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Abstract. We investigate the problem of punctual (fully primitive recursive)

presentability of algebraic structures up to primitive recursive and computable

isomorphism. We show that for mono-unary structures and undirected graphs,
if a structure is not punctually categorical then it has infinitely many punctu-

ally non-isomorphic punctual presentations. We also show that the punctual
degrees of any computably almost rigid structure as well as the order (Z, <)

are dense. Finally we characterise the Boolean algebras which have a punctu-

ally 1-decidable presentation that is computably isomorphic to a 1-decidable
presentation.

1. Introduction

In [KMN17], Kalimullin, Melnikov and Ng initiated the systematic study of the
primitive recursive content of mathematics. The main idea of such studies is elim-
inating unbounded search from various abstract algorithms in computable struc-
ture theory [EG00, AK00, Mon21]. The main definition in the theory of punctual
structures is the following. An algebraic structure is punctual (or fully primitive
recursive) if its domain is the set of natural numbers, or an initial segment of it,
and the operations and relations are represented by primitive recursive functions.
There has been much research focused around the following fundamental problems:

(a) Describe punctually presented structures in common classes.
(b) Compare different presentations of an algebraic structure.
(c) Investigate the primitive recursive content of various classical algebraic re-

sults.

These problems are clearly motivated by various results in (Turing) computable
algebra and combinatorics [EG00, AK00]. For the foundations of the theory of
punctual structures, we cite the surveys [DMN21, BDKM19, AS21]. We also note
that primitive recursive algebra is very closely technically related to polynomial
time algebra; see, e.g., [CR92, CR91, Ala, Ala22]. The main results of the present
paper mainly attack problem (b). For more results related to problem (a) and (c),
we cite the satellite paper [DM] and also [MN20, BHTK+19, ZKMF19].

In algebra, algebraic structures are usually viewed up to isomorphism. More
generally, it is quite natural to view objects under a notion of similarity that
preserves all properties of interest, i.e., one should choose the ‘right’ category to
work with. For instance, in topological algebra, it is natural to view structures up
to topological isomorphism. In computable algebra, where computable algebraic
structures are the main objects of study, it is quite natural to use computable iso-
morphisms to compare different computable presentations of a structure. (Recall
that a structure is computable if its domain is a computable set and its oper-
ations and relations are uniformly computable.) This idea can be traced back
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to Mal’cev [Mal61] and Rabin [Rab60]. The study of the number of computable
presentations of a given algebraic structure A up to computable isomorphism, also
known as the computable dimension of A, has been central to computable structure
theory for many decades. It is known that in many standard classes a structure
either has a unique computable presentation or has infinitely many computable
presentations, up to computable isomorphism [EG00]. In the former case, the
structure is called computably categorical or autostable. For further results about
computable categoricity and its generalisations, see [AK00, Mon21]. The theory
has accumulated many advanced techniques and deep results, such as examples
of algebraic structures having exactly two computable presentations up to com-
putable isomorphism [KS99, Gon80, Gon81, HKSS02]. Such structures are said to
have ‘computable dimension 2’; of course, structures of finite computable dimension
n > 2 can also be constructed (folklore). For several more recent results in this
direction, see [Tur20, DHTM21].

The situation becomes even more intricate when we forbid unbounded search.
It is easy to see that the inverse of a primitive recursive bijection on ω does not
have to be primitive recursive. This observation has a profound effect on the re-
spective notion of effective categoricity even among the standard basic examples.
For instance, the natural presentation of the dense order of the rationals has the
property that any other punctual presentation can be mapped onto it via a ‘quick’
isomorphism. In contrast, any punctual finitely generated structure has a natural
presentation that can be mapped to any other presentation of it. In both cases one
can show that the inverse isomorphism fails to be primitive recursive in general.
These observations coming from natural examples lead to a whole zoo of categoric-
ity notions [KMnN17, KMM21], depending on the choice of ‘quick’ isomorphism.
Most of these notions that show up naturally tend to be non-equivalent. Arguably
the most appealing and natural notion of categoricity is the strongest possible
version, which says that any two punctual presentations are isomorphic via some
isomorphism f so that both f and f−1 are primitive recursive. We call such iso-
morphisms punctual, and we call such structures punctually categorical. Punctual
categoricity tends to imply computable categoricity in standard ‘tame’ algebraic
classes [KMN17, DHTK+20, KMM21]. However, there exist punctually categorical
structures that are not computably categorical [KMN17], and which are in fact
not even ∆1

1-categorical [DGM+20]. There also exist structures having exactly two
punctual presentations up to punctual isomorphism [MN20], via a proof that is
quite different from those in computable structure theory.

However, in several standard classes such as Boolean algebras, the number of
punctual presentations is either 1 or ω, up to punctual isomorphism [DIK+21].
The classes studied in [DIK+21] were not computably universal. In particular the
computable dimension of structures in these classes is also well-known to be ei-
ther 1 or ω. We believe that it is more interesting and potentially more fruitful to
explore punctual dimension in those classes which contain examples having finite
computable dimension. For example, it is well-known that graphs and unary func-
tional structures (that can imitate trees) can computably code families of sets, and
thus can have computable dimension 2. Our first main result is as follows.

Theorem 1.1. In each of the following classes, if a structure in the class is not
punctually categorical, then it has infinitely many punctually non-isomorphic punc-
tual presentations.

• Mono-unary structures1;
• Undirected graphs.

1That is, structures in the language of only one unary functional symbol.
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Our theorem therefore extends the respective results from [DHTK+20, DGM+20].
We also cite the related paper of Blinov [Bli21] where he investigated primitive re-
cursive categoricity of unary structures.

There is another approach to comparing different punctual presentations of struc-
tures that was suggested in [KMnN17] and further investigated in [GHTMT21,
MN19, BKMN20, KMZ]. Recall that “A is primitively recursively isomorphic to B”
is not a symmetric relation on punctual presentations. However, it is certainly tran-
sitive and reflexive and can be viewed as a reduction. Specifically, A is punctually
reducible to B, written A ≤pr B, if there is a primitive recursive isomorphim from
A onto B. For a fixed algebraic structure A, the induced degree structure on all
punctual presentations of A is called the punctual degrees of A and denoted PR(A).
Given A, what kind of properties does PR(A) exhibit (as a partial ordering)? Con-
versely, given an order-theoretic property, can we find a structure whose punctual
degrees have this property? The former question can be remarkably challenging
even for some common ‘elementary’ structures such as, e.g., the random graph;
see [MN19]. It is also known that for a finitely generated A, its degrees PR(A) are
dense and is a distributive lattice, however, it is never a Boolean algebra [KMZ]. On
the other hand, PR(A) does not have to be dense in general; see [GHTMT21]. Our
contribution to this line of research is the following theorem, which is the second
main result of the paper.

Theorem 1.2. The punctual degrees of the following structures are dense:

(1) Any computably almost rigid structure.
(2) The linear order (Z, <).

In the theorem, we say that M is computably almost rigid if any punctual pre-
sentation of the structure has an algorithm that decides whether two elements are
in the same automorphism orbit, and if they are, outputs a computable index of
the unique computable automorphism that does the job. We will further clarify
this definition later. At this point note that the condition is computable, not prim-
itive recursive, which is quite unusual. A straightforward example of a computably
almost rigid structure is (Z, S), where S(x) = x+ 1.

It may seem strange to the reader at first that the proof of the density of
PR(Z, <) requires several pages. The reader experienced in dealing with com-
putable structures should not rely on their intuition based on computable structure
theory, as it sometimes can be misleading when it comes to primitive recursive
structures.

