an expression that may be evaluated.

De�nite Clause Translation Grammar Genetic Programming (D CTG-

GP) [35] evolves programs in the form of De�nite Clause Trans lation Gram-

mars (DCTGs). These grammars include not only the context-f ree infor-

mation of CFGs, but also context-sensitive information as t o the semantics

of the grammar. This allows more dif�cult legality checks to be placed

on a program than those of other systems, however these checks require

additional system components to enforce.

The tree-based method is the approach used in this thesis. In the fol-

lowing sections we describe the aspects of tree-based GP.
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2.4.2 Program Generation

The initial population of individuals in GP is commonly made up of ran-

domly generated individuals. For the basic approach, all fu nctions and

terminals return the same type, and so any function can take a ny function

or terminal as its children.

Generating a Single Program

Two methods may be used to generate a random tree or subtree: full or

grow [22].

� Full Method

Using the full program generation method, functions are ran domly

selected to be the nodes of the tree, starting at the root and moving

down the tree by �lling up layers. At a set depth, the tree is �n ished

by �tting terminals to all inputs of the lowest level functio ns.

� Grow Method

Using the grow program generation method, the nodes of the tr ee are

randomly selected as functions or terminals, starting at th e root and

moving down the tree by �lling up layers. This continues unti l there

are no leaf functions, or to a set depth; if the depth is reached, the

tree is �nished by �tting terminals to all inputs of the leaf f unctions.

Generating a Population of Programs

The initial population in GP is often made up of randomly gene rated pro-

grams. Although either of the full or grow program generatio n methods

could be used for all programs in the population, the populat ion is more

often comprised of a combination of full and grow programs.

� Half-and-half
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In the half-and-half method, half the population is formed f rom full

and half from grow.

� Ramped

Using the ramped method, the maximum tree depth is increased

from some minimum value to a maximum value; each value has an

equal proportion of generated programs.

A common method is the combination of all these techniques in ramped

half-and-half[22].

2.4.3 Genetic Operators

The genetic operators of GP are the same as in GAs: reproduction, muta-

tion and crossover.

Reproduction

To ensure that the �tness of programs in a population is never less than

that of previous generations, the reproduction, or elitism , operator is used.

This consists of simply copying the best few programs of a gen eration's

population directly to the next.

Mutation

In mutation, a single program is selected from the populatio n and copied

to a mating pool. A mutation point is chosen randomly, somewh ere in

the program, and the subtree below the mutation point is repl aced with a

new, randomly generated subtree. The new program is then cop ied into

the new population. This is pictured in �gure 2.3.

Mutation is used to ensure diversity of programs in the popul ation and

for introducing new genetic material.
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Figure 2.3: Mutation genetic operator.

Crossover

In crossover (or recombination), two programs are selected from the pop-

ulation, both are then copied to a mating pool. A crossover po int is ran-

domly chosen in each program, and the subtrees below the crossover points

are swapped. The two programs, with swapped subtrees, are th en copied

to the new population. This is pictured in �gure 2.4.
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Figure 2.4: Crossover genetic operator.

Crossover is used to allow mixing of material from two progra ms into

one program.
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2.4.4 Current Issues in Genetic Programming

Although a recent technique, GP has proven to be remarkably � exible in

application. However, as with other machine learning metho ds, GP has

some limitations. The search space of programs used by GP is often huge,

and learning can often be slower than other methods. As such, work is be-

ing done on Parallel Genetic Programming (PGP) [11, 52], where evolution

progresses on multiple processors simultaneously. PGP has emerged in

two main varieties: island, where semi-separate populations called deems

are used, and grid or cellular, where the individuals in the population are

arranged spatially in a grid.

The representation of individuals in GP has received much at tention

in recent research, as the standard representations are notapplicable to

all problems. Some new representations include: linear pro grams [4, 6],

Finite State Transducers (FSTs) [26], and cellular automata [40].

One problem that may occur in a GP system is bloat, or code growth,

where the size of programs tends to increase as evolution progresses. Bloat

can make the search harder for the GP system, as the larger programs in-

crease the size of the search space, and size limits may be reached, imped-

ing further search. Much recent research has been performed to determine

the cause of bloat [7, 47, 48] and reduce it [32, 27].

The use of other search techniques, in addition to the evolut ionary

search in GP, has been the subject of recent research. Such approaches

include: the use of a global GP search with a local gradient-d escent search

of constants or numeric terminals [42, 53], the use of a global meta-search

with a local GP search [23], and using an evolutionary search to evolve

Neural Networks (NNs) [8, 57, 58].
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2.5 Overview of Object Classi�cation

2.5.1 Object Classi�cation

Object classi�cation is the problem domain of this thesis, a nd is a super-

vised machine learning problem. The training data for the cl assi�er in-

cludes vectors of features, with each having a target class label. The test

data are feature-vectors from the same source. The class labels of the test

set are known, but are not used for training; the test data is unseendata,

which is used to evaluate the performance of the system.

The aim of the classi�er is to be able to correctly identify th e class labels

of the test data, based on knowledge learned from the trainin g data.

2.5.2 Aspects of Object Classi�cation

Object classi�cation has a number of important aspects in it s application,

such as the number of classes, level of features, and performance evalua-

tion.

Number of Classes

Binary classi�cation problems are those that distinguish o nly two classes.

In contrast, multiclass classi�ers must distinguish betwe en more than two

classes. The number of classes that a classi�er is expected to distinguish

is partly problem-dependent. However, problems with large numbers of

classes may safely be broken into multiple problems that dis tinguish be-

tween subsets of the total set of classes [2].

Level of Features

The feature-vectors in object classi�cation are computed f rom objects in

images. As the object is an image, many different types of feature can be
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used, from direct pixel values through to very domain-speci �c high-level

features.

� Pixel-level features

The lowest level feature is the pixel value, used directly as a features

[46]. Due to the fact that all images are made up of pixels, thi s is

the most domain-independent form of feature. When using pix el

features, the feature-vector will typically be very large, as even the

smallest image typically has in excess of 100 pixels.

� High-level features

Some approaches use very high-level features [50]. There are many

high-level features that are able to be derived from an image , and

some are very descriptive of the contents of the image. Howev er,

these features may be domain-dependent, and certain domain knowl-

edge is required in their use. For example, some high-level f ea-

tures that can be used in texture classi�cation are the Grey L evel

Co-occurrence Matrix (GLCM) features.

� Pixel-statistic features

Recently, statistics from regions of pixels in the object im ages have

been used as the features [24, 62, 59]. These statistics, such as vari-

ance and mean, aim to reduce the number of required features, while

still being domain-independent. Pixel-statistics may als o be made

invariant under rotation or translation.

Performance Evaluation

Typically, the method for evaluating the quality of a classi �er is to compute

its accuracy on a large number of objects. The accuracy of a classi�er is the

proportion of object classes that it predicts correctly in a set of data. As

such, 100% is the perfect accuracy, and 0% the worst.
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Other measures of the performance of the classi�er include T otal Sum-

Squared error (TSS) and Mean Squared Error (MSE).

2.5.3 Current Issues in Object Classi�cation

Some current issues to do with classi�cation include:

� There are a number of emerging applications. Due to the incre asing

ability of computers, classi�cation tasks are emerging fro m many ar-

eas such as bioinformatics, computer vision, the Internet, and eco-

nomic forecasts. A large number of new data sets have been made

available for processing. Much of this data requires classi �ers, for ex-

ample whether to buy or sell stocks in a company, given its �na ncial

�gures.

� The representation of classi�ers is important. There are ma ny struc-

tures that can classify, such as decision trees, neural networks and

genetic programs; which is best is the subject of much research.

2.6 Related Work to GP for Image Recognition

Tasks

This section presents a review of the most relevant literatu re where GP

was applied to image object recognition tasks.

The tasks of GP where images are concerned mainly include classi�-

cation, detection, localization, and image processing. Localization is the

process of �nding an object in an image; detection can be thou ght of as

combining localization and classi�cation.
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2.6.1 Localization and Detection

In [51], Tackett located targets in images using binary tree classi�ers, NNs,

and GP. The GP method was found best for performance and compu ta-

tional ef�ciency. A large data set was used, and pixel level f eatures out-

performed pixel-statistics, possibly due to the segmentat ion artifacts, and

lower resolution, of the pixel-statistics.

In [61], Zhang and Ciesielski used GP and NNs to detect objects in

a range of data sets. A small window was passed over all areas of the

images, with program �tness using both detection rate and fa lse alarm

rate. While GP results are better than those of NNs, many erro rs are still

found with the method on the more dif�cult problems.

In [20], Johnson used GP to evolve hand detectors for silhouette im-

ages. Results were promising, with the GP evolved detectors outperform-

ing hand-coded detectors.

In [56], Winkeler et al. used GP to detect faces. The GP system was

trained on pixel-statistics obtained from face and non-fac e regions in the

images. Results were mixed, and an issue was found in trying t o indicate

training set non-objects.

Remote Sensing

In [9], Daida et al.used a method including GP to extract ridge and rubble

locations in Synthetic Aperture Radar (SAR) images of multi -year sea ice.

Excellent results were produced, good enough to detect gross deformation

patterns between images taken at different times.

In [19], Howard et al. used methods, including GP, to detect ships in

SAR images. GP compared favourably against rival methods; t he low

complexity, and high ef�ciency, of the detectors evolved wa s seen as an

advantage over methods such as NNs.
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2.6.2 Classi�cation

In [36], Rosset al. used GP with high-level features to produce classi�ers,

which identi�ed minerals in hyperstectral images. Each cla ssi�er deter-

mined existence of a particular mineral. The approach gaine d good per-

formance, especially for minerals with high re�ectance. Th e requirement

for a good training set was noted.

Song classi�ed textures using pixel features in [45]. Two ap proaches

were used: one approach extracted texture features, and another used

pixel-level features. On the simple tasks attempted, the GP method faired

well against another method (C4.5).

In [1], Agnelli et al. used GP to classify images of documents into the

categories of picture, or text. The results were good. The resultant pro-

grams were thoroughly examined, and found to carry fairly si mple rules

in solving the task.

In [3], Andre used GP to generate rules to identify images of t he let-

ter `C'. The programs produced could perfectly classify exa mples in the

trained font, but did not generalize to other fonts as well as hand coded

classi�ers. The understandability of the produced rules, a nd their ability

to be translated into the programming language C, were key po ints in the

design.

2.6.3 Image Processing

In [15], Harris et al. evolved edge detectors for 1D signals using GP. Sev-

eral detectors were found that outperformed Canny's approx imation to

the optimal detector.

In [31], Poli gained impressive results using GP to segment M agnetic

Resonance (MR) medical images. GP was compared to NNs, and pro-

duced much neater segmentation, although the computationa lly expen-

sive training was an issue.

In [34], Roberts et al. used GP to evolve programs that can determine
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the orientation of an object in linescan imagery. The novel m ethod pro-

duced very robust detectors.

2.7 Related Work to GP for multiclass Object Clas-

si�cation

A small amount of work has been done in GP on classifying objec ts into

more than two classes.

In [24], Loveard applies GP to several binary and multiclass medical

data sets. Various classi�cation strategies are used for converting the out-

put of a program into a class value. The methods of binary deco mposition,

static range selection, dynamic range selection, class enumeration and ev-

idence accumulation are described. Dynamic range selection was found

to be the method with the best mix of speed and accuracy.

In [41], Smart et al. use GP on multiclass object classi�cation prob-

lems. Two classi�cation strategies, centred dynamic range selection and

slotted dynamic range selection, are introduced. The new st rategies out-

performed the more basic static range selection on more dif� cult problems

with many classes.

In [44], Smith et al. use GP and C4.5 to classify patterns in several bi-

nary and multiclass medical data sets. GP was used to evolve high-level

features, which were then passed to a C4.5 classi�er. The method was

found to signi�cantly improve the accuracy of the C4.5 class i�er, com-

pared to its use alone.

2.8 Summary and Discussion

This chapter presents a review of the �elds that are relevant to the work in

this thesis, including: machine learning, evolutionary co mputing, neural

networks, genetic programming and classi�cation. The rela ted work of
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genetic programming for image recognition tasks is also dis cussed.

A summary of the current state in these areas is as follows:

� GP has emerged as a rapidly growing method that has performed

favorably against rival methods in a number of tasks: these i nclude

classi�cation, and image related tasks of detection, classi�cation, and

image processing.

� Very little work has been done to apply GP to multiclass objec t clas-

si�cation problems, and the problem of converting program r esults

to class labels (that of classi�cation strategies) is unsolved.

� A potentially large research area of hybrid search methods, combin-

ing the GP evolutionary search with other search schemes, has had

little attention.

This thesis addresses the areas of classi�cation strategies, and use of

gradient-descent search in GP.
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Chapter 3

Data Sets

The methods within this thesis are applied to multiclass obj ect classi�ca-

tion tasks. This chapter describes the data sets comprised of the objects to

be classi�ed.

Three sets of images with objects were used. For each set of images a

number of compound images, each with many objects, were acqu ired ei-

ther through rendering or scanning. The objects in the image s were man-

ually located and cut out, forming a great number of small cutout images,

each with a single, centred object. The classi�cation task is to determine

the class of these objects, when given only the cutout images.

The three sets of images were formed into four multiclass tas ks, or data

sets.

3.1 Image Content

Three sets of images were used:

� Shapes: Computer generated shapes drawn with a Gaussian �lter.

� Coins: New Zealand ten and �ve cent coins.

� Faces:Faces of four people.
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3.1.1 Shapes

Example `Shapes' images are shown in �gure 3.1, along with an example

of each of the three classes.

1/24 2/24

Class 1 Class 2 Class 3

Figure 3.1: Shape images and classes.

The images for the `Shapes' images are computer generated. Each im-

age contains ten each of black circles, dark-grey squares, and light-grey

circles. The objects are drawn using a Gaussian �lter against a speckled

white background.

The object of each class in this data set are well separated into different

intensity ranges. As such, the classi�cation task of distin guishing between

the classes is expected to be easy.

3.1.2 Coins

Example `Coins' images are shown in �gure 3.2, along with an e xample of

each of the �ve classes.

The `Coins' images are comprised of scanned images of New Zealand



3.1. IMAGE CONTENT 39

10c coins 10c and 5c coins

Class 1 Class 2 Class 3 Class 4 Class 5

Figure 3.2: Coin images and classes.

coins. The �ve classes in the Coins images are: the background, �ve-cent

tails, �ve-cent heads, ten-cent tails, and ten-cent heads.

The coins featured in this set of images are less well de�ned t han the

objects of the `Shapes' images. The coins are featured against a back-

ground of similar intensity to the coins themselves, and the differences

between the classes of coins are less visible than the clear distinction be-

tween the classes of the `Shapes' images. As such, the coins classi�cation

task is expected to be harder than that of the `Shapes' images.

The coins are still clearly man-made objects. The only changes made to

images of a class of coin, from one object to the next, were theorientation

and background. So the coin images of each class would look the same if

segmented and rotated upright.
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3.1.3 Faces

The �nal set of images were obtained from the ORL face databas e [39]

from which only the �rst four classes were used. The entire se t of images

is shown in �gure 3.3.

Figure 3.3: Face data set images.

The four classes relate to four people, each of whom has ten cutouts.

The classi�cation problem is made harder by varying orienta tion, expres-

sions (smiling, open-mouth, etc.), and accessories (glasses on, glasses off)

of the people between images. Also, some images feature minor changes

to lighting.

This task features complex objects with little difference b etween the

objects of different classes, and some wide variability wit hin objects of the

same class. The faces do not have the same similarity betweenobjects of

the same class as the previous sets of images. As such, this isexpected to

be a more dif�cult classi�cation task than that of the previo us two sets of

images.
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3.2 Data Sets

The three sets of images were made into four data sets for experiments:

� Four-class Shapes:All four classes of the Shapes images.

Because the intensities of the objects are well separated into classes,

we expect that this is a relatively easy classi�cation task.

� Three-class Coins: The �rst three classes of the Coins images.

This classi�cation task uses the Coins set of images, which is ex-

pected to be more dif�cult to classify than the set of Shape im ages.

� Five-class Coins: All �ve classes of the Coins images.

This classi�cation task is expected to be harder than the pre vious

two, both because of the noisy and dif�cult to discern source of the

objects, and because of the larger number of classes.

� Four-class Faces:All four classes of the Faces images.

Of the four data sets used, the Faces data set is expected to bethe

hardest due to the complexity of the objects.

Table 3.1 lists the number and size of cutouts in each of the data sets.

Table 3.1: Number and size of data set cutouts.

