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Preface

This dissertation contains results in the area of constructive mathematics with em-
phasis to computable algebra and computable analysis. Mal’cev [66] and Rabin [86]
initiated the study of computable groups, and Turing [96, 95] started the investi-
gation of effective procedures in analysis. The thesis in hand is divided into two
parts.

Part I contains results on computable abelian groups. More specifically, we
introduce a new computably-theoretic concept of limitwise monotonic sequence
and apply this notion to study effectively presentable torsion abelian groups and
other structures. We completely describe higher computable categoricity in the
class of homogeneous completely decomposable groups. For this description we
need new computably-theoretic and algebraic methods. We show that a functor
from the class of countable trees into the class of abelian groups defined in [50] is
injective on a certain subclass of trees. This fact has recently found an application
in computable group theory [35]. We also study α jump degrees of torsion-free
abelian groups, and show that for every computable α there exist a torsion-free
abelian group having a proper α jump degree.

Part II is devoted to the study of computable separable metric and Banach
spaces, with a strong influence of certain ideas from computable model theory
and algorithmic randomness. We consider computable metric spaces associated
to Banach spaces and show that every separable Hilbert space possesses a unique
computable structure, up to a computable isometry, and C[0, 1] and l1 possess
more than one. We study computable metric spaces which are not associated to
Banach spaces and show that Cantor space and the Urysohn space have a unique
computable structure, up to a computable isometry, and also describe computable
subspaces of Rn having a unique computable structure. Finally, we generalize the
concept of K-triviality [80] to an arbitrary computable metric space, and show that
two possible adequate generalizations of K-triviality actually coincide.
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mathematical taste and self-sacrificing research style have always been impressive
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Chapter 1

Introduction

Computable (constructive) mathematics was born quite early in the XX’th century,
and its birth pre-dates the formal clarification of what is a computable process.
For instance, Brouwer [13], [14] used intuitively effective procedures; Max Dehn in
1911 [22] studied word, conjugacy and isomorphisms of finitely presented groups
using intuitive algorithms. Modern computable mathematics goes back to 1930s to
the fundamental papers of Turing [96, 95], and the Russian school of constructive
mathematics founded by Markov in the late 1940s (see, e.g., Kusner [62]) who
explicitly used computability theory.

This dissertation is devoted to the study of effective procedures in infinitely
generated groups and separable metric spaces. These results belong to effective
algebra and computable analysis, respectively. Both fields are branches of com-
putable mathematics and have many similarities. Nonetheless, they have been
developing quite independently in the recent years and have certain distinctions.
As a consequence, the thesis is divided in two independent parts.

The first part of the thesis is devoted to infinitely generated computably presented
abelian groups. By computable groups, we mean groups where the domain is
computable and the algebraic operation is computable upon that domain. A group
is computably presented if it has a computable isomorphic copy. The study of
computably presentable groups was initiated by Rabin [86] and, independently,
Mal’cev [67] in the early 1960’s. Such studies can be generalized to other algebraic
structures, a tradition going back to Grete Herrmann [44], van der Waerden [99],
and explicitly using computability theory, Rabin [86], Mal’cev [66] and Frölich
and Shepherdson [38]. The fundamental works of Mal’cev and Rabin mentioned
above gave rise to computable model theory which studies effective procedures in
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abstract algebraic structures [33, 3].
The second part of the thesis studies computable separable metric and Banach

spaces. A separable metric space is computable if it contains a dense computable
sequence of points. A computable normed space is defined similarly. The spaces are
usually assumed to be complete. The study of effective procedures in uncountable
spaces goes back to Turing [96, 95]. These studies can be generalized to topological
spaces [101]. Methods of modern computable analysis have various applications in
algorithmic randomness [80, 26, 81]. There are certain interactions of computable
analysis and theory of numberings [101]. Standard references for computable
analysis are [101] and [85].
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1.1 Overview of Part I: Computable abelian groups

As its name suggests, computable abelian group theory combines methods of com-
putability theory and commutative algebra. The systematic study of computable
abelian groups was initiated by Mal’cev [67]. The standard references for com-
putable abelian group theory are [58, 23].

We assume that the reader is familiar with basic notions of computability the-
ory [92]. Further notions will either be given when needed, or can be found
in [92, 33, 3].

1.1.1 Computable algebraic structures.

The definition below is central to the first part of the thesis.

Definition (Mal’cev, Rabin). An infinite countable algebraic structure (e.g., a group)
is computable if its universe can be identified with the natural numbers so that the
functions and relations become uniformly computable. This numbering of the
universe is called a computable copy of the structure.

For instance, a group is computable if its domain and the operation are both
computable. Computable copies are also called computable presentations or con-
structivizations [33, 3].

Computable algebraic structures are the main objects of study in computable
algebra. Nonetheless, non-computable structures appear naturally in many cases.
For instance, every finitely presented algebra is computably enumerable. Such
algebras are also called Σ0

1-algebras, see e.g. [33, 60]. It is well-known that there
exist finitely presented algebras with undecidable word problem, whence non-
computable. For a group-theoretical description of computably enumerable groups
see the famous work of Higman [45]; see also Feiner [34] for an application of
computably enumerable Boolean algebras in degree theory. Another example
of non-computable but (in some sense) effective structures are finitely generated
subgroups of computable permutations of the natural numbers. Such a group
may not be computable in general, yet it is Π0

1 or co-c.e., because if two elements
are unequal we will eventually see it. These Σ0

1 and Π0
1 structures share several

common properties with computable ones (see, e.g., [60]).
The natural examples discussed above motivate the study of structures com-

putable relative to an oracle. A countably infinite algebraic structure A is d-
computable if its universe can be identified with the natural numbers ω in such a
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way that the operations become (uniformly) d-computable. For instance, one may
speak of structures computable in the halting problem, natural examples being Σ0

1
and Π0

1 structures.
Classically algebraic structures are considered up to isomorphisms. It is rather

natural to consider computable structures up to computable isomorphisms:

Definition (Mal’cev, Rabin). Two computable structures are autoequivalent if they
are isomorphic via a computable isomorphism. A computable structure is said
to be computably categorical or autostable if every two computable copies of this
structure have a computable isomorphism between them.

The terms “autoequivalent” and “autostable” are mostly used by Russian-
speaking mathematicians [33], while most of English-speacking authors use the
terms “computably isomorphic” and “computably categorical” [3]. If a structure is
not computably categorical, it is natural to ask the question of how close to being
computably categorical the structure is. For instance, a linear ordering of order
type N is not computably categorical since there is the canonical example where
the successor relation is computable, and another where the successor relation is
not. But if we are given an oracle for the successor relation, then the structure
is computably categorical relative to that. The halting problem would be enough
to decide whether y is the successor of x in such an ordering. This motivates the
following definition.

We say that a structureA is ∆0
n-categorical if every two computable presentations

of A have an isomorphism between them which is computable with oracle ∅(n−1),
where ∅(n−1) is the (n-1)-th iteration of the halting problem.

1.1.2 The Two Problems

Most of the results included in the first part of the thesis are related to Problem A
and Problem B below, restricted to the class of infinite abelian groups.

Problem A. Given an infinite countable structure (e.g., a group or a field), determine
if this structure has a computable copy. More generally, describe all Turing degrees
d such that the structure has an d-computable copy.

There is no hope of finding a general necessary and sufficient condition for
countable structures to be computably presentable. For instance, there is a graph
having an d-computable copy for every non-computable d, which yet has no com-
putable copy [100, 89]. Thus, probably the strongest condition one can think of
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fails for structures in general. Furthermore, even for certain sufficiently broad
classes of algebraic structures such as Boolean algebras and abelian groups there is
a little hope to obtain a satisfactory solution to this problem. In context of infinitely
generated abelian groups, it is not even known which reduced abelian p-groups
can be computably presented. Khisamiev [58] obtained a satisfactory solution in
the special case of p-groups of small Ulm length. However, the case of arbitrary
(constructive) Ulm length has remained undiscovered for over 20 years, and the
problem seems to be difficult. We refer to [3] for a more detailed discussion and
more partial results concerning Problem A.

The second problem addressed in the first part of the thesis is:

Problem B. Given two computable structures, determine if there is a computable
homomorphism (embedding, isomorphism etc.) between the structures. Describe
computably and ∆0

n-computably categorical structures (for positive n ∈ ω or n a
non-empty constructive ordinal).

In contrast to Problem A, a lot more is known about computably categorical
structures. For instance, there are characterizations of computably categorical
algebraic structures in the classes of Boolean algebras [42], [64], linear orders [87],
torsion-free abelian groups [41], [83], abelian p-groups [33], and other structures [3].
There are notions similar to computable categoricity such as relative computable
categoricity [3]. Although computable categoricity has been central to computable
algebra for over 50 years, there is still a lot to be understood. For instance, not
much is known about computably categorical fields [77]. Also, it is not known if
the index set of computably categorical structures is Π1

1-hard [102]. For more recent
results on computably categorical countable structures see [25].

Once computably categorical structures in a given class are characterized, it is
natural to ask which members of this class are ∆0

2-categorical. Here the situation
usually becomes more complex. There are only few results in this area, most of
them are partial. For instance, McCoy [68] characterizes ∆0

2-categorical linear orders
and Boolean algebras under some extra effectiveness conditions. Also it is known
that in general ∆0

n+1-categoricity does not imply ∆0
n-categoricity in the classes of

linear orders [4], Boolean algebras [3], abelian p-groups [7], and ordered abelian
groups [72].

Problems A and B in general suggest to view computable (d-computable) struc-
tures of a certain language as a category in which computable (d-computable)
isomorphisms are morphisms. This idea has recently developed to the study of
computable functors between classes of computable structures (see, e.g., [59]). We
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emphasize that Problems A and B are not the only important themes of computable
model theory and, more generally, effective mathematics. For other problems such
as spectra of relations or computable dimension see [33], [3].

6



Part I is organized so that the algebraic content of the results increases from
chapter to chapter. It is assumed that the reader has a sufficient background in
computability theory [92] and knows basics of computable model theory [3]. We,
however, except that the reader may not have a sufficient background in abelian
groups. Thus, we give some classical definitions of the theory which will be
used without expect reference in the text. After we give the basics, we review the
upcoming chapters, stating results formally and providing more background along
the way.

1.1.3 Basics of abelian group theory

Following the tradition of abelian group theory, we use + to denote the group
operation [39, 40]. Recall that if we replace a filed by a commutative ring in the
definition of a vector space, we obtain the definition of a module over this ring. An
abelian group H can be viewed as a Z-module, as follows. We write kh to denote
h + h + . . . + h︸           ︷︷           ︸

k times

, and we write (−k)h to denote −(h + h + . . . + h︸           ︷︷           ︸
k times

), where k is a positive

integer and h ∈ H. We also set 0h = 0, for every h ∈ H. Basics of module theory can
be found in [63].

An abelian group H is torsion-free if kh , 0 for every nonzero h ∈ H and every
positive integer k. An abelian group is torsion if for every h ∈ H there exists a
positive integer k such that kh = 0. There are abelian groups which are neither
torsion nor torsion-free. For h and element of an abelian group, if there exists k
such that kh = 0, then the least k with this property is called the order of h. For a
prime p, an abelian torsion group is a p-group if every element of it has order pk for
some k. We usually restrict ourselves to torsion-free or p-groups, but there will be
one theorem about torsion groups which are not p-groups.

In algebraic lemmas we may view abelian groups as modules. We will fre-
quently use the notion of linear independence over Z taken from module theory:

Definition. Elements g0, . . . , gn of a torsion-free abelian group G are linearly inde-
pendent if, for all c0, . . . , cn ∈ Z, the equality c0g0 + c1g1 + . . . + cngn = 0 implies that
c0 = c1 = . . . = cn = 0. An infinite set is linearly independent if every finite subset of
this set is linearly independent. A maximal linearly independent set is a basis. All
bases of G have the same cardinality. This cardinality is called the rank of G.

We write A 5 B to denote that A is a subgroup of B. It is not hard to see that a
torsion-free abelian group A has rank 1 if and only if A 5 〈Q,+〉.
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Definition. An abelian group G is the direct sum of groups Ai, i ∈ I, written
G =

⊕
i∈I Ai, if G can be presented as follows:

1. The domain consists of infinite sequences (a0, a1, a2, . . . , ai, . . .), each ai ∈ Ai,
such that the set {i : ai , 0} is finite.

2. The operation + is defined component-wise.

The groups Ai are the direct summands or direct components of G (with respect
to the given decomposition). Note that there may be lots of different ways to
decompose the given subgroup. One can check that G �

⊕
i∈I Ai, where Ai 5 G,

if and only if (1) G =
∑

i∈I Ai, i.e. {Ai : i ∈ I} generates G, and (2) for all j we have
A j ∩

∑
i∈I,i, j Ai = {0}.

This thesis studies effective content of algebraic structures, abelian groups in
particular, therefore we have to agree on the signature (formal syntactical lan-
guage). We will see that for our purposes we do not need to use the more
complicated two-sorted signature of modules (see, e.g., Proposition 3.2.2). By
convention, our signature contains only +. Thus, − and the module multiplica-
tion kh should be understood as abbreviations. For example, x − y = z stands for
(∀h)[(h + y = 0) → x + h = z]. Furthermore, if + is represented by a computable
function, then both − and kh can be computed effectively and uniformly.

We will use one more abbreviation. For k a positive integer and g ∈ G, we write
k|g in G (or simply k|g if it is clear from the context which group is considered) and
say that k divides g in G if there exists an element h ∈ G for which kh = g, and we
say that h is a k-root of g. Note that k|g is simply an abbreviation for the formula
(∃h)(h + h + . . . + h︸           ︷︷           ︸

k times

= g) in the signature of abelian groups. If for every k , 0 and

every x ∈ G, we have k|x, then the group is called divisible. It is well-known that
every abelian group G can be embedded into a divisible group. The least subgroup
of the divisible group containing G is uniquely determined up to an isomorphism,
and is called the divisible hull or the divisive closure of G. There is no standard
notation for the divisible closure of G, some authors use D(G).

If the group G is torsion-free then every g ∈ G has at most one k-root, for every
k , 0. Assume there were two distinct k-roots, h1 and h2, of an element g. Then
k(h1 − h2) = 0 would imply h1 = h2, a contradiction.
Definition. Let G be a torsion-free abelian group. A subgroup A of G is called pure
if for every a ∈ A and every n, n|a in G implies n|a in A. For any subset X of G we
denote by [X] the least pure subgroup of G that contains X.

8



For instance, every direct summand of a given group G is pure in G, while the
converse is not necessarily the case. Also, every pure subgroup of a divisible group
is divisible itself.

1.1.4 Summary of Chapter 2: Limitwise monotonic sequences

In this chapter we introduce and study a purely computably-theoretic concept
of uniform limitwise monotonicity for sequences of sets. Then we apply the
computably-theoretic results to investigate degree spectra (to be defined) of certain
algebraic structures including abelian groups.

A set S is limitwise monotonic relative to a given degree a if there is an a-
computable function g : ω × ω → ω such that (1) maxs g(x, s) exists, for every
x, and (2) S = rng (λx[maxs g(x, s)]). The second condition can equivalently be
replaced by (2′) g is total, g(x, s) ≤ g(x, s + 1) for all x, s ∈ ω, and lims g(x, s) exists.
We say that the function f (x) = maxs g(x, s) is limitwise monotonic.

Khisamiev was the first to introduce the notions of computable monotonic
approximation and the notions of s-function and s1-function [58]. As we have
already mentioned, Khisamiev used computable monotonic approximations of Σ0

2
sets to study computable abelian p-groups of small Ulm length [58]. He also
showed that there is a ∆0

2 set which is not limitwise monotonic (Proposition 3.8
of [58]). Independently, Khoussainov, Nies and Shore in [59] introduced limitwise
monotonic functions in the study of computable models of ℵ1-categorical theories.
See [21, 43, 54, 15, 49, 19, 29] and [46] for further applications, and [47, 55] for certain
generalizations of this notion.

We introduce the following notion:

Definition. An ordered sequence of setsS = {Sn}n∈ω is uniformly limitwise monotonic
(relative to a, in a) if there is a computable (a-computable) function g such that

• maxx g(n, y, x) exists for every n, y ∈ ω, and

• Sn = rng (λy[maxx g(n, y, x)]), for every n ∈ ω.

We say that g is a uniform limitwise monotonic (relative to a, in a) approximation of S.

This is clearly a generalization of the concept of limitwise monotonic sets. It
follows that a set A is limitwise monotonic if and only if the sequence {Sn}n∈ω, where
Sn = A for all n, is uniformly limitwise monotonic. We study uniformly limitwise
monotonic sequences from the computably-theoretic point of view, and then apply
these results to computable model theory. We prove:
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Theorem 2.2.1. There is a sequence of infinite sets which is uniformly limitwise
monotonic relative to every hyperimmune degree (in particular, relative to every
nonzero ∆0

2-degree), but is not uniformly limitwise monotonic.

The proof of the next theorem uses the ideas of the proof of the theorem above.
However, we note that in the theorem above we are able to handle uncountably
many (hyperimmune) degrees while in the theorem below, in the case of a single
set, we are able to deal with only countably many degrees.

Theorem 2.3.1. There is a Σ0
2 set S such that S is limitwise monotonic in every

nonzero ∆0
2-degree, but is not limitwise monotonic.

A natural question arises if the theorems above can be extended to all non-zero
degrees. This question is answered in the next theorem:

Theorem 2.4.1. If a sequence of sets {Sn}n∈ω is uniformly limitwise monotonic in
all degrees except perhaps countably many, then {Sn}n∈ω is uniformly limitwise
monotonic.

We apply the above theorems to investigate degree spectra of structures. If
an algebraic structure is not computable, then it is natural to ask how close to
computable the structure is. This property is reflective in the collection of all Turing
degrees relative to which a given structure possesses a computable presentation.
More formally, the degree spectrum ofA is

DegSp(A) := {d : A is d-computable}.

We apply our computably-theoretic results to abelian groups and obtain the
following result:

Theorem 2.5.1.

1. There is a torsion abelian group G such that (a) G has no computable copy,
and (b) G has an a-computable copy, for every hyperimmune degree a.

2. There is an abelian p-group A such that DegSp(A) contains a ∆0
2 degree a if

and only if a > 0.

In the first part of this theorem, the group G is of the form G =
⊕

p∈X

(⊕
n∈Sp

Zpn

)
,

where X is a set of prime numbers and Sp ⊆ ω for each p ∈ X. In the second part,
the group A is a p-group and is of the form

⊕
n∈S Zpn , where S ⊆ ω \ {0}. The result

resembles a similar fact for linear orders [76] , but the proof is quite different.
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It is natural to ask whether the theorem above can be strengthened for groups of
the form G =

⊕
p∈X(

⊕
n∈Sp

Zpn). For instance, one would like to know if there exists
a group G of such form such that the group has an x-computable copy if and only if
x > 0 (or if and only if x is not lown for some n). We apply our computably-theoretic
result to show that such groups do not exist:

Theorem 2.5.2. For any group G of the form G =
⊕

p∈X

(⊕
n∈Sp

Zpn

)
, where X is a

set of prime numbers and Sp ⊆ ω \ {0} for each p ∈ X, we have the following: If the
group G has an x-computable copy for every degree x, except perhaps countably
many, then G has a computable copy.

Then we illustrate similar applications of the computably-theoretic results to
equivalence structures and ℵ1-categorical theories.

This chapter is based on the paper [56].

1.1.5 Summary of Chapter 3: Completely decomposable groups

In this chapter we give a higher level classification of effective categoricity for a
certain basic class of torsion-free abelian groups. Recall that an abelian group is
torsion-free if every nonzero element of this group is of infinite order.

Question. Which computably presentable torsion-free abelian groups are ∆0
n-categorical,

for n ≥ 2?
As with the classical theory of torsion-free abelian groups, general questions

about isomorphism classes are often rather difficult. The main difficulty is the
absence of satisfactory invariants for computable torsion-free abelian groups which
would characterize these groups up to isomorphism [32].

There are better understood subclasses of the torsion-free abelian groups such
as the rank one groups, the additive subgroups of the rationals. As we remind
the reader in the next section, these groups have a nice structure theory via Baer’s
theory of types (Baer [5]). This theory can be extended to groups that are of the form
⊕iHi where each Hi has rank 1, a class called the completely decomposable groups. As
is well-known, Baer’s theory extends to this class so we would have some hope of
understanding the computable algebra in this setting.

We restrict ourselves to a natural subclass, the homogeneous completely decom-
posable groups which are countable direct powers of a subgroup of the rationals.
More formally, we consider the groups of the form

⊕
i∈ω H, where H is an addi-

tive subgroup of (Q,+). These groups in the classical setting were first studied by
Baer [5]. The class of homogeneous completely decomposable groups of rank ω
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is certainly the simplest and most well-understood class of torsion-free abelian
groups of infinite rank. Note that, from the computability-theoretic point of view,
this is the simplest possible non-trivial case we may consider: every torsion-free
abelian group of finite rank is computably categorical. As we will see, even in this
classically simplest case the complete answer to the problem does not seem to be
straightforward. To understand the effective categoricity of these groups, we will
need both new uses of computability theory in the study of torsion-free abelian
groups, and some new algebraic structure theory.

More specifically, we introduce a new purely algebraic notion of S-independence,
where S is a set of primes. This is a generalization of the well-known notion of
p-independence for a single prime p. In the theory of primary abelian groups,
p-independence plays an important role. See Chapter VI of [39] for the theory
of p-independent sets and p-basic subgroups. We establish several technical facts
about S-independent subsets of homogeneous completely decomposable groups.
These facts are of independent interest from the purely algebraic point of view. For
instance, our results essentially show that S-independence and free modules over
a localization of Z play a similar role in the theory of completely decomposable
groups as p-independence and p-basic subgroups do in the theory of primary
abelian groups. The notion of S-independence seems to be an adequate replacement
of linear independence in the case of free modules over a localization of Z.

We apply the algebraic techniques developed for S-independent sets to establish
an upper bound on the complexity of isomorphisms.

Theorem 3.4.1. Every homogeneous completely decomposable group is ∆0
3 - cate-

gorical.

This result is sharp: there exist homogeneous completely decomposable groups
which are not ∆0

2-categorical so that we cannot replace ∆0
3 by ∆0

2. Also, a homoge-
neous completely decomposable group of rank ω is never computably categorical
(folklore). It is natural to ask for a necessary and sufficient condition for a homo-
geneous completely decomposable group to be ∆0

2-categorical. Remarkably, there
is a natural condition on the group classifying exactly when this happens.

We characterize the case where a computable completely decomposable homo-
geneous group is ∆0

2-categorical via a combination of an algebraic (the group must
be of the form

⊕
i∈ω Q(P), where Q(P) = 〈{1/pn : p ∈ P,n ∈ ω}〉) and a mild effec-

tiveness consideration (the complement of the corresponding set P is semi-low).
That is, P must resemble a computable set in the sense that it has a weak guessing
procedure for membership, called semi-lowness.
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We say that a set S is semi-low if the set HS = {e : We ∩ S , ∅} is computable
in the halting problem. As the name suggests (for co-c.e. sets) this is weaker than
being low (meaning that A′ ≡T ∅

′, since every low c.e. set is one with a semi-low
complement, but not conversely, see Soare [91, 92]). Semi-low sets are connected
with the ability to give a fastest enumeration of a computably enumerable set as
discovered by Soare [91]. In that paper, Soare showed that if a is a c.e. degree which
is nonlow, then it contains a c.e. set whose complement is not semi-low. Semi-low
sets also appear naturally when one studies automorphisms of the lattice E of
computably enumerable sets under set-theoretical inclusion. Soare (see, e.g., [92],
Theorem 1.1 on page 375) showed that if a c.e. set S has a semi-low complement, then
the lattice of all c.e. sets is isomorphic to the principal filter L(S) of c.e. supersets
of S. Furthermore, if a c.e. set S has a semi-low complement, then L(A)/F is
effectively isomorphic to E/F , where F stands for the ideal of finite sets. We
mention that a c.e. degree is low if and only if it contains a semi-low1.5 co-c.e. set [28].
It is rather interesting that semi-lowness appears in the characterization of ∆0

2-
categorical abelian groups:

Theorem 3.5.1. A computable homogeneous completely decomposable group A
of rank ω is ∆0

2 - categorical if and only if A is isomorphic to
⊕

i∈ω Q(P), where P is
a c.e. set of primes such that {p : p prime and p < P} is semi-low.

In particular, if P is c.e. and low, then GP is ∆0
2 categorical. As far as we know, this

is the first application of semi-low sets in effective algebra. Also, the proof of the
theorem above is of some technical interest as it splits into several cases depending
on the manner by which the type of the group A is enumerated. The flavour of this
proof is that of the “limitwise monotonic” proofs in the literature but is a lot more
subtle. The method has a number of new ideas which would seem to have other
applications.

The chapter also contains further results on bases of certain homogeneous com-
pletely decomposable groups viewed as free modules over a localization of integers.
This chapter is based on the paper [31].

1.1.6 Summary of Chapter 4: An effective transfromation

There are many known functors between classes of structures, used in different
ways. For instance, Mal’cev [65] considered a functor taking rings to their Heisen-
berg groups. He showed that there is a copy of the input ring, defined with
parameters, in the output group. Mal’cev used this idea to obtain, from the ring
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of integers, a group whose elementary first order theory is hereditarily undecid-
able. In computable algebra functors are often called effective transformations to
emphasize their constructive nature [48].

In this chapter we study a transformation of trees into torsion-free abelian
groups which proved to be useful in effective algebra. One uses infinite divis-
ibility to distinguish certain elements of a torsion-free abelian group from other
elements. Fuchs [39] used infinite divisibility to construct indecomposable torsion-
free abelian groups of large cardinalities. See [39] for more examples of this kind
in pure abelian group theory. See also [82] for the study of infinite divisibility and
indecomposability of automatic abelian groups.

Hjorth [50] used infinite divisibility to study torsion-free abelian groups from
the descriptive set theory point of view. He showed that the isomorphism problem
for torsion-free abelian groups is not Borel (see [50] for definitions).

Downey and Montalbán [32] applied the ideas of Hjorth and defined an effective
transformation of trees to torsion-free abelian groups, as follows. Following Fuchs
[39], we denote by p−∞n g the collection of generators {p−k

n g : k ∈ ω}. Let (pn), (qk) be
two disjoint computable sequences of distinct primes. Suppose a tree T = (V,E)
with distinguished root r is given. The group G(T) is the subgroup of

⊕
v∈V Qv

generated by p−∞n v for v ∈ V of height n, and q−∞n (v + w) where (v,w) is an edge,
v is of height n-1 and w is of height n. Clearly, isomorphic trees give rise to
isomorphic groups. It was not clear if the coding preserves the isomorphism type
in general (in this case it would be said to be injective). Nonetheless, Downey
and Montalbán [32] used this coding to show that the isomorphism problem for
computable torsion-free abelian groups is Σ1

1-complete. We show:

Theorem 4.3.1. The transformation form [32] is injective for the special class of
rank-homogeneous trees (to be defined).

Although the class of rank-homogeneous trees is rather specific, Fokina, Fried-
man, Harizanov et al. [35] recently applied this fact to show that the isomorphism
relation on computable torsion-free abelian groups is tc-complete among Σ1

1 equiv-
alence relations (see [35] for definitions). We will not discuss this application in the
chapter.

The proof of the theorem above is purely algebraic. We conclude the chapter by
a proposition which states that in general the transformation is not injective and,
therefore, the statement of the theorem can not be extended to the class of all trees.

The chapter is based on the paper [36]. The non-injectivity proposition was
published in [73].
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1.1.7 Summary of Chapter 5: Jump degrees of torsion-free abelian
groups

Recall that the degree spectrum of an algebraic strucutreA is

DegSp(A) := {d : A is d-computable}.

The degree spectrum may have no least element (for example, see [88]). As a
result, there has been a line of study into the jump degrees of structures. IfA is a
countable structure, α is a computable ordinal, and a ≥ 0(α) is a degree, thenA has
αth jump degree a if the set

{d(α) : d ∈ DegSp(A)}

has a as its least element. In this case, the structureA is said to have αth jump degree.
A structureA has proper αth jump degree a ifA has αth jump degree a but not βth

jump degree for any β < α. In this case, the structure A is said to have proper αth

jump degree.
For a computable ordinal α, it is well-known that an arbitrary structure may

not have αth jump degree (for example, see [30]). The existence or nonexistence of
a structure with proper αth jump degree a for a ≥ 0(α) depends heavily on the class
of algebraic structures considered. Within the context of linear orders, if an order
type has a degree, it must be 0; if an order type has first jump degree, it must be 0′;
and yet for each computable ordinal α ≥ 2 and degree a ≥ 0(α), there is a linear
order having proper αth jump degree a (see [30], culminating results in [2], [52], [61]
and [88]). Within the context of Boolean algebras, if a Boolean algebra has nth jump
degree (for any n ∈ ω), it must be 0(n); yet for each a ≥ 0(ω), there is a Boolean algebra
with proper ωth jump degree a (see [53]).

The subject of this chapter is the existence of jump degrees of torsion-free abelian
groups. For α ∈ {0, 1, 2}, it is known that every possible proper αth jump degree is
realized.

Theorem (Downey [23]; Downey and Jockusch [23]). For every degree a ≥ 0, there is
a (rank one) torsion-free abelian group having degree a. For every degree b ≥ 0′, there is a
(rank one) torsion-free abelian group having proper first jump degree b.

Indeed, every finite rank torsion-free abelian group has first jump degree as a
consequence of a computability-theoretic result of Coles, Downey, and Slaman [20].
In contrast, not every infinite rank torsion-free abelian group has first jump degree
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as a consequence of the following theorem. Recall that a nonzero degree a is low if
a′ = 0′ and nonlow otherwise.

Theorem (Melnikov [71]). There is a torsion-free abelian groupG such that DegSp(G) =

{a : a is nonlow}. Consequently, there is a torsion-free abelian group with proper second
jump degree 0′′.

The proof of the theorem above will not be included in the chapter and can be
found in [71]. Results of Ash, Jockusch, and Knight (see [2]) and two observations
of Melnikov (see Theorem 3 and Proposition 10 of [71]) have implications about
proper second jump degrees and proper third jump degrees.

Theorem (Melnikov [71]). For every degree a > 0′′, there is a torsion-free abelian group
having proper second jump degree a. For every degree b > 0′′′, there is a torsion-free
abelian group having proper third jump degree b.

In this chapter we generalize this result to an arbitrary computable ordinal α.

Theorem 5.0.1. For every computable ordinal α and degree a > 0(α), there is a
torsion-free abelian group having proper αth jump degree a.

Fixing α, we prove this theorem by coding sets S ⊆ ω into groups GαS in such a
way that GαS is X-computable if and only if S ∈ Σ0

α(X). The coding method is based
on techniques in Fuchs (see Section XIII, Chapter 88 and Chapter 89, of [40]). In
particular, given torsion-free abelian groupsA andB of a certain type and elements
a ∈ A and b ∈ B, Fuchs adds elements of the form p−n(a + b) for n ∈ ω to A ⊕ B
to build an indecomposable group containing A ⊕ B. This method can be also
viewed as a generalization of the methods discussed in the previous section (the
latter really being a simplification of the former).

The chapter is based on the paper [1].
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1.2 Overview of Part II: Computable metric spaces

Computable analysis combines methods of recursion theory and classical analy-
sis [12, 85]. In contrast to computable algebra, a computable metric or normed
space generally contains non-computable points. Another difference is that many
effective procedures in analysis output an effectively fast converging sequence,
while a procedures in effective algebra typically gives a single element at once.
For instance, a computable isomorphism (embedding, homomorphism, etc.) in
algebra is a computable function, and a computable isomorphism (homeomor-
phism, isometry, quisi-isometry, embedding, etc.) in analysis is usually a Turing
functional.

1.2.1 Basics of computable metric space theory

Given a classical result from analysis, one may ask for its effective versions. For
instance, one may prove the effective analogue of the classical Weierstrass theorem
for computable functions [85] or study derivatives of computable differentiable
functions (see Myhill [78], Pour-El and Richards [84] and Nies [81]). However,
results may depend on the initial definition of a computable function (see, e.g., the
recent paper [10]). To develop a meaningful theory we have to choose a definition
to work with. We choose an approach which is common for separable metric spaces
and, more specifically, for separable Banach spaces [12]:

Definition. Let (M, d) be a complete separable metric space, and let (qi)i∈ω be a
dense sequence without repetitions. The triple M = (M, d, (qi)i∈ω) is a computable
metric space if d(qi, qk) is a computable real uniformly in i, k. We say that (qi)i∈ω is a
computable structure on M.

We refer to the elements of the sequence (qi)i∈ω as the special points. A Cauchy
name for a point x is a sequence (q f (s))s∈ω of special points converging to x such that
d(q f (s), q f (t)) ≤ 2−s for each t > s. An element x ofM is computable if there exists a
computable function f such that (q f (s))s∈ω is a Cauchy name for x. An X-computable
space is defined similarly. It is well-known that a point x fromM = (M, d, (qi)i∈ω) is
computable if, and only if, from a positive rational δ one can compute p such that
d(x, qp) ≤ δ. To emphasize which computable structure on M is considered, we say
that x is computable with respect to (qi)i∈ω (written w.r.t. (qi)i∈ω). We usually identify
a special point αi with its number i and say “find a special point such that . . .” in
place of “find a number i such that αi . . .”.

17



Example. The following metric spaces possess computable strucutres:

(i) The unit interval [0, 1] with the usual distance metric.

(ii) Cantor space {0, 1}ω, consisting of the functions f : ω→ {0, 1}with the distance
function d( f , g) = max{2−n : f (n) , g(n)}, (where max ∅ = 0).

(iii) The space C[0, 1] of the continuous functions on the unit interval with the
pointwise supremum metric.

Definition. Let M and N be computable metric spaces. A map F : M → N is
computable if there is a Turing functional Φ such that, for each x in the domain of F
and for every Cauchy name χ for x, the functional Φ enumerates a Cauchy name
for F(x) using χ as an oracle1.

To emphasize which computable structures we consider, we say that a map F
is computable with respect to (αi)i∈ω and (βi)i∈ω (written w.r.t. (αi)i∈ω and (βi)i∈ω). The
composition of two computable maps is computable.

In the special case of isometric (more generally, bi-Lipschitz) maps, Defini-
tion 6.1.1 is equivalent to saying that for every special point αi inM the point F(αi)
is computable uniformly in i. We will use this observation without explicit reference
to it.

Problems A and B discussed in the overview of Part I have natural analogs for
computable metric spaces. For instance, one may raise the question of existence
or uniqueness of computable structures on a given space. This leads to the no-
tions of equivalent structures [12] and isometric structures [85]. Also, in contrast
to computable algebra, a computable space may well contain a non-computable
point. As a result, one may study non-computable points which are close to being
computable [74], or ask how close they are to being computable [75]. See [101] for
more on computable analysis.

1That is, (Φχ(n))n∈ω is a Cauchy name for F(x).
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Part II is organized so that it should better be read in order. For instance,
definitions and certain facts from Chapter 6 will be used in Chapter 7, and Chapter 8
has an application of results contained in Chapter 7.

1.2.2 Summary of Chapter 6: Computably isometric Banach spaces

In this chapter we study computable isometries between computable metric spaces
associated to Banach spaces.

Recall that a computable structure on a separable metric space is defined via a
computable dense substructure of it, a typical example being the space of the reals
with the computable subspace of the rationals. Clearly, a metric space may have
more than one computable structure. For example, on the space of continuous
functions C[0, 1], the collection of piecewise linear functions with rational break-
points is a computable structure, and so is the collection of all polynomials with
rational coefficients. These structures are different, but given a Cauchy name of a
function f in one structure, one can uniformly pass to a Cauchy name for f in an-
other structure, and vice versa. This leads to the notion of equivalent computable
structures which has been intensively studied [12, 85].

Pour-El and Richards [85] were probably the first to observe that in many natural
settings the notion of equivalent structures seems too restricted. For instance,
consider the reals R with the usual computable structure given by an effective
listing of rationals (qi)i∈ω . Let γ be a non-computable real. The collection (qi+γ)i∈ω is a
computable structure onRnot equivalent to (qi)i∈ω . However, the structures (qi+γ)i∈ω

and (qi)i∈ω may be represented by the same algorithm computing the distances
between the special points. Also, there is an isometry x → x + γ which preserves
computability of points in an algorithmically uniform way. Classically metric
spaces are often considered up to surjective isometries. This example suggests to
consider computable structures up to computable surjective isometries. Computable
structures (αi)i∈ω and (βi)i∈ω on a complete separable metric space (M, d) are equivalent
up to computable isometry, or computably isometric, if there exists a surjective self-
isometry φ of M and an effectively uniform algorithm which on input i outputs a
Cauchy name forφ(αi) in (βi)i∈ω . Similar notions have already appeared in literature
in a different terminology (Pour-El and Richards [85] for Banach spaces, recently
and independently Iljazovic̀ [51] for metric spaces).

We may think of the collection of all computable structures as of a category
in which computable isometries are the morphisms. The following definition is
central to the chapter:
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Definition. A metric space (M, d) is computably categorical if every two computable
structures on M are computably isometric.
It is natural to ask:

Question. Which classical metric spaces are computably categorical?

Computable categoricity of countable algebraic structures typically depends on
the signature of a given structure. This basic idea turns to be useful in the study
of uncountable metric spaces associated to Banach spaces. For instance, if a metric
spaceM is associated to a Banach space, than we may ask if the addition operation
is computable with respect to every computable structure on M. We will show
that if the answer is “no”, then (under certain extra conditions) it impliesM is not
computably categorical. If the answer is “yes”, then it is interesting on its own
right. Also, in the case of Hilbert spaces, the positive answer implies computable
categoricity (to be shown in Theorem 6.3.2).

Using this basic idea and the classical theorem of Mazur and Ulam, we prove
several technical facts about computably categorical Banach spaces. As a conse-
quence of these facts and a result form [85], the space l1 = {(ci)i∈ω :

∑
i |ci| < ∞} with

the metric induced by the l1-norm is not computably categorical.
We prove that for every computable structure on a Hilbert space H, if 0 is

computable point then the vector space operations are computable as well. Together with
the results from [85], it implies:

Theorem 6.3.2. Every separable Hilbert space is computably categorical as a metric
space.

In contrast to Hilbert spaces, we prove that the space C[0, 1] of continuous
functions on the unit interval has a computable structure with respect to which the
operation x→ (1/2)x is not computable. As we will show, this implies:
Theorem 6.4.2. The space C[0, 1] with the pointwise supremum metric is not
computably categorical as a metric space.

The chapter is based on the paper [70].

1.2.3 Summary of Chapter 7: Computably categorical metric spaces

This chapter continues the study of computably categorical spaces. In this chapter
we mainly consider metric spaces which are not necessarily associated to Banach
spaces.

One uses an effective version of the usual back-and-forth technique to show that
the countable dense linear order is computably categorical as a countable algebraic
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structure (folklore, see also [24]). In the case of uncountable metric spaces the
situation is generally more complex. Nonetheless, using a variant of the back-and-
forth technique we prove:

Theorem 7.1.1. Cantor space {0, 1}ω with the metric max{2−n : f (n) , g(n)} is
computably categorical.

Cantor space with the (ultra)metric max{2−n : f (n) , g(n)} is the central to the
modern theory of computably random reals [80], [26].