Our third result is concerned with 1-decidable presentations and their punctual
analogs. Recall that a computable structure is 1-decidable if there is an algorithm
deciding whether a first-order ∃-formula ∃x̄φ(ȳ, x̄) holds for a given tuple ȳ from the
domain of the structure. These strong presentations have been studied thoroughly
for the classes of Boolean algebras, linear orders, and abelian groups; we cite, e.g.,
[Rem81, Kud92, Kud96, Khi98]. The punctual version of 1-decidable presentability
is as follows. We say that a punctual structure A is punctually 1-decidable if
there is a primitive recursive procedure which, given an index of a first-order ∃-
formula ∃x̄φ(ȳ, x̄) and a tuple ā in A, outputs a tuple b̄ in A such that A |=
φ(ā, b̄) if such a tuple exists, and outputs −1 otherwise. (We identify tuples and
formulae with their Gödel numbers under some fixed primitive recursive Gödel
numbering.) Punctually 1-decidable structures have been studied quite recently in
[KMN17, Ala18, BKMN20, AD22], but our understanding of such presentations is
still very limited. Recall that Problem (b) was concerned with comparing different
presentations of algebraic structure. Keeping with that theme, it is natural to ask
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when a 1-decidable structure admits a punctually 1-decidable presentation. Various
examples and counterexamples can be found in the cited above papers. Positive
results of this nature tend to be non-uniform (e.g., [KMN17, ZKMF19]), and there
is perhaps very little hope of getting any sound structured theory in general. We
therefore ask when a given 1-decidable structure is computably isomorphic to a
punctually 1-decidable structure. Our third main result below gives an unexpected
complete description of such structures in the class of Boolean algebras.

Theorem 1.3. For a countable Boolean algebra B, the following are equivalent:

(1) Every 1-decidable presentation A of B is computably isomorphic to some
punctually 1-decidable P ∼= B.

(2) B splits into finitely many C0, ...,Ck such that each Ci is either atomless,
an atom, or a 1-atom.

Such algebras are exactly the relatively ∆0
2-categorical Boolean algebras [McC03]

which are exactly the ∆0
2-categorical Boolean algebras by [Baz14]. Also, these are

exactly the Boolean algebras that are computably categorical relative to the 1-
decidable presentations [Rem81]. Since these notions of categoricity are not directly
related to the material in the present article we omit their definitions that can be
found in the cited papers. We also mention that Alaev [Ala18] has recently dis-
covered that punctual categoricity relative to punctually 1-decidable presentations
is equivalent to the usual computable categoricity for Boolean algebras. A similar
result holds for linear orders [Bli19]. It seems that there could be some deeper and
more general result that connects computable, 1-decidable, and punctual presenta-
tions. For instance, we leave open:

Question 1.4. Suppose A is a punctually 1-decidable structure such that any two
punctually 1-decidable presentations of it are punctually isomorphic (i.e., it is punc-
tually categorical relative to such presentations). Is A necessarily computably cate-
gorical?

In the rest of the paper we give the formal proofs of our results.

2. Graphs and unary structures

In this section we prove Theorem 1.1.

2.1. Unary structures. We begin with a sequence of technical lemmas about
unary structures. We consider various properties that these structures may have
and we prove that in these cases the structures possessing these properties will have
infinitely many punctual degrees. As we move through the section we exclude the
cases we have already dealt with. Note that the set up for the constructions for
these lemmas work in a similar way.

Lemma 2.1. Suppose A is an infinite structure with only one unary functional
symbol f . If there is an x ∈ A such that fn(x) 6= fm(x) for every n 6= m, then A

has infinitely many punctual degrees.

Proof. Without loss of generality assume x = 0. Let p0, p1, . . . be an effective list
of all primitive recursive functions. We build punctual copies B0,B1, . . . of A and
meet the following requirements:

Re,k,m : pe : Bk → Bm is not an isomorphism.

Then there are infinitely many punctual degrees of A.
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At each stage s we work with a finite number of structures B0, . . . ,Bs. Let Bi[s]
be a finite part of Bi constructed by stage s, and Bs[s] = {0}. We also construct
computable isomorphisms ψi : Bi → A. Let ψi[s](0) = 0.

We arrange R-requirements in some effective list. Unless the current stage is 0,
assume that some R-requirement in this list was met at previous stage s − 1. Let
Re,k,m be the next requirement in our list. We use f , fk and fm for the function
symbols in A, Bk and Bm, respectively.

At stage s, Bk and Bm continue copying A, but in Bk we also add an extra
element y and initiate a chain

y, fk(y), f2k (y), . . .

For every new element v in Bm, define ψm(v) = v. We wait for pe(0) and pe(y)
to be computed and added into Bm at a later stage s′. Let pe(0) = a, pe(y) = b
and a′ = ψm[s′](a). Let n be the least such that fnk (y) has not been defined in
Bk by this stage. Stop growing Bk until we either find some v < w such that
fv(a′) = fw(a′), or find j such that f j(a′), . . . , f j+2n−1(a′) 6∈ A[s′].

In the former case, continue growing the chain so that we have at least

y, fk(y), f2k (y), . . . , fw−v+1(y)

been enumerated in Bk. Let u be the least such that fuk (0) has not been enumerated
in Bk. Define fuk (0) = y.

In the latter case, if b = f lm(a) for some j ≤ l ≤ j + n − 1, we declare that

f j+n
k (0) = y, otherwise, f jk(0) = y. Then pe is not isomorphism. We define ψk

on new elements of Bk taking into account all permutations that have been done
during this stage.

The sequence f j(a′), . . . , f j+2n−1(a′) guarantees that we will able to build Bk to
be isomorphic to A. The delay in constructing of Bk does not destroy the primitive
recursiveness of fk since it is bounded by the computation time of f2n|Bk[s

′]|(a′). �

Lemma 2.2. Suppose A is an infinite structure with only one unary functional
symbol f . If there is an x ∈ A for which there are infinitely many y ∈ A with
f(y) = x and A is not almost equal to an infinite star, then A has infinitely many
punctual degrees.

Proof. Without loss of generality assume x = 0. Let p0, p1, . . . be an effective list
of all primitive recursive functions. We build punctual copies B0,B1, . . . of A and
meet the following requirements:

Re,k,m : pe : Bk → Bm is not an isomorphism, k < m.

Then Bk �pr Bm for every k < m, thus there are infinitely many punctual degrees
of A.

At each stage s we work with a finite number of structures B0, . . . ,Bs. Let Bi[s]
be a finite part of Bi constructed by stage s, and Bs[s] = {0}. We also construct
computable isomorphisms ψi : Bi → A. Let ψi[s](0) = 0.

We arrange R-requirements in some effective list. Unless the current stage is 0,
assume that some R-requirement in this list was met at previous stage s − 1. Let
Re,k,m be the next requirement in our list. We use f , fk and fm for the function
symbols in A, Bk and Bm, respectively.

Stage s. Let Bk continue copying A and for every new element v in Bk, define
ψk(v) = v. Firstly, we want to close Bm[s− 1] under f . So we build a substructure
generated by Bm[s − 1]. Let D = f(ψm(Bm[s − 1])) \ ψm(Bm[s − 1]) and n be
the least such that

⋃
i≤n+1 f

i(D) =
⋃

i≤n f
i(D). Such an n exists by the previous

lemma. We add |
⋃

i≤n f
i(D) \ D| new elements in Bm and extend ψm[s − 1] to
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ψm[s] via some bijection from these new elements to
⋃

i≤n f
i(D)\D. We define fm

on new elements so that ψm is an isomorphism.
Stage s + 1. Let Bk continue copying A. In Bm, for every new element v, we

declare that fm(v) = 0. We continue this process until |Bm[s]|+ 1 elements appear
in Bk such that fk(w) 6= 0, this will eventually happen since A is not amost equal to
an infinite star. We wait for pe to be defined on these elements in Bk. Since there
are more elements in Bk that do not map to zero then there is at least one of these
elements, w, such that fm(pe(w)) = 0; hence pe is not an isomorphism. Now we
add the elements from A to Bm that have not be copied and define ψm(v) = v for
these elements. Note that Bm will still have more elements, but this is ok because
we know these will eventually be enumerated into A.