Data set Classes Cutouts of each class Size of cutouts

Shapes 3 240/240/240 16� 16

Three-Class Coins 3 192/192/192 70� 70

Five-Class Coins 5 96/96/96/96/96 70� 70

Faces 4 10/10/10/10 90� 110
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3.3 Training, Test and Validation Sets

The objects of each data set were split equally into three sets (except for

the Faces data set):

� Training set: the evolutionary process may use the class labels of this

set in order to train, learning the relationship between cla ss labels

and features.

� Test set: the evolutionary process may use the class labels in this set

only once per evolution, and only in order to �nd classi�er ac curacy.

� Validation set: the evolutionary process may use the class labels of

this set; however it is kept at arms length. This set is used to �nd the

generation at which to calculate the test set accuracy, which should

be done only once.

The validation set accuracy is calculated once per generation. At the

end of the run the generation of best such accuracy is the generation in

which the test set accuracy is measured. This mechanism controls over-

�tting , where the accuracy of the current best classi�er on unseen patterns

may fall in later generations. If over-�tting occurs, the �n al test accuracy

would be worse than some previous generation's test accuracy, but the

same would be true of the validation set accuracy. Taking the test set accu-

racy at generation of best validation set accuracyis a means to report the best

possible test set accuracy for the run, while only (if retros pectively) taking

the test set accuracy once.

Due to the small number of objects of each class in the Faces data set,

ten-fold cross-validation was used in all Faces data set experiments. This

precluded the use of a validation set as used elsewhere. The test set was

substituted for the validation set in experiments using the Faces data set.

This means that, where a result is quoted at the generation of best validation

set accuracyand the result uses the Faces data set, the result is in fact asat

the generation of best test set accuracy.



Chapter 4

Basic Approach

This chapter will describe the basic methodology used when t he standard

GP approach is applied to multiclass object classi�cation p roblems.

4.1 Introduction

In this thesis, new methods using GP for multiclass object cl assi�cation

problems are described. Often the goal of a new method is to im prove

the performance of the classi�cation system, against a basic approach. This

chapter describes this basic approach, which is a system that uses GP in a

standard way to solve the multiclass classi�cation problem .

In later chapters, the performances of new methods will be co mpared

to the baseline performances in this chapter; in so doing, we hope to eval-

uate how much the new methods improve performance over the st andard

approach.

4.1.1 Goals

This chapter aims to achieve the following goals:

1. To de�ne a standard approach to GP for multiclass object clas si�ca-

tion.
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2. To serve as a baseline for comparison to new methods, enabling mea-

surement of the improvement in performance of a new method ov er

standard GP.

4.2 Primitive Sets

4.2.1 Features Used

In this approach, four simple pixel statistic features were extracted from

the object cutouts. These formed the feature vectors used asinput to the

programs.

The pixel statistic features come from two regions in the cut outs (whole

cutout and centre quarter) and are of two types (mean intensi ty and standard-

deviation of intensity). Figure 4.1 shows the regions used a nd table 4.1 lists

the combinations used as the four features.

w/4

w

A B

CD

E F

GH
w/2

h/2 h

h/4

Figure 4.1: Regions used for cutouts.

4.2.2 Terminal Set

The terminals used in the evolved programs include numeric terminalsand

feature terminals.
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Table 4.1: List of features.

Feature number Region in �gure 4.1 Pixel statistic type

1 Area inside ABCD Mean intensity

2 Area inside ABCD Std. dev. of intensity

3 Area inside EFGH Mean intensity

4 Area inside EFGH Std. dev. of intensity

Feature Terminals

Each feature terminal returns one of the features described previously. For

a particular feature terminal node, the number of the featur e returned is

selected randomly, and does not change during evolution.

Numeric Terminals

Each numeric terminal returns a randomly assigned constant value. The

value is sampled from a standard normal distribution (mean o f zero, stan-

dard deviation of one). For a particular numeric terminal no de, the value

returned does not change during evolution.

4.2.3 Function Set

In the basic approach, simple arithmetic operators were used as functions,

along with conditional operators.

The functions are displayed in table 4.2. In the table, ai indicates the

value of the i 'th argument to the function.

The exact functions used depend on the method that is being compared

to the new method. To enable a fair comparison with a new metho d, when

comparing it to the basic approach, both approaches use the same function

set.
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Table 4.2: Function set.

Function Symbol Num. args. Formula

Addition + 2 a1 + a2

Subtraction � 2 a1 � a2

Negation neg 1 � a1

Multiplication � 2 a1a2

Protected % 2 a1
a2

if a2 6= 0

Division 0 if a2 = 0

Protected inv 1 a� 1
1 if a2 6= 0

Inversion 0 if a1 = 0

Soft sif 3 a2
1+ e2a1 + a3

1+ e� 2a1

Conditional

Conditional if 3 a2 if a1 < 0

a3 if a1 � 0

4.3 Fitness Function

In the basic approach, PCM is used as the classi�cation strategy, and accu-

racy as the �tness function.

4.3.1 Program Classi�cation Map

A simple and widely used classi�cation strategy is Program C lassi�cation

Map (PCM), developed in [60]. A variation of PCM has been call ed Static

Range Selection (SRS).

The space of the �oating-point program output is divided int o a set

of regions. The whole space is covered, and no part of the space is cov-

ered twice. There are exactly the same number of regions as classes in the

classi�cation problem, with each region mapped to a differe nt class.

The regions are situated between a series of thresholds,t1::tN � 1 where
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N is the number of classes. The rule that t i < t i +1 is enforced for all 1 � i <

N � 1. The �rst region includes the space [ �1 ,t1) for class one. The �nal

region includes the space [tN � 1,1 ] for class N . All other regions occupy

the space [t i � 1,t i ) for class i .

Any point on the real number line is unambiguously associate d with

a region, and with it a class label. A program that produces an output,

when given a feature-vector as input, can therefore associate the output

with a single class label. Thus, the feature-vector is classi�edas the class

label associated with the output.

An example map with four classes is shown in �gure 4.2.

4

-1 10

Class 1 2 3

Figure 4.2: An example program classi�cation map for four cl asses.

In the �gure the thresholds between the regions are laid out o n the real

number line at a spacing of one unit, between a negative numbe r and the

same number as a positive. This is the class layout used in basic approach

experiments.

4.3.2 Accuracy Fitness Function

The �tness function used is training set accuracy, which is t he fraction of

training set objects correctly classi�ed by an evolved prog ram. As such,

zero is the worst possible �tness, and one the best possible � tness for a

program.
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4.4 Parameters and Termination Criteria

Table 4.3 lists the parameters used inside the GP engine for all experi-

ments.

Table 4.3: Common GP Parameters for Experiments.

Parameter Kinds Parameter Names Values

Search population-size 250 or 500

initial-max-depth 4

max-depth 7

Parameters max-generations 50 or 100

reproduction-rate 10%

Genetic crossover-rate 60%

mutation-rate 30%

Parameters crossover-term 15%

crossover-func 85%

Programs were created using ramped-half-and-half program genera-

tion.

4.4.1 Termination Criteria

All basic approach experiments were run with early-stoppin g; the train-

ing was stopped once an individual was produced with the idea l �tness

(1.0). In case this had not happened before the maximum number of gen-

erations, training was stopped at that point.

4.4.2 Performance Evaluation

All experiments were run �fty times, with no change in parame ters except

the random seed used. The results shown are the mean (and standard
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deviation) over the �fty runs. The random seed contributes t o all random

processes in evolution, such as program generation and selection. Using

the mean over �fty runs is an attempt to remove the effect of th ese random

processes from the results, so that the results focus only on the speci�c

performance of the method used for evolution.

Results Displayed

The results that are displayed include the following:

� Total Evaluations: The number of evaluations of nodes performed

in the whole run of evolution.

� Final Generation: The number of generations in the whole run of

evolution.

� Run Time: The total time per evolutionary run.

� Final Test Accuracy: The accuracy of the run's �nal generation clas-

si�er.

� Evaluations at Best Validation Accuracy: The number of evalua-

tions of nodes performed in the run up until the generation th at had

the best validation set accuracy.

� Generations at Best Validation Accuracy: The run's generation of

best validation set accuracy.

� Time at Best Validation Accuracy: The time taken in the run to ob-

tain the best validation set accuracy.

� Test Accuracy at Best Validation Accuracy: The test accuracy at the

generation of best validation set accuracy.

For presentation convenience, a result that is “at the best validation set

accuracy” will be referred to as “at convergence”.
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4.5 Experimental Variations

In this thesis, the basic approach is compared to the new approaches. The

different chapters have slight changes to the experimental setup due to the

requirements of the method being compared. In total, there a re three such

variations in experimental setup:

� Chapters 5 and 6 use a population size of 500, a maximum of 50

generations and a function set containing f +, -, *, %,sif g.

� Chapter 7 uses a population size of 500, a maximum of 50 genera-

tions and a function set containing f +, -, *, %, if g.

� Chapter 8 uses a population size of 250, a maximum of 100 genera-

tions and a function set containing f +, *, neg, invg.

4.6 Results and Analysis

This section displays the results obtained in the basic approach experi-

ments. Tables 4.4 and 4.5 display the results of the basic approach for each

data set and experimental setup.

Table 4.4 displays the results for the �nal generation of eac h run. From

table 4.4 it is seen that the basic approach could not solve the `Five-Class

Coin' problem within the maximum number of generations, and seldom

solved the `Faces' problem.

Table 4.5 displays the results for the generation of best validation set

accuracy. As expected, it is seen from table 4.5 that the `Faces' and `Five-

Class Coin' data sets achieved worse accuracy than the two other data

sets. However, the `Shapes' data set is seen to have lower accuracy than

the `Three-Class Coins' data set in both tables of results. Also, the `Faces'

data set is seen to have better accuracy than the `Five-ClassCoins' data

set at convergence. This is probably due to PCM, which suffer s as more
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Table 4.4: Basic approach results at �nal generation.

Dataset Function Max. Pop. Total evals. Final Run Final test acc.

Set Gens. Size (x1M) gen. time (s) (%)

Shapes +,-,*,%,sif 50 500 127.54 13.32 2.62 99.68� 0.51

4 class +,-,*,%,if 50 500 230.84 23.76 1.94 99.62� 0.76

+,*,neg,inv 100 250 96.57 50.94 1.00 97.86� 3.87

Coins +,-,*,%,sif 50 500 58.80 11.16 1.33 99.59� 0.60

3 class +,-,*,%,if 50 500 82.12 16.90 0.86 99.65� 1.33

+,*,neg,inv 100 250 53.47 53.68 0.65 98.85� 1.06

Coins +,-,*,%,sif 50 500 265.41 50.00 6.17 74.44� 8.07

5 class +,-,*,%,if 50 500 274.19 50.00 3.07 85.54� 6.35

+,*,neg,inv 100 250 97.65 100.00 1.25 66.07� 5.29

Faces +,-,*,%,sif 50 500 56.23 49.92 2.26 71.60� 17.84

4 class +,-,*,%,if 50 500 58.07 49.84 1.73 73.50� 18.24

+,*,neg,inv 100 250 20.54 100.00 0.64 71.65� 15.41

classes are introduced to the problem as the programs must deal with a

speci�c order and placement of the class regions.

The `Faces' data set is seen to converge much earlier than thè Five-

Class Coins' data set.

It is seen from the tables that the choice of negation and inversion in

the function set, in place of subtraction, division, and a co nditional, im-

peded performance in terms of accuracy and ef�ciency. This m ay be due

to the depth limit enforced on programs, as well as the useful ness of the

conditional function. A tree of the same depth may be more exp ressive

when using subtraction and division, than when negation and inversion

are used.

Using sif in the function set is seen to give similar accuracy to the use of

if , but usually causes longer run times. However, for the `Five -Class Coin'
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Table 4.5: Basic approach results at generation of best validation set accu-

racy.

Dataset Function Max. Pop. Evals. at best Gens at Time at Test acc. at

Set Gens. Size val. (x1M) best val best val. best val (%)

Shapes +,-,*,%,sif 50 500 116.26 12.22 2.39 99.67� 0.55

4 class +,-,*,%,if 50 500 201.68 20.96 1.70 99.56� 0.83

+,*,neg,inv 100 250 64.85 36.60 0.68 97.82� 3.90

Coins +,-,*,%,sif 50 500 42.98 8.74 0.95 99.44� 0.88

4 class +,-,*,%,if 50 500 64.24 13.74 0.67 99.56� 1.36

+,*,neg,inv 100 250 20.65 24.60 0.27 98.79� 1.25

Coins +,-,*,%,sif 50 500 190.90 37.18 4.43 74.40� 7.98

4 class +,-,*,%,if 50 500 231.36 42.80 2.60 85.29� 6.40

+,*,neg,inv 100 250 49.79 53.28 0.64 65.26� 5.62

Faces +,-,*,%,sif 50 500 6.82 6.75 0.26 82.15� 13.61

4 class +,-,*,%,if 50 500 11.22 10.57 0.32 81.40� 14.46

+,*,neg,inv 100 250 1.36 8.38 0.04 79.70� 13.05

data set, the use ofsif gave much worse accuracy than the use of if . This

may be due to the need for sharp cutoffs between the �ve classe s, which

are arranged into de�nite regions on the real number line. sif cannot give

a sharp discontinuous cutoff between classes, and so may have lowered

accuracy when there were many classes.

4.7 Chapter Summary

The goal of this chapter was to de�ne a standard approach to GP for multi-

class object classi�cation which would serve as a baseline for comparison

to new methods, enabling measurement of the improvement in p erfor-

mance of a new method over standard GP.
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The method of this chapter may be described as a standard way to use

GP for multiclass object classi�cation. In later chapters t his method will

be compared to the new methods, indicating any increase or de crease in

performance compared to standard GP.
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Chapter 5

Probabilistic Classi�cation

Methods

In this chapter we propose a new method for interpreting a GP p rogram

result as one of a set of classes.

5.1 Introduction and Motivation

Classi�cation is a basic problem in arti�cial intelligence , and often takes

the form of predicting the class of a vector of feature values . In order

to perform classi�cation using GP, a program is sought that c an take the

feature values as inputs and produce an output that relates t o the class.

While the features can easily be input into such a program, di f�culties

arise when interpreting the output of a program as a class: in most tree-

based GP implementations a program can only output a single � oating-

point number.

The problem of determining the class of a �oating-point numb er is the

subject of this chapter. Here, a solution is termed a classi�cation strategy.

Many classi�cation strategies have been created in the past allowing GP

to be used for multiclass classi�cation. However, most prev ious methods

had disadvantages when compared to the new, probabilistic, method de-
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scribed in this chapter. These disadvantages may include:

� Parameters to set

Some classi�cation strategies have many parameters to set in their

use. Setting many parameters may involve a lengthy empirica l search

for their values.

� Constraints on the evolved programs

Some classi�cation strategies place constraints on the evolved pro-

grams, over and above those necessary to classify the objects. Plac-

ing heavy constraints on the evolving programs may result in a small

number of programs that can both solve the classi�cation pro blem,

and satisfy the constraints. This may cause low performance.

� Little mathematical basis

Mathematics can guide the process of making a new method, and is

often a desirable attribute of a method.

The new method, Probabilistic Multiclass (PM), described i n this chap-

ter aims to avoid the disadvantages of other classi�cation s trategies. It

differs from previous approaches by its probabilistic mode l for the pro-

gram output distribution. This model is seen to place fewer c onstraints

on programs than previous methods while still allowing prog rams to be

effective in solving the classi�cation task. The result is f aster convergence

and higher test set accuracy.

Another advantage of the method is that multiple best programs, each

with different strengths, can be mathematically combined t o form a stronger

classi�er, that may outperform any one of the best programs b y itself.

The remainder of this chapter starts with the chapter goals, followed by

the background of the classi�cation strategy problem, with some previous

methods described. Section 5.4 describes the new probabilistic model for

program output, and section 5.5 describes the new classi�ca tion method

using this model, Probabilistic Multiclass(PM). In section 5.6 the results
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of some experiments evaluating the new method are displayed and ana-

lyzed. Section 5.7 summarizes the chapter and discusses theeffectiveness

of the new method.

5.2 Chapter Goals

This chapter aims to address the �rst hypothesis given in sec tion 1.1.1:

Will a new GP method with a probabilistic classi�cation stra tegy out-

perform the basic GP method on a sequence of multiclass objec t classi-

�cation problems?

This research question is broken up in this chapter to the fol lowing

�ner research questions:

� How can a probabilistic model be developed for the output dis tribu-

tion of a program on training data, allowing the classes to be distin-

guished?

� How can the �tness function be constructed using the probabi listic

model?

� How can the classi�cation accuracy be calculated using the p roba-

bilistic model?

� Will the method achieve better performance than the basic ap proach

on a sequence of multiclass object classi�cation problems?