The Urysohn space [97] is the Fraisse limit of finite metric spaces. It is the unique
ultrahomogeneous universal separable space [57]. It is known that Urysohn space
is homeomorphic to a Hilbert space (Uspenskij [98]). Remarkably, the original
construction of Urysohn [97] was effective. As a consequence, the Urysohn space
is computable. We show:

Theorem 7.2.1. The Urysohn space is computably categorical.

It is unknown if one can define the Urysohn space “explicitly” without using
variations of the Fraisse construction or a random process. Our theorem essentially
shows that the original effective construction due to Urysohn is the unique way one
can effectively define the Urysohn space.

We characterize computably categorical subsets of Rn, where n ∈ ω. We intro-
duce the notion of an intrinsically computable base which is essentially a linearly
independent set computable in every computable structure, up to an isometry. We
show:

Theorem 7.3.1. A computable metric space isometric to a subset ofRn is computably
categorical if, and only if, it contains an intrinsically computable base.

This theorem resembles results on countable Boolean algebras, linear orders and
other countable structures mentioned in the previous subsections. We also give an
alternative characterization of computably categorical subspaces ofRn which does
not implicitly involve the geometry ofRn. This leads to a sufficient condition for an
arbitrary space to be computably categorical. The methods developed for Rn and
its subspaces have an application interesting on its own right. More specifically,
one can show that every two computable strucutres on the unit interval (and on
many other rigid subspaces of Rn) are equivalent. As a consequence of this fact
and results from the next chapter, the usual notion of K-triviality is invariant under
the change of computable structure on the unit interval.

The chapter is based on the paper [70].
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1.2.4 Summary of Chapter 8: K-triviality in metric spaces

Chaitin [18] and Solovay [94] were the first to study K-trivial infinite sequences of
bits. In the last decade this notion has turned out to be of key importance for the
interactions of computability and randomness.

Let K(x) denote the prefix-free Kolmogorov complexity of a binary string x. This
is a variant of the usual plain Kolmogorov complexity C(x) based on a universal
machine such that no string in the domain can be an initial segment of another.

We identify infinite sequences of bits with subsets of ω. A set A ⊆ ω is Martin-
Löf random iff ∀n [K(A�n) ≥ n −O(1)], namely, the complexity in the sense of K of
its initial segments A �n is close to maximal. By definition, a K-trivial set A is far
from random: the complexity of its initial segments is minimal up to a constant,
namely

K(A�n) ≤ K(n) + O(1), (1.1)

where the number n is identified with the string given by its binary expansion.
The notion of C-triviality is defined in an analogous way. Chaitin [18] showed that
each C-trivial set is computable, and that each K-trivial set is ∆0

2. Solovay built a
K-trivial set that is incomputable [94]. A much simpler construction of such a set
that it also computably enumerable (c.e.) was given in [27]. The coincidence of the
K-trivial sets with several other classes was shown in [79]. For instance, a set A ⊆ ω
is called low for K if K(y) ≤ KA(y) + O(1) for each string y. Nies and Hirschfeldt
(see [79]) proved that K-triviality is equivalent to lowness for K. These and other
results show that the K-trivial sets are very close to being computable.

We are interested in extending the notion of K-triviality to settings more general
than subsets ofω. Recall that a computable strucutre on a metric space is a sequence
(αp)p∈ω of points dense in the space for which the distances between points are
uniformly computable. We say that a point x ∈ M is K-trivial if for each positive
rational δ there is p ∈ ω such that

d(x, αp) ≤ δ and K(〈p, δ〉) ≤ K(δ) + O(1). (1.2)

(Here we fix some effective encoding of the positive rationals by natural numbers,
and hence binary strings; by K(δ) we mean the complexity of the string encoding
δ.) Note that the pair (〈p, δ〉) determines an elementary closed ball {y : d(y, p) ≤ δ}.
The intuition is that for each δ, the point x is contained in such a ball that is highly
compressible as measured by δ and p. We give fourfold evidence that this is the
right generalization of K-triviality to a computable metric spaceM.
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This class of points coincides with the one defined above in the case of Cantor
space. For the unit interval, our definition of a K-trivial point yields the class of
points with a K-trivial binary expansion. This establishes that the class is actually
independent of the choice of base 2. Barmpalias et al. [8] introduced a notion
of K-triviality for compact subsets of Cantor space. We show that their notion
coincides with ours for the metric space of compact sets with Hausdorff distance.
We show in Theorem 8.4.1 that every computable complete metric space without
isolated points contains a dense set of K-trivial incomputable points. We show that
K-triviality of a point is invariant under the change of computable structure to an
equivalent one. As a consequence of the results of the previous chapter, it implies
that K-triviality on the unit interval [0, 1] is independent of the standard definition
of a computable real.

We also discuss other possible definitions of K-triviality in metric spaces. At
first sight one may think that our definition should be replaced by

d(x, αp) ≤ δ and K(p) ≤ K(δ) + O(1). (1.3)

However, this is not the right generalization of K-triviality for various reasons, as we
will see. For instance, this weaker definition does not imply the usual K-triviality in
Cantor space. On the other hand, each K-trivial set A satisfies our initial condition
in Cantor space: for each n let pn be the number so that αpn = A ∩ {0, . . . ,n − 1}.
But K-triviality in Cantor space seems to be much stronger: since we can compute
the tuple (p0, . . . , pn−1) from A�n, we have in fact K(p0, . . . , pn−1) ≤ K(n) + O(1). This
condition says that the point has a K-trivial Cauchy name: we say that a Cauchy
name for a point x is a sequence (ps)s∈ω of special points converging to x such that
d(ps, pt) ≤ 2−s for each t > s (the notion of K-triviality has a natural generalization
to functions from ω to ω, as we will discuss in detail).

It may seem that our initial “local condition” , which talks about each n sepa-
rately, is inadequate, because it relies on the particular structure of Cantor space.
In this case there would be no reasonable way to extend this notion to the general
setting of a computable metric space. However, this is not the case, as we show:

Theorem 8.3.1. Every K-trivial point in a computable metric space has a K-trivial
Cauchy name.

The theorem above shows that in fact for each K-trivial point we can find a sequence
(pn)n∈ω in such that K(p0, . . . , pn−1) ≤ K(n) + O(1).

The chapter is based on the paper [74].
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Part I

Computable abelian groups
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Chapter 2

Limitwise monotonic sequences

In this chapter we study uniformly limitwise monotonic sequences of sets, and then
apply our computably-theoretic results to abelian groups, and other structures.

2.1 Preliminaries

Recall the following definition:

Definition 2.1.1. An ordered sequence of sets S = {Sn}n∈ω is uniformly limitwise
monotonic (relative to a, in a) if there is a computable (a-computable) function g such that

• maxx g(n, y, x) exists for every n, y ∈ ω, and

• Sn = rng (λy[maxx g(n, y, x)]), for every n ∈ ω.

We say that g is a uniform limitwise monotonic (relative to a, in a) approximation of S.

Here we prove two properties of sequences of sets. The first property states
that uniformly limitwise monotonic sequences of infinite sets possess injective
enumerations. This is a uniform statement of the result of Harris [43] for limitwise
monotonic sets. The second property gives a necessary and sufficient condition for
a uniformly Σ0

2–sequence of sets to be uniformly limitwise monotonic.

Proposition 2.1.1. (Harris [43]) SupposeS = {Sn}n∈ω is a uniformly limitwise mono-
tonic sequence of infinite sets. Then there is a limitwise monotonic approximation
g(n, y, x) of S such that λy[maxx g(n, y, x)] is injective for every n ∈ ω.

The following proof is a uniform version of the proof for the case of a single set
(see [43] or [29]).

27



Proof. Let f (n, y, x) be a uniform limitwise monotonic approximation forS. Without
loss of generality we can assume that λx[ f (n, y, x)] is non-decreasing for every
n, y ∈ ω.

First we set g(n, y, x) = 0 if x ≤ y. To define g(n, y, x) for x > y, suppose that
for every y′ < y and x′ < x the values of g(n, y′, x) and g(n, y, x′) have already been
defined. Choose 〈y0, x0〉 least such that x0 > x, f (n, y0, x0) ≥ maxx′<x g(n, y, x′) and
f (n, y0, x0) < {g(n, y′, x) | y′ < y}. Set g(n, y, x) = f (n, y0, x0).

It is not hard to check that λy[maxx g(n, y, x)] is total and injective. It is
also evident that rng (λy[maxx g(n, y, x)]) ⊆ Sn, for every n ∈ ω. To see that
Sn ⊆ rng (λy[maxx g(n, y, x)]), we use an inductive argument. The definition of
g may be viewed as a construction, where at each stage we compute the value
of g for exactly one new pair of arguments, and the value of f for a new pair
of arguments as well. We denote our current guess about maxx g(n, y, x) at stage
s by [maxx g(n, y, x)]s, and similarly for f . Suppose there are y and n such that
maxx f (n, y, x) < rng (λy[maxx g(n, y, x)]), and y is least with this property.

Then there should be a stage s such that for every stage t ≥ s and every y′ < y,
[maxx f (n, y′, x)]s = [maxx f (n, y′, x)]t ∈ rng (λy[maxx g(n, y, x)]). We may further
assume that s satisfies [maxx f (n, y, x)]s = maxx f (n, y, x). By the definition of g,
there should be a stage t0 ≥ s and an argument y0 such that [maxx′<x g(n, y0, x′)]t0 =

maxx f (n, y, x), since we always start with g(n, y, x) = 0 for x ≤ y. If there is no
stage t1 ≥ t0 and y1 < y0 such that [maxx g(n, y1, x)]t1 = [maxx g(n, y0, x)]t0 then
maxx g(n, y0, x) = maxx f (n, y, x). Therefore there should exist y1 and a stage t1 such
that [maxx g(n, y1, x)]t1 = [maxx g(n, y0, x)]t0 . We can use the same argument to find
y2 and t2 which play the same role for y1 and t1 as the latter arguments do for y
and t. Since y = y0 > y1 > . . . we will find the least yi in this sequence. But then
maxx g(n, yi, x) = maxx f (n, y, x), contrary to the hypothesis. �

We will need the following lemma that gives a necessary and sufficient condition
for a Σ0

2–set to be limitwise monotonic.

Lemma 2.1.1. (Folklore; see, e.g., [29]). An infinite Σ0
2–set is limitwise monotonic if

and only if it contains an infinite limitwise monotonic subset.

Proof. Let S be a Σ0
2–set and U ⊂ S be limitwise monotonic and infinite. Since S is a

Σ0
2–set, there exists a computable function h such that for every z ∈ ω we have

z ∈ S ⇐⇒ Wh(z) is finite.
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Let f (y, s) be a limitwise monotonic approximation of U. We shall define g so that
g is a limitwise monotonic approximation of S.

Fix a computable list {(zk, yk, sk)}k∈ω of all triples with the property that f (yk, sk) ≥
zk for all k ∈ ω. Define

g(k, s) =

 zk if Wh(zk),s ⊆Wh(zk),sk ,

f (yk, s) otherwise.

We claim that g is a limitwise monotonic approximation of S. Indeed, first note
that for all k, s ∈ ω, we have g(k, s) ≤ g(k, s + 1). It is also easy to see that maxs g(k, s)
exists for all k ∈ ω, as maxs g(k, s) ≤ maxs f (k, s).

Assume that z ∈ S. Since U is an infinite set, there exists a k such that f (yk, sk) ≥ zk

where z = zk and Wh(zk) = Wh(zk),sk . Thus, for all s we have Wh(zk),s ⊆Wh(zk),sk . Therefore
lims g(k, s) = zk = z. Now assume that z < S. Then the set Wh(z) must be infinite.
Let k, s be such that g(k, s) = z. There is an s′ > s such that Wh(zk),s′ * Wh(zk),sk . Then
g(k, s′) = f (yk, s′) for all s′ > s. We conclude that z , lims g(k, s) for all k ∈ ω. �

We will need a uniform version of the lemma above. For a set A ⊆ ω, we define
sup A = max A if A is finite, and sup A = ∞ otherwise.

Proposition 2.1.2. Suppose S = {Sn}n∈ω is uniformly Σ0
2. Assume that there is

a uniformly limitwise monotonic sequence U = {Un}n∈ω such that Un ⊆ Sn and
sup Un = sup Sn ∈ ω ∪ {∞}, for every n ∈ ω. Then S is uniformly limitwise
monotonic.

Proof. We carry out the proof of the lemma above uniformly in n. There is a
computable function h such that for all z,n ∈ ω we have

z ∈ Sn ⇐⇒ Wh(n,z) is finite.

Let f (n, y, s) be a uniform limitwise monotonic approximation for the sequence
U = {Un}n∈ω.

For each n ∈ ω, let {(zn
k , y

n
k , s

n
k )}k∈ω be a uniformly computable listing of all triples

such that f (n, yn
k , s

n
k ) ≥ zn

k . Define

g(n, k, s) =

 zn
k if Wh(n,zn

k ),s ⊆Wh(n,zn
k ),sn

k
,

f (n, yn
k , s) otherwise.
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Taking into account that sup Un = sup Sn, one proves, as in the lemma above, that
λn, k[maxs g(n, k, s)] is total and Sn = rng (λk[maxs g(n, k, s)]) for n ∈ ω. �

2.2 Relative to every hyperimmune degree.

In this section we prove:

Theorem 2.2.1. There is a sequence of infinite sets which is uniformly limitwise monotonic
relative to every hyperimmune degree (in particular, relative to every nonzero ∆0

2-degree),
but is not uniformly limitwise monotonic.

Proof. In order to prove Theorem 2.2.1 we need to build a sequence S = {Sn}n∈ω of
infinite sets such that S satisfies the following conditions:

(a) S is not uniformly limitwise monotonic, and

(b) S is uniformly limitwise monotonic relative to every hyperimmune degree.

The definition of the family S is simply a diagonalization construction. We
define the n-th set Sn as follows:

Sn =

 ω − {maxx ϕn(x)} if maxx ϕn(x) exists,

ω otherwise.

We do not assume that ϕn is total; we simply say that maxx ϕn(x) is defined if
{y : ϕn(x) ↓= y} not empty and, furthermore, has a maximal element. We assume
for a contradiction that the sequence S is uniformly limitwise monotonic.

Then there exists a computable function g such that (1) for all n, y ∈ ω the
value maxx g(n, y, x) exists, and (2) Sn = rng (λy[maxx g(n, y, x)]) for all n ∈ ω.
Let f be a computable function such that ϕ f (n) = λx[g(n, 0, x)] for every n. Then
an = maxx ϕ f (n)(x) exists and so an < S f (n). On the other hand, we have an =

maxx g(n, 0, x) ∈ Sn for every n. Hence, ϕ f (n) , ϕn for every n ∈ ω. We have a
contradiction with the Recursion Theorem. Thus, S is not uniformly limitwise
monotonic.

Now we show that S is uniformly limitwise monotonic relative to every hyper-
immune degree x. Fix a function r ≤T x such that no computable function dominates
r. We define an x-computable function g as follows. First, set g(n, 〈m,u〉, 0) = m for
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all n, m and u. Supposing g(n, 〈m,u〉, s) has been defined with value k, we set

g(n, 〈m,u〉, s + 1) =

 k + 1 if u < s and maxx<t ϕn,t(x) = k,

k otherwise,

where t = max{r(k), s}. Fixing n and m, one can see that m , maxx ϕn(x) if and only
if maxs g(n, 〈m,u〉, s) = m for some u. Furthermore, if k = maxs g(n, 〈m,u〉, s) exists,
then k , maxx ϕn(x).

Now assume that sups g(n, 〈m,u〉, s) = ∞ for some n, m and u. It must be the case
that supx ϕn(x) = ∞. For each k ∈ ω, define h(k) to be the least integer such that

k < maxx<h(k) ϕn,h(k)(x).

By our hypothesis, the computable function h fails to dominate r. Therefore there
must be an integer k > m such that h(k) < r(k). But the definition of g ensures that
maxs g(n, 〈m,u〉, s) ≤ k, contrary to our assumption. Indeed, suppose g(n, 〈m,u〉, s) =

k, for some s. We show that g(n, 〈m,u〉, s + 1) = k. Let t = max{r(k), s}. We
have t > h(k) and maxx<t ϕn,t(x) ≥ maxx<h(k) ϕn,h(k)(x) > k. By the definition of g,
g(n, 〈m,u〉, s + 1) = k. This is a contradiction. Thus, maxs g(n, y, s) exists for every
n, y ∈ ω, and Sn = rng (λy[maxs g(n, y, s)]) for all n ∈ ω. �

2.3 Relative to every non-recursive ∆0
2 degree

The main result of this section is:

Theorem 2.3.1. There is a Σ0
2 set S such that S is limitwise monotonic in every nonzero

∆0
2-degree, but is not limitwise monotonic.

Preliminary remarks. The proof is similar to the proof of the previous theorem. The
difference is that now we work within columns of a single set, not within different
sets in a sequence, and our strategies will interact. In the situation of a single set,
we need a finite injury argument combined with the permitting strategy described
in detail in the previous paragraph. We give a formal proof below.

Proof. Recall that we have to build an infinite Σ0
2 set S which is not limitwise

monotonic, but is limitwise monotonic in every nonzero ∆0
2 degree. It is well-

known that every nonzero ∆0
2 degree is hyperimmune.
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Let {ψn}n∈ω be a computable listing of all partial ∅′-computable functions. To
be more specific, we define the n’th partial ∆0

2 function to be limk ϕn(x, k), where
ϕn is the n’th partial computable function of two arguments. Thus, the limit and
even ϕn(x, k) for some or all (n, k) may be undefined. The listing, however, cover
all total ∆0

2 functions, by Limit Lemma. We need to build a set S ∈ Σ0
2 that satisfies

the following requirements:

Ni : λy[maxx ϕi(y, x)] is total and injective =⇒ S , rng (λy[maxx ϕi(y, x)]);

Rn : ψn is total and ψn is not computably dominated =⇒ S is limitwise
monotonic relative to ψn.

Note that by Proposition 2.1.1, the requirements Ni guarantee that S is not limit-
wise monotonic. To satisfy Rn we define a (trace) function λm, s[gn(m, s)] with the
following properties:

1. The function λm, s[gn(m, s)] is total and computable in ψn if ψn is total.
2. For each n and m, the value of gn(m, s) is equal to 〈n,m, k〉, for some k.
3. The function λm[maxs gn(m, s)] is injective on its domain, and satisfies the

following sub-requirements for all m ∈ ω:

Rn,m : ψn is total and ψn is not computably dominated =⇒ maxs gn(m, s)
exists, and maxs gn(m, s) ∈ S.

Note that, by Proposition 2.1.2, if the requirements Rn,m are met for every m,
then the requirement Rn is met. We order the requirements effectively in such a
way that Ni is of a higher priority than Rn,m if i ≤ 〈n,m〉.

The strategy for Ni is to keep maxx ϕi( j, x) for at least one j outside S, where
j ≤ i. All these values are restrained for the Rn,m-requirements of lower priority.
The strategy can be injured by at most i many traces maxs gn(m, s) ∈ S that are of
higher priority than Ni (that is, 〈m,n〉 < i). Thus, Ni wins by keeping maxx ϕi( j, x)
outside of S for some j ≤ i.

The strategy for each Rn,m is to define functions gn(m, s) which we call “traces”,
for s ∈ ω, avoiding the numbers restrained by Ni-requirements of higher priorities.
The definition will be similar to the one we had in the proof of Theorem 2.2.1.
We need to keep in S the value of maxs gn(m, s). Here we have to be more careful
because it may happen thatψn is not total. In this case the naive definition of S (e.g.,
as the collection of final traces for all n and m) can cause S < Σ0

2. To circumvent this
problem we give a more accurate definition of S (see below).

For each n ∈ ω, define a partial function gn by induction as follows. Set gn(m, 0) =
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〈n,m, 0〉 and

gn(m, s + 1) =



〈n,m, k+1〉 if gn(m, s) ↓= 〈n,m, k〉, ψn(k) ↓, and

〈n,m, k〉 ∈ {maxx<t ϕi,t( j, x) | j ≤ i ≤ 〈n,m〉},

where t = max{ψn(k), s},

〈n,m, k〉 if gn(m, s) ↓= 〈n,m, k〉, ψn(k) ↓, and

〈n,m, k〉 < {maxx<t ϕi,t( j, x) | j ≤ i ≤ 〈n,m〉},

where t = max{ψn(k), s},

↑ otherwise.

By its definition, {gn}n∈ω is a uniformly computable sequence of partial∅′-computable
functions. Now set

S = {〈n,m, k〉 | (∃s)[gn(m, s) = 〈n,m, k〉 &
(∀u ≥ s)(∀i ≤ 〈n,m〉)(∀ j ≤ i)[〈n,m, k〉 , maxx<u ϕi,u( j, x)]]}.

By its definition, S is Σ0
2. Furthermore, if 〈n,m, k〉 ∈ S then 〈n,m, k〉 = maxs gn(m, s).

Indeed, let 〈n,m, k〉 ∈ S. Then gn(m, s) = 〈n,m, k〉 and

(∀u ≥ s)(∀i ≤ 〈n,m〉)(∀ j ≤ i)[〈n,m, k〉 , maxx<u ϕi,u( j, x)],

for some s. It follows that gn(m,u) = 〈n,m, k〉 or gn(m,u) ↑, for all u ≥ s. Thus, for
every n,m there exists at most one k such that 〈n,m, k〉 ∈ S.

First, we show that S is limitwise monotonic relative to every A ∈ ∆0
2 − ∆0

1.
Fixing A ∈ ∆0

2 − ∆0
1, since A is hyperimmune, there is an n ∈ ω such that ψn is total,

ψn ≤T A, and ψn is not dominated by any computable function. Thus, gn is a total
function, and gn ≤T A.

We claim that if maxs gn(m, s) = 〈n,m, k〉 then 〈n,m, k〉 ∈ S. Fix an s > ψn(k) such
that gn(m,u) = 〈n,m, k〉 for all u ≥ s. Then we have

(∀u ≥ s)(∀i ≤ 〈n,m〉)(∀ j ≤ i)[〈n,m, k〉 , maxx<u ϕi,u( j, x)].

Therefore, 〈n,m, k〉 ∈ S.

For the sake of contradiction, suppose sups gn(m, s) = ∞ for some m ∈ ω. Then
the finite set I = {〈i, j〉 | j ≤ i ≤ 〈n,m〉 & supx ϕi( j, x) = ∞} is not empty. Choose an
integer s0 ∈ ω such that

if j ≤ i ≤ 〈n,m〉 and 〈i, j〉 < I then maxx ϕi( j, x) < s0.
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For every k ∈ ω, define h(k) to be the least integer such that

〈n,m, k〉 < min
〈i, j〉∈I

max
x<h(k)

ϕi,h(k)( j, x).

By the choice of n, there must be an integer k > s0 such that h(k) < ψn(k).

The definition of gn ensures that maxs gn(m, s) ≤ 〈n,m, k〉, contrary to our
assumption. Indeed, assume gn(m, s) = 〈n,m, k〉 for some s. We show that
gn(m, s + 1) = 〈n,m, k〉.

Let t = max{ψn(k), s}. Note that t ≥ ψn(k) > h(k). If j ≤ i ≤ 〈n,m〉 and 〈i, j〉 ∈ I
then

maxx<t ϕi,t( j, x) ≥ maxx<h(k) ϕi,h(k)( j, x) > 〈n,m, k〉.

If j ≤ i ≤ 〈n,m〉 and 〈i, j〉 < I, then

〈n,m, k〉 ≥ k > s0 > maxx ϕi( j, x) ≥ maxx<t ϕi,t( j, x).

Thus, whether 〈i, j〉 ∈ I or 〈i, j〉 < I,

〈n,m, k〉 < {maxx<t ϕi,t( j, x) | j ≤ i ≤ 〈n,m〉}.

By the definition of gn, we have gn(m, s + 1) = 〈n,m, k〉.

Thus, maxs gn(m, s) exists for every m ∈ ω, λm[maxs gn(m, s)] is injective, and
rng (λm[maxs gn(m, s)]) ⊆ S. By Lemma 2.1.1, the infinite set S is limitwise mono-
tonic in A.

We prove that S is not limitwise monotonic. Suppose S is limitwise monotonic.
Then, by Proposition 2.1.1, there is an i ∈ ω such that

S = rng (λ j[maxx ϕi( j, x)]),

where λ j[maxx ϕi( j, x)] is total and injective. Hence, the finite set

{maxx ϕi( j, x) | j ≤ i} ⊆ S

has cardinality i + 1. Observe that for every n and m there exists at most one k
such that 〈n,m, k〉 ∈ S. Therefore, there are integers n, m, k and j ≤ i such that
i ≤ 〈n,m〉 and maxx ϕi( j, x) = 〈n,m, k〉 ∈ S . But by the definition of S we have
〈n,m, k〉 , maxx ϕi( j, x), for j ≤ i ≤ 〈n,m〉. Thus, S is not limitwise monotonic. �
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2.4 Relative to every degree except perhaps countably
many

We prove:

Theorem 2.4.1. If a sequence of sets {Sn}n∈ω is uniformly limitwise monotonic in all degrees
except perhaps countably many, then {Sn}n∈ω is uniformly limitwise monotonic.

Recall that a tree T ⊆ 2<ω is splitting if for every σ ∈ T there exist incomparable
strings ρ0, ρ1 ∈ T, such that σ ⊆ ρ0 and σ ⊆ ρ1. Theorem 2.4.1 follows from the
technical lemma below:

Lemma 2.4.1. Suppose a sequence {Sn}n∈ω is not uniformly limitwise monotonic.
Let Φ be a Turing operator and T ⊆ 2<ω be a non-empty computable splitting
tree. Then there is a non-empty computable splitting subtree T1 ⊆ T such that the
condition

(∀n)(∀k)[maxs ΦX(n, k, s) exists ] & (∀n)[Sn = rng (λk[maxs ΦX(n, k, s)])]

(that is, ΦX is a uniform limitwise monotonic approximation of {Sn}n∈ω) fails for
every infinite path X through T1.

First we prove the theorem using Lemma 2.4.1, and then we prove the lemma.

Proof of Theorem 2.4.1. Let {Sn}n∈ω be uniformly limitwise monotonic in all degrees
except perhaps countably many. We prove that {Sn}n∈ω has to be uniformly limitwise
monotonic.

Assume that {Sn}n∈ω is not uniformly limitwise monotonic. We will build un-
countably many sets X satisfying the requirements

PX
m : ΦX

m is not a uniform limitwise monotonic approximation of {Sn}n∈ω,

for a fixed effective list of all Turing operators {Φm}m∈ω.
To make sure that each requirement PX

m is met for X, we apply Lemma 2.4.1.
More specifically, for each computable splitting tree T and each Turing operator
Φ, we fix a subtree P(Φ,T) ⊆ T such that ΦX is not a uniform limitwise monotonic
approximation of {Sn}n∈ω, for every infinite path X through P(Φ,T).

For a non-empty computable splitting tree T ⊆ 2<ω, define

R0(T) = {σ ∈ T | σ ⊆ ρ0 or ρ0 ⊆ σ}
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and
R1(T) = {σ ∈ T | σ ⊆ ρ1 or ρ1 ⊆ σ},

where ρ0, ρ1 ∈ T are incomparable. We have R0(T) ⊆ T,R1(T) ⊆ T, [R0(T)]∩[R1(T)] =

∅, and R0(T) and R1(T) are non-empty (computable) splitting trees.
Let h : ω −→ {0, 1} be any (not necessarily computable) function. Let Xh be an

infinite path through
⋂

k∈ω Tk, where {Tk}k∈ω is the family of computable splitting
trees defined recursively as follows:

1. T0 = 2<ω;

2. T2m+1 = Rh(m)(T2m), m ∈ ω;

3. T2m+2 = P(Φm,T2m+1), m ∈ ω.

Then the set Xh satisfies Pm, for all m ∈ ω, and the map h 7→ Xh is injective. Thus,
{Sn}n∈ω is not uniformly limitwise monotonic relative to 2ℵ0 many different oracles.
This is a contradiction. �

Proof of Lemma 2.4.1. For each n consider the set

Mn = {y | (∃k)(∃s)(∃σ ∈ T)[Φσ(n, k, s) ↓= y &
(∀τ ∈ T)(∀s′)(∀y′)[σ ⊆ τ & Φτ(n, k, s′) ↓= y′ → y′ ≤ y]]}.

We have following cases:

Case 1. There exists y ∈Mn − Sn, for some y,n.
Then we can choose σ ∈ T such that y = Φσ(n, k, s) ↓ and

(∀τ ∈ T)(∀s′)(∀y′)[σ ⊆ τ & Φτ(n, k, s′) ↓= y′ → y′ ≤ y]},

for some k, s. We can set T1 = {τ ∈ T | τ ⊆ σ or σ ⊆ τ}, since y = maxs ΦX(n, k, s) < Sn,
for every infinite path X through T1.

Case 2. There exists y ∈ Sn −Mn, for some y,n.
Define a computable function

f : 2<ω −→ T

by recursion as follows:

1. Define f (λ) = λ, where λ is the empty string.
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2. Suppose we have f (α) = σ, and the length of α has the form ` = 〈k, t〉 (it is
important for us to make sure that for each k we will have infinitely many
corresponding lengths of the form ` = 〈k, i〉). Suppose Φσ(n, k, s)[t] ↓= y,
for some s < t. Since y < Mn we can find a string τ ∈ T, σ ⊆ τ, such that
Φτ(n, k, s′) ↓> y, for some s′. If Φσ(n, k, s)[t] ↑ or Φσ(n, k, s)[t] ↓, y for every
s < t, then set τ = σ. Then we choose incomparable strings ρ0, ρ1 ∈ T, such
that τ ⊆ ρ0 and τ ⊆ ρ1, and define f (α ∗ i) = ρi, for i ∈ {0, 1}.

Let T1 = {σ | (∃β ∈ 2<ω)[σ ⊆ f (β)]}. Suppose X is an infinite path through T1.
For every k ∈ ω we have only two possibilities. First, there is a string τ ⊆ X
such that Φτ(n, k, s) ↓> y, for some s. Second, there are no σ ∈ T1 and s such that
Φσ(n, k, s) ↓= y. Hence,

y ∈ Sn − rng (λk[maxs ΦX(n, k, s)]),

for every infinite path X through T1.

Case 3. Sn = Mn, for every n.
In this case, the sequence {Sn}n∈ω is uniformly Σ0

2 (see the definition of Mn).
For every m ∈ ω, let ψ(n,m) = 〈σn,m, kn,m, yn,m〉 be the first found triple 〈σ, k, y〉

such that σ ∈ T and Φσ(n, k, s) ↓= y ≥ m, for some s. Set ψ(n,m) to be undefined if
such a triple does not exist. Clearly, ψ is a partial computable function.

Note that if ψ(n,m) is defined, then ψ(n,m′) is defined for every m′ < m.
Suppose firstly that ψ(n,m) is undefined, for some m ∈ Sn. We have

m ∈ Sn − rng (λk, s[ΦX(n, k, s)]) ⊆ Sn − rng (λk[maxs ΦX(n, k, s)]),

for every infinite path X through T. Then we can set T1 = T. Hence we assume
that ψ(n,m) is defined for every n,m ∈ ω such that m ≤ sup Sn.

The intuition behind the formal argument below is as follows. We attempt
to define a uniform limitwise monotonic approximation of some subset of {Sn}n∈ω

using the fact that {Sn}n∈ω = {Mn}n∈ω. Since by Proposition 2.1.2 we cannot succeed,
we will have to have an infinite splitting subtree of T witnessing this failure.

Define partial computable functions

f : ω × ω × 2<ω −→ T and g : ω × ω × 2<ω −→ ω

by recursion, as follows:
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1. With λ the empty string, define

f (n,m, λ) = σn,m and g(n,m, λ) = yn,m,

if ψ(n,m) ↓= 〈σn,m, kn,m, yn,m〉, and set f (n,m, λ) ↑ and g(n,m, λ) ↑ if ψ(n,m) is
undefined. Note that f (n,m, λ) and g(n,m, λ) are defined if m ≤ sup Sn.

2. Suppose f (n,m, α) and g(n,m, α) have already been defined. Let 〈τ, y〉 be
the first found pair such that τ ∈ T, f (n,m, α) ⊆ τ, g(n,m, α) < y, and
Φτ(n, kn,m, s) ↓= y, for some s. Then we choose incomparable strings ρ0, ρ1 ∈ T
such that τ ⊆ ρ0, τ ⊆ ρ1. We set

f (n,m, α ∗ i) = ρi and g(n,m, α ∗ i) = y,

for i ∈ {0, 1}. If f (n,m, α), g(n,m, α) are undefined or 〈τ, y〉 does not exist, then
f (n,m, α ∗ i) and g(n,m, α ∗ i) remain undefined.

It is crucial that if g(n,m, α) is defined and g(n,m, α ∗ i) is undefined then g(n,m, α) ∈
Mn = Sn.

Suppose that for every n,m ∈ ω there is a string β ∈ 2<ω such that g(n,m, β) is
undefined. By our assumption, β is not the empty string if m ≤ sup Sn. Hence,
if m ≤ sup Sn then there is a string α ∈ 2<ω, such that g(n,m, α) is defined, but
g(n,m, α ∗ 0) is undefined (recall that g(n,m, α ∗ 0) ↓ iff g(n,m, α ∗ 1) ↓).

Consider the sequence {Un}n∈ω, where Un = {h(n,m) | g(n,m, λ) ↓}, and h(n,m) =

min{y | (∃α ∈ 2<ω)[g(n,m, α) ↓= y and g(n,m, α ∗ 0) ↑]}.
We show that {Un}n∈ω is uniformly limitwise monotonic. By the definition of h,

dom(h) = dom(ψ) is c.e., and g(n,m, α ∗ i) ↓ implies g(n,m, α) < g(n,m, α ∗ i), for each
i ∈ {0, 1}. Thus, given m and n, we can monotonically and uniformly in n and m
approximate h(n,m), as follows. Let gs be the (finite) part of g computed at stage s.
As usual, we may assume that gs(n,m, α) ↓ implies that the length of α is less than
s. Therefore, given n,m,u, s ∈ ω such that gu(n,m, λ) ↓ and s ≥ u, we can effectively
choose k(n,m,u, s) least such that

gs(n,m, α) ↓= k(n,m,u, s) and gs(n,m, α ∗ i) ↑,

for some i ∈ {0, 1} and α ∈ 2<ω. Suppose gs(n,m, α) ↑, gu(n,m, λ) ↓ and s ≥ u. Let
γ ⊂ α be the ⊆-maximal substring of α such that gs(n,m, γ) ↓. Such γ exists because
gs(n,m, λ) ↓= gu(n,m, λ). Fix i ∈ {0, 1} so that γ ∗ i ⊆ α. By the choice of γ, we have
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gs(n,m, γ) ↓, gs(n,m, γ ∗ i) ↑, and, therefore,

g(n,m, α) ↓ =⇒ g(n,m, α) ≥ g(n,m, γ) ≥ k(n,m,u, s).

Thus, k(n,m,u, s + 1) ≥ k(n,m,u, s) for every n,m,u, s ∈ ω such that gu(n,m, λ) ↓ and
s ≥ u. Furthermore, for every αwe have g(n,m, α ∗ 0) ↓ if and only if g(n,m, α ∗ 1) ↓.
This implies maxs≥u k(n,m,u, s) = h(n,m). It remains to define a total limitwise
monotonic approximation of h(n,m) using the partial approximation k(n,m,u, s), as
follows. Let M(n, z) be a total computable function such that

h(n,m) ↓ ⇐⇒ g(n,m, λ) ↓ ⇐⇒ ψ(n,m) ↓ ⇐⇒ (∃z)[M(n, z) = m].

Define u(n, z) to be equal to the least stage u such that gu(n,M(n, z), λ) ↓. Set

H(n, z, s) = k(n,M(n, z),u(n, z), s + u(n, z)).

The function H(n, z, s) is total and non-decreasing in s. Furthermore,

maxs H(n, z, s) = maxs k(n,M(n, z),u(n, z), s + u(n, z)) = h(n,M(n, z)),

for every n and z. Hence, H is a uniform limitwise monotonic approximation of
{Un}n∈ω. We have sup Sn = sup Un, since h(n,m) ↓≥ m for every m ≤ sup Sn and
Un ⊆ Mn = Sn. By Proposition 2.1.2, {Sn}n∈ω is uniformly limitwise monotonic,
contrary to the hypothesis.

Thus, there exist n,m ∈ ω such that f (n,m, β) and g(n,m, β) are defined for every
β ∈ 2<ω. Set

T1 = {σ | (∃β ∈ 2<ω)[σ ⊆ f (n,m, β)]} ⊆ T.

We have limα: f (n,m,α)⊂X g(n,m, α) = ∞ for every infinite path X through T1, and
Φ f (n,m,α)(n, kn,m, sα) = g(n,m, α) for some sα. Therefore maxs ΦX(n, kn,m, s) does not
exist for every infinite path X through T1. �

2.5 Applications

Our goal is to to apply the results obtained in the previous sections to study degree
spectra of structures in the classes of abelian groups, equivalence structures, and
models of ℵ1-categorical theories. For a background on the general theory of
computable structures, see [33].

39



2.5.1 Abelian groups

Let p0, p1, . . . be the sequence of prime numbers listed in increasing order. For a
prime p and integer n, the cyclic group of order pn is denoted by Zpn . For an infinite
set S (0 < S) and prime p we denote by Ap(S) the group Ap(S) =

⊕
n∈S Zpn . We need

the following uniform version of a well-known result of Khisamiev ([58], Theorem
3.4):

Lemma 2.5.1. A sequenceS = {Sn}n∈ω of infinite sets of positive integers is uniformly
limitwise monotonic if and only if the abelian group G =

⊕
n∈ω Apn(Sn) has a

computable copy.

Proof. Assume G =
⋃

s∈ω Gs is computable, where Gs is the part of G enumerated
at stage s. By the definition of G, for every element a of G we can effectively
choose a positive integer ma least such that maa = 0. We have a ∈ Apn(Sn) if and
only if ma is a power of pn. Therefore, given n ∈ ω and a computable index for G,
we can uniformly compute an index for the computable subgroup Apn(Sn) of G.
Also, given an index for Apn(Sn), we can uniformly pass to a computable index for
Cn = {c ∈ Apn(Sn) | pnc = 0} = {ci}i∈ω. Let f (n, i, s) = max{h | h = 1 ∨ (∃b ∈ Gs)[(∀k <
h)pk

nb , 0∧ ph−1
n b = ci]}. By the definition of Cn, we have Sn = rng (λi[maxs f (n, i, s)]).

The function f (n, i, s) is a uniform limitwise monotonic approximation of S.
Now suppose S = {Sn}n∈ω is uniformly limitwise monotonic. By Proposi-

tion 2.1.1, we can choose a uniform limitwise monotonic approximation f (n, i, s) ofS
such thatλi[maxs f (n, i, s)] is injective for every n. We have G =

⋃
t∈ω

⊕
n≤t

(⊕
i≤t Zph(n,i,t)

n

)
,

where h(n, i, t) = maxs≤t f (n, i, s) and
⊕

n≤t

(⊕
i≤t Zph(n,i,t)

n

)
is a naturally-defined sub-

group of the group
⊕

n≤t+1

(⊕
i≤t+1 Zph(n,i,t+1)

n

)
. �

Theorem 2.5.1.

1. There is a torsion abelian group G such that (a) G has no computable copy, and (b) G
has an a-computable copy, for every hyperimmune degree a.

2. There is an abelian p-group A such that DegSp(A) contains a ∆0
2 degree a if and only

if a > 0.

Proof. The first part of the theorem follows from Lemma 2.5.1 (relativized) and
Theorem 2.2.1, and the second part of the theorem follows from Theorem 3.4
(relativized) of [58] and Theorem 2.3.1. �
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Theorem 2.5.2. For any group G of the form G =
⊕

p∈X

(⊕
n∈Sp

Zpn

)
, where X is a set

of prime numbers and Sp ⊆ ω \ {0} for each p ∈ X, we have the following: If the group G
has an x-computable copy for every degree x, except perhaps countably many, then G has a
computable copy.

Proof. The theorem follows from Lemma 2.5.1 (relativized) and Theorem 2.4.1. �

2.5.2 Equivalence relations

To apply our computably-theoretic results we need the following observation (see,
e.g., [17] or [15] for a proof):

Lemma 2.5.2 ([15]). Suppose Θ is an equivalence structure in which all equivalence
classes are finite and have distinct cardinalities c0, c1, . . .. Then Θ has a computable
copy if and only if C = {c0, c1, . . .} is limitwise monotonic.

Now the proof of the following theorem follows from Lemma 2.5.2 and Theo-
rem 2.3.1:

Theorem 2.5.3. There exists an equivalence structure Θ such that DegSp(Θ) contains a
∆0

2 degree a if and only if a > 0. �

2.5.3 ℵ1–Categorical theories

Recall that a first order complete theory T is ℵ1-categorical if all models of T of
cardinality ℵ1 are isomorphic. There are many natural examples of ℵ1-categorical
theories: the theory of algebraically closed fields of a given characteristic, the
theory of vector spaces over a given countable field, and the theory of one successor
function on the natural numbers. Baldwin and Lachlan [6] showed that all models
of a given ℵ1-categorical theory T with more than one countable model (up to
isomorphism) form an elementary chain A0 � A1 � . . . � Aω of length ω + 1,
where � stands for an elementary embedding. In this chainA0 is the prime model
of T, and Aω is the saturated model of T. A natural question arises for a given
ℵ1-categorical theory T: Which models in the corresponding elementary chain are
computable? This is known as the spectra problem for ℵ1-categorical theories [59].
Goncharov [33] asked whether the prime modelA0 of T is computable, given that
one of the modelsAi in the elementary chain is computable.

The problem of Goncharov was resolved in [59]. Recall that a model M of a
theory T is minimal if there is no formula φ(x) such that the sets {m | M |= φ(m)}
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and {m | M |= ¬φ(m)} are infinite. A theory T is strongly minimal if all models of T
are minimal. A theory is algebraically trivial if the algebraic closure of every set X in
every model of the theory equals to the union of the algebraic closures of elements
of X.

Theorem 2.5.4 ([59]). For every given set S there exists an ℵ1-categorical but not ℵ0-
categorical theory TS with the following properties:

1. The theory TS is strongly minimal and algebraically trivial,

2. Every (countable) non-prime model of TS has a computable copy if and only if S ∈ Σ0
2,

3. The prime model of TS has a computable copy if and only if S is limitwise monotonic.

Theorem 2.5.4 and the existence of a Σ0
2 set which is not limitwise monotonic (see,

e.g., [59] or Proposition 3.8 of [58]) implies that there is a strongly minimal and alge-
braically trivial ℵ1-categorical theory such that every (countable) non-prime model
of T is computable, but the prime model of T is not computable. This is a nega-
tive solution to Goncharov’s problem in a strong form. However, Theorem 2.3.1
combined with Theorem 2.5.4 has an even stronger consequence:

Theorem 2.5.5. There exists an ℵ1-categorical but not ℵ0-categorical theory T with the
following properties:

1. The theory T is strongly minimal and algebraically trivial.

2. Each (countable) non-prime model of T has a computable copy.

3. The degree spectrum DegSp(A0) of the prime model of T contains a ∆0
2 degree a if

and only if a > 0.

�
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Chapter 3

Completely decomposable groups

This chapter contains a complete characterization of ∆0
n-categorical homogeneous

completely decomposable groups, for n > 1.

3.1 Algebraic preliminaries: torsion-free groups

Let us fix the canonical listing of the prime numbers:

p0, p1, . . . , pn, . . . .

Definition 3.1.1 (Characteristic and hi). Suppose G is a torsion-free abelian group. For
g ∈ G, g , 0, and a prime number pi, set

hi(g) =

 max{k : pk
i |g in G}, if this maximum exists,

∞, otherwise.

The sequence χG(g) = (h0(g), h1(g), . . .) is called the characteristic of the element g in G.

Thus, for a torsion-free groups G, a subgroup H of G is a pure subgroup of G if
and only if χH(h) = χG(h) for every h ∈ H.

Definition 3.1.2. Let α = (k0, k1, . . .) and β = (l0, l1, . . .) be two characteristics. Then
we write α ≤ β if ki ≤ li for all i, where∞ is greater than any natural number.

Definition 3.1.3 (Type). Two characteristics, α = (k0, k1, . . .) and β = (l0, l1, . . .), are
equivalent, written α ' β, if kn , ln only for finitely many n, and kn and ln are finite for
these n. The equivalence classes of this relation are called types.
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We write t(g) for the type of an element g. If G ≤ 〈Q,+〉 (equivalently, if G has
rank 1) then all non-zero elements of G have equivalent types, by the definition of
rank. Hence, we can correctly define the type of G to be t(g) for a non-zero g ∈ G,
and denote it by t(G). The following theorem classifies torsion-free abelian groups
of rank 1:

Theorem 3.1.1 (Baer [5]). Let G and H be torsion-free abelian groups of rank 1. Then G
and H are isomorphic if and only if t(G) = t(H).

The proof essentially uses that every rational group of type t has an element of
characteristic χ, where χ is (any) characteristic of the type t. The proof is easy and
can be left to the reader. The next simplest class of torsion-free abelian groups is
the class of homogeneous completely decomposable groups.

Definition 3.1.4 (Completely decomposable group). A torsion-free abelian group is
called completely decomposable if G is a direct sum of groups each having rank 1.
A completely decomposable group is homogeneous if all its elementary summands are
isomorphic.

It is known that any two decompositions of a completely decomposable group
into direct summands of rank 1 are isomorphic. It means that every decomposition
has the same number of elementary summands of every isomorphism type. For
instance, two homogeneous completely decomposable groups of the same rank are
isomorphic if and only if these groups have the same type [5]. We will refer to
this fact by citing Theorem 3.1.1 since it is a straightforward consequence of this
theorem [39].

Definition 3.1.5. Suppose G is a torsion-free abelian group, g is an element of G, and n|g
some n. If r =

m
n

then we denote by rg the (unique) element mh such that nh = g.

Notation 3.1.1. Let G be an abelian group and A ⊆ G. Suppose {ra : a ∈ A} is a set of
(rational) indices. If we write

∑
a∈A raa then we assume that raa , 0 for at most finitely

many a ∈ A, and every element raa is well-defined in G, according to Definition 3.1.5. We
will use this convention without explicit reference to it.

Now suppose R 5 〈Q,+〉, and A ⊆ G. We denote by (A)R the subgroup of G (if this
subgroup exists) generated by A ⊂ G over R 5 Q, i.e. (A)R = {

∑
a∈A raa : ra ∈ R}. Finally,

for R 5 Q and a ∈ G, we denote by Ra the subgroup ({a})R of G.

Let R 5 Q. If a set A 5 G is linearly independent then every element of (A)R has
the unique presentation

∑
a∈A raa. Otherwise we would have

∑
a∈A raa = 0 for some
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set of rational indices {ra : a ∈ A}, and thus m
∑

a∈A raa =
∑

a∈A mraa = 0, for some
integer m such that mra ∈ Z for all a ∈ A, contrary to our hypothesis. Therefore,
(A)R =

⊕
a∈A Ra for every linearly independent set A.

3.2 Computable abelian groups and modules

The notion of a c.e. characteristic is one of the central notions of computable abelian
group theory.

Definition 3.2.1. Let α = (hi)i∈ω, where hi ∈ ω ∪ {∞} for each i, be a characteristic. We
say that α is c.e. if the set {〈i, j〉 : j ≤ hi, hi > 0} is c.e. (see [71]). .

The definition above is equivalent to saying that there is a non-decreasing
uniform computable approximation hi,s such that hi = sups hi,s, for every i. Observe
that this is a type-invariant property. Thus, a type f is c.e. if α is c.e., for every α in f
(equivalently, for some α in f) Theorem 3.2.1 below was rediscovered several times
by various mathematicians including Knight, Downey, and others (see, e.g., [23]).

Theorem 3.2.1 (Mal′tsev [67]). Let G be a torsion-free abelian group of rank 1. Then the
following are equivalent:

(1) The group G has a computable presentation.
(2) The type t(G) is c.e.
(3) The group G is isomorphic to a c.e. additive subgroup R of a computable presentation

of the rationals (Q,+,×). Furthermore, we may assume that 1 ∈ R.

Furthermore, each c.e. type corresponds to some computably presented sub-
group of the rationals. See [71] for a proof. If a group G is homogeneous completely
decomposable then t(G) is also well-defined. The (1) ↔ (2) part of Theorem 3.2.1
can be easily generalized to the class of homogeneous completely decomposable
groups:

Proposition 3.2.1. A homogeneous completely decomposable group G has a com-
putable presentation if and only if t(G) is c.e.

See [71] for more details.

Definition 3.2.2. We say that C is a computable presentation of a module M over a ring
R if

(1) the ring R is isomorphic to a c.e. subring R1 of a computable ring R2,
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(2) C is a computable presentation of M as an abelian group, and
(3) there is a (total) computable function f : R2×C→ C which maps (r,m) to r ·m ∈ C,

for every m ∈ C and r ∈ R1.

Recall that Q(P) is the subgroup of the rationals (Q,+) generated by the set of

fractions {
1
pk

: k ∈ ω and p ∈ P}. recall also:

Notation 3.2.1. For a given set of primes P, the group GP is the countably infinite direct
sum of isomorphic copies of Q(P).

Remark 3.2.1. According to Definition 3.1.5, for every r =
m
n
∈ Q(P) and a an element of

the group GP, the element ra ∈ GP is definable by the formula Φr(x, a)� mx = na in the
language of abelian groups (recall that mx and na are abbreviations).

Proposition 3.2.2. The following are equivalent:

1. P is c.e.

2. Q(P) is a c.e. subring of a computable presentation of (Q,+,×).

3. GP is computably presentable as an abelian group.

4. GP is computably presentable as a module over Q(P).

Proof. The implications (1)→ (2) and (2)→ (3) are obvious.
(3) → (4). By Proposition 3.2.1, the characteristic α of GP is c.e. By Theo-

rem 3.2.1, Q(P) is isomorphic to a c.e. additive subgroup A of (Q,+,×). Observe that
Q(P) may be considered as a c.e. subring of Q, because we can ensure that 1 ∈ A.
It remains to observe that for each element g ∈ GP and each rational r ∈ Q(P), the
element rg can be found effectively and uniformly.

(4) → (1). Pick an element g of GP which is divisible by a prime p if and only
if p ∈ P. Thus, p ∈ P if and only if (∃x ∈ GP) px = g, proving that P is c.e. �

Remark 3.2.2. Actually we have shown that every computable presentation of GP is already
a computable presentation of GP as a module over Q(P).

Lemma 3.2.1. For a c.e. set of primes P, the following are equivalent:

1. Every computable presentation of the group GP has a Σ0
n basis which generates

this presentation as a module over Q(P).
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2. The group GP is ∆0
n-categorical.

3. The Q(P)-module GP is ∆0
n-categorical.

Proof. By Proposition 3.2.2, the ring Q(P) is a c.e. subring of a computable presenta-
tion of (Q,+,×).

(1)→ (2). Let A and B be computable presentations of the group GP. Both A and
B have Σ0

n bases which generate these groups over Q(P). We map these bases one into
another using 0(n−1). By Remark 3.2.1, we can extend this map to an isomorphism
effectively, using the c.e. subring Q(P) of Q.

(2)→ (3).Observe that every computable group-isomorphism between two com-
putable module-presentations of GP is already a computable module-isomorphism.

(3) → (1). Pick a computable presentation H of GP such that the basis which
generates H over Q(P) is computable. If GP is ∆0

n-categorical then every computable
presentation of GP has a Σ0

n basis which is the image of the computable one in H. �

Thus, from the computability-theoretic point of view, GP may be alternatively
considered as an abelian group or a Q(P)-module.

3.3 S-independence and excellent S-bases.

The notion of p-independence (for a single prime p) is a fundamental concept in
abelian group theory (see [39], Chapter VI). We introduce a certain generalization
of p-independence to sets of primes:

Definition 3.3.1 (S-independence and excellent bases). Let S be a set of primes, and
let G be a torsion-free abelian group. If S , ∅, then we say that elements b1, . . . , bk of G are
S-independent in G if p|

∑
i∈{1,...,k}mibi in G implies

∧
i∈{1,...,k} p|mi, for all integers m1, . . . ,mk

and p ∈ S. If S = ∅, then we say that elements are S-independent if they are simply linearly
independent.

Every maximal S-independent subset of G is said to be an S-basis of G. We say that an
S-basis is excellent if it is a maximal linearly independent subset of G.

It is easy to check that S-independence in general implies linear independence.
However, an S-basis does not have to be excellent. Lemma 35.1 in [39] implies that
the free abelian group of rank ω contains a {p}-basis which is not excellent.

The main reason why we introduce the notion of S-independence is reflected in
the example and the lemma below.
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Example 3.3.1. Let Z2 be the free abelian group of rank 2, and let e1 and e2 be such
that Z2 = Ze1 ⊕ Ze2. Suppose that we need to test, given a pair of elements g1

and g2, if Zg1 + Zg2 = Z2. That is, we wish to be able to say “no” if g1 and g2

do not generate Z2. If g1 and g2 together generate the group, then {g1, g2} should
be linearly independent. But this is not sufficient: suppose that g1 = 2e0 + e1 and

g2 = e1; then 2|g1 − g2, but the element h =
g1 − g2

2
is not in the span of {g1, g2}.

Now we make each Z-component of Z2 infinitely divisible by 2 and consider
the group Q(2)e1 ⊕Q(2)e2. Note that 2|g1 − g2 in Q(2)e1 ⊕Q(2)e2, but it is not a problem:
it is easy to check that {g1, g2} generates Q(2)e1 ⊕ Q(2)e2 over Q(2). In contrast, the
elements h1 = 3e0 + e1 and h2 = e1 fail to generate Q(2)e1 ⊕Q(2)e2 over Q(2).

More generally, in Q(P)e1 ⊕ Q(P)e2, the existence of p-roots for p ∈ P can not be used
to test if two given elements generate the whole group over Q(P) or not.

Notation 3.3.1. In this section P stands for a set of primes and P̂ for the complement of P
within the set of all primes:

P̂ = {p : p is prime and p < P}.

Lemma 3.3.1. Suppose G �
⊕

i∈I Q(P), and let B ⊆ G. Then B is an excellent P̂-basis
of G if and only if B generates G as a free module over Q(P).

Let P be the set of all primes. Then P̂ = ∅. Recall that ∅-independence is
simply linear independence, and GP � D(ω) =

⊕
i∈ω Q. It is well-known that every

maximal linearly independent set generates the vector space D(ω) over Q. If P = ∅

then G∅ � FA(ω) =
⊕

i∈ω Z is the free abelian group of the rankω. As a consequence
of the lemma, every excellent P-basis of FA(ω) generates FA(ω) as a free abelian
group.

Proof. (⇒). Let B be an excellent P̂-basis of G. Suppose g ∈ G. By our assumption, B
is a basis of G. Therefore, there exist integers m and mb, b ∈ B, such that mg =

∑
b mbb.

Suppose m = pm′ for some p ∈ P̂. By Definition 3.3.1, p|mb for all b ∈ B. Therefore,
without loss of generality, we can assume that (m, p) = 1, for every p ∈ P̂. By the
definition of G, we have:

g =
∑

b

mb

m
b ∈ (B)Q(P) 5 G.

The set B is linearly independent, therefore (B)Q(P) =
⊕

b∈B Q(P)b (see the discussion
after Notation 3.1.1). We have g ∈ (B)Q(P) 5 G for every g ∈ G. Thus, G = (B)Q(P) .
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(⇐). Let G =
⊕

b∈B Q(P)b for B ⊆ G, and ph =
∑

b∈B mbb, where mb is integer for
every b ∈ B, and p ∈ P̂. We have h ∈ GP and thus h =

∑
b∈B hb, where hb ∈ Q(P)b for

each b ∈ B (recall that hb = 0 for a.e. b).
Therefore ph = p

∑
b∈B hb =

∑
b∈B phb =

∑
b mbb, and phb = mbb for every b (by

the uniqueness of the decomposition of an element). Each direct component of G
in the considered decomposition has the form Q(P)b. In other words, the element
b plays the role of 1 in the corresponding Q(P)-component of this decomposition.
Now recall that p < P. Thus, mb , 0 implies p|mb for every b, by the definition
of Q(P). �

In later proofs we will have to approximate an excellent basis stage-by-stage,
using a certain oracle. Recall that not every maximal P̂-independent set is an excel-
lent basis of GP. Therefore, we need to show that, for a given finite P̂-independent
subset B of GP and an element g ∈ GP, there exists a finite extension B? of B such
that B? is P̂-independent and the element g is contained in the Q(P)-span of B?.

Proposition 3.3.1. Suppose B ⊂ GP is a finite P̂-independent subset of GP. For
every g ∈ GP there exists a finite P̂-independent set B? ⊂ GP such that B ⊆ B? and
g ∈ (B?)Q(P) .

Proof. Pick {ei : i ∈ ω} ⊆ GP such that GP =
⊕

i∈ω Q(P)ei. Let {e0, e1, . . . , en} be such
that both B = {b0, . . . , bk} and g are contained in ({e0, e1, . . . , en})Q(P) . We may assume
k < n.

Lemma 3.3.2. Suppose B = {b0, . . . , bk} ⊆
⊕

i∈{0,...,n}Q
(P)ei, is a linearly independent

set. There exists a set C = {c0, . . . , cn} ⊆
⊕

i∈{0,...,n}Q
(P)ei, and coefficients r0, . . . , rk ∈

Q(P) such that
(1)

⊕
i∈{0,...,n}Q

(P)ei,=
⊕

i∈{0,...,n}Q
(P)ci, and

(2) ({r0c0, . . . , rkck})Q(P) = (B)Q(P) .

Proof. It is a special case of a well-known fact ([63], Theorem 7.8) which holds in
general for every finitely generated module over a principal ideal domain (note
that Q(P) is a principal ideal domain). �

We show that if B is P̂-independent (not merely linearly independent) then
we can set B? = {b0, . . . , bk} ∪ {ck+1, . . . , cn}, where C = {c0, . . . , cn} is the set from
Lemma 3.3.2. Suppose p|

∑
0≤i≤k nibi +

∑
k+1≤i≤n nici for a prime p ∈ P̂. We have⊕

i∈{0,...,n}

Q(P)ei =
⊕
1≤i≤k

Q(P)ci ⊕

⊕
k+1≤i≤n

Q(P)ci,
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and
∑

1≤i≤k nibi ∈
⊕

1≤i≤k Q(P)ci. By the purity of direct components, we have
p|

∑
1≤i≤k nibi within

⊕
1≤i≤k Q(P)ci and p|

∑
k+1≤i≤n nici within

⊕
k+1≤i≤n Q(P)ci. But the

former implies p|ni for all 1 ≤ i ≤ k by our assumption, and the latter implies p|ni

for all k + 1 ≤ i ≤ n by the choice of C and Lemma 3.3.1.
The set B? is actually an excellent P̂-basis of

⊕
i∈{0,...,n}Q

(P)ei, since the cardinality
of B? is n + 1 = rk(

⊕
i∈{0,...,n}Q

(P)ei). Therefore, the set B? = {b0, . . . , bk} ∪ {ck+1, . . . , cn}

is a P̂-independent set with the needed properties. �

Suppose G is a torsion-free abelian group, and a, b ∈ G. Recall that χ(a) ≤ χ(b)
iff hi(a) ≤ hi(b) for all i. In other words, pk

|a implies pk
|b , for all k ∈ ω and every

prime p.

Definition 3.3.2. Let G be a torsion-free abelian group. For a given characteristic α, let
G[α] = {g ∈ G : α ≤ χ(g)}.

We have hi(a) = hi(−a) and inf(hi(a), hi(b)) ≤ hi(a + b), for all i. Furthermore,
χ(0) ≥ α, for every characteristic α. Therefore, G[α] is a subgroup of G.

Definition 3.3.3. Let α = (α0, α2, . . .). Then Q(α) is the subgroup of (Q,+) generated by
elements of the form 1/px

k where x ≤ αk.

Example 3.3.2. Let α = (∞, 1,∞, 1, . . . , α2k = ∞, α2k+1 = 1, . . .). Consider

β = α + (0, 1, 0,−1, 0, 0, 0, 0, 0, . . . , 0, . . .).

By Definition 3.1.3, β � α. Consider the group H = Q(α). We have 1 ∈ Q(α) and
χ(1) = α within Q(α). Note that the characteristic of a = 3/7 in H(α) is β. Observe that
a/p j

2k belongs to H[β], for every k, j ∈ ω. In contrast, a/p2k+1 does not belong to H[β].
Indeed, the characteristic χH(a/13) is

(∞, 2,∞, 0,∞, 0,∞, 1,∞, 1,∞, 1, . . .)

and

(∞, 2,∞, 0,∞, 0,∞, 1,∞, 1,∞, 1, . . .) � β = (∞, 2,∞, 0,∞, 1,∞, 1,∞, 1, . . .).

Recall that the type is an equivalence class of characteristics. Thus, the type of
H 5 Q is simply the type of any nonzero element of H. We are ready to state and
prove the main result of this section.
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Theorem 3.3.1. Let G =
⊕

i∈ω H, where H 5 Q, t(H) = f and α = (α0, α1, . . .) is of type
f. Then G[α] � GP, where P = {pi : hi = ∞ in α}. Furthermore, if B is an excellent P̂-basis
of G[α], then G is generated by B over Q(α).

Informally, this theorem says that each homogeneous completely decomposable
group of rank ω has a subgroup isomorphic to GP, for some P. Furthermore, every
excellent P̂-basis of this subgroup generates the whole group G over a certain
rational subgroup Q(α) taken as a domain of coefficients. The group Q(α) is not
necessarily a ring (recall Notation 3.1.1). The idea of the technical proof below was
essentially illustrated in Example 3.3.2.

Proof. We prove that G[α] � GP.

Let gi be the element of the i’th presentation of H in the decomposition G =⊕
i∈ω H such that χ(gi) = α. The collection {gi : i ∈ ω} is a basis of G. Therefore,

{gi : i ∈ ω} is a basis of G[α]. By the definition of P, ({gi : i ∈ ω})Q(P) is a subgroup of
G[α]. Furthermore, since {gi : i ∈ ω} is linearly independent,

({gi : i ∈ ω})Q(P) �
⊕

i∈ω

Q(P)gi.

Thus, we have ⊕
i∈ω

Q(P)gi ⊆ G[α].

We are going to show that every element g ∈ G[α] is generated by {gi : i ∈ ω}
over Q(P). This will imply G[α] � GP.

Pick any nonzero g ∈ G[α]. The set {gi : i ∈ ω} is a basis of G[α], therefore
ng =

∑
i∈ω migi for some integers n and mi, i ∈ ω. Since direct components are pure,

n|
∑

i∈I migi implies n|migi for every i ∈ ω, and g =
∑

i∈I
mi

n
gi. After reductions we

have g =
∑

i∈I

m′i
ni

gi, where
m′i
ni

is irreducible. It suffices to show that
m′i
ni
∈ Q(P).

Assume there is i such that
m′i
ni

< Q(P). Equivalently, for some pk ∈ P̂, we have

m′i , 0 and ni = pkn′i , where n′i is an integer (recall that
m′i
ni

is irreducible).

We have hk(
m′i
ni

gi) = hk(
m′i
n′i

gi

pk
) ≤ hk(

gi

pk
), since m′i is not divisible by pk. But

hk(
gi

pk
) < hk(gi) (recall that hk(gi) is finite). It is straightforward from the definitions
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of hk that hk(g) = min{hk(
m′i
ni

gi) : i ∈ I,mi , 0}, since each gi belongs to a separate

direct component of G. Therefore hk(g) ≤ hk(
m′i
ni

gi) < hk(gi). But χ(gi) = α. Thus,

χ(g) � α and g < G[α], and this contradicts our choice of g. Therefore, G[α] � GP.

We show that if B is an excellent P̂-basis of G[α], then G = (B)Q(α) (recall Nota-
tion 3.1.1).

For every b ∈ B consider the minimal pure subgroup which contains b (recall
that we denote this group by [b]. Consider 〈B〉 =

∑
b∈B[b] 5 G. In fact 〈B〉 =

⊕
b∈B[b],

because B is linearly independent within G[α] and, therefore, within G as well.
By our choice, b ∈ G[α]. Thus, χ(b) ≥ α within G. We show that in fact χ(b) = α.

Assume χ(b) > α. We have b = pa for some a ∈ G[α] and p ∈ P̂. But B is P̂-
independent. This contradicts the fact that p|1 · b and 1 is evidently not divisible by
p. Therefore, we have

[b] = Q(α)b.

It remains to prove thatG ⊆ 〈B〉. Pick any nonzero g ∈ G. There exist integers m
and n such that (m,n) = 1 and χ(

m
n

g) = α. To see this we use the fact that χ(g) ∈ f.
It is enough to make only finitely many changes to χ(g) to make it equival to α.

Equivalently,
m
n

g ∈ G[α]. We have
m
n

g =
∑

b∈B,rb∈Q(P)

rbb, by Lemma 3.3.1. By our

assumption, χ(b) = χ(
m
n

g) = α, for every b ∈ B. Obviously, m|
m
n

g in G. Therefore,
by the definition of α and B, we have m|b in Q(α)b. Thus, there exist xb ∈ [b] = Q(α)b
such that mxb = b. We can set g =

∑
b∈B nrbxb, where nrbxb ∈ [b]. This shows

G = (B)Q(α). �

3.4 Effective content of S-independence.

Theorem 3.4.1. Every computably presentable homogeneous completely decomposable
torsion-free abelian group is ∆0

3-categorical.

The proof of the Theorem 3.4.1 is based on the lemma below. The proof of this
lemma uses Theorem 3.3.1.

Lemma 3.4.1. Let G =
⊕

i∈ω H, where H 5 Q, the type t(H) is f, and α = (α0, α1, . . .)
is a characteristic of type f. Let G1 and G2 be computable presentations of G.
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Suppose that both G1[α] and G2[α] have Σ0
n excellent P̂-bases. Then there exists an

∆0
n isomorphism from G1 onto G2.

We first prove Theorem 3.4.1, and then prove Lemma 3.4.1. We need to show
that a given homogeneous completely decomposable group satisfies the hypothesis
of Lemma 3.4.1 with n = 3.

Proof of Theorem 3.4.1. Let G be a computable presentation of G �
⊕

i∈ω H, where
H ≤ Q. Let α be a characteristic of type t(H) and P = {pk : αk = ∞ in α}. By
Theorem 3.3.1 and Lemma 3.4.1, it suffices to construct a excellent P̂-basis of G[α]
which is Σ0

3.
We are building C =

⋃
n Cn. Assume that we are given Cn−1. At step n of the

procedure, we do the following:
1. Pick the n-th element gn of G[α].
2. Find an extension Cn of Cn−1 in G[α] such that (a) Cn is a finite P̂-independent

set, and (b) gn is linearly dependent of Cn.

Let G =
⊕

i∈I Rei, where χ(ei) = α and R � H. Observe that at stage n of the
procedure we have gn ∪Cn−1 ⊂ ({e0, . . . , ek})Q(P) , for some k. By Proposition 3.3.1, the
needed extension denoted by Cn can be found.

It suffices to check that the construction is effective relative to 0′′. We use com-
putable infinitary formulas in the proofs of the claims below. See [3] for a back-
ground on computable infinitary formulas.

By Theorem 3.3.1, we have G[α] � GP, where P = {p : p∞|h} is a Π0
2 set of primes.

Claim 3.4.1. The group G[α] is c.e. in 0′′.

Proof. Pick any h ∈ G with χ(h) = α. By its definition, for every g ∈ G, the property
χ(g) ≥ α is equivalent to∧

p−prime

∧
k∈ω

((∃x)pkx = h→ (∃y)pky = g).

Therefore, the group G[α] is a Π0
2-subgroup of G. �

Claim 3.4.2. There is a 0′′-computable procedure which decides if a given finite set B ⊆ G[α]
is P̂-independent, uniformly in the index of B.

Proof. It suffices to show that the property “B is a P̂-independent set in G[α]” can be
expressed by a Π0

2 infinitary computable formula in the signature of abelian groups
with parameters elements from B.
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Note that in general P ∈ Π0
2. By Claim 6.3.1, the group G[α] is a Π0

2-subgroup
of G. Thus, the condition “B is a P̂-independent set in G[α]” seems to be merely Π0

3:∧
m∈Z<∞

∧
p−prime

([p < P ∧ (∃x)(x ∈ G[α] ∧ px =
∑
b∈B

mbb)]→
∧

b

p|mb).

The idea is to substitute the Σ0
3 formula (∃x)(x ∈ G[α] ∧ px =

∑
b∈B mbb) by an

equivalent Σ0
2 one, using a non-uniform parameter c ∈ G such that χ(c) = α. More

specifically, we are going to show that for every pv < P, the formula

(∃x)(x ∈ G[α] ∧ pvx =
∑
b∈B

mbb)

is equivalent to
(∃k)(∃y ∈ G)(αv < k ∧ pk

vy =
∑
b∈B

mbb),

where αv is the v-th component of α corresponding to pv and

αv < k⇔ ¬(αv ≥ k)⇔ ¬(∃ξ)(pk
vξ = c).

Suppose there is x ∈ G[α] such that pvx =
∑

b∈B mbb. Since hv(x) ≥ αv, we have
pαv

v y = x and pαv+1
v y = pvx, for some y ∈ G, so we can set k = αv +1. For the converse,

suppose there exist such k and y. Then pvx = pk
vy for x = pk−1

v y. We have k > αv,
and therefore (k − 1) ≥ αv. But hv(x) ≥ (k − 1) because x = pk−1

v y is divisible by pk−1
v ,

and thus hv(x) ≥ αv. The characteristic of x differs from the characteristic of y only
at the position for the prime pv. Thus, for every w , v,

hw(x) = hw(pk
vy) = hw(

∑
b∈B

mbb)) ≥ αw,

since
∑

b∈B mbb ∈ G[α]. Therefore, χ(x) ≥ α and x ∈ G[α]. �

By Claim 3.4.1 and Claim 3.4.2, the procedure is computable relative to 0′′.
Assuming Lemma 3.4.1, this completes the proof of the theorem. �

Proof of Lemma 3.4.1. Recall that G1 and G2 are computable presentations of G such
that both G1[α] and G2[α] have Σ0

n excellent P̂-bases. We need to show that there
exists an ∆0

n isomorphism from G1 onto G2. Let B1 and B2 be excellent P̂-bases of G1

and G2, respectively.
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Observe that the group Q(α) is isomorphic to a c.e. additive subgroup R of
(Q,+,×). Furthermore, we may assume that 1 ∈ R. To see this pick h with χ(h) = α
non-uniformly, and then apply Theorem 3.1.1 to the group [h]. By Theorem 3.3.1,
we have

G1 =
⊕
b∈B1

Rb � G2 =
⊕
b′∈B2

Rb′.

To build a ∆0
n isomorphism from G1 to G2 first define the map from B1 onto B2 using

a standard back-and-forth argument. Then extend it to the whole G1 using the fact
that r · b can be found effectively and uniformly, for every r ∈ R and b ∈ B1. �

By Proposition 3.2.2 and Remark 3.2.2, “computable presentation of GP” can be
equivalently understood as “computable presentation of the group GP” or “com-
putable presentation of the Q(P)-module GP”. Before we turn to a more detailed
study of ∆0

2-categorical completely decomposable groups, we prove a fact about
excellent P̂-bases of the group GP which is of an independent interest for us:

Theorem 3.4.2. If a computable presentation of GP has a Σ0
2 basis which generates it as

a free Q(P)-module, then this presentation possesses a Π0
1 basis which generates it as a free

Q(P)-module.

Proof. Recall that, by Lemma 3.3.1, a basis generates GP as a free Q(P)-module if
and only if this basis is an excellent P̂-basis. The proof of the theorem is based on
Lemma 3.3.1 and the short technical lemma below.

Lemma 3.4.2. Suppose {ei : i ∈ ω} ⊂ GP is such that GP =
⊕

i∈ω Q(P)ei, and sup-
pose {b1, . . . , bk} ⊂ GP \ {0}. For any integer m , 0, the set B = {e0, b1, . . . , bk} is
P̂-independent if and only if Bm = {e0, b1, . . . , bk−1, bk + me0} is P̂-independent. Fur-
thermore, (B)Q(P) = (Bm)Q(P) , for every m.

Note that for the (obvious) second part of Lemma 3.4.2 we do not assume that B
is P̂-independent.

Proof of Lemma 3.4.2. Suppose B = {e0, b1, . . . , bk} is P̂-independent. We show that
Bm = {e0, b1, . . . , bk−1, bk + me0} is P̂-independent as well.

Pick an arbitrary p ∈ P̂. Suppose that p divides g = n0e0 +
∑

1≤i≤k−1 nibi +

nk(bk + me0) = (n0 + nkm)e0 +
∑

1≤i≤k nibi. Recall that the set B = {e0, b1, . . . , bk} is
P̂-independent. Therefore, p|ni, for every 1 ≤ i ≤ k. As a consequence, p divides
n0e0 = g−nkme0−

∑
1≤i≤k nibi. By our assumption on the element e0,we have p|n0. �
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Suppose that E = {e0, e1, . . .} is a Σ0
2 excellent P̂-basis of G =

⊕
i∈ω Q(P)ei = {g0 =

0, g1, . . .} which is a computable group. We fix a computable relation R such that
x ∈ E if and only if (∃<∞y)R(x, y). We build a co-c.e set of elements B such that the
following requirements are met:

R0: e0 ∈ B;

R j: if g j = ek for some k then B contains exactly one element of the form (ek +me0).

We also require that the only elements that enter B are due to one of these
requirements. There is no priority order on the requirements.

We first show that if all the requirements are met, then the set B is an excellent
P̂-basis of G. Assume R j is met, for every j. It follows that for every k there exists
m such that ek + me0 ∈ B. Also, if B contains two elements of the form ek + me0

and ek + ne0, then necessarily n = m. We show that B is an excellent P̂-basis of G.
Note that, if B is not P̂-independent, then there is a finite subset B0 of B which is
not P̂-independent. By (a multiple application of) Lemma 3.4.2, this contradicts the
choice of E = {e0, e1, . . . , }. It remains to apply the second part of Lemma 3.4.2 and
see that the Q(P)-spans of B and E coincide.

All strategies in the construction will share the same global restraint. More
specifically, in the construction the strategies will put restraints onto certain ele-
ments of the group. The desired set B will consist of elements which eventually
become forever restrained by the strategies.

Strategy for R0: Permanently restrain e0.

Strategy for R j, j > 0: If R j currently has no witness then pick a witness c j which is
equal to g j + me0, where m is the least such that g j + me0 is not restrained and is not
yet enumerated into B. Declare c j restrained (thus, c j is now our witness, and our
current guess is c j ∈ B). If c j is the nth element of the group, c j = gn, then enumerate
each gx with x < n into B unless gx is already in B or is restrained. If, at a later
stage, a fresh y is found such that R(g j, y) holds, then enumerate g j + me0 into B,
and initialize R j by making c j undefined.

Construction.

Stage s. Let R j, j ≤ s, act according to their instructions.

End of construction.

The set B consists of elements which eventually become forever restrained by
strategies. Also note that each element of the group can be restrained at most once.
Thus, the set B is c.e.
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To see why R j is met note that the requirement eventually puts a permanent
restraint on its witness g j +me0 if an only if (∃<∞y)R(g j, y). This is the same as saying
that g j = ek, for some k. �

3.5 Semi-low sets, and ∆0
2-categoricity.

Recall that a set A is semi-low if the set HA = {e : We ∩ A , ∅} = {e : We * A} is
computable in ∅′.

Theorem 3.5.1. A computably presentable completely decomposable abelian group G is
∆0

2-categorical if and only if G is isomorphic to GP where P̂ is semi-low.

The proof of this theorem is split into several parts. Each part corresponds to
a different hypothesis on the isomorphism type of G. Different cases will need
different techniques and strategies.

Proof. We need the following technical notion:

Definition 3.5.1. Let α = (hi)i∈ω be a c.e. characteristic (see Definition 3.2.1), and let hi,s be
its non-decreasing uniform computable approximation: hi = sups hi,s, for every i. We say
that α has a computable settling time if there is a (total) computable function ψ : ω→ ω
such that

hi =

 hi,ψ(i), if hi is finite,

∞, otherwise,

for every i. We also say that ψ is a computable settling time for (hi,s)i,s∈ω.

This is the same as saying that, given i, there exists an effective (and uniform)
way to compute a stage s after which the approximation of hi either does not
increase, or increases and tends to infinity. Note that this is the property of a char-
acteristic, not the property of some specific computable approximation. Indeed,
given an approximation of α having a computable settling time, we can define a
computable settling time for any other computable approximation of α. Further-
more, as can be easily seen, this is a type-invariant property. Thus, we can also
speak of types having computable settling times.

If a homogeneous completely decomposable group G of type f is computable,
then f is c.e. (see Proposition 3.2.1). Suppose that G is a computable homogeneous
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completely decomposable group of type f, and let α = (hi)i∈ω be a characteristic of
type f. We consider the cases:

1. The type f of G has no computable settling time. In this case G is not ∆0
2-

categorical by Proposition 3.5.2. Observe that if f has no computable settling
time then the set Fin(α) = {i : 0 < hi < ∞} has to be infinite (see, e.g.,
Proposition 3.2.2). Thus, G can not be isomorphic to GP, for a set of primes P.

2. The type f of G has a computable settling time, Fin(α) = {i : 0 < hi < ∞} is
empty (finite), and the set {i : hi = 0} is semi-low. In other words, the group
G is isomorphic to GP with P̂ semi-low. In this case G is ∆0

2-categorical, by
Proposition 3.5.1 below.

3. The type f of G has a computable settling time, the set Fin(α) = {i : 0 < hi < ∞}
is empty (finite), and the set {i : hi = 0} is not semi-low. Here G is again
isomorphic to GP, but in this case G is not ∆0

2-categorical, by Proposition 3.5.3
below.

4. The type f of G has a computable settling time, and the set Fin(α) = {i : 0 < hi <
∞} is infinite and not semi-low. As in the above case1, G is not ∆0

2-categorical,
by Proposition 3.5.3.

5. The type f of G has a computable settling time, and the set Fin(α) = {i :
0 < hi < ∞} is infinite and semi-low. The group is not ∆0

2-categorical, by
Proposition 3.5.4 below.