Every requirement Re,k,m is met at some stage s. The structures Bi are punctual
by construction. Thus, A has infinitely many punctual degrees. �

Lemma 2.3. Suppose A is an infinite structure with only one unary functional
symbol f . If there is some n such that A contains infinitely many loops of size n
but A is not almost equal to an infinite union of loops of size n, then A has infinitely
many punctual degrees.

Proof. Without loss of generality, fix some n > 0. Let p0, p1, . . . be an effective list
of all primitive recursive functions. We build punctual copies B0,B1, . . . of A and
meet the following requirements:

Re,k,m : pe : Bk → Bm is not an isomorphism, k < m.

Then Bk �pr Bm for every k < m, thus there are infinitely many punctual degrees
of A.

At each stage s we work with a finite number of structures B0, . . . ,Bs. Let Bi[s]
be a finite part of Bi constructed by stage s, and Bs[s] = {0}. We also construct
computable isomorphisms ψi : Bi → A. Let ψi[s](0) = 0.

We arrange R-requirements in some effective list. Unless the current stage is 0,
assume that some R-requirement in this list was met at previous stage s − 1. Let
Re,k,m be the next requirement in our list. We use f , fk and fm for the function
symbols in A, Bk and Bm, respectively.

Stage s. Let Bk continue copying A and for every new element v in Bk, define
ψk(v) = v. In Bm, we build a substructure generated by Bm[s−1] as in the previous
lemma.

Stage s + 1. Let Bk continue copying A. In Bm we construct only loops of
size n. We wait for v ∈ Bk such that either there is some 0 < n′ < n such that
fn

′

k (v) = v or fnk (v) 6= v. We will eventually find such a v since A is not almost
equal to an infinite union of loops of size n. Now we wait for pe(v) to converge. If

fn
′

m (pe(v)) 6= pe(v) for all n′ < n and fnm(pe(v)) = pe(v) then we have successfully
diagonalised. If not, then repeat this process. This process will end since while we
look for this v only loops of size n are introduced into Bm.

Each requirement Re,k,m is met at some stage s. The structures Bi are punctual
by construction. Therefore, A has infinitely many punctual degrees. �

Lemma 2.4. Suppose A is an infinite structure with only one unary function sym-
bol f , and A is not almost equal to a union of infinitely many loops of a fixed size,
but almost every element is a part of a loop. Then A has infinitely many punctual
degrees.

Proof. Let p0, p1, . . . be an effective list of all primitive recursive functions. We
build punctual copies B0,B1, . . . of A and meet the following requirements:

Re,k,m : pe : Bk → Bm is not an isomorphism, k < m.
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Then Bk �pr Bm for every k < m, thus there are infinitely many punctual degrees
of A.

At each stage s we work with a finite number of structures B0, . . . ,Bs. Let Bi[s]
be a finite part of Bi constructed by stage s, and Bs[s] = {0}. We also construct
computable isomorphisms ψi : Bi → A. We use f , fk and fm for the function
symbols in A, Bk and Bm, respectively.

For this constructions we also define a sequence 〈mi〉 as follows: m0 = 0, ms+1 =
max{ms, f(a) : a ≤ ms}+ 1. Observe that s 7→ ms is primitive recursive. We may
assume that ms and f(a) have converged by stage s for a ≤ ms.

Consider the strategy for a fixed Re,k,m. We can assume that all elements that
are not part of a loop are already enumerated in Bk and Bm. We call a loop (chain)
x-loop (x-chain) if x belongs to it. Let Bk continue copying A, but in Bm, we only
act at stages of the form s = t2, where t is an integer. Let s0 = t20 be the first
stage we begin considering this requirement. First, in Bm, we build a substructure,
generated by Bm[s0] as described in Lemma 2.1. Let s1 = t21 be the stage when
this process is finished.

Beginning with stage s2 = (t1 +1)2, we build a chain y, fm(y), f2m(y), . . .. While
this is occurring, we do not extend ψm. We continue this process until the stage
s3 = t23 when the first a-loop appears in [0,ms3 ]\ψm(Bm[s1]) for a enumerated in A

between stages s1 and s2. Note that the a-loop has a length bigger than the length
of the y-chain, since we only act for Bm at stages of the form s = t2.

If there is some b-loop in [0,ms3 ] − ψm(Bm[s1]) with length n disjoint from a-
loop, we grow y-loop so that ψm sends its elements to a-chain. Then we copy A in
Bm omitting the b-loop until pe proves to be not an isomorphism. It will happen
no later than when all loops with the length n appear in Bk and pe converges on
all elements of these loops.

If there is no other loop, we do not add elements in Bm at the next stage
s4 = (t3 + 1)2. So Bs4 = Bs3 , the y-chain does not grow and its length ≤ t3.
Consider b = ms3 + 1. By the stage s4 we have either a b-chain with a length > 2t3
which is bigger than the length of y-chain, or a b-loop. In the first case, we omit
the a-loop mapping y-chain to the b-chain. In the second case, we omit the b-loop
and define ψm to send the y-chain to the a-loop.

Notice that we are able to meet each requirement one at a time. We arrange
R-requirements in some effective list. At stage 1 we consider the first requirement
on this list. Then begin the strategy as descibed above. Let s be the stage the
strategy finishes and begin considering the next requirement at stage s+ 1.

Note that for any m, t if Bm[t2] = Bm[(t+1)2], then Bm[(t+1)2] 6= Bm[(t+2)2].
In other words, at two consecutive stages of the form s = t2, we add at least one
element in Bm. Consequently, we always have [0, t/2) ⊂ B[t2]. As t 7→ (2t)2 is
primitive recursive, Bm is primitive recursive too. Therefore, by construction, Bi

are punctual and every requirement Re,k,m is met; hence, A has infinitely many
punctual degrees. �

Lemma 2.5. Suppose A is an infinite structure with only one unary function sym-
bol f . If there are infinitely many x such that there is no y with f(y) = x then A

has infinitely many punctual degrees.

Proof. Let p0, p1, . . . be an effective list of all primitive recursive functions. We
build punctual copies B0,B1, . . . of A and meet the following requirements:

Re,k,m : pe : Bk → Bm is not an isomorphism, k < m.

Then Bk �pr Bm for every k < m, thus there are infinitely many punctual degrees
of A.
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At each stage s we work with a finite number of structures B0, . . . ,Bs. Let
Bi[s] be a finite part of Bi constructed by stage s. We also construct computable
isomorphisms ψi : Bi → A. We use f , fk and fm for the function symbols in A,
Bk and Bm, respectively.

We arrange R-requirements in some effective list. Unless the current stage is 0,
assume that some R-requirement in this list was met at previous stage s − 1. Let
Re,k,m be the next requirement in our list.

Stage s. Let Bk continue copying A. In Bm, copy elements x ∈ A[s] such that
there is y ∈ A[s] with f(y) = x. The elements that do not yet have pre-images
in A[s] will be omitted until we meet the requirement. pe must eventually show
disagreement as there are infinitely many elements in A with no pre-image. Once
we see disagreement, enumerate all omitted elements to Bm and move to the next
stage.

For every element x omitted from Bm we copy f(x) into Bm. Then there is
primitive recursive delay in the enumeration of a new element in Bm; hence Bm is
punctual. �

Theorem 2.6. Suppose A is an infinite structure with only one unary function
symbol f . If A is not punctually categorical then A has infinitely many punctual
degrees.

Proof of Theorem 2.6. By Lemmas 2.1-2.5, we are left with the case that the
following hold for A:

(1) for every x ∈ A there are n < m such that fn(x) = fm(x);
(2) there is no x ∈ A for which there are infinitely many y ∈ A with f(y) = x;
(3) there is no n such that A contains infinitely many loops of size n;
(4) there are infinitely many elements which are not part of a loop;
(5) for almost every x ∈ A there is a y such that f(y) = x.

By (5) there is an infinite backward chain z0, z1, . . . such that f(zi+1) = zi. Now
there is a u such that ∀x(∃n(fn(x) = zu) → ∃y(f(y) = x)). In other words, any
element of the zu-chain has a predecessor.

We build punctual copies Bi
∼= A such that they satisfy the following require-

ments:

Re,k,m : pe : Bk → Bm is not an isomorphism, k < m.

Suppose we consider Re,k,m at stage s. We may assume that z0, z1, . . . , zu are
already enumerated in Bk and Bm. Bk continues copying A. At first, in Bm we
construct a substructure generated by Bm[s] and then we only grow a forward chain
x0, x1, . . . with fm(xi) = xi+1. We look for z ∈ Bk such that pe(z) /∈ Bm[s]. We

wait for pe(z) to be enumerated in Bm and evaluate fnk (z) until fnk (z) = fn
′

k (z)
for some n < n′. We grow the chain x0, x1, . . . so that fnm(pe(z)) is defined. Let
xt be the last element of the chain. Then we pick any element w of zu-chain such
that it does not have a predecessor yet and define f(xt) = w. Note that fnm(pe(z))
will never be an element of any loop. Then, pe is not an isomorphism. Since w
belongs to some zu-chain, then an element isomorphic to w in A belongs to an
infinite backward chain. So, we can keep Bm isomorphic to A. �

2.2. Graphs. Recall that we are working on the proof for Theorem 1.1. As with
the previous section we begin with some technical lemmas for graphs.

Lemma 2.7. Suppose a graph G becomes locally finite after removing finitely many
vertices but not almost anti-clique. Then G has infinitely many punctual degrees.
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Proof. Let ā = (a0, a1, . . . , an) be a tuple consisted of all exceptional nodes and
G′ = G\ā. Each x ∈ G′ has an ā-colour, which is the configuration of the form

(x, a1) ∈ E(G), (x, a2) 6∈ E(G), . . .

that is, the relation induced by the edge relation w.r.t. the fixed finite tuple. There
must be some ā-colour such that infinitely many elements in G have such colour.
Let S be the set of all nodes of this colour. We assume that there are infinitely
many pairs of nodes (x, y) such that there is a path between x and y. Otherwise,
almost every component of G is singleton and G becomes anti-clique after removing
finitely many vertices.

Let p0, p1, . . . be an effective list of all primitive recursive functions. We build
punctual copies B0,B1, . . . of G′ and isomorphisms ψi : G→ Bi. At each stage s we
work with a finite number of structures B0, . . . ,Bs. Let Bi[s] be a finite part of Bi

constructed by stage s and Bs[s] = {ā}. We build Bi so that Bi[s] = ψi[s](G)∪Ui[s],
where Ui[s] = {ui,n, . . . , ui,l}, n ≤ l, is a finite independent set of nodes that have
the same ā-colour as elements from S and for every x ∈ dom(ψi[s]), ψi(x) is not
connected to any element from Ui[s].

Our construction meets the following requirements:

Re,k,m : pe : Bk → Bm is not an isomorphism, k < m;

Qi,n : ui,n ∈ range(ψi)[s] at some stage s.

We arrange R-requirements and Q-requirements in some effective list. Unless the
current stage is 0, assume that some R or Q-requirement was met at previous stage
s− 1.

The strategy for Re,k,m. Let Bk continue copying G, meanwhile, in Bm, freeze
the definition of ψm and add only new independent nodes

um,n, um,n+1, . . .

in Um. Wait for some y, z to appear in Bk such that there is a path b0 = y, b1, . . . ,
bt = z between them and pe(y) = um,n′ , pe(z) = um,l′ for some l′ > n′ ≥ n. It will
eventually happen because there are infinitely many pairs of nodes connected with
a path and G′ is locally finite. Then wait for pe to converge on all bi and every
pe(bi) to appear in Bm. Since pe(bt) = um,l′ is not connected to pe(bt−1), pe cannot
be an isomorphism. Proceed to the next requirement.

The strategy for Qi,n. Let (i, n) be the least such that Qi,n has not been met
yet.

(1) Initiate the enumeration of fresh independent elements into Ui.
(2) Freeze the definition of ψi.
(3) Wait for x ∈ S such that the subgraph generated by dom(ψi) ∪ {x} ∼=

Bi[s]∪{ui,n}. Such an x will appear in G since G′ is locally finite. Declare
that ψi(x) = ui,n and delete ui,n from Ui.

The Qi,n-requirement is met. Proceed to the next requirement.

Claim. Every Bi is punctual.

Proof. At every stage of the construction, beginning with a stage s = i, a new
element enters Bi. Therefore, without loss of generality, we can assume that the
domain of Bi is ω. At stage x + i we decide E(x, y) for all y < x; hence by
construction there is no delay in definitions of Bi, so Bi is punctual. �

Claim. Every Re,k,m is met.

Proof. By the assumption on the isomorphism type of the graph, there are infinitely
many distinct pairs of vertices (x, y), where x 6= y connected with a path. Thus, it
follows from the description of the strategy for Re,k,m that each Re,k,m is met. �
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It is clear by construction that Qi,n is met and every ψi is an isomorphism from G
onto Bi. Therefore all requirements are met; hence G has infinitely many punctual
degrees. �

For the next Lemma, we consider the speed of growth of the size of the set of
vertices connected to each vertex. We call this set the 1-neighbourhood (1-nbhd)
of x, defined as N(x) = {z : (z, x) ∈ E(G)} ∪ {x}.
Lemma 2.8. Suppose G is a punctual graph, and assume that deg(x) =∞ for some
x ∈ G. If N(x) does not grow rapidly (i.e. there is no primitive recursive time-
function f such that |N(x)[s]| < |N(x)[f(s)]| for every stage s of the construction),
then G has infinitely many punctual degrees.

Proof. Without loss of generality we may assume that x = 0. We will build punctual
copies B0,B1, . . . of G such that they meet the following requirements:

Ri,j,k,m : (pi, pj) is not a punctual isomorphism between Bk and Bmk < m

At every stage s, we construct only finitely many structures B0,B1, . . . ,Bs. Let
Bi[s] be a finite part of Bi constructed by stage s, and Bi[s] = ∅ for all i < s,
Bi[s] = {0, . . . , s} for i ≤ s. We also construct computable isomorphisms ψi : G→
Bi. Let ψs[s](0) = 0.

Arrange all requirements in some effective list. We meet requirements one at a
time, so at each stage we have only one requirement Ri,j,k,m that we are currently
working on. When we have met the requirement we will move to the next require-
ment on this list. We have met the requirement once we see that (pi, pj) is not a
punctual isomorphism. Before we move to the next requirement we define ψk and
ψm on any elements we have been keeping out of the structure so far.

We now describe the strategy to meet each requirement. First wait for pi to
converge on 0 and pi(0) to appear in Bm. Let y = ψ−1m (pi(0)). To diagonalise
against Ri,j,k,m we try to keep |ψk(N(0))| 6= |ψm(N(y))|. If |N(0)| = |N(y)|, then
wait for a stage s when a new element z is enumerated into either N(0) or N(y).
If z ∈ N(0) ∩N(y), then keep this point out of the structure Bk.

Let time(e, t) be the primitive recursive function which is equal to the number
of steps which pe takes to converge on {n| n ≤ t}. Now we have the following cases:

Case 1. If |ψk(N(0))| < |ψm(N(y))|. Let s + 1 be the current stage. Initiate
computing pj on all elements from Bm. Meanwhile continue copying G into Bk

and Bm and wait for a stage t when some element v appears in N(0) such that
|N(0)[t]| = |N(y)[s]| (it may be the case that v is already defined at the previous
stage s). Keep v out of the domain of ψk and wait for a stage r when another element
u is enumerated in N(0). The vertices u and v must appear within time(j, s)
steps, otherwise pj is not an isomorphism. Define ψk on v, and also on u if only
|N(0)[r]| 6= |N(y)[r]|; otherwise keep u out of domain ψk. Go to case 1 or 2
depending on whether |ψk(N(0))| < |ψm(N(y))| or |ψk(N(0))| > |ψm(N(y))|.

Case 2. If |ψk(N(0))| > |ψj(N(y))|. Do the same as in case 1 expect switch the
roles of m and k, i and j as well as 0 and y.

Verification. Now we prove that this strategy works. Suppose we do not meet
requirement Ri,j,k,m; then we never move on from this requirement. Let s be the
stage we start considering requirement Ri,j,k,m, and let t ≥ s. We have two cases:

Case 1. |ψk(N(0))[t]| < |ψm(N(y))[t]|. Then by construction N(0) grows within
time(i, t) stages.

Case 2. |ψk(N(0))[t]| > |ψm(N(y))[t]|. Then by constuction we grow |N(y)|,
this process finishes within time(j, t) stages. If N(0) has not grown during this
process then we are now in case 1 and grow N(0) within time(i, time(j, t)) stages.
So in either case N(0) grows within time(i, time(j, t)) stages.
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Then this gives us a primitive recursive bound on the stages where |N(0)| grows.
But this contradicts the assumption that |N(0)| does not grow rapidly. Thus, all
requirements and met and so G has infinitely many punctual degrees. �

Lemma 2.9. Let G be a punctual graph. If N(x) grows rapidly and deg(x) = ∞
for some x ∈ G, but x is not connected to almost every vertex in G. Then G has
infinitely many punctual degrees.

Proof. We can produce a punctual copy H of G via some primitive recursive ψ, such
that H\NH(ψ(x)) grows slowly. Then by the previous lemma to graph-theoretic
complement of H we can build infinitely many punctual copies of G. �

Proposition 2.10. Let G be a punctual graph.

• Suppose G has infinitely many vertices of infinite degree and each of them
has a finite co-degree. Then for each n ∈ ω, there are only finitely many
vertices of degree n;

• Suppose G has infinitely many vertices of finite degree. Then for each n ∈ ω,
there are only finitely many vertices of co-degree n.

Proof. For each n ∈ ω, fix any n + 1 distinct vertices of infinite degree. Since the
co-degree of these vertices are finite, almost every vertex in G is adjacent to all of
them. Then almost every vertex in G has degree at least n+ 1, hence finitely many
vertices have degree n.

The second statement follows from the first one. �

Proposition 2.11 ([DHTK+20]). Let G be a punctual graph. Suppose N(x) grows
rapidly and G has infinitely many vertices of infinite degree and infinitely many
vertices of finite degree. For each v ∈ G, consider the graph (G − v) obtained by
removing the vertex v from G. Then G 6∼= (G− v).

Theorem 2.1. Let G be an undirected infinite punctual graph. If it is not punctu-
ally categorical, then it has infinitely many punctual degrees.

Proof. Let G be a punctual graph. By Lemma 2.8 we only need to work on the
case where the 1-nbhd of x grows rapidly. Similarly, by Lemma 2.7 we may assume
that G has infinitely many vertices of infinite degree and by Lemma 2.9 every such
vertex is connected to almost every vertex in G. It also follows from Lemmas 2.7
and 2.9 thatwe can assume that G has infinitely many vertices of finite degree.
Indeed, suppose there are only finitely many vertices of finite degree. Then the
graph-theoretic complement of G becomes a locally finite graph after removing a
finite number of vertices and we can apply Lemma 2.7. Then Proposition 2.10
holds and for each n ∈ ω, there are only finitely many vertices of degree n and
there are only finitely many vertices of co-degree n. With Proposition 2.11 we can
diagonalise against pe : Bk → Bm by delaying the enumeration of some vertex v
in Bm. By the stage when all vertices of the same degree or of the same co-degree
appear in Bk and pe converges on all such elements and at this stage we will see
a disagreement and we can enumerate v into Bm. This process is punctual and so
we can successfully diagonalise; hence G has infinitely many punctual degrees. �

3. The integers and almost rigid structures

In this section we prove Theorem 1.2
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3.1. The order of the integers.

Theorem 3.1. The punctual degrees of the order (Z, <) are dense.

First we show that the above theorem is meaningful by proving the following
Lemma.

Lemma 3.2. There exist punctual copies A and B of structure (Z, <) such that
A <pr B.

Proof. We build A and B such that there is a primitive recursive isomorphism
ϕ : A → B but there is no primitive recursive isomorphism ψ : B → A. Our
construction meets the following requirements:

Re : pe : B→ A is not an isomorphism.

We meet requirements one at a time; hence we start with requirement R0 and move
to the next requirement once we have met the current one. We now describe the
strategy for each requirement.

The strategy for Re: Let A and B copy (Z, <) as well as add a new large k > 0
into B. We declare that k > x for every x ∈ B[s] as well as every x that is copied
into B while we are still working on this strategy. During this strategy define ϕ on
elements in A in the natural way, noting that B currently has one extra element
and so we will need to recover this later. Let m ∈ B[s], m 6= k. We wait for
pe(k) − pe(m) elements to appear in B between m and k. Once this happens we
have met requirement Re. Before we move to the next requirement we enter a
recovery stage. Let n be the biggest integer less than k introduced in B so far, we
declare that there is no x ∈ B such that n < x < k. Add one more positive element
bigger than all elements enumerated into A so far, call x, and define ϕ(x) = k and
define ϕ to be isomorphic. Proceed to the next requirement.

By construction, A and B are a punctual copies of (Z, <). When a < is defined
for a new element in A we immediately define ϕ on this element; hence ϕ is primitive
recursive. Therefore A <pr B as desired. �

Proof of Theorem 3.1. Let A and B be any punctual copies of (Z, <) such that
A <pr B. To show that punctual degrees of (Z, <) are dense we construct a
punctual copy C of (Z, <) such that there are primitive recursive ϕ : A → C and
ψ : C → B and there are no primitive recursive isomorphisms from C to A and B

to C.
Let p0, p1, . . . be some effective enumeration of all primitive recursive functions.

Since A <pr B there is a primitive recursive isomorphism f : A → B and there is
no primitive recursive isomorphism from B to A.

Our construction meets the following requirements:

Re : pe : B→ C is not an isomorphism;

Qe : pe : C→ A is not an isomorphism.

Construction. We arrange R-requirements and Q-requirements in some effec-
tive list. At the start of each stage, if there is a requirement that requires attention,
attend to the least such requirement, otherwise begin consider the least requirement
on the list that has not yet been considered.

For each element z in a punctual copy of (Z, <) let z+s be the least element so
that z < z+ at stage s. We remove the subscript when it is just the current stage.

The strategy for Re: Let s be the stage that we begin considering requirement
Re. Let C continue copying A. If there is b0 ∈ B[s] such that ψ(pe(b0)) = b0, then
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wait for some b1 to appear in B such that ψ(pe(b1)) 6= b1. Such an element must
appear, otherwise there is some primitive recursive isomorphism from B onto A.
Once b1 appears, it immediately follows that pe is not an isomorphism, Re never
requires attention after this stage.

If we have b0, b1 ∈ B such that ψ(pe(b0)) < b0 and ψ(pe(b1)) > b1 then pe cannot
be an isomorphism, Re never requires attention after this stage.

If neither of the previous cases hold, then without loss of generality we may
assume that for every b ∈ B b < ψ(pe(b)), as in figure 3.1.

Figure 3.1.

Fix some d ∈ B[s] at stage s, recall that stage s is the first stage we begin
considering requirement Re. Wait for a stage t0 ≥ s such that there is b ≥ d such
that pe(b)

+ < pe(b
+), as in figure 3.2. At this stage we declare Re to be temporarily

diagonalised and move on to the next requirement. If there is no stage where pe(b)
+

is in the range of pe then we are done because pe is not surjective and hence not an
isomorphism. In this case we will never return to Re. So consider the case where
there is a stage eventually pe(b)

+ is in the range of pe. At this stage, Re requires
attention.

Figure 3.2.

Suppose it is the ith time we have attended to Re. If it is now the case that we
have b0, b1 ∈ B such that ψ(pe(b0)) < b0 and ψ(pe(b1)) > b1 then clearly pe cannot
be an isomorphism. Otherwise, wait for another stage ti ≥ ti−1 such that there is
another b ≥ d such that pe(b)

+ < pe(b
+), as in figure 3.2.

The strategy for Qe: Use the same strategy as for Re, switching the roles so that
C copies B and we consider pe(ϕ(a)) with a ∈ A instead of ψ(pe(b)) for b ∈ B. We
will fix an element d ∈ C[s] from when we first begin considering Qe and wait for
stages ti ≥ ti−1 where there is c ≥ d such that pe(c)

+ < pe(c
+). At this stage we

declare Qe to be temporarily diagonalised.
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Verification. By construction C is a punctual copy of (Z, <) since we either
copy A or B. By construction it is also the case that ϕ and ψ are primitive recursive
isomorphisms.

Lemma 3.3. If Re (or Qe) requires attention, then either the requirement never
requires attention again or the requirement is eventually declared temporarily diag-
onalised. If we are in the case where we have for all b ∈ B b < ψ(pe(b)), then the
requirement is eventually labelled

Proof. We will consider the case where the requirement is an R-requirement, the
Q-requirement case follows from this.
Re requires attention, so it is the case that b ∈ B b < ψ(pe(b)). If Re is declared

to never require attention again we are done. Now suppose Re is never declared
temporarily diagonalised, then there is no stage t ≥ s such that there is b ≥ d such
that pe(b)

+ < pe(b
+). Then there is n0 ∈ Z+ such that pe(x) = ψ−1(x) + n0 for all

x ≥ d.
Since ∀b ∈ B ψ−1(b) < pe(b), then there is some least z such that pe(z)

+ <
pe(z

+). Then there is some n1 ∈ Z+ such that for every x ≤ z pe(x) = ψ−1(x)+n1.
Now we show that θ(x) = ψ−1(x)+n0n1 is a punctual reduction from B to C. It

is certainly a bijective order preserving map. We have to check that it is punctual.
For all x sufficiently smaller than d, note that

pe(ψpe)
k(x) = ψ−1(x) + (k + 1)n1.

So therefore,
ψ−1(x) + n0n1 = pe(ψpe)

n0−1(x).

If x larger than d, then

ψ−1(x) + n0n1 = pe(ψpe)
n1−1(x).

All other finitely many x in between map non-uniformly. So ψ−1(x) + n0n1 is a
punctual isomorphism from B to C. Contradiction. �

Lemma 3.4. For every requirement, there is a stage where it will never require
attention after this stage.

Proof. Consider an R-requirement Re, it is clear that the proof for Qe follows in
the same way.

Let r be a stage where we attend to Re. Let t < r be the stage we last attended to
Re. Let b and b∗ be the adjacent elements found at stage t such that pe(b)

+ < pe(b
∗).

We are attending to Re again because pe(b)
+ is now in the range of pe. Let b0 = d

then let bi = (bi−1)+t until we get to bn = b and bn+1 = b∗, see figure 3.3.

Figure 3.3.

Now since pe(b)
+ is in the range of pe at stage r, a new element must have been

enumerate into B in between bn and bn+1. Then since A and B are both punctual
copies of (Z, <), eventually this new element will also show up in A and hence must
eventually show up in C since we are always either copying A or B. So eventually
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there is a new element in C between ψ−1(bn) and ψ−1(bn+1) which corresponds to
Re requiring attention at stage r.

Now we show that there must be a new element in C between ψ−1(d) and pe(d)
that corresponds to Re requiring attention at stage r. Suppose not. Let i be
least such that there is a new element c enumerated into C between ψ−1(bi) and
ψ−1(bi+1). By assumption ψ−1(bi) ≥ pe(d) and bi ≤ bn. Since pe(bi) > ψ−1(bi) and
at stage t, ψ−1(bi) and ψ−1(bi+1) were adjacent, then pe(bi) ≥ ψ−1(bi+1). Therefore
c < pe(bi), but then p−1e (c) must be between d and bi. This must be a new element
in B. Then there must eventually be a new element in C so that ψ(c∗) = p−1e (c)
and this lies between ψ−1(d) and ψ−1(bi), contradicting the minimality of i.

Hence we have shown that every time Re requires attention, a new point must
be enumerated between ψ−1(d) and pe(d). Since C is a copy of (Z, <) this will only
happen finitely many times. Therefore, Re requires attention finitely often. �

For every requirement there is a stage where it never requires attention again;
hence for all requirement there is a stage where it is met. Therefore the punctual
degrees of (Z, <) are dense. �

It is not hard to see that the punctual degrees of the structure (Z, <) has no
greatest and no least element. On the other hand PR(N, <) has the least but no
greatest element, while PR(Q, <) has the greatest but no least element. We leave
open the following question:

Question 3.5. Describe the linear orders L such that PR(L) is dense. Describe
the linear orders L such that PR(L) has the greatest (or the least) element.

3.2. Almost rigid structures.

Definition 3.6. Let M be a structure such that there is a computable procedure
that given any presentation A of the structure M and any pair of elements x, y ∈ A it
either returns a computable index of the unique automorphism of this presentation
that maps x into y, or returns −1 if there is no such an automorphism. Then we
say that the structure M is computably almost rigid.

Proposition 3.7. Let M be a computably almost rigid structure with the domain
ω. Then the punctual degrees of M are dense.

Proof. Let A and B be any punctual copies of M such that A <pr B. To show that
punctual degrees of M are dense we construct a punctual copy C of M such that
there are primitive recursive isomorphisms ϕ : A→ C and ψ : C→ B and there are
no primitive recursive isomorphisms from C to A and B to C.

Let p0, p1, . . . be some effective enumeration of all primitive recursive functions.
Since A <pr B, there is a primitive recursive isomorphism from A to B, call f and
there is no primitive recursive isomorphism from B to A.

Our construction aims to meet the following requirements:

Re : pe : B→ C is not isomorphism;

Qe : pe : C→ A is not isomorphism.

While also defining primitive recursive isomorphisms ϕ : A→ C and ψ : C→ B.
To meet Re we find b ∈ B such that either there is no automorphism q that maps

b into ψ(pe(b)), or ψ(pe(b)) = q(b) and there exists b′ such that ψ(pe(b
′)) 6= q(b′)

for the unique automorphism q that maps b into ψ(pe(b)). Indeed, suppose that
ψ : C → B and pe : B → C are isomorphisms. Then ψ(pe) is an automorphism
from B onto B. So in the former case we get a contradiction to ψ(pi) being an
automorphism, and the latter case contradicts to the uniqueness of q. Similarly we
meet Qe by finding c ∈ C such that either there is no automorphism q that maps c
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into ϕ(pi(c)), or ϕ(pi(c)) = q(c) and there exists c′ such that ϕ(pi(c
′)) 6= q(c′) for

the unique automorphism q that maps c into ϕ(pi(c)).

Construction. We arrange R-requirements and Q-requirements in some ef-
fective list. We meet requirements one at a time; hence we begin with the first
requirement on our list and if the current requirement is met at stage s then we
move to the next requirement on our list at the next stage. Apply the strategy of
the current requirement we are working on.

The strategy for Re: For every element b ∈ B[s], compute pe(b). First compute
the unique automorphism that maps b to ψ(pe(b)), if this does not exist then
we are done, proceed to the next requirement. Otherwise let q be the unique
automorphism. Wait for an element b′ ∈ B such that ψ(pe(b

′)) 6= q(b′). Meanwhile
do the following: for every new element a ∈ A[s], compute f(a). If there is c ∈ C[s]
such that ϕ−1(c) is undefined then do the following: if ψ(c)[s] = f(a) for some
a ∈ A[s] then define ϕ(a) = c. Otherwise, take a new element c ∈ C and define
ϕ(a) = c and ψ(c) = f(a). Once pe shows a disagreement, proceed to the next
requirement. In Lemma 3.8 we show that this eventually must happen.

The strategy for Qe: For every element c ∈ C[s], compute pe(c). Compute the
unique automorphism that maps c to ϕ(pe(c)), if this does not exist then we are
done, proceed to the next requirement. Otherwise let q be the unique isomorphism.
Wait for an element c′ ∈ C such that ϕ(pe(c

′)) 6= q(c′). Meanwhile do the following:
If there are b ∈ B[s] such that ψ−1(b) is undefined. Introduce a new element in C

for each of these and map each of these new c onto b. Compute f for every new
element a ∈ A[s]. Define ϕ and ψ so that ϕ(a) = ψ−1(f(a)). Once pe shows a
disagreement, proceed to the next requirement.

Lemma 3.8. For every i ∈ ω the construction meets Re and Qe.

Proof. Suppose that we proceed to the requirement Re at stage s suppose that we
never proceed to the next requirement.

Let b0 = max{b ∈ B[s]} and a0 = max{f−1(b)| b ≤ b0}+ 1. Note that ϕ(x) = x
for all x ≥ a0 because from this stage onwards we are always copying A.

Given b ∈ B we compute pe(b). If pe(b) ≥ ϕ(a0) then output pe(b). Otherwise,
it must be that pe(b) = c for some c ∈ C[s]. Then compute ϕ(a) for all a ∈ A[s],
there must exist an a∗ such that ϕ(a∗) = pe(b). Output a∗.

This function is primitive recursive since there are only finitely many elements in
A[s] and ϕ is primitive recursive so we can compute ϕ(a) for every element in A[s] in
bounded time. There must exists a∗ such that ϕ(a∗) = pe(b) because pe(b) < ϕ(a0),
and since ϕ(x) = x for all x ≥ a0, and ϕ is total at every stage t ≥ s. Then there
is a primitive recursive function from B to A, this contradicts our assumption that
A <pr B. Hence we must eventually proceed to the next requirement.

Suppose that we proceed to the requirement Qe at some stage s and suppose we
never proceed to the next requirement.

Let b0 = max{b ∈ B[s]}. Note that ψ−1(b) = b for all b > b0 because from this
stage onwards we are always copying B.

Now given b ∈ B, if b > b0 then ψ−1(b) = b, so output pe(b). Otherwise, we
search for c such that ψ(c) = b. It must be that ψ(c∗) = b for some c∗ ∈ C[s + 1]
since b ≤ b0. Output pe(c

∗).
This is a primitive recursive isomorphism from B onto A, for similiar reasons as

for the Re case. This contradicts our assumption that A <pr B. Hence we must
eventually proceed to the next requirement.
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We move on from a requirement when we find an element that contradicts the
uniqueness of q. Therefore for every requirement, there is a stage where it is met.

�

Clearly ϕ and ψ are primitive recursive isomorphisms by construction and all
requirements are met; hence the punctual degrees of M are dense. �

4. Boolean algebras and 1-decidability

In this section we prove Theorem 1.3. Before we proceed, recall that 1-decidability
of a Boolean algebra B is equivalent to its computable presentability in the language
of Boolean algebras augmented with the atom relation Atom(x); we cite [Rem81]
for further details. The punctual version of this fact is also true; see [Ala18] where
it is carefully verified.

We begin with a lemma.

Lemma 4.1. If B is a 1-decidable Boolean algebra that is either a 1-atom, atomless
or a finite Boolean algebra, then B is computably isomorphic to a punctually 1-
decidable Boolean algebra.

Proof. We have the following 3 cases.
Case 1: B is a 1-atom. Let P be the Boolean algebra generated by a fish-

bone (the ‘nice’ copy of the 1-atom) with AtomP(0i1) = 1 for all i ∈ N otherwise
AtomP(x) = 0. Now we construct the computable isomorphism as follows. Wait
until there is an element x that is declared to be an atom in B and define ψ(1) = x
and ψ(0) = ¬x. Then wait for a stage such that another element y ∈ B (y 6= x) is
declared to be an atom. Since B is a 1-atom it must be the case that y ∨¬y = ¬x.
Now define ψ(01) = y and ψ(00) = ¬y. Continue this process. Then ψ is a
computable isomorphism between B and P.

Case 2: B is atomless. Let P be the Boolean algebra generated by the full
binary tree (the ‘nice’ copy of the atomless Boolean algebra) with AtomP(x) = 0 for
all x. Along side the comptutation of B compute the tree that generates B. Then
define ψ to be the identity on the full binary tree. This gives us an isomorphism
between the trees that generate B and P; hence a comptuable isomorphism between
B and P.

Case 3: B is a finite Boolean algebra. Let B be the finite Boolean algebra
with exactly n atoms. Then define P to be a finite Boolean algebra with exactly n
atoms. Let a1, ..., an be the atoms of P . Wait for the stage where an element in
B is declared to be an atom, call x. Define ψ(a1) = x and ψ(¬a1) = ¬x. Wait for
another element in B to be declared an atom, call y. Since B is a finite Boolean
algebra it must be the case that y ∨ ¬y = ¬x. Define ψ(a2) = y and ψ(¬a2) = ¬y.
Continue this process. Since B and P both have exactly n atoms, ψ is a computable
isomorphism between B and P. �

Theorem 4.2. If B splits into finitely many C0, ...,Ck such that each Ci is either
atomless, an atom, or a 1-atom then every 1-decidable presentation A of a Boolean
algebra B is computably isomorphic to some punctually 1-decidable Boolean alge-
bra P.

Proof. Let k ∈ N and consider the Boolean algebra A0 ⊕ ... ⊕ Ak where each Ai

is either atomless, an atom, or a 1-atom. Construct a punctually 1-decidable copy
P as a subtree of the full binary tree by constructing the ‘nice’ copy Pi of each Ai

with i ≤ k below 0i1. Copy the nice presentation of Ak below 0k. Then we show
there exists a computable isomorphism between A0⊕ ...⊕Ak and our nice copy P.
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Since each Ai is either atomless, an atom, or a 1-atom. Then by Lemma 4.1
there is a computable isomorphism between Pi and Ai for each i, call ψi. Then
construct ϕ : A→ A0 ⊕ ...⊕Ak by defining ϕ(Pi) = ψi(Pi) for each i.

Now since B splits into finitely many C0, ...,Ck such that each Ci is either atom-
less, an atom, or a 1-atom. Then by following this algorithm for this particular k,
and Ai = Ci for each i, ϕ is a computable isomorphism to a punctually 1-deciable
P. �

Lemma 4.3. If B does not split into finitely many C0, ...,Ck such that each Ci is
either atomless, an atom, or a 1-atom, then there are infinitely many x ∈ B such
that there are y, z ∈ B where y ∨ z = x, y ∧ z = 0 and the following holds:

• there are infinitely many elements below y
• there are infinitely many elements below z
• there is at least one atom below x

Proof. Using the tree-representation of B we consider the following two cases.
Case 1: There are infinitely many 1-atoms. Then there is an infinite path

l with infinitely many 1-atoms along it. Every element x along l has infinitely many
1-atoms below it and hence at least one atom below x. Below each element along l
there is an element x such that there is y, z ∈ B with y∨ z = x, y∧ z = 0 and y is a
1-atom. Then below z there are infinitely many 1-atoms. Therefore such elements
x witness the desired properties and there are infinitely many of these elements.