5.3 Background

The output of a genetic program is usually a single �oating-p oint number;

classi�cation requires a discrete class label to be assigned. A function f :

R ! S is required, where R is the set of real numbers, and S is a set of

class labels with one member per class in the classi�cation p roblem. The

function will take the output of a program, and convert it to a class label.
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Several classi�cation strategieshave been developed to solve this prob-

lem, and the remainder of this section describes some of these.

5.3.1 Program Classi�cation Map

A simple and widely used classi�cation strategy is Program C lassi�cation

Map (PCM), developed by Zhang [60]. It was described in detai l in section

4.3.1.

The space of the �oating-point program output is divided int o a set of

regions. There are exactly the same number of regions as classes in the

classi�cation problem, with each region mapped to a differe nt class.

While PCM is easy to implement and explain, it often tends to h ave low

performance. PCM forces all programs to output into the same regions, so

all programs are constrained to have the same output distrib utions. The

regions are set by the user, and while possibly not obvious to the user, may

be important to the performance of evolution. The order of th e classes in

the data set may also be important to performance.

5.3.2 Centred Dynamic Range Selection

Centred Dynamic Range Selection (CDRS) is based on PCM, but requires

less domain-speci�c knowledge to operate. CDRS was develop ed in the

author's honours project.

CDRS uses a dynamic classi�cation map. The type of map is the same

as that of PCM, however the order and position of the classes w ill nor-

mally change from generation to generation. The average return value

for each class, using all programs on all training data, is fo und periodi-

cally during evolution. The thresholds, as used in PCM, are s et halfway

between adjacent class averages.

An advantage of CDRS is that it requires few parameters to be set by

the user. Also, the order and position of class regions is automatically

de�ned by the algorithm.
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A disadvantage of CDRS is that it still forces all programs to share a

single classi�cation map. The map is found by an average, so even if 95%

of programs are very bad at the task, these 95% will still domi nate the

calculation for the classi�cation map. Another disadvanta ge is the com-

plexity of the calculation for the class thresholds, which c an sometimes

cause undesired behaviour such as oscillations and excessive shrinking of

some class regions.

5.3.3 Slotted Dynamic Range Selection

Slotted Dynamic Range Selection (SDRS) from [41] was based on Dynamic

Range Selection (DRS) in [24].

In SDRS a number of non-overlapping, same-sized regions (called slots)

are assigned to cover a portion of the real number line. There are a large

number of slots and they are intended to cover a large area of t he real

number line, where most program results fall.

Each of the slots is assigned a class value. A program result that falls

into a slot classi�es as the class assigned to the slot. An example slot map

is shown in �gure 5.1

-100 0

Class 1

Class 2

Class 3

Class 4

100
Figure 5.1: An example slot map for SDRS.

The class of each slot is reassigned periodically during evolution. For

each class, all programs are evaluated on all training examples of the class.

This produces a set of program results for each class.

For each slot, the members of the sets of program results are checked to

see if they fall into the slot. The class of the set that has themost program
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results that fall into the slot is assigned as the slot's class. For example, if

the training examples of class two often fall into a particul ar slot, and not

many examples of the other classes fall into the slot, then the slot will be

assigned class two.

Some advantages of SDRS are the very complex class maps possible,

and that it requires very little domain knowledge from the us er as the

class mapping is found automatically.

Some disadvantages of SDRS are that it still forces all programs to share

a common map, and the complexity of the map can cause irregula rities

when used with small datasets. DRS does not force all program s to share

a common classi�cation map, but still suffers from irregula rities in the

map due to small data sets. Also, there are several parameters such as the

quantity and placement of the slots that need to be set with SD RS. Finding

good values for these may require a lengthy empirical search .

5.4 Probabilistic Model of Program Output

While the aim of a classi�cation strategy is to produce a func tion f : R !

S for each program, the new method does not deal with this funct ion di-

rectly (as do PCM, CDRS and SDRS). Instead, the function is derived from

a higher level model of the program's output.

5.4.1 Foundation for the Model

Some assumptions are made about the output distribution of a program

that is good at the classi�cation task. These allow us to mode l the distri-

bution.

1. The �rst assumption is that a good program will produce simil ar

outputs when evaluated on examples of the same class.

2. The second assumption is that a good program will produce dis tant

outputs for examples of different classes.
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3. The third assumption is that the distribution of outputs of a program,

for a large enough set containing examples of only one class,may be

reasonably modeled by a single normal curve.

Based on these assumptions, a program output distribution c an be

modeled as a mixture of normal distributions, with one per cl ass in the

classi�cation problem. Figure 5.2 shows an example, with a p rogram out-

put modeled for a dataset of three classes.

10.0

Class 1 Class 2

Class 3

-10.0 -5.0 0.0 5.0
Figure 5.2: Probabilistic program output model example.

In �gure 5.2 the output distribution of a program has been mod eled by

three normal curves. From the model, class one tends to produce lower

output than the other two classes, with class three next, then class two.

Also, the output of the program for class one is less centrali zed than the

other classes, with a lower, wider curve. It is easy to see how such a model

simpli�es dealing with the program's output distribution o n a large data

set.

Advantages of the Model

The advantages of this model for a program's output distribu tion are de-

scribed as follows:

� Normal distributions are possibly the most common distribu tion found

in natural data, and so could be expected to �t program output well.

� Normal distributions are easily found from data, and have a g ood

mathematical foundation for calculations.
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� Modeling a program's output distribution as just a few norma l dis-

tributions restricts the complexity of the model. This may h elp re-

duce over-�tting and the irregularities of class regions al ong the real

number line found with some classi�cation strategies, such as SDRS.

� Multiple programs can be combined together when using the pr oba-

bilistic approach. This gives the opportunity for differen t programs

to combine their strengths, as an form of ensemble method.

Restrictions of the Model

The assumptions restrict the programs in two ways: the numbe r of clusters

of program outputs for a class, and the shape of the clusters. They are

shown graphically in �gure 5.3.

1.2 11.46.3
(a)

Both class 1

Class 2

Mean

(b)

Figure 5.3: Badly �tted program output distributions.

The model allows only one cluster of program outputs per clas s for a

program, as the output is modeled by a single normal curve. As such, the

model does not allow a program to, for instance, output value s around

1.2 for half of the examples of a class, and around 11.4 for theother half.

In such a case (shown in �gure 5.3(a)), the normal model of the program's
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output for the class would have a mean around 6.3 and would �t t he actual

output distribution quite badly.

The second restriction is the shape of the distribution of pr ogram out-

put for each class, which is assumed to be a normal distributi on. Though

one can think of examples where such a distribution could be o ff normal

for some program (for example, that shown in �gure 5.3(b)), i t seems rea-

sonable that many clusters of program output for a class woul d resemble

a normal distribution. The ease of calculating and using a no rmal curve

makes their use highly desirable for the ef�ciency of using t he model.

5.4.2 Getting the Model of A Program's Output Distribu-

tion

The following procedure is followed to �nd the probabilisti c model for a

program.

for each class C

Clear set O to empty

for each training example T of class C

Evaluate program using example T

Append output to set O

(O now contains outputs for examples of class C)

Calculate average from O as AV(C)

Calculate standard deviation from O as SD(C)

(Keep AV(C) and SD(C) for all classes C as model)

Using this algorithm the parameters of the program output mo del are

found simply and ef�ciently.
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5.5 Probabilistic Multiclass

The new classi�cation method, Probabilistic Multiclass (P M), uses the prob-

abilistic model to solve multiclass classi�cation problem s (though it is also

applicable to two-class problems).

The PM method is described in the following subsections: �rs t the �t-

ness function is described, next the method of classifying a test example is

given in section 5.5.4.

5.5.1 Fitness Function for Probabilistic Multiclass

Using a probabilistic model, there is opportunity for a �tne ss function

other than the standard accuracy measure. We may use the model itself

to derive a �tness for a program, forming a more continuous �t ness mea-

sure than accuracy.

This probabilistic �tness measure may relate directly to th e probabil-

ity of misclassi�cation of test examples. It may also avoid t he expense

of checking through the whole training set a second time, as b uilding the

model requires one pass through the training set, and gettin g training set

accuracy would require one more. Instead, using the model fo r �tness al-

lows us to ef�ciently calculate the �tness based on the small number of

means and standard deviations that make up the model.

The model of a program's output on the training set consists o f a num-

ber of normal curves. As is visualized in �gure 5.4, the curve s will have

less intersection (right) for a program that can distinguis h one class from

the other, and will have greater intersection (left) for pro grams that cannot.

The intersection can be calculated, and used as part of the �t ness function.

To �nd a �tness for the multiclass problem, we consider each p air of

classes. Equation 5.1 is used as the �tness.

�tness =
NY

i =2

i � 1Y

j =1

I ij (5.1)
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Well separated

Class 1Class 1

Class 2 Class 2

Badly separated

Figure 5.4: Intersection of normal curves.

where I ij is the intersection value for classes i and j . This intersection

value may be an overlap value or adjusted distance measure, which will

be described in sections 5.5.2 and 5.5.3 respectively.

5.5.2 Overlap Area Measure

Figure 5.5 shows two normal curves, with the overlap areaof the curves

marked in black. The overlap area value is twice the probabil ity of mis-

classi�cation assuming two equally-likely classes. The ar ea has a worst

possible value of 1.0 (where the two distributions have the s ame mean

and standard deviation), and a best possible value of zero (w here the dis-

tributions have different means, but both standard deviati ons are zero).

mClass 1

Class 2

Figure 5.5: Intersection of two normal curves.

The formula for the normal distribution is given in equation 5.2.

P(v; �; � ) =
e

�
� ( v � � ) 2

2� 2

�

�
p

2�
(5.2)

where P(v; �; � ) is the probability density calculated at point v on the nor-

mal distribution de�ned by mean � and standard deviation � .
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The overlap area is the area under a function returning the mi nimum

probability density, of the two distributions, from �1 to 1 . An approx-

imation to this area that is accurate for many pairs of distri butions is the

area under one curve from �1 to a point m, and the other curve from m to

1 . The point m used is the meeting pointthat lies between the two means,

or one of the means if no such meeting point exists. This appro ximate will

overestimate the area in all cases, but in most cases by only asmall margin.

The �rst stage in calculating the overlap area involves �ndi ng the meet-

ing point m. While there exists an analytical approach to �nding m, this

was not realized during implementation and experiments; in stead,m was

found using a bisection search.

The next stage in calculating the overlap area is to calculate the area

of each curve between 0 and m. There is no known closed form for this

calculation, and the standard approach uses a table of values obtained by

integrating the standard normal distribution. This method is described

brie�y in Appendix A.

Final Calculations for Overlap Area

Equation 5.3 is used to �nd the overlap area A int .

A int = 1 � A(� 1; � 1; m) � A(� 2; � 2; m) (5.3)

where A(�; �; m ) is the area under a normal curve of mean � and standard

deviation � from � to m, and� i and � i are the mean and standard devia-

tion, respectively, of curve i .

The approximate overlap area is the area of the leftmost dist ribution

over (m; 1 ), plus the area of the rightmost distribution over (�1 ; m).

Equation 5.3 uses the fact that the area of a normal curve with mean �

over (�; �1 ) equals 0:5. m is between the means of the distributions, so

the area of the leftmost distribution over (m; 1 ) is 0:5 � A(�; �; m ), where

� is the mean, and � is the standard deviation. Also, the area of the right-

most distribution over (�1 ; m) is 0:5 � A(�; �; m ), where � is the mean,
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and � is the standard deviation. As such, the sum of the two gives ri se to

equation 5.3.

5.5.3 Distance Measure

The distance measure is considerably simpler to calculate than the overlap

area measure. It does not directly represent the probabilit y of misclassi�-

cation, as does the overlap measure. However, it may be made to act in a

similar way.

A pair of distributions is used. The distance used is that fro m the

means of the distributions to a point p (not to be confused with m in the

overlap area measurement). The unit length for the distance from a dis-

tribution to p is the standard deviation of the distribution. As such, if th e

distributions have the same standard deviation, the point pwill be the cen-

tre point between the means. If the standard deviations are d ifferent, then

p will be to the left or right of the centre point.

The equation for the distance measure is given in equation 5.4.

d =
j� 1 � � 2j
� 1 + � 2

(5.4)

where d is the value of the distance measure, � i and � i are the mean and

standard deviation, respectively, of distribution i .

Some examples of the distance measure are shown in �gure 5.6.

In �gure 5.6(a) the point at 1.0 is the same distance in standard devi-

ations from both means, and the distance is 2.0. In �gure 5.6( b) the point

at 5.0 is the same distance in standard deviations from both m eans, and

the distance is 3.33. The higher distance of �gure 5.6(b) ind icates a better

separation (lower intersection).

The distance formula is derived as follows.

First we �nd the point p, equidistant from the two means.

p � � 1

� 1
=

� 2 � p
� 2
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(a)

-10.0 0.0

Class 1: s.d.=3.0

5.0-5.0 10.0

Class 3: s.d.=1.5

d x 3.0

-10.0 0.0 10.0

Class 2: s.d.=2.0Class 1: s.d.=3.0

5.0-5.0

d x 3.0 d x 2.0

d x 1.5

p=1.0

p=5.0

d = 3.33     Good seperation

d = 2.0     Bad seperation

(b)

Figure 5.6: Distance normal separation measure.

)
p
� 1

+
p
� 2

=
� 1

� 1
+

� 2

� 2

)
p(� 1 + � 2)

� 1� 2
=

� 2� 1 + � 1� 2

� 1� 2

) p =
� 2� 1 + � 1� 2

� 1 + � 2
(5.5)

where � 1; � 1 describe the left distribution, and � 2; � 2 describe the right dis-

tribution.

Having found the point p, we can �nd the distance from the point to

one of the means.

d =
p � � 1

� 1

=
� 2� 1 + � 1� 2 � � 1(� 1 + � 2)

(� 1 + � 2)� 1

=
� 2� 1 � � 1� 1

(� 1 + � 2)� 1

=
j� 1 � � 2j
� 1 + � 2

(5.6)

In equation 5.6 the absolute bars make sure the formula will w ork with
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either distribution being the leftmost. In order to obtain a similarity mea-

sure (like the overlap area) from the distance measure, it is inverted by

equation 5.7.

d0 =
1

d + 1
(5.7)

d0 is passed on to the �tness calculation to combine it with the d istances

found for other pairs of curves in the multiclass problem.

5.5.4 Using the Program Output Model for Multiclass Clas-

si�cation

In section 5.4.2 the output for a program on a training set was reduced

to N normal distributions, where N is the number of classes. We can use

these distributions directly to predict the class of an unse en test example,

when evaluated using the same program.

Figure 5.7 shows an example program output model for a three c lass

problem, with classes marked for all possible program outpu ts.

Program Output Model

Class 2

0.0-5.0-10.0 5.0 10.0

Class 2Class 3Classifies as   :    Class 1

Class 3

Class 1

Figure 5.7: Probabilistic multiclass classi�cation map.

From the �gure it can be seen that, for a particular program ou tput, the

highest curve at the output point is chosen as the class to classify it as.

The following formula is used for the curves:

P r(prog(t) = vjt 2 train c) = Pc(v) =
e

�
� ( v � � c ) 2

2� 2
c

�

� c

p
2�

(5.8)
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where prog(t) is the output of the program on pattern t and train c is the

subset of the training set that are of class c. Pc(v) is the probability den-

sity calculated at point v on the distribution obtained from the patterns in

train c, which is described by mean � c and standard deviation � c.

For predictions of the class of an unseen test example we assume equa-

tion 5.9, which predicts the probability of any pattern of a c lassc produc-

ing output v is the same as the probability of a training pattern of the sam e

class producing the same output.

P r(prog(p) = vjclass(p) = c) = P r(prog(t) = vjt 2 train c) (5.9)

where class(p) is the class of the test patternp.

We used maximum likelihood to choose the class of a test example. In

using maximum likelihood, we are assuming that an unseen tes t example

has an equal chance of being of each class. In the experimentsdescribed

this is a reasonable assumption. However if the distributio n preferred a

class or classes, then a prior could be introduced to skew the probability

toward the class(es).

With these assumptions, to classify a pattern p we can use equation

5.10:

class(p) = argmaxc (P r(prog(p) = vjclass(p) = c)) = argmax c (Pc(prog(p)))

(5.10)

Using Multiple Programs to Classify

Using the probabilistic method, two or more programs may be u sed to-

gether to predict the class of a test example. This can combine the strengths

of the programs to form a better classi�er than any one of the p rograms by

itself. Though there are other methods to do this, one method is outlined

below.



5.6. RESULTS AND ANALYSIS 71

The programs are combined by multiplying probabilities tog ether. We

assume that the outputs of different programs are independe nt. We refer

to the class distribution of class c using program i asPci(v), and the result

of evaluating program i on the test example t asprogi (t).

We can combineM genetic programs by multiplying their distributions

to get a joint probability, as in equation 5.11.

MY

i =1

Pci(progi (p)) = P r(prog1(p); prog2(p) : : : progM (p)jclass(p) = c) (5.11)

This is the probability of all M programs producing these outputs when

evaluated on pattern p given that p is of class c, which is the likelihood p

being of class c given the observed outputs. Using maximum likelihood,

this is assumed equal to the probability of all M programs indicating p is

of classc, given the output.

This gives the class predictor in equation 5.12.

class(p) = argmaxc

 MY

i =1

Pci (progi (p))

!

(5.12)

5.6 Results and Analysis

This section presents the results of some experiments done to evaluate the

new method and �nd good values for its parameters.

5.6.1 Comparison between Classi�cation Strategies

In the �rst set of experiments, PM is evaluated against the PC M, CDRS

and SDRS methods. The results are shown in tables 5.2 and 5.1,and �gure

5.8. Table 5.2 displays statistics of the generation that had the best valida-

tion set accuracy of the evolution. Table 5.1 displays statistics at the last

generation of each run.
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Table 5.1: Comparison of strategies at �nal generation of ru n.

Dataset Method Final Run Time Total Final Test

Generation (s) Evals (x1M) Acc. (%)

PCM 13.32 2.62 127.54 99.68� 0.51

Shapes CDRS 7.68 5.48 81.77 98.57� 6.74

4 class SDRS 4.84 4.36 52.00 99.88� 0.34

PM 0.00 0.40 5.74 99.99� 0.04

PCM 11.16 1.33 58.80 99.59� 0.60

Coins CDRS 4.88 2.45 30.62 97.35� 9.27

3 class SDRS 6.90 3.24 42.31 99.61� 0.64

PM 0.00 0.23 3.43 99.98� 0.10

PCM 50.00 6.17 265.41 74.44� 8.07

Coins CDRS 50.00 17.93 313.39 90.79� 4.20

5 class SDRS 50.00 19.58 327.49 90.17� 6.07

PM 47.58 21.41 251.43 97.91� 1.33

PCM 49.92 2.26 56.23 71.60� 17.84

Faces CDRS 46.86 5.02 70.13 77.45� 19.82

4 class SDRS 41.62 4.23 57.46 68.85� 23.31

PM 27.82 2.71 29.15 87.05� 14.09

Table 5.1, shows that the PM method took fewer generations and fewer

evaluations for the runs, over all data sets, than the other m ethods. Also,

for all data sets the �nal accuracy of the runs that used PM wer e better,

often markedly. This is especially true of the `Five-Class Coin' data set,

where the basic approach gave 25.56% of objects misclassi�ed in the �nal

generation. The CDRS method gave 9.21% misclassi�cation for this data

set, but using the PM method this is dropped to 2.09% misclassi�ed. This

increased performance is also found in the other data sets.

The PM method took zero generations to �nd a perfect classi�e r of the

training set for all �fty runs of both the `Shapes' and `Three -Class Coins'
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data sets. This means that in all �fty runs of each of these dat a sets the

initial random population of programs was able to produce a c lassi�er

with perfect training set accuracy. This indicates that the natural ability of

programs as classi�ers is exploited when using PM.

Table 5.2: Comparison of strategies at convergence.

Dataset Method Gens. at best Time to Evals at best Test Acc. at

best valid. best valid. (s) valid. (x1M) best valid. (%)

PCM 12.22 2.39 116.26 99.67� 0.55

Shapes CDRS 6.60 4.96 71.30 99.70� 0.48

4 class SDRS 4.56 4.21 49.30 99.84� 0.41

PM 0.00 0.40 5.80 99.99� 0.04

PCM 8.74 0.95 42.98 99.44� 0.88

Coins CDRS 3.94 2.19 25.66 99.56� 1.18

3 class SDRS 5.84 2.99 36.80 99.57� 0.66

PM 0.00 0.23 3.47 99.98� 0.10

PCM 37.18 4.43 190.90 74.40� 7.98

Coins CDRS 39.32 13.36 234.94 91.60� 3.79

5 class SDRS 32.34 12.18 202.30 90.74� 5.64

PM 14.50 5.82 69.98 98.74� 0.99

PCM 6.75 0.26 6.82 82.15� 13.61

Faces CDRS 10.84 1.13 14.28 92.45� 12.22

4 class SDRS 8.25 0.92 10.67 84.60� 16.21

PM 2.37 0.21 2.54 96.20� 8.98

The results in table 5.2 suggest that the new PM method achieves greater

accuracy at convergence than the other methods for all data sets. For ex-

ample on the dif�cult `Five-Class Coin' data set the PM metho d achieves

98.74% test set accuracy, whereas the best of the other methods, CDRS,

only achieves 91.60%. This is a great improvement in the amount of mis-

classi�cation, from 8.40% to 1.26%. It is also seen that convergence occurs
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for PM after at most half of the generations, and evaluations , relative to the

other methods. Also, the time taken for convergence is most often shorter

for PM.

Figure 5.8 displays a comparison of the classi�cation strat egies graph-

ically. The test set accuracy, averaged over the �fty runs, i s displayed for
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Figure 5.8: Comparison of classi�cation strategies applie d to `Five-Class

Coins' dataset. Test set accuracy trend with generation averaged over �fty

runs.

each generation up to the thirtieth. The median test set accuracy from the

runs is displayed as a line. Each second generation the maximum, 75th

percentile, 25th percentile and minimum test set accuracy i s shown in a

“box and whiskers” arrangement.

PM uses the initial random generation of programs extremely well,

with very good accuracy from the �rst generation, as is seen f rom its
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graph. The other methods improve more slowly, without conve rging within

thirty generations. Using PM, The range between the maximum and mini-

mum accuracies from the runs, and especially the range between the 75'th

percentile and 25'th percentile accuracies, constricts asmore generations

are passed. This indicates that, though the PM method achieves very good

accuracy with just the initial random programs, the genetic search allows

more consistency between runs.

5.6.2 Comparison of Different Fitness Functions

The second set of experiments were run to compare different p arameter

values for the PM method; the results are shown in tables 5.3 and 5.4.

Table 5.3: Comparison of separation measures used and �tness types.

Data set Fitness Sep. Evals. at best Gens. at Run Test acc. at

Type Measure valid. (x1M) best valid. time (s) best valid.

Acc. n/a 11.37 0.00 0.67 100.00� 0.00

Shapes Model Dist. 5.76 0.00 0.38 99.12� 4.32

4 class Area 5.80 0.00 0.40 99.99� 0.04

Acc. n/a 6.82 0.00 0.36 99.95� 0.16

Coins Model Dist. 3.54 0.02 0.23 99.97� 0.12

3 class Area 3.47 0.00 0.23 99.98� 0.10

Acc. n/a 80.47 9.06 22.08 97.96� 1.32

Coins Model Dist. 56.82 12.40 18.75 98.34� 1.40

5 class Area 69.98 14.50 21.41 98.74� 0.99

Acc. n/a 2.56 0.83 0.88 90.30� 13.45

Faces Model Dist. 1.79 1.44 1.90 94.75� 11.23

4 class Area 1.45 1.02 1.57 93.45� 11.87

Table 5.3 compares different �tness types. The �rst �tness t ype is sim-

ply accuracy. The second �tness type is the separation method used by the
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model (stated as “Model”), which is further divided into the two separa-

tion measures: distance and overlap area.

The results in table 5.3 indicate that, as may be expected, using ac-

curacy for �tness requires about twice as many evaluations i n order to

converge. For the `Shapes' and `Coins' data sets the accuracy �tness type

takes a longer time per run. Whereas the accuracies produced by the �t-

ness types are similar for the `Shapes' and `Coins' data sets, the accuracies

produced by the “model” �tness type are better for the `Faces ' data set,

indicating that the extra run time is justi�ed.

For the `Shapes' and `Coins' data sets, the overlap area separation mea-

sure outperforms the distance separation measure. For the more dif�cult

`Faces' data set, the distance measure is better but takes a longer time to

run.

5.6.3 Comparison of Different Numbers of Programs Used

Table 5.4 compares different numbers of programs used for class predic-

tion when using PM.

In table 5.4 it is seen that, for the two harder data sets (where the runs

took longer than zero generations), using more programs to c lassify nor-

mally caused shorter run times, and less evaluations and generations at

convergence.

For the two harder data sets, using just one program to classi fy, as is

done in the normal case, caused over one and a half times as many evalua-

tions and generations to be used until convergence, and caused longer run

times. Also, of these data sets, the single program classi�er did not get the

best convergence accuracy - this was achieved by using more programs.

The number of programs that produced the best test accuracy seems

very dependent on the data set used. For the `Shapes' and `Faces' higher

accuracies were obtained with fewer programs, however with the `Coins'

data sets higher accuracies were obtained with more program s.
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Table 5.4: Comparison of number of programs used for classi� cation.

Data set Number of Evals. at best Gens. at Run Test acc. at

programs used valid. (x1M) best valid. time (s) best valid.

1 5.62 0.00 0.35 99.99� 0.04

2 5.78 0.02 0.37 99.14� 5.95

Shapes 3 5.69 0.00 0.37 98.66� 6.83

4 class 5 5.76 0.00 0.38 99.12� 4.32

7 5.83 0.00 0.39 99.02� 4.31

10 5.94 0.00 0.41 98.56� 5.28

1 3.60 0.06 0.24 99.93� 0.26

2 3.40 0.00 0.22 99.95� 0.21

Coins 3 3.66 0.06 0.24 99.96� 0.14

3 class 5 3.54 0.02 0.23 99.97� 0.12

7 3.52 0.00 0.23 99.98� 0.10

10 3.60 0.00 0.24 99.98� 0.10

1 151.42 32.10 19.29 96.55� 2.11

2 86.61 19.30 19.16 97.60� 1.72

Coins 3 66.48 14.74 18.98 98.04� 1.24

5 class 5 56.82 12.40 18.75 98.34� 1.40

7 61.74 13.16 18.00 98.46� 1.13

10 48.51 10.62 18.49 98.57� 1.07

1 4.08 4.16 3.23 96.00� 9.17

2 2.54 2.37 2.71 96.20� 8.98

Faces 3 2.10 1.80 2.34 95.20� 10.10

4 class 5 1.79 1.44 1.90 94.75� 11.23

7 1.62 1.25 1.64 94.45� 10.97

10 1.50 1.06 1.38 93.25� 11.65

5.7 Summary and Discussion

In this chapter, a new classi�cation strategywas presented. A classi�cation

strategy is a methodology for determining the output class l abel of a pro-
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gram from the program's �oating-point output value.

The method described here, Probabilistic Multiclass (PM), models the

output distribution of a program as a set of normal curves, wi th one per

class describing the trend of program outputs from the train ing data of the

class. This model is simply and ef�ciently found for a progra m, involving

only a single sweep through the training data.

The separation of the normal curves from each other is used asa �tness

measure for the program. Once the model has been found for a pr ogram,

the program's �tness is found directly from the model using o ne of two

methods: overlap area or separation distance.

Classi�cation accuracy can be easily found for a program usi ng PM.

The class of each test pattern is predicted by �nding the norm al distribu-

tion that most probably contains the program output, using t he test pat-

tern as input. Additionally, multiple programs may be used j ointly to pre-

dict the class of a test pattern by multiplying probabilitie s.

PM has many advantages over previous classi�cation strateg ies:

� The probabilistic model of a program's output distribution gives an

easy and ef�cient method to determine program �tness.

� So long as three criteria for applicability to the model are m et (see

section 5.4.1), any program that can distinguish the classes will get

high �tness. This is in contrast to most other methods, which often

give good programs bad �tness due to more restrictive constr aints

on the shape for the program's output distribution.

� The probabilistic model allows multiple programs to be used to-

gether in a natural way when classifying a test pattern.

In experiments the PM method was compared to three other meth ods.

� The PM method gave better test accuracy than the other methods

both at the end of the run and at convergence on all data sets.
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� The PM method was found to take less time and evaluations to bo th

converge, and �nish the run, relative to the other methods.

� An important result is that the PM method took zero generatio ns

to gain 100% accuracy on the training set, for both the `Shapes' and

`Three-Class Coins' data sets, something that the other methods could

not do constantly. This indicates that the PM method, with it s prob-

abilistic model, used the natural ability of the initial ran dom popula-

tion of programs very well and placed few unnecessary constr aints

on the programs.

� For most data sets, using programs' �tnesses derived from th e prob-

abilistic model, instead of just accuracy, gave better performance and

ef�ciency. The two model �tness types, overlap area and sepa ration

distance, gave similar performance.

� It was found that using multiple programs to classify result ed in

faster evolutions and higher test accuracies, over the casewhere one

program was used. The number of programs used that gave the best

results seems to be data set dependent.

While PM places relatively few constraints on programs, eac h program

still has to solve the whole multiclass problem. It may be tha t better perfor-

mance would found by expecting even less of programs and gett ing them

to only solve a single component binary subproblem. This is t he topic of

the next chapter which introduces the Communal Binary Decom position

(CBD) method.
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Chapter 6

Communal Binary Decomposition

In this chapter, we introduce a new method to “divide-and-co nquer” mul-

ticlass classi�cation problems.

6.1 Introduction and Motivation

In the previous chapter the classi�cation strategy problem was discussed.

Classi�cation strategies seek to convert the �oating-poin t output of a pro-

gram into a class label, and are essential when using standard GP for clas-

si�cation. Many multiclass classi�cation strategies have been proposed in

literature, and some were described in the previous chapter .

Classi�cation strategies commonly handle binary (two-cla ss) problems

better than they handle problems containing more classes. Consider Pro-

gram Classi�cation Map (PCM) as described in the previous ch apter; when

using PCM for two classes, a fairly natural arrangement can b e constructed,

with negative program results being one class and positive t he other. PCM

with more than two classes leads to class ordering problems, and only two

of the classes will have in�nite-sized regions. As a result, PCM is better as

a binary classi�cation strategy than it is as a multiclass cl assi�cation strat-

egy.

In Probabilistic Multiclass (PM), each program is evolved t o solve the

81
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whole multiclass problem. however, the PM method also works well as a

binary classi�cation strategy.

The problem is that these classi�cation strategies require each program

to solve the entire multiclass classi�cation problem. This places a heavy

burden on each program, effectively requiring it to solve ma ny problems

at once, that is, distinguishing many classes from each other.

A multiclass classi�cation task can always be divided, form ing some

number of component binary subtasks. This can lead to a divid e-and-

conquer strategy, where the binary subtasks are solved indi vidually, and

the solutions are combined as the �nal classi�er.

The remainder of this chapter starts with the chapter goals, followed by

a background in section 6.3. Section 6.4 describes the new method, Com-

munal Binary Decomposition (CBD), in detail. Section 6.5 ha s experimen-

tal results and analysis. Section 6.6 summarizes the chapter, and discusses

the effectiveness of the new method.

6.2 Chapter Goals

This chapter aims to address the following question:

Can a new Communal Binary Decomposition (CBD) method improv e

the object classi�cation performance, over the basic appro ach on a se-

quence of multiclass object classi�cation problems ?

This research question is broken up in this chapter to the fol lowing

�ner research questions:

� How can a new �tness function be constructed, enabling CBD to

evolve programs spread across many subtasks in one population?

� How can programs, each solving different subtasks, be combi ned to

solve the wider multiclass classi�cation task?

� Will CBD have better performance than the basic approach on t he

same problems?
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� Will CBD have better performance than a previous binary deco mpo-

sition method on the same problems?

6.3 Background

There have been many methods proposed to divide a multiclass classi�-

cation task into component binary subtasks, then combine th e results into

a multiclass classi�er. In this chapter, these methods are r eferred to as

“divide-and-conquer” methods.

The following are some approaches to dividing a multiclass p roblem.

� All-pairs: where each possible pair of classes (that are not the same)

are used as the subtasks. As such there areCN
2 subtasks for a multi-

class task ofN classes (for example,C3
2 = 3; C4

2 = 6; ::). This method

was used by Hastie and Tibshirani in [16]. It is also used in th is chap-

ter.

� One-vs-all: where each of the subtasks compares one of the classes

to all other classes. As such there areN subtasks for a multiclass task

of N classes.

� Complete: where all possible, non-trivial pairings of sets of classes

are used as subtasks. This method creates a great number (2N � 1 � 1)

of subtasks.

� Random: where a number of pairings between random sets of classes

are used as subtasks.

� One-vs-many: where each of the subtasks pairs a class with the other

classes that come after it. This is the method used in Binary Decom-

position, as described in section 6.3.1.
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6.3.1 Methods for Combining Subtasks

While there are many methods to divide a multiclass task into binary sub-

tasks, the aim is still to solve the original task so the binar y subtasks must

be combined. Several methods have been proposed to combine the clas-

si�ers of binary subtasks into a multiclass classi�er. Some of these are

dependent on the type of division into subtasks [16, 24], and others more

general [2, 10].

Pairwise Coupling

In [16], a method is used to estimate the probability of class es for the all-

pairs division of classes. The method involves starting wit h a guess of the

probabilities of the classes, then improving these estimates one at a time

using a simple formula, as in equation 6.1.

p̂i  p̂i �
P

i 6= j nij r ij
P

i 6= j nij �̂ ij
(6.1)

where p̂i is the estimate of pi , which is the probability of the class being i .

There are nij observations to discern the pair (i; j ) in the training set, and

these form a probability of r ij = P r(i ji or j ), and �̂ ij = p̂i
p̂i + p̂j

.

The process of improving the estimates continues until conv ergence.

This method has some disadvantages. The number of loops unti l con-

vergence may be high, making for ef�ciency losses when this p rocess must

be done often. The values are only estimates to the true probabilities.

Binary Decomposition

Binary Decomposition (BD) in GP was used in [24], and uses the one-vs-

manydivision of the multiclass task into subtasks.

For an N -class problem, BD will require N � 1 evolutions. As an ex-

ample, consider a four-class problem with classes: A, B, C and D. The �rst

run will map f Ag as one of the two classes, andf B, C, Dg together as the
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other class. The second run will map f Bg against f C, Dg. The third run

will map f Cg against f Dg. Using the three programs returned, any test

pattern may be classi�ed. For example if the �rst program cla ssi�es the

pattern as in f B, C, Dg, and the second asf Bg then the pattern has B as its

class (note that in this case the third program is not used).

A disadvantage of BD is that the changing the order of the clas ses may

affect performance. Also, each program may still be require d to solve mul-

tiple tasks at once, when these tasks could be split into subtasks. For ex-

ample, a program that solves f A vs. f B,C,Dgg, is really solving all of f A

vs B, A vs C, A vs Dg.

General Methods

In [2], Allwein et aldescribe a general method, based on work by Dietterich

and Bakiri in [10], that combines many binary classi�ers int o a multiclass

classi�er.

The binary subtasks are encoded into a large matrix, which ha s values

for each column that refer to the classes compared for the column's binary

classi�er. A distance measure is then used to estimate the most likely class,

using the results of the classi�er and the values in the matri x.

6.3.2 Using Divide-and-Conquer in GP

In GP, the divide-and-conquer techniques commonly involve a separate

run for each subtask. Any classi�cation strategy may be used for each

run, such as PCM or PM. Each run produces a single program whic h is

able to solve the binary subtask, and these are combined to solve the larger

multiclass task.
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6.4 Communal Binary Decomposition

To avoid the disadvantages of previous divide-and-conquer methods we

developed a new method, Communal Binary Decomposition (CBD ), for

dividing a multiclass classi�cation problem up into binary problems then

solving them in a single run. CBD is similar to Binary Decompo sition

(BD), in that no single program is expected to solve the entir e multiclass

classi�cation problem.

Two differences exist between BD and CBD. The �rst is the numb er

and type of component subtasks from the multiclass task. For example,

consider a problem of four classes f A, B, C, Dg. Using BD, the subtasks

would be the binary tasks: f A vs f B, C, Dg, B vsf C, Dg, C vs Dg. However,

CBD uses the all-pairs division, so it has the tasks: f A vs B, A vs C, A vs

D, B vs C, B vs D, C vs Dg.

A program that solves f A vs. f B,C,Dggin BD, is really solving all of f A

vs B, A vs C, A vs Dg. CBD allows the program to do this, but also allows

different programs to specialize in the smaller, easier sub tasks.

The second difference is that of the number of evolutionary r uns. BD

would solve the four class problem in three runs of evolution , one per

subtask. In contrast, CBD only uses a single run and solves all subtasks

simultaneously in the same population. Clearly, this gives a potential gain

in ef�ciency, and allows for a large number of subtasks witho ut excessive

numbers of evolutionary runs. This multiplicity of operati on is achieved

by an altered �tness function, in which programs are encoura ged to select

a subtask and improve at it. The population is comprised of pr ograms

that may solve different subtasks, however the subtasks are no harder,

when put together, than the task that a single program in the m ulticlass

classi�cation strategies must solve.

During evolution, a group of so called expertprograms are kept, with

one per subtask. An expert is the program that has the best performance

seen so far in evolution, for a subtask. If the expert for a sub task performs
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better than a certain constant value, the subtask is marked as solved, and

programs are no longer encouraged to solve it. Evolution end s when all

subtasks are solved (or after a set number of generations).

When predicting the class of a test example, the experts are used to-

gether.

The description of CBD starts with the �tness function, foll owed by the

method for predicting the class of a test pattern.

6.4.1 Fitness Function for CBD

The �tness function for CBD ful�lls two requirements:

� That no program is rewarded for solving more than one subtask .

� That the �tness that a program gets is based on the subtask that it

does best, relative to other programs.

These goals are achieved by a multi-objective variant of rank �tness.

The algorithm for determining program �tness is as follows.

For each program P and task T

Compute the binary fitness of P at task T

Identify any tasks that are now solved

For each task T that has not been solved

Find rank fitness for the programs at task T

(from a rank near 1 for the worst program(s) at T

to a rank of 0 for the best program(s) at T)

For each program P

fitness of P =

its least rank fitness in an unsolved task

The “binary �tness” mentioned on the second line is the �tnes s found

for the program using a binary classi�cation strategy on the binary task T.

The �tness assigned to a program depends on its ability at the binary

tasks, relative to the ability of the other programs. For eac h task that has
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not been solved, a list of programs is compiled and sorted fro m good to

poor ability at the task; each program is given a rank �tness, proportional

to its position in the list, for each of these tasks. The progr am's best rank

is used as its �tness. The already-solved tasks are not used in this �tness

calculation, so the number of tasks that programs are encouraged to solve

will shrink during evolution.

Using the algorithm, a program that can perform a task better than any

other program will receive perfect �tness of zero, no matter how well or

poorly it does the other tasks. A program that is at the 50'th p ercentile of

task T, and the 49'th percentile of all other subtasks will get a �tn ess from

its ranking on task T, disregarding the other tasks. Note that this is true

even if the actual binary �tness value for the program at task T was worse

than the program's binary �tness value at some other task.

An example of this algorithm is shown in �gure 6.1.

D was at 1 in (1 vs 2)

Prog. A
Prog. B
Prog. C
Prog. D

1 vs. 2 1 vs. 3 2 vs. 3

Sorted Lists

Arrows indicate best positions

0.35
0.53
0.42
0.12

0.31
0.82
0.58
0.47

0.20
0.16
0.63
0.14

0.50

Best results Final Fitnesses

Binary Fitnesses for Class Pairs

0.00
0.25

0.00

DACB ADCB DBAC

A was at 1 in (1 vs 3)
B was at 2 in (2 vs 3)
C was at 3 in (1 vs 2)

Figure 6.1: Example of the CBD �tness function for four progr ams and

three classes.

The main table in the �gure lists the �tness values of four pro grams

(rows) on three subtasks (columns) using PM as the binary classi�cation

strategy. Below the main table, the entries for each subtaskare sorted from

best program to worst. For example, for the subtask of separating class one

from class two, program D was best with an �tness of 0.12 so it i s �rst in

the list.



6.4. COMMUNAL BINARY DECOMPOSITION 89

Each program has a �tness assigned to it relating to its posit ion in the

sorted list where it does best (occurs �rst, as indicated by a rrows). So

program D has a perfect �tness of 0.0 because its best position was �rst.

As tournament selection is used in the GP process, the exact values

assigned as �tnesses are unimportant, only their order matt ers.

6.4.2 Predicting the class of a test example with CBD

Using CBD, a group of so called expertprograms is kept in a separate “ex-

pert” population during evolution. There is exactly one slo t in the expert

population for each subtask at all times. These slots are initially empty.

As was previously discussed, the �tness function for CBD pro duces a

list of programs ranked from worst to best, for each subtask. Therefore,

the best program in the population at each subtask is readily available.

In the �rst generation, each slot in the expert population is �lled with

the best program at the slot's subtask. In later generations, each slot only

receives the best program at the subtask in the general population if it is

better than the expert in the slot. Thus, the expert populati on contains the

best program seen so far in evolution, at every component sub task of the

multiclass problem.

When an expert achieves an subtask �tness value that is better than a

certain threshold solveAt, the subtask is marked as solved. As described

previously, subtasks that are solved do not contribute to pr ograms' �tness

values, so programs are no longer encouraged to solve them. However,

in each generation the best programs at the solved subtasks are still calcu-

lated and the expert at a solved subtask may still change.

When classifying a test example, the experts are used together as is

described in the following section.
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Combining the Experts

For each pair of classes, there is an expert. The following describes how

to get a probability of an unseen pattern being of a given clas s from the

output of the experts. In the following the binary classi�ca tion method of

PM is used.

Equation 6.2 assumesPij (v) is the probability density function derived

from evaluating the expert for classes i and j on training data of class i .

This curve has mean � ij and standard deviation � ij .

Pij (v) = P r(progij (t) = vjt 2 train i ) =
e

(
� ( v � � ij ) 2

2� 2
ij

)

� ij

p
2�

(6.2)

where progij (t) is the output of the expert for classes i and j on pattern t.

train i is the subset of the training set that are of class i .

As in the previous chapter (section 5.5.4), we make the assumption that

the probability distributions of experts on test patterns a re the same as

those on the training set.

The probability that a pattern is in class i , given it is in either i or j can

be found using the expert for these classes:

P r(class(p) = i jclass(p) 2 f i; j g) =
Pij (progij (p))

Pij (progij (p)) + Pj i (progij (p))
(6.3)

In further equations, P r(class(p) = i jclass(p) 2 f i; j g) will be shortened

to P r(i ji; j ) for any classesi; j with the class(p) implicit.

SinceP r(i ji; j ) = P r(i )=P r(i or j ) and any single pattern cannot be in

both classesi and j :
1

P r(i ji; j )
= 1 +

P r(j )
P r(i )

(6.4)

We can sum the above probabilities over all N classes as follows:

NX

j 6= i

1
P r(i ji; j )

= N � 1 +
1 � P r(i )

P r(i )
(6.5)
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Using this result we can �nd the probability of the class of th e pattern

p being i :

P r(class(p) = i ) =
1

P N
j 6= i

1
P r (i j i;j ) � (N � 2)

=
1

P N
j 6= i

Pij (prog ij (t ))+ Pji (prog ij (t ))
Pij (prog ij (t )) � (N � 2)

The class we predict for the unseen pattern is, therefore, the classi that

maximizes P r(i ).

class(t) = argmax i (P r(class(p) = i ))

6.5 Results and Analysis

This section presents the results of experiments done to evaluate the new

method and �nd good values for its parameter, solveAt.

6.5.1 Comparison between Classi�cation Strategies, and Di vide-

and-Conquer Methods

In the �rst set of experiments, CBD is evaluated against othe r methods.

Table 6.2 displays a comparison of the performance and ef�ci ency of

BD, CBD and two multiclass classi�cation strategies (PCM, P M). The “divide-

and-conquer” approaches of BD and CBD are further divided in to the dif-

ferent binary classi�cation methods used. these are either PCM or PM.

In tables 6.1 and 6.2, the “Multiclass Method” column refers to the

method that deals with the multiclass nature of the task. Thi s is the divide-

and-conquer method, when used, or the multiclass classi�ca tion strategy,

when divide-and-conquer methods are not used. The “Binary C lassi�-

cation Strategy” column refers to the classi�cation strate gy used for the

binary problems when divide-and-conquer methods are used.
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Table 6.1: Comparison of CBD and other methods at �nal genera tion.

Dataset Multiclass Binary Final Run time Final test

Method Cls. Strat. Generation (s) acc. (%)

BD PCM 0.68 0.31 99.84� 0.31

Shapes PM 0.00 0.86 99.99� 0.04

4 class CBD PCM 0.00 2.83 99.78� 0.29

PM 0.00 1.06 99.99� 0.06

PCM 13.32 2.62 99.68� 0.51

PM 0.00 0.40 99.99� 0.04

BD PCM 1.06 0.18 99.69� 0.50

Coins PM 0.14 0.43 99.96� 0.14

3 class CBD PCM 0.00 0.94 99.97� 0.16

PM 0.00 0.63 99.95� 0.19

PCM 11.16 1.33 99.59� 0.60

PM 0.00 0.23 99.98� 0.10

BD PCM 34.32 3.54 97.29� 1.34

Coins PM 49.08 21.03 98.00� 1.21

5 class CBD PCM 28.14 67.31 97.39� 1.49

PM 16.50 11.12 98.45� 1.19

PCM 50.00 6.17 74.44� 8.07

PM 47.58 21.41 97.91� 1.33

BD PCM 9.32 0.27 82.15� 17.61

Faces PM 2.45 0.22 89.70� 14.63

4 class CBD PCM 35.62 13.88 84.75� 16.16

PM 31.57 7.29 88.70� 14.91

PCM 49.92 2.26 71.60� 17.84

PM 27.82 2.71 87.05� 14.09

The basic approachis found on rows using PCM as the multiclass method.

In table 6.1, it can be seen that PM, CBD with PCM, and CBD with P M
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solved the training problem (100% accuracy on the training s et) using only

the initial random generation of programs for the �rst two da ta sets. The

run time seems inconsistent between runs, but BD seems to take less time

per run than the other methods in general. The basic approach of PCM is

found to take the most generations to solve the training prob lem of all the

methods.

In table 6.2, it can be seen that the accuracy of the PCM methodeither

increases or stays the same, when divide-and-conquer with PCM is used.

When combined with PCM the CBD method gains slightly better a c-

curacy than BD on the `Coins' data sets, but not others. When combined

with PM the CBD method gains similar accuracy to BD for the two easier

data sets, but signi�cantly outperforms BD on both of the har der data sets.

For example, on the dif�cult `Faces' data set CBD with PM has 3 .20% mis-

classi�cation rate, where BD with PM has 8.70%. In fact for th e two harder

data sets CBD combined with PM gained better test accuracy than any of

the other methods.

On all data sets, the CBD method gains better accuracy than the basic

approach, no matter whether it is used with PCM or PM.

Longer run-times, and more generations, where used when com bining

CBD with PCM than when using CBD with PM, even though CBD with

PM normally gained better test accuracy.

6.5.2 Comparison of Different solveAt Values

In the second set of experiments, the effect of different val ues for the solveAt

parameter are compared. For these experiments, PM was used as the bi-

nary classi�cation strategy.

Table 6.3 displays a comparison of the performance and ef�ci ency of

CBD with different settings for the solveAt parameter that sets when bi-

nary subtasks are considered solved.

The table only includes the two harder data sets as the solveAt param-
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Table 6.2: Comparison of CBD and other methods at convergence.

Dataset Multiclass Binary Gens at best Time until Test Acc. at

Method Cls. Strat. val. best val. (s) best val. (%)

BD PCM 0.64 0.31 99.82� 0.38

Shapes PM 0.00 0.85 99.99� 0.04

4 class CBD PCM 0.00 2.83 99.78� 0.29

PM 0.00 1.06 99.99� 0.06

PCM 12.22 2.39 99.67� 0.55

PM 0.00 0.40 99.99� 0.04

BD PCM 0.66 0.15 99.62� 0.58

Coins PM 0.14 0.42 99.96� 0.14

3 class CBD PCM 0.00 0.94 99.97� 0.16

PM 0.00 0.63 99.95� 0.19

PCM 8.74 0.95 99.44� 0.88

PM 0.00 0.23 99.98� 0.10

BD PCM 12.72 1.16 97.01� 1.29

Coins PM 9.88 3.68 97.75� 0.84

5 class CBD PCM 8.02 21.07 97.53� 1.45

PM 3.46 2.38 99.30� 0.75

PCM 37.18 4.43 74.40� 7.98

PM 14.50 5.82 98.74� 0.99

BD PCM 1.78 0.08 90.45� 14.49

Faces PM 0.10 0.11 91.30� 13.85

4 class CBD PCM 2.53 1.27 88.95� 14.29

PM 2.33 0.55 96.80� 8.35

PCM 6.75 0.26 82.15� 13.61

PM 2.37 0.21 96.20� 8.98

eter has no effect in the initial generation, which is when th e easier data

sets were solved using this method.
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Table 6.3: Comparison of solveAt settings for CBD.

Dataset solveAt Gens. at Final Run time Test acc. at

best val. Generation (s) best val. (%)

0.0001 3.46 16.50 11.12 99.30� 0.75

0.0010 3.18 11.18 7.77 99.24� 0.85

Coins 0.0030 2.30 7.58 4.74 99.21� 0.86

5 class 0.0100 1.24 3.94 2.58 99.09� 1.02

0.0300 0.36 0.86 0.98 99.15� 0.93

0.1000 0.00 0.00 0.58 98.96� 1.04

0.0001 2.33 31.57 7.29 96.80� 8.35

0.0010 2.07 25.28 5.59 96.60� 8.71

Faces 0.0030 1.83 21.53 4.62 96.25� 9.07

4 class 0.0100 1.60 16.72 3.50 96.20� 9.11

0.0300 1.37 12.15 2.43 95.25� 9.93

0.1000 0.89 6.07 1.16 93.60� 11.14

In the table, it is clear that the performance and ef�ciency o f the method

is dependent on this parameter for the two harder data sets. M aking the

subtasks harder to solve (decreasingsolveAt) leads to better accuracy, but

also results in longer run-times. Setting this parameter gi ves a trade-off

between accuracy and run-time, if time is not an issue in an im plementa-

tion, then solveAt can be decreased, or if time is restricted, setsolveAt to a

higher value.

Setting solveAt to a value of 0.01 seems a good starting point for fast

runs, while maintaining high accuracy.

6.6 Summary and Discussion

In this chapter, we introduced a divide-and-conquer approa ch to mul-

ticlass classi�cation using GP, Communal Binary Decomposi tion (CBD).
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The approach divides the multiclass task into subtasks made of the com-

ponent pairs of classes (known asall-pairs). In contrast to other approaches,

which solve the subtasks in separate evolutions, CBD solves all the sub-

tasks in one evolution, using a multi-objective �tness func tion.

Using CBD, programs within the population receive �tness ba sed on

their ability at one subtask, relative to the other programs in the popu-

lation. This is a variation of rank �tness. The exact subtask used for a

program is the one that will give it the best �tness.

During evolution, a group of expert programsis assembled, with one per

subtask. When the test accuracy is desired, the expert programs are used

jointly to predict the class labels of the test examples. The method used to

combine the experts is mathematically proven, and does not i nvolve any

iterative processes or approximations. It returns a value f or each class that

is proportional to the probability of the test example being of the class,

given the outputs of the expert programs when evaluated usin g the test

feature-vector as input.

In experiments, we compared the CBD method to Binary Decompo si-

tion (BD, another divide-and-conquer approach), and two mu lticlass clas-

si�cation strategies.

� CBD was found to outperform the basic approach (PCM) on all da ta

sets, whether the classi�cation strategy used to solve the b inary sub-

tasks was PCM or PM.

� CBD used with PM as the binary classi�cation strategy, was fo und

to outperform all the other methods for both of the two harder data

sets.

� CBD was found to utilize the natural ability of the random pro grams

in the initial population. For the two easier data sets, CBD s olved

the training task (100% on training set) with only the initia l popu-

lation, without requiring further evolutionary search. Th is was true
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whether CBD was combined with PCM or PM as the binary classi�-

cation strategy.

� The solveAt parameter, which determines when to stop encouraging

programs to solve a subtask by marking it as `solved', was fou nd to

be a convenient way to control evolution. A small value for solveAt

was found to increase the test accuracy of the system at convergence.

A large value for solveAt caused lower test accuracy, but signi�cantly

shortened the required run-time.

The main search method in GP is an evolutionary search. Howev er,

in many areas hybrid searches (combining multiple search me thods) are

being found to have improved ability, over standard searche s. One such

area that has been proposed is combining a global evolutionary search in

GP with a local gradient-descent search within each generation. The next

chapter describes such a search method, and combines aspects of Neural

Networks (NNs) with GP programs.
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Chapter 7

Gradient Descent of Weights in

GP

In this chapter we introduce a new method that mimics certain character-

istics of Neural Networks (NNs) in a GP system.

7.1 Introduction and Motivation

The core search performed by GP is an evolutionary beam search. In this

search a number of programs are kept in a population and are al tered over

generations to optimize a heuristic �tness function. Speci �cally, the pro-

grams are altered by genetic operators.

The genetic operators typically include crossover and muta tion. Muta-

tion maintains diversity in the population of programs; cro ssover allows

mixing of material from two different programs. While enabl ing a power-

ful search in their own right, these standard genetic operat ors do not al-

low some desirable movements through search space. Both mutation and

crossover typically perform very signi�cant changes to the structure of the

programs they are applied to. However, neither mutation nor crossover

can ef�ciently optimize exact values of numeric parameters in a program.

Another search technique, gradient-descent, can ef�cient ly optimize nu-

99
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meric parameter values. This is the search technique most commonly used

for learning in Neural Networks (NNs).

This chapter introduces a method to use gradient-descent in GP. While

past research has done this by using gradient-descent of the numeric ter-

minals, or constants, in programs, this new research aims to more fully

mimic the use of NNs in GP.

The remainder of this chapter starts with the chapter goals. This is

followed by a discussion of the background to the chapter, in section 7.3.

In section 7.6, experimental results are analyzed. In section 7.7, the chapter

is summarized, with a discussion of the effectiveness of the new method.

7.2 Chapter Goals

This chapter aims to address the following research question given in sec-

tion 1.1.1:

Can weights be introduced into GP programs, and be automatic ally

learned by gradient-descent in evolution locally within ea ch generation

in evolution, which leads to an improvement of classi�catio n perfor-

mance on a sequence of multiclass object classi�cation prob lems, over

the basic approach?

This research question is broken up in this chapter to the fol lowing

�ner research questions:

� How can weights be added to the links of evolved programs, and be

ef�ciently learned through gradient-descent?

� Will a hybrid GP search with gradient-descent search of weig hts out-

perform the basic approach over the same problems?

� Will a hybrid GP search with gradient-descent search of weig hts out-

perform gradient-descent search of numeric terminals over the same

problems?
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7.3 Background

7.3.1 Neural Networks

NNs are a well established method of automatic learning that is roughly

based on the way neurons work in a brain. A standard NN, much li ke

a tree-based GP program, is a Directed Acyclic Graph (DAG). The nodes

perform a mathematical calculation on the values passed in o n their input

links and pass the results out on their output links. An examp le NN is

shown in �gure 7.1. NNs were discussed in more detail in secti on 2.2.
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Figure 7.1: Example neural network.

NNs typically learn wholly by gradient-descent using an alg orithm

known as error propagation. The parameters that are learned in the gradient-

descent search are the weights attached to the links betweennodes.

7.3.2 Gradient-Descent

Gradient-descent is a method by which changes can be made to asystem

in order to lower its cost and improve its performance at some task. For

example, the change may be to a set of weight values in NNs, or t he nu-

meric parameters in a GP program.

A snapshot of the parameters for the system, while searching for the



102 CHAPTER 7. GRADIENT DESCENT OF WEIGHTS IN GP

optimum, is seen as a point on a cost surface. The point refers to the cur-

rent settings, and its height refers to how good it is at the as signed task.

The gradient vector is found by differentiating the cost fun ction with

respect to each of its dimensions, that is, each of the parameters. This gra-

dient points along the cost surface in the direction of great est increase of

cost for a change in the point's position. The opposite vecto r gives the di-

rection of greatest decrease, and movement in that direction (by changing

the parameter values) should lower cost, which is clearly de sirable.

Related Work of Gradient Descent Applied to GP

Gradient-descent search has been applied to GP [42, 53]. Theglobal evolu-

tionary beam search was unchanged, and a local gradient-descent search

was used on the numeric terminals, or constants, in the progr ams each

generation. The application of gradient-descent was found to be bene�-

cial to GP.

In this chapter, the gradient-descent is applied to weights on the links

between nodes in GP programs. This may allow us to duplicate t he pow-

erful search as used in NNs, while maintaining the powerful a utomatic

learning of structure found in GP.

7.4 Genetic Programs with Weights

In this approach, we added weights to the evolved program str ucture,

which act similarly to the weights in NNs. Figure 7.2 shows an example

program with weights displayed next to the links between nod es.

As in NNs the role of the weights in our method is as multiplier s of

values returned from the lower node before passing the value to the upper

node. As such, the program displayed in �gure 7.2 represents the equation

(1:2� 3:2) + ( � 0:8 � (0:1� 1:0)(0:5� F 1)). The value that would normally

be returned from any node, except the root, is multiplied by t he value of
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+
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Figure 7.2: Example genetic program with weights on links.

the weight above it before it is returned to the parent node.

Using this structure, the values of the weights alter the way a pro-

gram performs its calculation. It could be expected that som e values of the

weights are better than others, with lower cost and better �t ness. Standard

GP is equivalent to the special case of this structure, where all weights are

equal to one. Therefore, one could expect that there are somevalues of

weights that enable the program to perform better than it wou ld in stan-

dard GP. One way that could be used to �nd better weight values than the

standard case is the gradient-descent search technique, asused success-

fully in NNs.

7.5 Gradient-Descent Applied to the Weights

This section describes the gradient-descent algorithm used on programs

in this approach. This algorithm is applied once per generat ion to all pro-

grams in the population.

The gradient-descent algorithm assumes a continuous, diff erentiable

cost surface describing the performance of the program for a ny set of

weights. The algorithm can be seen as starting at some point on the sur-

face, relating to the current weight parameter values, and m oving down

along the surface. The point reached is still on the surface, but should be
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at a lower cost and better �tness. The reason this is possible is that the gra-

dient vector of the cost surface can be found by differentiat ion, and this

points directly uphill along the surface (in the direction o f maximum cost

increase). The negative of this vector points directly down hill.

7.5.1 Gradient Vector

If the the current vector of weights is ~w, and they have cost C~w, then the

weight vector after gradient-descent is given in equation 7 .1. Equation 7.2

shows the same calculation, but for a single weight wi .

~w0 = ~w � � �
@C~w
@ ~w

(7.1)

w0
i = wi � � �

@C~w
@wi

(7.2)

where � is a rate parameter.

Cost Surface and its derivative @C~w
@w

The cost surface used in this approach is Mean Squared Error (MSE). For

MSE we must know the ideal program output Yk for each training example

k; the program output value yk is compared to this, and programs are

given higher cost for larger separations. The cost formula u sed is shown

in equation 7.3, and its derivative by the value of a weight wi vector in

equation 7.4. The �rst value required in this formula is give n in equation

7.5.

C~w =
P N

k=1 (yk � Yk)2

2
(7.3)

@C~w
@wi

=
NX

k=1

@C~w
@yk

�
@yk
@wi

(7.4)

@C~w
@yk

= yk � Yk (7.5)
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where N is the number of training examples. Yk is the ideal output value

for training example k.

In order to �nd the derivative of the cost by a weight value we n ow

need the derivative of the the program output with respect to a weight

value.

Partial Derivative @y
@w

Using the chain rule and differentiable program functions w e can �nd the

derivative of the the program output by a weight value simply and ef�-

ciently.

F1

*

+

node 5

node 3

node 1

node 4

y

w

node 2

3

w5w4

w2

3.2

1.0

Figure 7.3: Example genetic program with weights.

Consider the program in �gure 7.3, and with the notation that the out-

put of node i is Oi and the weight above node i has the value wi . The

derivative @y
@w5

is dealt with in the following equations:

@y
@w5

=
@y

@O3
�

@O3
@w5

=
@w2O2 + w3O3

@O3
�

@w4O4w5O5

@w5
= w3w4O4O5

The values O4 and O5 are easily found by evaluating the program, and

the weight values w3 and w4 are known, so the this derivative is easily
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calculated. Using this method, an algorithm can move down th e program

one link at a time, and can calculate the partial derivative o f the cost with

respect to any weight value. The derivatives of the function s used in this

approach are given in table 7.1. In the table o is the output of a node, ai is

the output of the i 'th argument node and wi is the weight of the link to the

i 'th argument node.

The Rate Parameter �

In equation 7.1 the parameter � determines the distance the point ~w is

moved along the cost surface C~w. In this approach we used a formula for

� that adjusts to compensate for the wide variety of output val ues com-

mon in genetic programs (for example, consider a divide func tion that has

a very small constant as the second argument). The formula is given in

equation 7.6.

� = � �
MX

i =1

 
@C~w
@wi

! 2

(7.6)

where the weights in the program de�ned by cost C~w are w1; w2; ::wM and

� is a learning rate constant determined empirically.

In this way, the gradients of weights will move small steps wh ere the

cost surface is steep and move in larger steps where the cost surface is

shallow. We expect that this measure can improve the gradien t descent

search for good weights.

7.5.2 Changes to the Operators and Other Algorithms in

GP

The inclusion of weights in GP programs requires modi�catio ns to the ge-

netic operators of reproduction, crossover, and mutation, and to the way

programs are constructed. The following rules are followed by the algo-

rithms within the GP process, when using weights.
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Table 7.1: The function derivatives.

Function Formula @o
@a1

@o
@a2

@o
@a3

@o
@w1

@o
@w2

@o
@w3

+ w1a1 + w2a2 w1 w2 a1 a2

� w1a1w2a2 w1w2a2 w1a1w2 a1w2a2 w1a1a2

- w1a1 � w2a2 w1 � w2 a1 � a2

% w1a1
w2a2

or 0 w1
w2a2

or 0 � w1a1
w2a2

2
or 0 a1

w2a2
or 0 � w1a1

w2
2 a2

or 0

if w2a2 = 0 if w2a2 = 0 if w2a2 = 0 if w2a2 = 0 if w2a2 = 0

If w2a2 or w3a3 if 0 w2 or 0 if 0 or w3 if 0 a2 or 0 if 0 or a3 if

w1a1 � 0 0 w1a1 � 0 w1a1 � 0 0 w1a1 � 0 w1a1 � 0
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1. When a node is created, the weight connecting it to the parent is

initialized to one.

2. When a node is copied, the weight connecting it to its parent i s copied

with it.

3. When a node is moved from one program to another, the weight

connecting it to its old parent is moved with it.

For example, the processes of crossover and mutation are shown in

�gure 7.4.
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Figure 7.4: Genetic operators with weights.
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7.6 Results and Analysis

In this section the results of some experiments that were per formed are

presented and analyzed. The experiments compare two forms of the method

discussed in this chapter. The �rst applies gradient-desce nt to all weights

in a program, the second applies gradient-descent to the wei ghts immedi-

ately above the numeric terminals only. The second form is cl osely similar

to the method of using gradient-descent to alter the numeric terminals val-

ues directly, giving near identical results in most cases.

Table 7.2 presents a comparison of learning rates for the two methods,

displaying test set accuracy at convergence, and total run time. Table 7.3

presents the same experiments but displays the generations and evalua-

tions used at convergence.

In table 7.2, it is seen that using gradient-descent increased the run-

time over the standard case of no gradient-descent. This is explained by

the complexity of the gradient-descent algorithm, which ha s to be called

every generation. However, this extra time was rewarded in m ost in-

stances, with the use of gradient-descent leading to higher test accuracy

than the basic approach.

When using gradient-descent increasing the rate parameter decreased

the time per run within the values tested. Also, the run-time was normally

slightly longer for the method applying gradient-descent t o numeric ter-

minals only than for the method applying it to all weights.

For the `Faces' data set, the accuracy increases with higherrate. For all

data sets, the best test accuracies were obtained when the rate parameter

was 1.0 or 2.0.

For the �rst three data sets, neither method of applying grad ient-descent

has consistently higher test accuracy. However, for the dif �cult `Faces'

data set, applying gradient-descent to all weights gave a te st accuracy

1.05% to 2.10% greater than the numeric terminal method, over all rate

values.
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Table 7.2: Results using gradient-descent, comparing run time and accu-

racy.

Dataset Rate � Run time (s) Test acc. at best valid (%)

Numeric All Numeric All

weights weights weights weights

GD off 1.70 99.56� 0.83

0.2 6.99 5.56 99.71� 0.62 99.53� 0.85

Shapes 0.4 5.87 5.01 99.74� 0.38 99.68� 0.41

4 class 1.0 3.89 2.55 99.66� 0.73 99.77� 0.42

2.0 2.62 1.77 99.74� 0.43 99.63� 0.48

GD off 0.68 99.56� 1.36

0.2 2.77 2.38 99.56� 0.73 99.61� 0.65

Coins 0.4 2.17 2.03 99.62� 0.62 99.73� 0.53

3 class 1.0 1.73 1.36 99.76� 0.54 99.65� 0.54

2.0 1.23 0.96 99.69� 0.49 99.67� 0.65

GD off 2.60 85.29� 6.40

0.2 10.82 10.78 87.23� 6.02 87.24� 6.17

Coins 0.4 10.60 10.36 87.20� 6.75 87.76� 6.32

5 class 1.0 10.80 11.22 87.90� 5.63 86.91� 6.53

2.0 11.56 10.73 89.41� 5.81 87.10� 5.73

GD off 0.32 81.40� 14.46

0.2 0.69 0.70 84.70� 14.09 86.40� 13.42

Faces 0.4 0.61 0.66 84.85� 14.55 86.95� 13.45

4 class 1.0 0.60 0.53 85.55� 13.13 87.05� 13.17

2.0 0.56 0.51 86.45� 13.79 87.50� 13.18

In table 7.3 we see that, normally, increasing the rate decreases the

number of generations until convergence. When using gradie nt-descent,

increasing the rate also decreases the number of evaluations at conver-

gence.
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Table 7.3: Results using gradient-descent, comparing generations and

evaluations used.

Dataset Rate� Gens till best valid Evals at best valid (x1M)

Numeric All Numeric All

weights weights weights weights

GD off 20.96 201.68

0.2 17.32 14.52 497.28 392.52

Shapes 0.4 15.30 12.58 414.67 354.54

4 class 1.0 9.90 6.84 276.50 181.92

2.0 6.96 4.88 186.32 125.93

GD off 13.74 64.24

0.2 12.08 11.04 186.54 160.44

Coins 0.4 10.16 9.20 145.84 137.18

3 class 1.0 7.96 6.24 116.75 91.94

2.0 5.46 4.30 82.89 65.09

GD off 42.80 231.36

0.2 43.84 43.80 718.03 717.08

Coins 0.4 42.38 42.04 701.97 687.08

5 class 1.0 41.92 45.00 714.16 747.13

2.0 42.78 44.52 764.90 717.88

GD off 10.57 11.22

0.2 9.69 9.74 29.93 30.22

Faces 0.4 8.60 8.96 26.61 28.54

4 class 1.0 8.08 7.61 25.99 23.09

2.0 7.55 6.88 24.40 22.36

For the �rst two data sets, the number of generations and eval uations at

convergence is less for the method using all weights than for the numeric

weights method, over all rate values. For the two harder data sets, the

two gradient-descent methods have similar numbers of gener ations and
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evaluations at convergence, for most rate values.

The graphs displayed in �gure 7.5 show the test set accuracy t rend for

the different methods on two of the data sets.
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Figure 7.5: Accuracy trend for the two methods, on Shapes and 3-class

Coins data sets. � = 1:0.

In the �gure, it is seen that the trends for the two methods are very

similar, but the method using gradient-descent of all weigh ts converges

slightly faster than the method of numeric weights only. Thi s is especially

true of the `Shapes' data set, but is also seen in a lesser way in the `Faces'

data set.
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7.7 Summary and Discussion

In this chapter, we introduced a new method for using gradien t-descent

within GP. An addition was made to the program structure, weightswere

added to the links within programs. The weights were based on the weights

in Neural Networks (NNs), and act as multipliers of nodes' re turn values

as they are passed to their parents.

By adjusting the weights, the effects of subtrees within a pr ogram could

be controlled/ This was achieved using the gradient-descen t search tech-

nique, which is the same search as is often used in NNs. A varia tion of

the error propagation algorithm used in NNs was developed to effect the

gradient-descent search of weights. In our previous research, the same

search was used to �nd good values of the numeric terminals (s ometimes

called constants) in programs.

In experiments we compared the new method of using gradient- descent

on weights to the basic approach of no gradient-descent, as well as the pre-

vious approach of applying the gradient-descent to numeric terminals.

� Gradient-descent of all weights gave longer run-times than the basic

approach, but also greater test accuracy.

� Gradient-descent of all weights gave similar accuracies to gradient-

descent of numeric terminals for most data sets and rates, but gave

accuracies consistently one to two percent better for the di f�cult,

`Faces', data set.

� Gradient-descent of all weights was seen to converge faster on the

easier two data sets, relative to the gradient-descent of numeric ter-

minals.

� Of the rates used in experiments, a value of 1.0 or 2.0 was found to

give a good mix of fast evolution and high test accuracy.
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The following chapter discusses an approach where “inclusi on-factors”

are altered by gradient-descent in a similar way to the weigh ts of this chap-

ter. The approach allows the evolutionary search to be displ aced to change

structure only, not program output. Using the search, the on ly way out-

put changes is through the gradient-descent search, giving the search the

property that programs almost always increase �tness from g eneration to

generation.



Chapter 8

Gradient-Descent of Program

Structure

This chapter introduces a new method which performs a hybrid GP and

gradient-descent search.

8.1 Introduction and Motivation

In the previous chapter, a gradient-descent search was performed on pro-

gram weights, alongside the evolutionary GP search on progr am structure

and values.

Many search methods in arti�cial intelligence can be though t of as aim-

ing to �nd a low point on a cost surface. There is a point of the s urface for

each possible set of parameters. The evolutionary search works by keep-

ing a large population of programs, each a point on the surfac e. These

points are then moved using genetic operators of mutation an d crossover,

and the lower points are kept, while higher points are discar ded. A key

point is how the points are moved by mutation and crossover. These op-

erators do not attempt to move continuously along the surfac e, they are

inherently discontinuous and are seen to jump with disregar d for the con-

tinuity of the cost surface.

115
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Consider a program that has found a local minima on the surfac e; fur-

ther search involves applying a genetic operator to the poin t, creating chil-

dren for the next generation's population. Due to the nature of the opera-

tors, most of these children may have “jumped out of” the loca l minima.

The evolutionary search relies on the possibly small number of children

that will have jumped downhill.

Using gradient-descent search on weights or numeric termin als, as in

the previous chapter, applies a different method of movemen t along the

cost surface. Instead of jumping discontinuously around th e cost surface,

gradient-descent approximates a continuous movement. Such a search

will not jump out of a local minima, so long as it does not overs hoot (due

to the approximation to a continuous search).

In previous approaches using gradient-descent in GP, both search tech-

niques coexist. The evolutionary search alters the structure and numeric

parameters in a program, where the gradient-descent search optimizes the

numeric parameter. Importantly, both searches can change the �tness of a

program, and the outputs of the program for any input pattern .

The subject of the method described in this chapter is the prevention

of changes in �tness due to the evolutionary search. If the ev olutionary

search cannot change the �tnesses of the programs, then the sole change in

�tness occurs due to the gradient-descent search. As the gradient-descent

search will seldom decrease the �tness of a program (unless i t overshoots

a local minima), the �tness of each program should get better with each

generation. Evolutionary search can guarantee that the bestprogram does

not decrease, through reproduction, but normally not all pr ograms.

The remainder of the chapter begins with a list of chapter goa ls. This is

followed by a description of the modi�cations to the evoluti onary search,

in section 8.3, and the gradient-descent search, in section8.4. In section

8.5, the results of experiments are displayed and analyzed. In section 8.6,

the chapter is summarized, with a discussion of the effectiv eness of the

new methods.
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8.2 Chapter Goals

This chapter aims to address the following research question given in sec-

tion 1.1.1:

Can changes in program �tness during evolution be made only b e

gradient-descent, while still searching over all programs , leading to an

improvement of classi�cation performance a sequence of mul ticlass ob-

ject classi�cation problems, over the basic approach?

This research question is broken up in this chapter to the fol lowing

�ner research questions:

� How can inclusion factors and modi�ed genetic operators be d evel-

oped, ensuring that each child program's �tness is the same a s one

of its parents' �tnesses?

� Will the continuous GP search outperform the basic approach over

the same problems?

� Will a hybrid GP search with gradient-descent search of incl usion

factors, with standard genetic operators, outperform the b asic ap-

proach over the same problems?

8.3 Evolutionary Search Without Change in Fit-

ness

In this method, we disallow any change in �tness due to the evo lutionary

search. This is achieved by disallowing a child program, aft er application

of a genetic operator, from having a different set of output v alues to both

of its parents. That is, the genetic operator must leave the child with the

same output characteristics as one of the parents.

Inclusion factorsare proposed here. Modi�ed genetic operators that use

the properties of the inclusion factors can be used to change a program's

structure, while guaranteeing no change in program output.
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8.3.1 Inclusion Factors

Inclusion factors are real-valued variables contained wit hin a program.

Only function nodes with more than one argument have inclusi on factors,

which are placed on the link to each of the node's arguments.

The inclusion factors relate to how much the argument node is includedin

the function node's (and therefore the program's) calculat ion. Inclusion

factors are clipped to between 0 and 1, with a value of 0 for nod es that are

not included at all in the program's calculations, and 1 for n odes that are

fully included.

The new functions, with inclusion factors, are listed in tab le 8.1. In the

table an is the evaluated value of the n'th argument and in is the inclusion

factor of the n'th argument.

Table 8.1: Primitive Functions With and Without Inclusion F actors.

Primitive Num of Function Without Function With

Function Args Incl. Factors Incl. Factors

Addition 2 a1 + a2 i1a1 + i2a2

Multiplication 2 a1a2 (1 + i1(a1 � 1))(1 + i2(a2 � 1))

Negation 1 � a1 � a1

Inversion 1 a� 1
1 or 0 if a1 = 0 a� 1

1 or 0 if a1 = 0

Only the multiplication and addition functions use inclusi on factors,

as they relate to a smooth use of gradient-descent on the inclusion factors.

The negation and inversion functions allow for simulation o f subtraction

and division. The if function was not implemented in this approach.

8.3.2 Rules on Inclusion Factors

Two rules are enforced on inclusion factors, to allow their g radient-descent

and disallow changes in program output due to change in progr am struc-
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ture.

1. Changes in the structure in a program subtree may only occu r when

one of the links linking the subtree to the root has an inclusi on factor

of zero. When a node has an argument with an inclusion factor o f

zero, any changes may be made to the argument or its subtree (if it

is a function); the inclusion factor means the subtree is not included

in the program's calculations, so no change will be noticed i n the

program output and �tness.

2. At least one of the arguments of any function must have 1:0 as its

inclusion factor. This rule allows a smooth gradient-desce nt search,

and disallows the situation where none of the arguments of a n ode

are included in the program.

The formulae for the functions that use inclusion factors ha ve been cho-

sen to satisfy two rules:

3. If both inclusion factors are one, the function operates as in the stan-

dard case (as with no inclusion factors).

4. If all but one inclusion factors are zero, the function eva luates to the

value of the argument with the inclusion factor of one (which must

exist due to rule 2 stated previously).

Since the cost function may be differentiated by the values o f the in-

clusion factors they may be altered in the direction of the gr adient as dis-

cussed in the previous chapter.

8.3.3 The Genetic Operations Applied to Programs

There are two classes of new genetic operator which allow changes to be

made to program structure. Both are variants of the standard GP opera-

tors.
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� On Zero Operators: When an inclusion factor, after gradient-descent,

reaches zero or negative, the node it is attached to may be detrimen-

tal to the program, and an on zerooperator is applied to the node.

� Genetic Operators: At any time, structure may be added to a pro-

gram, so long as the new part is not included in the program, an d

the existing parts are not changed. Two operators (referred to as the

static genetic operators) are used, modeled on the standardGP oper-

ators.

On Zero Operators

When an inclusion factor reaches zero during the gradient-d escent search,

one of the following operators is randomly selected and appl ied:

� Deletion: The node that has an argument with zero as its inclusion

factor is replaced in the program by its other 1 argument. This oper-

ation is shown in �gure 8.1(a).

� Mutation: The argument with an inclusion factor of zero is replaced

by a randomly generated subtree. This operation is shown in � gure

8.1(b).

� Crossover: The argument with an inclusion factor of zero is replaced

by a randomly selected subtree from the population. This ope ration

is shown in �gure 8.1(c).

Static Genetic Operators

The operators included in this section are applied to progra ms in the same

circumstance as the standard GP operators are in standard GP. Each gen-

eration, some proportion of the population are produced thr ough repro-

1Note that this is only applied to parent nodes with two argume nts, one of which has

one, and the other zero, as inclusion factors.
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Figure 8.1: Examples of the “on zero” operators.

duction (which is the same as in standard GP), some proportio n through

the static mutation, and some proportion through the static crossover.

The static mutation operator is applied to some randomly sel ected node

in a tournament selected program. A function is randomly cho sen from

the available functions and replaces the selected node in the program. It

is given the same inclusion factor as the node had. The node is placed as

one of the new function's arguments and is given an inclusion factor of

one. The function's other argument is set as a randomly generated sub-

tree, with an inclusion factor of zero. All inclusion factor s of nodes in the

randomly generated subtree are set to one. This process is shown in �gure

8.2(a).
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The static crossover operator is similar to the new mutation . It is ap-

plied to some randomly selected node in a tournament selected program.

A function is randomly chosen from the available functions a nd replaces

the selected node in the program. It is given the same inclusi on factor as

the node had. The node is placed as one of the new function's arguments

and is given an inclusion factor of one. The function's other argument is

set as a randomly selected subtree from a tournament selected program

in the population and is given an inclusion factor of zero. Th e inclusion

factors in the subtree are unaffected. This process is shownin �gure 8.2(b).
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Figure 8.2: Examples of the new genetic operators.
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8.4 Gradient-Descent of Inclusion Factors

The gradient-descent of inclusion factors in a program occu rs in much the

same way as the gradient-descent of weights, as discussed inthe previous

chapter. The only differences are the derivative functions , which are listed

in table 8.2, and the renaming of weights as inclusion-facto rs.

Table 8.2: The function derivatives.

Function @o
@a1

@o
@a2

@o
@i1

@o
@i2

+ i1 i2 a1 a2

� i1� i2� (a1 � 1)� (a2 � 1)�

(1 + i2(a2 � 1)) (1 + i1(a1 � 1)) (1 + i2(a2 � 1)) (1 + i1(a1 � 1))

neg � 1 n/a

inv � a� 2
1 n/a

In the table o is the output of a node, aj is the output of the j 'th argu-

ment node and i j is the inclusion factor of the j 'th argument.

8.5 Results and Analysis

In this section the results of the experiments that were perf ormed are listed

and analyzed.

Table 8.3 shows the relative performances of three methods.

� The �rst line for each data set is the basic approach.

� The second line for each data set is GP with gradient-descent of in-

clusion factors, but still using the standard genetic opera tors of mu-

tation and crossover. As such, program �tness may change due to

both the evolutionary and gradient-descent searches.
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Table 8.3: Results of different levels of gradient-descent

Dataset Grad- Static Gens at Run-time Test acc. at

desc? gen. op's? best val (s) best val (%)

Shape No No 36.60 1.00 97.82� 3.90

4 class Yes No 20.58 1.25 99.41� 1.33

Yes Yes 38.94 11.66 92.90� 6.97

Coin No No 24.60 0.65 98.79� 1.25

3 class Yes No 19.28 0.74 99.54� 0.75

Yes Yes 25.32 5.31 94.59� 4.91

Coin No No 53.28 1.25 65.26� 5.62

5 class Yes No 46.96 3.69 64.60� 6.79

Yes Yes 10.12 6.81 50.78� 6.16

Face No No 8.38 0.64 79.70� 13.05

4 class Yes No 6.84 1.34 82.00� 13.36

Yes Yes 3.23 2.79 73.70� 15.19

� The third line for each data set is the fully continuous metho d de-

scribed in this chapter, with gradient-descent of inclusio n factors as

well as the static genetic operators.

From the table we can see that for all data sets the use of gradient-

descent caused longer run-times and the use of the static genetic operators

slowed the runs further. Using gradient-descent and the nor mal operators

required slightly fewer generations until convergence, co mpared to the

basic approach. However, the number of generations used by the fully

continuous approach depended on the dif�culty of the data se t. It used

the most generations of the methods for the �rst two data sets , and the

least for the harder two data sets.

The accuracy of the system was improved by the use of gradient -descent,

over the basic approach, on all but the `Five-Class Coins' data set. On this
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data set, however, the basic approach had the best accuracy.This may indi-

cate that gradient-descent is less effective on data sets with large numbers

of classes.

The use of the static genetic operators, along with gradient -descent,

gave worse test accuracies for all data sets than the basic approach.

Table 8.4 compares different combinations of on-zero operators used

when an inclusion factor reaches zero during gradient-desc ent search.

In the table, the different combinations cause very little d ifference in

performance of ef�ciency. It is, however, seen that the use o f deletion as

an on-zero operator causes slightly shorter run times, whil e not sacri�c-

ing test accuracy. This could be due to deletion removing mat erial from

the programs. The new genetic operators normally increase the size of

the programs, so it is important that there is an operator tha t will reduce

the program size to avoid endless growth (up to the enforced m aximum

depth) of the programs.

Table 8.5 compares the standard mutation operator to the new static

mutation operator. It does this by sliding the proportion of mutations done

using the new method from none to all. For this table, the cros sover rate

is zero, so the only genetic operators are the two mutations.

In the table it is seen that similar accuracies are achieved with 0%, 25%,

50% and 75% static mutations for the `Shapes', `Three-ClassCoins' and

`Faces' data sets. For the `Five-Class Coins' data set, the test accuracy was

lowered by increasing the proportion of static mutations. W ithin the 0%

to 75% range of static mutations, increasing the proportion of static muta-

tions did increase the run-times and generations at converg ence.

When all mutations are done with the new method, the accuracy is

lowered signi�cantly, and the run-time increased.

Table 8.6 compares the standard crossover operator to the new static

crossover operator. The proportion of crossovers done using the new

method is varied from none to all. For this table, the mutatio n rate is zero,

so the only genetic operators are the two crossovers.
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Table 8.4: Results with different on-zero operators. Function set includes

only addition and multiplication.

Dataset Available on-zero Gens at Run-time Test acc. at

operators best val (s) best val (%)

Delete Mutation Crossover

off off 55.96 14.20 98.68

off on 60.84 30.89 95.20

on off 62.54 13.75 95.67

Coin on 60.42 26.90 96.14

3 class off off 66.34 8.84 96.78

on on 61.92 14.76 96.79

on off 56.80 8.89 97.05

on 60.64 14.52 96.14

off off 66.44 17.78 61.38

off on 51.32 36.38 57.52

on off 49.74 15.14 59.39

Coin on 45.32 31.67 56.89

5 class off off 49.96 10.76 59.03

on on 56.50 16.83 59.75

on off 57.76 11.12 58.12

on 58.56 17.52 60.17

off off 5.13 5.50 75.00

off on 4.00 13.41 74.40

on off 3.91 4.90 73.90

Face on 4.08 10.09 74.10

4 class off off 4.35 3.34 74.50

on on 5.72 5.41 75.60

on off 6.05 3.41 75.80

on 5.66 5.32 76.10
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Table 8.5: Results of different proportions of mutations be ing static. Func-

tion set includes only addition and multiplication.

Dataset Mutation Gens at Run-time Test acc. at

normal/static best val (s) best val (%)

100%/0% 8.88 1.08 99.64� 0.50

Shapes 75%/25% 9.32 1.01 99.64� 0.47

4 class 50%/50% 9.52 1.05 99.48� 0.64

25%/75% 12.32 1.34 99.64� 0.46

0%/100% 45.68 12.41 97.84� 4.04

100%/0% 12.58 1.12 99.51� 0.82

Coins 75%/25% 13.98 1.27 99.33� 1.14

3 class 50%/50% 17.88 1.54 99.59� 0.71

25%/75% 25.96 3.51 99.54� 0.75

0%/100% 62.54 9.98 97.34� 3.38

100%/0% 69.02 8.86 75.67� 6.33

Coins 75%/25% 73.18 10.12 74.92� 6.82

5 class 50%/50% 67.14 11.35 72.81� 7.55

25%/75% 73.16 11.17 71.09� 8.31

0%/100% 57.94 12.81 60.64� 7.17

100%/0% 5.06 3.00 81.95� 13.25

Faces 75%/25% 6.45 3.42 81.75� 13.16

4 class 50%/50% 6.40 3.69 81.60� 12.80

25%/75% 7.89 3.84 81.05� 13.12

0%/100% 4.85 3.95 74.90� 14.83

In the table it is seen that similar results are achieved with 0% to 50%

static crossovers. An increase in the proportion of static crossovers gives

slightly lower test accuracy and longer run-times in most ca ses. When the

proportion of static crossovers is increased to 100% the accuracy lowers

signi�cantly and the run-time increases.
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Table 8.6: Results of different proportions of crossovers being static. Func-

tion set includes only addition and multiplication.

Dataset Crossover Gens at Run-time Test acc. at

normal/static best val (s) best val (%)

100%/0% 9.12 0.61 99.60� 0.72

Shapes 75%/25% 10.10 0.66 99.26� 0.65

4 class 50%/50% 13.20 1.04 99.35� 0.87

25%/75% 17.64 2.47 98.93� 2.31

0%/100% 56.82 10.73 97.83� 2.94

100%/0% 19.26 0.92 99.55� 0.74

Coins 75%/25% 19.04 1.18 99.45� 0.90

3 class 50%/50% 25.44 2.24 99.02� 2.07

25%/75% 32.38 3.73 98.78� 1.20

0%/100% 48.84 8.04 94.04� 4.33

100%/0% 51.36 3.63 69.91� 7.60

Coins 75%/25% 57.88 5.10 69.44� 7.24

5 class 50%/50% 53.42 5.83 66.16� 7.03

25%/75% 56.54 6.99 63.89� 8.41

0%/100% 43.54 8.49 58.39� 8.49

100%/0% 4.02 1.39 81.40� 13.47

Faces 75%/25% 3.59 1.72 81.40� 13.10

4 class 50%/50% 4.08 2.05 81.25� 13.40

25%/75% 5.56 2.29 81.15� 13.36

0%/100% 3.82 2.71 73.95� 14.75

8.6 Summary and Discussion

In this chapter, a novel method was introduced for using grad ient-descent

search alongside the GP evolutionary search. A modi�ed evol utionary

search was used globally through evolution, with a gradient -descent search



8.6. SUMMARY AND DISCUSSION 129

locally within each generation.

The evolutionary search was modi�ed so as to not cause changes to

the �tnesses of the programs; the �tness of a child after appl ication of the

modi�ed mutation or crossover operators is guaranteed to be same as that

of one of the parents. This allows changes in �tness to only oc cur through

gradient-descent, which seldom causes a drop in �tness.

The search method was possible by the use ofinclusion factorswhich are

attached to some of the nodes within the programs. An inclusi on factor

controls how much its subtree is included in the program's ca lculations.

A value of one means that the subtree is included as normal. A v alue

of zero means the subtree is not included at all and this is exp loited by

the new genetic operators which can make changes to the structure of the

subtree without any change in the program's output. The incl usion factors

added to programs are continuous variables and the cost func tion may be

differentiated by their values, so they can be altered by gra dient-descent.

Two types of genetic operators were created, based of the standard op-

erators.

� On-zero operators are used when an inclusion factor reacheszero of

its own accord during evolution.

� Static genetic operators are used in place of the standard genetic op-

erators.

Three methods were compared in experiments: the basic approach,

a new approach with gradient-descent of the inclusion facto rs but with

standard genetic operators, and a fully continuous method w ith gradient-

descent of inclusion factors and the new genetic operators.

The gradient-descent of inclusion factors with standard op erators was

found to outperform the basic approach on three of four data s ets. How-

ever, it normally took longer per evolutionary run.

Unfortunately, the hybrid GP with gradient-descent and sta tic genetic

operators does not perform as well as either the standard GP search or
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gradient-descent search with the standard GP operators. A reason for this

may be that the evolutionary beam search covers the search space more

quickly than the gradient-descent search. The new method lo ses the jump-

ing nature of the evolutionary search. However, this new sea rch ensures

that almost always the �tness of each program in the populati on increases

from one generation to the next. It could be expected that the new method

would have advantages when long run times were allowed.

One unfortunate side effect of the new genetic operators is bloat; the

size of each program is almost certain to increase each generation. The

only method available to decrease the size of a program is thr ough an

on-zero operator. However, results indicate that on-zero o perators have

little effect in practice as the inclusion factors can take a long time to reach

zero through gradient-descent. This could well be a reason f or the low

performance of the method in its current form, and will be the focus of

future work on this approach.



Chapter 9

Conclusions

In this chapter, we present the contributions and conclusio ns of the work

in this thesis, as related to the research questions posed insection 1.1.1.

This chapter ends with an indication of future research dire ctions.

9.1 Conclusions

The main goal of this thesis was to investigate a novel approa ch to mul-

ticlass object classi�cation in Genetic Programming (GP), improving clas-

si�cation performance over the basic standard GP approach. This goal

was achieved by designing and evaluating methods in two area s of GP:

areas related to classi�cation strategies, and areas related to hybrid GP

searches with gradient-descent. These two research areas have led to four

new methods. The major conclusions are summarized as follow s.

� This thesis developed a new GP method with a probabilistic cl as-

si�cation strategy, and showed how it could outperform the b asic

GP method on a sequence of multiclass object classi�cation p rob-

lems. (In this approach, each program still solved the entir e multi-

class problem)

The Probabilistic Multiclass (PM) method was developed usi ng a

131
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probabilistic model as its base in chapter 5. The probabilis tic model

for a program's output distribution contained one normal (G aussian)

curve per class, derived from the output distribution of the program

on training examples of the class.

The separations of the normal curves in a program's model wer e

used for its �tness. A good �tness was given to a program which

had curves that were well distinct for different classes, as the pro-

gram could differentiate the classes well. A bad �tness was g iven to a

program which had curves that signi�cantly overlap, as the p rogram

differentiated the classes less well. Two measures for the separation

of curves were developed in chapter 5: overlap area and separation

distance.

A mathematically rigorous method was developed for predict ing the

class of a test example. The program's output is found, with t he test

example used as input. The probability density of a class's curve, at

the point that the program outputs, is used as an indication o f the

probability that the test example is of the class. Several programs

may be used jointly for predicting a test example's class, by multi-

plying probabilities.

On all four multiclass classi�cation data sets that the meth od was

tested on, the PM method outperformed all other classi�cati on strate-

gies it was compared to, including two dynamic classi�catio n strate-

gies. The PM method signi�cantly outperformed the basic app roach

(program classi�cation map).

On all one hundred evolutions where PM was used on the easier t wo

data sets, PM solved the training task (100% accuracy on the training

set) using only the initial generation of programs, somethi ng none

of the other methods could do. This indicates that the PM meth od

uses the ability of programs to solve the task, without placi ng as

many constraints on the program output as do the other classi �ca-
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tion strategies.

� This thesis developed a new Communal Binary Decomposition

(CBD) method leading to an improvement of the object classi� ca-

tion performance, over the basic approach on the same proble ms.

In chapter 6, the CBD method divided a multiclass classi�cat ion task

into many binary classi�cation subtasks, each distinguish ing a pair

of the original classes. A variation of rank �tness used in CB D then

allowed all subtasks to be solved in one population. The �tne ss func-

tion encouraged each program to do well at any single subtask , and

programs were rewarded for doing the subtask better than the other

programs.

We developed a mathematically rigorous method to combine expert

programs, each only required to distinguish two classes, into a multi -

class classi�er. The expert programs were captured from evo lution,

with one per subtask.

When compared to three other methods, CBD signi�cantly outp er-

formed the basic approach on all four data sets. When using PM as

the binary classi�cation strategy, CBD signi�cantly outpe rformed Bi-

nary Decomposition (BD) and slightly outperformed multicl ass PM

on relatively dif�cult problems.

As was found with PM, CBD was found to use the initial populati on

of programs well, solving the training task in relatively ea sy prob-

lems using only the initial random population of programs.

The solveAt parameter to the CBD method was found to be a con-

venient method of controlling the accuracy of evolution. Se tting the

solveAt parameter to a higher value caused lower test accuracy, and

shorter run times. Setting the solveAt parameter to a lower value

caused test accuracy to peak, but longer run times.

� This thesis showed how weights could be introduced into GP pr o-



134 CHAPTER 9. CONCLUSIONS

grams, and be automatically learned by gradient-descent in evolu-

tion, leading to an improvement of classi�cation performan ce on

the same problems, over the basic approach.

In chapter 7, a new approach added weights to program links, w hich

were used in a similar way to the weights of a neural network. E ach

weight acted as a multiplier for values passing through the l ink it is

attached to, allowing the effect of different subtrees on th e program

to be altered by changing the weights. A variation of the back ward

error propagation method was used to optimize the values of t he

weights through gradient-descent. The global evolutionar y search of

GP was only altered slightly, with the genetic operators pre serving

the weights from parent programs to child programs.

On all problems, the gradient-descent of weights resulted i n higher

test accuracy than the basic approach. The gradient-descent of weights

signi�cantly outperformed the gradient-descent of numeri c termi-

nals only on one relatively hard problem. For the other probl ems,

the two methods achieved similar performance.

� This thesis showed how changes in program �tness could be mad e

solely by gradient-descent, while still allowing a search o ver all

programs.

In chapter 8, a new approach added inclusion factorsto the nodes of

genetic programs, which were optimized by gradient-descen t. The

inclusion factors were used to map out certain parts of the pr ogram,

so that they could be changed without affecting program outp ut.

In the approach, Static genetic operatorssuccessfully prevented any

change of �tness between a child program and one of its parent s,

and were used in place of the standard genetic operators in th e fully

continuous search. On-zero operatorswere also developed, and used

when an inclusion factor mapped a part of a program out throug h

gradient-descent.
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The on-zero operators were found to have little effect on per for-

mance. The fully-continuous search made possible by the inclusion

factors and static genetic operators, caused worse performance than

the basic approach. However, gradient-descent of inclusio n factors

alone, without static genetic operators, was found to norma lly in-

crease the performance over the basic approach.

9.2 Future Work

9.2.1 Future Work on Probabilistic Multiclass

Future work on PM would likely include expanding the model of a pro-

gram's output for a class. Currently a normal curve is used fo r its sim-

plicity and ease of use. However, many other shapes of curve m ay be

substituted. A mixture of normals may be a good �t to many dist ributions

that the single normal cannot �t (such as where there is more t han one

centre).

Other directions of future work on PM may include testing it o n more

data sets, and testing it against more methods, such as neural networks

and decision trees.

9.2.2 Future Work on CBD

Future work on CBD would likely include looking into the mult i-objective

�tness measure and the crossover operator.

Currently the subtasks included in the �tness are component s of a

larger task. However, unrelated tasks, possibly from separ ate object clas-

si�cation tasks could also be co-evolved with the same �tnes s function. It

may be that a population evolved for one task would be good at a nother,

quite distinct, task. In this case the co-evolution could be advantageous.

In such a system, it may be that restricting mating between pr ograms
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that are specialized for different tasks improves performa nce. This would

be a focus of future work into CBD.

Other directions of future work on CBD may include testing it on more

data sets.

9.2.3 Future Work on Gradient-descent of Program Weights

In future work on the gradient-descent of weights we may look at schemes

such as online learning, as well as testing it on more data sets and against

more methods.

9.2.4 Future Work on Gradient-descent of Structure

In future work on the gradient-descent of inclusion factors we may look

at the issue of bloat. In the current system, programs often g row through

evolution, until they hit a depth limit, which is undesirabl e. This growth

is due to the static genetic operators, which never remove material from

programs. A compromise may need to be met, between the curren t fully

continuous approach, and one that does not add to the program size at

each step. The `on-zero' operators do remove material from programs,

and further research into utilizing these more is warranted .

Another area that may be explored is that of using this method on long

runs. If the �tness of programs will only increase, then it ma kes sense to

continue evolution for as long as possible. This may depend o n a solution

to the bloat problem.

Other directions of future work on this method may include te sting it

on more data sets.
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Appendix A: Calculating Integrals

of a Normal Curve

This appendix describes the method commonly used to �nd the a rea un-

der a normal curve between its mean and any point x. There is no known

closed form for this calculation, and the standard approach uses a table of

values obtained by integrating the standard normal distrib ution.

A.1 Initialization Calculations

At initialization, the following calculations are perform ed, in order to ease

the runtime area calculations:

� The standard normal function(equation 1) is calculated and stored

over a range of values from 0 to � at intervals of � . i.e. the curve is

sampled for � standard deviations, with � standard deviations per

sample. This is the distribution shown in �gure 1. The negati ve part

of this curve mirrors the positive, so only one side is requir ed.

� The integral of the standard normal curve is approximated be tween

0 and x for values (x) from 0 to � at intervals of � . This is calculated

by adding the values stored in the previous step, using equat ion 2,

as shown in �gure 1. This integral gives the probability of a r andom

point, generated according to the distribution, being betw een 0 and

x.

147



148APPENDIX A: CALCULATING INTEGRALS OF A NORMAL CURVE

P(x)

0 a bx

Standard normal curve
Total area = 1

A(x)=   (P(0)+P(  )..+P(x-  ))a aa

Figure 1: The approximation to the probability integral, A( x).

P(x) =
exp(� x2

2 )
p

2�
(1)

A(x) =
dx

� e� 1X

i =0

�P (i� ) (2)

A.2 Runtime Calculations

When the area under a normal curve with mean � and standard deviation

� from � to a point x is desired, there is a value x0 such that the area under

the standard normal curve between 0 and x0 is the same as the desired

area. x0 can be easily found from x using equation 3, and the value for

A(x0) read in the stored table.

x0 =
jx � � j

�
(3)