We first discuss why case (3) and case (4) above can be collapsed into one case.
First, define In f (α) = {i : hi = ∞} and V = {i : 0 < hi,ψ(i) < ∞}, where ψ is a
computable settling time for α. Note that V is c.e. Evidently, In f (α) = Fin(α) ∪ {i :
hi = 0} and Fin(α) = In f (α) ∩ V. We claim that “Fin(α) is not semi-low” implies
“In f (α) is not semi-low”. We assume that In f (α) is semi-low and observe that
{e : We ∩ Fin(α) , ∅} = {e : We ∩ V ∩ In f (α) , ∅} = {e : Ws(e) ∩ In f (α) , ∅} for a
computable function s. Therefore, HFin(α) ≤m HIn f (α) ≤T ∅

′, as required.
Therefore, cases (3) and (4) are both collapsed into

(3′) If f has a computable settling time and In f (α) is not semi-low, then G is not
∆0

2-categorical.

1We distinguish these two cases only because these cases correspond to (algebraically) different
types of groups. We discuss a bit later why these cases are essentially not different.
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Now we state and prove the propositions which cover all the cases above.
Recall that, by Proposition 3.2.2, the group GP has a computable presentation as

a group (module) if and only if P is c.e.

Proposition 3.5.1. If P̂ is semi-low (and co-c.e.) then GP is ∆0
2-categorical.

Proof. The proof may be viewed as a simpler version of the proof of Theorem 3.4.1.
Let G = {g0 = 0, g1, . . .} be a computable copy of GP. By Lemma 3.2.1, it is enough
to build a Σ0

2 excellent P̂-basis of G.
We are building C =

⋃
n Cn. Assume that we are given Cn−1. At stage n of the

construction, we do the following:
1. Pick the n-th element gn of G.
2. Find an extension Cn of Cn−1 in G such that (a) Cn is a finite P̂-independent

set, and (b) Cn ∪ {gn} is linearly dependent.

The algebraic part of the verification is the same as in Theorem 3.4.1 (and is
actually simpler). Thus, it is enough to show that (a) in (2) above can be checked
effectively and uniformly in ∅′.Given a finite set F of elements of G, define a c.e. set
V consisting of primes which could potentially witness that F is P̂-dependent:

V =
{
p :

∨
m∈Zcard(F)

[
p|(

∑
g∈F

mgg) ∧ (
∨
g∈F

p 6 |mg)
]}
.

The c.e. index of V can be obtained uniformly from the index of F. It can be
easily seen from the definition of P̂-independence that

V ∩ P̂ = ∅ if and only if F is P̂-independent.

By our assumption on P̂, this can be decided effectively in ∅′. �

Fix a computable listing {Φe(x, y)}e∈ω of all partial computable functions of two
arguments. We say that lims Φe(x, s) exists if Φe(x, s) ↓ for every e and s and the
sequence (Φe(x, s))s∈ω stabilizes. In the upcoming propositions we will use the
following:

Notation 3.5.1. Fix an effective listing {Ψe(x, s)}e∈ω of total computable functions of two
arguments satisfying the property:

(lims Φe(x, s) exists)⇒ (lims Φe(x, s) = lims Ψe(x, s)),

for every x and e. (We may assume that Ψe(x, 0) = 0, for every x and e.)
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Proposition 3.5.2. Suppose that the type f of a computably presentable G =
⊕

i∈ω H
has no computable settling time. Then G is not ∆0

2-categorical.

Proof idea. Let α = (hi)i∈ω be a characteristic of type f. We build two computable
groups, A and B, both isomorphic to G. The group A is a “nice” copy of G. The
group B is a “bad” copy of G in which the eth elementary direct component is used
to defeat the eth potential ∆0

2-isomorphism from B onto A.
The first main idea of the strategy uses Baer’s theory of types. We wait for

the eth potential isomorphism to converge on some specifically chosen element be

from the eth elementary direct component of B. We pick a fresh number j so large
that, if the eth potential isomorphism is indeed an isomorphism, the characteristic
χ(be) = (di)i∈ω of be and the characteristic α = (hi)i∈ω have to be equal starting from
the jth position. We may choose such a number j using that A is “nice” (to be
explained in more detail). From this moment on, make sure dk,s = hk,s − 1 for k ≥ j
least such that hk,t > 0, where t is the current stage of the construction and s ≥ t.
By the choice of f, such a position k can be found. Note that the eth potential
isomorphism is merely a (partial) ∆0

2 function, and at a later stage it may output a
new potential image of be. In this case we make dk,s = hk,s and repeat the strategy.

The strategy would work if we had no symbols∞ in f. If we have∞ on f, then
it may happen that

hk = lim
t

hk,t = ∞,

for the k we pick at the final iteration of the strategy (if the strategy iterates infinitely
often then we win). In this case the strategy fails because both hk,s and dk,s = hk,s − 1
tend to infinity.

The second main idea is to pick a new fresh position k1 for which hk1,s > 0 if we
see hk,s > hk,t at a later stage s. We may keep iterating this strategy defining k2 when
both hk and hk1 increase, etc. Nonetheless, this strategy is not sufficient if

hki = lim
t

hki,t = ∞

for every i.
The third main idea uses the notion of computable settling time. More specif-

ically, each time we pick a new position ki as described above, we additionally
attempt to define a computable settling time ψ for α. If we have to make one more
iteration as described in the previous paragraph, we set ψ(ki) = t. We also define ψ
on arguments between ki and ki+1 (to be explained formally in the construction).

We keep introducing ki+1, ki+2 etc. This process never terminates only if every
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position we pick corresponds to ∞ in α. Thus, we will succeed in defining a
computable settling time for f, contradicting the choice of f (to be explained in more
detail). Therefore, we eventually pick a position k j such that hk j < ∞. The groups
A and B are both isomorphic to G by Theorem 3.1.1, because the characteristic of
be belongs to f. (Several minor technical details have not been mentioned in this
sketch.)

Proof of Proposition 3.5.2. In the construction below we identify elements of A and
B and the corresponding elements of ω. It suffices to build two computable pre-
sentations, A and B, of the group G =

⊕
i∈ω H, and meet the requirements:

Re : limt Ψe(be, t) exists⇒ limt Ψe(x, t) is not an isomorphism from B to A.

The nonzero element be is a witness for the Re strategy below. More specifically,
we enumerate A =

⊕
n∈ω Han and B =

⊕
e∈ω Cebe in such a way that the sets

{an : n ∈ ω} and {be : e ∈ ω} are computable. Let (hi)i∈ω be a characteristic of type f.
Fix a computable approximation (hi,s)i,s∈ω of (hi)i∈ω such that (1) hi,s ≤ hi,s+1, and (2)
hi = lims hi,s, for every i and s.

We make sure χ(an) = (hi)i∈ω, for every n, while the characteristic χ(be) = (d(e)i)i∈ω

of be will be merely equivalent to (hi)i∈ω, for each e (thus, Ce � H, for each e).
The construction is injury-free, and we do not need any priority order on the

strategies.
For every e, the strategy for Re defines its own computable function ψe which2 is

an attempt to define a computable settling time for (hi)i∈ω. To define ψe the strategy
uses the sequence (ke,i)i∈ω (to be defined in the construction).

Strategy for Re: If at a stage s of the construction the parameter ke,0 is undefined
then:

1. Compute Ψe(be, s). From this moment on, the strategy is always waiting for
t > s such that Ψe(be, t) , Ψe(be, s). As soon as such a t is found, Re initializes by
making all its parameters undefined and also making d(e) j,t = h j,t for every j we
have seen so far.

2. Let a ∈ A be such that a = Ψe(be, s). Find integers cn and c such that
ca =

∑
n cnan. Let j be a fresh large index such that (1) the prime p j does not occur in

the decompositions of the coefficients c and cn, (2) h j,s > 0, and (3) d(e) j,s < h j,s.
3. Once j is found3, declare ψe( j) = s. From this moment on, make sure

2Since it will be clear from the construction at which stage ψe is defined (if ever), we omit the
extra index t in ψe,t and write simply ψe. We omit the index t for parameters ke,i,t as well.

3We may assume that at stage s such an index j can be found, otherwise we speed up the
approximation (hi,s)i,s∈ω during the construction.
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d(e) j,t = h j,t − 1 for every t ≥ s, unless the strategy initializes. Set ke,0 = j, and
proceed.

Now assume that the parameters ke,0, . . . ke,y have already been defined by the
strategyat ≤ s. We also assume that ψe(i) has already been defined for each i such
that ke,0 ≤ i ≤ max{ke,x : 0 ≤ x ≤ y}. Assume also that ke,y was first defined at stage
u < s. Then do the following:

I. Wait for a stage t ≥ s (of the construction) such that either (a) hi,t > hi,s for
some i such that ke,0 ≤ i ≤ max{ke,x : 0 ≤ x ≤ y} and i < {ke,0, . . . ke,y}, or (b)
hi,u < hi,t for each i ∈ {ke,0, . . . ke,y}. While waiting, make d(e) j,r = h j,r (r is the
current stage of the construction), where j ≤ r and j < {ke,0, . . . ke,y}.

II. If (a) holds for some i, then set ke,(y+1) = i. If (b) holds, then let i be a fresh
large index such that hi,t > 0 (and d(e)i,t < hi,t), and set ke,(y+1) = i. In this
case also define ψe( j) to be equal to the current stage for every j such that
max{ke,x : 0 ≤ x ≤ y} < j ≤ ke,(y+1). Then proceed to III.

III. Set d(e)i,v = hi,v − 1 at every later stage v, where i = ke,(y+1), unless the strategy
initializes.

End of strategy.

Construction. At stage 0, start enumerating A and B as free abelian groups over
{an}n∈ω and {be}k∈ω, respectively. Initialize Re, for all e.

At stage s, let strategies Re, e ≤ s, act according to their instructions. If Re acted
at the previous stage, then return to its instructions at the position it was left at the
previous stage.

Make χ(an) = (hi,s)i∈ω in As for every n ≤ s, and χ(be) = (d(e)i,s)i∈ω in Bs for
every e ≤ s, by making an and be divisible by corresponding powers of primes.

End of construction.

Verification. For each e, the following cases are possible:

1. lims Ψe(be, s) does not exist. In this case the strategy initializes infinitely often.
By the way the strategy is initialized, the characteristic of be is identical to α.

2. lims Ψe,s(be, s) exists and is equal to Ψe(be, l). The domain of ψe should be
finite. For if it were not, the it would be co-finite and then α would have a
computable settling time. The computable settling time can be defined using

62



a (non-uniform) expansion of ψe to the finite set on which it is not defined.
Therefore, the only possibility is that there is a parameter ke,y such that the kth

e,y

position in α is finite. For otherwise we would be able to extend the definition
of ψe again and again (see the construction). However, the strategy ensures
lims Φe,s(be, s) is not an isomorphism since the characteristic of be and α differ
at kth

e,y position. We conclude that α differs from χ(be) in at most finitely many
positions, and the differences are finitary.

In both cases χ(be) is equivalent to α. By Theorem 3.1.1, A � B � G. �

Recall that cases (3) and (4) were both reduced to:

Proposition 3.5.3. Let G be computable homogeneous completely decomposable
abelian group of type f, and suppose α = (sups hi,s)i∈ω in f has computable settling
time ψ. Furthermore, suppose In f (α) is not semi-low. Then G is not ∆0

2-categorical.

Proof idea. We build two computable groups, A and B, both isomorphic to G. The
group A is a “nice” copy of G. The group B =

⊕
e∈ω

⊕
n∈ω Ce,nbe,n is a “bad” copy of G

in which the eth direct component is used to defeat the eth potential ∆0
2-isomorphism

from B onto A.
Recall that In f (α) is a c.e. set. Given e, we attempt to define a functional Γ(e,n, s)

such that HIn f (α)(n) = lims Γ(e,n, s). For every n, we pick an element be,n in B and
attempt to destroy the eth potential ∆0

2-isomorphism from B to A. We start by setting
Γ(e,n, 0) = 0. We wait for j to appear in Wn,s \ In f (α)s. If we never see such a j, then
our attempt to define Γ(e,n, s) is successful. If we find such a j, make be,n divisible
by a large power of p j destroying the potential isomorphism (this power depends
on our current guess on the isomorphic image of be,n in A). We will set Γ(e,n, t) = 1
only if the eth potential isomorphism changes on be,n at a later stage t. We make
Γ(e,n, r) = 0 as soon as j enters In f (α), and then we start waiting for a new fresh
number to show up in Wn \ In f (α). If we see such a number then we repeat the
above strategy with this number in place of j.

Our attempt to define Γ(e,n, s) necessarily fails for at least one index n. Therefore,
the eth potential isomorphism will be defeated at the element be,n. Algebra is sorted
out using Theorem 3.1.1.

Note that the algebraic strategy above differs from the one we used in Propo-
sition 3.5.2. More specifically, we make elements divisible instead of keeping
elements non-divisible. This strategy could not be used in Proposition 3.5.2, be-
cause it would not be consistent with the infinitary outcome (the case when the
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eth potential isomorphism changes infinitely often). We will see that this is not a
problem here.

Proof of Proposition 3.5.3. We build two computable copies of G by stages. Recall
that the first copy A =

⊕
i Hai is a “nice” copy with χ(ai) = α, for every i. The

second (“bad”) copy B =
⊕

e∈ω

⊕
n∈ω Ce,nbe,n is built in such a way that χ(be,n) is

equivalent to α, for every e and n.
Recall Notation 3.5.1. It suffices to meet the requirements:

Re : (∀n) limt Ψe(be,n, t) exists⇒ limt Ψe(x, t) is not an isomorphism from B to A.

The strategy for Re initially attempts to define a total 0′-computable function Γ

such that Γ(n) = 0 iff Wn ⊆ In f (α). If we succeeded, this would imply

HIn f (α) = {n : Wn ∩ In f (α) , ∅} = {n : Wn * In f (α)} ≤T ∅
′,

contradicting the hypothesis. In the following, we write I in place of In f (α). Also,
we omit e in Γ(e,n, s) and write simply Γ(n, s). We also assume at most one number
can be enumerated into Wn at every stage. We split Re into substrategies Re,n, n ∈ ω:

Substrategy Re,n. Permanently assign the element be,n to Re,n. Suppose that the
strategy becomes active first time at stage s of the construction. Then:

1. Start by setting Γ(n, s) = 0 (we may suppose that Γ(n, j) = 0, for every j < s).
At a later stage t, we define Γ(n, t) to be equal to Γ(n, t − 1), unless we have a
specific instruction not to do so.

2. Wait for a stage t > s and a number j ∈ Wn,t \ It. (Recall that we assume that
at most one number can be enumerated into Wn at a stage.)

3. We let p = p j with j ∈Wn,t\It at a later stage t. Find a ∈ At such that a = Ψe(be, t)
(recall that the enumeration of A is controlled by us). Find integers cn and c
such that ca =

∑
n cnan. Let k be a fresh large natural number such that (i) the

prime p = p j has power at most [k/2] in the decompositions of the coefficients
c and cn, and (ii) h j,ψ( j) < [k/2], where ψ is the computable settling time. Note
that (i) and (ii) imply k is so large that pk does not divide a = Ψe(be,n, t) within A,
unless j ∈ It. Make be,n divisible by pk within B.

Wait for one of the two things to happen:

I. (I changes first). We see j ∈ Iu at a later stage u > t, and Ψe(be,n, v) =

Ψe(be,n, t) for each v ∈ (t,u]. We return to (2) with u in place of s.
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II. (Ψe changes first). We see Ψe(be,n,u) , Ψe(be,n, t) for u > t, and j ∈Wn,v \ Iv

for each v ∈ (t,u]. Then set Γ(n,u) = 1 and start waiting for a stage w > u
such that j ∈ Iw. If such a stage w is found, then we set Γ(n,w) = 0 and
go to (2) with w in place of s (and we do nothing, otherwise).

End of strategy.

Construction. At stage 0, start enumerating A and B as free abelian groups over
{ai}i∈ω and {be,n}e,n∈ω.

At stage s, let strategies Re,n, e,n ≤ s, act according to their instructions. If Re,n

acted at the previous stage, then return to its instruction at the position it was left
at the previous stage.

Make χ(ai) = α = (h j) j∈ω in A for every i. For every e,n ∈ ω, make χ j(be,n) = h j in
B for every j except at most one position, according to the instructions of Re,n. We
do so by making ai and be,n divisible by corresponding powers of primes.

End of construction.

Verification. By Theorem 3.1.1, A � B � G. Assume that lims Ψe,s(be,n, s) exists for
every n (thus, II does not get visited infinitely often). Given n, consider the cases:

• Re,n eventually waits forever at substage (2). Then lims Γ(n, s) = 0 and Wn ⊆ I.
Thus, we have a correct guess about HIn f (α).

• Re,n visits I of (3) again and again from some point on (every time returning
to (2)). Then lims Γ(n, s) = 0 and Wn ⊆ I, and we again have a correct guess
about HIn f (α).

• Re,n eventually waits forever at substage (3). Then be,n witnesses that lims Ψe(be,n, s)
is not an isomorphism.

There should be at least one n for which lims Γ(n, s) , HIn f (α)(n). Therefore, for
at least one n, the strategy Re,n eventually waits forever at substage (3). Thus, Re is
met. �

Proposition 3.5.4. If the type f of a computable homogeneous completely decom-
posable group G has a computable settling time, and Fin(α) = {i : 0 < hi < ∞} is
infinite and semi-low for α = (αi)i∈ω of type f, then G is not ∆0

2-categorical.
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Proof idea. We combine the algebraic strategy from Proposition 3.5.2 and the guess-
ing procedure based on the hypothesis Fin(α) = {i : 0 < hi < ∞} is semi-low. As
before, we are building two computable copies, A and B, of G.

If Fin(α) were an infinite computable set, then the algebraic strategy would be
rather straightforward. To destroy the eth potential ∆0

2-isomorphism from B to A,
we pick a large j ∈ Fin(α) and make the witness be ∈ B not divisible by p j. If the
potential isomorphism changes at a later stage, we make hi(be) = αi and repeat the
strategy for another fresh and large i ∈ Fin(α). We have already discussed a similar
algebraic strategy in the idea of proof of Proposition 3.5.2 (the case with no∞′s in
α).

However, Fin(α) is merely semi-low. Recall that the type has a computable
settling time. Therefore, we can produce a computable approximation (hi,s)i,s∈ω of
α such that, for every i, either αi = hi,0 or αi = ∞. We focus on the computable set
N = {i : hi,0 , 0} = In f (α) ∪ Fin(α). Note that In f (α) = {i : αi = ∞} is c.e.

Imagine the eth potential ∆0
2 isomorphism has settled on its witness be ∈ B (if it

never settles we win). To successfully run the algebraic strategy, we need to find
at least one i ∈ Fin(α). We find a fresh large i ∈ N and keep be not divisible by pi.
We can do so because i is so large that be has not been declared divisible by phi,0

i
yet. At the same time we start enumerating a c.e. set first setting W = ∅, and ask if
W ∩ Fin(α) = ∅ (recall that the guessing procedure is ∆0

2). We do nothing and wait
until we get the answer W ∩ Fin(α) = ∅. Note that we should eventually see this
answer, otherwise we get a contradiction by keeping W empty. Then we enumerate
i into W. We do not make be divisible by any further prime until we see:

(1.) i enters In f (α). Then we pick next least j ∈ N, enumerate j into W, and
repeat the strategy keeping be untouched.

(2.) The current guess becomes W ∩ Fin(α) , ∅. We allow the construction to
continue building the elementary component corresponding to be but keep be not
divisible by pi. If i never enters In f (α) we win. If at a later stage i enters In f (α),
we wait until our guess is W ∩ Fin(α) = ∅. Again, it should eventually happen,
otherwise we get a contradiction by not changing W. Then we make be infinitely
divisible by pi, pick a large fresh v ∈ N, enumerate v into W, and repeat the whole
strategy with v in place of i (again, keep be untouched etc).

Note that we eventually reach (2.) with some j ∈ W, and either j never enters
In f (α) or we change our guess on W ∩ Fin(α). In the latter case will reach (2.) again
with another number, and either win or change the guess once more. We can not
change the guess infinitely often, because Fin(α) is semi-low. Thus, eventually the
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algebraic strategy succeeds.
In the formal construction each strategy defines its own sequence of c.e. sets.

Every set from the sequence corresponds to a potential image of be, which can be
changed at a later stage. If the image changes, we start enumerating the next set
from the eth sequence. Since the construction is effective and uniform, we may
assume that the indexes of these c.e. sets are listed by a computable function, and
the index of this function is given ahead of time. We give all details in the formal
proof below.

Proof of Proposition 3.5.4. Let Γ be a computable function such that lims Γ(n, s) guesses
Fin(α) ∩Wn = ∅ correctly. As in the proof of Proposition 3.5.2, we are building two
computable copies,

A =
⊕
n∈ω

Han and B =
⊕

e∈ω

Cebe,

of G. We make χ(an) = α and χ(be) = (d(e))i∈ω ' α, for every n and e. Recall
Notation 3.5.1. The requirements are:

Re : If limt Ψe(be, t) exists, then limt Ψe(x, t) is not an isomorphism from B to A.

For every e, the strategy for Re will enumerate its own sequence of c.e. sets. The
indexes for the sets are listed by a computable function g of two arguments:

{Wg(e,s)}s∈ω.

Let (hi,s)i,s∈ω be a computable approximation of α such that, for every i, either
αi = hi,0 or αi = ∞. Also, let n(0),n(1) . . . be an effective increasing enumeration of
the infinite computable set N = {i : hi,0 , 0}.

The strategy for Re: Suppose s = 0 or Ψe(be, s) , Ψe(be, s − 1). Do the following
substeps:

1. Make χ(be) = (d(e))i∈ω and α equal at all positions seen so far.

2. Begin enumerating Wg(e,s) by setting Wg(e,s) = ∅.

3. Wait for a stage u such that Γ(g(e, s),u) = 0.

4. Let a ∈ A be such that a = Ψe(be, s). If a = 0 do nothing. If a , 0, find integers
cm and c such that ca =

∑
m cmam. Let n(i) ∈ N be a fresh large number such

that (1) the prime pn(i) does not occur in the decompositions of the coefficients
c and cm, (2) hn(i),0 > 0, and (3) d(e)k,s = 0 for every k ≥ n(i).
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5. Enumerate n(i) into Wg(e,s). Keep d(e)n(i),l = 0 for l ≥ s (unless we have a
specific instruction not to do so). Restrain the element be by not allowing the
construction to make it divisible by any prime greater than pn(i).

6. Wait for one of the following three things to happen:

I. Ψe(be, s) , Ψe(be, t) at a later stage t. Then declare be not restrained and
restart the strategy with t in place of s (go to (1); for instance, make be

divisible by the corresponding power of pn(i)).

II. The number n(i) enters the c.e. set In f (α) at a stage s > t (thus, hn(i) = ∞).
Make be infinitely divisible by pn(i) and return to (5) with n(i + 1) in place
of n(i) keeping be restrained.

III. Γ(g(e, s), t) = 1 (thus, we believe Wg(e,s) ∩ Fin(α) , ∅ and j ∈ Fin(α)). We
remove the restraint from the element be allowing the construction to
make be divisible by pi with i < Wg(e,s) if needed. We keep be not divisible
by pn(i).

If at a later stage r the number n(i) enters In f (α)r (thus, Wg(e,s),r ⊆ In f (α)r),
then make be infinitely divisible by pn(i). In this case also wait for a stage
w ≥ r such that Γ(g(e, s),w) = 0. Then return to (4) with a new fresh and
large n( j).

End of strategy.

Construction: At stage 0, start enumerating A and B as free abelian groups over
{an}n∈ω and {be}k∈ω, respectively.

At stage s, let strategies Re, e ≤ s, act according to their instructions. If Re acted
at the previous stage, then return to its instruction at the position it was left at the
previous stage.

Make χ(an) = (hi,s)i∈ω in As for every n ≤ s, and (hi,s)i∈ω = (d(e)i,s)i∈ω in Bs for
every e ≤ s which is not restrained, unless Re keeps d(e)i,s = 0.

End of construction.

Verification. If limt Ψe(be, t) does not exist, then we reach I of (6) infinitely often and,
therefore, χ(be) = α. Assume that limt Ψe(be, t) exists. Let s be the stage after which
Ψe(be, t) never changes again and

Ψe(be, s) = lim
t

Ψe(be, t).
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Let u ≥ s be a stage such that limt Γ(g(e, s), t) = Γ(g(e, s),u). The set Wg(e,s) is designed
to make limt Γ(g(e, s), t) = 1. If Γ(g(e, s),u) = 0 was the case, then we would add
more elements to Wg(e,s) at a stage v ≥ u and eventually put some n( j) ∈ Fin(α) into
Wg(e,s), a contradiction.

By the definition of Γ, if limt Γ(g(e, s), t) = 1, then there is at least one j ∈
Wg(e,s) ∩ Fin(α). Furthermore, the strategy guarantees that there is exactly one such
a j, namely the last witness n(i) which visits III of the strategy at some stage and
stays there from this stage on. As a consequence, the element be will eventually be
unrestrained (see the construction).

The algebraic strategy guarantees be is not divisible by pn(i) while the image is
(see the second paragraph of proof idea). Furthermore, be is declared not restrained
as soon as we reach III with n(i), meaning that the characteristic of be satisfies the
property d(e) j = α j for each j , n(i). It remains to apply Theorem 3.1.1. �

We note that in the proposition above the algebraic strategy from Proposi-
tion 3.5.3 would not succeed. Theorem 3.5.1 is proved. �

Corollary 3.5.1. For a c.e. set P, the following are equivalent:

1. GP has a Σ0
2 excellent P̂-basis;

2. GP has a Σ0
2-basis as a free Q(P)-module;

3. GP has a Π0
1-basis as a free Q(P)-module;

4. GP is ∆0
2-categorical;

5. P̂ is semi-low.

Proof. The proof is a combination of Theorem 3.5.1, Theorem 3.4.2, and Lemma 3.2.1.
�

Corollary 3.5.2. Each computable copy of the free abelian group of rank ω has a Π0
1 set of

free generators.

Proof. The free abelian group can be viewed as the free Z-module. It remains to
apply Theorem 3.4.2 and Theorem 3.5.1 with P̂ the set of all primes. �
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Chapter 4

An effective transformation

This chapter studies properties of a certain computable functor (effective trans-
formation) from computable trees to computable abelian groups. We begin with
recalling some definitions and basic facts about rank-homogeneous trees (from
[16]).

4.1 Rank-homogeneous trees

Definition 4.1.1 (tree rank). Let T be a subtree of ω<ω. We define the tree rank of x ∈ T,
denoted by tr(x), by induction.

1. tr(x) = 0 if x has no successor,

2. for α > 0, tr(x) = α if α is the least ordinal greater than tr(y) for all successors y of x,

3. tr(x) = ∞ if x does not have ordinal tree rank.

Tree rank is sometimes called foundation rank. Note that tr(x) = ∞ if and only if
x extends to a path.

Definition 4.1.2 (rank-homogeneous tree). A tree T ⊆ ω<ω is rank-homogeneous
provided that for all x at level n,

1. if tr(x) is an ordinal, then for all y at level n+1 such that tr(y) < tr(x), x has infinitely
many successors z such that tr(z) = tr(y),

2. if tr(x) = ∞, then for all y at level n + 1, x has infinitely many successors z such that
tr(z) = tr(y).
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For a rank-homogeneous tree T, let R(T) be the set of pairs (n, α) such that there
is an element at level n of tree rank α (where α is an ordinal, not ∞). Note that
the top node in T has rank ∞ just in case R(T) has no pair of the form (0, α). Also
note if T has a node of rank∞, then the top node must have rank∞, and if the top
node has rank∞, then there are nodes of rank∞ at all levels. Thus, from the set of
pairs R(T) in which the second components are ordinals, we can deduce all of the
information that would be given if we included pairs with second component∞.

Proposition 4.1.1. Suppose T,T′ are rank-homogeneous trees. Then T � T′ iff R(T) =

R(T′).

Proof. Clearly, if T � T′, then R(T) = R(T′). Suppose R(T) = R(T′). To see that
there is an isomorphism, we show that the set of finite partial rank-preserving
isomorphisms between subtrees of T and T′ has the back-and-forth property. The
subtrees must be closed under predecessor in the large trees, and the finite partial
isomorphisms must preserve all ranks, both ordinals and∞. Given a finite subtree
of one of the large trees, we can reach any further node by a finite sequence of steps
in which the node being added is a successor of one already included. Therefore,
it is enough to prove the following.

Claim: Let p be a rank-preserving isomorphism from the finite subtree τ of T onto
the finite subtree τ′ of T′, and let a ∈ T−τ be a successor of b ∈ τ. Suppose b′ = p(b).
Then there exists a′, a successor of b′ in T′, not already in ran(p), such that a′ and a
have the same rank.

The rank of p(b) is the same as that of b. If a has rank∞, then b and b′ also have
rank ∞, and b′ has infinitely many successors of rank ∞. If a has ordinal rank α,
then b and b′ have rank either ∞ or some β > α. In either case, b′ has infinitely
many successors of rank α. We choose a′ to be a successor of b′, of the proper rank,
not already in ran(p).

�

The class of countable rank homogeneous trees is denoted by RHT.

4.2 The transformation

Hjorth [50] gave a transformation from trees to torsion-free Abelian groups which
enabled him to show that the isomorphism relation on these groups is not Borel.
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Downey and Montalbán [32] built on Hjorth’s ideas to show that the isomorphism
relation on these groups is analytic complete. The transformation

G : T→ G(T)

from [50] and [32] is described below.
We consider the elements of ω<ω as a basis for a Q-vector space V∗. Let T be

a subtree of ω<ω, and let V be the subspace of V∗ with basis T. Let Tn be the set
of elements at level n of T. If u is at level n > 0, let u− be the predecessor of u.
Let (pn)n∈ω be the standard computable list of primes, in increasing order. We let
G(T) be the subgroup of V generated by the vector space elements of the following
forms:

1.
v

(p2n)k
, where v ∈ Tn, and k ∈ ω,

2.
v + v′

(p2n+1)k
, where v ∈ Tn, v′ is a successor of v, and k ∈ ω.

If P is a finite set of prime numbers, we let Q(P) be the set of rationals of the form
k
m

, where k ∈ Z and m is a product of powers of elements of P.

Elementary facts.

1. Q(∅) = Z

2. Q(P)
∩Q(R) = Q(P∩R)

3. Q(P) + Q(R) = Q(P∪R)

Recall that ∅ is the top node in the tree T. Note that each element of G(T) can be
expressed in the form

h = Σv∈Vavv + Σu∈Ubu(u− + u)

where

1. U,V are finite subsets of T, ∅ < U,

2. if v ∈ V ∩ Tn, then av ∈ Q({p2n}),

3. if u ∈ U ∩ Tn+1, then bu ∈ Q({p2n+1}).
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The transformation described above takes the full class of trees to the class
TFA of torsion-free Abelian groups. Our goal is to show that the restriction of the
transformation to the class RHT of rank-homogeneous trees is 1−1 on isomorphism
types.

4.3 The injectivity on RHT

The main result of the section, and of the whole chapter, is:

Theorem 4.3.1. For every two rank-homogeneous trees T and T′, the groups G(T) and
G(T′) are isomorphic if, and only if, T � T′.

Preliminary remarks. The idea of this technical result can not be described in two
or three sentences. We, however, give some intuition which lies behind the proof
below. Consider the transformation T → G(T). The first idea would be: given a
group of the form G(T), reconstruct vertices of T and understand which ones are
adjacent. This is not possible: we will show that, in general, non-isomorphic trees
may give rise to isomorphic groups. Thus, we have to use the special features of the
class of rank-homogeneous trees. In particular, we know that the collection of ranks
of vertices at different levels of a rank-homogeneous tree uniquely determines the
isomorphism type of the tree. We do not distinguish between elements of the tree
T and the corresponding elements of G(T), which we call vertex elements. We will
describe elements of G(T) that resemble vertex elements. We call these elements
vertex-like. We will also describe a relation on these elements that resembles the
successor relation. From this, we obtain a notion of rank for vertex-like elements.
We will use this new notion of rank to provide, for each n ∈ ω and each countable
ordinal α, a sentence in Lω1,ω that is true in G(T) if and only if T has a node at level
n of tree rank α. From this, it follows that rank-homogeneous trees that give rise
to isomorphic groups must be isomorphic. These is all done by a careful analysis
of infinite divisibility within the group G(T). The proof uses the machinery from
[50, 32] and is (essentially) purely algebraic.

Proof. The results in [32] use only a few simple facts, which they extract from the
proofs in [50]. We begin with these same facts, but we shall need more. Recall that
∅ is the top node in the tree T. We write p∞|h if h is divisible by all powers of p.

Lemma 4.3.1. Let h ∈ G(T), say h =
∑

v∈V qvv, where V is a finite set of vertex
elements and qv ∈ Q− {0}. If p is a prime and p∞|h, then there is some g ∈ G(T) such
that g =

∑
v∈V rvv, where p∞|g, and for all v ∈ V, rv ∈ Q({p})

− Z.
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Proof. We multiply h by an appropriate integer and then divide by a power of p. �

The next two lemmas are given explicitly in [32].

Lemma 4.3.2. Let h be an element of G(T), say h =
∑

v∈V rvv, where V is a finite
subset of T and rv ∈ Q − {0}. If (p2n)∞|h, then for all v ∈ V, v has length n.

Proof. We take g =
∑

v∈V r′vv as in Lemma 4.3.1. For v ∈ V, the coefficient r′v has the
form av + (

∑
u∈Uv

bu) + bv, where Uv consists of successors of v, if v has length m, then
av ∈ Q({p2m}), if u ∈ Uv, then bu ∈ Q({p2m+1}), and bv ∈ Q({p2m−1}). Since r′v ∈ Q({p2n}) − Z, we
must have m = n and av , 0. Note that (

∑
u∈Vv

bu) + bv must be in Z. �

Lemma 4.3.3. Let h be an element of G(T), say h =
∑

v∈V rvv, where V is a finite
subset of T and rv ∈ Q − {0}. If (p2n+1)∞|h, then for all v of length n in V, v has a
successor u ∈ U.

See [32] for a proof. We will not give the proof because we will actually need more
(see Lemma 4.3.4). It is useful to keep in mind the following example showing that
the predecessor of v, even if it exists, may not be in U:

Example: Let h = u− u′ = (v + u)− (v + u′), where v ∈ Tn and u,u′ are successors of
v in Tn+1. Then p∞2n+1|h, although in our expression for h, the coefficient of v is 0.

The following is taken from Hjorth [50] (Propositions 2.2 and 2.5).

Proposition 4.3.1. Let ϕ be a homomorphism from G(T) to Q such that ϕ(v) = 1 for
v ∈ Tn and ϕ(v) = −1 for v ∈ Tn+1. Let h =

∑
v∈V cvv +

∑
u∈U auu, where V ⊆ Tn and

U ⊆ Tn+1. If (p2n+1)∞|h, then ϕ(h) = 0. Moreover, for each v ∈ V, if hv = cvv +
∑

u∈Uv
auu,

then (p2n+1)∞|hv, and ϕ(hv) = 0 (here Uv ⊆ U contains all successors of v in U).

Using Proposition 4.3.1, we obtain:

Lemma 4.3.4.

1. Suppose h = a∅∅ +
∑

u∈U auu, where U ⊆ T1. If (p1)∞|h, then
a∅ =

∑
u∈U au.

2. Suppose h =
∑

v∈V avv +
∑

u∈U buu, where U ⊆ Tn+1, and V is the set of prede-
cessors of these elements. For v ∈ V, let Uv be the set of successors of v. If
(p2n+1)∞|h, then for each v ∈ V, av =

∑
u∈Uv

bu.
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Proof. For 1, we consider a homomorphism ϕ taking ∅ to 1 and taking elements at
level 1 to −1. We have ϕ(h) = 0 = a∅ −

∑
u∈U au. By Proposition 4.3.1, a∅ =

∑
u∈U au.

For 2, we consider a homomorphismϕ taking all elements of V to 1 and all elements
of U to −1. By Proposition 4.3.1, for each v ∈ V, ϕ(avv+

∑
u∈Uv

bu) = 0 = av−
∑

u∈Uv
bu.

Therefore, av =
∑

u∈Uv
bu. �

Note that in Lemma 4.3.4, in Case 1, we may have a∅ = 0 and
∑

u∈U au = 0, and
in Case 2, we may have av = 0, and

∑
u∈Uv

bu = 0. We need a refinement of Lemma
4.3.2.

Lemma 4.3.5. Suppose (p2n)∞|h.

1. If n > 0, then h can be expressed in the form
∑

v∈V rvv, where V ⊆ Tn and rv is
in Q({p2n,p2n−1}).

2. If n = 0, then h has the form r∅, where r ∈ Q({p0}).

Proof. We consider the two cases separately.

Case 1: Suppose n > 0. By Lemma 4.3.2, h can be expressed in the form
∑

v∈V rvv,
where V ⊆ Tn, and rv ∈ Q. Just because h ∈ G(T), we have h =

∑
u∈U auu+

∑
u∈W bu(u+

u−), where if u ∈ Tk, then au ∈ Q({p2k}), and bu ∈ Q({p2k−1}). For u at level k , n, the
coefficient of u in the expression for h must be 0. This coefficient has the form
au + (

∑
w−=u bw) + bu.

Claim: For all k > n, for u at level k (appearing in our decomposition), au and bu are
integers.

Proof of Claim. We work our way back from the largest k > n with some u at level k
that appears. For the greatest k, if u is at level k, and u appears, then no successor
of u appears. We have 0 = au + bu, where au ∈ Q({p2k}) and bu ∈ Q({p2k−1}). Then both
au and bu must be integers. Supposing that the claim holds for k′ > k, where k > n,
let u be an element at level k that appears. We have 0 = au + (

∑
w−=u bw) + bu, where

au ∈ Q({p2k−1}), bu ∈ Q({p2k−1}), and
∑

w−=u bw ∈ Z. Again au and bu must be integers. �

Using the Claim, we can complete the proof for Case 1. For v at level n, the
coefficient is rv = av+(

∑
w−=v bw)+bv, where

∑
w−=v bw ∈ Z, av ∈ Q({p2n}) and bv ∈ Q({p2n−1}).

Therefore, rv ∈ Q({p2n,p2n−1}).

Case 2: Suppose n = 0. Then the only possible v is ∅, so h = r∅. Since there is no
∅
−, we have r = a∅ +

∑
w−=∅ bw. By the argument above,

∑
w−=∅ bw ∈ Z. Since a∅ is in

Q({p0}), r is also. �

76



A node in Tn has the feature that there is a successor chain of length n leading
from ∅ to it. We try to describe this in the group G(T). We define first the pseudo-
vertex-like elements at level n, and then the vertex-like elements at level n. We start
with the definition of pseudo-successor:

Definition 4.3.1 (pseudo-successor). Suppose nonzero h and g are so that p∞2n|g and
p∞2n+2|h, for some n ≥ 0. We say that h is a pseudo-successor of g if (p2n+1)∞|(g + h).

Lemma 4.3.6. There is a computable infinitary formula Θ(x) such that for all T ∈
RHT with T1 , ∅, Θ(x) is satisfied just by ∅ and −∅.

Proof. We let Θ(x) say the following:

1. (p0)∞|x,

2. for primes q , p0, q 6 |x,

3. x has a pseudo-successor,

4.
1
p0

x has no pseudo-successor.

It is not difficult to see that ∅ and −∅ satisfy Θ(x). We must show that other
elements do not. If x satisfies Condition 1, we can apply Part 2 of Lemma 4.3.5, to
see that x has the form r∅, where r ∈ Q({p0}). Then r has the form

z
(p0)m , where z ∈ Z.

Condition 2 implies that z is not divisible by any primes other than p0. Therefore,
x has the form ±pk

∅. Condition 3 says that x has a successor. Using this, we show
that k ≥ 0. Take y such that (p2)∞|y. By Part 1 of Lemma 4.3.5, y =

∑
v∈V svv, where

V ⊆ T1 and sv ∈ Q({p2,p1}). If (p1)∞|(x + y), then by Lemma 4.3.4, ±(p0)k =
∑

v∈V sv. This
implies that the right-hand side is an integer, and then the left-hand side is as well.
Therefore, x = ±pk

0, where k ≥ 0. Finally, we show that if x satisfies Condition 4,

then k cannot be positive. If k > 0, then
1
p0

x = pk−1
0 ∅. This satisfies Conditions 1 and

2. Moreover, if v ∈ T1, then pk−1
0 v is a successor of 1

p0
x, contradicting Condition 4.

Therefore, x must have the form ±∅. �

Definition 4.3.2 (pseudo-vertex-like). An element h ∈ G(T) is pseudo-vertex-like, or
p.v.l., at level n, if one of the following holds:

1. n = 0 and Θ(x) holds, or
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2. n > 0 and

(a) p∞2n|h,

(b) there exists a sequence g0, g1, . . . , gn = h, such that g0 satisfies the formula Θ(x)
from Lemma 4.3.6, and for all i < n, we have p∞2i |gi and p∞2i+1|(gi + gi+1).

It is easy to see that all vertex elements are pseudo-vertex-like.

Remark. For each n, we have a computable infinitary formula that defines the set
of p.v.l. elements of G(T). The formula is independent of T. For each n, we have a
computable infinitary formula defining in G(T) the set of pairs (g, h) such that g is
p.v.l. at level n and h is a pseudo-successor of g. The formula is independent of T.

We define rank for p.v.l. elements by analogy with tree rank. We write rk(h) for
the rank of h in the group G(T), and tr(v) for the tree rank of v in the tree T.

Definition 4.3.3 (rank). Let h be p.v.l. at level n.

1. rk(h) = 0 if h has no pseudo-successors,

2. for α > 0, rk(h) = α if all pseudo-successors of h have ordinal rank, and α is the least
ordinal greater than these ranks,

3. rk(h) = ∞ if h does not have ordinal rank.

We note that rk(h) = ∞ if and only if there is an infinite sequence (gi)i∈ω such
that each gi is p.v.l., g0 = h and gi+1 is a pseudo-successor of gi.

Lemma 4.3.7. Suppose h is p.v.l at level n, expressed in the form
∑

v∈V rvv, where V
is a finite subset of Tn and rv , 0. Then for all v, tr(v) ≥ rk(h).

Proof. We show by induction on α that if rk(h) > α, then for all v ∈ V, tr(v) , α. (We
allow the possibility that rk(h) = ∞.) Let rk(h) > 0. Let g be a p.v.l. pseudo-successor
for h. Then (p2n+1)∞|(h + g). Say g =

∑
u∈U suu, where U is a set of vertex elements

at level n + 1 and su , 0. By Lemma 4.3.3, for each v ∈ V, there is some u ∈ U such
that u is a successor of v. Therefore, tr(v) , 0.

Consider α > 0, where the statement holds for β < α. Suppose rk(h) > α. Let
g be a p.v.l. pseudo-successor of h such that rk(g) ≥ α. Say g =

∑
u∈U suu, where U

is a set of vertex elements at level n + 1 and su , 0. By the Induction Hypothesis,
tr(u) , β for any β < α, so tr(u) ≥ α. By Lemma 4.3.3, some u ∈ U is a successor of
v. Then tr(v) , α. Finally, we show that if rk(h) = ∞, then for all v ∈ V, tr(v) = ∞.
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There must be an infinite sequence of p.v.l. elements (gk)k∈ω such that g0 = h and
gk+1 is a pseudo-successor of gk. We have gk =

∑
u∈Uk

suu, where Uk is a set of vertex
elements at level n + k, and su , 0. For each element of Uk, there is a successor in
Uk+1. We obtain a chain of successors, starting with v = v0 ∈ U0, and choosing vk+1

a successor of vk in Uk+1. Therefore, tr(v) = ∞. �

Remark. For each n and α, we have a formula of Lω1,ω defining in G(T) the set of
p.v.l. elements at level n of rank α. The formula is independent of T. Moreover, it
lies in the least admissible set containing the ordinal α.

It is again helpful to consider an example.

Example: Let v ∈ T1 and let u and u′ be successors of v in T2. Suppose that both u

and u′ have successors in T3. Let g =
1
p4

u +
p4 − 1

p4
u′. Since p∞4 |u,u

′, we have p∞4 |g.

Since p4(v + g) = (v + u) + (p4 − 1)(v + u′), we see that p∞3 |(v + g). Therefore, g is p.v.l.
and it is a pseudo-successor of v. We can show that g has no pseudo-successor, even
though we have expressed it in terms of u and u′, both of which have successors in
T3. Suppose that h is its a pseudo-successor at level 3. Then h =

∑
w∈W rww, where

W ⊆ T3 and rw ∈ Q. By Lemma 4.3.5, we must have rw ∈ Q(p6,p5). We must have
p∞5 |(g+h). By Lemma 4.3.4, if Wu,Wu′ are, respectively, the sets of successors of u,u′

in W, then
∑

w∈Wu
rw =

1
p4

, and
∑

w∈Wu′
rw =

p4 − 1
p4

. This is a contradiction.

We strengthen the definition of p.v.l. element in order to rule out examples like
the one above, in which g has no successor, but it has a decomposition in terms of
elements all having successors.

Definition 4.3.4 (vertex-like). Let g ∈ G(T). We say that g is vertex-like, or v.l., if

1. g is p.v.l. at some level n, and

2. either

(a) rk(g) > 0, or

(b) rk(g) = 0 and for any decomposition g =
∑

j r jg j such that all g j are p.v.l. at
level n, there exists j such that rk(g j) = 0.

Lemma 4.3.8. If v is a vertex element, then it is vertex-like.

79



Proof. We already noted that a vertex element is p.v.l. Suppose v is at level n, and
rk(v) = 0. Then v has no successors. We must show that if v =

∑
j r jg j, where each

g j is p.v.l. at level n, then for some j, rk(gi) = 0. Suppose that for all j, rk(g j) , 0.
Say h j is a p.v.l. pseudo-successor of g j at level n + 1. By Lemma 4.3.2, each g j

has a decomposition in terms of tree elements at level n. Since v =
∑

j r jg j, v must
appear with non-zero coefficient in the decomposition of some g j. Then by Lemma
4.3.4, the corresponding h j has a decomposition that involves successors of v with
non-zero coefficients. This is a contradiction. �

We would like to show that if g is v.l. at level n, expressed in the form
∑

v∈V rvv,
where V ⊆ Tn and rv , 0, then rk(g) is the minimum of tr(v), for v ∈ V.

Lemma 4.3.9. Suppose g is v.l. at level n. Say g =
∑

v∈V rvv, where V ⊆ Tn. Then
rk(g) = 0 iff there exists v ∈ V such that tr(v) = 0.

Proof. First, suppose there exists v ∈ V such that tr(v) = 0. By Lemma 4.3.7,
tr(v) ≥ rk(g), so rk(g) = 0. Next, suppose rk(g) = 0. The elements of V are p.v.l. and
one of the decompositions of g is

∑
v∈V rvv. By the definition of vertex-like, there is

some v such that rk(v) = 0. Then v has no pseudo-successors, so v has no successors
in T. Therefore, tr(v) = 0. �

Lemma 4.3.10. If g is v.l. at level n and rk(g) > 0, then g has a decomposition∑
v∈V mvv where all coefficients mv are integers.

Proof. By Lemma 4.3.5, g can be expressed in the form
∑

v∈V rvv, where V ⊆ Tn and
rv ∈ Q({p2n,p2n−1}). Since rk(g) > 0, we have a p.v.l. pseudo-successor g′, expressed in
the form

∑
u∈U suu, where U ⊆ Tn+1 and su ∈ Q({p2n+2,p2n+1}). Consider h = g + g′. Since

(p2n+1)∞|h, we can apply Lemma 4.3.4. For each v ∈ V, let Uv be the set of successors
of v in U. We have rv =

∑
u∈Uv

su. It follows that
∑

u∈Uv
su and rv are integers. �

Suppose g is a v.l. element at level n. Recall that the definition of v.l. has two
condidions, with the second split into two cases. If Condition 2 (a) holds for g, then
Lemma 4.3.9 says that g can be expressed as a sum of vertex elements on level n
with integer coefficients. If rk(g) = 0, then the decomposition of g involves some
terminal vertex element.

Lemma 4.3.11. Let g be v.l. at level n, with a decomposition
∑

v∈V rvv, where V ⊆ Tn

and all coefficients rv are non-zero. Then rk(g) = minv∈Vtr(v).
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Proof. By Lemma 4.3.7, tr(v) ≥ rk(g) for all v ∈ V. We show by induction on α that
if tr(v) ≥ α for all v ∈ V, then rk(g) ≥ α. For α = 0, the statement is trivially true.
Suppose α > 0, where the statement holds for all β < α. If g satisfies Condition 2
(b) from the definition of v.l., then by Lemma 4.3.10, there is some v ∈ V such that
tr(v) = 0. Suppose rk(g) = β, where 0 < β < α. For all v ∈ V, tr(v) > β, so v has
a successor uv with tr(uv) ≥ β. By Lemma 4.3.10, we may suppose that all rv are
integers. We have a successor h of g, of the form

∑
v∈V rvuv. This h is vertex-like

at level n + 1, and by the Induction Hypothesis, rk(h) ≥ β. Then rk(g) cannot be β
after all. Finally, suppose tr(v) = ∞ for all v ∈ V. For each v, there is an infinite
successor chain, and we can use these to form an infinite chain of successors of g,
so rk(g) = ∞. �

We are ready to finish the proof of the theorem. Recall that for a tree T, R(T)
is the set of pairs (n, α) such that there is some v ∈ T at level n with tr(v) = α.
Proposition 4.1.1 says that for rank-homogeneous trees T,T′, T � T′ if and only if
R(T) = R(T′). Let T,T′ ∈ RHT. We show that T � T′ iff G(T) � G(T′). We let R(G(T))
be the set of pairs (n, α) such that there is a v.l. g ∈ G(T) at level n with rk(g) = α.
We can show that R(T) = R(G(T)). If (n, α) ∈ R(T), then there is a v ∈ T and a
corresponding vertex element v in G(T) witnessing the rank. By lemma 4.3.11, the
group rank of v is equal to the tree rank of v. Therefore, (n, α) ∈ R(G(T)). On the
other hand, if (n, α) ∈ R(G(T)), witnessed by g =

∑
v∈V rvv, then by Lemma 4.3.11,

there is some vertex element v ∈ Vn such that tr(v) = α. Therefore, (n, α) ∈ R(T).
This completes the proof that G : T→ G(T) is 1 − 1 on isomorphism types. �
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4.4 The failure of injectivity

Consider the following isomorphism invariant of a given tree T which says how
many nodes the tree T has at the n-th level: L(T) = 〈|Tn| : n ≤ height(T)〉. If T
has all leaves at one level, then L(T) is a tuple of the form 〈n0,n1, . . . ,nh〉, where
1 = n0 ≤ n1 ≤ . . . ≤ nh. The previous theorem can not be improved to the class of all
trees:

Proposition 4.4.1. Suppose that finite trees T and U have all leaves at one level.
Then G(T) � G(U) if and only if L(T) = L(U).

Proof. Consider the pure subgroup Gn of G(T) generated by the image of Tn. Note
that g ∈ Gn if and only if p∞2n|g. Observe that the number of nodes in Tn is equal to
the rank of Gn. Note also that n > height(T) implies that the rank of Gn is 0. Thus,
the number of nodes in Tn depends on the isomorphism type of G(T) only, for every
n ≥ 0. This gives the proof of the “only if” part.

For the “if” part of the proposition, for each n ≤ height(T) consider the subgroups
Hn and Fn of Gn generated by {(v − w) : v,w ∈ Tn have the same predecessor} and
{v : v ∈ Tn}, respectively. Observe that Fn−1 � Fn/Hn via a homomorphism φn which
takes each node (element, corresponding to it) to its predecessor. The groups Fn,
Fn−1 and Hn are free, therefore the subgroup Hn detaches as a summand of Fn (see,
e.g., [39], Theorem 14.4).

Now assume we are given two trees, T and U, such that L(T) = L(U). Let
G = G(T) and G′ = G(U). As above, define Hn, Fn and φn for G, and similarly define
H′n, F′n and φ′n for G′. Since L(T) = L(U), we have rk(Hn) = rk(H′n) and rk(Fn) = rk(F′n),
for each n ≤ h = height(T) = height(U). Furthermore, by the above observation, we
have Fn � F0 ⊕ H1 ⊕ . . . ⊕ Hh and F′n � F′0 ⊕ H′1 ⊕ . . . ⊕ H′h. Let ϕ : F0 → F′0 be an
isomorphism. It is clear how to extend this isomorphism to an isomorphism ψ of
Fn onto F′n so that ψ(Hn) = H′n for each n ≤ h.

Usingψwe can define an isomorphism θ :
⊕

0≤n≤h Fn →
⊕

0≤n≤h F′n which maps
each summand Fn to the corresponding F′n and such thatθφn = φ′nθ on their domain
and range, for each n. It remains to prove that the map θ can be extended to an
isomorphism from G(T) onto G(U).

The map can be extended to a map θ :
⊕

0≤n≤h Gn →
⊕

0≤n≤h G′n. It remains
to show that the infinite divisibility can be preserved as well. Given a ∈ Fn, we
have θ(a + φn(a)) = θ(a) + θ(φn(a)) = θ(a) + φn(θ(a)), and for b ∈ F′n, we have
θ−1(a + φ′n(a)) = θ−1(a) + θ−1(φ′n(a)) = θ−1(a) + φn(θ−1(a)). This shows that θ can
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be correctly extended to the whole group preserving infinite divisibility. This
completes the proof of the proposition. �

It is natural to ask if Proposition 4.4.1 can be extended to the case of finite trees
having leaves not at the same level. Consider the trees (T (top) and U (bottom)):

y1

y2 y3

y4 y5

x1

x2 x3

x4 x5

Fact 4.4.1. L(T) = L(U) but G(T) � G(U).

Proof. The subgroup of G(U) generated by elements at level 1 having successors
and predecessors has rank 2, while the similarly defined subgroup of G(T) has
rank 1. It remains to note that the group generated by elements at level 1 having
successors and predecessors can be defined by a first-order formula in the language
of abelian groups augmented by predicates for infinite prime divisibility (p∞i | for
i ∈ ω).

�
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Chapter 5

Jump degrees of torsion-free abelian
groups

The main result of the chapter is:

Theorem 5.0.1. For every computable ordinal α and degree a > 0(α), there is a torsion-free
abelian group having proper αth jump degree a.

Proof idea. The basic idea is rather simple. We wish to have a way of coding a set S
into a group GαS so that S Σ0

α if, and only if, GαS has a computable copy. As we will
discuss in more detail, providing such a coding is sufficient for proving the theorem
(as it follows from [2], say). Although the basic idea is rather simple, the coding
requires a lot of work. The main basic technical idea is to use infinite divisibility
by various primes to effectively encode a potential Σ0

α representation of S into the
group (similarly to how it is done in the case of trees) so that the isomorphism type
of the outcome depends only on the set S. Using the machinery introduced in the
previous chapter, one can certainly obtain several codings of this kind.

The main problem is, however, not in coding but in undoing the set S from the
groupGαS. We have to come up with a computable infinitary formula which isolates
the set within the group. This task is the main difficulty of the proof, because not
every coding which one can come up with has this property (an evidence is the
failure of injectivity, see Proposition 4.4.1). Thus, we have to adjust the coding
to make the set definable within the group. This is done by a careful analysis of
infinite divisibility within the group. We develop a new language and an algebraic
machinery which enables us to define S within GαS.

The structure of the chapter. Section 5.1 provides the reader with further background
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and necessary notations and conventions. Section 5.2 describes the encoding of sets
S ⊆ ω into groupsGαS (this encoding depends on α). Theorem 5.0.1 is demonstrated
in Section 5.3.

5.1 Background, Notation, and Conventions

In this section, we review basic terminology and results relevant to torsion-free
abelian groups. We also introduce some classical notation and adopt some conven-
tions that will simplify the exposition.

The groups G constructed for Theorem 5.0.1 will have countably infinite rank.
The key coding mechanism will be the existence or nonexistence of elements di-
visible by arbitrarily high powers of a prime. (Recall the definitions of infinite
divisibility.)

Remark 5.1.1. Within any presentation of G, the set {x ∈ G : p∞ | x} of elements
infinitely divisible by p is Πc

2(G). Indeed, this set is a subgroup of G under the
group operation (which we use without further mention).

Notation 5.1.1. In the following, D(G) stands for the divisible closure of G.

Note that the countable divisible torsion-free abelian groups are the groups Qn

(for n ∈ ω) and Qω, and the divisible closure of Z is Q. Classically, the divisible
closure D(G) exists, is unique, and contains G as a subgroup. In terms of effective
algebra, Smith (see [90]) proved that every computable torsion-free abelian group
has a computable divisible closure and that there is a uniform procedure for passing
fromG to D(G).1 However, in general the divisible closure is not effectively unique
(i.e., unique up to computable isomorphism) and the canonical image of G in D(G)
is computably enumerable but not necessarily computable (see [37] and [93] for
a complete discussion of these issues). Therefore, when we consider a particular
copyG of a torsion-free abelian group, we use D(G) to denote the canonical divisible
closure as in [90]. Thus, we have a uniform way to pass from any given copy of G
to a copy of D(G). In our construction, we will use a more limited notion of closure
under divisibility by certain primes.

1One forms D(G) from pairs 〈g,n〉 with g ∈ G and n ≥ 1 modulo the computable equivalence
relation 〈g,n〉 ∼ 〈h,m〉 if and only if mg = nh.
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Definition 5.1.1. If p ∈ ω is prime and G is a torsion-free abelian group, define the p-
closure of G (denoted [G]p) to be the smallest subgroupH of D(G) containing G having
the property (∀g ∈ G)

[
p∞ | g

]
.

More generally, if P is a set of prime numbers andG is a torsion-free abelian group, define
the P-closure of G (denoted [G]P) to be the smallest subgroup H of D(G) containing G
having the property (∀g ∈ G)(∀p ∈ P)

[
p∞ | g

]
. We often write [G]p0,p1 for [G]P with

P = {p0, p1}, [G]P,q for [G]P∪{q}, and so on. If G is any torsion-free abelian group and P is
any set of prime numbers, we say that G is P-closed if G � [G]P.

The following lemma says that if G is P-closed, then the result of closing G
under additional primes will still be P-closed. In particular, we can view the prime
closure [G]P as the result of closing G under each of the individual primes in P in
any order.

Lemma 5.1.1. If G is a torsion-free abelian group, P is a set of primes, and q is a
prime not in P, then [[G]P]q � [G]P,q.

Proof. Since [[G]P]q is clearly a subgroup of [G]P,q and since every element of [[G]P]q

is infinitely divisible by q, it suffices to show that each element of [[G]P]q is infinitely
divisible by each prime p ∈ P. Fix p ∈ P and g ∈ [[G]P]q. We need to find h ∈ [[G]P]q

such that ph = g. By the definition of [[G]P]q, there is a k ≥ 0 such that qkg ∈ [G]P;
let ĥ be this element. Let ĝ ∈ [G]P be such that pĝ = ĥ and let h ∈ [[G]P]q be such
that qkh = ĝ. Then

qk(ph) = p(qkh) = pĝ = ĥ = qkg.

Since G is torsion-free, the equality qk(ph) = qkg implies ph = g as required. �

By an obvious variation of the construction in [90], there is an effective way to
pass from G to a copy of [G]P which is uniform in both G and P. As above, the
closure operation sending G to [G]P is not necessarily effectively unique so we fix
this uniform procedure to define a particular copy of [G]P given a particular copy
of G.

Convention 5.1.1. We will write statements such as ([Z]ρ1,P\[Z]P) ∩ [Z]ρ2,ρ3,P = ∅.
Such statements are intended to apply within a fixed (one-dimensional) copy of Q,
where Z 5 Q is fixed as well. In particular, the indicated prime closures of Z should
all be seen as being taken within a fixed copy of Q.
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Often, we will write elements of the form
x + y

p
as

x
p

+
y
p

even though
x
p

and
y
p

may not exist within the group. We justify this by passing to the divisible closure
of the group and considering the canonical image of the group within its divisible

closure. Thus,
x + y

p
=

x
p

+
y
p

in D(G) even though
x
p

and
y
p

may not be in the image

of G.

Definition 5.1.2. A rooted torsion-free abelian group G is a torsion-free abelian group
with a distinguished element (termed the root of G).

We use rooted torsion-free abelian groups to help build our groups inductively.
When we consider isomorphisms, we always consider group isomorphisms with
no assumption that roots are preserved. That is, the root is only used as a tool in
the inductive definitions and is not a formal part of the algebraic structure.

Definition 5.1.3. Let G be a torsion-free abelian group and {di}i∈I ⊆ D(G) be a subset of
its divisible closure. We define the extension of G by {di}i∈I, denoted

〈G; di : i ∈ I〉 ,

to be the smallest subgroup of D(G) containing G and di for i ∈ I.

Note that if G is computable and {di}i∈I is a computable set of elements of D(G)
(indeed, computably enumerable suffices), then the subgroup 〈G; di : i ∈ I〉 is com-
putably enumerable in D(G). Since there is a uniform procedure to produce a
computable copy of any computably enumerable subgroup of D(G) (by letting n
denote the n-th element enumerated into the subgroup and defining the group op-
erations accordingly) we have a uniform procedure to pass from G to 〈G; di : i ∈ I〉.

We continue by introducing some (important) conventions that will be used
throughout the paper without further mention.

Convention 5.1.2. If β is any nonzero ordinal, when we write β = δ+i or β = δ+2`+i
for some i ∈ ω, we require δ to be either zero or a limit ordinal (allowing zero only
if β < ω) and ` to be a nonnegative integer.

If i is even, we say the ordinal β is even; if i is odd, we say the ordinal β is odd.

When at limit ordinals, it will be necessary to approximate the ordinal effec-
tively from below. We therefore fix a computable ordinal λ and increasing cofinal
sequences for ordinals less than λ.

88



Definition 5.1.4. Fix a computable ordinal λ.
Fix a computable function f : λ × ω → λ such that f (α + 1,n) = α for all successor

ordinals α + 1 ∈ λ and n ∈ ω, and such that { f (α,n)}n∈ω is a sequence of increasing odd
ordinals (greater than one) with α = ∪n∈ω f (α,n) for all limit ordinals α ∈ λ.

We denote f (α,n) by fα(n).

5.2 The Group GαS (For Successor Ordinals α)

Fixing a computable successor ordinal α below λ, the groupGαS will be a direct sum
of rooted torsion-free abelian groups GαS(n) coding whether n is or is not in S. It
will be useful to have a plethora of disjoint sets of primes. We therefore partition
the prime numbers into uniformly computable sets P = {pβ}β∈α+1, Q = {qβ}β∈α+1,
U = {uβ,k}β∈α+1,k∈ω, V = {vβ,k}β∈α+1,k∈ω, D = {dn}n∈ω, and E = {en}n∈ω,.

More specifically, the isomorphism type of GαS(n) will be either
[
G(Σ0

α)
]

dn
or[

G(Π0
α)
]

dn
, or

[
H(Σ0

α)
]

dn
or

[
H(Π0

α)
]

dn
(all described later) depending on whether α

is even or odd (deciding G versusH) and whether n is in S (deciding Σ versus Π).
The group GαS(n) will be X-computable (uniformly in n) if S ∈ Σ0

α(X). Conversely,
there will be an effective enumeration {Υn}n∈ω of computable infinitary Σc

α sentences
such that GαS |= Υn if and only if n ∈ S. Thus, the group GαS will be X-computable if
and only if S ∈ Σ0

α(X).
The definition of the rooted torsion-free abelian groups G(Σ0

α), G(Π0
α), H(Σ0

α),
andH(Π0

α) is done by recursion. Unfortunately, the recursion is not straightforward
for technical reasons within the algebra (discussed in Remark 5.2.1). Indeed, we
introduce additional rooted torsion-free abelian groups G(Σ0

α(m)) for m ∈ ω if α is
an even ordinal.

We define some of these groups pictorially in Section 5.2.1. The hope is these
examples provide enough intuition to the reader so that the formal definition ofGαS
(and all the auxiliary groups) is not (too) painful.

5.2.1 Defining G(Σ0
β), G(Σ0

β(m)), G(Π0
β), H(Σ0

β), and H(Π0
β) Pictori-

ally

For each successor ordinal β ≥ 3, we give a pictorial description of the groupsG(Σ0
β)

(if β is odd), G(Σ0
β(m)) (if β is even), and G(Π0

β). The recursion starts with G(Σ0
2(m))

as Z with root r = pm
1 and G(Π0

2) as [Z]p1 with root r = 1. The recursion continues as
illustrated in Figure 5.1 and Figure 5.2.
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G(Σ0
β−1(1)) G(Σ0

β−1(1)) G(Π0
β−1) G(Π0

β−1)

r

G(Σ0
β−1(0)) G(Σ0

β−1(0))

r0,0 r1,0 r0,1 r1,1 r0 r1

qβ

pβ

qβ qβ qβ qβ qβ

G(Σ0
β−1(1)) G(Σ0

β−1(1))

r

G(Σ0
β−1(0)) G(Σ0

β−1(0))

r0,0 r1,0 r0,1 r1,1

qβ

pβ

qβ qβ qβ

Figure 5.1: G(Σ0
β) (Top) and G(Π0

β) (Bottom) if β = δ + 2` + 1 > 1

For each even ordinal β = δ + 2` + 2 > 2, we give a pictorial description of the
groupsH(Σ0

β) andH(Π0
β). Though their definition relies on G(Σ0

β−1) and G(Π0
β−1) as

illustrated in Figure 5.3, no further recursion is required.
Within these figures, the recursively defined rooted torsion-free abelian groups

are denoted with triangles (the text inside specifies which recursively defined
group), with the root denoted by a circle at the top. A line segment connecting two
roots and with a label p denotes the sum of the roots is made infinitely divisible
by p. Brackets around a recursively defined rooted group with a label p denotes
the p-closure. A prime p next to a root r denotes r is made infinitely divisible by p.

5.2.2 Defining GαS Formally

Having pictorially described some of the associated groups, we formalize the def-
inition of GαS. Of course, doing so requires formalizing the definition of all the
auxiliary groups.

Definition 5.2.1. For each ordinal β with 1 < β ≤ α, define rooted torsion-free abelian
groups G(Σ0

β) and G(Π0
β) (if β is odd) or G(Σ0

β(m)) for m ∈ ω and G(Π0
β) (if β is even) by

recursion as follows.

• For β = 2, define G(Σ0
β(m)) to be the group Z with root r = pm

1 and define G(Π0
β) to

be the group [Z]p1 with root r = 1.
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r

G(Σ0
β−1)

uβ,0

pβ

G(Σ0
β−1)

vβ,0 r1

G(Σ0
β−1)

rm

G(Π0
β−1)

rm+1uβ,1

vβ,1

uβ,m

uβ,m+1

vβ,m

vβ,m+1

r

G(Σ0
β−1)

uβ,0

pβ

G(Σ0
β−1)

vβ,0 r1

G(Σ0
β−1)

rm

G(Σ0
β−1)

rm+1uβ,1

vβ,1

uβ,m

uβ,m+1

vβ,m

vβ,m+1

Figure 5.2: G(Σ0
β(m)) (Top) and G(Π0

β) (Bottom) if β = δ + 2` + 2 > 2

G(Π0
β−1) G(Π0

β−1)

r

r0′ r1′

pβ

qβqβ

G(Σ0
β−1) G(Σ0

β−1)

r0 r1

qβqβ

r
pβ

G(Σ0
β−1) G(Σ0

β−1)

r0 r1

qβqβ

Figure 5.3: H(Σ0
β) (Top) andH(Π0

β) (Bottom) if β = δ + 2` + 2 > 2
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• For odd β = δ + 2` + 1 ≥ 3, define G(Σ0
β) to be the group〈

[Z]pβ ⊕

⊕
k∈ω

⊕
m∈ω

G(Σ0
β−1(m)) ⊕

⊕
k∈ω

G(Π0
β−1); q−t

β (r + rk), q−t
β (r + rk,m) : k,m, t ∈ ω

〉
,

with root r = 1 in [Z]pβ , where rk is the root of the kth copy of G(Π0
β−1) and rk,m is the

root of kth copy of G(Σ0
β−1(m)).

For odd β = δ + 2` + 1 ≥ 3, define G(Π0
β) to be the group〈

[Z]pβ ⊕

⊕
k∈ω

⊕
m∈ω

G(Σ0
β−1(m)); q−t

β (r + rk,m) : k,m, t ∈ ω
〉
,

with root r = 1 in [Z]pβ , where rk,m is the root of kth copy of G(Σ0
β−1(m)).

These are illustrated in Figure 5.1.

• For even β = δ + 2` + 2 > 2, define G(Σ0
β(m)) to be the group〈⊕

0≤k≤m

[
G(Σ0

β−1)
]

uβ,k
⊕

⊕
k>m

[
G(Π0

β−1)
]

uβ,k
; p−t

β r0, v−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
β−1) or of G(Π0

β−1)
depending on whether k ≤ m or k > m.

For even β = δ + 2` + 2 > 2, define G(Π0
β) to be the group〈⊕

k∈ω

[
G(Σ0

β−1)
]

uβ,k
; p−t

β r0, v−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
β−1).

These are illustrated in Figure 5.2.

• For limit β = δ > 0, define the group G(Σ0
β(m)) to be〈⊕

0≤k≤m

[
G(Σ0

fβ(k))
]

uβ,k
⊕

⊕
k>m

[
G(Π0

fβ(k))
]

uβ,k
; p−t

β r0, v−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
fβ(k)) or of G(Π0

fβ(k))
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depending on whether k ≤ m or k > m.

Define G(Π0
β) to be the group〈⊕

k∈ω

[
G(Σ0

fβ(k))
]

uβ,k
; p−t

β r0, v−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
fβ(k)).

2

This completes the formal descriptions of these groups.

For odd β ≥ 3, recall that the group G(Σ0
β) has the form〈

[Z]pβ ⊕

⊕
k∈ω

⊕
m∈ω

G(Σ0
β−1(m)) ⊕

⊕
k∈ω

G(Π0
β−1); q−t

β (r + rk), q−t
β (r + rk,m) : k,m, t ∈ ω

〉
.

We refer to the subgroups (indexed by k and m) of the formG(Σ0
β−1(m)) with roots rk,m

as the G(Σ0
β−1(m)) components of G(Σ0

β). Similarly, we refer to the G(Π0
β−1) subgroups

(indexed by k) with root rk as the G(Π0
β−1) components of G(Σ0

β). We use similar
language in the case of even β and limit β, as well as for other groups defined
inductively within the chapter.

We emphasize the components of a group do not detach as direct summands
(because of the divisibility introduced by the primes qβ and vβ,k). For clarity, we
always refer to direct components (when the directness is an issue) without omitting
the word “direct”.

When we speak of components, we mean the components which are used in
the inductive definition of these groups (or their prime closures), and we do not
care if there are alternate ways to present the group. More formally, every such
group will be considered as an image of one canonical copy given by the definition,
and a subgroup is a component if and only if it is an image of a component which
was used in the definition of this canonical copy. The isomorphism is chosen once
and forever.

The important relationship between G(Σ0
β) and G(Π0

β) for odd β and G(Σ0
β(m))

andG(Π0
β) for even β is whether each embeds within the other. For small β, one can

see that the groups defined above satisfy the following embeddability relations:

2We emphasize that the definition ofG(Σ0
β(m)) andG(Π0

β) for β = δ+ 2`+ 2 is identical to the case
of β = δ as by definition fδ+2`+2(k) = δ + 2` + 1 for all k. We separate them, here and in some later
proofs, in hopes of not obfuscating the intuition.

93



if β > 1 is odd, then G(Σ0
β) � G(Π0

β) and G(Π0
β) 5 G(Σ0

β); if β > 0 is even, then
G(Π0

β) � G(Σ0
β(m)) and G(Σ0

β(m)) 5 G(Π0
β) for all m ∈ ω. For larger ordinals β,

the formal proof of these properties is less straightforward. Moreover, stronger
properties of such groups are needed to run a successful induction. We avoid these
formal difficulties by not using these embedability relations in later proofs, stating
them only in order to aid intuition. Though they will not be formally used, the
reader may find it useful to keep in mind which groups are “bigger”.

The embeddability relations discussed reflect the utility of the coding. Infor-
mally, we will ask

Is there a large subgroup attached to x?

about an element x that is infinitely divisible by an appropriate prime. The answer
will allow us to extract whether the Σ0

β outcome or the Π0
β outcome was the case.

We (informally) justify not using a simpler recursive scheme to define the groups
G(Σ0

β) and G(Π0
β) in the following remark.

Remark 5.2.1. It would of course be simpler if Definition 5.2.1 used only the odd
recursion schema (for all successor ordinals). Unfortunately, the embeddability
relations would not be satisfied in this case, e.g., when β = 4 it would be the
case that G(Σ0

β) 5 G(Π0
β) and G(Π0

β) 5 G(Σ0
β). The reason is G(Σ0

4) would contain
infinitely many copies of G(Π0

3) and infinitely many copies of G(Σ0
3) whereas G(Π0

4)
only would contain infinitely many copies of G(Σ0

3). As G(Π0
3) 5 G(Σ0

3), it would
follow that G(Σ0

4) ≤ G(Π0
4). Hence asking if there is a large subgroup would not

distinguish between the Σ0
β and the Π0

β outcomes.

For even successor ordinals β ≥ 4, we will need additional auxiliary groups
H(Σ0

β) andH(Π0
β).

Definition 5.2.2. For each even computable ordinal β = δ + 2` + 2 ≥ 4, define rooted
torsion-free abelian groupsH(Σ0

β) andH(Π0
β) as follows.

DefineH(Σ0
β) to be the group〈

[Z]pβ ⊕

⊕
k∈ω

G(Σ0
β−1) ⊕

⊕
k′∈ω

G(Π0
β−1); q−t

β (r + rk), q−t
β (r + rk′) : k, k′, t ∈ ω

〉
,

with root r = 1 in [Z]pβ , where rk is the root of the kth copy of G(Σ0
β−1) and rk′ is the root of

k′th copy of G(Π0
β−1).
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DefineH(Π0
β) to be the group〈

[Z]pβ ⊕

⊕
k∈ω

G(Σ0
β−1); q−t

β (r + rk) : k, t ∈ ω
〉

with root r = 1 in [Z]pβ , where rk is the root of the kth copy of G(Σ0
β−1).

These are illustrated in Figure 5.3.

It is now possible to define GαS for S ⊆ ω.

Definition 5.2.3. For each successor ordinal α ≥ 3 and set S ⊆ ω, define a torsion-free
abelian group GαS as follows.

• If α = δ + 2` + 1 ≥ 3, define GαS to be the group

G
α
S :=

⊕
n∈S

[
G(Σ0

α)
]

dn
⊕

⊕
n<S

[
G(Π0

α)
]

dn
.

• If α = δ + 2` + 2, define GαS to be the group

G
α
S :=

⊕
n∈S

[
H(Σ0

α)
]

dn
⊕

⊕
n<S

[
H(Π0

α)
]

dn
.

The following definition and associated observation will be exploited in later
sections when we wish to express elements as sums of roots of subcomponents.

Definition 5.2.4. If G is any group within this section, or any direct product of prime
closures of such groups, we let RG denote the set of roots of the recursively nested components
of G.

Of course, some elements serve as the root of more than one component at
different ordinal levels. For example, if β is odd, then the root of a G(Σ0

β−1(m))
component of G(Π0

β) is also the root of a [G(Σ0
β−2)]uβ−1,0 component. However, this

root appears only once in RG. The fact below is a straightforward consequence of
the definition of G:

Fact 5.2.1. The set RG is a basis for both G and D(G).
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5.3 Proof of Theorem 5.0.1

Having defined GαS for each successor ordinal α ≥ 3, it of course remains to verify
the desired properties. We state these explicitly.

Lemma 5.3.1. For each successor ordinal α ≥ 3, there is an effective enumeration
{Υn}n∈ω of computable Σc

α sentences such that GαS |= Υn if and only if n ∈ S.

Lemma 5.3.2. For each successor ordinal α ≥ 3, if S ∈ Σ0
α(X), then GαS has an

X-computable copy.

We also note that the lemmas hold with all possible uniformity. Assuming
Lemma 5.3.1 and Lemma 5.3.2, we prove Theorem 5.0.1. Lemma 5.3.1 is demon-
strated in Section 5.3.1 and Lemma 5.3.2 is demonstrated in Section 5.3.2. We note
that the proof of Theorem 5.0.1 from Lemmas 5.3.1 and 5.3.2 is identical to the case
of linear orders (see [2]).

Proof of Theorem 5.0.1. As we have mentioned before, the basic idea is standard.
We, however, give a proof here. A reader familiar with such arguments may skip
it. Only the (trivial) coding at the limit case perhaps deserves some attention.

Fix a computable ordinal α, a degree a > 0(α), and a set A ∈ a. The cases α = 1, 2
follow at once from [71], and we may assume that α ≥ 3. If α is a successor ordinal
β + 1, we argue the torsion-free abelian group G := Gα

A⊕A
has proper αth jump

degree a. Recall that a relation on a structureM (having a finite language, say) is
relatively intrinsically Σ0

α if it is Σ0
α(B) for everyB �M. A relation onM is relatively

intrinsically c.e. if, and only if, it is definable by an infinitary computable Σc
α formula

in the language ofM (see [3] for a proof). By Lemma 5.3.1 and Lemma 5.3.2, we
have

DegSp(G) = {X : A ⊕ A ∈ Σ0
α(X)}

= {X : A ∈ ∆0
α(X)}

(for α finite, these are Σ0
α+1(X) and ∆0

α+1(X)). It follows {X(α) : X ∈ DegSpec(G)}
contains precisely those sets that compute A. ThusG has αth jump degree a. On the
other hand, if β < α, the set {X(β) : X ∈ DegSpec(G)} has no element of least degree
(see Lemma 1.3 of [2]). Thus G does not have βth jump degree for any β < α.

If α is a limit ordinal, fix an α-generic set B such that B(α)
≡T B ⊕ ∅(α)

≡T A.
Viewing B as a subset of ω×ω (see [2]), we write Bn := {k : (n, k) ∈ B}. We argue the
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torsion-free abelian group

G :=
⊕
n∈ω

[
GBn

]
en

has proper αth jump degree a, where GBn is the group G fα(n)
Bn

associated with the
set Bn and the ordinal fα(n). Making use of the uniformity in both Lemma 5.3.1 and
Lemma 5.3.2 and that the prime en distinguishes the subgroup G fα(n)

Bn
from G fα(n′)

Bn′
for

n′ , n, we have

DegSp(G) = {X : Bn ∈ Σ0
fα(n)(X) uniformly in n}.

We explain the case when α = ω, the case of an arbitrary limit ordinal α is not
much different. The reader can also find a proof for arbitrary limit α in the classical
paper [2]. In fact, it does not matter they G is a group, ordering, or something else;
it only matters that {X : Bn ∈ Σ0

fα(n)(X) uniformly in n} serves as its degree spectrum,
where ( fα(n))n∈ω is a uniformly computable sequence of notations in a fixed segment
of O below α.

From now on, we follow the discussion after Lemma 3.1 of [2]. Lemma 1.1
of [2] allows us to produce anω-generic set B such that B(ω) has degree d = degT(A).
The rest of the argument relies on the specific construction of B which will not be
given here, but can be found in [2]. As we have mentioned before, B ⊆ ω × ω. The
basic facts on the (hyper)jumps and the uniformity of indices when performing
(hyper)jumps (see [3]) implies that DegSp(G) contains B. Furthermore, if D ∈
DegSp(G), then B(ω)

≤T D(ω). (See [2] for technical details.) Therefore, d is an
ω-jump of G. Towards a contradiction, suppose that G has an n′th jump degree for
some n ∈ ω. This means that there is Y ∈ DegSp(G) such that Y(n)

≤T X(n), for all
X ∈ DegSp(G). Thus, in particular, Y(n)

≤T D(n) for those D such that Bk is ∆0
fα(n)(D)

uniformly in n. The choice of B, however, implies that for every n, the collection
{Y(n) : Y ∈ DegSp(G)} has no least element under ≤T. The proof of the latter can be
found in [2], Lemma 1.4. �

5.3.1 Proof of Lemma 5.3.1

The definition of the Σc
α sentences {Υn}n∈ω is done recursively, mirroring the recur-

sive nature of the definition of GαS. Before we start constructing formulas Φβ(x) and
Ψβ(x) connected semantically to G(Σ0

β), G(Σ0
β(m)), and G(Π0

β), we demonstrate two

97



divisibility lemmas that isolate aspects of the odd and even inductive steps. The
proofs of these are similar to proofs of lemmas by Downey and Montalbán (see
Lemma 2.3 and Lemma 2.4 of [32]). For the proof of Lemma 5.3.3(1), we make
explicit whether we are viewing elements of B as belonging to B or the divisible
closure of B. For later parts of Lemma 5.3.3 and Lemma 5.3.4, we do not make
it explicit as which it should be is clear from context. Before stating these two
divisibility lemmas, we note a number of simple number theoretic facts (without
proof) that we will use repeatedly (without mention).

Fact 5.3.1. The following facts hold of prime closures of Z.

• For any primes p0 and p1, [Z]p0 + [Z]p1 = [Z]p0,p1 , where the sum [Z]p0 + [Z]p1 denotes
the set of all q ∈ Q such that q = a + b for some a ∈ [Z]p0 and b ∈ [Z]p1 .

• For all sets of primes P0 and P1, [Z]P0 ∩ [Z]P1 = [Z]P0∩P1 .

• If P0 and P1 are disjoint sets of primes, then ([Z]P0 \ Z) ∩ [Z]P1 = ∅ and 0 <

([Z]P0 \ Z) + [Z]P1 .

Lemma 5.3.3. Fix pairwise disjoint sets of prime numbers F1, F2, and P and a prime
number ρ < F1 ∪ F2 ∪ P. For each i ∈ ω, fix a copy of [Z]F1 and let xi denote the
element 1 in this copy. For each i, j ∈ ω, fix a copy of [Z]F2 and let yi, j denote the
element 1 in this copy. Let B be the group

B :=


〈⊕

i∈ω

[Z]F1 ⊕

⊕
i, j∈ω

[Z]F2 ;
xi + yi, j

ρk
: i, j, k ∈ ω

〉
P

.

Then B has the following properties:

1. For any z ∈ B and σ1 ∈ F1, we have σ∞1 | z if and only if z =
∑

i mixi with
mi ∈ [Z]F1,P.

2. For any y ∈ B and σ2 ∈ F2, we have σ∞2 | y if and only if y =
∑

i, j mi, jyi, j with
mi, j ∈ [Z]ρ,F2,P.

3. Fixing an integer `, if ρ∞ |
∑

j m`, jy`, j, then
∑

j m`, j = 0.

4. If z can be expressed as z =
∑

mixi with mi ∈ [Z]P, then for each σ1 ∈ F1 and
σ2 ∈ F2, the element z satisfies the formula

σ∞1 | z ∧ (∃y ∈ B)
[
ρ∞ | (z + y) ∧ σ∞2 | y

]
. (†)
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5. If z ∈ B satisfies (†) with witness y ∈ B, then z =
∑

i mixi with mi ∈ [Z]P and
y =

∑
i, j mi, jyi, j with mi, j ∈ [Z]ρ,F2,P for all i, j and mi =

∑
j mi, j for all i (noting

that mi = 0 is possible).

We also note that the lemma can be carried through in the case whenB detaches as
a summand of a larger group C and for every B ≤ A ≤ C and every prime z which
occurs in the definition of B, we have z∞|x, x , 0 and x ∈ A implies x ∈ B. The
lemma holds even if B is pure in a larger group C, with similar restrictions.

Proof. For (1), the backward direction is immediate. For the forward direction,
we express z (in the divisible closure) as z =

∑
i mixi +

∑
i, j mi, jyi, j with mi,mi, j ∈ Q

(allowing the possibility of a coefficient being zero). If σ∞1 | z, as the summation is
finite, there is a [Z]σ1-multiple ẑ of z in Bwith

ẑ =
∑

i

m̂i

σni
1

xi +
∑

i, j

m̂i, j

σ
ni, j

1

yi, j

(with the right hand side expressed in the divisible closure) where m̂i, m̂i, j ∈ Z,
m̂i , 0 implies σ16 |m̂i, m̂i, j , 0 implies σ16 |m̂i, j, and ni,ni, j > 0. Since the coefficient
of yi, j in any element ofB (viewed in the divisible closure) is an element of [Z]ρ,F2,P

3

and ([Z]σ1\Z) ∩ ([Z]ρ,F2,P) = ∅, it must be that m̂i, j = 0 for all i, j, and so mi, j = 0 for
all i, j. The coefficient of yi, j in any element of B (viewed in the divisible closure)
is an element of [Z]ρ,F2,P: this is an immediate consequence of the fact that every
element of B is a formal sum

∑
i aixi +

∑
i, j bi, j(xi + yi, j) +

∑
i, j ci, jyi, j with ai ∈ [Z]F1,P,

bi, j ∈ [Z]ρ,P, and ci, j ∈ [Z]F2,P. Thus, in the divisible closure, the coefficient of any
fixed yi, j is an element of [Z]ρ,P + [Z]F2,P = [Z]ρ,F2,P.

Thus if σ∞1 | z, then z =
∑

i mixi (in the divisible closure) with mi ∈ Q. From the
structure of elements of B, we have mi ∈ [Z]ρ,F1,P. Fix i. If mi < [Z]F1,P, then there
would be a non-[Z]P-multiple of xi + yi, j in z for some j, in particular a [Z]ρ,P\[Z]P-
multiple. Then the coefficient of this yi, j in z (in the divisible closure) would be in
[Z]ρ,P\[Z]P + [Z]F2,P. However 0 < [Z]ρ,P\[Z]P + [Z]F2,P, yielding a contradiction to
the form z =

∑
i mixi. Thus mi ∈ [Z]F1,P for all i, completing the proof of (1).

For (2), the argument is similar and we leave the minor change in details to the
reader.

3Though we justify this here, we omit such arguments in the rest of the chapter as all are similar
to the argument here.
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For (3), as ρ∞ |
∑

j m`, jy`, j, there is a [Z]ρ-multiple ẑ of
∑

j m`, jy`, j in Bwith

ẑ =
∑

j

m̂`, j

ρn`, j
y`, j

where m̂`, j ∈ Z,0, ρ6 |m̂`, j, and n`, j > 0. Indeed, we may assume that
∑

j

m̂`, j

ρn`, j
∈ [Z]ρ\Z

(in particular, that it is not an element of [Z]P,F2) if
∑

j m`, j , 0. From the structure
of elements of B, we have

ẑ = a`x` +
∑

j

b`, j(x` + y`, j) +
∑

j

c`, jy`, j

with a` ∈ [Z]F1,P, b`, j ∈ [Z]ρ,P, and c`, j ∈ [Z]F2,P. As
∑

j

m̂`, j

ρn`, j
< [Z]P,F2 , it must be the

case that
∑

j b`, j < [Z]P. However this would imply the coefficient of x` is nonzero
as 0 < [Z]F1,P + [Z]ρ,P\[Z]P. This would contradict the form of ẑ, showing (3).

For (4), we note if z =
∑

i mixi with mi ∈ [Z]P, then y =
∑

i miyi,0 is inB. Moreover,
by Parts (1) and (2), this y witnesses z satisfying (†), showing (4).

For (5), fix z and y with σ∞1 | z, ρ∞ | z + y, and σ∞2 | y. By Part (1), we have
z =

∑
i mixi with mi ∈ [Z]F1,P. By Part (2), we have y =

∑
i, j mi, jyi, j with mi, j ∈ [Z]ρ,F2,P.

As ρ∞ | z + y, there is a [Z]ρ-multiple ẑ + ŷ of z + y in Bwith

ẑ + ŷ =
∑

i

m̂i

ρni
xi +

∑
i, j

m̂i, j

ρni, j
yi, j

where m̂i, m̂i, j ∈ Z, m̂i , 0 implies ρ6 |m̂i, m̂i, j , 0 implies ρ6 |m̂i, j, and ni,ni, j > 0. As

ŵ :=
∑

i

m̂i

ρni
xi +

∑
i

m̂i

ρni
yi,0

is in B (by virtue of it being a sum of [Z]ρ-multiples of xi + yi,0) and infinitely
divisible by ρ, the element

ẑ + ŷ − ŵ =
∑

i, j

m̂i, j

ρni, j
yi, j −

∑
i

m̂i

ρni
yi,0
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is in B and is infinitely divisible by ρ. By Part (3), this implies
m̂i

ρni
=

∑
j

m̂i, j

ρni, j
for

all i. This is equivalent to mi =
∑

j mi, j for all i.
As mi, j ∈ [Z]ρ,F2,P for all i, j, fixing i, the sum

∑
j mi, j is in [Z]ρ,F2,P. As [Z]F1,P ∩

[Z]ρ,F2,P = [Z]P, it follows mi ∈ [Z]P for all i. This shows (5). �

Lemma 5.3.4. Fix pairwise disjoint sets of primes Fi, for i ∈ ω, and P, and fix a
sequence of distinct primes ρn, for n ∈ ω, such that ρn < (∪i∈ωFi) ∪ P for each n.
Let B be the group

B :=
[〈
F ;

xi, j

σk
i

,
xi, j + xi+1, j

ρk
i

: i, j, k ∈ ω and all σi ∈ Fi

〉]
P

where F is the free abelian group on the elements xi, j for i, j ∈ ω. Then B has the
following properties:

1. Fixing an integer `, a prime σ` ∈ F`, and an element z ∈ B, if σ∞` | z, then
z =

∑
j m`, jx`, j with m`, j ∈ [Z]F`,P.

2. Fixing an integer `, if z =
∑

j m`, jx`, j is nonzero, then ρ∞i 6 |z for any i.

3. Fixing primes σi ∈ Fi for 0 ≤ i ≤ k + 1, if z0, . . . , zk+1 ∈ B satisfy

σ∞i | zi for all i ≤ k + 1 and ρ∞i | (zi + zi+1) for all i ≤ k

then there are constants m j ∈ [Z]P such that zi =
∑

j m jxi, j for all 0 ≤ i ≤ k + 1.

The same remark as in the previous lemma, on direct detachement and pureness,
holds for this lemma.

Proof. For (1), we express z as z =
∑

i, j mi, jxi, j with mi, j ∈ Q,0. As σ∞` | z and the
summation is finite, there is a [Z]σ`-multiple ẑ of z in Bwith

ẑ =
∑

i, j

m̂i, j

σ
ni, j

`

xi, j

where m̂i, j ∈ Z,0, σ 6̀ |m̂i, j, and ni, j > 0. Thus the coefficient of xi, j in ẑ is an element of
[Z]σ`\Z. On the other hand, the coefficient of xi, j in any element of B is an element
of [Z]Fi,P + [Z]ρi,P + [Z]ρi−1,P

4. As ([Z]σ`\Z) ∩ [Z]Fi,ρi,ρi−1,P = ∅ if i , `, it follows that z
can be expressed as z =

∑
j m`, jx`, j with m`, j ∈ Q,0.

4We ignore the degenerate case of i = 0 as it is actually simpler.
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We show m`, j ∈ [Z]F`,P for all j. Fixing j, if m`, j were not in [Z]F`,P, there would
necessarily be a non-[Z]P-multiple of either x`, j +x`+1, j or x`−1, j +x`, j in ẑ. This implies
the coefficient of x`+1, j or x`−1, j is nonzero in ẑ as 0 < [Z]ρ`,P\[Z]P + [Z]ρ`+1,P + [Z]F`+1,P

and 0 < [Z]ρ`,P\[Z]P + [Z]ρ`−1,P + [Z]F`−1,P. However this contradicts the form of ẑ, so
it must be that m`, j ∈ [Z]F`,P, showing (1).

For (2), fix an `, a nonzero element z =
∑

j m`, jx`, j, and an integer i towards
a contradiction. As we are assuming ρ∞i | z for a contradiction, there is a [Z]ρi-
multiple ẑ of z in Bwith

ẑ =
∑

j

m̂`, j

ρ
n`, j
i

x`, j

where m̂`, j ∈ Z,0, ρi6 |m̂`, j, and n`, j > 0. Fix j and note that the coefficient of x`, j in ẑ is
an element of [Z]ρi\Z. On the other hand, the coefficient of x`, j in any element of B
is an element of [Z]F`,P +[Z]ρ`,P +[Z]ρ`−1,P. As ([Z]ρi\Z)∩([Z]F`,P +[Z]ρ`,P +[Z]ρ`−1,P) = ∅

if ` < {i, i + 1}, we must have ` ∈ {i, i + 1}. We show that either yields a contradiction.

If ` = i, as ([Z]ρ`\Z) ∩ ([Z]F`,P + [Z]ρ`−1,P) = ∅, the term x`, j + x`+1, j must have
a nonzero coefficient in the expression of ẑ as an element of B. Indeed, this
coefficient must be an element of [Z]ρ`\Z as the coefficient of x`, j in ẑ is in [Z]ρ`\Z.
This implies the coefficient of x`+1, j in ẑ is nonzero as 0 < ([Z]ρ`\Z)+[Z]ρ`+1,P+[Z]F`+1,P,
contradicting the form of z. If ` = i + 1, identical reasoning suffices to contradict
the form of z. We have thus shown (2).

For (3), we induct on k. For k = 0, by Part (1), we have zi =
∑

j mi, jxi, j with
mi, j ∈ [Z]Fi,P for i ∈ {0, 1}. As ρ∞0 | (z0 + z1), there is a [Z]ρ0-multiple ẑ of z := z0 + z1

in Bwith

ẑ =
∑

j

m̂0, j

ρ
n0, j

0

x0, j +
∑

j

m̂1, j

ρ
n1, j

0

x1, j

with ρ06 |m̂0, j, ρ06 |m̂1, j, n0, j > 0, and n1, j > 0. We rewrite ẑ as

ẑ =
∑

j

m̂0, j

ρ
n0, j

0

(
x0, j + x1, j

)
+

∑
j

m̂1, j − ρ
n1, j−n0, j

0 m̂0, j

ρ
n1, j

0

x1, j.

As the first summation and ẑ are both in B and infinitely divisible by ρ0, so is
the second summation. By Part (2), the second summation must be zero. Thus
m̂1, j/ρ

n1, j

0 = m̂0, j/ρ
n0, j

0 for all j, and so m0, j = m1, j for all j, with this value an element
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of [Z]F0,P ∩ [Z]F1,P = [Z]P, completing the base case.
Assuming Part (3) for k, we show it true for k + 1. As in the base case, write

zi =
∑

j mi, jxi, j with mi, j ∈ [Z]Fi,P for i ≤ k+2 by Part (1). By the induction hypothesis,
for each fixed j, the values of mi, j for 0 ≤ i ≤ k + 1 are equal. Let m j denote
this common value. Since m j is in [Z]F0,P ∩ · · · ∩ [Z]Fk,P, it must be in [Z]P. As
zk+2 =

∑
j mk+2, jxk+2, j with mk+2, j ∈ [Z]Fk+2,P, the same analysis as in the base case

implies mk+2, j = mk+1, j = m j. �

We continue by introducing various formulas that capture structural aspects
of the groups. These formulas describe how group elements interact in terms of
infinite divisibility by certain primes. When defining these formulas and verifying
their properties, we often restrict quantification from ranging over all group ele-
ments to ranging only over those elements which are infinitely divisible by certain
primes.

To make this notion precise, we define the (computable infinitary) language of
infinite divisibility. The signature of this language is the same as the signature of
the language of groups except that for each prime p, we add a relation symbol for
the relation p∞ | x. That is, we treat p∞ | t for each prime p and term t as an atomic
statement. We build up formulas in this language in the standard computable
infinitary manner.

Definition 5.3.1. For any formula ϕ in the infinite divisibility language and any prime q,
we define the relativized formula ϕq by recursion as follows:

• If ϕ is atomic, then ϕq =def ϕ.

• If ϕ :=
(∧

i βi
)
, then ϕq =def

∧
i β

q
i ; similarly for

∨
, ¬, and −→.

• If ϕ := (∃x) β(x), then ϕq =def (∃x)
[
q∞ | x ∧ βq(x)

]
.

• If ϕ := (∀x) β(x), then ϕq =def (∀x)
[
q∞ | x −→ βq(x)

]
.

Thus, a formula ϕq restricts all quantification to be over elements which are
infinitely divisible by the prime q. The following lemma is a formal statement of
this property.

Lemma 5.3.5. Let G be a torsion-free abelian group, let q be a prime, and let Gq be
the subgroup consisting of the elements infinitely divisible by q. If Gq is a pure
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subgroup, then for any formula ϕ(x) in the language of infinite divisibility and any
parameters a from Gq, we have

G |= ϕq(a) if and only if Gq |= ϕ(a). (5.1)

In particular, if G is {q}-closed, then Gq = G and hence

G |= ϕq(a) if and only if G |= ϕ(a).

Proof. Suppose Gq is a pure subgroup. We proceed by induction on ϕ(x). If ϕ(x) is
atomic, then ϕq(a) is the same as ϕ(a). If ϕ(a) has the form t0(a) = t1(a), then (5.1)
follows because Gq is a subgroup. If ϕ(a) has the form p∞ | t(a), then (5.1) follows
becauseGq is pure. The inductive cases for

∧
,
∨

, −→ and ¬ follow immediately by
definition, leaving only the quantifier cases. It suffices to consider the case for ∃.

Suppose ϕq(a) has the form ((∃x)β(x, a))q and G |= (∃x)[q∞ | x ∧ βq(x, a)] with a
fixed witness x. Since x is infinitely divisible by q, we have x ∈ Gq. By the inductive
hypothesisGq |= β(x, a) and henceGq |= (∃x)β(x, a) as required. Conversely, suppose
Gq |= (∃x)β(x, a) with fixed witness x ∈ Gq. By the inductive hypothesis,G |= βq(x, a),
and since every element of Gq is infinitely divisible by q, we have q∞ | x. Therefore,
we have G |= (∃x)[q∞ | x ∧ βq(x, a)] as required. �

Because the language of infinite divisibility is infinitary, we can express the
relation p∞ | x using the standard formula ϕp(x) given by

ϕp(x) :=
∧
k∈ω

(∃y)
[
pky = x

]
.

In any group, the atomic relation p∞ | x and the formula ϕp(x) are equivalent in the
sense that they are satisfied by the same elements. Thus, we can always translate
formulas in the language of infinite divisibility into formulas in the (computable in-
finitary) language of group theory.5 Notice, however, that some caution is required
because the relativized formulas (p∞ | x)q and ϕq

p(x) are not (always) equivalent: the
former is satisfied by those elements infinitely divisible by p, whereas the latter is
satisfied by those elements infinitely divisible by p and q.

When we measure the quantifier complexity of a formula in the language of
infinite divisibility, we will always mean its complexity as a formula in the language

5As all of our languages are computable infinitary languages, we drop explicit reference to this
fact from now on.
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of group theory. Given the remarks in the previous paragraph, we need to be careful
how we translate relativized formulas in the language of infinite divisibility into
formulas in the language of group theory for the purposes of measuring complexity.
Thus, when we say a formula ϕq (in the language of infinite divisibility) is in Σc

β or
Πc
β, we mean that the following formula ψ (in the language of group theory) is in

the complexity class.

• First, use the recursive definition of relativized quantifiers to write ϕq in an
unrelativized form in the language of infinite divisibility.

• Second, replace each occurrence of an atomic formula p∞ | t in this unrela-
tivized formula by the corresponding formula ϕp(t) to obtain a formula ψ in
the language of group theory.

By performing the translation in this order, we ensure that we do not add additional
divisibility conditions on the witnesses for p∞ | t and thus each atomic fact p∞ | t
remains Πc

2 even if it is under the scope of a relativizing prime.
We need one further convention before giving our formulas. Note that this

convention does not change the quantifier complexity of any formula.

Convention 5.3.1. When we quantify over group elements using (∃z) or (∀z), the
quantification is restricted to nonzero group elements. Hence (∃z)

[
ψ(z)

]
is an abbre-

viation for (∃z)
[
z , 0 ∧ ψ(z)

]
and (∀z)

[
ψ(z)

]
is an abbreviation for (∀z)

[
z = 0 ∨ ψ(z)

]
.

In a similar manner, we regard each of the formulas Aβ(x), Φβ(x), Ψβ(x), Bβ(x),
and Θβ(x) (all defined later) as having an additional conjunct x , 0. In most cases,
we could show that such a conjunct is unnecessary, but it easier to add it and
ignore the issue of the zero element. The point of this convention is merely to keep
our formulas a reasonable size and to avoid repeatedly stating assumptions that
elements are not the zero element.

The formulas Aβ(x) below capture when an element x is a sum of roots of
G(Σ0

β(m)) components (for even β). The formulas Φβ(x) and Ψβ(x) capture when
an element x is a sum of roots of G(Σ0

β) components and a sum of roots of G(Π0
β)

components, respectively.

Definition 5.3.2. For each even ordinal β, we let Aβ(x) be the computable infinitary formula
Aβ(x) := p∞β | x ∧ (∃w)

[
u∞β,1 |w ∧ v∞β,0 | (x + w)

]
.

Definition 5.3.3. For each ordinal β with β ≥ 2, we define computable infinitary formulas
Φβ(x) (for odd β) and Ψβ(x) (for even β) by recursion as follows.

105



• If β = 2, define Ψβ(x) to be the formula Ψ2(x) := p∞1 | x.

• If β = 3, define Φβ(x) to be the formula

Φ3(x) := p∞3 | x ∧ (∃y)
[
q∞3 | (x + y) ∧ Ψ2(y)

]
.

• If β = δ + 2` > 2, define Ψβ(x) to be the formula

Ψβ(x) :=
∧
m∈ω

(∃x0, . . . , xm)
[
x0 = x ∧

∧
k≤m

u∞β,k | xk ∧

∧
k<m

v∞β,k | (xk + xk+1) ∧Φ
uβ,m
fβ(m)(xm)

]
.

Note that when β is a successor ordinal, the last conjunct is Φ
uβ,m
β−1 (xm).

• If β = δ + 2` + 1 > 3, define Φβ(x) to be the formula

Φβ(x) := p∞β | x ∧ (∃y)
[
q∞β | (x + y) ∧ Aβ−1(y) ∧Ψβ−1(y)

]
.

Lemma 5.3.6. The complexity of Aβ(x) is Σc
3 (independent of β). If β = δ + 2` ≥ 2,

then Ψβ ∈ Πc
β. If β = δ+ 2` + 1 ≥ 3, then Φβ ∈ Σc

β. Furthermore, the relativization of
these formulas to any prime does not change their complexity.

Proof. These statements follow immediately from p∞ | x being Πc
2 and induction. �

Fact 5.3.2. Let ρ0, ρ1 and ρ2 be distinct prime numbers and let ψ(x) be the formula
ρ∞0 | x ∧ (∃y)[ρ∞1 | y ∧ ρ

∞

2 | (x + y)]. The following properties hold for any prime q.

1. If G |= ψq(x) for a fixed x ∈ G with witness y and H is a pure subgroup of G with
x, y ∈ H , thenH |= ψq(x) with witness y.

2. If H |= ψq(x) for a fixed x ∈ H with witness y and H is a subgroup of G, then
G |= ψq(x) with the same witness.

In particular, these properties hold for Aβ(x).

More generally, we have the following fact about our formulas as a consequence
of them imposing only positive infinite divisibility conditions.

Fact 5.3.3. Let ϕ(x) be a formula of the form Aβ(x), Φβ(x) or Ψβ(x). IfH |= ϕ(x) for some
fixed x ∈ H and ifH is a subgroup of G, then G |= ϕ(x).

The next lemma gives the key properties needed to verify that our construction
succeeds.

106



Lemma 5.3.7. Fix an odd ordinal β ≥ 3 and a set of primes P disjoint from {pρ}ρ≤β ∪
{qρ}ρ≤β ∪ {uρ,m}ρ≤β,m∈ω ∪ {vρ,m}ρ≤β,m∈ω. Let G be the group [⊕i∈ωCi]P, where each Ci is
either isomorphic to G(Σ0

β) or G(Π0
β).

6

1. If β = 3, then G |= Ψ2(y) if and only if y can be expressed as y =
∑

aiyi with
each yi a root of a G(Π0

2) component and ai ∈ [Z]p1,q3,P.

2. For β = δ + 2` + 1 > 3:

(a) If G |= Aβ−1(z) ∧ Ψβ−1(z), then z =
∑

aizi with zi a root of a G(Π0
β−1)

component, ai ∈ [Z]P,pβ−2,qβ (if β− 1 is not a limit) and ai ∈ [Z]P,qβ (if β− 1 is
a limit).

(b) If z =
∑

aizi with zi a root of a G(Π0
β−1) component and ai ∈ [Z]P, then

G |= Aβ−1(z) ∧Ψβ−1(z).

3. For β = δ + 2` + 3 > 3 and k ≥ 0:

(a) If G |= u∞β−1,k | z∧Φ
uβ−1,k

β−2 (z), then z =
∑

aizi with ai ∈ [Z]uβ−1,k,qβ,P and zi a root
of a [G(Σ0

β−2)]uβ−1,k component.

(b) If z =
∑

aizi with ai ∈ [Z]uβ−1,k,P and zi a root of a [G(Σ0
β−2)]uβ−1,k component,

then G |= u∞β−1,k | z ∧Φ
uβ−1,k

β−2 (z).

4. For β = δ + 1 and k ≥ 0:

(a) If G |= u∞β−1,k | z ∧ Φ
uβ−1,k

fβ−1(k)(z), then z =
∑

aizi with ai ∈ [Z]uβ−1,k,qβ,P and zi a

root of a [G(Σ0
fβ−1(k))]uβ−1,k component.

(b) If z =
∑

aizi with ai ∈ [Z]uβ−1,k,P and zi a root of a [G(Σ0
fβ−1(k))]uβ−1,k component,

then G |= u∞β−1,k | z ∧Φ
uβ−1,k

fβ−1(k)(z).

Moreover, the same is true if G is a finite sum of such groups Ci.

Before proving Lemma 5.3.7, we establish some notation and some basic facts
which will be useful in the proof. By Fact 5.2.1, we can write any element of G,
as an element of D(G), in the form

∑
qixi where each qi ∈ Q,0 and xi ∈ RG. We

6The astute reader will note the upcoming statements are almost, but definitely not, bicondi-
tionals as a consequence of differences of elements within distinct Ci. Though it is not too difficult
to formulate (stating precisely is a bit more difficult) exact conditions for an element to satisfy the
appropriate conjunction, we do not need them for our purposes.
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will often use various divisibility conditions to narrow which roots xi can occur in
such a sum for particular elements and then use Lemma 5.3.3 and Lemma 5.3.4 to
restrict the possible values for the coefficients qi.

Definition 5.3.4. If X ⊆ RG, denote by Span
G

(X) the set of all elements g ∈ G such that,
in D(G), g =

∑
qixi where qi ∈ Q and xi ∈ X for all i.

Lemma 5.3.8. For any set X ⊆ G (in particular any set X ⊆ RG), the set Span
G

(X) is
a pure subgroup of G.

Proof. The set Span
G

(X) is clearly a subgroup of G. To see that it is pure, fix
g ∈ Span

G
(X), n > 0, and h ∈ G such that nh = g in G. We need to show that

h ∈ Span
G

(X). Write g =
∑

qixi (in D(G)) with qi ∈ Q and xi ∈ X. Because G
is torsion-free, the element h is the unique element satisfying nh = g. Therefore,
in D(G), we have h =

∑
(qi/n)xi and hence h ∈ Span

G
(X). �

Note that in the context of torsion-free abelian groups, the subgroup Span
G

(X)
need not separate as a direct summand of G. Nevertheless, in the proof of
Lemma 5.3.7, we will often be able to describe the isomorphism types of such
subgroups. The next lemma pertains to any torsion-free abelian group.

Lemma 5.3.9. LetH be a torsion-free abelian group which is P-closed for a set P of
primes. Let ρ be a prime and let h ∈ H be infinitely divisible by ρ. Then for any
q ∈ [Z]P, the element qh is infinitely divisible by ρ.

Proof. Let g ∈ H satisfy ρkg = h. Since H is [Z]P-closed and q ∈ [Z]P, we can
multiply this equation by q in H to obtain (qρk)g = qh. Thus, the element qg
witnesses that qh is divisibly by ρk. �

We return to the proof of Lemma 5.3.7. We work both withinG and D(G) during
this proof and often rely on context to indicate which group we are working in.

Proof of Lemma 5.3.7. Before establishing Lemma 5.3.7, we say a word about its
proof. For β = 3, we demonstrate (1) directly. For β > 3, we demonstrate (2), (3),
and (4) by simultaneous induction on β. The base case of the induction is the case
β = 5 for (3). The induction cases proceed as follows. To prove (2) for β, we use
that (3) and (4) hold for values less than or equal to β; to prove (3) for β, we use
that (2) holds for values less than β; and to prove (4) for β, we use that (3) holds
for values less than β. Because (3) includes our base case, we begin with the proof
of (3) after showing (1).
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(1) For β = 3, we show y can be so expressed ifG |= Ψ2(y), i.e., ifG |= p∞1 | y. Working
in D(G), we express y as y =

∑
aiyi where ai ∈ Q and yi is the root of a G(Σ0

2(m))
component, aG(Π0

2) component, or a [Z]p3 component. We note that it is impossible
that any yi is the root of a G(Σ0

2(m)) component. For if one were, with y j the root of
a G(Σ0

2(m j)) component, there would be a [Z]p1-multiple ŷ of y in Gwith

ŷ =
∑

i

âi

pni
1

yi

where âi ∈ Z,0, p16 |âi, and n j > m j. However, this is impossible as the coefficient of
the root of any G(Σ0

2(m j)) component in G has the form a/pk
1 where a ∈ [Z]q3,P and

k ≤ m j.
Thus, we have that y =

∑
aiyi where each yi is the root of a [Z]p3 component or

a G(Π0
2) component. In other words, we have y ∈ B where B := Span

G
(X) and X is

the set of roots of G(Π0
2) components and [Z]p3 components of G. Hence B can be

written as a direct sum of subgroups[〈
[Z]p3 ⊕

⊕
k∈ω

[Z]p1 ; q−t
3 (r + rk) : k, t ∈ ω

〉]
P

since G(Π0
2) � [Z]p1 .

7 Since G |= p∞1 | y and B is a pure subgroup of G (by
Lemma 5.3.8), we have that B |= p∞1 | y. Applying Lemma 5.3.3(2) to B (with
F1 = {p3}, F2 = {p1}, ρ = q3, and P = P) yields that each yi is the root of a G(Π0

2)
component and each ai ∈ [Z]p1,q3,P.

Conversely, suppose y =
∑

aiyi with ai ∈ [Z]p1,q3,P and yi the root of a G(Π0
2)

component. Since y is the sum of roots of G(Π0
2) components, we have y ∈ B

(where B is as in the other direction). Since each ai ∈ [Z]p1,q3,P, Lemma 5.3.3(2)
implies that p∞1 | y.

(3) For the base case when β = 5, we first show (3)(a). Fix k ∈ ω and suppose that
G |= u∞4,k | z ∧Φ

u4,k
3 (z), recalling u∞4,k | z ∧Φ

u4,k
3 (z) is

u∞4,k | z ∧ p∞3 | z ∧ (∃y)[u∞4,k | y ∧ q∞3 | (z + y) ∧ p∞1 | y]. (‡)

We need to show that z =
∑

aizi with each ai ∈ [Z]u4,k,q5,P and each zi a root of a
[G(Σ0

3)]u4,k component.

7Of course, here we mean r to be the root of the [Z]p3 component and rk to be the root of the kth
copy of [Z]p1 . When obvious, we omit such explanation.
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Since u∞4,k | z, the element z must be a sum z =
∑

wi, where each wi comes from a
[G(Σ0

3)]u4,k or [G(Π0
3)]u4,k component (which we denote by Gi). Indeed, since p∞3 | z by

hypothesis, each wi is a multiple of the root of Gi. Hence, the element z must be a
sum z =

∑
aizi where ai ∈ Q and each zi is the root of Gi. We endeavor to show that,

in fact, each ai ∈ [Z]u4,k,q5,P and each Gi is a [G(Σ0
3)]u4,k component.

Fix a witness y for (‡). Since u∞4,k | y, the element y must also be contained within
the [G(Σ0

3)]u4,k and [G(Π0
3)]u4,k components. Furthermore, since p∞1 | y, the element y

must have the form y =
∑

b jy j where each b j ∈ Q and y j is the root of a G(Π0
2)

component. Since the [G(Π0
3)]u4,k components do not contain G(Π0

2) components,
each y j is the root of aG(Π0

2) subcomponent of a [G(Σ0
3)]u4,k component. Thus z, y ∈ B

where B := Span
G

(X) and X contains the roots of the [G(Π0
3)]u4,k components, the

roots of the [G(Σ0
3)]u4,k components, and the roots of the G(Π0

2) components of the
[G(Σ0

3)]u4,k components. By Lemma 5.3.8, the group B is a pure subgroup of G.
To describe the isomorphism type of B, we need to analyze which primes

infinitely divide the roots occurring in X. The point is that a particular element
of X may be the root of components at more than one level and each level will
introduce different infinite divisibilities. Because of these considerations, we split
into cases depending on whether k > 0 or k = 0.

First, consider the case when k > 0 and let r be the root of a [G(Π0
3)]u4,k component

or a [G(Σ0
3)]u4,k component. The root r is infinitely divisible by p3 (since it is a root

at level 3), by u4,k (by the prime closure of the component added at level 4) and by
all the primes in P (by the prime closure of G). Because k > 0, the element r is not
the root of a component at level 4 and because the level 3 (at which r is a root) is
odd, the element r is not the root at level 2. Similarly, if r is the root of a G(Π0

2)
subcomponent of a [G(Σ0

3)]u4,k component, then r is infinitely divisible by p1 (since it
is the root ofG(Π0

2)), by u4,k (by the prime closure) and by all the primes in P. Again,
the element r is not the root at any other level. Thus, when k > 0, the group B is
isomorphic to a direct sum of infinitely many copies of [Z]p3,u4,k,P (coming from the
roots of the [G(Π0

3)]u4,k components) and infinitely many copies of[〈
[Z]p3 ⊕

⊕
k∈ω

[Z]p1 ; q−t
3 (r + rk) : k, t ∈ ω

〉]
u4,k,P

(5.2)

(coming from the roots of the [G(Σ0
3)]u4,k components and the roots of their G(Π0

2)
subcomponents).

We show that each zi in the sum z =
∑

aizi is the root of a [G(Σ0
3)]u4,k component. If

not, then we can suppose without loss of generality that z0 is the root of a [G(Π0
3)]u4,k
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component, that is, the element z0 is the element 1 in a direct summand of B of the
form [Z]p3,u4,k,P. Since q∞3 | (

∑
aizi +

∑
b jy j), there is a [Z]q3-multiple ŵ of z + y in B

such that

ŵ =
∑

i

âi

qki
3

zi +
∑

j

b̂ j

q` j

3

y j

where âi, b̂ j ∈ Z, q36 |âi, ki > 0, q36 |b̂ j and ` j > 0 (assuming âi, b̂ j , 0). However, the
coefficient of z0 in any element of Bmust be from [Z]p3,u4,k,P. Hence, we have â0 = 0
and therefore a0 = 0.

Having established that each zi is the root of a [G(Σ0
3)]u4,k component, it follows

that z, y ∈ B′ where B′ := Span
G

(X′) with X′ ⊆ X containing only the roots of the
[G(Σ0

3)]u4,k components and the roots of their G(Π0
2) subcomponents. That is, the

group B′ is the subgroup of B consisting of the direct sum of the infinitely many
copies of the group in (5.2). Since B′ is a pure subgroup of G, we have by Fact
5.3.2(1)

B
′
|= p∞3 | z ∧ (∃y)[q∞3 | (z + y) ∧ p∞1 | y]

(with our fixed element y ∈ B′ as witness). Therefore, we can apply Lemma 5.3.3(5)
(with F1 := {p3}, F2 := {p1}, ρ := q3 and P := P ∪ {u4,k}) to conclude that z =

∑
aizi

with ai ∈ [Z]u4,k,P.

Second, consider the case when k = 0. In this case, we have z =
∑

aizi where
each zi is the root of a [G(Σ0

3)]u4,0 component since there are no [G(Π0
3)]u4,0 compo-

nents. A root r of a [G(Σ0
3)]u4,0 component is infinitely divisible by p3 (since it is a root

at level 3), by u4,k (by the prime closure), by p4 (since k = 0 and hence r is also the
root of a G(Π0

4) or G(Σ0
4(m)) component) and by all the primes in P. Furthermore,

if r, r′ are roots of (distinct)G(Π0
4) orG(Σ0

4(m)) components within the same Ci, then
r − r′ is infinitely divisible by q5. (This divisibility does not add to the infinite
divisibility of either r or r′, but it does effect the isomorphism type ofB.) However,
if r, r′ are roots of such components in different Ci, then r − r′ is not divisible by q5.
To smooth out this difference in divisibility and to simplify the calculations, we
work in [B]q5 .

The group [B]q5 is isomorphic to the direct sum of infinite many copies of[〈
[Z]p3,p4 ⊕

⊕
k∈ω

[Z]p1 ; q−t
3 (r + rk) : k, t ∈ ω

〉]
u4,0,q5,P
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(coming from the roots of the [G(Σ0
3)]u4,0 components and their G(Π0

2) subcompo-
nents). Since B is a pure subgroup of G and B is a subgroup of [B]q5 , we have by
Fact 5.3.2(1) and Fact 5.3.2(2)

[B]q5 |= p∞3 | z ∧ (∃y)[q∞3 | (z + y) ∧ p∞1 | y]

with our fixed element y ∈ B as the witness. Applying Lemma 5.3.3(5) (with
F1 := {p3, p4}, F2 := {p1}, ρ := q3 and P := P∪{u4,0, q5}), we conclude that ai ∈ [Z]P,u4,0,q5 .
This completes the proof of (3)(a) when β = 5.