Case 2: There are finitely many 1-atoms. Then let B̂ be the Boolean

algebra by taking the complement of the join of these 1-atoms. Now B̂ must still

have infinitely many atoms, but B̂ does not have 1-atoms. Then there is a limit
point l of atoms that is not a 1-atom. Then it must be that along this path there
are infinitely many infinite splits where both sides are infinite. Along l there are
infinitely many atoms; hence there is at least one atom below every element along
this path. �

Theorem 4.4. If every 1-decidable presentation A of a Boolean algebra B is com-
putably isomorphic to some punctually 1-deciable P then B splits into finitely many
C0, ...,Ck such that each Ci is either atomless, an atom, or a 1-atom.

Proof of Theorem 4.4. Suppose B does not split into finitely many C0, ...,Ck such
that each Ci is either atomless, an atom, or a 1-atom. We will build a 1-decidable
presentation A of B that is not computably isomorphic to any punctually 1-decidable
P.

Let 〈ϕi〉i∈N be a listing of all partial computable functions. Let 〈Pe, Atome, we〉e∈N
be a listing of all punctual 1-decidable structures along with their primitive recur-
sive atom relation and witness function.

We build A so that A ∼= B, as well as meet the following requirements:

Re,i : ϕi is not an isomorphism between A and Pe.

To show A ∼= B we build an ‘almost’ isomorphism ψ : A→ B. Here an ‘almost’
isomorphism is a relaxation of the definition of isomorphism where we allow finite
joins of elements in A to be mapped to a single element of B.

Construction. At stage s, if there is an e such that Pe[s] does not obey of
the Boolean algebra axioms then we are done with requirements Re,i for all i ∈ N,
declare such requirements inactive. If s is even then we enter an action stage,
otherwise s is an extension stage.



PUNCTUALLY PRESENTED STRUCTURES II: COMPARING PRESENTATIONS 19

Extension stage. For all y ∈ B[s] such that y /∈ range(ψ). Let ŷ > y be
longest such that ŷ ∈ range(ψ). Let x = ψ−1(ŷ) then enumerate xˆ0 and xˆ1 into
A[s + 1] and define ψ(xˆ0) = ŷˆ0 and ψ(xˆ1) = ŷˆ1. Repeat this process until we
have y ∈ range(ψ) for all y ∈ B[s]. For x ∈ A[s + 1] such that Atom(x)[s] ↑, if
AtomB(ψ(x))[s] ↓ then define AtomA(x)[s+ 1] = AtomB(ψ(x))[s].

Action Stage. For x ∈ A[s] we say x looks like an infinite split if AtomA(x)[s] = 0,
xˆ0, xˆ1 ∈ A[s] and there is at least one descendant of x with AtomA[s] undefined.
For x ∈ A[s], call x acceptable if x− looks like an infinite split at stage s (where x−

is the immediate predecessor or x) and there is at least one atom below x in A[s].
Now if x is unacceptable and x is a follower for some active requirement then

cancel it. Let Re,i be least such that it does not have a follower. Let x be the least
acceptable element in A[s] such that there are 〈e, i〉 + 1 many y > x such that y
looks like an infinite split. Define xe,i[s+ 1] = x if such an element exists.

A requirement Re,i requires attention at stage s if ϕi(xe,i)[s] ↓ and Re,i is active.
Let Re,i be the least requirement that requires attention. Halt and move to the next
stage if there is no requirement requiring attention. Now we freeze the construction
of A for Re,i and pause the enumeration of B. Cancel all followers below xe,i[s].
Run the enumeration of Pe[s] until one of the following occurs:

(1) all descendants below ϕi(xe,i)[s] are declared atoms in the enumeration of
Pe.

(2) there are strictly more descendants below ϕi(xe,i)[s] in the enumeration of
Pe than there are below xe,i[s] in A[s].

If there are the same number of descendants of xe,i[s] as there are decendants
of ϕi(x

e,i)[s]: take a descendant y of xe,i[s] such that AtomA(y)[s] ↑ and define
AtomA(y)[s + 1] = 0 and enumerate yˆ0 and yˆ1 into A[s + 1]. Then in all cases
declare all descendants of xe,i[s] to be atoms.

Now define ψ(y)[s+1] = ψ(y)[s] if y∧xe,i[s] = 0. Let z ∈ B[s] be an atom below
ψ−1(xe,i)[s]. Then define ψ(xe,i)[s+ 1] = z and ψ(¬xe,i)[s+ 1] = z ∧ ψ−1(xe,i)[s].
For all other y < ψ−1(xe,i)[s] in B[s] define ψ(y)[s+1] so that ∨,∧,¬ are preserved.
Declare Re,i inactive, unfreeze the construction, halt and move to the next stage.

Verification. Now we show that all requirements are met.

Lemma 4.5. Suppose Pe is a Boolean algebra then for all e, i there is a stage s
where Re,i has a follower.

Proof. Suppose not. Let Re,i be the least such requirement. Then for all stages t
there is no element x such that x is acceptable and has 〈e, i〉 + 1 many elements
above it that looks like an infinite split. But this contradicts Lemma 4.3. �

Lemma 4.6. If Pe is a Boolean algebra then for all e, i there is a stage t such that
xe,i[s] = xe,i[t] for all s > t.

Proof. Suppose not. Then let Re,i be the least such requirement. By the previous
lemma Re,i eventually has a follower, then Re,i must have its follower canceled
infinitely often. A follower x is canceled if and only if it is no longer acceptable
which happens only when x− no longer looks like an infinite split. This means at
least one side has become finite. The new follower for a requirement e, i is appointed
as the least acceptable element with 〈e, i〉 + 1 many elements above it that looks
like an infinite split. So if a follower for Re,i is canceled infinitely often. There is no
path with infinitely many splits that look like an infinite split. But this contradicts
Lemma 4.3 and so for each requirement a follower is canceled only finitely many
times. �
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Lemma 4.7. B ∼= A.

Proof. At extension stages we define ψ(xˆ0) = ψ−1(x)ˆ0 and ψ(xˆ1) = ψ−1(x)ˆ1
ψ is redefined only when a requirement acts to diagonalise. When this happens,
ψ is only redefined below the follower of the requirement that has acted. There
are only finitely many strings of length n and hence only finitely many followers
of length n. Each requirement only diagonalises once. Therefore for each level ψ
eventually stabilises. At extension stages and when we redefine ψ we ensure that
∧,∨,¬, Atom are preserved. Therefore ψ : A → B is an ‘almost’ isomorphism such
that some atoms in B are represented as the join of finitely many atoms in A; hence,
by Remmel-Vaught B ∼= A. �

Lemma 4.8. For all e, i, Re,i is met.

Proof. If Pe is not a Boolean algebra we are done. So suppose Pe is a Boolean
algebra and let t be the stage by Lemma 4.6. Let x = xe,i[t], then if ϕi(x) ↑ we are
done. Suppose ϕi(x) ↓ and let s be the least stage where ϕi,s(x) ↓. By induction,
there is a stage where Re,i is the least active requirement with this property. Then
at this stage we freeze the construction for Re,i. Whenever a construction is frozen,
it will eventually unfreeze as it must be the case that either:

(1) all descendants below ϕi(x)[s] are declared atoms in the enumeration of Pe.
(2) there are strictly more descendants below ϕi(x)[s] in the enumeration of Pe

than there are below x in A[s].

In either case we ensure the number of atoms are below ϕi(x)[s] and x are not equal,
hence ϕi is not an isomorphism between A and Pe. Therefore the requirement Re,i

is met. �

All requirements are met and so we have shown that for any Boolean algebra B

that does not split into finitely many C0, ...,Ck such that each Ci is either atomless,
an atom, or a 1-atom. There is a 1-decidable presentation A of B that is not
computably isomorphic to any punctually 1-decidable P. �
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