
ONLINE PRESENTATIONS OF FINITELY GENERATED

STRUCTURES

NIKOLAY BAZHENOV, ISKANDER KALIMULLIN, ALEXANDER MELNIKOV,
AND KENG MENG NG

Abstract. We systematically investigate into the online content of finitely
generated structures. The online content of a potentially infinite algebraic or

combinatorial structure is perhaps best reflected by its FPR-degrees (to be

defined). We confirm a natural conjecture by showing that the FPR-degrees
of a finitely generated structure must be dense. Remarkably, we show that

FPR-degrees of a f.g structure does not have to be upwards dense. Finally,

we disprove a natural conjecture about honestly generated structures (to be
stated).
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1. Introduction and results

What is the crucial difference between an online algorithm and an offline algo-
rithm? In an online algorithm input is given piece-by-piece, and the algorithm can
refer only to the part it has seen so far. In contrast, if our algorithm is offline then
the input is given all at once. The classical complexity theory is focused around the
study of the offline situation [GJ79, DF13]. For example, when we talk about the
Chromatic Number problem [GJ79] in complexity theory, we assume that the
whole of a graph is already given to us at once, and we must calculate the small-
est number of distinct colours sufficient to cover the vertices of the graph so that
no two adjacent vertices share the same colour. The problem is already NP-hard,
but its online version is even more challenging. For example, it is clear that for a
binary tree two colours suffice. However, the number of colours sufficient for online
colouring can be shown to strictly increase with the size of a given tree [Kie98a].
In the case of finite structures most work comes from comparing offline vs online
performance. The goal of online algorithm design is to improve what is called
the Competitive Performance Ratio of online divided by offline. For example, first
fit gives a competitive ratio of 2 for the classical Bin Packing problem [GJ79];
see [Kie98b].

Most of the results mentioned above are concerned with finite objects; that is, at
the end the graph or the database is still assumed to be finite, and the algorithm is
assumed to eventually stop. However, many modern online algorithms are dealing
with massive, constantly changing and rapidly expanding databases, such as the
World Wide Web. It is thus often natural to consider online computations with
potentially infinite input. Beginning in the 1980’s there has been quite a lot of work

2010 Mathematics Subject Classification. Primary 03D45, 03C57. Secondary 03D75, 03D80.
The authors were partially supported by Marsden Fund of New Zealand.

1



2NIKOLAY BAZHENOV, ISKANDER KALIMULLIN, ALEXANDER MELNIKOV, AND KENG MENG NG

on online infinite combinatorics [Kie81, Kie98a, KPT94, LST89, Rem86]. Nonethe-
less, there is no systematic theoretical framework that would describe and explain
the online situation for potentially infinite data. The present article contributes to
the recently suggested framework [KMN17b, Mel17, BDKM] which aims to develop
such a general theory. In this paper we concentrate on the natural case when the
input is a finitely generated structure. For example, any term algebra over a finite
alphabet is an example of a finitely generated structure; we note that term algebras
play a significant role in the semantics of abstract data types.

From the purely algebraic point of view, finitely generated structures are of-
ten viewed as the structures which are understood best after the finite ones. For
instance, there is a large body of research focused on algorithmic and purely alge-
braic aspects of finitely generated groups [Hig61, Gol64, NA68, Gro81, Ers12] and
rings [AT51, Lew67, Nos83, AKNS]. One pleasant feature of such structures is that
decision procedures in them are intrinsic, in the following sense. For example, if G
is a finitely generated group and it has an algorithmically decidable word or con-
jugacy problem, then every H ∼= G will also have the problem decidable. Indeed,
fix some generators ḡ of G and their isomorphic counterparts h̄ in H. Then every
element of G is a word in the alphabet of ḡ, and it can be naturally mapped to
the respective word in the alphabet of h̄. This observation is heavily exploited in
combinatorial group theory [Hig61, LS01], often without explicit reference.

Notice, however, that the observation above uses a rather general notion of an
algorithmically effective process, namely a Turing computable process. For suppose
we are given some algorithmic description of a group C which we know is isomorphic
to (Z,+), and furthermore we know that c generates C. Our job is to associate every
x ∈ C with an integer. The naive algorithm would ask for a late enough stage at
which we see mc = x, and then we can set x → m. However, how long will we
have to wait? It is easy to diagonalise against all polynomial time, all exponential,
or even all hyper-exponential (etc.) algorithms. In other words, this procedure
uses an instance of a truly unbounded search; this is the same as to say that the
algorithm is not primitive recursive [Rog87].

It is natural to ask what happens if we forbid unbounded search. Of course,
one naturally seeks to understand the truly efficient algorithms, in the spirit of,
e.g., [KN95, BG00, KM10, CR91, CR98]. Kalimullin, Melnikov and Ng [KMN17b]
have observed that making an algorithm merely primitive recursive is often suffi-
cient to obtain a polynomial-time one, or even a finite automatic one [BHTK+].
Removing unbounded search seems to be a crucial step whenever we try to trans-
form a Turing computable procedure into a polynomial-time one. When we look
at general primitive recursive algorithms – rather than, e.g., polynomial time, au-
tomatic, or linear ones – we strip away much of the irrelevant counting combi-
natorics. Thus, primitive recursion serves as a useful abstraction. All that mat-
ters is that there is some precomputed bound on our searches. The effects of
this seemingly relaxed restriction have proven to be rather significant. This paper
contributes to the general program that systematically investigates into these ef-
fects which have never been seen before in computable algebra or combinatorics;
see [KMN17b, Mel17, BDKM, DHTK+, KMN17a, MN].

To state our results, we need formal definitions.
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1.1. Punctual presentations and punctual degrees. Kalimullin, Melnikov,
and Ng [KMN17b] proposed that an “online” algebraic structure must minimally
satisfy the following general definition.

Definition 1.1. A countable structure is fully primitive recursive (fpr) if its do-
main is N and the operations and predicates of the structure are (uniformly) prim-
itive recursive.

The main intuition is that we need to define more of the structure “without delay”.
Here “delay” really means an instance of a truly unbounded search. We informally
call fpr structures punctually computable or simply punctual. We could also agree
that all finite structures are also punctual by allowing initial segments of N to serve
as their domains. Although the definition above is not restricted to finite languages,
we will never consider infinite languages in the article.

Recall that the inverse of a primitive recursive function does not have to be
primitive recursive. Fix a punctual structure A. The collection of all punctual
presentations of A carries a natural reduction, as defined below.

Definition 1.2. Let A be a punctual structure. Then, for punctual C,B isomorphic
to A,

C ≤pr B if there exists a surjective primitive isomorphism f : C →onto B.

This leads to an equivalence relation ∼=fpr and the degree structure on the classes
which will be denoted FPR(A).

What does FPR(A) reflect? If C ≤pr B then, in a way, B has more online
content than C does, in the sense that more things happen in B. In other words,
C ≤pr B means that B enumerates itself more impatiently.

For example, the standard copy of (Q, <) punctually embeds any other punctual
copy of the rationals; it has a prompt Skolem function, but some other copies may
have slow intervals. The dense linear order is a canonical example when a com-
putable back-and-forth method works, the other common (algebraically) homoge-
neous examples include the random graph and the Fräısse limit of finite abelian
p-groups. Remarkably, the FPR-degrees of the dense linear order, the random
graph, and the universal abelian p-group are pairwise non-isomorphic; see [MN].

We go back to the finitely generated case. In contrast with (Q, <), the standard
copy of (ω, S) can be punctually embedded into any other copy. Any other copy of
(ω, S) will contain points that look non-standard (“infinite”, “disconnected”) for a
very long time. It is not difficult to show that FPR(ω, S) is dense, infinite, and
furthermore upwards dense.

The reader should take some time and try to come up with an example of a
finitely generated (infinite) structure whose FPR-degrees would not have these three
properties: dense, infinite, and upwards dense. Indeed, all natural examples –
including the elementary f.g. groups, monoids, and unary structures – seem to
satisfy these properties. What could prevent us from making an element “look
non-standard” or “far-far away” from the finitely many generators? Nonetheless,
Kalimullin, Melnikov, and Ng [KMN17b] have constructed an example of a finitely
generated punctual structure A with the property |FPR(A)| = 1. (We will show
that, for a f.g. A, |FPR(A)| = 1 is equivalent to saying that every two punctual
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copies of the f.g. A are isomorphic via a primitive recursive f having primitive
recursive inverse; see Fact 2.1.)

So FPR(A) does not have to be infinite, let alone upwards dense, for an infinite
f.g. A. Can we have 1 < |FPR(A)| <∞? The first result of the paper implies that
the answer is negative, because it confirms the density conjecture:

Theorem 1.3. Suppose a punctual A is finitely generated. Then FPR(A) is dense.

Recall that we started with testing three properties: infinite, dense, upwards
dense. Although we know that |FPR(A)| = 1 is possible, we have confirmed the
density conjecture. Suppose FPR(A) is infinite, then is FPR(A) upwards dense?
Rather surprisingly, this natural hypothesis fails in the strong sense below.

Theorem 1.4. There exists a f.g. A such that |FPR(A)| = ∞ and FPR(A) has
a greatest element.

The proof of the theorem above is combinatorially quite involved. It generalises
a strategy introduced in [KMN17b] and blends it with a new technique. The high
combinatorial complexity of the argument leaves some hope. More specifically,
perhaps the upward density hypothesis will hold for many general enough natural
classes of finitely generated structures.

Problem 1.5. Give a general enough sufficient condition on a finitely generated
A which would imply that |FPR(A)| is upward dense.

Although Theorem 1.4 disproves a natural conjecture, the authors suspected that
the upward density might fail via a non-trivial construction. However, initially the
authors were almost certain that another natural enough conjecture below must be
provable.

To state (and disprove!) the conjecture, we need another definition. But first,
we give some intuition. Note that adding the predecessor unary function P into
the language of (ω, S) will not result in |FPR(ω, S, P )| = 1. We could still keep an
element looking “non-standard” for as long as necessary. Adding Scolem function
for division or “−” (or both) into the language of finitely generated abelian groups
does not seem to have any significant effect on their FPR-degrees either. More
generally, even if we could quickly find the elements that generate a given element
via a given term (if they exist), it seemingly would not give us any extra power.
It seems that the temporarily non-standard looking “islands” will still be “far-far
away” even if we allow to promptly generate the structure backwards.

Definition 1.6. Let A be a punctual structure in a finite functional language. We
say that A is honestly generated if there is a primitive recursive procedure which,
for every term t and each element x ∈ A:

(1) decides whether ∃ȳ t(ȳ) = x, and
(2) if the answer is “yes”, it gives such a ȳ.

(The definition above is a bit weaker than punctual 1-decidability which was defined
in [KMN17b].)

Our initial conjecture was: Suppose |FPR(A)| = ∞ for a finitely generated A,
then A has infinitely many honestly generated copies, up to ∼=pr. Following the
general pattern of this paper, we refute this conjecture:
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Theorem 1.7. There exists a f.g. structure A such that |FPR(A)| > 1 (thus,
|FPR(A)| =∞) and A has a unique honestly generated punctual presentation, up
to ∼=pr.

We note that uniqueness up to ∼=pr is the same as uniqueness up to primitive
recursive isomorphism with primitive recursive inverse, by Fact 2.1. The proof is
again non-trivial, but the good news is that it shares one strategy with the proof of
Theorem 1.4. This common feature will allow for a more compact exposition. Also,
as before, there is perhaps some general enough sufficient condition that implies
the conjecture.

We leave open if being honestly generated can be replaced by punctual 1-decida-
bility in the theorem above. See [BDKM, Mel17, KMN17b] for a detailed discussion
of punctual 1-decidability. Finally, we leave open whether the counterexamples
constructed in this paper can be witnessed by finitely generated groups or at least
semigroups.

2. The first steps. Proof of Theorem 1.4

All algebraic structures throughout the paper are finitely generated and have a
finite functional language.

It is clear that every finitely generated punctual structure has the least presen-
tation under ≤pr. This least presentation is the naturally generated term algebra
upon some (any) fixed tuple of generators. We usually write B for this smallest
presentation, where B stands for “bottom”. We note that the choice of the genera-
tors does not really matter here, for we could primitively recursively bi-embed two
different naturally generated term algebras onto one another.

It is easy to construct an example of a (not finitely generated) pair of punctual
structures A and B such that A ≤pr B and B ≤pr A but B 6∼=fpr A in the sense that
there is no primitive recursive isomorphism with primitive recursive inverse between
them; we omit details. It is not known, however, if |FPR(A)| = 1 is equivalent to
A being punctually categorical. In [MN], Melnikov and Ng used a rather non-trivial
argument to illustrate that the two notions are equivalent for undirected graphs.
In contrast, the case of finitely generated structures is rather straightforward.

Fact 2.1 (With Harrison-Trainor). Suppose A is a finitely generated punctual struc-
ture, and suppose |FPR(A)| = 1. Then A is punctually categorical.

Proof. Let B be the natural presentation of A which is the term algebra over gen-
erators b̄. Let C be some other punctual copy of A, and let f : B → C be a primitive
recursive isomorphism from B onto C. Write b̄′ for the f -image of b̄ in C. Fix a
primitive recursive surjective isomorphism g : C → B, and let b̄′′ be the g-image
of b̄′ in B. Since b̄′′ generates B, it must generate b̄; fix the finitely many terms
witnessing this fact.

Consider c ∈ C. We explain how to promptly compute f−1(c). Compute g(c) ∈
B. Every element of B is a term in b̄ and, thus, is a term in b̄′′; the latter term can
be quickly computed using the finitely many terms that witness that b̄ is generated
by b̄′′. Recall that b̄′′ = g(b̄′). If g(c) = t(b̄′′) then c = t(b̄′). Recall that b̄′ = f(b̄)
and set f−1(c) = t(b̄). �

2.1. Proof of Theorem 1.4. We need to prove that FPR(A) is dense. If |FPR(A)| =
1 then there is nothing to prove. Otherwise, let B <pr T be two punctual presenta-
tions of A, where B is not necessarily the “bottom” copy of A. We build a punctual
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copy X with the property:
B <pr X <pr T .

We meet the requirements:

Pe : pe : X → B is not an onto isomorphism;

Rj : pj : T → X is not an onto isomorphism,

and we also construct two surjective primitive recursive isomorphisms f : B → X
and g : X → T .

The idea is to switch between copying B and T . However, this would not be
possible without A being finitely generated. Fix the generators ḡ of B. Recall that
B <pr T , and assume h witnesses this reduction. We let ḡ′′ be the h-image of ḡ in
T . We will also initially define f to be the identity map naturally copying B into
X for a few stages of the construction. Let ḡ′ be the image of ḡ in X .

The strategy for Pe. In the construction, we will initially start by (globally) waiting
until we see that pe(ḡ

′) generates ḡ in B. If this never happens then pe cannot be
an onto isomorphism, and thus the requirement will be met. Suppose we see that
pe(ḡ

′) generates ḡ in B. Then the strategy is declared ready for diagonalisation.
Assume that Pe is the highest priority requirement and has been declared ready

for diagonalisation. If X is currently naturally copying B then switch to copying
T (to be explained below). Then wait for a finitary disagreement in pe illustrating
that pe is not an isomorphism. (In the construction, the action of switching will be
decided according to the priority order.)

The strategy for Rj. The same as for Pe above, mutatis mutandis.

The switching. There are two substantially different cases that need to be treated
separately.

Switching from B to T . Suppose X is currently naturally copying B via f , and
assume we are willing to switch to copying T into X . To perform the switch, identify
B (and, thus, X ) with h(B) in T . From now onwards, change the interpretation of
the currently computed atomic diagram of X by replacing each natural pre-image
of x ∈ X in B by the respective element in T .

Switching from T to B. Now suppose X is currently copying T , and we need
to switch to B at stage s. Stop copying T but keep producing the term algebra
generated by Xs which is naturally associated with the part Ts of T that had been
copied into X before stage s. Naturally identify these elements with the terms of
the respective g-images in T . Wait for h(B) to catch up with Ts by generating all
elements in Ts. (Note that this must eventually happen because the structure is
finitely generated and h is onto.)

As soon as we see that h(B) has covered all of Ts, pause the enumeration of X
and quickly compute all the terms that we have used in the enumeration of X since
stage s for h−1(Ts) in B. Note that there is a natural bound on the time needed to
make these computations. This will give us a natural pre-image for the currently
constructed part of X . Switch to X copying B by identifying (the currently built
part of the diagram of) X with this natural pre-image in B.



ONLINE PRESENTATIONS OF FINITELY GENERATED STRUCTURES 7

Construction. We pick some natural priority ordering on the requirements. If
there are no requirements that are ready for diagonalisation then copy B into X .
Otherwise, fix the highest priority requirement which is ready for diagonalisation
and switch X (if necessary) until the requirement is met.

Verification. Much of the verification was incorporated into the description of the
diagonalisation strategies and the switching procedure. We only clarify a few points
which were not explained in detail above. The description of the switching strategy
guarantees that X is primitive recursive and is isomorphic to A. Each diagonalisa-
tion requirement Pe (and Rj) is met because otherwise we’d have a contradiction
with B <pr T . It is also crucial that the disagreement will be discovered at a finite
stage and will be finitary in nature. This is because we used the generators to
ensure that if pe (or pj) is an isomorphism then it must be onto; see the description
of Pe.

3. Proof of Theorem 1.4

Proof idea. The proof blends a strategy from [KMN17b] with a new diagonalisation
strategy; we briefly describe the main idea of both strategies below. As was proven
in [KMN17b], one can build a rigid 1-generated punctually categorical structure,
as follows. Start building A as an ω-chain using a unary function s, and also start
adjoining loops of specific sizes to the chain using another unary function c. Also,
fix a third unary function p that maps points back to the fixed generator. To make
sure every punctual P ∼= A is punctually isomorphically mapped onto A, choose
the sizes of the loops thoughtfully. We could, for example, start by producing only
1-loops and wait for P to respond by giving two consequent 1-loops. As soon as
P responds, we stop producing only 1-loops and start putting pairs consisting of
a 1-loop and a 2-loop. Then, relative to P, we can use p (and the time it took P
to respond) to reconstruct the exact location of its 1-loop and match it with the
respective one in A. If P gives us a loop of a wrong size we can forbid this size
in the construction. Also, if P gives us a chain which is too long, we will keep
the sizes of our loops smaller than this chain, thus potentially forcing it to grow to
infinity, so P 6∼= A. There are several further subtleties in the construction of A,
see [KMN17b] and [BDKM] for further intuition. For instance, one must be careful
in the choice of loop patterns to make sure that the ith punctual structure can be
pressed essentially independently from the other ones. See the formal description
of the pressing strategy below for further details.

Remarkably, the above strategy is consistent with the (ω, S)-style diagonalisa-
tion. In (ω, S), we can keep an element disconnected from the origin 0 for as long
as we want. We can use this non-standard-looking element to diagonalise against
an isomorphism from our copy to the canonical copy of (ω, S). In our A we will be
keeping one extra chain of loops disconnected from the origin. A careful choice of
sizes of loops and of a generalised predecessor function will still allow us to press P
despite of the fact that the extra chain is currently not connected to the generator.
Indeed, it is sufficient for us to locate the exact coordinate of a point in the chain
in P and match it correctly and promptrly with the respective point in A. To do
so we do not have to really go all the way back to the generator. We are ready to
give the formal details.

Proof. The language of the structure A contains the following symbols:



8NIKOLAY BAZHENOV, ISKANDER KALIMULLIN, ALEXANDER MELNIKOV, AND KENG MENG NG

o . . .

c-cycles of different length

s s

p p

s

v

p(o) = r(o) = o; p(v) = r(v) = v

s

p

Figure 1. The structure A with two roots o and v shown.

• a constant o, and
• unary functions s, c, p, and r.

The structure A (see Figure 1) will have the following properties:

(1) The domain of A is a disjoint union of finite c-cycles. For any c-cycle C,
the function s maps every element from C to a fixed element from another
c-cycle C ′. The function s is arranged in such a way that the values o, s(o),
s(s(o)), . . . , sn(o), sn+1(o), . . . form an ω-chain, and every c-cycle from A
contains exactly one element of the form sk(o), k ∈ ω.

(2) For x ∈ ω, consider the unique number n such that sn(o) belongs to the
c-cycle of x. Then p(x) satisfies one of the following two cases:
(a) p(x) = sn−1(o), or
(b) p(x) = sn(o).

Furthermore, p(ck(x)) = p(x), for any k ∈ ω.
Consider the greatest m ≤ n such that p(sm(o)) = sm(o). Such a number

m exists, since p(o) = o. Then we have r(x) = sm(o).
(3) The element y ∈ A is called a root if r(y) = y or, equivalently, if p(y) = y.

Notice that for every root y, there is a natural number n such that y =
sn(o). For an element x, the island coordinates (m, k) of x are defined as
follows: m is the number such that sm(r(x)) belongs to the c-cycle of x;
and k is the least number such that x = ck(sm(r(x))).

Note that the first property above ensures that A is rigid and 1-generated. The
canonical presentation of A is built as the term algebra generated by o. The
canonical fpr presentation of A will be denoted by B (“bottom”). We will also
build an fpr copy T (“top”) of A.

We use the pairing function 〈n,m〉 = 2n · (2m+ 1)− 1.

We fix a uniformly computable list of all primitive recursive unary functions
{he}e∈ω. We also choose a uniformly computable list of all fpr structures in the
language of our structure A:

Cn = (ω; on, sn, cn, pn, rn), n ∈ ω.
The functions sn, cn, pn, rn are treated as partial computable functions with corre-
sponding primitive recursive time functions tn: we assume that the value f(x)[tn(x)]
converges, for any n, x ∈ ω and f ∈ {sn, cn, pn, rn}.

We will satisfy the following series of requirements:
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Pe: he is not an isomorphism from T onto B.
Rn: If Cn ∼= T , then there is a primitive recursive isomorphism from Cn onto T .

For a functional symbol f ∈ {s, c, p, r}, we use notations fB and fT to denote
the interpretation of the symbol f inside B and T , respectively.

An overview.
The structures B and T are constructed with the following agreement in mind.

One may think of T as a version of B which runs a little bit faster than B: At the
beginning of each stage s, T [s] consists of two disjoint parts B′ and I, where B′ is
isomorphic to B[s], and I is a (possibly empty) substructure of T [s] such that (for
now) I does not contain elements of the form skT (o), k ∈ ω. Informally speaking,
B′ is copying B, and I is an island. The island I will be eventually attached to B′

with the help of the function sT (to be explained below).
The priority ordering of the strategies is arranged as per usual: R0 < P0 < R1 <

P1 < . . . . Every strategy Pe will be in one of the following states:

(S1) unstarted;
(S2) calculating the island tag;
(S3) active;
(S4) finished.

An unstarted strategy Pe wants to begin building the Pe-island inside T . First,
Pe goes into state S2 and (slowly) calculates the length le of the c-cycle for the root
of the Pe-island. We call this le the island tag of Pe. Note that these calculations
involve evaluating various things inside structures Ci, i ≤ e. When the island tag
is computed, Pe goes into state S3.

When Pe is active, it builds its own island while looking for an opportunity to
diagonalize against he. When this opportunity is seized, Pe becomes finished.

Note that at a stage s, each of the strategies Ri, i ≤ s, can construct something
in B and T .

In order to ensure that both B and T are punctual, at each stage s of the
construction we proceed as follows:

• pick the least k such that skB(o) is still undefined, and define it as the next
element in the domain;

• introduce the cB-cycle of skB(o) according to the description of the strategies
(see below);

• the functions pB and rB on the new elements are defined right away;
• the structure T copies the new elements from B.

Beforehand, we assign to each Pe, e ∈ ω, the set of acceptable tags

L(Pe) = {m0(e),m1(e), . . . ,me(e),me+1(e)}.
We ensure that for i 6= j, L(Pi) and L(Pj) are disjoint: e.g., one can define

mk(e) := 3〈e+ 1, k〉+ 3.

A strategy Pe will always choose its island tag as one of the elements from L(Pe).
We assume that o belongs to a c-cycle of size 3, and we set L(P−1) := {3}. Thus,

one can say that the main part of T is tagged by the length 3.

The description of Pe in isolation. We note that the strategy will have to
be slightly modified in the construction.
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Recall that Pe has the finite set of acceptable tags L(Pe). Each higher priority
strategy Rn, n ≤ e, can forbid to use at most one tag l from L(Pe). Therefore, the
choice of the cardinality of L(Pe) ensures that at any stage s, the strategy Pe has
at least one non-forbidden tag.

First, we pick the next element we in the domain of T and the least non-forbidden
tag le ∈ L(Pe). The length le is declared the island tag of Pe.

While the value he(we)[t] either is undefined or does not belong to B[t], build
the Pe-island inside T as follows (note that we always use next elements from the
domain to build islands):

• Put we in a c-cycle of size le. The element we will be the root of the
Pe-island: for any element x from the island, we will have r(x) = we.
• Continue constructing the island as follows. Suppose that sk(we) is already

defined. Then we put a fresh c-cycle C (its length is decided by the Ri-stra-
tegies) and connect it in a natural way with our island, i.e. we declare some
element from C as sk+1(we), and for each x ∈ C, define p(x) = sk(we) and
r(x) = we.

Suppose that t0 is the first stage such that he(we)[t0]↓ ∈ B[t0]. Then we attach
the island to the main part of T [t0] and extend B[t0] to an isomorphic copy of T .
More formally, let k be the least number such that the value skB(o) is still undefined
at stage t0. We define:

(i) skT (o) := we;
(ii) skB(o) is the least unused element in B, and we grow the main part of B by

attaching a copy of the constructed Pe-island.

Then requirement Pe is declared satisfied : Indeed, our construction will be orga-
nized in such a way that before stage t0, the structure B[t] does not contain c-cycles
of size le. Therefore, the element he(we) cannot belong to a cB-cycle of size le, and
he cannot be an isomorphism from T onto B.

After that, every new c-cycle inside B will be attached to the “end” of the “glued”
copy of the Pe-island.

The description of Re in isolation.
First, consider the element x = 0 from Ce. We simultaneously proceed with the

following procedures:

(A) Find the least number l such that cle(re(x)) = re(x) (i.e. the length of the
ce-cycle of the root re(x)).

(B) Apply pe to x at most 2e+1 times to find some y0 associated with a ce-cycle

of size 3e + 1. When such y0 is found, compute y1 = p2
e+1

e (y0). Check
whether y1 lies in a ce-cycle of size 3e+ 1.

While we are acting as decribed above, we cannot delay the construction of B
and T . Hence, we build B and T by adding new elements. If a newly added x has
island coordinates (〈e, k〉, 0) for some k, then we build its c-cycle as a new cycle of
size 3e+1. Note that a new element x from T can appear because of either copying
B, or building a Pi-island for some i.

Let u0 be the number of steps needed to finish the procedures above. The
described actions can have one of the following outcomes:

(i) One of the procedures (A) or (B) never stops. Then Ce is not isomorphic
to T .
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(ii) Otherwise, both procedures eventually stop. Suppose that the number l
does not belong to any L(Pi), where −1 ≤ i < e. Then we will ensure that
Ce 6∼= T : If l ∈ L(Pk) for some k ≥ e, then the strategy Re will forbid the
tag l.

(iii) Assume that the number l lies in some L(Pi), −1 ≤ i < e.
(iii.a) If Ce ∼= T and we prematurely reached the root re(x) by applying pe,

then we can quickly find the island coordinates of x = 0.
(iii.b) Otherwise, we found two adjacent ce-cycles of size 3e + 1. Then we

switch to the next pattern (see below).

If u0 is never calculated, then Ce is not isomorphic to T . After u0 is calculated,
we will ensure that T has no pair of adjacent cT -cycles of size 3e+ 1.

Now we consider the element x = 1 from Ce. Again, we simultaneously proceed
with the following:

(A′) Find the length l1 of the ce-cycle of the root re(x).
(B′) Apply pe to x at most 2e+1 times to find some y0 associated with a ce-cycle

of size 3e+ 1. When such y0 is found, compute y1 = p2
e+1

e (y0). After that,

compute y2 = p2
e+1

e (y1). Check whether y1 lies in a ce-cycle of size 3e + 2
and y2 belongs to a cycle of size 3e + 1. In other words, we search for a
pattern [3e+ 1, 3e+ 2, 3e+ 1].

While we are acting as decribed above, we continue building B and T . For new
elements x with island coordinates 〈e, k〉, where k ≥ u0, we alternate between the
c-cycles of size 3e+ 1 and 3e+ 2.

Let u1 be the number of steps needed to finish the procedures (A′) and (B′).
There will be one of the following outcomes:

(i′) One of the procedures (A′) or (B′) never stops. Then Ce is not isomorphic
to B.

(ii′) The number l1 does not belong to any L(Pi), where −1 ≤ i < e + 1. If
l1 ∈ L(Pk) for some k ≥ e+ 1, then Re forbids the tag l1.

(iii′) Otherwise, the tag l1 lies in some L(Pi), −1 ≤ i < e+ 1.
(iii′.a) If Ce ∼= T and we prematurely reached the root re(x), then we can

quickly determine the island coordinates of x = 1.
(iii′.b) Otherwise, we found a ce-pattern [3e+1, 3e+2, 3e+1]. We will switch

to the pattern [3e+ 1, 3e+ 2, 3e+ 2, 3e+ 1].

After that, we make similar actions for the number x = 2: While searching for

the length l2 of the ce-cycle of pe(2) and a pattern P̂ := [3e+1, 3e+2, 3e+2, 3e+1]

inside Ce, we iterate the pattern P̂ (in appropriate way) inside B and T . The number
u2 is the number of steps needed to finish this search. When this is finished, we
want to treat l2 as a non-forbidden tag either for the main part of T , or for one
of the Pi-islands, where i < e + 2. If such a treatment is impossible, then we will
ensure that Ce is not a copy of T . The acquired tag l2 helps us to find (the location
of) the root for x. We switch to the next pattern [3e+1, 3e+2, 3e+2, 3e+2, 3e+1].

The calculations of u0, u1, u2, . . . allow us to build a primitive recursive isomor-
phism from Ce onto T (to be elaborated below).

Construction.
We view every considered primitive recursive function as a partial computable

function ϕe(x) such that the computation of ϕe(x) converges in p(x) many steps
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for some primitive recursive p. The structure Ce[s] evaluated at stage s refers to a
finite substructure of Ce on the domain {0, 1, . . . , s} with all functions evaluated up
to s steps. At stage s we are allowed to use only structures Ce[s], e ≤ s.

Our construction defines partial computable functions s, c, p, r for B and for T
and ensures that all the values s(x), c(x), p(x), r(x) converge within x many steps
of the construction. Therefore, both B and T are punctual.

Every strategy Pe can have a finite set of labels of the form forb(i, l) , where

i ≤ e and l ∈ L(Pe). A label forb(i, l) means that the strategy Ri forbids our Pe

to use the tag l. For every i ≤ e, Pe can be labelled by at most one label forb(i, l) ,

l ∈ ω. Note that we never remove added labels.
At stage s we assume that every strategy Pj , where j > s, is still unstarted.

Phase 0: Dealing with the strategies Pe.
(0.1) Declare the strategy Ps calculating the island tag, i.e. Ps goes from state

S1 into S2.

(0.2) Consider the strategies P0, P1, . . . , Ps in turn. Suppose that a strategy Pi,
i ≤ s, is in state S2. Then we look at numbers j ≤ i, in turn. If Pi has no label

of form forb(j, l1) (i.e. Rj has not forbidden a tag yet), then for each acceptable

tag l ∈ L(Pi), make (s+ 1) steps of computation of the following procedure:

PROCi,j,l: For each element x ≤ s (in turn), calculate the values rj(x), cj(rj(x)),
c2j (rj(x)), . . . , clj(rj(x)). If for some x, the corresponding root rj(x) belongs
to a cj-cycle of size l, then immediately stop the procedure and output
“forbid l.” Otherwise, when all calculations are finished, output “allow l.”

If the computation finishes (in s+ 1 steps) with an output “forbid l,” then put the

label forb(j, l) onto Pi.

By PROC0
i,j,l we denote the following modification of the procedure PROCi,j,l:

In place of all x ≤ s, we consider only x ≤ i− j.

(0.3) Let Pi be the least strategy which is currently in state S2. Suppose that
M is the maximal element from L(Pi).

Make (s+ 1) steps of computation of the following procedure:

Compute a finite set F of forbidden tags as follows: For each j ≤ i, search
for the least l ∈ L(Pi) such that the procedure PROC0

i,j,l outputs “forbid
l.” If there is such a tag l, then put this l into F . Otherwise, check

whether Pi now has a label forb(j, l′) : If there is such a label, then add

the corresponding l′ into F .

W.l.o.g., one may assume that the computation above does not stop until it calcu-
lates all values cMj (rj(x)), for j ≤ i and x ≤ i− j.

If the computation does not finish in s+ 1 steps, then Pi stays in state S2.
Otherwise, find the least tag l ∈ L(Pi) \ F (such l exists, since F contains at

most i + 1 elements). We declare l the island tag of Pi, and say that Pi is now
in state S3 (i.e. active). We initialize Pi by building the Pi-island I[Pi; s] (inside
T [s]) as a cT -cycle of size l. We choose an element w from the cycle and declare it
the Pi-witness.
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(0.4) If there is at least one active strategy Pi, then proceed to Phase 1. Other-
wise, proceed straight to Phase 2.

Phase 1: Satisfying active strategies. Consider each active strategy Pe, in turn.
Suppose that w is the Pe-witness.

If the value he(w) is calculated in (s+1) steps of computation and he(w) belongs
to B[s], then declare Pe satisfied and finished. Attach the Pe-island to the main
part of T [s] as follows: Let k be the least number such that skB(o) is still undefined.
Declare skT (o) := w and define the other values of sT appropriately. After that,
extend the structure B[s] in such a way that the resulting structure is isomorphic
to the current T [s].

Otherwise, let m be the least number such that smT (w) is still undefined. De-
fine smT (w) as the next element of the domain. Grow the cT -cycle of the element
according to the current working patterns (to be explained in Phase 2).

After that proceed to Phase 2.

Phase 2: Growing the structure B. First, we explain how we define our working
patterns.

Let uq,l,e(x) be the number of steps needed to perform the following effective
procedure inside the structure Ce:

(i) Find the value re(x). If re(x) 6= q, then we stop successfully.
(ii) Otherwise re(x) = q. Compute the values cke(q), for k ≤ l. If cle(q) 6= q or

there is a non-zero number k < l with cke(q) = q, then we stop successfully.
(iii) Otherwise q lies in a ce-cycle of size l. Apply pe to x to search for some

non-zero i ≤ 2e+x+1 such that pie(x) lies in a ce-cycle of size 3e+ 1. We call
this element y0. If y0 is not found, then we stop unsuccessfully. If we reach
the root q before 2e+x+1 applications of pe, then we stop successfully.

(iv) Assume that y0 is found. Compute the values yj = p2
e+1

(yj−1) for 1 ≤ j ≤
x+ 1. If we reach the root q before finding yx+1, then we stop successfully.
If there is at least one yj such that 1 ≤ j ≤ x+ 1 and it lies in a ce-cycle of
size 3e+ 1, then we stop successfully. Otherwise, we stop unsuccessfully.

The procedure always stops, either successfully or unsuccessfully. Informally
speaking, if the described procedure stops unsuccessfully, then we can ensure that
Ce is not a copy of T . For each e, the function (q, l, x) 7→ uq,l,e(x) is primi-
tive recursive, since all searches are bounded. On the other hand, the function
(e, q, l, x) 7→ uq,l,e(x) is not primitive recursive. Nevertheless, the graph

{(e, q, l, x, z) : uq,l,e(x) = z}

is a primitive recursive set.
We define the function α(l, 〈e,m〉). The intended use of the parameters is as

follows: The position of any element x from the structure T is uniquely determined
by the root rT (x) and the island coordinates (i, j) of x. Thus, the output of
α(l, 〈e,m〉) will be the length of the cT -cycle of the element x such that the root
rT (x) lies in a cycle of size l and x has island coordinates (〈e,m〉, 0).

The function α is defined by primitive recursion on m. Suppose that l and e are
fixed.
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• We set α(l, 〈e,m〉) = 3e + 1 for all m such that Ce[m] does not yet have a
ce-cycle C of size l and an element q ∈ C with re(q) = q.
• Suppose that m0 is the first number such that Ce[m0] has a ce-cycle of size
l with root q. Note that if there is no such m0, then simply α(l, 〈e,m〉) =
3e+ 1 for all m.
• For every m0 ≤ m ≤ uq,l,e(0) we set α(l, 〈e,m〉) = 3e+1. If (the procedure)
uq,l,e(0) stops unsuccessfully, then define α(l, 〈e,m〉) = 3e + 1 for all m >
uq,l,e(0).
• Otherwise, uq,l,e(0) stops successfully. Then for m with uq,l,e(0) < m ≤
uq,l,e(1) we propagate the pattern [3e+1, 3e+2]. More formally, we define:

α(l, 〈e, uq,l,e(0) + 2j + 1〉) := 3e+ 1,

α(l, 〈e, uq,l,e(0) + 2j + 2〉) := 3e+ 2

for appropriate j. In other words, we alternate between the cycles of size
3e+ 1 and 3e+ 2.

In order to complete the pattern correctly, we assume that (uq,l,e(1) −
uq,l,e(0)) is an even number. If uq,l,e(1) stops unsuccessfully, then we iterate
the pattern [3e+ 1, 3e+ 2] forever, i.e. for all m > uq,l,e(1).
• Otherwise, uq,l,e(1) stops successfully. In general, if some uq,l,e(k) stops

unsuccessfully, then we end up repeating the pattern

(3.1) [3e+ 1, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
k times

]

forever. If every uq,l,e(k) stops successfully, then the pattern (3.1) is prop-
agated for uq,l,e(k − 1) < m ≤ uq,l,e(k). In order to do this correctly, we
assume that (uq,l,e(k)− uq,l,e(k − 1)) is divisible by k + 1.

Since the approximation Ce[s] is evaluated in bounded many steps and the graph
of u is primitive recursive, the function α is also primitive recursive: Indeed, in the
definition of α, we only need to decide whether uq,l,e(k) is equal to m or not.

The working patterns in our construction work as follows:
In Phase 1: Recall that w is the witness of an active strategy. Suppose that l

is the length of the cT -cycle of w. Let m be the least number such that smT (w) is
still undefined. Then the length of the c-cycle of the newly added element smT (w)
is defined as α(l,m). Define p and r for the new cycle appropriately.

In Phase 2: We grow B as follows. Suppose that v is the latest element with
rB(v) = v which was added to B (i.e. v is the latest root inside B[s]). Let l be
the length of the cB-cycle of v. Find the least m such that smB (v) is still undefined.
Then define smB (v) as the next element a from the domain, and set the length of
the cB-cycle of a equal to α(l,m). Define p and r appropriately. Copy the newly
added cycle into the structure T .

Verification. At each stage of the construction, all evaluated functions are
time-bounded. Therefore, the structures B and T are punctual.

Lemma 3.1. Every requirement Pe is satisfied.

Proof. First, we show the following: If there is a stage s0 at which the Pe-strategy
is active, then Pe is satisfied.
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Let w be the Pe-witness, and l be the size of the cT -cycle of w. Consider the
least stage s1 ≥ s0 such that he(w)[s1]↓ ∈ B[s1]. The construction guarantees that
B[s1] contains no cycles of size l. Therefore, he is not an isomorphism from T onto
B, and Pe will be satisfied at stage s1.

Now suppose that s∗ > e is the least stage such that:

• every Pi, i < e, is in state S4 (i.e. finished) at the beginning of the stage
s∗; and
• the calculation of the set F of forbidden tags for Pe can be finished in

(s∗ + 1) steps.

If Pe has never been active before the stage s∗, then it will become active at s∗.
Thus, Pe will be satisfied. �

Now we can deduce that the structures B and T are isomorphic: This is ensured
by copying B from T at Phase 1 (this happens infinitely often by Lemma 3.1) and
by copying T from B at Phase 2.

Lemma 3.2. Every requirement Re is satisfied.

Proof. Suppose that Ce is isomorphic to T and G is the unique isomorphism from
Ce onto T . First, we show that for every x ∈ Ce, the length lx of the ce-cycle of the
root re(x) can be calculated primitively recursively.

Suppose that lx is a tag from the set L(Pi) for some i. Assume that x ≤ i − e.
Then the procedure PROC0

i,e,lx
must output “forbid lx.” Hence, Phase 0.3 of the

construction guarantees that the structure Ce contains a c-cycle of size l∗ ∈ L(Pi)
such that l∗ ∈ F , i.e. l∗ is a forbidden tag. Thus, T does not contain cycles of size
l∗, and T is not isomorphic to Ce. We obtained a contradiction.

Therefore, we have x > i− e and i < e + x. This implies that the island tag lx
can be found by evaluating the elements

re(x), ce(re(x)), c2e(re(x)), . . . , cmaxL(Pe+x)
e (re(x)),

where the function k 7→ maxL(Pk) is primitive recursive. Hence, the function
x 7→ lx is also primitive recursive.

Now we describe how to compute the image G(q) of a root q from Ce. First, find
the corresponding island tag lq and the index iq such that lq ∈ L(iq). Suppose that
t∗ is the number of steps needed to see that q belongs to a ce-cycle of size lq inside
Ce. W.l.o.g., one may assume that t∗ > e+ q > iq. We argue that the element G(q)
must already belong to T [t∗].

Assume that G(q) 6∈ T [t∗]. Consider Phase 0.2 of the stage t∗. Since G(q) 6∈
T [t∗], at the beginning of this phase, the strategy Piq must be in state S2: indeed,
this is ensured by the description of Phase 0. Moreover, the strategy Piq does not

have labels forb(e, l′) .

If e > iq, then w.l.o.g., one may assume that t∗ is strictly greater than the
number of steps needed to compute the set of forbidden tags F for the strategy
Piq . Thus, here we need to consider only the case when e ≤ iq. Then the proce-
dure PROCiq,e,lq finishes in t∗ + 1 steps and outputs “forbid lq.” Therefore, Piq

obtains label forb(e, lq) . This implies that T cannot be isomorphic to Ce — a

contradiction.
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Therefore, G(q) belongs to T [t∗], and we can compute the image G(q) by pro-
ceeding with t∗ stages of our construction. Hence, G(q) is calculated in a primitive
recursive way.

Finally, for an arbitrary natural number x, we show how to compute its image
G(x) in a primitive recursive way. First, we calculate the values q = re(x) and
l = lq.

It is not hard to prove that the following two conditions are equivalent:

• x belongs to the ce-cycle of its root re(x);
• pe(se(x)) = re(x).

Hence, if pe(se(x)) = q, then we can find the number k ≤ l with x = cke(q), and set
G(x) = ckT (G(q)).

Suppose that pe(se(x)) 6= q. Let (m, k) be the island coordinates of the element x.
In order to compute G(x), it is sufficient to describe a fast procedure for calculating
the first island coordinate m: Indeed, if we know that m = 〈i, j〉 for some i and
j, then the size of the ce-cycle of x is equal to either 3i + 1 or 3i + 2. Hence, we
have k ≤ 3i + 2, and after finding G(q), one can determine the image G(x) in a
straightforward way.

Recall that for a fixed e, the function uq,l,e(z) is primitive recursive. We show
that uq,l,e(z) stops successfully for all z. Assume that there is the least z such that
uq,l,e(z) stops unsuccessfully. Then for all elements from T with island coordinates
〈e, j〉, where j > uq,l,e(z − 1), the Re-strategy will iterate the pattern

[3e+ 1, 3e+ 2, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
z times

].

This implies that z is the maximal possible number such that there are z many

consecutive j-s such that s
〈e,j〉
e (q) has a ce-cycle of size 3e+ 2.

The procedure uq,l,e(z) can stop unsuccessfully because of two reasons:

(1) either y0 is not found, or
(2) each of the elements y1, y2, . . . , yz+1 belongs to a ce-cycle of size 3e+ 2.

Each of these cases gives a contradiction. Therefore, uq,l,e(z) stops successfully for
all z.

We claim that the first island coordinate m of the element x is at most uq,l,e(x).
Assume that m > uq,l,e(x). Since uq,l,e(x) stops successfully, the procedure uq,l,e(x)
will find a sequence

yz+1 = s〈e,j〉e (q), yz = s〈e,j+1〉
e (q), yz−1 = s〈e,j+2〉

e (q), . . . , y0 = s〈e,j+z+1〉
e (q),

which lies close to x and satisfies the following: z ≤ x; each of y1 and yz+1 belong
to a ce-cycle of size 3e + 1, and each yu, 1 ≤ u ≤ z, has a ce-cycle of size 3e + 2.
This contradicts the following: after uq,l,e(x) our construction propagates patterns

[3e+ 1, 3e+ 2, 3e+ 2, . . . , 3e+ 2︸ ︷︷ ︸
v times

],

where v > x. Hence, m ≤ uq,l,e(x), and the island coordinates of x can be computed
in a primitive recursive way. Lemma 3.2 is proved. �

Theorem 1.4 is proved. �
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4. Proof of Theorem 1.7

Proof idea. This time the structure will consist of two ω-chains, one generated by
s and the other one by ŝ. The chain generated by s will be similar to the one used
in the previous theorem but without the extra “islands”. It will be playing the role
of the coordinate axis in the structure, with patterns of loops playing the role of
the coordinates. It will be also used to press only the honesty generated punctual
copies of the structure rather than all of its punctual copies.

The other ω-chain which is generated by ŝ will have no loops attached to it. We
will also have another unary function f mapping points of the s-chain to points of
the ŝ-chain. See Fig. 2 below.

Since f−1 does not have to be primitive recursive, we can use the ŝ-chain to
diagonalise against isomorphisms to other punctual copies. However, in a honestly
generated copy f−1 is primitive recursive, and therefore we are able to quickly
find its s-chain coordinate. This feature will also allow us to press the honestly
generated structures using the s-chain.

Proof. The language of our structure A consists of the following symbols:

• two constants o and ô, and
• unary functions s, c, ŝ, r̂, and f .

The (isomorphism type of the) structure A satisfies the following:

(a) The domain of A consists of two infinite disjoint parts D and D̂. We put

o ∈ D and ô ∈ D̂. For any x ∈ D, we have r̂(x) = o. For y ∈ D̂, set
r̂(y) = ô. Note that, in particular, we will be able to quickly compute

whether a given z belongs to D or D̂.

(b) If x ∈ D, then we define ŝ(x) = x. If y ∈ D̂, then set s(y) = c(y) = y and
f(y) = o.

(c) The set D̂ forms an ω-chain relative to the function ŝ: more formally,

D̂ = {ŝn(ô) : n ∈ ω},

and ŝ � D̂ is injective.
(d) The substructure (D; s, c) satisfies the same properties as the structure Ã :=

(dom(A); s, c) from the proof of Theorem 1.4. Informally speaking, (D; s, c)
is a version of the structure from Theorem 1.4, but with the predecessor
and the root functions omitted.

(e) If x = sn(o) for some n, then f(x) ∈ D̂. Furthermore, if m 6= n, then
f(sn(o)) 6= f(sm(o)). We assume that f(o) = ô.

(f) If x ∈ D and x 6= sn(o) for all n, then f(x) = o. We emphasize that

range(f) ⊆ D̂ ∪ {o}.
It is not difficult to show that these properties ensure that the structure A is

rigid and 1-generated (see Figure 2 below). As in Theorem 1.4, by B we denote the
canonical presentation of A.

Consider a language Lg which is obtained from the language of the structure A
by adding a new unary function g. The intuition behind g is the following: We want
to treat g as the “inverse” of the function f . More formally, we define a structure
Ag in the language Lg as follows:

(1) the L(A)-reduct of Ag is equal to A, and
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Figure 2. The structure A from Theorem 1.7

(2) we set

g(x) =

{
sn(o), if x ∈ D̂ and f(sn(o)) = x,
ô, otherwise.

Note that the properties of A imply that the function g is well-defined (indeed,
there is at most one number n with f(sn(o)) = x). If U is a copy of A, then the
structure Ug (in the language Lg) is defined in a natural way.

Remark 4.1. If U is an honestly generated copy of A, then the structure Ug is fpr.

As in Theorem 1.4, fix a uniformly computable list of all primitive recursive unary
functions {he}e∈ω. Also choose a uniformly computable list of all fpr structures in
the language Lg:

Cn = (ω; on, ôn, sn, cn, ŝn, r̂n, fn, gn), n ∈ ω.

We will build an fpr copy T of B, and satisfy the following series of requirements:

Pe: he is not an isomorphism from T onto B.
Qn: If Cn ∼= Bg, then there is a primitive recursive isomorphism from Cn onto

Bg.

Furthermore, the construction will ensure that the structure B is honestly gen-
erated (see the verification). This fact and the requirements above are enough to
prove the theorem:

(1) The Pe-requirements guarantee that |FPR(A)| > 1.
(2) If U is an honestly generated copy of A, then there is an index n such that
Cn = Ug. The Qn-requirement implies that the unique isomorphism F from
U onto B is primitive recursive. Since B is the canonical copy of A, the
(unique) isomorphism G = F−1 from B onto U is also primitive recursive.

An overview.
As in Theorem 1.4, at a stage s, the finite structure T [s] will have a part that

copies B and an island part I[s]. The island part contains no elements from D, i.e.
for every x ∈ I[s], we have r̂T (x) = ô.

Since we do not use the predecessor and the root functions as before (see The-
orem 1.4), the machinery of island tags is completely omitted. Every strategy Pe

can be in one of the following states:
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(S1) unstarted;
(S2) active;
(S3) finished.

While Pe is active, it is building its own Pe-island. This island is just a finite
piece of a Z-chain, with respect to the function ŝT . Since T does not have to be
honestly generated, we exploit this fact and do not connect the Pe-island I to the
non-island part of T [s]: in particular, this includes not putting elements from I
into range(fT )[s]. Only when Pe is finished, we will put (some) elements from I
into range(fT ).

In order to ensure that B is honestly generated, we will guarantee that:

(a) If ξ ∈ {s, c, ŝ}, then for any x ∈ ω, the set ξ−1B (x) is finite. Moreover, given

x, one can promptly compute the Gödel index of the finite set ξ−1B (x).

(b) The set range(fB) is equal to D̂(B) and given y ∈ range(fB), we can
quickly find the unique x with fB(x) = y.

The item (b) above can be obtained by a careful working with the function fB :

At the end of each stage s, we find all y ∈ D̂(B)[s] such that y 6∈ range(fB)[s]. For
each such y, we attach a fresh cB-cycle Cy to B. Suppose that x = snB(o) lies in Cy.
Then we set fB(x) := y. After that, we extend the non-island part of T to match

the current B. This action guarantees that every y ∈ D̂ belongs to range(f).

The strategy Pe in isolation. Pick the least unused element we and put it into

D̂(T ). Declare we the Pe-witness. While the value he(we)[t] is either undefined or
does not belong to B[t], proceed with constructing the Pe-island inside T as follows.

Recall that the function ŝ � D̂ is injective, hence, for a number z ∈ D̂−{ô}, one
can consider its unique preimage ŝ−1(z). Assume that at a stage t, both the values
ŝk(we) and ŝ−k(we) are already defined. Then we pick next elements y and z from
the domain of T , and set ŝk+1(we) = y and ŝ−k−1(we) = z. The other functions
(from the language of T ) are defined in an appropriate way: e.g., ŝ(z) = ŝ−k(we),
s(z) = c(z) = z, r̂(z) = ô, and f(z) = o. While the Pe-island is growing, we do not
put we into range(fT ).

Suppose that t0 is the first stage such that he(we)[t0] ↓ ∈ B[t0]. Then find the
least even length le > 0 such that we have never used c-cycles of size le before. We
attach the Pe-island to the main part of T [t0] and extend B to an isomorphic copy
of T . More formally, proceed as follows:

(1) Let k be the least number such that ŝkT (ô) is still undefined. Find the
greatest number m such that ŝ−mT (we) is already defined. Set ŝkT (ô) :=

ŝ−mT (we).
(2) Let n be the least number such that snT (o) is undefined. W.l.o.g., we may

assume that n is even and n 6= 0. Then we form a fresh cT -cycle C of size
le inside T , in such a way that snT (o) ∈ C. We define fT (snT (o)) := we.

(3) Grow the main part of B by attaching the copy of the Pe-island and the
copy of C, in a natural way.

After that, the requirement Pe is declared satisfied : Indeed, either the element
he(we) does not belong to range(fB), or its preimage f−1B (he(we)) lies in a cB-cycle
of length l′ 6= le. Therefore, he cannot be an isomorphism from T onto B.
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The strategy Qe in isolation. This is similar to Theorem 1.4, but presses
only honestly generated structures.

First, consider the element x = 0 from Ce. Calculate the value r̂e(x). If r̂e(x) 6∈
{oe, ôe}, then trivially Ce is not a copy of Bg. Therefore, w.l.o.g. we may assume
that r̂e(x) ∈ {oe, ôe}, and one can quickly determine whether x belongs to D(Ce)
or to D̂(Ce).

Now we assume that Ce is a copy of Bg, and we want to quickly compute the
value F (x), where F is the unique isomorphism from Ce onto Bg. Note that one
can promptly find a new value x# which is defined as follows:

(1) If x ∈ D(Ce), then set x# := x.

(2) If x ∈ D̂(Ce), then define x# := ge(x). If Ce ∼= Bg, then here x should
belong to range(fe) (see the discussion at the end of the overview), and
fe(x

#) must be equal to x.

The element x# always belongs to D(Ce) (if it does not, then Ce 6∼= Bg). Fur-
thermore, it is not hard to show the following: if one can promptly find the value
F (x#), then it is also possible to quickly compute the desired F (x). Therefore, for
simplicity, we will assume that x = x# ∈ D(Ce).

Apply se to x at most 2e+2 times to find an element y0 belonging to a ce-cycle of

size 4e+ 1. When y0 is found, compute y1 = s2
e+2

e (y0). Check whether y1 belongs
to a ce-cycle of size 4e + 1. Suppose that this procedure takes u0 steps. If the
ce-cycle of y1 has size 4e+ 1, then we say that the number u0 has been calculated
successfully.

While we are waiting for u0 to be calculated, we do not delay the construction
of B and T :

• One by one, we add new cB-cycles C into B. Let n be the number such
that snB(o) ∈ C:

– If n is even (or in other words, n = 〈0,m〉 for some m), then the length
l of C is equal to 2.

– If n = 〈e+ 1,m〉 for some m, then we set l := 4e+ 1.
Informally speaking, we iterate the pattern 4e + 1, 4e + 1, 4e + 1, . . . in
appropriate coding places.
• For each cycle C from above, we put a fresh element zC inside (the growing

ω-chain) D̂(B) and set fB(snB(o)) := zC .
• We extend the non-island part of T to an isomorphic copy of current B.

If u0 is not defined or u0 has been calculated unsuccessfully, then Ce 6∼= Bg and
we just continue putting (4e + 1)-cycles. If u0 is calculated successfully, we will
ensure that B will not get new adjacent cB-cycles of size 4e+ 1.

Now assume that x = 1. Again, for simplicity, we deal with x ∈ D(Ce). Apply se
to x at most 2e+3 times to find an element y0 belonging to a ce-cycle of size 4e+ 1.

When y0 is found, compute y1 = s2
e+2

e (y0) and y2 = s2
e+2

(y1). Check whether at
least one of y1 or y2 belongs to a ce-cycle of size 4e + 1. If it is the case, then the
procedure is finished successfully. The number u1 is defined as the number of steps
needed to finish this procedure (either successfully or unsuccessfully).

While waiting for the procedure to finish, grow B and T as above, modulo the
following important modification: We alternate between cB-cycles of size 4e + 1

and 4e+ 3 for s
〈e+1,m〉
B (o):

4e+ 1, 4e+ 3, 4e+ 1, 4e+ 3, . . . .
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In other words, we propagate the pattern [4e+ 1, 4e+ 3].
Again, if u1 is never calculated or calculated unsuccessully, then we continue the

pattern [4e + 1, 4e + 3], and Ce is not a copy of our structure. If u1 is calculated
successfully, then we switch to x = 2 and to the pattern

4e+ 1, 4e+ 3, 4e+ 3, 4e+ 1, 4e+ 3, 4e+ 3, . . . .

Now we describe the general procedure. Consider x = n > 1. Apply se to x at
most 2e+n+2 times to find y0 which belongs to a ce-cycle of size 4e+ 1. When y0 is

found, compute yi+1 = s2
e+2

e (yi), for 0 ≤ i ≤ n. Check whether one of the elements
y1, y2, . . . , yn+1 belongs to a ce-cycle of size 4e + 1. If it is the case, then we say
that the procedure finished successfully.

Let un be the number of steps needed to finish the procedure. While un is being
computed, we propagate the pattern

[4e+ 1, 4e+ 3, . . . , 4e+ 3︸ ︷︷ ︸
n times

]

in appropriate coding places. If un is calculated unsuccessfully or un is never
computed, then we continue iterating the same pattern forever. If un is calculated
successfully, then we start considering x = n+ 1 and switch to the next pattern

[4e+ 1, 4e+ 3, . . . , 4e+ 3︸ ︷︷ ︸
n+1 times

].

The calculations of ui, i ∈ ω, will allow us to quickly compute the isomorphism
F : Ce → Bg.

Construction. Similar to Theorem 1.4, but instead of pressing more punctual
structures at later stages we press more honestly generated structures. The actions
of the diagonalisation P -requirements are finitary.

Verification. It should be clear from the description of Pe that the diago-
nalisation is always successful. The verification of the Q-strategies is similar to
Theorem 1.4. In fact, we do not really need the full power of being honestly gener-
ated here. All we need is having g (which plays the role of f−1) primitive recursive
in the opponent’s structure. Using g we can punctually compute the coordinates
of any point in the ŝ-chain of the opponent’s structure and then promptly match
it with the respective point in our structure. Otherwise, the verification of the
Q-strategies is the same as in the verification of Theorem 1.4. �
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