To prove (3)(b) when β = 5, assume z =
∑

aizi, where ai ∈ [Z]u4,k,P and each zi

is the root of a [G(Σ0
3)]u4,k component. Let Gi denote the [G(Σ0

3)]u4,k component
containing zi. We need to show that G satisfies

u∞4,k | z ∧ p∞3 | z ∧ (∃y)[u∞4,k | y ∧ q∞3 | (z + y) ∧ p∞1 | y].

Since zi is the root of Gi, we have p∞3 | zi. By Lemma 5.3.9 and the fact that Gi is
P∪{u4,k}-closed, it follows that p∞3 | aizi and u∞4,k | aizi. Hence, we have p∞3 | z and u∞4,k | z.

Let yi be the root of a G(Π0
2) component inside Gi and let y :=

∑
aiyi. Since

G(Π0
2) � [Z]p1 , we have p∞1 | yi. As Gi is P ∪ {u4,k}-closed, it follows that p∞1 | aiyi (by

Lemma 5.3.9) and that u∞4,k | aiyi. Hence, both p1 and u4,k infinitely divide y. By the
definition of G(Σ0

3), we have q∞3 | (zi + yi) and applying Lemma 5.3.9 one more time,
we obtain q∞3 | (aizi + aiyi). Therefore G satisfies Φ

u4,k
3 (z) with witness y.

This completes the base case of β = 5.

Next, we show (3) for β > 5 supposing (2) holds for β − 2. To prove (3)(a), we
suppose G |= u∞β−1,k | z ∧ Φ

uβ−1,k

β−2 (z), recalling u∞β−1,k | z ∧ Φ
uβ−1,k

β−2 (z) is

u∞β−1,k | z ∧ p∞β−2 | z ∧ (∃y)[u∞β−1,k | y ∧ q∞β−2 | (z + y) ∧ A
uβ−1,k

β−3 (y) ∧ Ψ
uβ−1,k

β−3 (y)]. (‡‡)

We need to show that z =
∑

aizi with each ai ∈ [Z]uβ−1,k,qβ,P and each zi a root of a
[G(Σ0

β−2)]uβ−1,k component.
As in the β = 5 case, together u∞β−1,k | z and p∞β−2 | z imply that z =

∑
aizi, where

ai ∈ Q and each zi is the root of a [G(Σ0
β−2)]uβ−1,k or [G(Π0

β−2)]uβ−1,k component. We
endeavor to show that, in fact, each ai ∈ [Z]uβ−1,k,qβ,P and each zi is the root of a
[G(Σ0

β−2)]uβ−1,k component.
Fix a witness y for (‡‡). Our first goal is to show that y is a sum of roots of

G(Π0
β−3) components. Since u∞β−1,k | y, the element y lies within the [G(Σ0

β−2)]uβ−1,k and
[G(Π0

β−2)]uβ−1,k components. Thus, we have y ∈ H := Span
G

(X) where X contains the
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roots of the [G(Σ0
β−2)]uβ−1,k and [G(Π0

β−2)]uβ−1,k components as well as the roots of all the
components nested via the recursive construction inside these components. Note
thatH is the subgroup of G consisting of the elements infinitely divisible by uβ−1,k.
Because G satisfies A

uβ−1,k

β−3 (y) ∧ Ψ
uβ−1,k

β−3 (y), we have thatH satisfies Aβ−3(y) ∧ Ψβ−3(y)
by Lemma 5.3.5.

We describe the isomorphism type of H in two cases: when k > 0 and when
k = 0. If k > 0, then the roots of the [G(Σ0

β−2)]uβ−1,k and [G(Π0
β−2)]uβ−1,k components

are not roots of components at any level other than β − 2. Thus, the groupH is an
infinite direct sum of [G(Σ0

β−2)]uβ−1,k,P and [G(Π0
β−2)]uβ−1,k,P groups.

If k = 0, then note that there are no [G(Π0
β−2)]uβ−1,0 components. Each root of a

[G(Σ0
β−2)]uβ−1,0 component is also the root of a G(Σ0

β−1(m)) or a G(Π0
β−1) component.

Thus, each such root is infinitely divisible by pβ−1 (in addition to the divisibility
imposed at level β − 2). Furthermore, if r, r′ are roots of G(Σ0

β−1(m)) or G(Π0
β−1)

components from the same Ci, then q∞β | (r − r′). If they are roots from different Ci,
then we have no such qβ divisibility. To incorporate the extra divisibility by pβ−1

and to smooth out this divisibility difference by qβ, we study [H]qβ,pβ−1 . The group
[H]qβ,pβ−1 is isomorphic to an infinite direct sum of [G(Σ0

β−2)]P′ groups where P′ :=
P ∪ {uβ−1,0, qβ, pβ−1}.

In each of the k > 0 and k = 0 cases, we can apply Part (2)(a) forH or [H]qβ,pβ−1

and β − 2 to conclude that y =
∑

b jy j is a sum of roots y j of G(Π0
β−3) components

in G (with appropriate coefficients, which depend on which case we are in). Thus,
we have established our first goal.

Our second goal is to show that in the sum z =
∑

aizi, where each zi is the root
of a [G(Σ0

β−2)]uβ−1,k component (as opposed to a [G(Π0
β−2)]uβ−1,k component) and each

coefficient ai lies in [Z]pβ−1,qβ,P. We have z, y ∈ B := Span
G

(X) where X contains the
roots of the [G(Π0

β−2)]uβ−1,k components, the roots of the [G(Σ0
β−2)]uβ−1,k components,

and the roots of their G(Π0
β−3) components. We split into cases depending on

whether k > 0 or k = 0 and proceed with an analysis of the infinite divisibilities as
in the β = 5 case.

First, suppose that k > 0. A root r of a [G(Π0
β−2)]uβ−1,k or [G(Σ0

β−2)]uβ−1,k component
is infinitely divisible by pβ−2 (being a root at level β−2), by uβ−1,k (by prime closure),
and by the primes in P (by prime closures). Since β − 2 is odd, the element r is not
a root at a lower level; since k > 0, the element r is not a root at a higher level.

A root r of a G(Π0
β−3) subcomponent of a [G(Σ0

β−2)]uβ−1,k component is infinitely
divisible by pβ−3 (being a root at level β − 3), by uβ−1,k (by prime closure), and by
the primes in P (by divisible closures). In addition, if β − 3 is not a limit ordinal,
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then r is also the root of a [G(Σ0
β−4)]uβ−3,0 component and hence is infinitely divisible

by pβ−4 and uβ−3,0. Notice that the recursion stops at this point because β − 4 is an
odd ordinal and hence r is not the root at any lower level. If β− 3 is a limit ordinal,
then r is also the root of a [G(Σ0

fβ−3(0))]uβ−3,0 component and hence is infinitely divisible
by p fβ−3(0) and uβ−3,0. Again, the recursion stops at this point because fβ−3(0) is an
odd ordinal. Recall that if β − 3 is not a limit, then fβ−3(0) = β − 4. Thus, we can
also describe the infinite divisibility by pβ−4 (in the case when β − 3 is not a limit)
as infinite divisibility by p fβ−3(0). In future analyses, we will combine these cases in
this manner.

From this analysis, when k > 0, the group B is isomorphic to the direct sum of
infinitely many copies of [Z]pβ−2,uβ−1,k,P (from the roots of [G(Π0

β−2)]uβ−1,k components)
and infinitely many copies of

〈
[Z]F1 ⊕

⊕
j∈ω

[Z]F2 ;
x + y j

ρk
: j, k ∈ ω

〉
P,uβ−1,k

(5.3)

where F1 := {pβ−2}, F2 := {pβ−3,uβ−3,0, p fβ−3(0)} and ρ := qβ−2 (from the roots of
[G(Σ0

β−2)]uβ−1,k components and their G(Π0
β−3) subcomponents). A divisibility ar-

gument almost identical to the one used in the β = 5 case (using the fact that
q∞β−2 | (z + y)) shows that none of the zi elements can come from the [Z]pβ−2,uβ−1,k,P

summands. Therefore, each zi is the root of a [G(Σ0
β−2)]uβ−1,k component.

Let B′ be the subgroup of B consisting of the direct sum of infinitely many
copies of the group in Equation (5.3). SinceB′ is a pure subgroup ofG containing y
and z and G satisfies

p∞β−2 | z ∧ q∞β−2 | (z + y) ∧ p∞β−3 | y,

we have that this formula is also satisfied in B′ (by Fact 5.3.2(1)). Applying
Lemma 5.3.3(5) to B′ with the above values for F1, F2, and ρ yields that each
ai ∈ [Z]P,uβ−1,k , completing the case when k > 0.

Second, suppose k = 0. The analysis of the isomorphism type of B is almost
identical to the case when k > 0 except for three points. First, there are no compo-
nents of the form [G(Π0

β−2)]uβ−1,0 and hence no argument is needed to conclude that
each zi is the root of a [G(Σ0

β−2)]uβ−1,0 component. Second, the root of a [G(Σ0
β−2)]uβ−1,0

component is also the root of a G(Σ0
β−1) or G(Π0

β−1) component and hence is in-
finitely divisible by pβ−1 in addition to the infinite divisibilities given above. Third,
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to smooth out the fact that qβ infinitely divides r − r′ when r, r′ are roots of G(Σ0
β−1)

or G(Π0
β−1) components from the same Ci, we work with [B]qβ . With these obser-

vations, the group [B]qβ is isomorphic to the direct sum of infinitely many copies
of 

〈
[Z]F1 ⊕

⊕
j∈ω

[Z]F2 ;
x + y j

ρk
: j, k ∈ ω

〉
P,uβ−1,k,qβ

where F1 := {pβ−2, pβ−1}, F2 := {pβ−3,uβ−3,0, p fβ−3(0)} and ρ := qβ−2. Since B is a pure
subgroup of G and G satisfies

p∞β−2 | z ∧ q∞β−2 | (z + y) ∧ p∞β−3 | y

this formula is also satisfied inB (by Fact 5.3.2(1)). Since [B]qβ is an expansion ofB,
it remains true in B′ (by Fact 5.3.2(2)). We apply Lemma 5.3.3(5) to conclude that
each ai ∈ [Z]P,uβ−1,k,qβ .

To prove (3)(b) when β > 5, fix an element z =
∑

aizi with each ai ∈ [Z]uβ−1,k,P and
each zi the root of a [G(Σ0

β−2)]uβ−1,k component (which we denote by Gi). We have
u∞β−1 | zi and p∞β−2|zi as a consequence of the structure of [G(Σ0

β−2)]uβ−1,k components
and zi being the root. As ai ∈ [Z]uβ−1,k,P and Gi is {uβ−1,k,P}-closed, it follows that
u∞β−1 | aizi and p∞β−2|aizi and hence that u∞β−1 | z and p∞β−2|z.

Let y :=
∑

aiyi, where yi is the root of a G(Π0
β−3) subcomponent of Gi. Since

each Gi is a [G(Σ0
β−2)]uβ−1,k component, it follows from the structure of these compo-

nents that u∞β−1,k | y and q∞β−2 | (z + y). It remains to show that G satisfies A
uβ−1,k

β−3 (y) and

Ψ
uβ−1,k

β−3 (y).

Let B := Span
G

(X) where X contains the roots of the [G(Σ0
β−2)]uβ−1,k components

and the roots of any component nested via the recursive construction inside such
a component. Note that y, z ∈ B and that B is the subgroup of G consisting of the
elements which are infinitely divisible by uβ−1,k. Applying Part (2)(b) toBwith β−2
and P = P ∪ {uβ−1,k}, we get that B satisfies Aβ−3(y) ∧ Ψβ−3(y). Since B consists of
the elements of G which are infinitely divisible by uβ−1,k, we have that G satisfies
A

uβ−1,k

β−3 (y) ∧ Ψ
uβ−1,k

β−3 (y) by Lemma 5.3.5 as required.

(2) We show (2) for β supposing (3) and (4) hold for values less than or equal to β.
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To show (2)(a), we suppose G |= Aβ−1(z) ∧ Ψβ−1(z), recalling Aβ−1(z) is

p∞β−1|z ∧ (∃w)
[
uβ−1,1|w ∧ v∞β−1,0|(z + w)

]
.

Since p∞β−1 | z, we can express z as z =
∑

aizi where ai ∈ Q and zi is the root of a
G(Σ0

β−1(m)) or G(Π0
β−1) component (which we denote by Gi). Since zi is also the root

of the [G(Σ0
fβ−1(0))]uβ−1,0 component inside this G(Σ0

β−1(m)) or G(Π0
β−1) component, we

have that zi is infinitely divisible by p fβ−1(0) and uβ−1,0. As above, the recursion stops
here since fβ−1(0) is an odd ordinal and hence zi is the element 1 in a copy of [Z]p fβ−1(0) .

Fix an element w witnessing G |= Aβ−1(z). The condition u∞β−1,1 |w implies that w
is a sum of elements from [G(Σ0

fβ−1(1))]uβ−1,1 and [G(Π0
fβ−1(1))]uβ−1,1 components. The

condition v∞β−1,0 | (z + w) implies (by divisibility arguments similar to those already
given many times) that w =

∑
biwi, where each bi ∈ Q and each wi is the root of a

[G(Σ0
fβ−1(1))]uβ−1,1 or [G(Π0

fβ−1(1))]uβ−1,1 component. Since fβ−1(1) is an odd ordinal, the
root of such a component is the element 1 in a copy of [Z]p fβ−1(1) . Thus, the element wi

is infinitely divisible by p fβ−1(1) and uβ−1,1 but the recursion stops at this point. (Note
that for the same reason, the roots of [G(Σ0

fβ−1(k))]uβ−1,k and [G(Π0
fβ−1(k))]uβ−1,k components

for k ≥ 2 are infinitely divisible only by p fβ−1(k) and uβ−1,k.)
To find the coefficients ai in z =

∑
aizi, let B := Span

G
(X) where X contains the

roots of the [G(Σ0
fβ−1(k))]uβ−1,k and [G(Π0

fβ−1(k))]uβ−1,k components for k ∈ ω. As in the

proof of Part (3), we work in [B]qβ since, for roots r, r′ of [G(Σ0
fβ−1(0))]uβ−1,0 components

(which are also roots of G(Σ0
β−1(m)) or G(Π0

β−1) components), it is the case that qβ
infinitely divides r − r′ if and only if these roots come from the same Ci summand
of G.

The group [B]qβ is isomorphic to the P′ := P ∪ {qβ} closure of〈
F ;

xk, j

σ`k
,

xk, j + xk+1, j

ρ`k
: j, k, ` ∈ ω and all σk ∈ Fk

〉
where F is the free abelian group on xk, j (for k, j ∈ ω), F0 := {p fβ−1(0), pβ−1,uβ−1,0},
Fk := {p fβ−1(k),uβ−1,k} (for k > 0) and ρk := vβ−1,k. In this presentation, for each fixed j,
the element xk, j is the root of a [G(Σ0

fβ−1(0))]uβ−1,k component or a [G(Π0
fβ−1(0))]uβ−1,k

component within a fixed G(Σ0
β−1(m)) or G(Π0

β−1) component of G. As j varies, we
range over all G(Σ0

β−1(m)) and G(Π0
β−1) components of G. If β − 1 is a limit ordinal,

then p fβ−1(k) , p fβ−1(k′) for k , k′. If β−1 is not a limit ordinal, then p fβ−1(k) = pβ−2 for all k.
In this case, we can remove the primes p fβ−1(k) from Fk and add pβ−2 to P′ (since [B]qβ
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is pβ−2 closed). This change has the effect of including infinite divisibility by pβ−2

for our coefficients ai.

SinceB is a pure subgroup ofG, the groupB is a subgroup of [B]qβ , and z,w ∈ B,
we have (applying both Fact 5.3.2(1) and Fact 5.3.2(2)) that [B]qβ satisfies Aβ−1(z)
with our element w as witness. Therefore, by Lemma 5.3.4(3), we obtain that
z =

∑
aizi with ai ∈ [Z]P,pβ−2,qβ (if β − 1 is not a limit ordinal) or ai ∈ [Z]P,qβ (if β − 1 is a

limit ordinal).

Next, we use the fact that G |= Ψβ−1(z) to show each Gi is a G(Π0
β−1) component.

For if one were not, then some G` would be a G(Σ0
β−1(m0)) component for some

m0 ∈ ω. With m := m0 + 1, we fix a sequence g0, g1, . . . , gm witnessing that G
satisfies the m-th conjunct of Ψβ−1(z). Since G satisfies u∞β−1,m | gm and Φ

uβ−1,m

fβ−1(m)(gm),
we have by Part (3) or Part (4) (depending on the form of fβ−1(m)) that gm =

∑
c jy j

where each y j is the root of a [G(Σ0
fβ−1(m))]uβ−1,m component. Since g0 = z =

∑
aizi

and v∞β−1 | (gk + gk+1) for 0 ≤ k < m, one of the y j roots in the summand for gm must
lie in the component G`. However, the group G` is a G(Σ0

β−1(m0)) component with
m0 < m, so it does not contain a [G(Σ0

fβ−1(m))]uβ−1,m component, yielding the desired
contradiction. This completes the proof of (2)(a).

To prove (2)(b), fix an element z =
∑

aizi with ai ∈ [Z]P and zi a root of a G(Π0
β−1)

component of G (which we denote Gi). We need to show that G |= Aβ−1(z) and
G |= Ψβ−1(z). For the former, we need to show that G satisfies

p∞β−1|z ∧ (∃w)[u∞β−1,1 |w ∧ v∞β−1,0 | (z + w)].

From the structure of G(Π0
β−1) components, we have each zi is the root r0 of the[

G(Σ0
fβ−1(0))

]
uβ−1,0

component of Gi. By Lemma 5.3.9, the condition p∞β−1|z is satisfied

since ai ∈ [Z]P and p∞β−1|zi for each zi.

To generate the witness w, for each i, let wi be the root r1 of the
[
G(Σ0

fβ−1(1))
]

uβ−1,1

component of Gi. The conditions u∞β−1,1 |wi and v∞β−1,0 | (zi + wi) are satisfied since
zi = r0 and wi = r1 in Gi. As each ai ∈ [Z]P, it follows from Lemma 5.3.9 that
G |= Aβ−1(z) with witness w :=

∑
aiwi.

To see that G |= Ψβ−1(z), we reason as follows. Fix m ∈ ω. We show how to
pick the witnessing elements g0, . . . , gm for the m-th conjunct. For each zi, pick a
sequence of elements gi,0, gi,1, . . . , gi,m in Gi by setting gi,0 := zi (which is the r0 root
in Gi) and gi,k := rk (the root of the [G(Σ0

fβ−1(k))]uβ−1,k component of Gi) for 0 < k ≤ m.
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Since ai ∈ [Z]P and each Gi is P-closed, we have (from the structure of G(Π0
β−1)) that

u∞β−1,k | aigi,k for k ≤ m and v∞β−1,k | (aigi,k + aigi,k+1) for k < m.
For each 0 ≤ k ≤ m, let gk :=

∑
i aigi,k. By the divisibility conditions above, we

have u∞β−1,k | gk for k ≤ m and v∞β−1,k | (gk + gk+1) for k < m. Furthermore, g0 = z. There-

fore, it only remains to show that Φ
uβ−1,m

fβ−1(m)(gm). We already have u∞β−1,m | gm. Since

gm =
∑

i aigi,m where ai ∈ [Z]P and gi,m is the root of a [G(Σ0
fβ−1(m))]uβ−1,m component,

it follows from Part (3)(b) or Part (4)(b), depending on the form of fβ−1(m), that G
satisfies Φ

uβ−1,m

fβ−1(m)(gm) and hence G |= Ψβ−1(z).

(4) As fβ−1(k) is an odd ordinal and fβ−1(k) < β − 1 for all k ∈ ω, the proof
of Part (4) is essentially the same as the proof of Part (3) with the appropriate
notational changes to reflect that β − 1 is a limit ordinal.

�

Lemma 5.3.10. Let β = δ + 2` + 1 ≥ 3. Then for G =
⊕

n∈ωGn, where Gn is either
[G(Σ0

β)]dn or [G(Π0
β)]dn , the following holds:

G |= [(∃x)Φβ(x)]dn if and only if Gn � [G(Σ0
β)]dn .

Proof. SinceGn is the subgroup of elements ofGwhich are infinitely divisible by dn,
we have by Lemma 5.3.5 that

G |= [(∃x)Φβ(x)]dn if and only if Gn |= (∃x)Φβ(x).

Therefore, it suffices to show that G(Σ0
β) |= (∃x)Φβ(x) and G(Π0

β) 6|= (∃x)Φβ(x).
First, we show that G(Σ0

β) |= Φβ(r) where r is the root of G(Σ0
β). That is, we show

that G(Σ0
β) satisfies

p∞β | r ∧ (∃y)[q∞β | (r + y) ∧ Aβ−1(y) ∧ Ψβ−1(y)].

Since r is the root of G(Σ0
β), we immediately obtain p∞β | r. We claim that the root rk

of a G(Π0
β−1) component works for the choice of y in Φβ. From the definition of

G(Σ0
β), we have q∞β | (r + rk) and by Lemma 5.3.7(2)(b), we have that G(Σ0

β) satisfies
both Aβ−1(rk) and Ψβ−1(rk) as required.

Second, assume for a contradiction thatG(Π0
β) |= (∃x)Φβ(x) and fix the witness x.

The condition p∞β | x implies that x is a multiple of the root of G(Π0
β). Fix the

witness y such that q∞β | (x + y) ∧ Aβ−1(y) ∧ Ψβ−1(y). By Lemma 5.3.7(2)(a), the
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condition Aβ−1(y) ∧ Ψβ−1(y) implies that y is a sum of multiples of the roots of
G(Π0

β−1) components. However, the group G(Π0
β) has no such components, giving

the desired contradiction. �

We continue by constructing sentences connected semantically to H(Σ0
β) and

H(Π0
β). We first give lemmas similar to Lemma 5.3.7 for the groups H(Σ0

β) and
H(Π0

β).

Lemma 5.3.11. Let β = δ + 2l + 2 ≥ 4 and let H � H(Π0
β). Let y ∈ H be a sum

y =
∑

b jy j where each b j ∈ Z and each y j is the root of a (distinct)G(Σ0
β−1) component

ofH . ThenH |= Φβ−1(y).

Proof. We need to show thatH satisfies

p∞β−1 | y ∧ (∃w)[q∞β−1 | (y + w) ∧ Aβ−2(w) ∧Ψβ−2(w)].

By the structure of G(Σ0
β−1), we have p∞β−1 | y j for all j. Since b j ∈ Z, we have

p∞β−1 | b jy j and hence p∞β−1 | y. For each j, let w j be the root of a G(Π0
β−2) component

within the G(Σ0
β−1) component with root y j and let w :=

∑
b jw j. It follows from the

structure of G(Σ0
β−1) that q∞β−1 | (y + w). Therefore, it remains to show thatH satisfies

Aβ−2(w) ∧Ψβ−2(w).
The groupH is built by taking a direct sum of the groups [Z]pβ (with root r) and⊕
k∈ωG(Σ0

β−1) (with roots rk) and then adding extra elements (from the divisible
closure of this sum) to witness q∞β | (r + rk). Since w =

∑
b jw j with each b j ∈ Z, we

can view w as an element of the group
⊕

k∈ωG(Σ0
β−1) in this construction of H .

By Lemma 5.3.7(2)(b) applied to w as an element of
⊕

k∈ωG(Σ0
β−1), we have that⊕

k∈ωG(Σ0
β−1) satisfies Aβ−2(w) ∧Ψβ−2(w). Since

⊕
k∈ωG(Σ0

β−1) is a subgroup of H ,
Fact 5.3.3 implies thatH satisfies Aβ−2(w) ∧Ψβ−2(w) as required. �

Lemma 5.3.12. Let β = δ + 2l + 2 ≥ 4 and let H � H(Σ0
β). Let r be the root of a

G(Π0
β−1) component ofH . ThenH 6|= Φβ−1(r).

Proof. We show that there is no w ∈ H such thatH satisfies

q∞β−1 | (r + w) ∧ Aβ−2(w) ∧Ψβ−2(w).

For a contradiction, fix such an element w ∈ H . To simplify dealing with qβ
divisibility inH , we work in the prime closure [H]qβ and note that if w satisfies this
formula inH , then by Fact 5.3.3, it also satisfies the formula in [H]qβ .
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The group [H]qβ decomposes as a direct sum

[Z]pβ,qβ ⊕

⊕
i∈ω

[Ci]qβ

where eachCi is isomorphic toG(Σ0
β−1) orG(Π0

β−1). The divisibility condition p∞β−2 |w
(from the fact that [H]qβ |= Aβ−2(w)) implies that w =

∑
aiwi where each ai ∈ Q and

each wi is the root of a G(Σ0
β−2(m)) or G(Π0

β−2) component. Therefore, as an element
of [H]qβ , we have w ∈

⊕
i∈ω[Ci]qβ . In addition, by arguments similar to previous

ones, the condition q∞β−1 | (r+w) implies that at least one wi is the root of aG(Σ0
β−2(m))

subcomponent of the G(Π0
β−1) component with root r (as this component has no

G(Π0
β−2) subcomponents).

Assume for a moment that
⊕

i∈ω[Ci]qβ satisfies Aβ−2(w) ∧ Ψβ−2(w). Under this
assumption, Lemma 5.3.7(2)(a) implies that w is a sum of roots of G(Π0

β−2) compo-
nents, contradicting the fact that at least one wi is the root of a G(Σ0

β−2(m)) compo-
nent. Therefore, to complete our proof, it suffices to show that

⊕
i∈ω[Ci]qβ satisfies

Aβ−2(w) ∧Ψβ−2(w).
To show

⊕
i∈ω[Ci]qβ satisfies Aβ−2(w) ∧Ψβ−2(w), we use the fact that

⊕
i∈ω[Ci]qβ

is a pure subgroup of [H]qβ (since it is a direct summand) along with the following
observation. Because [H]qβ is a direct sum, any element z ∈ [H]qβ can be written
(uniquely) in the form z = z0 + z1 where z0 ∈ [Z]pβ,qβ and z1 ∈

⊕
i∈ω[Ci]qβ . If ρ is a

prime and ρ∞ | z, then ρ∞ | z0 and ρ∞ | z1. Therefore, if ρ∞ | z and ρ is not pβ or qβ, we
can conclude that z ∈

⊕
i∈ω[Ci]qβ .

Using this observation, we show that the following implications hold for all γ
with 2 ≤ γ ≤ β − 2. Let ϕ(x) be either Aγ(x) or Ψγ(x) (if γ is even) or Φγ(x) (if γ is
odd), and let ρ be any prime number. For any x ∈

⊕
i∈ω[Ci]qβ , we have

[H]qβ |= ϕ(x) implies
⊕

i∈ω

[Ci]qβ |= ϕ(x) and

[H]qβ |= ϕρ(x) implies
⊕

i∈ω

[Ci]qβ |= ϕρ(x).

Notice that establishing this property finishes our proof as w ∈
⊕

i∈ω[Ci]qβ and
[H]qβ |= Aβ−2(w) ∧Ψβ−2(w), so by the property

⊕
i∈ω[Ci]qβ |= Aβ−2(w) ∧Ψβ−2(w).

First, consider the case when ϕ(x) is Aγ(x) and assume [H]qβ |= Aγ(x). In this
case, the existential witness y in Aγ(x) is infinitely divisible by uγ,1. As uγ,1 < {pβ, qβ},
we have y ∈

⊕
i∈ω[Ci]qβ . Since

⊕
i∈ω[Ci]qβ is a pure subgroup containing x and y,
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the group
⊕

i∈ω[Ci]qβ satisfies Aγ(x). The same proof works for Aρ
β(x).

Second, consider the cases when ϕ(x) is Φγ(x) (for odd γ), Ψγ(x) (for even γ)
or a prime relativization of one of these formulas. We proceed by induction on γ
and note that in each case the proof for the relativized formula is identical to the
proof for the unrelativized formula. In each case, we assume x ∈

⊕
i∈ω[Ci]qβ and

[H]qβ |= ϕ(x).
The first base case is when β = 2. Since Ψ2(x) is p∞1 | x, x ∈

⊕
i∈ω[Ci]qβ , and⊕

i∈ω[Ci]qβ is a pure subgroup, we have
⊕

i∈ω[Ci]qβ |= Ψ2(x).
The second base case is β = 3. The existential witness y in the formula Φ3(x) sat-

isfies p∞1 | y (from Ψ2(y)). As p1 < {pβ, qβ}, we have y ∈
⊕

i∈ω[Ci]qβ . Since
⊕

i∈ω[Ci]qβ

is a pure subgroup containing x and y, we have
⊕

i∈ω[Ci]qβ |= Φ3(x).
For the inductive cases, suppose γ is even and 4 ≤ γ ≤ β− 2. Consider the m-th

conjunct of Ψγ(x). The witnesses x0, . . . , xm satisfy u∞γ,k | xk and thus are in
⊕

i∈ω[Ci]qβ

as uγ,k < {pβ, qβ}. Since
⊕

i∈ω[Ci]qβ is a pure subgroup and it satisfies Φ
uγ,m
fγ(m)(xm) by

the inductive hypothsis, we have that
⊕

i∈ω[Ci]qβ |= Ψγ(x).
Ifγ is odd and 4 < γ ≤ β−2, then the existential witness y in Φγ(x) satisfies p∞γ−1 | y

from Aγ−1(y). Thus, as pγ−1 < {pβ, qβ}, we have y ∈
⊕

i∈ω[Ci]qβ . Since
⊕

i∈ω[Ci]qβ is
a pure subgroup and satisfies Aγ−1(y) and Ψγ−1(y) by the inductive hypothesis, we
have

⊕
i∈ω[Ci]qβ |= Φγ(x). �

Definition 5.3.5. If β ≥ 4 is not a limit ordinal, define Bβ(x) to be the formula

Bβ(x) := p∞β | x ∧ (∃w)
[
p∞β−1 |w ∧ q∞β | (x + w)

]
.

Definition 5.3.6. If β = δ + 2` + 2 ≥ 4, define Θβ to be the formula

Θβ(x) := (∀y)
[(

Bβ(x) ∧ Bβ−1(y) ∧ q∞β | (x + y)
)
→ Φβ−1(y)

]
.

Lemma 5.3.13. The complexity of Bβ(x) is Σc
3 (independent of β).

If β = δ + 2` + 2 ≥ 4, then Θβ(x) ∈ Πc
β.

Proof. These statements follow immediately from p∞ | x being Πc
2 and Lemma 5.3.6.

�

Lemma 5.3.14. Let β = δ+ 2`+ 2 ≥ 4. Let x ∈ H(Π0
β) satisfy Bβ(x) with fixed witness

w. Then x = ar where a ∈ Z and r is the root of H(Π0
β) and w =

∑
b jw j where

b j ∈ [Z]pβ−1,qβ and each w j is the root of a G(Σ0
β−1) component ofH(Π0

β).
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Proof. Since p∞β | x, the element x must have the form x = ar where a ∈ Q and r is the
root ofH(Π0

β). Since p∞β−1 |w, the element w must have the form w =
∑

b jw j where
b j ∈ Q and w j is the root of a G(Σ0

β−1) component ofH(Π0
β).

Let B := Span
H(Π0

β)(X) where X contains the root of H(Π0
β) and the roots of the

G(Σ0
β−1) components of H(Π0

β). Then x,w ∈ B, B is a pure subgroup of H(Π0
β),

and B is isomorphic to〈
[Z]pβ ⊕

⊕
k∈ω

[Z]pβ−1 ; q−t
β (r + rk) : k, t ∈ ω

〉
.

Since B satisfies p∞β | x, p∞β−1 |w, and q∞β | (x + w), we can apply Lemma 5.3.3(5) (with
P = ∅) to conclude that a ∈ Z and each b j ∈ [Z]pβ−1,qβ . �

Lemma 5.3.15. Let β = δ + 2` + 2 ≥ 4. If x, y ∈ H(Π0
β) satisfy

Bβ(x) ∧ Bβ−1(y) ∧ q∞β | (x + y),

then x = ar and y =
∑

b jy j where a, b j ∈ Z, r is the root ofH(Π0
β), and y j is the root

of a G(Σ0
β−1) component ofH(Π0

β).

Proof. By Lemma 5.3.14, the fact that Bβ(x) holds implies x = ar with a ∈ Z and r
the root ofH(Π0

β). Since Bβ−1(y) implies p∞β−1 | y and since q∞β | (x + y), the element y
works as a witness w in the formula Bβ(x) for our fixed element x. Therefore, by
the previous lemma y =

∑
b jy j where b j ∈ [Z]pβ−1,qβ and y j is the root of a G(Σ0

β−1)
component. It remains to show the stronger conclusion that b j ∈ Z.

Fix a witness w for Bβ−1(y). Since p∞β−2 |w, the element w must have the form
w =

∑
ciwi where ci ∈ Q and wi is the root of a G(Σ0

β−2(m)) component inside a
G(Σ0

β−1) component ofH(Π0
β). Therefore y,w ∈ BwhereB := Span

H(Π0
β)(X) where X

contains the roots of the G(Σ0
β−1) components and the roots of their G(Σ0

β−2(m))
subcomponents.

To determine the isomorphism type of B, we consider which primes infinitely
divide the roots of such components. The root of a G(Σ0

β−1) component is infinitely
divisible by pβ−1. The roots ofG(Σ0

β−2(m)) components are infinitely divisible by pβ−2

and uβ−2,0 from the definition of G(Σ0
β−2(m)). Each of these roots is also the root of

a G(Σ0
fβ−2(0)) component (inside G(Σ0

β−2(m))) and hence is also infinitely divisible
by p fβ−2(0). However, the recursion stops at this point since the root of G(Σ0

fβ−2(0)) is
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the element 1 in a copy of [Z]p fβ−2(0) . Therefore, the group B is isomorphic to
〈⊕

i∈ω

[Z]F1 ⊕

⊕
i, j∈ω

[Z]F2 ;
si + ti, j

ql
β−2

: i, j, l ∈ ω
〉

where F1 = {pβ−1}, F2 = {pβ−2,uβ−2,0, p fβ−2(0)}, the si elements generate the copies of [Z]F1

(representing the roots of the G(Σ0
β−1) components) and the ti, j elements generate

the copies of [Z]F2 (representing the roots of the G(Σ0
β−2(m)) subcomponents of the

G(Σ0
β−1) component with root si). Since y,w ∈ B andB is a pure subgroup ofH(Π0

β)
satisfying p∞β−1 | y, p∞β−2 |w, and q∞β−1 | (y + w), we can conclude from Lemma 5.3.3(5)
(with P = ∅) that the coefficients in the sum y =

∑
b jy j come from Z. �

Lemma 5.3.16. Let β = δ + 2` + 2 ≥ 4. Then forH =
⊕

n∈ωHn, whereHn is either
[H(Σ0

β)]dn or [H(Π0
β)]dn , the following holds:

H |=
[
(∀x)Θβ(x)

]dn
if and only if Hn � [H(Π0

β)]dn .

Proof. Since Hn is the subgroup of elements of H which are infinitely divisible
by dn, we have

H |= [(∀x)Θβ(x)]dn ⇔ Hn |= (∀x)Θβ(x)

Therefore, it suffices to show thatH(Π0
β) |= (∀x)Θβ(x) andH(Σ0

β) 6|= (∀x)Θβ(x).
First, we show that H(Π0

β) |= (∀x)Θβ(x). Fix elements x, y ∈ H(Π0
β) satisfying

Bβ(x) ∧ Bβ−1(y) ∧ q∞β | (x + y). By Lemma 5.3.15, we can write y =
∑

b jy j where each
b j ∈ Z and y j is the root of a G(Σ0

β−1) component. By Lemma 5.3.11, the element y
satisfies Φβ−1(y) as required.

Second, we show thatH(Σ0
β) 6|= (∀x)Θβ(x) by proving thatH(Σ0

β) 6|= Θβ(r) where r
is the root of H(Σ0

β). Let y be the root of a G(Π0
β−1) component of H(Σ0

β). It is
immediate that H(Σ0

β) |= Bβ(r) ∧ Bβ−1(y) ∧ q∞β | (r + y). However, by Lemma 5.3.12,
the groupH(Σ0

β) does not satisfy Φβ−1(y). �

Finally, we are in a position to define the sentences {Υn}n∈ω required for Lemma 5.3.1
and to demonstrate their correctness.

Definition 5.3.7. Define sentences Υn for n ∈ ω as follows.

• If α = δ + 2` + 1 ≥ 3, let Υn := [(∃x)Φα(x)]dn .
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• If α = δ + 2` + 2 ≥ 4, let Υn := ¬ [(∀x)Θα(x)]dn .

Proof of Lemma 5.3.1. By Lemma 5.3.10 and Lemma 5.3.16, the sentences Υn have the
desired semantic properties. As a consequence of Lemma 5.3.6 and Lemma 5.3.13,
the formulas Υn have the desired quantifier complexity. Moreover, all the (sub)formulas
are computable with all possible uniformity, so Υn is uniformly computably Σc

α. �

5.3.2 Proof of Lemma 5.3.2

The construction of an X-computable copy of GαS if S ∈ Σ0
α(X) is also done by

recursion. We treat only the case when X = ∅, the more general case following by
relativization.

Lemma 5.3.17. For every even ordinal β = δ > 0 or β = δ + 2` + 2 ≥ 2 and Σ0
β set S,

there is a uniformly computable sequence {Gn}n∈ω of rooted torsion-free abelian
groups such that Gn � G(Σ0

β(m)) for some m ∈ ω if n ∈ S and Gn � G(Π0
β) if n < S.

For every odd ordinal β = δ + 2` + 1 ≥ 3 and Σ0
β set S, there is a uniformly

computable sequence {Gn}n∈ω of rooted torsion-free abelian groups such that Gn �

G(Σ0
β) if n ∈ S and Gn � G(Π0

β) if n < S.
Moreover the passage from an index for the set S to an index for the sequence

is effective.

Proof. The proof is done by induction on β. We treat the cases β = 2, β = δ+2`+2 ≥ 4,
β = δ+2`+1 ≥ 3, and β = δ > 0 separately. In all cases, we fix a predicate (∃s) [R(n, s)]
describing membership of n in S, where R(n, s) is Π0

fβ(k) for some k. Without loss of
generality, we suppose R(n, s0) implies (∀s ≥ s0) [R(n, s)]. Indeed, we suppose this
property of all existential subpredicates.

For β = 2, it suffices to start with the group Z with root rn = 1 for Gn. When we
see ¬R(n, s) for a new existential witness s, we introduce the element 1/ps into the
group. It is easy to see the sequence {Gn}n∈ω has the desired properties.

For β = δ + 2` + 1 ≥ 3, it suffices to start with the group [Z]pβ with root rn = 1
for Gn. For each integer s, we construct (via induction as ¬R(n, s) is Σ0

δ+2`) a rooted
torsion-free abelian group Gn,s with root rn,s and introduce elements (rn + rn,s)/qt

β

for all t ∈ ω. For each integer m, we construct infinitely many copies of G(Σ0
β−1(m))

with root rn,k,m (where k is the copy number) and introduce elements (rn + rn,k,m)/qt
β

for all t ∈ ω. Again, it is easy to see the sequence {Gn}n∈ω has the desired properties.
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For β = δ + 2` + 2 ≥ 4, we construct (via induction as ¬R(n, s) is Σ0
δ+2`+1

8) rooted
torsion-free abelian groups Gn,s with root rn,s. Within Gn,0, we introduce elements
rn,0/pt

β for all t ∈ ω. Within each group Gn,s, we introduce elements x/ut
β,s for all

t ∈ ω and x ∈ Gn,s. For each integer s, we introduce elements (rn,s + rn,s+1)/vt
β,s for all

t ∈ ω. Again, it is easy to see the sequence {Gn}n∈ω has the desired properties.
For β = δ, we construct (via induction) rooted torsion-free abelian groups Gn,s

with root rn,s, where Gn,0 � G(Σ0
fβ(0)) and where, for s > 0, Gn,s � G(Π0

fβ(s)) if ∅ fβ(s)

suffices to witness n ∈ S and Gn,s � G(Σ0
fβ(s)) otherwise. Within Gn,0, we introduce

elements rn,0/pt
β for all t ∈ ω. Within each group Gn,s, we introduce elements

x/ut
β,s for all t ∈ ω and x ∈ Gn,s. For each integer s, we introduce elements (rn,s +

rn,s+1)/vt
β,s for all t ∈ ω. Again, it is easy to see the sequence {Gn}n∈ω has the desired

properties. �

Lemma 5.3.18. For every even ordinal β = δ + 2` + 2 ≥ 4 and Σ0
β set S, there is a

uniformly computable sequence of rooted torsion-free abelian groups {Hn}n∈ω such
thatHn � H(Σ0

β) if n ∈ S andHn � H(Π0
β) if n < S.

Proof. We fix a predicate (∃s) [R(n, s)] describing membership of n in S, where
R(n, s) is Π0

β−1. Without loss of generality, we again suppose R(n, s0) implies (∀s ≥
s0) [R(n, s)]. Indeed, we suppose this property of all existential subpredicates.

It suffices to start with the group [Z]pβ with root rn = 1 for Hn. For each
integer s, we (via Lemma 5.3.17) construct a rooted torsion-free abelian group Gn,s

with root rn,s and introduce elements (rn + rn,s)/qt
β for all t ∈ ω. We also construct

infinitely many copies of G(Σ0
β−1) with root rn,k (where k is the copy number) and

introduce elements (rn + rn,k)/qt
β for all t ∈ ω. Again, it is easy to see the sequence

{Gn}n∈ω has the desired properties. �

Proof of Lemma 5.3.2. Fix a Σ0
α set S. From Lemma 5.3.17 (ifα is odd) or Lemma 5.3.18

(if α is even), there is a uniformly computable sequence {Gn}n∈ω of groups given by
the Σ0

α predicate. Since it is possible to pass from the group Gn to [Gn]dn
uniformly

in an index for the group Gn and dn, the group GαS is computable. �

8More precisely, we use the Σ0
δ+2`+1 predicate ¬R(n, s) to control the construction of Gn,s+1 and

build Gn,0 � G(Σ0
β−1). This index shift is necessary as G(Σ0

β(m)) has m + 1 (rather than m) subcompo-
nents of type G(Σ0

β−1).
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Part II

Computable metric spaces
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Chapter 6

Computably isometric Banach spaces

This chapter studies computable isometries between metric spaces associated to
Banach spaces. First, we give formal definitions and prove several not difficult
but rather useful facts on computable Banach spaces. Next, we show that Hilbert
space is computably categorical as a metric space. Then we prove that C[0, 1] is not
computably categorical as a metric space by constructing a computable structure
in which 0 is computable but the operation x→ (1/2)x is not.

6.1 Background

6.1.1 Definitions and conventions

Recall that special points of a computable metric space are points from the dense
computable sequence in M which we call a computable structure on M. We usually
identify a special point αi with its number i and say “find a special point such
that . . .” in place of “find a number i such that αi . . .”. Recall also that only points
having Cauchy names are regarded as computable. A Cauchy name of x is a
computable sequence of special points converging to x “quickly” (with the rate of
2−s). Also, recall:

Definition 6.1.1. Let M and N be computable metric spaces. A map F : M → N is
computable if there is a Turing functional Φ such that, for each x in the domain of F and
for every Cauchy name χ for x, the functional Φ enumerates a Cauchy name for F(x) using
χ as an oracle1.

1That is, (Φχ(n))n∈ω is a Cauchy name for F(x).
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To emphasize which computable structures we consider, we say that a map F
is computable with respect to (αi)i∈ω and (βi)i∈ω (written w.r.t. (αi)i∈ω and (βi)i∈ω). In
the special case of isometric (more generally, bi-Lipschitz) maps, Definition 6.1.1 is
equivalent to saying that for every special pointαi inM the point F(αi) is computable
uniformly in i.

Definition 6.1.2. Computable structures (αi)i∈ω and (βi)i∈ω on a complete separable metric
space (M, d) are equivalent up to computable isometry, or computably isometric, if
there exists a surjective self-isometry φ of M and an effectively uniform algorithm which
on input i outputs a Cauchy name for φ(αi) in (βi)i∈ω .

Definition 6.1.2 can be equivalently restated as follows:

Definition 6.1.3. Computable structures (αi)i∈ω and (βi)i∈ω on a Polish space (M, d) are
said to be equivalent up to a computable isometry or (computably) isometric, if there
exists a surjective self-isometry U computable w.r.t. (αi)i∈ω and (βi)i∈ω.

Note that if U is a computable surjective isometry, then U−1 is computable
as well. Therefore, equivalence up to a computable isometry is an equivalence
relation on computable metric spaces. Pour-El and Richards [85] used a similar
notion restricted to Banach spaces in a different terminology. Their approach is
equivalent to the one discussed in the next section.

Definition 6.1.4. A metric space (M, d) is computably categorical if every two com-
putable structures on M are computably isometric.

Computable structures (αi)i∈ω and (βi)i∈ω on a Polish space (M, d) are equivalent
exactly if the identity map

Id : (M,d, (αi)i∈ω)→ (M,d, (βi)i∈ω)

is computable.

6.1.2 Computable spaces with operations

We view a computable Banach space as a computable metric space with distin-
guished computable operations.

An operation is a function which maps tuples of points to points (such as the
addition in a Banach space), or tuples of points to reals (such as the inner product
in a Hilbert space). Also, we view a distinguished point x as function Tx : M→ {x}
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such that Tx(y) = x, for every y. Thus, distinguished points are operations of a
special kind.

Before we define a computable operation, we need one more definition. In the
following, we view a direct power Mk of (M, d) as a metric space with the metric
dk = supi≤k d(πix, πiy), where πi is the projection on the i-th component. Let (αi)i∈ω

be a computable structure on (M, d). The computable structure [(αi)i∈ω]k on (Mk, dk)
is the effective listing of k-tuples of special points from (αi)i∈ω .

For convenience, if an operation X : Mk
→ M is computable w.r.t. [(αi)i∈ω]k and

(αi)i∈ω, we simply say that X is computable w.r.t. (αi)i∈ω. Similarly, instead of saying
that an operation X : Mk

→ R is computable w.r.t. [(αi)i∈ω]k and (qi)i∈ω, where (qi)i∈ω

is the usual effective listing of rationals, we say that X is computable w.r.t. (αi)i∈ω.
Recall that every Turing functional Φe can be effectively identified with its

computable index e. For instance, we may speak of the index for the distance
function d (which depends on the given computable structure). We may also
speak of uniformly computable families of maps between computable metric spaces
meaning that we can get an index for the functional effectively from the place of
the operation on the list.

Definition 6.1.5. Let (M, d, (X j) j∈J) be a metric space with distinguished operations (X j) j∈J,
where J is a computable set. We say that (αi)i∈ω is a computable structure on (M, d, (X j) j∈J)
if (M, d, (αi)i∈ω) is a computable metric space and the operations (X j) j∈J are computable
w.r.t. (αi)i∈ω uniformly in their indices.

We say that an isometry U respects an operation if it commutes with it: X ◦U =

U ◦ X.

Definition 6.1.6. A space (M, d, (X j) j∈J) is computably categorical if every two com-
putable structures (αi)i∈ω and (βi)i∈ω on (M, d, (X j) j∈J) are computably isometric via an
isometry which respects X j for every j ∈ J.

Definition 6.1.7. We say that operations (Yi)i∈I effectively determine operations (X) j∈J

on a metric space (M, d) if, for any given computable structure (αi)i∈ω on (M, d), the uniform
computability of (Yi)i∈I w.r.t. (αi)i∈ω implies the uniform computability of (X) j∈J w.r.t. (αi)i∈ω .

Notice that in the definition above we implicitly have that every isometry of
M which respects (Yi)i∈I respects (X j) j∈J as well. The following consequence of
Definition 6.1.6 and Definition 6.1.7 is a useful tool.

Fact 6.1.1. Suppose (M, d, (Yi)i∈I, (X j) j∈J) is computably categorical, where the op-
erations (Yi)i∈I effectively determine the operations (X j) j∈J. Then (M, d, (Yi)i∈I) is
computably categorical.
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6.2 Banach spaces

6.2.1 Computable Banach spaces

We view a Banach space as a metric space with distinguished points, maps and
operators. Formally, a Banach space B is a tuple (B, d, 0,+, (r·)r∈Q), where d is the
metric induced by the norm, 0 is the distinguished point for zero, + is the vector
summation, and r· is the operator of scalar multiplication by r, for r ∈ Q (rational
numbers). We shall avoid this complex formal notation if possible. As a special
case of Definition 6.1.5, we have:

Definition 6.2.1. A collection of points (αi)i∈ω is a computable structure on a Banach
space B if (B, d, (αi)i∈ω) is a computable metric space and 0, +, and (r·)r∈Q are uniformly
computable operations w.r.t. to (αi)i∈ω .

It is not hard to see that our approach is equivalent to the approach of Brattka,
Hertling, and Weihrauch [12, page 466]. It is also equivalent to the existence of an
effectively separable structure in the sense of Pour-El and Richards [85].

As a special case of Definition 6.1.6, we have:

Definition 6.2.2. A Banach space B is computably categorical if every two computable
structures on (B, d), w.r.t. which the operations 0, +, and (r·)r∈Q are uniformly computable,
are computably isometric via an isometry which respects 0, +, and (r·)r∈Q. We also say that
B is computably categorical as a Banach space.

It is not difficult to see thatB is computably categorical as a Banach space if, and
only if, every two effectively separable structures on B are isometric, as defined in
Pour-El and Richards [85, Question on page 146].

Remark 6.2.1. Note that, for a computable structure on a Banach space, the uniform
computability of (r·)r∈Q implies the computability of 0. By Fact 6.1.1 we may eliminate 0
from the list of computable operations and obtain equivalent notions of computable Banach
space and computably categorical Banach space. However, we may keep 0 for convenience.

If, for a Banach space B, the associated metric space (B, d) is computably cate-
gorical, then we say that B is computably categorical as a metric space.

6.2.2 Applications of the Mazur-Ulam theorem

The classical theorem of Mazur and Ulam states that every surjective isometry of
Banach spaces is affine. In other words, if U : B1 → B2 is a surjective isometry
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of Banach spaces B1 and B2, then there exists a linear map L : B1 → B2 such that
U(x) = L(x) + U(0), for every x ∈ B1. We show:

Fact 6.2.1. If a Banach space B is computably categorical as a metric space, then it
is computably categorical as a Banach space.

Proof. Let (αi)i∈ω and (βi)i∈ω be computable structures onBw.r.t. which 0, +, and (r·)r∈Q

are computable. By the assumption, there is a surjective isometry U computable
w.r.t. (αi)i∈ω and (βi)i∈ω . We need to find a computable surjective isometry which
respects 0, +, and (r·)r∈Q.

By our assumption, the point U(0) is computable w.r.t. (βi)i∈ω . We have x − y =

x + (−1) · y, showing that the subtraction operation is computable w.r.t. (βi)i∈ω . Thus,
the isometry W(x) = U(x) − U(0) is computable w.r.t. (αi)i∈ω and (βi)i∈ω . By the
Mazur-Ulam theorem, W respects 0, +, and (r·)r∈Q. �

Pour-El and Richards [85, page 146] showed that the space l1 with the usual
norm is not computably categorical as a Banach space. As a consequence of their
result and Fact 6.2.1, we have:

Corollary 6.2.1. The space l1 is not computably categorical as a metric space.

In Theorem 6.4.1 we will construct a computable structure on the metric space
(C[0, 1], sup) such that 0 is computable w.r.t. this structure, but the operation (1/2)·
is not. By Fact 6.2.2 below, this will imply that (C[0, 1], sup) is not computably
categorical.

Fact 6.2.2. Let B be a Banach space. Suppose (αi)i∈ω is a computable structure
on (B, d) w.r.t. which + and (r·)r∈Q are uniformly computable, and suppose (βi)i∈ω

is another computable structure on (B, d) w.r.t. which 0 is computable. If (βi)i∈ω

is computably isometric to (αi)i∈ω , then + and (r·)r∈Q are uniformly computable
w.r.t. (βi)i∈ω .

Proof. Let U be a surjective isometry computable w.r.t. (βi)i∈ω and (αi)i∈ω . Recall that
U−1 is computable w.r.t. (αi)i∈ω and (βi)i∈ω . By the theorem of Mazur and Ulam, there
exists a linear map L : X→ Y such that U(x) = L(x) + U(0), for every x ∈ B.

Given r ∈ Q, we show that the operator r· is computable w.r.t. (βi)i∈ω uniformly
in r, as follows. The operations +, r· and v − w = v + (−1 · w) are uniformly
computable w.r.t. (αi)i∈ω . Therefore, the map x → U−1(r(U(x) − U(0)) + U(0)) is
computable w.r.t. (βi)i∈ω . On the other hand,

U−1(r(U(x) −U(0)) + U(0)) = U−1(rL(x) + U(0)) = U−1(L(rx) + U(0)) = rx,
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showing that r · x is a computable w.r.t. (βi)i∈ω uniformly in r.
The computability of + can be established similarly:

U−1(U(β) + U(γ) −U(0)) = U−1(L(β + γ) + U(0)) = β + γ.

�

6.3 Hilbert spaces

6.3.1 Operations on a Hilbert space

We view a Hilbert space as a Banach space of a special kind. For instance, for H
a Hilbert space, the associated metric space (H, d) is defined by d(x, y) = ||x − y||.
Recall Definition 6.1.7. We show:

Lemma 6.3.1. In the metric space (H, d) associated with a Hilbert space H, the
point 0 effectively determines the operations + and (r·)r∈Q.

Proof. Suppose (αi)i∈ω is a computable structure on (H, d) w.r.t. which 0 is com-
putable. Recall that d(x, y) = ||x − y||. For instance, ||x|| = d(0, x) is computable for
every computable point x. It is well-known that the parallelogram identity

||x + y||2 + ||x − y||2 = 2||x||2 + 2||y||2

characterizes Hilbert spaces within the class of Banach spaces. We show:

Claim 6.3.1. The opearation + is computable w.r.t. (αi)i∈ω .

Proof. Given a positive rational ε < 1 and Cauchy names for points x and y, find a
special point z such that:

1. | ||z||2 + ||x − y||2 − 2||x||2 − 2||y||2 | < δ,

2. | ||y − z|| − ||x|| | < δ,

3. | ||x − z|| − ||y|| | < δ,

where δ = ε/(2||x||+2||y||+3).We may assume that δ < 1. Applying the parallelogram
identity, we obtain

| ||z||2 − ||x + y||2 | < δ.
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Using the well-known formula for inner product, we get

||x + y − z||2 = ||x + y||2 + ||z||2 − 2〈x, z〉 − 2〈y, z〉.

Applying this formula again, we obtain

||y − z||2 = ||y||2 + ||z||2 − 2〈y, z〉

and
||x − z||2 = ||x||2 + ||z||2 − 2〈x, z〉.

We combine the three equations above:

||x + y − z||2 = (||x + y||2 − ||z||2) + (||x − z||2 − ||y||2) + (||y − z||2 − ||x||2).

Taking into account δ < 1, observe that

| ||x − z||2 − ||y||2 | = | ||x − z|| − ||y|| | · (||x − z|| + ||y||)

< δ(||y|| + δ + ||y||)

< δ(2||y|| + 1),

and similarly | ||y − z||2 − ||x||2 | < δ(2||x|| + 1).
Thus,

||x + y − z||2 ≤ | ||x + y||2 − ||z||2 | + | ||x − z||2 − ||y||2 | + | ||y − z||2 − ||x||2 |

< δ + δ(2||y|| + 1) + δ(2||x|| + 1)

= δ(2||x|| + 2||y|| + 3)

= ε.

Thus, we can produce a Cauchy name for x + y uniformly in Cauchy names for
x and y, proving the claim.

�

Claim 6.3.2. The operations (r·)r∈Q are uniformly computable w.r.t. (αi)i∈ω .

Proof. By Claim 6.3.1, for every n ∈ ω the operation n· is computable uniformly
in n. The point 0 is a computable by our assumption, therefore the operation 0· = 0
is computable. We show that (−1)· is computable. Given a rational η > 0 and
a Cauchy name for x, find a special point α such that d(0, x + α) < η. Note that
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||(−x) − α|| = ||x + α|| = d(0, x + α) < η. Therefore, we can produce a Cauchy name
for −x, showing (−1)· is a computable operation.

For every q =
n
m
∈ Q, we have

q · x = n · (1/m)x.

Note also that the operation m· is bi-Lipschitz with constant m. Therefore, its
inverse (1/m)· is computable, uniformly in m. We conclude that q· is computable,
uniformly in r.

�

The theorem follows immediately from Claim 6.3.1 and Claim 6.3.2.
�

Remark 6.3.1. The proof of Lemma 6.3.1 actually shows that the indices for +

and (r·)r∈Q can be obtained effectively from the computable structure and the com-
putable indices for d and 0.

Remark 6.3.2. The inner product 〈·, ·〉 is effectively determined by 0 in a Hilbert
space. We have ||x|| = d(0, x), v − w = v + (−1 · w), and

〈u, v〉 =
1
4

(||u + v||2 − ||u − v||2).

6.3.2 Hilbert spaces are computably categorical

Using a different terminology, Pour-El and Richards [85] showed:

Theorem 6.3.1. Every separable Hilbert space is computably categorical as a Banach space.

Proof. The main idea is to use the Gram–Schmidt process. See the discussion on
page 146 of Pour-El and Richards [85]. �

The following consequence of Lemma 6.3.1 strengthens their result:

Theorem 6.3.2. Every separable Hilbert space is computably categorical as a metric space.

Proof idea. Note that, if 0 was computable w.r.t. every computable structure of a
metric space (H, d) associated to a Hilbert space H, then Fact 6.1.1 (with 0 in place
of (Yi)i∈ω), Lemma 6.3.1 and Theorem 6.3.1 would imply (H, d) is computably cate-
gorical. Unfortunately, 0 does not have to be computable w.r.t. every computable
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structure on (H, d). On the other hand, we are given a computable structure on
(H, d), not H itself, and zero and the operations are not specified in (H, d). We may
pick any special point and declare it to be “zero”. We have to define new vector
space operations (to make this element a true zero), and then apply Fact 6.1.1,
Lemma 6.3.1 and Theorem 6.3.1.

Proof. Suppose H is a Hilbert space, and suppose (α)i∈ω and (β)i∈ω are computable
structures on the associated metric space (H, d).

Declare z1 = α0. Consider the isometry V(x) = x + z1. Clearly, V(0) = z1. Let

||x||1 = d(z1, x).

The operation ||x||1 satisfies the norm axioms with respect to the new vector space
operations

x +1 y = x + y − z1 and r ·1 x = r(x − z1) + z1,

where z1 plays the role of zero. Furthermore, the norm || · ||1 satisfies the parallelo-
gram equality, H is complete with respect to || · ||1, and

||x +1 (−1) ·1 y||1 = d(x, y),

for every x, y ∈ H. Thus,

H1 = (H, d, z1,+1, (r·1)r∈Q)

is a Hilbert space.
Similarly, we define a Hilbert space

H2 = (H, d, z2,+2, (r·2)r∈Q),

where z2 = β0. Note that H2 �H1 �H.

By Lemma 6.3.1, +1 and (r·1)r∈Q are uniformly computable w.r.t. (α)i∈ω . Similarly,
+2 and (r·2)r∈Q are uniformly computable w.r.t. (β)i∈ω . Recall that H is computably
categorical as a Banach space (Theorem 6.3.1). It remains to apply Fact 6.1.1.

�

We emphasize that the proof of Theorem 6.3.2 works in the case of any finite
dimension:
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Corollary 6.3.1 ([51]). For every n ∈ N+, the metric space Rn with the usual Euclidean
metric is computably categorical.

6.4 The space C[0, 1]

Let (li)i∈ω be the effective list of all continuous piecewise linear functions (written
p.l.) on C[0, 1] which have (finitely many) breakpoints, each breakpoint having
rational coordinates in [0, 1] ×R. In the following, we call these functions rational
p.l. functions.

Notation 6.4.1. In this section d stands for the pointwise supremum metric on C[0, 1]:

d( f , g) = sup
x∈[0,1]
{| f (x) − g(x)|}

The sequence (li)i∈ω of rational p.l. functions is a computable structure on (C[0, 1], d).
Furthermore, the operators + and (r·)r∈Q are uniformly computable w.r.t. (li)i∈ω . Thus,
(li)i∈ω makes C[0, 1] a computable Banach space, not merely a computable metric
space. Unlike Hilbert spaces, zero does not effectively determine vector space
operations on C[0, 1]:

Theorem 6.4.1. There is a computable structure on (C[0, 1], d) in which 0 is a computable
point but the operation (1/2)· is not computable.

Proof idea. We build a computable structure ( fi)i∈ω on (C[0, 1], d) which consists of
points ∆0

2 with respect to (li)i∈ω . That is, the points are of the form fi = lims fi,s, where
fi,s is a computable double sequence of rational p.l. functions, but the computable
sequence ( fi,s)s∈ω may not have an effective rate of convergence.

We diagonalize against the e’th Turing functional Ψe potentially witnessing the
computability of (1/2)·, as follows. We choose an interval Ie (which is disjoint from
I j for each j , e) and a witness the special point fp not equal to 0 on Ie. As soon
as Ψe,s on fp becomes close to our current guess on fp/2 (if ever), we change the
approximation of fp by setting fp,s+1 to be far enough from fp,s on Ie. This will make
Ψe,s too far from (1/2) · fp,s+1.

Although not every special point from ( fi)i∈ω will be computable w.r.t. (li)i∈ω ,
we guarantee lims f0,s = 0. This makes 0 a special point in the new computable
structure we are building. We also make sure d( fi, f j) is computable uniformly in i, j
by maintaining the equality d( fv,s, fu,s) = d( fv,s+1, fu,s+1) at each stage s and for every
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u and v. This seems to conflict with our attempt to change fp as described above.
However, we are able to make the construction injury-free. Also, some extra work
is needed to make ( fi)i∈ω a dense sequence in C[0, 1].

Proof. We build a computable double sequence of rational p.l. functions ( fi,s)i,s∈ω

such that f0,s = 0 for all s (thus, 0 is a special point in the new strucutre). At each
stage s of the construction and for every u, v ∈ ω, we maintain the equality

d( fv,s, fu,s) = d( fv,s+1, fu,s+1). (6.1)

To make sure the equality (6.1) holds for every u, v and s, we will introduce the
notion of (J, δ) -variation (Definition 6.4.1).

At stage s of the construction we will have a finite collection f0,s, . . . , fn(s),s of
rational p.l. functions, where n(s) is nondecreasing in s. At the end of stage s we
will have another collection of rational p.l. functions f0,s+1, . . . , fn(s+1),s+1 so that the
equality (6.1) above holds for every u, v ≤ n(s). Note that we will not necessarily
have fi,s+1 = fi,s for every i ≤ n(s). For every i we need to meet the requirement:

Ri : lims fi,s exists.

To meet the requirements (Ri)i∈ω we will make sure that:

(∀n) (∃s) (∀t, z > s) (∀i) [ d( fi,t, fi,z) < 2−n ]. (6.2)

This will imply Ri is met, for every i. The condition (6.2) will be satisfied in the
construction (to be shown in Claim 6.4.1). Since the R-requirements will have
no conflicts with other requirements (will be clear form the proofs of Claim 6.4.1
and Claim 6.4.3), we may assume for notational convenience that lims fi,s exists for
every i. We denote lims fi,s by fi.

For every j ∈ ω, we need to meet the following requirements:

P j : l j belongs to the closure of ( fi)i∈ω .

Strategy for P j. If s is a stage such that s = 2〈k, j〉 for some integer k, and the function
l j is not among f0,s, . . . , fn(s),s, then set fn(s)+1,t = l j for every t ≤ (s + 1).
End of strategy.

Taking into account (6.2) one can see that the strategy guarantees there is a sequence
of elements in ( fi)i∈ω converging to l j (to be shown in Claim 6.4.2). The most
important requirements are:
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Ne : Ψe does not represent (1/2)· in ( fi)i∈ω .

The strategy for Ne is less straightforward and requires some extra work.

Preliminary work towards Ne. First, we simplify the Ne requirements. Note that
(p, p, . . .) is a Cauchy name for the special point fp. There is a primitive recursive
function s such that Ψ

(p,p,...)
e (n) = Φs(e)(p,n), where (Φe)e∈ω is the effective listing of all

partially computable functions of two arguments (without an oracle). Thus, it is
sufficient to meet the requirements:

N′e : (∃p)[ (Φe(p,n))n∈ω is a Cauchy name ⇒ limn Φe(p,n) , fp/2 ].

(Note that if Φe(p,n) ↑ for some n, then N′e is met trivially.)
The special element fp will be the witness for N′e chosen by the strategy. We

need a technical definition which will allow us to make changes to approximations
of special points without conflicting the R- and P-requirements:

Definition 6.4.1. Suppose J is a subinterval of [0, 1], and suppose h0, . . . , hk are rational
p.l. functions on [0, 1]. We say that a finite collection (g0, . . . , gk) of rational p.l. functions
is a (J, δ)-variation of the collection (h0, . . . , hk) if:

(a) h0 = g0 and d(hi, h j) = d(gi, g j), for all i, j ≤ k,

(b) hi = gi on [0, 1] \ J and d(hi, gi) ≤ δ, for every i ≤ k.

The strategy for N′e will work within its own interval Ie and have a rational
p.l. function we with support Ie. The function we may eventually become the
witness for N′e. More specifically, fix a computable listing of computable disjoint
subintervals (Ie)e∈ω of [0, 1], where Ie = [ae, be] and ae, be ∈ Q for every e. We define a
rational p.l. function we as follows:

we(x) =


0, if x < (ae, be),

2−e, if x ∈ [ae + (1/4)(be − ae), ae + (3/4)(be − ae)]

linear, otherwise.

Strategy for N′e.
(i) At stage t = 2·e+1, if we is not already among f0,t, . . . , fn(t),t, then set fn(t)+1,r = we

for every r ≤ t. In the following, we assume that p ≤ n(t) + 1 is such that fp,t = we.
(ii) At stage s > t wait for a computation Φe,s(p,− log ξe)↓= h, where ξe is much

smaller than 2−e−1 (choose ξe = 2−2e
−10). We have the following possibilities:
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Case 1. The function fh,s has not been defined so far. Then, for each v ≤ s, set fh,v = g to
be a rational p.l. function which is not among f0,s, . . . , fn,s and which satisfies
supIe

|g − (1/2) fp,s| > 10. Stop the strategy.

Case 2. The function fh,s has already been defined, and supIe
| fh,s − (1/2) fp,s| > ξe, In

this case do nothing and stop the strategy.

Case 3. The function fh,s has already been introduced, and supIe
| fh,s − (1/2) fp,s| ≤ ξe.

Find a sub-interval J of Ie with rational end-points and a (J, 2−e)-variation
(g0, . . . , gn(s)) of the collection ( f0,s, . . . , fn(s),s) such that, for some y ∈ J, we have
fp,s(y) = 2−e and gp(y) = gh(y) = fh,s(y). We will show in Claim 6.4.3 that at
least one such a (J, 2−e)-variation exists and, therefore, can be found effectively.
See Figure 1 below for better idea. Set fi,s+1 = gi, for all i ≤ n(s). Stop the
strategy.

End of strategy.

Figure 1. The figure illustrates a (J, 2−e)-variation. Within the interval J all the
functions we change are linear. The colored lines show the variation.

Comments on the strategy for N′e. Note that if Φe represents (1/2)· in ( fi)i∈ω then
d( fh, fp/2) ≤ ξe. In the construction only the N′-strategies will possibly change the
approximations of the special points ( fi)i∈ω , and each N′e-strategy makes changes
within its own sub-internal Ie of [0, 1] disjoint from I j, for j , e (see the definitions of
Ie and (J, 2−e−1)-variation). Thus, in Case 1 and Case 2 we guarantee d( fh, fp/2) > ξe,
and Φe can not approximate (1/2) · fp in ( fi)i∈ω .
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Observe that if the strategy stops at Case 3, then

fh,s+1(y) = fh,s(y) = fp,s+1(y) = fp(y) ≥ 2−e−1
− ξe.

By the choice of y, we have fp,s(y) = 2−e. By our assumption, | fh,s(y)− (1/2) fp,s| ≤ ξe.
Therefore, by the choice of ξe, we obtain

d( fh, fp/2) ≥ | | fh,s+1(y) + ξe| − (1/2) fp,s+1(y)|

≥ |(2−e−1 + ξe) − (1/2)(2−e−1
− ξe)|

> ξe,

and N′e is met. We put all the strategies together:

Construction.
At stage 0 of the construction set f0,0 = 0.
At stage s > 0 of the construction let the strategies act according to their instruc-

tions. For every i ≤ n(s), if fi,s+1 have not been defined by the strategies, then set
fi,s+1 = fi,s.

End of construction.

The verification is split into several claims.

Claim 6.4.1. The requirement Ri is met, for every i.

Proof. Only the N′e -requirements may change the approximation ( fi,s)s∈ω of a special
point fi, and each N′e works within its own subinterval Ie. Furthermore, this change
(if it is ever done by N′e) is bounded by 2−e. Therefore, if N′e never reaches its Case
3, then the condition (6.2) is satisfied for n = e and s = 0. If N′e reaches its Case 3 at
stage s′, then (6.2) holds for n = e and s = s′. Therefore, the condition (6.2) holds
for every n. This implies Ri is met, for every i. �

Claim 6.4.2. The requirement P j is met, for every j.

Proof. Let s(k) = 2〈k, j〉. The strategy for P j guarantees that the collection

f0,s(k)+1, . . . , fn(s(k)+1),s(k)+1

contains a function fm(k),s(k) equal to l j. Suppose also that that s(k) is so large that
for every j ≤ e the strategy for N j never reaches its Case 3 after stage s(k). Then
d( fm(k),s(k), l j) ≤ 2−e. Therefore, ( fm(k),s(k))k∈ω converges to l j. �
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Claim 6.4.3. The requirement N′e is met, for every e.

Proof. For functions f and h and a set X ⊆ [0, 1] , write f ≤X g if f (x) ≤ g(x) for
every x ∈ X. Define <X and =X similarly.

From now on we use notations from the strategy for N′e. Assume we are at
Case 3 of the strategy. We need to find an interval J ⊆ Ie and a (J, 2−e)-variation
(g0, . . . , gn(s)) of ( f0,s, . . . , fn(s),s) such that, for some y ∈ J, we have fp,s(y) = 2−e and
gp(y) = gh(y) = fh,s(y). Find a rational point y and subinterval J = [c, d] ⊆ Ie

containing y, where c, d ∈ Q, such that:

1. fp,s(y) = 2−e (notice that this implies fp,s(y) , fh,s(y), by the choice of fp,s

and ξe << 2−e);

2. fv,s is linear on J, for each v ≤ n(s)

3. for every v,m ≤ n(s) either fm,s <J fv,s, or fv,s <J fm,s or fv,s =J fm,s.

Recall that fp,s is equal to we on Ie, and there is a subinterval of Ie such that fp,s is
equal to 2−e when restricted to this subinterval. Note that the functions f0,s, . . . , fn(s),s

have finitely many breakpoints, and so do the functions { fk,s − fm,s}k,m≤n(s). It is
sufficient to choose J = [c, d] so that fp,s =J 2−e and J does not contain any of these
points. Let y be any rational point from J.

Denote fi,s restricted to J = [c, d] by Fi. For every i, the function Fi is linear.
Without loss of generality, we may assume

F0 <J . . . <J Fh < . . . <J Fp <J . . . <J Fn(s).

Note that, by the choice of J, we must have p < h in this list. (Note that we possibly
have to change indexing and identify functions equal under =J. We, however,
slightly abuse our notation and assume that p and h remain untouched.) Let
k = p − h:

F0 <J . . . Fh <J . . . <J Fh+k . . . <J Fn(s).

Given i ∈ {1, . . . , k}, define δi = |Fh+i(y) − Fh(y)|. For each j ≤ n(s), define a new
p.l. function G j to be equal to F j on the end-points of j = [c, d], set

G j(y) =


F j(y) − δk, if j ≥ h + k,

F j(y) − δ j−h, if h < j < h + k,

F j(y), otherwise,
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and make it linear on x ∈ J \ {y} (see Figure 1).
Recall that Fh is ξe-close to Fp/2, where ξe is much smaller that 2−e. Recall also

that, by the choice of y, we have Fp(y) = 2−e. Therefore,

|Fp(y) − Fh(y)| < 2−e and δi ≤ 2−e,

for every i ∈ {1, . . . , k}. This implies that, for every j ≤ n(s),

sup
J
|G j − F j| ≤ 2−e.

Note that Gi(c) = Fi(c) and Gi(d) = Fi(d). Also,

|Gi(x) − G j(x)| ≤ |Fi(x) − F j(x)|

for every x ∈ (c, d), by the definition of Gi and G j. Also, the functions (Fi)i≤n(s) are
linear, and supJ |Fi − F j| = sup[c,d] |Fi − F j| realizes on c or d. We conclude that

sup
J
|Gi − G j| = sup

J
|Fi − F j|,

for every i, j ≤ n(s).

For every j ≤ n(s), define

g j(x) =

 G j(x), if x ∈ [c, d],

f j,s(x), otherwise.

We have fp,s ≥Ie 0 and fh ≥Ie 0. Thus, the definition ensures g0 = f0,s. It follows
that (g0, . . . , gn) is a (J, 2−e)-variation of ( f0,s, . . . , fn(s),s). By its definition, we have
fp,s(y) = 2−e and gp(y) = gh(y) = fh,s(y). We proved the claim in the case when all
the inequalities are strict.

The general case is done by a simple inductive argument. Suppose, say, F1 = F2,
and suppose there is a (J, 2−e)-variation (g0, g2 . . . , gn) of ( f0,s, f2,s . . . , fn(s),s) with the
needed properties. Define

g1(x) =

 f1(x), if x < J,

g2(x), if x ∈ J.

The collection (g0, g1 . . . , gn) is the needed (J, 2−e)-variation of ( f0,s, f1,s . . . , fn(s),s). It is
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important that fp,s ≥Ie 0 and fh ≥Ie 0. This concludes the proof of Claim 6.4.3. �

It remains to observe that all the stages are effective, because at each stage we
have a collection of rational p.l. functions, and all the questions we ask about these
collections are effectively decidable. �

Theorem 6.4.2. The space C[0, 1] is not computably categorical.

Proof. This follows from Theorem 6.4.1 and Fact 6.2.2. �
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Chapter 7

Computably categorical metric spaces

This chapter continues the study of isometris on computable metric spaces. In this
chapter most of the metric spaces are not associated to Banach spaces. We show
that the Urysohn space and the Cantor space are computably categorical, and
give a necessary and sufficient condition for a subspace of Rn to be computably
categorical.

7.1 Cantor space

Recall that Cantor space is the set of infinite strings of 0’s and 1’s. We show:

Theorem 7.1.1. Cantor space {0, 1}ω with the metric d(ξ, φ) = max{2−n : ξ(n) , φ(n)} is
computably categorical.

Proof idea: Let (αi)i∈ω and (βi)i∈ω be computable structures on Cantor space. The com-
putable structures are rational-valued metric spaces. Furthermore, every surjective
isometry of these rational-valued subspaces is uniquely expandable to a surjective
isometry of their closures. Therefore, it is sufficient to build a computable bijection
f : ω→ ω such that d(αi, α j) = d(β f (i), β f ( j)), for every i, j ∈ ω.

Without loss of generality, we may assume (αi)i∈ω is the usual computable struc-
ture on Cantor space given by the collection of infinite strings that are eventually 0.
To define f (i), we find the least j such that {αk}k≤i and {β f (k)}k< j ∪ β j are isometric via
αk → βk and αi → β j, and set f (i) = j. Since the distances are rational-valued, the
definition of f is effective.

Cantor space is ultra-homogeneous. That is, any partial isometry between finite
subsets of it can be extended to a surjective self-isometry of the whole space. Note
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that we are essentially using the (ultra)homogeneity of Cantor pace and that the
collection of distances is a desecrate subset of computable reals. The same proof
would work if we replace the standard distance on 2ω by max{2−nγ : ξ(n) , φ(n)},
where γ is a computable real.

All details are given in the formal proof below.

Proof. Let (αi)i∈ω be the usual computable structure on Cantor space given by the
infinite strings that are eventually 0, and let (βi)i∈ω be another computable structure
on Cantor space. If we think of the Cantor space as of a binary tree, the special
points in (αi)i∈ω are enumerated level-by-level, excluding repetitions:

∅, 1, 01, 11, 001 . . .

We define f in the following procedure:

Construction.

At stage 0, set f (0) = 0.

At stage i > 0,we assume that f (k) has already been defined for every i < k. Say
that j is good for extension if the isometry αk → β f (k) of {αk}k<i onto {β f (k)}k< j can be
extended to an isometry of {αk}k≤i onto {β f (k)}k< j∪{β j}. Find least j good for extension
and set f (i) = j.

End of construction.

Verification. By the density of (βi)i∈ω , at every stage of the construction there exists at
least one j good for extension. In fact, every special point β j in a certain open ball
in 2ω is good for extension. The formal argument is not difficult and can be left to
the reader. Thus, f is total. We show:

Claim 7.1.1. f is computable.

Proof. Recall that, for each v and w in Cantor space, the distance d(v,w) is of the
form 2−n, for some n. Suppose we have a computable structure on Cantor space.
Given unequal computable points v and w, we can effectively find n such that
d(v,w) = 2−n. We conclude that the construction is effective and, consequently, the
function f is computable. �

Claim 7.1.2. f is a bijection.

Proof. The usual visualization of Cantor set by the complete binary tree may help
in understanding of the proof below. Recall that special points from (αi)i∈ω are
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enumerated “level-by-level”. The structure (β j) j∈ω can be visualized as a set of
infinite paths through the complete binary tree. If at stage s we have to choose
an extension of f to another point of (αi)i∈ω , we can pick any point in (β j) j∈ω within
an open ball uniquely determined by the collection of distances between points in
dom( fs) and range( fs). To see that the ball is uniquely determined by the distances,
observe that the finite collection of distances are completely determined by finite
initial segments of the special points doms(f) and ranges(f). An easy inductive
argument shows that the way we list elements of (αi)i∈ω ensures that every open
ball of the form σ2ω will be among these “determinerd” balls. Furthermore, the
balls 02ω and 12ω will correspond (in some order) to stages 0 and 1, the balls σ2ω,
where lgth(σ) = n, will appear (in some order) at stages

∑
k<n 2n

≤ s <
∑

k≤n 2k.
We pick v ