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Abstract. We investigate what it means for a (Hausdorff, second-countable)
topological group to be computable. We compare several potential definitions

in the literature. We relate these notions with the well-established defini-

tions of effective presentability for discrete and profinite groups, and compare
these results with similar results in computable topology. Most of these defi-

nitions can be separated by counter-examples. Remarkably, we prove that two

such definitions are equivalent for locally compact Polish and abelian Polish
groups. More specifically, we prove that in these broad classes of groups, ev-

ery computable topological group admits a right-c.e. (upper semi-computable)
presentation with a left-invariant metric, and a computable dense sequence of

points. In the locally compact case, we also show that if the group is addi-

tionally effectively locally compact, then we can produce an effectively proper
left-invariant metric.
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1. Intorduction

1.1. A brief overview. Our paper contributes to a fast developing branch of ef-
fective mathematics which combines methods of computable algebra [8, 1, 9] with
tools of computable analysis [4, 50, 42] to study computable presentations of topo-
logical groups. Maltsev [29], Rabin [43], Higman [17], Metakides and Nerode [35]
and others (e.g., [13, 32, 28, 41, 30]) suggested various notions of computability for
various classes of groups. Whenever a theory emerges, one of the first tasks is to
establish that its key definitions are robust by supporting them with enough non-
trivial examples and deep results. Another important task is to compare the most
important definitions and see if they are equivalent. In the context of algorithmic
group theory, one of the most well-known examples of such a separation result is the
celebrated work of Novikov [37] and Boone [3] who proved that not every finitely
presented group has decidable Word Problem. Such investigations often lead to a
deeper understanding of the notions of computable presentability that are being
studied. For instance, in his search for a more elegant proof of the Novikov-Boone
theorem, Higman [17] discovered that ‘recursively presented’ groups are exactly the
subgroups of finitely presented groups, thus characterising one of two notions of
presentability for groups in terms of the other.

In the present paper we prove several positive characterization-type results that
we believe are fundamental to the emerging theory of computable topological groups.
As the main result of the paper, we prove that in the locally compact and abelian
case, a seemingly weak notion of effective topological presentability is indeed equiv-
alent to the seemingly much stronger notion of right-c.e. Polish presentability. The
second main result of the paper further improves the result, but under one ex-
tra assumption of effective local compactness. (All these terms will be defined in
due course.) Finally, we also support these positive results with counter-examples
that separate several notions of computable presentability up to topological group
isomorphism. These counter-examples and their proofs relate our notions with the
aforementioned ‘recursive’ groups studied by Higman, computable groups as defined
by Maltsev [29] and Rabin [43], and with ‘recursive’ profinite groups investigated
by Metakides and Nerode [35] and Smith [46]. Indeed, we will see that in many
cases some of these definitions turn out to be equivalent.

Before we formally state our results, we give a bit more background and briefly
discuss the related literature.

1.2. Notions of computable presentability. The most well-established notions
of computable presentability of groups are restricted to discrete and profinite groups,
as we discuss below.

We have already mentioned the notion of a ‘recursive presentation’ [17] which
is standard in combinatorial group theory. We call such presentations computably
enumerable (c.e.), or Σ0

1, since the term “recursive presentation” can mean many
different and non-equivalent notions (as we shall see shortly). These presentations
are groups of the form Fω/H, where Fω is the standard reduced-word presentation
of the free group upon ω generators and H is its computably enumerable normal
subgroup. The equality relation modulo H, the “Word Problem”, does not have to
be computable even in a finitely presented group [37, 3]. Perhaps motivated by this
early fundamental result, Mal’cev [29] and Rabin [43] suggested a stronger notion of
computable presentability for a group. In the notation above, a group is computably
presented if it is isomorphic to Fω/H, where H is a computable subset of Fω. In
other words, a group is computable if it is c.e. and the Word Problem is decidable in
the group. (We note that the terms “computable” and “recursive” were often used
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to mean the same thing in the early literature, and this can potentially lead to much
confusion in the context of group presentations.) Equivalently, a countably infinite
group is computable if its domain is N and the group operations are represented
by computable functions. This notion can be extended to an arbitrary discrete
algebraic structure in the obvious way. The notion is well-established and is a
central notion in the technically deep theory of computable algebraic structures,
see [1, 8].

From the perspective of computable presentability, the second most well-understood
class is the class of profinite groups. Metakides and Nerode [35] and then La
Roche [26, 27] and Smith [46, 45] studied “recursively presented” and “co-r.e.-
presented” profinite groups. To define computability in this class we just need to
say that the inverse system representing the group is (in some sense) algorithmic;
we omit the definitions. Among other results, they prove the effective versions
of Galois correspondence that relate recursive and co-r.e. presentations with com-
putable and computably enumerable field extensions, respectively. Another duality
established in the cited papers is a Stone-type duality between recursive groups
and decidable classes in 2ω, and between co-r.e. presented groups and Π0

1 classes
in 2ω. In both cases, the classes are also equipped with group operations. The
much more recent paper [31] proves that the recursive profinite abelian groups are
exactly the Pontryagin duals of computable discrete torsion abelian groups. There
are many ways to apply these dualities to establish that co-r.e. presentability is
strictly weaker than recursive presentability for profinite groups.

One of the characteristic features of the results briefly discussed above is that
the notions of computability in the profinite and the discrete case are interconnected
and related via dualities of various kinds. Are these two subjects just pieces of a
bigger puzzle? More specifically, can we develop a general theory of computable
topological groups that is not restricted to the profinite and discrete case?

The situation becomes much more complex when we consider groups which are
neither profinite nor discrete. Following the analogy with the discrete and profinite
cases, a computable topological group should mean a computable space together
with computable group operations. In the present paper, we are mainly interested in
Polish groups but some of the technical results proven here also work for Hausdorff
second-countable groups. Thus, for the remaining of the paper we will adopt the
convention:

All our groups and spaces are Hausdorff and second countable.

Indeed, we are mainly interested in locally compact groups, and it well-known that
every Hausdorff and second countable locally compact space is Polish. Unfortu-
nately, even in the nice case of a Polish(able) space, it is not even clear what
“computable space” should mean exactly.

Computable topology is notorious for its zoo of different notions of computability
for a topological space (and a topological group). In contrast with effective alge-
bra [8, 1] where all standard notions of computable presentability in common classes
had been separated more than half a century ago (e.g., Novikov [37], Boone [3],
Feiner [10], Khisamiev [21], Odintsov and Selivanov [38]), some of the basic no-
tions of computable presentability in topology have been separated only very re-
cently [18, 16, 28, 2, 33]. Arranged from strong to weak, some common notions of
effective presentations for a Polish space are as follows:

computably compact −→ computable Polish

−→ right-c.e Polish −→ computable topological
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All these notions will be formally defined in the preliminaries and also briefly dis-
cussed below; we only mention here that the first one clearly works only for compact
spaces, and that all implications are known to be strict up to homeomorphism, as
established in [18, 2, 33, 28, 6]. This means that, in each case, there is a space that
is effectively presentable in the weaker sense but is not homeomorphic to any space
effectively presentable in the stronger sense1.

Each of these four notions leads to a definition of a computable group. In each
case, a ‘computable group’ would mean ‘computable space’ + ‘computable group
operations’, where computability of operations is understood in terms of approxi-
mations, i.e., effective operators (to be clarified).

Up to topological group isomorphism, are these four notions non-equivalent?
How are these notions related to the well-established approach in the discrete case?
What about the profinite case? We will answer these questions shortly. But first,
we clarify and compare the notions in the diagram for spaces.

There are several variations of the definition of a computable topological space
that can be found in, e.g., Kalantari and Weitkamp [20] and Spreen [47]. We will use
the following, perhaps the weakest possible, approach. A computable topological pre-
sentation is given by a countable base of topology (Bi)i∈ω consisting of non-empty
basic open sets together with the c.e. set W that allows one to list intersections in
the following weak sense:

Bi ∩Bj =
⋃
{Bk : (i, j, k) ∈W}.

The standard examples of computable Polish spaces include right-c.e. Polish spaces
that will be defined shortly. However, note that, in general, the definition of a com-
putable topological space is point-free. This feature can be easily exploited to show
that there is a Polish space that is computable topological but is not homeomorphic
to any right-c.e. Polish space [33]. Indeed, it follows from the simple proof in the
companion paper [33] that, in general, for a computable topological locally compact
(Polish) space there is no bound on the complexity of its Polish presentation, up
to homeomorphism. Nonetheless, the notion of a computable topological space is
quite popular in the literature, but it usually comes with some extra additional
assumptions on top of the base weak definition.

The classical notion of a computable Polish space can be traced back to Ceitin [5]
and Moschovakis [36]. We say that a Polish space is computable Polish if there is
a countable dense subset (xi)i∈ω and a complete metric d compatible with the
topology such that d(xi, xj) can be uniformly computed to precision 2−n. If we
only require that the real d(xi, xj) can be effectively approximated from above by
enumerating its upper cut (in some, perhaps unnatural, order), then we get the no-
tion of a right-c.e. Polish space, also known under the name upper-semicomputable
Polish space. The reason why the right-c.e. case is so important in the literature
is because it is the standard example of a computable topological space. Also, it
is known that Stone duality associates ‘effectively compact’ right-c.e. Stone spaces
with c.e. presented Boolean algebras [2]. In particular, it follows from results in
[18, 16] and the aforementioned classical result of Feiner [10] that there is a right-
c.e. Polish space not homeomorphic to a computable Polish one; see [2] for a detailed
explanation.

1For the last implication see [33], for right-c.e. vs. computable Polish we cite [2], and for the
first implication see [18, 28, 6]. Also, for the closely related notion of a left-c.e. Polish space which
will not be used in this paper, we cite [33].
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Finally, we say that a space is computably (or effectively) compact if it is com-
putable Polish and additionally, we can effectively list all finite basic open covers
of the space. It has been proven in [28, 6, 18] that there are compact spaces that
are computable Polish but not homeomorphic to any computably compact space.
Interestingly, the proof in [28] builds a connected compact group with this property.
It follows from the proof in [28] that there is a connected compact abelian group
that has a computable Polish presentation (as a group, i.e., in which the operations
are also computable), but so that its space is not homeomorphic to any computably
compact space. Thus, at least one implication is known to be strict for groups. The
notion of a computable compactness is clearly restricted to compact spaces (and
groups) and it won’t be too important to us. However, its natural generalisation
to locally compact spaces will be useful in the present paper.

1.3. Results. We are ready to discuss our results. Recall that in the companion
paper [33] we illustrate that there is a computable topological locally compact Polish
space that is not homeomorphic to any arithmetic (or even analytic, and beyond)
Polish space, late alone a right-c.e. Polish space. Recall also that in a (right-c.e. or
computable) Polish presentation, we demand the existence of a dense computable
sequence and that the metric is complete. However, the definition of a computable
topological group is point-free. The principal result of the present paper is the
following:

Theorem 1.1. For a Polish group G that is either abelian or locally compact, the
following are equivalent:

(1) G has a computable topological presentation,
(2) G has a right-c.e. Polish presentation.

