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Abstract. We compare several natural notions of effective presentability of a
topological space up to homeomorphism. We note that every left-c.e. (lower-

semicomputable) Stone space is homeomorphic to a computable one. In con-

trast, we produce an example of a locally compact, left-c.e. space that is not
homeomorphic to any computable Polish space. We apply a similar technique

to produce examples of computable topological spaces not homeomorphic to

any right-c.e. (upper-semicomputable) Polish space, and indeed to any arith-
metical or even analytical Polish space.

We then apply our techniques to totally disconnected locally compact (tdlc)

groups. We prove that every effectively locally compact tdlc group is topolog-
ically isomorphic to a computable tdlc group; all notions will be clarified. The

result is perhaps unexpected since the hypothesis of the theorem may seem

rather weak.

1. Introduction

In the past decade or two there has been an increasing interest in the computability-
theoretic aspects of abstract topological spaces. The central questions in such in-
vestigations include:

- What does it mean for a space to be computably presented?
- When does a space admit a computable presentation?
- Can we compute the standard topological invariants of a computable space?
- Can we classify computably presentable spaces in a given class? etc.

To attack these and similar questions we will have to depart from classical com-
putable analysis that typically deals with fixed ‘natural’ computable presentations
of Polish and separable Banach spaces. For classical computable analysis, we cite
Aberth’s [1], Pour-El and Richards [51], Ko [27], Braverman and Yampolsky [6], and
Weihrauch [61]. Investigations of computable presentability in abstract topology
contribute to the fast developing subject in computable mathematics, namely com-
putable topology. There had been many early investigations into effective aspects
of abstract topological spaces, to name a few: [20, 21, 22], [45, 46], and [57, 58, 56].
Nonetheless, most of the related work in computable topology is more recent and
includes [62, 18, 23, 59, 30, 13, 31]. Some of this work has been motivated by
the recently revived systematic research in computable topological groups. Such
studies restricted to profinite groups began with Metakides and Nerode [41], La
Roche [32, 33] and Smith [55, 54]. After several decades of essentially no activity
in this technically challenging subject, computable topological groups (this time,
not necessarily profinite) have found new unexpected applications in computable
structure theory [39, 15] and, remarkably, in computable topology [38, 34] where
they were used to solve problems that seemed unrelated to topological groups.
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Computable topology is notorious for its ‘zoo’ of various notions of computability
for a topological space, and for a topological group alike. In contrast with effective
algebra [11, 2] where all standard notions of computable presentability in com-
mon classes had been separated more than half-a-century ago (e.g., Novikov [47],
Boone [4], Feiner [12], Khisamiev [24], Odintsov and Selivanov [48]), some of the
key notions of computable presentability in topology have been separated only very
recently [18, 16, 34, 3]; these results will be discussed in detail later in the paper.
In fact, some of the other key notions, such as left-c.e. Polish and computable Pol-
ish presentations, have not yet been separated up to homeomorphism. The first
main goal of this paper is to fill this apparent gap in the theory by constructing
counterexamples.

The second main goal is to apply the techniques used to separate computability
notions to obtain a positive result about topological groups. In the related work [37,
34], several notions of computable presentability for a totally disconnected locally
compact (tdlc) group have been proposed. Remarkably, it has been illustrated
in [37, 34] that several seemingly most natural definitions are indeed equivalent,
and that the approach in [37, 34] is also equivalent to the well-established notions
of computable presentability in the important discrete [35, 52] and profinite [41,
32, 55] cases. In the present paper we connect these investigations to the study
of computable Polish groups that are not necessarily tdlc (initiated in [39]). More
specifically, we obtain a characterization of computable presentability for a tdlc
group in terms of an arbitrary (compatible) computable metric. We believe that
our result is unexpected since it uses a seemingly weak hypothesis about the metric.

To state the results formally we need a few basic classical definitions. The notion
of a computable Polish space seems to be the most well-established notion of com-
putable presentability for a Polish(able) space. It can be traced back to Ceitin [8]
and Moschovakis [42]. A Polish space is computable or computably metrized if there
is a complete, compatible metric d and a dense subset of special or ideal points
(xi)i∈ω of the space such that d(xi, xj) are computable reals uniformly in i and j.
This means that given i, j, n we can calculate d(xi, xj) to precision 2−n. This def-
inition can be relativised to an oracle; for instance, a ∆0

2-presented space can also
be defined using algorithms that have access to an oracle for the halting problem.

The following two refinements of ∆0
2-presentability for spaces are of special im-

portance. If d(xi, xj) is merely right-c.e. (right-c.e.), meaning that we can uniformly
in i, j list the rationals in the right (resp., left) cut of the real d(xi, xj), then we
say that the space is left-c.e. (resp., right-c.e.) presented. In the literature, left-
and right-c.e. spaces are also known under the names of lower- and, respectively,
upper-semicomputable spaces. The intuition is that right-c.e. and left-c.e. spaces
roughly correspond to Π0

1- and Σ0
1-presentations, respectively, in computable struc-

ture theory. In the context of topological groups this intuition is formally clarified
in [28] where it is noted that, e.g., right-c.e. and Σ0

1-presentability are equivalent for
discrete groups. For a Stone space, right-c.e. presentability with a mild additional
assumption is equivalent to Σ0

1-presentability of the dual Boolean algebra [3].
We note that in computable algebra, ∆0

n-, Π0
n- and Σ0

n-presentations had been
separated (up to isomorphism) several decades ago; see, e.g., [12, 48, 25]. In con-
trast, the examples of ∆0

2-presented (compact) Polish spaces with no computable
presentation have been found only very recently; see [16, 18]. One possible expla-
nation of such a delay is that producing such examples typically requires significant
effort and new ideas, especially if we want to keep our examples within some nat-
ural class of spaces, e.g., compact connected spaces. Recently the notions of a
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right-c.e. space, computable Polish space, and an ‘effectively compact’ space (to
be defined later) have also been separated in [16, 18, 34, 3]. These results rely
on (co)homological methods, the theory of effectively compact spaces, and priority
techniques; for a detailed exposition of the methods and the cited results see the
technical recent survey [9].

We note that it was not known whether every left-c.e. Polish space must be
homeomorphic to a computable one. We will see in Proposition 3.8 that every
left-c.e. Stone space has a computable Polish (indeed, effectively compact by [16])
presentation, up to homeomorphism. The first main result of the paper is:

Theorem 1.1. There exists a left-c.e. Polish space not homeomorphic to any com-
putable Polish space.

The techniques necessary to prove the result have another peculiar and (we
believe) important implication. Namely, we will later define the rather weak notion
of a computable topological presentation of a space. In this notion, we only assume
that there is an effective list of a countable base of topology, and that we can also
enumerate the intersections of basic sets, in some weak sense. A standard example
of such a presentation is a right-c.e. presented space. It follows from one of the
aforementioned separation results ([3]) that there is a right-c.e. (thus, computable
topological) Stone space with no computable Polish presentation. However, it seems
that the following result is new: There is a computable topological Polish(able)
space not homeomorphic to any right-c.e. Polish space; see Thm 4.4. In fact, the
fairly straightforward construction in Theorem 4.4 shows that, essentially, there is
no a priory upper bound on the complexity of the simplest completely metrized
presentation of a computably topological space, meaning that it does not have to
have an X-computable Polish presentation for however complex fixed oracle X. (It
takes some work to push the lower bound on the complexity of the simplest such
example down to X = 0′′′; we do not know if this is sharp.) This result contrasts
greatly with one of the main results in the companion paper [28]: Every computable
topological Polish(able) group is topologically isomorphic to a right-c.e. metrized
one. Indeed, the metric constructed in [28] is left-invariant (or right-invariant) and
gives a right-c.e. presentation of the group in the spacial important cases of locally
compact and abelian groups.

We have already discussed that modern computable topology is motivated by
its consequences in the study of effective aspects of Polish groups. In fact, the two
subjects are so interconnected that no firm line can be drawn between them. For
instance, in the recent papers [34, 38, 36] Pontryagin duality between compact and
discrete Polish abelian groups has been applied to derive corollaries about connected
compact spaces. In the present paper we also give an application of our methods to
groups. More specifically, we apply our machinery to derive the following positive
result about tdlc groups, which is the second main result of the paper.

A separable group is tdlc (totally disconnected locally compact) if it is either
discrete or its domain is homeomorphic to the disjoint union of clopen sets, each
homeomorphic to 2ω. If it is compact, which corresponds to the case when there is
only one or finitely many of copies of 2ω, then the group is profinite. Classically, tdlc
groups have been studied in much detail; we cite the recent papers [64, 63, 14, 7, 17].

As we already mentioned above, the notion of a computable tdlc presentation [37,
34] generalizes the notions of computability that are well-established in the discrete
and proifinite cases. It essentially says that we fix the nicest possible presentation of
the domain as a locally compact subset of ωω (see above) and assume that the group
operations are given by computable functionals acting on strings. It has also been
shown in [37, 34] that this is actually equivalent to several other definitions, one
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involving a Stone-type duality between such a group and the (countable, discrete)
groupoid of its cosets, and the other that uses subgroups of the infinite symmetric
group S∞. As shown in [37, 34], the notion enjoys a large number of closure
properties. In the abelian case, the notion is equivalent to two more natural notions
of computable presentability, and makes Pontryagin - van Kampen duality fully
algorithmically effective [34].

Nonetheless, it may seem that this approach to computability for tdlc groups is
a bit too strong since it assumes too much about a presentation. For instance, it
assumes the metric is a nice ultra-metric induced by ωω. How is it related to the
general theory of computably metrized Polish groups studied in [39, 50, 16, 38]?
There, we merely require that the group has computable Polish presentation com-
patible with the topology which makes the operations computable. In particular,
the metric could be ‘unnatural’ or could be not an ultra-metric. We believe that our
second main result stated below answers this question in an unexpectedly strong
way. We first state the result and then we explain the terminology.

Theorem 1.2. Suppose G is a separable tdlc group. The following are equivalent:

(1) G admits a computable locally compact presentation.
(2) G admits a computable tdlc presentation.

Recall the standard classical notion of locally compact space: given a point x
there is a (basic) open B and a compact K such that x ∈ B ⊆ K. We will use
the most straightforward computable version of this notion (cf. [49, 65, 60]) that
involves the robust notion of an effectively compact (sub)space. We say that a
group is effectively locally compact if it is computable Polish in the sense of [39]
and is additionally effectively locally compact, as defined in Subsection 2.4.

The proofs of our main results are not very long, which is certainly not very
typical for a recursion-theoretic paper. Nonetheless, much preliminary analysis is
needed to make them work. Our proofs exploit the machinery of effective com-
pactness explained in detail in [9]. We shall make our paper as self-contained as
possible, however, within reason. The reader should prepare themselves for a long
preliminary section full of little lemmas and propositions.

2. Definitions from computable metric space theory

2.1. Computable Polish spaces and groups. The notions below are standard
and can be found in, e.g., [9, 19].

Definition 2.1. A Polish space M is computable Polish or computably (completely)
metrized if there is a compatible, complete metric d and a countable sequence of
special points (xi) dense in M such that, on input i, j, n, we can compute a rational
number r such that |r − d(xi, xj)| < 2−n.

Remark 2.2. We allow the possibility that d(xi, xj) = 0. However, it is not difficult
at all to exclude repetitions from the dense set if necessary. If we view our spaces up
to homeomorphism, then we could computably scale the metric using a computable
real, and additionally assume that d(xi, xj) = r is a uniformly computable relation

(for integer i, j and rational r =
m

n
), thus making our approach equivalent (up to

homeomorphism) to the one in Moschovakis [43]. The real depends of the fixed
presentaiton and can be constructed using a straightforward cantor-style diagonal-
ization. We omit the details since will not need these additional assumptions about
equality in our proofs.

Definition 2.3. [39, 38] A computable Polish group is a computable Polish space
together with computable group operations · and −1.
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A basic open ball is an open ball having a rational radius and centred in a special
point. Let X be a computable Polish space, and (Bi) is the effective list of all its
basic open balls, perhaps with repetition. (We also sometimes write Br(x) for the
open ball having radius r and centred in x: Br(x) = {y : d(x, y) < r}.)

Definition 2.4. We call
Nx = {i : x ∈ Bi}

the name of x (in X).

We can also use basic open balls to produce names of open sets, as follows. A
name of an open set U in a computable topological space X is a set W ⊆ N such
that U =

⋃
i∈W Bi, where Bi stands for the i-th basic open set in the basis of X.

If an open U has a c.e. name, then we say that U is effectively open.

Definition 2.5. A function f : X → Y between two computably metrized Polish
spaces is effectively continuous if there is a c.e. family F ⊆ P(X) × P(Y ) of pairs
of (indices of) basic open sets in such that:

(C1): for every (U, V ) ∈ F , f(U) ⊆ V ;
(C2): for every x ∈ X and basic open E 3 f(x) in Y there exists a basic open

D 3 x in X such that (D,E) ∈ F .

Note that a function is continuous if and only if it is effectively continuous relative
to some oracle. The lemma below is well-known.

Lemma 2.6. Let f : X → Y be a function between computable Polish spaces. The
following are equivalent:

(1) f is effectively continuous.
(2) There is an enumeration operator Φ that on input a name of an open set

Y (in Y ), lists a name of f−1(Y ) (in X).
(3) There is an enumeration operator Ψ, that given the name of x ∈ X, enu-

merates the name of f(x) in Y .
(4) There exists a uniformly effective procedure that on input a fast Cauchy

name of x ∈ M lists a fast Cauchy name of f(x) (note that the Cauchy
names need not be computable).

Clearly, computable maps are closed under composition, when it is well-defined.

Definition 2.7. A function f : X → Y is effectively open if there is a c.e. family
F of pairs of basic open sets such that

(O1): for every (U, V ) ∈ F , f(U) ⊇ V ;
(O2): for every x ∈ X and any basic open E 3 x there exists a basic open

D 3 f(x) such that (E,D) ∈ F .

The lemma below is elementary.

Lemma 2.8. [39] Lef f : X → Y be a function between computable Polish spaces.
The following are equivalent:

(1) f is effectively open.
(2) There is an enumeration operator that given a name of an open set A in

X, outputs a name of the open set f(A) in Y .

In particular, if f is a computable and is a homeomorphism, then it is is effectively
open if, and only if, f−1 is computable. In this case we say that f is a computable
homeomorphism. We say that two computable metrizations on the same Polish
space are effectively compatible if the identity map on the space is a computable
homeomorphism when viewed as a map from the first metrization to the second
metrization under consideration.
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A special kind of self-homeomorphisms are the (left or right) translations of a
Polish group by its elements, and also the inverse map.

Fact 2.9. Multiplication and inverse operators are both effectively open in a com-
putable Polish group.

Proof. Given some name for an effectively open set U , in order to enumerate the
name for U−1, simply enumerate the preimage of −1 on U . This must be the name

for U−1 since
(
U−1

)−1
= U . Thus −1 is effectively open.

Now given names for open U, V , we want to produce computably a name for
U · V . The map (x, y)→ x−1y is computable. Eenumerate all V ′ s.t.

U−1 · V ′ ⊆ V,
which is the same as enumerating all V ′ with the property V ′ ⊆ UV . �

2.2. Computable topological spaces. There are several definitions of a com-
putable topological space that can be found in Kalantari and Weitkamp [20] and
Spreen [56]. We will use the following.

Definition 2.10 (see, e.g., Definition 2.1 of [29] of Definition 4 of [62]). A com-
putable topological space is given by a computable, countable basis of its topology
for which the intersection of any two basic open sets (“basic balls”) can be uniformly
computably listed. More formally, it is a tuple (X, τ, β, ν) such that

• (X, τ) is a topological T0-space,
• β is a base of τ consisting of non-empty sets,
• ν : ω → β is a computable surjective map, (i is called an index of ν(i)) and
• there exists a c.e. set W such that for any i, j ∈ ω,

ν(i) ∩ ν(j) =
⋃
{ν(k) : (i, j, k) ∈W}.

Let (X, τ, β, ν) be a computable topological space. For i ∈ ω, by Bi we denote the
open set ν(i). As usual, we identify basic open sets Bi and their ν-indices. There
are many versions of this notion above in the literature; see, e.g., [56]. Perhaps, the
most natural examples of computable topological Polish spaces are right-c.e. spaces;
see, e.g., Theorem 2.3 of [29]; we also cite [3, 9] for a detailed proof. For instance,
every computably metrized Polish space is a computable topological space. Indeed,
some of the basic results from the previous subsection can be proven for computable
topological spaces perhaps with some mild additional assumptions. For instance,
they should certainly work for right-c.e. spaces as well. We, however, will not need
this degree of generality.

2.3. Effective compactness. The following definition is equivalent to many other
definitions of effective compactness that can be found in the literature.

Definition 2.11. A compact computable Polish space is effectively (computably)
compact if there is a (partial) Turing functional that given a countable cover of the
space outputs it finite subcover (and is undefined otherwise).

This is equivalent to saying that, or every n, we can uniformly produce at least
one finite open 2−n-cover of the space by basic open balls. For several equivalent
definitions of effective compactness, see [9] and [19]. It is also well-known that,
given a computable Polish space C that is compact (but not necessarily effectively
compact) using 0′ one can produce a sequence of basic open 2−n-covers of the space,
thus making it effectively compact relative to 0′. The following elementary fact is
well-known (e.g., [9]):

Lemma 2.12. A computable image of an effectively compact space is itself effec-
tively compact.
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To see why the lemma is true, list basic open balls in the image until their
preimages finally cover the domain of the computable map. We will also use that
the inverse of bijective computable map f : X → Y , where X and Y are effectively
compact, is also computable. Also, it is well-known that both the supremum and
the infimum of a computable function f : X → R is computable provided that X
is effectively compact, and this is uniform. We cite [9] for further background on
effectively compact spaces.

2.4. Effective local compactness. Theorem 1.1 uses notions that need to be
formally clarified.

Recall that the notion of an effectively (computably) compact Polish space is
robust and admits many equivalent formulations ([9, 19]). The usual definition of
an effectively compact space M says that for every x ∈M there is an open B and
a compact K such that x ∈ B ∈ K. In the context of computable Polish spaces, it
makes sense to adopt the following notion of effective local compactness which is
essentially the approach taken in [49, 65, 60], up to notation change1.

Definition 2.13. A computable Polish space M is effectively (computably) locally
compact if there is a uniform procedure which, given (the name Nx of) any point x
outputs a basic open B and a computable compact K ⊆M such that x ∈ B ⊆ K,
where K is given by a sequence of finite open 2−n-covers so that each ball in the
cover is centred in a (computable) point in K and has a rational radius.

If B = B(c, r) is an open ball, then we write Bc to denote the respective closed
ball {x : d(c, x) ≥ r} which does not have to be equal to the closure of B in general
(think about an isolated point at the boundary of Bc). Recall that we say that
B = B(c, r) is basic if c is special and r is a rational (given as a fraction). If c
and r are merely computable, we say that the ball is computable. The following
proposition will be rather useful.

Proposition 2.14. In the notation of the previous proposition, we can assume K
is equal to Bc, where B 3 x is a computable open ball.

Proof. Proposition 3.27 [9] establishes that we can uniformly produce a system of
2−n-covers of K that consists of closed computable balls each of which is uniformly
computably compact. If we have x ∈ B ⊆ K, then wait for such a small enough
closed ball D from one of these covers such that x ∈ D and Dc ⊆ B; where the
latter is witnessed by formal inclusion (i.e., is deduced from the triangle inequality).
This process is uniformly effective. �

Definition 2.15. A computable Polish group is computably locally compact if its
domain is computably locally compact and the operations are computable.

We now discuss trees. Our (rooted) trees are viewed as sets of strings in ω<ω

closed under prefixes. A tree has no dead ends if every finite string is extendible to
an infinite path through the tree. The space of paths through a tree T is denoted
[T ]. The space T is an ultra-metric space under the shortest common initial segment
metric. A computable tree with no dead ends evidently induces a computable Polish
presentation on [T ].

Definition 2.16. We say that a computable tree is nicely effectively locally com-
pact if it has no dead ends, only its root is perhaps ω-branching, and for every node
we can uniformly compute the number of its successors.

1It appears that the notions in the cited papers, though very similar to each other and to
our Def. 2.13, could potentially be non-equivalent (up to homeomorphism) for computable Polish
spaces. The differences are subtle, so we leave this as an open problem.
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Although we will not use the corollary below, it is important to know that the
two definitions given above are actually equivalent for trees that we care about.

Fact 2.17. For a computable locally compact tree T that is infinitely branching
only perhaps at the root, TFAE:

(1) T is nicely effectively locally compact;
(2) [T ] is computably locally compact.

Proof. The implication (1) → (2) is obvious. For (2) → (1), observe that in the
metric induced by the tree, B = Bc for any basic open ball B. In Proposition 2.14,
the raddii of balls are merely computable. However, the radius of any basic open
ball is of the form 2−n, and also any computable open ball in [T ] is actually equal
to some basic clopen ball. We therefore can compute the radius of the ball from
Proposition 2.14 to a sufficient precision and be sure that it represents a certain ba-
sic clopen ball extending some fixed string. Clearly, computable compactness of the
ball is equivalent to the tree being computably branching. Since such balls/subtrees
cover the whole space, we conclude that (1) holds. �

Definition 2.18 ([37, 34]). Let G be a Polish t.d.l.c. group. A computable tdlc

presentation of G is a topological group Ĝ ∼= G of the form Ĝ = ([T ], ·,−1 ) such
that

(1) T is a nicely effectively locally compact tree;
(2) · : [T ]× [T ]→ [T ] and −1 : [T ]→ [T ] are computable (as operators).

We usually omit ‘nicely’ throughout the rest of the paper. Indeed, it follows from
the theorem below that the assumption of ‘niceness’ (i.e., being ω-branching only
at the root) is not necessary in the definition above – this was already established
in [37].

3. Stone spaces

In this section we accumulate techniques related to splitting a space into clopen
components. The techniques apply not only to Stone spaces and will be crucial
in the proofs of both main results of the paper. Some of the elementary technical
facts established in this section seem to be new as stated, but most of the rest were
included to make the more paper self-contained. We also prove Proposition 3.8
mentioned in the preliminaries; this simple (but perhaps unexpected) result is new.

The fact below (though not as stated) is due to Hoyrup, Kihara, and Seliv-
anov [53]. It can also be recovered from Brattka, le Roux, Miller, Pauly [5] and
Harrison-Trainor, Melnikov, and Ng [16].

Theorem 3.1. Given an effectively compact Stone space M , we can uniformly pro-
duce a computable computably branching tree T without dead ends and a computable
homeomorphism f : M → [T ].

Proof. The key step is the following:

Lemma 3.2. Suppose M is effectively compact. Then there is a computable enu-
meration of all clopen splits of M (perhaps, with repetition).

Proof. Suppose M = X t Y is a clopen split, and let δ be the infimum-distance
between these compact open sets

δ = inf
(x,y)∈X×Y

d(x, y).

(Since X × Y is compact and d is continuous, it attains its infimum at some pair
(x0, y0). In particular, δ > 0.)
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Suppose 0 < ε < δ/4. Then every finite ε-cover will consist of two formally
disjoint subsets of basic open balls. Indeed, every ball covering a point in X cannot
contain a point in Y , and every ball covering a point in Y cannot contain a point
in X. If a basic open B has its centre in X and D has its centre in Y , then the
distance between their centres is at least δ, while the sum of their radii is at most
δ/2 < δ, making them formally disjoint (this is Σ0

1).
On the other hand, if a finite open cover of M consists of two formally disjoint

subcovers, then these subcovers induce a split of M into clopen components. Since
the property of being formally disjoint is a c.e. property, we can effectively list all
such clopen splits. �

Suppose X and ¬X = M \X be clopen components represented as finite unions
of formally disjoint basic open balls, as in the proof of the lemma above. Given a
special point x in M , we can use these finite open names to wait and see whether
x in X or x in ¬X. This makes bot X and ¬X computable closed subsets of the
effectively compact M , and thus then can be viewed as effectively compact spaces.
In particular, their diameters are computable reals. (Note this is uniform.)

Lemma 3.3. Given two clopen sets X and Y , as well as their complements ¬X
and ¬Y (represented by the strong indices of their finite open names), we can
additionally decide whether X ∩ Y is empty, and if it is not empty, then output a
finite open name of it and its complement.

Proof. For that, recall that a basic open ball Br(x) is formally contained in a basic
open ball Bq(y) if d(x, y) + q < r; this is Σ0

1. Search for an ε-cover of the space M ,
where ε is so small that every ball in the new cover is formally contained in some
ball of each of the two covers that we fixed above (the first for X and ¬X, and the
second for Y and ¬Y ). Such a cover must exist. Then X ∩ Y is composed of those
balls in the cover that are formally contained in balls corresponding to names of X
and of Y . If there are no such, then declare the intersection X ∩ Y empty. �

To build the tree T , associate the empty string with M . Suppose σ ∈ T of
length i has been defined, and suppose σ has been associated with a clopen X. Let
Xit¬Xi be the ith clopen split of M in the effective list of all such splits produced
above. If both X ∩ Xi and X ∩ ¬Xi are non-empty, then create two children of
σ, σ̂0 and σ̂1, and associate X ∩Xi with σ̂0 and X ∩ ¬Xi with σ̂1. If only one of
the X ∩Xi and X ∩ ¬Xi is non-empty, say X ∩Xi 6= ∅, then create only σ̂0 and
associate it with X ∩Xi.

It should be clear that [T ] is homeomorphic to M . We claim that it is computably
homeomorphic to M . For that, not that for every ξ ∈ T and any n > 0, we can
compute (uniformly in ξ) an i such that the diameter of the clopen component
associated with ξ � i is at most 2−n. We identify [σ] with the clopen component of
M associated with σ ∈ T .

Given a (not necessarily computable) point x ∈M and n, search for σ ∈ T such
that the component of M associated with σ has diameter at most 2−n and x ∈ [σ].
Output (any point in) [σ]. This gives a computable name of a surjective computable
f (that can be viewed as the identity map) between the effectively compact spaces
M and [T ]. Since both spaces are effectively compact, f−1 is also computable. �

Remark 3.4. We see that, under a careful choice of notation in the end of the
proof above, f can be viewed the identity map on M . In other words, the metric
induced by T is effectively compatible with the original metric on M . In particular,
any operation defined on M that is computable wrt the old metric will also be
computable wrt the new ultrametric induced by T .
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We shall use the following observation. Write A ∼=comp B is A is computably
homeomorphic to B.

Remark 3.5. Suppose M = C t D is effectively compact, where C and D are
clopen and effectively compact. Let T0 and T1 be computably finitely branching
trees with no dead ends such that C ∼=comp [T0] and D ∼=comp [T1]. Define a
new tree T by adjoining the successors of the root of T1 to the root of T0. Then
M ∼=comp [T ], and this is uniform.

The lemma below extends the techniques described above to spaces that are not
necessarily compact, but at the const of a few Turing jumps. The lemma will be
useful later.

Lemma 3.6. There is an arithmetical procedure that enumerates all connected
compact-open components of a given computable Polish space.

Proof. Note that since C is open, it is the union of finitely many open balls, say
B0, . . . , Bk. These balls cannot intersect the complement of C. If δ is the Lebesgue
number of this cover, then any ball in any δ-subcover is contained in one for the Bi

that does not intersect the complement, which implies infx∈C,y/∈C d(x, y) ≥ δ.
The main point of the argument above is not to illustrate that the distance

between C and is complement is well-defined and is not zero (this is of course well-
known), but to explain how to arithmetically list compact open components of the
space. This is done as follows.

We can arithmetically search for basic open B0, . . . , Bn and a δ such that this
infimum (restricted to special points) is at least δ. Once such balls are are fixed,
we can define the subspace C generated by the special points that are contained in
these Bi. Since a Polish space is compact if, and only if, it is totally bounded, it
is arithmetical to tell whether this subspace is compact [40]. Because the subspace
C is separated from the rest by δ, it is also open. It is also arithmetical to tell
whether a compact space is connected; this follows from, e.g., Lemma 3.2. �

Remark 3.7. A more detailed analysis of the argument shows that 0′′′ can list
compact connected components of a computable space, and we suspect this is sharp.
The upper bound can be improved to 0′′ if the whole space is itself compact; this
follows from Lemma 3.2 relativised to 0′.

3.1. A byproduct of our technique. It is known that there exists a right-
c.e. Stone space not homeomorphic to any computable Polish space [3]. It is also
know that any computable Polish Stone space is homeomorphic to an effectively
compact one; [16], and also explained in detail in [9]. Interestingly, we can push this
positive result to left-c.e. Stone spaces. The result contrasts with a counter-example
(Theorem 1.1) that will be stablished later using homological techniques.

Proposition 3.8. Every left-c.e. Stone space is homeomorphic to an effectively
compact computable Polish space.

Proof. It is sufficient to argue that the dual Boolean algebra admits a computable
copy.

Note that a finite collection of basic closed does not cover the space if, and only
if, there is a special point x whose distance to the centres of the balls is greater
than the radii of the respective balls. This is naturally a c.e. property, and therefore
0′ can list all finite closed covers of a compact left-c.e. space. The metric is also
evidently 0′-computable. It follows from, the aforementioned result from [16, 9]
relativised to 0′ that we can 0′-effectively reconstruct the dual Boolean algebra.
We claim that this Boolean algebra in fact has a computable presentation.



SEPARATING NOTIONS IN EFFECTIVE TOPOLOGY 11

It is well-known that a ∆0
2-Boolean algebra with a ∆0

2 set of atoms has a com-
putable presentation. The elements of the Boolean algebra associated with the given
Stone space S are represented by clopen sets. Each clopen set (and its complement)
is in turn represented by finitely many basic open (or basic closed if necessary) balls.
In other words, each such clopen set is given by its finite (open or closed) name.
To see whether a clopen component C is an isolated point, we use 0′ to calculate
the finite name of its clopen complement S \C. If S \C is the union of B0, . . . , Bk,
then let x0, . . . , xk be the centres of these balls, and r0, . . . , rk be their rational
radii. There is also a rational δ > 0 such that a point y is at distance > δ from all
x0, . . . , xk if, and only if, y ∈ C. These finitely many parameters and such a δ can
be computed using 0′ (relative to which the space becomes effectively compact).

If C has more than one point than it does not correspond to an atom. In this
case it much also more than one special point. We therefore need to check whether
there exist special points z0 and z1 such that

d(z0, z1) > 0 &
∧

i≤k,0≤j≤1

d(zj , xi) > δ,

where the parameters xi, i = 0, . . . , k and the rational δ are already given to us
by 0′. Since the metric is left-c.e., the property above is uniformly Σ0

1 in these
parameters, making the atom relation ∆0

2 in the ∆0
2 Boolean algebra of clopen

sets. �

4. Cohomology, spheres, and a bad computable topological space

In this section we describe the basic definability techniques which, combined
with the methods described in the previous section, will be used in the proofs of
our main results.

Our definability methods rely on Čech cohomology of a compact space is defined
using nerves of covers. We cite [44] for the formal details. Since we will not actually
compute any cohomology directly, we shall omit the tedious details. It well-known
that the Čech cohomology of a space homeomorphic to a finite simplicial complex is
actually the same that the usual simplical cohomology calculated for the complex.
For instance for the n-sphere we have:

Hm(Sn;Z) =

{
Z, if m = 0, n;

0, otherwise.

The following result is quite recent and is due to Lupini, Melnikov and Nies [34];
see also [9] for an alternative proof. Recall that a (discrete, countable) group is
c.e. presented if it is isomorphic to the factor of a computable free group by its
c.e. normal subgroup.

Theorem 4.1. Suppose C is an effectively compact Polish space. Then the Čech
cohomology groups of the space are uniformly c.e. presented.

Corollary 4.2 (Essentially [9]). Suppose C is a computable Polish space which is
homeomorphic to Sn for some n. Then 0′′ can uniformly compute the parameter n.

Proof. Since the Čech cohomology groups are uniformly Σ0
2-presentable (by Theo-

rem 4.1 relativized to 0′), in this case M ∼= Sk is equivalent to saying that Ȟk(M)
contains at least one non-zero element, which is a Σ0

3 property (the equality in the
group is Σ0

2). It follows that 0′′ can list k such that kth cohomology group of the
space is non-trivial. �

Fact 4.3. Suppose M is a right-c.e. presented Polish apace. Then 0(4) can list n
such that M has a clopen component homeomorphic to Sn.
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Proof. If M was computable Polish then the upper bound would be given by Corol-
lary 4.2, Lemma 3.6, and Remark 3.7; specifically, Σ0

4. Since a right-c.e. space is
naturally ∆0

2, we obtain the bound Σ0
5 (which we suspect is sharp). �

We can use a relatively simple construction based on n-spheres to establish the
following result stated in the introduction.

Theorem 4.4. There is a Polish space S such that S admits a computable topolog-
ical presentation but does not have a right-c.e. Polish presentation. Furthermore,
there is an S with this property that has a 0′′′-computable Polish presentation.

As noted in the introduction, the elementary construction of S entails that there
is no upper bound on X that would guarantee that S has an X-computable Polish
presentation. Indeed, more work is needed to establish the 0′′′ bound which may
or may not be sharp.

Proof. We encode an arbitrary set X ⊆ N into a Polish space SX so that SX admits
a computable topological presentation T that is independent of the choice of X.

Fix a set X ⊆ N. Let Sn denote the Euclidean n-sphere. For every n, define

Cn =

{
Sn, if n ∈ X
Rn, otherwise.

Let SX be the disjoint union of its clopen components Cn. The space is evidently
Polish. Furthermore, every connected compact open component of the space has
the form Sn for some n.

We assume n > 0 throughout. Recall that Rn ∼=hom Sn \ {p}, where p is any
point on the sphere. The idea behind the lemma below is that point-free topological
presentation cannot possibly know whether p is in or out.

Lemma 4.5. For every n > 0, Rn and Sn share the same computable topological
presentation Tn that can be produced uniformly in n.

Proof. Uniformly in n, fix a computable Polish presentation of Sn. Fix the associ-
ated computable topological presentation Tn given by the balls with rational radii
and centred in computable points. Note that this remains a computable topological
presentation if we extract one of the special points from the space. �

Let T be the union of the Tn over n ∈ N. When two open sets come from
different Tn and Tm, m 6= n, we declare their intersection to be empty. This gives
a computable topological presentation of the space SX which does not depend on
X. If we do not care about the 0′′-bound, it remains to note that X 6= Y implies
SX 6∼=hom SY . Since there are uncountably many subsets of N and only countably
many right-c.e. presentations.

To produce an example that is 0′′′-computably completely metrizable, we also
adjoin infinitely many isolated points to the space, and we also duplicate every
n-sphere infinitely many times. The claim below is obvious:

Claim 4.6. Suppose Y is Π0
2. There is a uniform procedure which outputs a

computable Polish copy of Sn if y ∈ Y , and outputs finitely many isolated points,
otherwise.

We now fix some X that is in Σ0
6 \ Σ0

5 and view it as a Σ0′′′

3 set. We further

split the Σ0′′′

3 -predicate into infinitely many Π0′′′

2 -predicates, one for each potential
existential witness, and relativise the claim above to 0′′′. This way we obtain a
0′′′-computable copy of the space SX which, by Fact 4.3, cannot have a right-
c.e. presentation. �
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5. A left-c.e. space not homeomorphic to a computable one

It is known that there exist a right-c.e. Stone space not homeomorphic to any
computable Polish space, but we have seen in Prop. 3.8 that every left-c.e. Stone
space has a computable presentation (indeed, an effectively compact one). We prove
Theorem 1.1 that states that there exists a left-c.e. Polish space not homeomorphic
to any computable Polish space.

Proof of Theorem 1.1. For a set X ⊆ ω, let C(X) be the one-point compactification
of the disjoint union of n-spheres Sn and n-discs Dn ∼= [0, 1]n, with infinitely many
copies for each n ∈ X. Then proposition below is reminiscent of the similar coding
results from [53, 9]. We will need only the ‘if’ part of it, but we state it in full
generality.

Proposition 5.1. X is Σ0
3 if, and only if, C(X) is homeomorphic to a computable

Polish space.

Proof. The ‘if’ part is based on calculating the cohomology of connected compact-
open components. Note that the cohomologies Hi(Dn,Z) of Dn are trivial when
i > 0 (folklore). Thus, Corollary 4.2 combined with the proof of Lemma 3.6 which
(as noted in Remark 3.7) gives the upper bound Σ0

3.
For the other implication (that we only sketch since we do not really need it) note

that the spaces Dn are evidently uniformly computable. The construction from [9]
can be easily extended to incorporate these spaces into C(X) while running the
construction of CP (X) on the other components. �

Define LX to be the space consisting of infinitely many compact open compo-
nents, one of which is C(X) (see Prop. 5.1), and the rest are isolated points. We
will need only the ‘if’ part of the lemma below, but we state it in full.

Lemma 5.2. X is Σ0
3 if, and only if, LX has a computable Polish copy.

Proof. Suppose LX has a computable Polish presentation. Fix finitely many open
basic balls isolating the component C(X) from the rest of the space. Define the
subspace of LX by listing the special points contained in these finitely many balls.
This gives a computable Polish presentation of C(X); it remains to apply Prop. 5.1.

On the other hand, by Prop. 5.1 if X is Σ0
3 then we can produce a computable

Polish presentation of C(X). It is easy to extend it to a computable presentation of
LX by adjoining infinitely many points and declaring them to be at distance (say)
1 between each other and the component homeomorphic to C(X). �

Fix a Π0
3-complete X. By the lemma above, to prove the theorem it is sufficient

to argue that LX has a left-c.e. presentation.

Lemma 5.3. There is a uniform procedure which, given n > 0, produces a left-
c.e. space U(n) of the form:

U(n) ∼=

{
S̃n, if n ∈ X
D̃n otherwise,

where S̃n is the disjoint union of the n-sphere Sn and infinitely many isolated points
(with no limit point), and D̃n is the disjoint union of the n-disc Dn ∼= [0, 1]n and
infinitely many isolated points (with no limit point).

Proof. We begin our construction with the standard computable and effectively
compact presentation of Sn. We also begin with a sequence of isolated points
disjoint from Sn so that they have no accumulation point.
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Fix a special p ∈ Sn. We represent Sn \ {p} as the union of a nested uniformly
computable sequence of subspaces

D(0) ⊂ D(1) ⊂ . . . D(k) ⊂ . . . ,

where each D(i) is homeomorphic to Dn, and the boundaries of D(i) approach the
point p in the limit.

We also fix a Π0
3 predicate P (n) for X. We represent it via ∀x∃<∞yR(x, y, n),

where R is a computable predicate. We say that the predicate ‘fires’ on x if we
discover a fresh y never seen before such that ∃yR(x, y, n).

The construction of U(n) proceeds as follows. We shall begin with approximating
Sn naturally, but we exclude the special point (the ‘pole’) p from its presentation.
This is done by putting more and more special points into more and more of the
nested discs D(i). If the predicate never fires for any x then we will end up with
Sn in which p is put as a limit point. We also will gradually add more and more
isolated points outside Sn. We can use an ultra-metric between all clopen compo-
nents to ensure that the triangle inequality holds, or we can opt to work within
a copy of Rn+1 and during the construction ‘move’ the points by redefining their
interpretation in Rn+1; the exact set-up does not matter since we are working with
spaces up to homeomorphism.

If at some stage the predicate fires on some x, then assume x is least such.Without
loss of generality, we can assume x > 0. We then take the finitely many points that
have been introduced so far intoD(k)\D(x), k > x, and we ‘move these points away’
from the component, as follows. Recall that the metric has to be merely left-c.e.
Declare that the distance from these points to any other point in the construction
is much larger than any number seen so far in the construction. We then return
to the natural approximation of the nested discs and wait for the predicate to fire
again (if ever), etc.

If the Π0
3 predicate holds on n, then we eventually end up with a stable disc

D(k) for every k, and thus with a sphere. Otherwise, for some x all discs D(k) for
k > x will be ‘blown away’ infinitely many times. Since we assumed that x > 0,
we will end up with D(x) ∼= Dn. In both cases, we will also have infinitely many
isolated points with no accumulation point.

The space is evidently left-c.e., by construction. This is because the the distances
between points can only potentially increase, making the left cut of d(α, β) c.e. for
any special points α and β of the space. �

We return to the proof of the theorem. Recall the definition of LX , and recall
that X is Π0

3.

Lemma 5.4. The space LX has a left-c.e. presentation.

Proof. We iterate (the proof of) Lemma 5.3. We combine the constructions de-
scribed in the proof of Lemma 5.3 inside a copy of C(X). We associate one com-
pact open component of the space with each n, and we also initially have infinitely
many compact open components, infinitely many for each n-disc Dn. When we
move points away according to the instructions of the main diagonalization module
in the proof of Lemma 5.3, we also move it away from all points in the whole con-
struction introduced so far, not only from the points that are listed in our specific
component working with n. The rest is repeated verbatim. In particular, we will
end up with infinitely many isolated points with no limit point, the resulting space
is left-c.e., and it is homeomorphic top LX . �

Theorem 1.1 now follows from Lemma 5.4 and Lemma 5.2. �



SEPARATING NOTIONS IN EFFECTIVE TOPOLOGY 15

6. Totally disconnected locally compact groups

Recall that Theorem 1.2 states that, for a separable tdlc group, Def. 2.15 and
Def. 2.18 are equivalent, up to topological group-isomorphism. We note that this
result implies the earlier result in [9] that works only in the special case of a profinite
group.

Proof of Theorem 1.2. We will need the following auxiliary definition:

Definition 6.1. A separable tdlc group G computably splits if the underlying space
can be represented as a disjoint union of uniformly effectively compact and uni-
formly c.e. open sets G =

⋃
i Ci, such that, for every n and i, we can uniformly

compute a 2−n cover whose union is equal to Ci.

Note that the definition above is stronger then effectively locally compact com-
putable Polish; given a point we can search for Ci which is both effectively compact
and open. Suppose G is computable tdlc, G = [T ] for an effectively compact T .
The desired Ci are induced by the compact open sets associated by the compact
subtrees of T . Recall that the latter can be computably listed. It follows that
any computable tdlc computably splits, and thus is effectively locally compact and
computable Polish.

Now suppose G is computable Polish and effectively locally compact.

Lemma 6.2. G computably splits.

Proof. By the well-known van Dantzig’s theorem, there is a compact open subgroup
H of G (which is however not necessarily normal). Every point in H is contained
in a basic open B which is itself included in a compact K ⊆ G.

By Proposition 2.14, every point of the compact open H is contained in an open
B so that the respective closed basic ball Bc is effectively compact. Since H is
open, there are finitely many such B that cover the whole H. Since H is also
closed, and since we can (non-uniformly) assume the radii of the balls are smaller
than the distance from H to G\H, we can assume that H is also equal to the union
of finitely many closed balls Bc, each of which is computable compact. By slightly
increasing the radii of the balls (using the distance to the complement again), we
can also produce the finite open name of H.

In summary, we have produced both a finite open and a finite computable com-
pact name of H. The latter evidently implies that H is effectively compact.

For any special point ξ, the left translation operation x→ ξx is both computable
and effectively open. (The latter holds because ξ−1 is evidently a computable point,
and the left-translation by ξ−1 is the inverse of the left translation by ξ.)

Since the left cosets of H are open, each such coset contains a special point. In
other words, all H-cosets have the form ξH for some special ξ. Since the com-
putable image of an effectively compact set is effectively compact, all these cosets
are effectively compact with all possible uniformity. Further, the image of any finite
cover of H under the effectively open map x→ ξx gives an open cover of ξH. Since
ξH is (uniformly) effectively compact, we can get a finite subcover of this cover.
Fixing one such finite cover (uniformly), we can conclude that ξH is equal to the
union of this cover. Since ξH is (uniformly) effectively compact, we can search for
covers that (formally) refine this cover. The union of any such cover will also be
equal to the whole coset ξH.

It remains to remove receptions from the sequence of cosets defined above. This
is done as follows. Non-uniformly fix a rational δ that bounds the distance between
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H and G\H from below. To see whether ξH ∩ ζH = ∅, calculate the distance from
the effectively compact H to the computable point ζ−1ξ to precision δ/4. If this
approximation is > δ/2 then ξH ∩ ζH =, and if < δ/2 then ξH = ζH; note these
are exclusive cases.

In summary, we can list the compact open cosets without repetition in the nicest
possible way. In particular, the group computably splits into these cosets. This
gives us the lemma. �

Suppose our tdlc G computably splits into compact open Di. For instance, these
Di could be the cosets by a compact open subgroup; but this assumption is not
really necessary below. Let Ci =

⋃
j<iDi.

Observe that each Ci is an effectively compact Stone space. By Theorem 3.1,
there is a uniformly computable procedure that, given an effectively compact Stone
space Ci, outputs a computably branching, computable tree Ti with no dead ends
such that Ci

∼=somp [Ti].
Observe also that, for every i, Ci is computable clopen subset of Ci+1. Its

complement in Ci+1 is also computable compact open; this follows from the proof
of Lemma 3.2 with all possible uniformity. (List open finite covers of Ci and search
for a cover of the whole Ci+1 that is composed of the cover of Ci and finitely
many balls formally disjoint from it.) We are therefore in the position to apply
Remark 3.5.

We see that the tree Ti that can be uniformly produced for Ci (by Theorem 3.1)
can be viewed as a subtree of Ti+1 corresponding to Ci+1; this is Remark 3.5. It
follows that we can define T to be

⋃
i∈ω Ti. By Remark 3.4 the original metric on

Ci is uniformly effectively compatible with the new ultrametric induced by the tree
Ti. It follows that the group operations remain computable and effectively open on
[T ]. Since Ti were (uniformly) computably branching, T satisfies the conditions of
computable tdlc presentation. �
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