Furthermore, in (2) the metric can be taken left-invariant. (Or right-invariant.)

The implication (2)→ (1) is obvious, but (1)→ (2) is both non-trivial and (we
believe) unexpected. It should not be surprising that one of the crucial steps in the
proof is a new effective version of the classical Birkhoff-Kakutani metrization the-
orem; this is Theorem 3.2. The proof of the effective version of Birkhoff-Kakutani
theorem requires much care since we use the rather weak point-free approach to
computable topological spaces. Even more care is needed to reconstruct the dense
sequence from the point-free effective topology; this is Theorem 4.1. We shall also
explain why in the locally compact and in the abelian cases the metric produced
in Theorem 3.2 is complete; this is not obvious at all, but several classical results
from topological group theory will come to our aid. The proof of Theorem 1.1 is
spread through the paper; for the abelian case see Corollary 4.7, and for the locally
compact case see Corollary 5.4.

In Corollary 6.3 we also show that Theorem 1.1 is sharp in the sense that, in
general, we cannot produce a computable metric. Our counter-example is a dis-
crete abelian group that admits a right-c.e.Polish copy but is not topologically
isomorphic to any computable Polish group. We also mentioned earlier that com-
putable compact does not imply computable Polish among compact abelian groups.
Combined with the Theorem 1.1 and the aforementioned result in [28], we obtain
that for abelian and for locally compact Polish groups and up to topological group
isomorphism, the diagram looks like:

computable topological
↓ ↑

right-c.e Polish
↓ 9



6 HEER TERN KOH, ALEXANDER G. MELNIKOV, AND KENG MENG NG

computable Polish
↓ 9

computably compact

Clearly, for the latter implication the counter-example is compact; such examples
can be found among connected compact [28] (as discussed above) and also among
profinite [6] abelian groups.

Remark 1.2. We mention another notion of computable presentability motivated
by research in computable structure theory that we did not include into the diagram.
Classically, closed subgroups of S∞ are exactly the automorphism groups of discrete
structures; see [11]. Every automorphism group of a discrete computable structure
is a Π0

1 (effectively closed) subgroup of a certain natural effective presentation of
S∞; see [13, 30]. However, the converse fails [13, 16]. For instance, it is known that
a compact (thus, profinite) Π0

1 subgroup of S∞ does not have to be topologically
isomorphic to a ∆0

α-Polish group for any fixed computable α [16]. Therefore, already
for compact groups, this notion of computable presentability is (much) weaker than
the weakest definition of a computable topological group that we study in this
paper. Strictly speaking, such presentations are not really computable since one
has essentially no access to the evasive domain of the group.

We now discuss the second main result of the present article. One of the two
cases in Theorem 1.1 is when the group is locally compact. Struble [48] showed
that a (Hausdorff, second countable) locally compact topological group admits a
compatible left-invariant proper metric; recall that a metric is proper if every closed
bounded set is compact. Can we improve Theorem 1.1 and show that, in a locally
compact case, we can in fact produce a right-c.e. proper metric?

In the literature, most effective arguments that involve the use of compactness
assume that the space satisfies a version of effective compactness of some sort. One
such notion we have already mentioned above. Remarkably, many definitions of
effective compactness in the literature turn out to be equivalent; see [19, 6, 40]. We
will formally define and discuss the notion of effective compactness that we chose
in the preliminaries section. Roughly speaking, a set is effectively compact if we
can list all of its covers by basic open balls.

To have access to local compactness, we need to generalize this notion to locally
compact spaces. There are several definitions in the literature [40, 52, 49]. We
shall not attempt to compare these definitions up to homeomorphism. However,
we suspect that they are perhaps non-equivalent. The notion suggested in [40] seems
most suitable for our purpose. Roughly speaking, it it is a direct effectivisation of
the classical notion of local compactness that says that every point is contained in
a compact neighbourhood. We will define it formally in the preliminaries.

We are ready to state the second main result of the paper:

Theorem 1.3. Every locally compact computable topological group admits a proper
right-c.e. Polish presentation in which the metric is left-invariant and proper.

Furthermore, the metric produced in the theorem is itself effectively locally
compact and indeed effectively proper in the sense that will be clarified in the
preliminaries. We also point out that, in both Theorem 1.1 and Theorem 1.3,
the right-c.e. Polish presentations that we build are computably homeomorphic (in-
deed, effectively compatible) to the given computable topological presentation of
the group. These standard notions will be clarified later. Theorem 1.3 will be de-
rived as a corollary of a rather general technical result Theorem 5.2 combined with
Theorem 1.1; see Corollary 5.5.

We do not know whether the assumption of effective local compactness can be
dropped from Theorem 1.3. However, similarly to Theorem 1.1, we do know that the
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result cannot be improved to give a computable proper metric. This is (essentially)
because the aforementioned Corollary 6.3 actually gives a discrete example. Since
having a discrete example is perhaps not particularly exciting, in Proposition 6.4
we produce an example of a profinite group that is right-c.e. Polish and effectively
compact, but is not homeomorphic to any effectively compact computable Polish
group. Note that in the compact case every metric is automatically proper.

1.4. Connections to other notions in the literature. We now briefly discuss
how the notions of effective presentability of Polish groups studied in the paper are
related to other notions of effectiveness in the literature.

In Section 6 we also illustrate that, in the discrete case, computable Polish
presentability is equivalent to computable presentability in the sense of Mal’cev [29]
and Rabin [43]. We will also see that right-c.e. Polish presentability is equivalent
to c.e. presentability for discrete groups. Note that, in the discrete case, all our
presentations are vacuously effectively locally compact.

Some version of computable (local) compactness seems to be a necessary ex-
tra assumption in a ‘truly’ computable presentation. As illustrated in [31], com-
putable Polish presentations do not make Pontryagin duality effective in the com-
pact abelian case. In contrast, the aforementioned [31] and the recent [28, 6] es-
tablish effective versions of Pontryagin duality for computably compact connected
abelian groups and ‘recursive’ profinite abelian groups. We shall not define ‘recur-
sive presentations’ of profinite groups, since it has been recently discovered in [6]
that a profinite group is ‘recursively presented’ if, and only if, it admits a com-
putably compact presentation. We will use profinite groups and Pontriagin duality
in the proof of Proposition 6.4. We suspect that, for a profinite group, co-c.e. pre-
sentability should perhaps be equivalent to effectively compact right-c.e. Polish
presentability. This is certainly the case for some profinite groups, as exploited
(implicitly) in the proof of Proposition 6.4.

In the satellite paper [33] we investigate the especially nice case of computably
locally compact computable Polish groups. Quite interestingly, we show that in the
totally disconnected locally compact (tdlc) case, a group admits a presentation like
that if, and only if, it is computably presentable in the sense of [30, 28]. We note
that [30, 28] contains several equivalent definitions of computable presentability of
a tdlc group, all of which turn out to be equivalent. These equivalent definitions
also generalize the profinite and discrete cases discussed above, and additionally
make the Pontryagin - van Kampen duality fully effective for tdlc abelian groups
whose duals are also tdlc.

Beyond local compactness, the notion of a computable Polish group turned out
to be closely related to computable structure theory. Interestingly, many results
in computable structure theory can be viewed as a special case of a computable
Polish group computably acting on a computable Polish space. Also, typically the
more general result requires a simpler proof; see [32]. As noted in [32], many results
in [32] can be carried under the weaker assumption that the group is computable
topological and admits a c.e. strong (or formal) inclusion; see Remark 4.5 for a
discussion. Quite unexpectedly, the proof of our first main result Theorem 1.1
implies that these seemingly strong extra assumptions in [32] can be completely
dropped when we talk about computable topological Polish groups. See Remark 4.5
for an explanation.

Of course, there are other potential notions of computable presentability that
could perhaps work for some special subclasses of Polish groups. For instance, we
have mentioned left-c.e. (lower semi-computable) Polish spaces; these are defined
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similarly to right-c.e. Polish spaces, but they seem less well-understood than the
latter. For instance, even finding a ‘natural’ example of such a space that would
not be obviously computable Polish is a bit of a challenge. It is known however
that there is a left-c.e. Polish space not homeomorphic to any computable Polish
space [33]. Left-c.e. Polish spaces do not necessarily induce a natural ‘computable
topological’ structure, and thus perhaps are not suitable for representing topolog-
ical groups in general. However, interestingly, every left-c.e. Polish Stone space is
homeomorphic to a computable Polish space [33] and, thus, to a computably com-
pact one [16, 6]. So it could be that the notion is suitable and well-behaved in the
context of profinite or tdlc groups2.

We already discussed the weak notion of an effectively closed subgroup of S∞.
Other weak notions include (hyper)arithmetical presentations of higher degree, such
as ∆0

α-Polish and right- or left-Σ0
α Polish presentations. Indeed, we have already

mentioned ∆0
α-Polish presentations above. We strongly conjecture that most of

these definitions can be separated from each other by direct relativisation of the
known effective results or using Pontryagin duality and the corresponding results
from the discrete abelian case [22]. However, the importance and the exact role of
these notions in the theory is not yet clear (beyond their use in extreme counter-
examples such as the one in [16]).

1.5. The two main definitions. We believe that the results presented in the
present paper, combined with various results in [30, 31, 28, 33, 6, 16, 13] some
of which have been discussed above, establish a solid foundation for the rapidly
emerging general theory of algorithmically presented topological groups. In partic-
ular, it appears that the basic definitions of effective presentability are robust and
nicely align themselves (via direct equivalence or duality) with the well-established
notions that work for profinite and computable groups. At least in the important
case of locally compact Polish groups, the overall intuition seems to be as follows:

‘computable Polish’ + ‘computably locally compact’ ∼ ‘computable’

and

‘right-c.e. Polish’ + ‘effectively locally compact’ ∼ ‘computably enumerable’,

where ∼ stands for ‘should be viewed as an adequate generalisation of’. The sub-
tle difference between computable compactness and effective compactness will be
elaborated in the preliminaries.

There are many open questions that can be attacked in the new theory; e.g., we
cite [7] for problems related to computable classification. For example, which classes
of profinite or tdlc groups admit a Friedberg enumeration? What is the complexity
of the index set of (say) SO3(R), up to topological isomorphism? The list goes
on. Also, we wonder if Pointryagin - van Kampen duality works for arbitrary
computably locally compact abelian groups; this question has been raised in [28].
We leave these (and many other) questions of this sort open for future investigation.

2. Preliminaries

2.1. Computable topological spaces. As we already stated in the introduction,
we assume that all our topological spaces and groups are Hausdorff and second-
countable. The definition below is central to the paper.

2The reason behind it is that, while right-c.e. spaces make formal inclusion c.e., left-c.e. spaces

make formal disjointedness c.e., and thus we can effectively split the space into connected compo-
nents. We omit these definitions.
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Definition 2.1 (see, e.g., Definition 2.1 of [25] of Definition 4 of [51]). A com-
putable topological space is given by a computable, countable basis of its topology
for which the intersection of any two basic open sets (“basic balls”) can be uniformly
computably listed. More formally, it is a tuple (X, τ, β, ν) such that

• β is a base of τ consisting of non-empty sets,
• ν : ω → β is a computable surjective map, and
• there exists a c.e. set W such that for any i, j ∈ ω,

ν(i) ∩ ν(j) =
⋃
{ν(k) : (i, j, k) ∈W}.

We say that a topological space has a computable topological presentation if
it is homeomorphic to a computable topological space (with is of course called a
computable topological presentation of the space).

Let (X, τ, β, ν) be a computable topological space. For i ∈ ω, by Bi we denote
the open set ν(i). As usual, we identify basic open sets Bi and their ν-indices. In
order to simplify our notation even further, we will never actually use the notation
(X, τ, β, ν) and will just say that τ is a computable topological presentation of X.

We note that computable topological spaces are closed under taking finite direct
products; the computable topology is given by the product topology (equiv., box
topology). We will not need infinite direct products of spaces in the paper.

Perhaps, the most natural examples of computable topological Polish spaces are
right-c.e. spaces; see, e.g., Theorem 2.3 of [25]; we also cite [2, 6] for a detailed proof.
For instance, every computably metrized Polish space is a computable topological
space. We discuss these notions in the next subsection.

Definition 2.2. We call
Nx = {i : x ∈ Bi}

the name of x (in a computable topological space X).

We can also use basic open balls to produce names of open sets, as follows.

Definition 2.3. A name of an open set U in a computable topological space X is
a set W ⊆ N such that U =

⋃
i∈W Bi, where Bi stands for the i-th basic open set

in the basis of X.

If an open U has a c.e. name, then we say that U is effectively open. If C is closed
then its name is the name of its complement. We say that C is effectively closed,
or simply Π0

1, if its complement is effectively open. We also say that a closed set C
is Σ0

1 if we can list all basic open sets that intersect C. A closed set is computable
compact if it is both Σ0

1 and Π0
1.

Recall that an enumeration operator turns enumerations of sets into enumera-
tions of sets and leads to the notion of an enumeration degree. We omit the formal
definition; see [44]. Enumeration operators are also sometimes called enumeration
functionals. They can be thought of as Turing functionals that use only ‘positive’
information about the oracle. The notions defined below are also standard.

Definition 2.4. Let f be a map between two computable topological spaces.

(1) We say that f is effectively continuous if there is an enumeration operator
Φ that on input (any enumeration of) a name of an open set Y (in Y ), lists
a name of f−1(Y ) (in X).

(2) We say that f is effectively open if there is an enumeration operator that
given (any enumeration of) a name of an open set A in X, lists a name of
the open set f(A) in Y .

If f is a homeomorphism, then it is is effectively open if, and only if, f−1 is effec-
tively continuous. We thus say that an homeomorphism between two computable
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topological spaces is effective (or computable) if its is both effectively open and
effectively continuous.

One special case of a computable f is the following:

Definition 2.5. If X is a computable topological space then a metric d compatible
with the topology of X is computable if there is an enumeration functional Φ such
that for any y, z ∈ X, and any enumeration p, q of Ny and Nz respectively, Φ(p⊕q)
produces an enumeration of both the left and thew right cuts of the real d(y, z).

Equivalently, we could require that the metric is a computable map X2 → R,
where R is equipped with the usual computable topology generated by rational
intervals.

Definition 2.6. In the notation of the previous definition, a metric d is said to be
right-c.e. (upper-semicomputable) if Φ(p ⊕ q) enumerates the right cut of d(y, z).
(A left-c.e. metric is defined similarly.)

Notice that we do not require the metric to be complete, and we do not require
the existence of a computable dense sequence in the space. Of course, complete-
ness and effective separability are highly desirable properties, especially because we
are mainly interested in Polish(able) spaces. Many natural computable metrics in
standard Polish spaces are complete and, furthermore, ‘effectively separable’. We
will discuss the complete effectively separable case in Subsection 2.2.

2.1.1. Computable topological groups. We are ready to formally define the notion
of a computable topological group.

Definition 2.7. A computable topological group is a triple (G, ·,−1 ), where G
is a computable topological space and the group operations · : G × G → G and
−1 : G→ G are effectively continuous.

We also say that a topological group has a computable topological presentation if
it is homeomorphic to a computable topological group. (We call the latter a com-
putable topological presentation of the group.) On order to simplify our notation,
we will usually simply say ‘G is computable topological’ rather than ‘(G, ·,−1 ) is
computable topological’.

Fact 2.8. Multiplication and inverse operators are both effectively open in a com-
putable topological group.

Proof. Given some name for an effectively open set U , in order to enumerate the
name for U−1, simply enumerate the preimage of −1 on U . This must be the name

for U−1 since
(
U−1

)−1
= U . Thus −1 is effectively open.

Now given names for open U, V , we want to produce computably a name for
U · V . The map (x, y)→ x−1y is computable. Eenumerate all V ′ s.t.

U−1 · V ′ ⊆ V,

which is the same as enumerating all V ′ with the property V ′ ⊆ UV . �

2.1.2. Realtivization. We can relativise all definitions in this section. For instance,
we can talk about topological presentations that are not necessarily computable.
For instance, given a space, if we could fix τ = {Bi : ı ∈ ω} (that can be identified
with ω) and a set Wτ such that

Bi ∩Bj =
⋃
{Bk : (i, j, k) ∈Wτ}

and call it a topological presentation of the space. We stretch our terminology
slightly and denote the representation by τ rather than Wτ .
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Then, given such topological presentations τ0 and τ1, we can define the notions
of an effectively continuous and effectively open maps with resect to (w.r.t.) to τ0
and τ1 by direct relativisation. For instance, we shall need the following relativised
notion of effective compatibility of presentation.

Definition 2.9. Topological presentations τ0 and τ1 of X are effectively compatible
on X if the identity function on X is a homeomorphism that is computable w.r.t. τ0
and τ1. That is, each basic open set in B0 is effectively open with respect to B1
and vice versa, uniformly in the indices for the basic open sets.

2.2. Effectively metrized spaces and groups. The notions below are standard.

Definition 2.10. Fix a Polish(able) space M .

(1) It is computable Polish or computably (completely) metrized if there is a
compatible, complete metric d and a countable sequence of special points
(xi) dense in M such that, on input i, j, n, we can compute a rational
number r such that |r − d(xi, xj)| < 2−n.

(2) It is right-c.e. Polish or upper-semicomputable Polish if there is a com-
patible, complete metric d and a countable sequence of special points (xi)
dense in M such that, on input i, j, the right cut {r ∈ Q : d(xi, xj) < r} of
d(xi, xj) can be unformly computably enumerated.

Clearly, any computable Polish space is right-c.e. Polish, but there are examples
of right-c.e. Polish spaces that are not even homeomorphic to any computable Polish
spaces; [2]. We have already mentioned above, every right-c.e. Polish space can be
viewed as a topological space. Indeed, in a right-c.e. Polish space define a basic
open ball to be an open ball having a rational radius and centred in a special point.
Let (Bi) be the effective list of all its basic open balls, perhaps with repetition. It
is not too difficult to show using triangle inequality that (Bi) induces a computable
topological structure on the space; e.g., [25, 2, 6]. In contrast, in the satellite
paper [33] we show that there is a Polish(able) space that admits a computable
topological presentation, but is not homeomorphic to any right-c.e. Polish space.

Remark 2.11. Computability of a function between computable (more gener-
ally, right-c.e.) Polish spaces admits several reformulations equivalent to Def. 2.4.
For instance, we can require that a map is computable if it uniformly transforms
fast converging sequences of special points to fast converging sequences of spe-
cial points; see [6, 19] for a detailed exposition of computable metric space theory
(which we omit here). In [32], such lemmas were formally verified for computable
topological spaces with c.e. ‘strong (formal) inclusion’; both computable Polish and
right-c.e. Polish spaces have this property.

Recall that all our topological spaces and groups are Hausdorff and second-
countable. Since every right.c.e. Polish space is computable topological, and since
every computable Polish space is right.-c.e., the following notions are direct gener-
lizations of Def. 2.7.

Definition 2.12. (1) A computable Polish group is computable Polish space
together with computable group operations · and −1.

(2) A right-c.e. Polish group is right-c.e. Polish space together with computable
group operations · and −1.

The notion of a computable Polish group is due to Melnikov and Montalbán [32].
We will see that in the discrete case it is equivalent to computable presentability
of the group in the sense of Mal’cev [29] and Rabin [43]. We will also see that the
notion of a right-c.e. Polish group can be viewed as a generalization of the standard
notion of a c.e.-presented (Σ0

1-presented, positive) group in effective algebra [8],
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and of a co-c.e. presented profinite group studied by LaRoche and Smith [46]. The
latter notion, however, also additionally assumes a certain weak version of effective
compactness which is another important notion that we discuss next.

We also note that the notions defined in this section can be relativized. For
instance, we could define the notion of a Polish presentation in which we do not
restrict the computable complexity of the metric.

2.3. Effective compactness and effective local compactness. The definition
below is standard in the literature:

Definition 2.13. We say that a computable topological space X if effectively
compact (as a space) if there exists a uniformly computably enumerable list of all
tuples 〈i1, . . . , ik〉 such that X = Bi1 ∪Bi2 ∪ . . . ∪Bik .

Note that the basic Bi are assumed to be non-empty throughout. (If we drop
this assumption then we conjecture that we get a weaker notion.) In the context
of a computable topological space, one could also talk about effective compactness
of a subset of the space.

Definition 2.14. We say that a compact subset K of computable topological
space X if effectively compact (as a subset) if there exists a uniformly computably
enumerable list of all tuples 〈i1, . . . , ik〉 such that K ⊆ Bi1 ∪Bi2 ∪ . . . ∪Bik .

The following fact is well-known (for example, see [52, Lemma 2.3]):

Fact 2.15. Given a name for a closed set A and a name for a compact set K, we
can list a name for A ∩K.

Remark 2.16. We will get a stronger notion of a computably compact set if, in
Def. 2.14, we additionally require that Bij ∩K 6= ∅ for every cover, i.e., that the set

is Σ0
1 closed. Of course, this would not be an issue in Def. 2.13 because each basic

open Bij is non-empty and, thus, vacuously ‘intersects’ the space. The difference
is already seen in the context of 2ω, where a compact set is effectively compact (as
a subset) if, and only if, it is Π0

1. Recall also that a non-empty Π0
1 class does not

have to contain any computable points at all. In other words, even in 2ω we get
that effective compactness of K implies only that the open complement of K can
be listed without necessarily making the set ‘computably closed’. (Recall that a
closed set C is computably closed iff its complement is c.e. open and also we can
list all basic open B such that B ∩ C 6= ∅.) In other words, an effectively compact
subset of a computable Polish space does not have to be ‘computably compact’ =
‘effectively compact’ + ‘computably closed’. Indeed, it has been shown in [2], there
is a Π0

1-class in 2ω that is not even homeomorphic to any computable Polish space
(thus, to any effectively compact computable Polish space). Nonetheless, there
is a very nice correspondence between effectively compact spaces and computably
compact sets, as essayed in [6, 19].

We shall adopt:

When we talk about effectively compact subsets of a computable
topological space, we mean Def. 2.14 and do not necessarily assume
the set is additionally Σ0

1 closed.

Definition 2.17 (E.g., [52]). The name of a compact subset K of a computable
topological space X is the list of all finite covers of K by basic open sets of X.

More formally, the name NK of K is the set

{〈i0, . . . , ik〉 : K ⊆
⋃
j≤k

Bij},
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where Bi is the i-th basic open set in X. Then evidently K is effectively compact
if, and only if, it has a c.e. name. (Note that we do not require that each Bij has
to intersect the set.)

2.3.1. Effective local compactness. Unlike the notion of an effectively compact space
which is robust [6, 19], there are several (seemingly) non-equivalent notions of
effective local compactness in the literature [40, 52, 49]. We shall not attempt
to verify whether these notions of effective local compactness are equivalent up
to homeomorphism since there is yet not enough evidence that these notions are
equally important and iseful. We adopt the following:

Definition 2.18 ([40]). A second countable topological space X is effectively lo-
cally compact if there is an enumeration operator which, given a name for a point
x ∈ X and a name for an open set U 3 x, lists a name for an open set V and a
name for a compact set K such that x ∈ V ⊆ K ⊆ U .

As explained in the companion paper [33], in the context of computable Polish
spaces, we can drop U in the definition above and assume K is a computably
compact (closed) ball of an arbitrary small computable radius. However, groups in
the present paper are rarely computable Polish. Nonetheless, later in the paper we
will be dealing with computable topological groups that additionally have a dense
sequence of computable points in them. The following lemma shall be useful:

Lemma 2.19 ([40, Proposition 8]). Suppose that a computable topological space
X has a dense set of uniformly computable points. Then X is effectively locally
compact if and only if there is a triple ({Un}n∈ω, {Km}m∈ω, R), where

• Un is a computable sequence of (uniformly) effectively open sets.
• Km is a computable sequence of (uniformly) effectively compact sets.
• R ⊆ N× N is a c.e. set such that (n,m) ∈ R⇒ Un ⊆ Km.
• For any open set U , we have

U =
⋃

{m|Km⊆U}

⋃
{n|(n,m)∈R}

Un.

In other words, under the assumptions of the lemma, any open set can be es-
sentially approximated by compact neighbourhoods from within, with a sufficient
degree of effectiveness. The triple ({Un}n∈ω, {Km}m∈ω, R) was called an ercs for
X in [40]. Compare this to the related notion of a computably locally compact
Hausdorff space in [52, Definition 3.2].

2.4. Effectively proper metrics. Recall that a metric d is proper if every closed
bounded ball {y | d(x, y) ≤ r} is compact; equivalently, every closed bounded set
is compact. Recall that a name of a closed set is a name of its open complement,
and the name of a compact set is the list of all of it finite basic open covers. The
obvious effectivization of properness is the following:

Definition 2.20. A right-c.e. Polish space (M, d) is effectively proper if there
exists an enumeration operator which, given a name a closed set A and a basic
open ball Bd(α, r) ⊇ A, lists a name for some compact set K ⊇ A.

The lemma below relates the notion with local effective compactness.

Lemma 2.21. Given a Polish space (M, d), we have (i) ⇔ (ii) ⇒ (iii). If (M, d)
is a computable Polish space then all three are equivalent:

(i) (M, d) is effectively proper.
(ii) Given an enumeration of a name for a closed set A and a basic open ball

containing A, we can list a compact name for A.
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(iii) Given a (closed) name for the closed ball B≤d (α, r) = {x : d(α, x) ≤ r} and

the parameters α, r, we can compute a compact name for B≤d (α, r).

Proof. (i) ⇒ (ii): Apply Fact 2.15, which holds even if d is not computable. The
implications (ii) ⇒ (i),(iii) are trivial. If d is computable then assuming (iii) holds,
for each basic open basic B(α, r) where α is a special point and r ∈ Q+, we have

B≤d (α, r) is effectively closed. (This is because a special point x /∈ B≤d (α, r) together
with a q-ball B<d (x, q) iff d(α, x) > r + q, which is c.e. if the metric is computable,
but could be not c.e. for a right-c.e. metric. In the case of a computable metric
we do not have to assume B≤d (α, r) comes together with a closed name, as it is
automatically can be reconstructed from its parameters.) So given a name for
a closed set A and some α, r such that A ⊆ Bd(α, r) we can obtain a name for

B≤d (α, r) and, therefore, a compact name for B≤d (α, r). By Fact 2.15, we obtain a
compact name for A. �

The first item in the above lemma is the effective version of the fact that every
closed and bounded set is contained in a compact set. The second item corre-
sponds to the fact that every closed and bounded set is compact, while the third
item corresponds to the fact that every closed and bounded ball is compact. An
effectively locally compact computable Polish space will satisfy a version of (iii)
that says that, for every x, there exists a sufficiently small r and a special α such
that x ∈ B≤d (α, r) is effectively compact. In [33] we additionally show that, in such

a space, B≤d (α, r) can be picked computably closed as well. But of course, to claim

that we can compute a compact name for B≤d (α, r) for any r, α the metric has to
be proper at the first place.

2.5. A unified generalization: represented spaces. The definition of a com-
pact name Def. 2.17 is reminiscent of Def. 2.2 for points. It is also somewhat similar
to Def. 2.3 for open sets, but unlike Nx and NK , an open set will typically have
lots of names, not just one name. Also, the definitions of a computable topological,
a computable Polish, and a right-c.e. Polish space have a similar flavour too. More
specifically, in each case we can define names of points and define the notion of a
computable map between presentations.

All these notions have some clear similarities and seem to be special instances
of something more general. This intuition can be made formal using the theory of
represented spaces. We do not need this degree of generality in the present paper.
Indeed, one of the main goals of our paper is to illustrate that, in the case of Polish
groups, we can safely restrict ourselves to the classical theory of effectively metrized
spaces without any loss of generality. We cite [39] for a detailed exposition of the
theory of represented topological spaces.

3. Effective Birkhoff-Kakutani Theorem

The classical Birkhoff-Kakutani Theorem is the following:

Theorem 3.1 (Birkhoff-Kakutani Theorem). Let G be a topological group. Then
G is metrizable iff G is Hausdorff and first countable. Moreover, if G is metrizable,
then G admits a compatible left-invariant metric.

We consider the effective version of the Birkhoff-Kakuani Theorem and restrict
attention to computable topological groups. We obtain the following effective ver-
sion of Theorem 3.1.

Theorem 3.2. Let G be a computable topological group. Then G admits a right-
c.e. compatible left-invariant metric.
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Proof. Let {Bn}n∈ω be the effective basis for G, where each Bn is nonempty. We
extract a local base for eG in the following way. Define

• U0 = G,
• Un+1 = Un ∩

(
Bn ·B−1n

)
for n ≥ 0.

Note that each Un is effectively open, uniformly in n. First we check that
{Un}n∈ω is a local base for eG. Consider the continuous function f(x, y) = xy−1.
Then for any open set U containing eG, there must be some basic open ball Bk
s.t. f(Bk, Bk) ⊆ U , since x · x−1 = eG for any x ∈ G. Thus {Bn · B−1n }n∈ω gives
a local base for eG. Since each Bn 6= ∅, hence eG ∈ Bn · B−1n for every n and so it
follows that {Un}n∈ω is also a local base for eG.

Next we check that Un = U−1n for all n. Base case n = 0 is trivially true,
then assume Un is true for some n. Let x ∈ Un+1 = Un ∩

(
Bn ·B−1n

)
. By in-

ductive hypothesis, we know that x−1 ∈ Un. Furthermore, since
(
Bn ·B−1n

)−1
={(

xy−1
)−1 | x, y ∈ Bn} =

{
yx−1 | x, y ∈ Bn

}
= Bn · B−1n , then x−1 ∈ Bn · B−1n ,

and thus x−1 ∈ Un+1.
Since G is Hausdorff, for any x 6= eG there is an open set U such that eG ∈ U

and x 6∈ U . There is some n such that Un ⊆ U which means that x 6∈ Un. So this
means that

⋂
n∈ω Un = {eG}.

Now we define {Vn}n∈ω satisfying the following properties for every n ∈ ω:

(1) V0 = G;Vn+1 ⊆ Vn;
(2) Vn = V−1n ;
(3) V3

n+1 ⊆ Vn;
(4) Vn ⊆ Un.

Consider the function f(x0, y0, x1, y1, x2, y2) = Π2
i=0xiy

−1
i . Assume that Vn has

been defined. Search for basis elements B and Bi0 , · · · , Bi5 satisfying the following

• 〈Bij 〉j<6 ⊆ f−1(Vn), and

• B ⊆ Vn ∩
⋂5
j=0Bij .

Since G is a computable topological group, multiplication and inverse are effectively
continuous operations, and hence, given an index for Vn, we can search for an index
for B. Take Vn+1 = (B ·B−1)∩ Un+1, and note that Vn+1 is also effectively open,
uniformly in n. Note also that B must exist, since eG ∈ Vn and f(eG, eG, · · · , eG) =
eG.

The properties 2 and 4 are immediate. By choice of B, we see f(B,B, . . . , B) ⊆
Vn, and thus V3

n+1 = {x · y · z | x, y, z ∈ (B · B−1) ∩ Un+1} ⊆ {x · y · z | x, y, z ∈
(B·B−1)} = f(B,B, . . . , B) ⊆ Vn. Finally, since eG ∈ Vn+1, then for any x ∈ Vn+1,
x · eG · eG ∈ V3

n+1, which gives Vn+1 ⊆ V3
n+1 ⊆ Vn.

Now we define the functions %, d : G2 → R by:

• %(x, y) = inf{2−n | x−1y ∈ Vn}.
• d(x, y) = inf{

∑l
i=0 %(gi, gi+1) | gi ∈ G, g0 = x, gl+1 = y, l ∈ ω}.

Since V0 = G, % and d are total functions.
To verify that d is a metric on G, we follow the classical proof (see [12]) almost

exactly. Since for each n, Vn = V−1n , then we have that %(x, y) = %(y, x) for any
x, y ∈ G, and since %(gx, gy) = inf{2−n | (gx)−1(gy) ∈ Vn} = inf{2−n | x−1y ∈
Vn} = %(x, y), then d must also be both symmetric and left-invariant. It is easy to
see that d(x, x) = 0, and since %(g, h) = 0 for any g, h ∈ G, then d(x, y) ≥ 0 for any
x, y ∈ G. From the definition of d, it is also easy to see that the triangle inequality
holds. Thus it remains to check that d(x, y) = 0 only if x = y.
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We prove the following by induction

l∑
i=0

%(gi, gi+1) ≥ 1

2
%(g0, gl+1)

for any g0, g1, . . . , gl+1 ∈ G. First note that by property 3 of {Vn}n∈ω, % has the
following property

(*) ∀ε > 0, if %(g0, g1), %(g1, g2), %(g2, g3) ≤ ε, then %(g0, g3) ≤ 2ε.

Then when l ≤ 2, the proposition follows directly from (*). Suppose that the

proposition holds for all l′ < l for some l. Let S =
∑l
i=0 %(gi, gi+1), and m

be the largest (possibly m = 1) s.t.
∑m−1
i=0 %(gi, gi+1) ≤ 1

2S. By the induc-

tive hypothesis, %(g0, gm) ≤ 2
∑m−1
i=0 %(gi, gi+1) ≤ S. Since

∑m
i=0 %(gi, gi+1) >

1
2S, then

∑l
i=m+1 %(gi, gi+1) ≤ 1

2S, then by inductive hypothesis again, we have
%(gm+1, gl+1) ≤ S. But clearly %(gm, gm+1) ≤ S, that is %(g0, gm), %(gm, gm+1), %(gm+1, gl+1) ≤
S, and hence by (*), %(g0, gl+1) ≤ 2S. Then if d(x, y) = 0, it must be that
1
2%(x, y) = 0 and this is only the case when x−1y = eG, i.e. x = y.

Now we check that d is compatible with the topology of G. Let U be open in G
and g ∈ U . Then for some n ∈ N, g Vn ⊆ U . We check that Bd(g, 2

−n−1) ⊆ U . Let
h ∈ Bd(g, 2−n−1), then d(h, g) < 2−n−1. By the claim above, %(g, h) ≤ 2d(g, h) <
2−n, and by the definition of %, g−1h ∈ Vn, thus h ∈ g Vn ⊆ U . Conversely,
let U be open in the topology given by d and let g ∈ U . For some n ∈ N, we
have that Bd(g, 2

−n) ⊆ U . We check that g Vn+1 ⊆ U . Let h ∈ g Vn+1, then
%(g, h) ≤ 2−n−1, and by definition of d, d(g, h) ≤ %(g, h) ≤ 2−n−1 < 2−n, therefore
h ∈ Bd(g, 2−n) ⊆ U .

Now we check that the right cut of d(x, y) can be enumerated given an enu-
meration of Nx and Ny. List out all finite tuples, and search for l + 1-tuples
〈pm〉m≤l, 〈qm〉m≤l and 〈nm〉m≤l such that the sequence (Bp0 , Bp1 , . . . , Bpl) and
(Bq0 , Bq1 , . . . , Bql) satisfy

• Bp0 is enumerated in Nx,
• Bql is enumerated in Ny,
• B−1pm ·Bqm ⊆ Vnm for each m ≤ l, and
• Bqm ∩Bpm+1 6= ∅ for each m < l.

Note that the third condition is c.e. and implies that (Bpm , Bqm) ⊆ %−1 ([0, 2−nm ]).

If a suitable 〈nm〉m<l is found, enumerate
∑l
j=0 2−nj into our approximation to the

right cut of d(x, y).
Now we verify that the procedure described above in fact does enumerate the

right cut of d(x, y). Let q =
∑l
j=0 2−nj be enumerated by the procedure at some

stage. This means that some 〈nj〉j≤l and corresponding (Bi0 , Bi1 , . . . , Bil) and
(Bk0 , Bk1 , . . . , Bkl) have been found where x ∈ Bi0 and y ∈ Bkl . Now for each
j < l, let gj ∈ Bkj ∩Bij+1 . Then we have:

• x−1g0 ∈ Vn0
,

• g−1j gj+1 ∈ Vnj+1
for each j < l − 1, and

• g−1l−1y ∈ Vnl
.

Since d(x, y) = inf{
∑l
i=0 %(gi, gi+1) | gi ∈ G, g0 = x, gl+1 = y, l ∈ ω}, so we have

d(x, y) ≤
∑l
i=0 %(gi, gi+1) ≤

∑l
j=0 2−nj = q.

Now to check that the procedure enumerates some rational q s.t q < d(x, y) + ε
for each ε > 0. We can assume that x 6= y, since if x = y, it can be easily seen
that the procedure described before enumerates the right cut of 0. Let gi ∈ G

for i ≤ l + 1 where g0 = x, gl+1 = y be given s.t.
∑l
i=0 %(gi, gi+1) < d(x, y) + ε,

for some ε > 0. We may of course assume that %(gi, gi+1) > 0 for each i, since
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%(gi, gi+1) = 0 iff gi = gi+1. Hence %(gi, gi+1) = 2−ni for some ni. At some stage
(Bi0 , Bi1 , . . . , Bil) and (Bk1 , Bk2 , . . . , Bkl) must be found satisfying the conditions

above and we enumerate
∑l
i=0 2−ni into the right cut of d(x, y). Thus the procedure

enumerates rationals arbitrarily close to d(x, y). �

4. Computing a dense sequence

In Theorem 3.2 we produced a compatible right-c.e. metric for any given Haus-
dorff computable topological group. However the effectivization was point-free, in
the sense of lacking a countable dense subset of points. Perhaps unexpectedly, if
we assume the metric that we produce is actually complete, then we can show that
the metric admits a dense computable sequence of points. In other words, in this
case we obtain a right-c.e. Polish presentation of the group.

Theorem 4.1. Let G be computable topological group where the metric d pro-
duced in Theorem 3.2 is complete. Then G has a right-c.e. Polish presentation.

Most of the rest of the section is devoted to the proof of the theorem. We begin
with several technical lemmas that establishes several useful properties of the metric
produced in the proof of Theorem 3.2.

4.1. Two technical lemmas. Let M = ({αi}i∈ω, d) be a countable metric space
and M be its completion. Let τd be the topology on M generated by the metric d
with basis elements Bd(αi, ε) where i ∈ ω and ε ∈ Q+. Note these balls also form
a base of the restricted topology on M. We say that a computable topological
space G (we mainly care about topological groups) is effectively compatible with
M if M ⊆ G ⊆ M and where τ and τd (restricted as the subspace topology) are
effectively compatible on G.

In the definitions above, we do not require τ0 or τ1 to be computable topologies,
even though our topologies will typically be computable; we discussed relativization
in §2.1.2. Also, we do not restrict the complexity of d, even though we are interested
in right-c.e. metrics which induce a computable topology. The technical reason why
we need this extra degree of generality will be explained in Remark 4.3 shortly.
Recall that all our groups are Hausdorff.

Lemma 4.2. Let (G, τ,B) be a computable topological group and let d be the
metric produced in Theorem 3.2. Suppose that G contains a dense set of points
{αi}i∈ω w.r.t. τ , and there is a computable function ϕ such that for every i, s we
have d(αi, g) ≤ 2−s for any g ∈ Bϕ(i,s) ∈ B. Then G is effectively compatible with
({αi}i∈ω, d).

Remark 4.3. Even though d is a right-c.e. point-free metric defined on G, however,
since {αi}i∈ω need not be computable points w.r.t. τ , it is not immediately obvious
why d(αi, αj) is right-c.e. uniformly in i, j. This is in fact true, but we will not need
it here (yet). We shall revisit this later.

Proof of Lemma 4.2. Since {αi}i∈ω is dense with respect to τ , it is also dense in
G with respect to d since τ and τd are compatible as shown in Theorem 3.2. Thus
G ⊆ ({αi}i∈ω, d).

Given Bd(αi, r), where r ∈ Q+, we want to effectively (in i and r) produce
a name for U = Bd(αi, r) with respect to τ . For each s where 2−s < r, list
all finite tuples and search for 〈nm〉m≤l, 〈pm〉m≤l and 〈qm〉m≤l s.t. the sequences
(Bp0 , Bp1 , . . . , Bpl) and (Bq0 , Bq1 , . . . , Bql) satisfying

• B−1pm ·Bqm ⊆ Vnm
for each m ≤ l,

• Bqm ∩Bpm+1
6= ∅ for each m < l,

• Bp0 ∩Bϕ(i,s) 6= ∅, and
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• 2−s +
∑
m≤l 2

−nm < r.

If such sequences are found, enumerate Bql into the name for U .
We follow a similar argument in the proof of Theorem 3.2. It is clear that

whenever a sequence satisfying the above properties is found, we have the property
that for any g ∈ Bql , d(g, αi) < r. Thus Bql ⊆ U . Conversely, for any g ∈ U =
Bd(αi, r), there must be some sequence which witnesses that d(αi, g) < r, then at
some stage we must find it and thus enumerate a set containing g into the name of
U . Thus U is effectively open with respect to τ .

Now given a basic open set Bj ∈ τ , we produce a c.e. name for Bj w.r.t. τd.
Consider the function f(x, y, z) = x·(y ·z−1). Since f is effectively continuous w.r.t.
τ , we can effectively enumerate f−1(Bj). Search for τ -basic open sets X,Y, Z s.t.

• Y ∩ Z 6= ∅,
• X∩Bϕ(i,s) 6= ∅ for some i, and s > n+2 where n is found so thatBn ⊆ Y ∩Z,

and
• X · Y · Z−1 ⊆ Bj .

For each X,Y, Z and i, s, n found satisfying the above, we enumerate the ball
Bd(αi, 2

−n−1 − 2−s) into the name for Bj w.r.t. τd.
Suppose X,Y, Z, i, s, n are found by the procedure above. Since Bn ⊆ Y ∩Z, we

have that X · (Bn · B−1n ) ⊆ Bj , and hence for any g ∈ X, g Vn ⊆ Bj , since Vn ⊆
Bn ·B−1n . Since X ∩Bϕ(i,s) 6= ∅, we can fix g ∈ X ∩Bϕ(i,s), and so d(αi, g) ≤ 2−s <

2−n−2. As a result, for any h ∈ Bd(αi, 2−n−1− 2−s), d(g, h) ≤ d(g, αi) +d(αi, h) <
2−s + 2−n−1 − 2−s = 2−n−1, that is h ∈ Bd(g, 2−n−1). However from the classical
proof of compatibility (see the proof of Theorem 3.2), we know that since g Vn ⊆ Bj ,
then Bd(g, 2

−n−1) ⊆ Bj . Therefore we conclude that Bd(αi, 2
−n−1 − 2−s) ⊆ Bj .

Now conversely fix some g ∈ Bj . There are τ -basic open sets X,Y, Z such that
X · Y · Z−1 ⊆ Bj such that g ∈ X and e ∈ Y ∩ Z. Now fix any n (such that
Bn ⊆ Y ∩ Z). Since τ and τd are compatible, and {αi}i∈ω is dense in G wrt τd,
we can pick some i and s > n + 2 such that Bd(αi, 2

−s+1) ⊆ X. (We may also
assume that d(αi, g) < 2−s). But this means that Bϕ(i,s) ⊆ X. These six items
X,Y, Z, i, s, n must be thus found by the above procedure. Furthermore, since
d(αi, g) < 2−s < 2−n−1 − 2−s, then g ∈ Bd(αi, 2−n−1 − 2−s).

Hence the procedure above witnesses that Bj is effectively open wrt τd. Thus, τ
and τd are effectively compatible. �

Lemma 4.4. Let G be a computable topological group that contains a dense set of
uniformly computable points. Then G is effectively compatible with a right-c.e. met-
ric space. Furthermore, the compatible metric (on G) is also left-invariant.

Proof. Apply Theorem 3.2 to produce a compatible right-c.e. metric d for G. Let
{αi}i∈ω ⊆ G be the set of uniformly computable points with respect to the original
topology τ on G. Now d(αi, αj) is right-c.e. uniformly in i, j by following the
procedure in Theorem 3.2 and feeding to the procedure the c.e. names for Nαi and
Nαj . Now take M = ({αi}i∈ω, d).

It remains to check that (G, τ) is effectively compatible withM. By Lemma 4.2,
we need only check that there is a computable function ϕ(i, s) = j s.t. d(αi, g) ≤
2−s for any g ∈ Bj . (Here Bj are the basic open sets of τ). Given i, s, search
for some basic open set Bj such that Bj ⊆ X ∩ Y , αi ∈ Bj and X−1 · Y ⊆ Vs.
Some Bj must be found since α−1i · αi = eG ∈ Vs. Now define ϕ(i, s) = j. Since

B−1j · Bj ⊆ Vs, it must be that ∀g, h ∈ Bj , d(g, h) ≤ %(g, h) ≤ 2−s, in particular,

∀g ∈ Bj , d(αi, g) ≤ 2−s. �

By effective compatibility, the group operations remain computable with respect
to the metric. Thus, to argue that the group from Theorem 4.1 has a computable
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Polish presentation, all we need to show is that there is a computable dense se-
quence.

Remark 4.5. We can easily reconstruct a computable dense sequence in a com-
putable topological group with c.e. formal inclusion. The latter is an axiomatic
generalisation of formal inclusion in metric spaces that is defined as follows:

B(x, q) ⊂form B(y, r) iff d(x, y) + q < r.

Note it is a c.e. relation in a right-c.e. space. We omit the definition of abstract
formal inclusion � and refer the reader to [32], but we note that [32] contains an
example of a non-metrisable computable topological space with c.e. strong inclusion.
We claim that Lemma 4.4 implies the following: Every computable topological group
with a c.e. formal inclusion is effectively compatible with a right-c.e. metric space.
To see why, extract a dense set of uniformly computable points by considering for
each i0 the first found effective sequence Bi0 � Bi1 � . . . where

⋂
k Bik = {αi0}.

It follows from the definition of formal inclusion in [32] that Nαi0 is c.e.; we omit
the details.

4.2. Proof of Theorem 4.1. In order to identify special points in G, we use some
ideas in [14] by utilising the group operations. Fix G and d as in the proof of
Theorem 3.2. The first lemma below is designed to implement the idea sketched in
Remark 4.5, but in the absence of c.e. ‘formal inclusion’.

Lemma 4.6. Given a basic open set Bi in G, there exists a computable sequence
of basic open sets {Bis}s∈ω such that:

(1) Bi0 = Bi and Bis+1 ⊆ Bis for every s.

(2) dm
(
Bis
)

:= sup
{
d(x, y) | x, y ∈ Bis

}
≤ 2−s for every s.

(3) f∗ (Bis , Bis) ⊆ Vs for every s, where f∗(x, y) = x−1y.

Notice that we only claim that the sequence {Bis}s∈ω is computable (uniformly
in i = i0). We make no claims about how difficult it might be to approximate
dm
(
Bis
)
.

Proof. Let Bi0 = Bi. Since V0 = G, hence d(x, y) ≤ 1 for every x, y ∈ G and so
properties 2 and 3 are trivially true for s = 0. Now suppose inductively that Bis
satisfying the desired properties has been defined. Since f∗ is both effectively open
and effectively continuous, and since eG ∈ f∗ (Bis , Bis) ∩ Vs+1, we can search for
some basic open set B s.t. f∗(B,B) ⊆ f∗(Bis , Bis) ∩ Vs+1 and B ∩Bis 6= ∅. Take
Bis+1 to be any basic open set contained in B ∩ Bis . This gives property 1. Note

that f∗
(
Bis+1

, Bis+1

)
⊆ Vs+1 which gives property 3.

It remains to check property 2. Let x, y ∈ Bis be given. Since the original
topology on G is compatible with the topology on G induced by the metric d, we can
find sequences (xn)n∈ω and (yn)n∈ω such that xn, yn ∈ Bis and d(xn, x), d(yn, y) ≤
2−n for all n. Therefore, ∀ε > 0, ∃m,n for which d(xn, x) < ε

2 and d(ym, y) < ε
2 ,

then

d(x, y) ≤ d(x, xn) + d(xn, ym) + d(ym, y)

≤ ε

2
+ 2−s +

ε

2
(since f∗ (Bis , Bis) ⊆ Vs)

≤ 2−s + ε

Since the above holds for any ε, then d(x, y) ≤ 2−s. �

Since d is complete and compatible with the original topology, by property 3 of
Lemma 4.6, there is a unique point αi ∈ G s.t.

αi ∈
⋂
s∈ω

Bis .
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Here αi corresponds to the sequence {Bis}s∈ω with Bi0 = Bi. Repeating this for
all i produces an infinite sequence α0, α1, · · · such that αi ∈ Bi for each i. When
we want to distinguish between the different sequences {Bis}s∈ω we will use the
notation {Bkis}s∈ω if Bki0 = Bk.

We claim that the set {αi}i∈ω produced in Lemma 4.6 is dense in the original
topology of G.

To see why, fix a basic open set Bi be given and let g ∈ Bi. Since G is metrizable,
G is also (classically) regular. Then ∃F 3 g s.t. F ⊆ Bi and F is a closed
neighbourhood of g. Since the basic open balls form a basis for the topology of G,
∃Bj ⊆ F , and hence Bj ⊆ F ⊆ Bi. Then we must have that αj ∈ Bj ⊆ Bi.

We now finish the proof of the theorem. Since {αi}i∈ω is dense in τ and using
the procedure in Lemma 4.6, given any i, s, we are able to effectively identify a
basic open set Bj for which ∀g ∈ Bj , d(αi, g) ≤ 2−s. By Lemma 4.2, we have that
τ is effectively compatible with τd.

First of all notice that d(αi, αj) is a right-c.e. real uniformly in i, j. To see this,
note that an easy modification of the right c.e. approximation procedure of d in
Theorem 3.2 by requiring that Bp0 ∩ Bϕ(i,s+1) 6= ∅ and Bql ∩ Bϕ(j,s+1) 6= ∅ and

enumerating 2−s +
∑
m≤l 2

−nm allows us to produce the right cut of d(αi, αj). But

since {αi}i∈ω are obviously uniformly computable points with respect to τd, and
since τ and τd are effectively compatible, and also that d is right-c.e., we conclude
that {αi}i∈ω are also uniformly computable points with respect to τ .

4.3. Consequences of Theorem 4.1. A topological space will be called topolog-
ically complete if it admits a metric under which it is complete. Recall also that
a metric is invariant if it is both left and right invariant. For instance, every left-
or right-invariant metric in an abelian group is invariant. Klee [24] proved the fol-
lowing result. Suppose G is a group with invariant metric d. If the space (G, d) is
topologically complete, then G is actually complete under d. We therefore obtain
the following, rather satisfying:

Corollary 4.7. Let G be a computable topological group that is Polish(able) abelian.
Then G is effectively compatible with a right-c.e. Polish group.

Of course, the metric is invariant in this case.

Since all compact metric spaces are complete, by Theorem 4.1 we see that any
compact computable topological group must be compatible with a right-c.e. metric
space. In fact, we will se that the same is true of locally compact groups; this fact
will be established at the end of the next section.

5. Locally compact groups and proper metrizations

Recall that a metric d is proper if every closed bounded ball {y | d(x, y) ≤ r}
is compact; equivalently, every closed bounded set is compact. As we have already
mentioned above, Struble showed the following:

Theorem 5.1 (Struble [48], see also [15]). Let G be a topological group which
is Hausdorff, second countable and locally compact. Then G admits a compatible
left-invariant proper metric.

We refer the reader to [48] for the classical proof. This section is devoted to
proving that the following effective version of Theorem 5.1. (Recall that all our
groups are Hausdorff and second countable.)
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Theorem 5.2. Let (G, τ) be an effectively locally compact computable topological
group. Then G is effectively compatible with an effectively proper right-c.e. metric
space. Furthermore the metric is left-invariant.

It will also follow from the construction that if the metric produced in Theorem
4.1 is complete, then the proper right-c.e. metric is also complete (cf. the proof of
Corollary 5.4).

Proof. By (the proof of) Corollary 5.4 and Theorem 4.1, (G, τ) contains a dense set
of uniformly computable points {αi}i∈ω. By Lemma 4.4, G is effectively compatible
with ({αi}i∈ω, δ) where δ is right-c.e. Furthermore δ is left-invariant.

By Lemma 2.19 we fix the triple ({Bn}n∈ω, {Km}m∈ω, R). Note that each Bn
is τ -effectively open (uniformly in n) and collectively form a basis for (G, τ). We
may also assume that for every n there is some m such that (n,m) ∈ R. By set
product and power we mean the corresponding operation with respect to the group
operation.

Note that the group identity e is (in any computable topological group) a com-
putable point with respect to τ , therefore there is some τ -effectively compact set
K and some τ -open set B such that e ∈ B ⊆ K. Since δ is compatible with τ we
fix some r ∈ Q+ such that Bδ(e, r) ⊆ B ⊆ K. By scaling δ we can assume that
r = 2, and so we may assume that Bδ(e, 2) ⊆ K. Note that we do not claim that

Bδ(e, 2) or B≤δ (e, 2) is effectively compact, merely that some open ball around e is
contained in an effectively compact set K.

We now define a collection {Ur}r∈Q+ of τ -effectively open sets satisfying the
following properties.

(1) For each r ∈ Q+, Ur is contained in some τ -effectively compact set.
(2) For each r ∈ Q+, Ur = U−1r .
(3) For each r, s ∈ Q+, Ur · Us ⊆ Ur+s.
(4) ∀r < 2, Ur = Bδ(e, r).
(5)

⋃
r∈Q+ Ur = G.

(6) For each r ∈ Q+, e ∈ Ur.
For 0 < r < 2, define Ur = Bδ(e, r). To check that the properties hold, since
δ(g, e) = δ(g−1, e) for any g ∈ G, Ur is closed under inverse for r < 2. For
r + s < 2, let x ∈ Ur and y ∈ Us, then by triangle inequality and left-invariance of
δ, δ(xy, e) ≤ δ(xy, x) + δ(x, e) = δ(y, e) + δ(x, e), thus giving that xy ∈ Ur+s.

Now we define U2 = Bδ(e, 2)∪W2, where W2n is defined as follows. For each n,
take W2n = Bn ∪B−1n . Then W2n is τ -effectively open (uniformly in n) and closed
under inverse. If Bn ⊆ Km, then by the effective continuity of −1, K−1m ⊇ B−1n is
also effectively compact. We get that U2 is contained in K ∪Km ∪K−1m which are
effectively compact. It is then clear then that we have {Ur}r≤2 with the desired
properties.

Suppose inductively that Ur for r ≤ 2n have been defined s.t. each Ur is τ -
effectively open and U2n is contained in some τ -effectively compact set. For each
2n < r < 2n+1, list out all finite sequences of positive rationals 〈ti〉i≤m s.t. ti ≤ 2n

for each i and
∑
i≤m ti = r. For each such sequence listed out, enumerate

∏
i≤m Uti

into the open name of Ur. By inductive hypothesis, since each Uti is effectively
open, and multiplication is effectively open, then Ur must also be effectively open
(uniformly in the index r). Finally take U2n+1 = W2n+1 ∪ (U2n · U2n · U2n · U2n).

To see that property 3 holds, if r + s < 2n+1, then the desired property follows
easily from the definition of Ur. Suppose then that r+s = 2n+1. If r = s = 2n, then
Ur · Us = U2n · U2n ⊆ U2n+1 (note that e ∈ U2n). Therefore we may assume that
r > 2n and s < 2n. Then for any sequence 〈ti〉i≤m where

∑
i≤m ti = r, ∃m0,m1 s.t.∑m0

i=0 ti ≤ 2n,
∑m1

i=m0+1 ti ≤ 2n and
∑m
i=m1+1 ti ≤ 2n. By inductive hypothesis,
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we have that
∏m0

i=0 Uti ,
∏m1

i=m0+1 Uti ,
∏m
i=m1+1 Uti ⊆ U2n . Thus this gives us that

Ur ⊆ (U2n)
3
. Then note that Us ⊆ Us ·U2n−s ⊆ U2n (again by IH and the fact that

e ∈ U2n−s), and thus Ur · Us ⊆ (U2n)
4 ⊆ U2n+1 .

To check that property 1 holds, note that if r < 2n−1 then Ur ⊆ Ur · U2n+1−r ⊆
U2n+1 by property 3 above, and so it is enough to check that U2n+1 is contained in
an effectively compact set. By IH, U2n is contained in some effectively compact set
K∗, so U2n+1 is contained in Km ∪K−1m ∪ (K∗)

4
, where m is s.t. (n,m) ∈ R. It is

not hard to check that (K∗)
4

is effectively compact, and hence U2n+1 is contained
in some effectively compact set.

From the definition of Ur, for any r where 2n < r ≤ 2n+1, Ur = U−1r and so
property 2 holds as well.

Finally, since {Bn}n∈ω is a basis for (G, τ), we have
⋃
nW2n = G and hence⋃

r Ur = G.
Now we define the metric d on G by d(x, y) = inf{r | x−1y ∈ Ur}. To see that

d is a metric, note that d(x, y) = 0 gives that ∀0 < r < 2, x−1y ∈ Ur = Bδ(e, r),
meaning that δ(x−1y, e) = 0. Since δ is a metric, it has to be that x = y. By
property 6, d(x, x) = 0. The symmetry of d and triangle inequality follow from
property 2 and 3 of {Ur}r∈Q+ respectively. d is obviously left-invariant. It remains
to check that (G, d, {αi}i∈ω) is a right-c.e. metric space, G is effectively compatible
with (G, d, {αi}i∈ω), and that d is effectively proper. First of all, we have:

Lemma 5.3. For all x, y ∈ G, if d(x, y) < 2 or δ(x, y) < 2 then d(x, y) = δ(x, y).

Proof. If d(x, y) < 2 then d(x, y) = inf{r < 2 | x−1y ∈ Ur} = inf{r < 2 | δ(x, y) <
r} = δ(x, y). If δ(x, y) < 2 then x−1y ∈ Ur for some r < 2, which means that
d(x, y) < 2 and so by the above, d(x, y) = δ(x, y). �

Recall that the sequence {αi}i∈ω, apart from being used as special points for d
and δ, are also uniformly computable points with respect to τ . Then together with
the fact that Ur are τ -effectively open (uniformly in the index r), one can obviously
give a right-c.e. approximation to d(αi, αj), uniformly in i, j.

By Lemma 5.3, we have ({αi}i∈ω, d) = ({αi}i∈ω, δ) ⊃ G, so it is sufficient
to show that τd and τδ are effectively compatible on G. Let Bd(αi, r) be given.
Since d is right-c.e., �d is a c.e. relation, where �d is the usual formal inclusion
relation for basic metric balls. Consider the τδ-effectively open set consisting of all
Bδ(αj , q) such that q < 2 and Bd(αj , q)�d Bd(αi, r). This shows that Bd(αi, r) is
τδ-effectively open. To show that each Bδ(αi, r) is τd-effectively open is similar.

Finally to check that d is effectively proper, we note that by definition of d,
Bd(e, r) ⊆ Ur ⊆ U2n for some sufficiently large n. Given a closed set F and an
open ball Bd(αi, q) ⊇ F , take r = d(αi, e)[0]+q, where d(αi, e)[0] is the first rational
enumerated by the right cut of d(αi, e), then note that F ⊆ Bd(αi, q) ⊆ Bd(e, r) ⊆
Ur. For any n > log2(r), F ⊆ U2n ⊆ K, where K is τ -effectively compact. But
this means that K is also τd-effectively compact and a compact name can be found
uniformly in n. �

5.1. Consequences. In the first corollary, we do not assume that the group is
effectively locally compact. The first corollary uses Struble’s original result and
Theorem 4.1, and the second corollary follows from Theorem 5.2 and Theorem 4.1.

Corollary 5.4. Let G be a computable topological group that is locally compact.
Then G is effectively compatible with a right-c.e. Polish group.

Proof. Let δ be the left-invariant right-c.e. compatible metric produced in Theorem
3.2. Struble (see [48]) used δ to produce another metric d on G such that d is
compatible with δ and d is a proper metric. However (see Lemma 5.3) d and δ
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are equal whenever d(x, y) < 2 or δ(x, y) < 2. Since every proper metric space
is complete, this means that (G, δ) is complete. By Theorem 4.1, G is effectively
compatible with a right-c.e. metric space. �

We see that the metrics δ and d are equi-complete and effectively compatible
assuming that the group is effectively locally compact, by Theorem 5.2. Thus, by
Theorem 4.1 combined with Theorem 5.2, we have:

Corollary 5.5. If G is an effectively locally compact computable topological group.
Then G admits a right-c.e. Polish presentation in which the metric is (effectively)
proper and left-invariant.

In particular, effective local compactness (and the effective compatibility of δ
and d in the notation above) implies the proper metric in the corollary above is
also effectively locally compact. But of course, being effectively proper is nicer than
just being effectively locally compact.

A natural question arises whether we can strengthen these corollaries further
and additionally assume that the metric is computable in each of the corollaries
above. In the next section we show that the answer is ‘no’ in both cases. In fact,
our counter-examples corresponding to Corollaries 5.4 and 5.5 are compact and
discrete, respectively.

6. Comparing and separating the notions

In Sections 4 and 5 we produced (left-invariant) right-c.e. Polish presentations
of locally compact groups. We now aim to show that this is tight, i.e. we show
that there are computable topological (Polish) groups which are not effectively
compatible with any computable metric space. In this section we give two examples,
one discrete and one profinite. In the process of proving the results we will establish
several lemmas that are perhaps more valuable (or interesting) than the counter
examples.

6.1. Discrete groups. Recall that a computable presentation of a discrete count-
able group is its isomorphic copy of the form F/H, where F is the standard decid-
able presentation of the free group upon omega generators, and H is its computable
normal subgroup [43, 29]. If H is merely c.e., then we say that the group is ‘c.e.-
presented’. (These correspond to ‘recursive’ groups with solvable and not necessar-
ily solvable Word Problem, respectively.) We can pick representatives in each class
and assume that the domain of a computable group is N; then the group operations
are computable (as functions on N). In the c.e.-presented case, we have to also
introduce a computably enumerable congruence on N, but we can still keep the
operations computable. The difference is that two elements can be at some stage
declared equal. Note that this is very similar to the difference between computable
and right-c.e. Polish presentations of a group. This intuition is made formal below.

Lemma 6.1. A countable discrete group is computably presentable iff it admits a
computable Polish presentation.

Proof. Suppose that a group G is computably presentable, i.e. G is generated by
{αi}i∈ω on which the group operations and the equality relation are computable.
We consider the standard discrete metric defined on the elements of the computable
presentation of G, i.e. d(αi, αj) = 0 iff αi = αj and d(αi, αj) = 1 otherwise. Since
testing of equality is computable by assumption, the metric is also computable.

To check that · is effectively continuous with respect to τd, given αk ∈ G and
r ∈ Q+, if r > 1, we simply enumerate G×G as the preimage. If r ≤ 1, then find
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all pairs αi, αj such that αi · αj = αk and enumerate Bd(αi, 1)×Bd(αj , 1). To see
that −1 is effectively continuous, it is similar.

Conversely suppose that G = {αi}i∈ω is a countable group and there is a com-
putable discrete metric d defined on G in which the group operations are effectively
continuous with respect to τd. Even though d is computable, the isolating radius for
each αi might not be. Nonetheless we (not effectively) fix some rational r > 0 for
which Bd(eG, r) which isolates eG. Since the metric is computable, we can decide
given any αi, whether or not eG = αi, by computing d(eG, αi) to an accuracy of
r
2 . Therefore equality in G is computable if we can show that the group operations
are computable.

To compute α−1i , enumerate the preimage of Bd(eG, r) under · and wait for
(Bd, B

′
d) to show up where αi ∈ Bd. Then the center of B′d is necessarily the

inverse of αi, as Bd(eG, r) isolates eG. Now given αi, αj , to compute αi ·αj , search
for three basic metric balls Bd, B

′
d, B

′′
d such that Bd · B′d · (B′′d )−1 ⊆ Bd(eG, r) and

where αi ∈ Bd and αj ∈ B′d. Then the center of B′′d is necessarily equal to αi·αj . �

Lemma 6.2. A countable discrete group is c.e. presentable iff it admits a right-
c.e. Polish presentation.

Proof. Suppose that a discrete group G, is c.e. presentable, i.e. G is generated by
{αi}i∈ω on which the group operations are computable but the equality relation
is c.e. We consider the standard discrete metric defined on the elements of the
computable presentation of G, i.e. d(αi, αj) = 0 iff αi = αj and d(αi, αj) = 1
otherwise. Since equality is c.e. by assumption, the metric is right-c.e. To see that
the operations are effectively continuous w.r.t. the topology induced by d, repeat
the same procedure as in Lemma 6.1.

Conversely suppose that G = {αi}i∈ω is a countable group and there is a right-
c.e. discrete metric d defined on G in which the group operations are effectively
continuous with respect to τd. Again we fix some rational r > 0 such that Bd(eG, r)
which isolates eG. To see that the group operations are computable we follow
exactly as in Lemma 6.1, noting that the predicate “αi ∈ Bd(αj , r)” is still c.e.
Since the metric is right-c.e., and the operations are computable, equality in G is
c.e. �

Corollary 6.3. There exists a computable topological discrete abelian group (thus,
right-c.e. Polish) that is not topologically isomorphic to any computable Polish
group.

Proof. Consider the group G =
⊕

i∈S Zpk where S is a Σ0
2 set that is not c.e.. Then

G is c.e. presentable [23, 34] with no computable presentation. By Lemma 6.2 there
is a discrete right-c.e. metric d on G in which the group operations are effectively
continuous. Since d is right-c.e., τd is a computable topology on G and so (G, τd)
is a computable topological group. If (G, τd) is effectively compatible with the
computable metric space M = ({αi}i∈ω, d′) then G = {αi}i∈ω since d′ is discrete,
and since τd and τd′ are effectively compatible, the group operations would be
effectively continuous with respect to τd′ , which contradicts Lemma 6.1. �

6.2. A profinite counterexample. Recall that in Corollary 5.5 we produced a
right-c.e. proper Poliosh presentation which, by effective compatibility, was also
effectively locally compact. Can we produce a computable (proper) metric, say, in
the simplest compact case? Note that in the case of a compact Polish group we
vacuously have a proper metric. We now prove that the answer is ‘no’.

Proposition 6.4. There exists a profinite group G that admits an effectively com-
pact right-c.e. Polish presentation but has no computably compact (effectively com-
pact computable Polish) presentation.
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Proof. The proof that we outline below resembles similar counter-examples in [46],
[31], and [16]. However, in our case a bit more care is needed.

We construct our group G to be the inverse limit of finite groups and (injective)
homomorphisms

F0 ←φ0
F1 ←φ1

F2 ←φ2
. . . ,

where the maps are not necessarily surjective, and the groups and the maps are
given by their strong indices, i.e., as finite sets. Let Hi be the image of φi. We
have that

G = proj lim
i∈ω

(Hi, φi).

We construct H to be isomorphic to the direct product of cyclic groups

GS =
∏
i∈S

Zpi ,

where S ⊆ ω.

Lemma 6.5. If G has an effectively compact, computable Polish (eccp) presentation
iff S is c.e.

Proof of Lemma. By [6], for G to be eccp it is necessary and sufficient that G has
‘recursive’ presentation in the sense of Smith [46]. By [31], it is also equivalent to
computable presentability of the discrete group

⊕
i∈S Zpi , which is also evidently

equivalent to S being c.e. �

By the lemma above, it is sufficient to construct an effectively compact right-
c.e. Polish (ecrp) presentation of GK , where K is the halting set. A straightforward
injury-free construction can be designed to implement the following idea.

In the notation above, we make each Fi to be the product of some of the Zpj –
which exactly depends on the construction. Note we can change our mind about
Hi by making φi not onto. We can also delay this decision and make φj not onto
for some j > i, with a similar effect to the projective limit. Simply put, whenever
we introduce another cyclic summand, we then later can ‘kill’ it if necessary, but
we also would like to do it in the most natural way possible so that we do not upset
the operations.

This is done as follows. If i enters K at stage s, we make sure that Hs ≤ Fs
is isomorphic to

∏
j<i;j /∈Ks

Zpj . In other words, we pick Hs to be the subgroup of

Fs of this form and define φs to be (essentially) the identity map that identifies
Fs+1 with Hs inside Fs, which clearly can be done. We then re-introduce cyclic
summands of orders > i in Hs+2 and define the map φs+1 so that respects the
group operations, etc.

We believe that the formal construction is so elementary that the formal details
can be safely left to the reader. It shall be useful to view this process described
above as follows. We declare that the subgroup of Fs generated by the cyclic
summands Zpj , j ≥ i, is the kernel of the natural homomorphism ψs taking Fs
to Fs+1 =

∏
j<i;j /∈Ks

Zpj , where we additionally pick nice representatives of the
classes in the factor. These ‘nice’ representatives are the elements having zero Zpj -
projection if Zpj does not occur in Fs+1. We use these representatives to define
φs as induced by the natural isomorphism between the Fs+1 and Fs/Us, where
Us = Ker ψs.

We now observe that
∏
i∈ω Fi is computably homeomorphic to 2ω. We essentially

declare a basic clopen set in
∏
i∈ω Fi to be ‘out’ of the class representing the group

if the respective element is discovered to be outside the range of some φi. In other
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words, the domain of the group can be viewed as a Π0
1 class. It is easy to see that

a Π0
1-calls can be right-c.e. metrized; e.g., [2]. (The special points will be just the

special points of 2ω, but they can be declared equal.) However, we also need to
verify that the group operations are effective.

Remark 6.6. If the reader is puzzled as to what could potentially be an issue,
they should think about the following. One of the equivalent formulations of a
computable map is that a fast Cauchy sequence should be mapped to a fast Cauchy
sequence, uniformly effectively and consistently. However, what could be not fast
converging in

∏
i∈ω Fi can become fast converging after the ‘collapse’ of the metric.

We must be able to to still define the operations for such sequences even though
we cannot predict what happens in the future. However, the ‘collapse’ happens
uniformly and symmetrically throughout the group in the construction, so we should
be safe.

The group operations are consistently defined and are total on the whole of∏
i∈ω Fi. Also, the clopen sets that are declared ‘out’ together with the elements

that stay ‘in’ make up finitely many cosets of Fs/Us,

a0 + Us, . . . , ak + Us,

where Us = Ker ψs (as explained above) and the elements ak can be identified with
the respective elements of Fs+1, under ψi (equivalently, with their pre-images under
φi). Collapse the whole coset aj + Us into one point by declaring that the metric
between any two points in the coset is equal to zero. In

∏
i≤s Fi, the operation is

consistently defined modulo Us. Thus, if we declare the (new distance between) the
elements making up each of these cosets equal to zero it will be consistent with the
group operations.

It should be clear that the metric is right-c.e., and that we can define a com-
putable sequence starting with the standard computable dense sequence in∏

i∈ω
Fi ∼= 2ω.

Of course, our dense sequence will have lots of repetitions. The resulting Π0
1 class

is also effectively compact, as all Π0
1 classes in 2ω are, since any cover remains a

cover after the metric is being re-defined.
To calculate the operations, use the operations inherited from

∏
i∈ω Fi

∼= 2ω. As
we argued above, the functionals act consistently with the group structure on the
Π0

1 class. �
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[19] Zvonko Iljazović and Takayuki Kihara. Computability of subsets of metric spaces. In Handbook

of computability and complexity in analysis, Theory Appl. Comput., pages 29–69. Springer,
Cham, [2021] ©2021.

[20] Iraj Kalantari and Galen Weitkamp. Effective topological spaces. I. A definability theory.

Ann. Pure Appl. Logic, 29(1):1–27, 1985.
[21] N. Khisamiev. Hierarchies of torsion-free abelian groups. Algebra i Logika, 25(2):205–226,

244, 1986.

[22] N. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol. 2,
volume 139 of Stud. Logic Found. Math., pages 1177–1231. North-Holland, Amsterdam, 1998.

[23] N. Khisamiev and Z. Khisamiev. Nonconstructivizability of the reduced part of a strongly

constructive torsion-free abelian group. Algebra i Logika, 24:69–76, 1985.
[24] V. L. Klee, Jr. Invariant metrics in groups (solution of a problem of Banach). Proc. Amer.

Math. Soc., 3:484–487, 1952.

[25] Margarita Korovina and Oleg Kudinov. The Rice-Shapiro theorem in computable topology.
Log. Methods Comput. Sci., 13(4):Paper No. 30, 13, 2017.

[26] Peter La Roche. Effective Galois theory. J. Symbolic Logic, 46(2):385–392, 1981.
[27] Peter Edwin La Roche. CONTRIBUTIONS TO RECURSIVE ALGEBRA. ProQuest LLC,

Ann Arbor, MI, 1978. Thesis (Ph.D.)–Cornell University.

[28] M. Lupini, A. Melnikov, and A. Nies. Computable topological abelian groups. Preprint., 2021.
[29] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.

[30] A. Melnikov and A. Nies. Computably locally compact totally disconnected groups. Preprint.,

2022.
[31] Alexander Melnikov. Computable topological groups and Pontryagin duality. Trans. Amer.

Math. Soc., 370(12):8709–8737, 2018.

[32] Alexander Melnikov and Antonio Montalbán. Computable Polish group actions. J. Symb.
Log., 83(2):443–460, 2018.

[33] Alexander Melnikov and Keng Meng Ng. Separating notions in computable topology.

Preprint, 2022.
[34] Alexander G. Melnikov. Computable abelian groups. The Bulletin of Symbolic Logic,

20(3):315–356, 2014.
[35] G. Metakides and A. Nerode. Effective content of field theory. Ann. Math. Logic, 17(3):289–

320, 1979.
[36] Y. N. Moschovakis. Recursive metric spaces. Fund. Math., 55:215–238, 1964.
[37] P. Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudy

Mat. Inst. Steklov, 44:1–143, 1955.

[38] S. P. Odintsov and V. L. Selivanov. Arithmetic hierarchy and ideals of enumerated Boolean
algebras. Sib. Math. J., 30(6):952–960, 1989.

[39] Arno Pauly. On the topological aspects of the theory of represented spaces. Computability,
5(2):159–180, 2016.

[40] Arno Pauly. Effective local compactness and the hyperspace of located sets. CoRR,

abs/1903.05490, 2019.



28 HEER TERN KOH, ALEXANDER G. MELNIKOV, AND KENG MENG NG

[41] Arno Pauly, Dongseong Seon, and Martin Ziegler. Computing Haar Measures. In Maribel

Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer Sci-

ence Logic (CSL 2020), volume 152 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 34:1–34:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.
[42] Marian B. Pour-El and J. Ian Richards. Computability in analysis and physics. Perspectives

in Mathematical Logic. Springer-Verlag, Berlin, 1989.

[43] M. Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer.
Math. Soc., 95:341–360, 1960.

[44] H. Rogers. Theory of recursive functions and effective computability. MIT Press, Cambridge,

MA, second edition, 1987.
[45] Rick L. Smith. The theory of profinite groups with effective presentations. ProQuest LLC,

Ann Arbor, MI, 1979. Thesis (Ph.D.)–The Pennsylvania State University.

[46] Rick L. Smith. Effective aspects of profinite groups. J. Symbolic Logic, 46(4):851–863, 1981.
[47] Dieter Spreen. A characterization of effective topological spaces. In Recursion theory week

(Oberwolfach, 1989), volume 1432 of Lecture Notes in Math., pages 363–387. Springer, Berlin,

1990.
[48] Raimond Struble. Metrics in locally compact groups. Compositio Mathematica,

28(3):217–222, 1974.
[49] K. Weihrauch and X. Zheng. Effectiveness of the global modulus of continuity on metric

spaces. Theoretical Computer Science, 219(1):439 – 450, 1999.

[50] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, Berlin, 2000. An introduction.

[51] Klaus Weihrauch and Tanja Grubba. Elementary computable topology. J.UCS, 15(6):1381–

1422, 2009.
[52] Y. Xu and T. Grubba. On computably locally compact Hausdorff spaces. Mathematical Struc-

tures in Computer Science, 19(1):101 – 117, 2009.

Email address: heertern001@e.ntu.edu.sg

Victoria University of Wellington, Wellington, New Zealand, and Sobolev Insti-
tute of Mathematics, Novosibirsk, Russia

Email address: alexander.g.melnikov@gmail.com

Nanyang Technological University, Singapore

Email address: kmng@ntu.edu.sg


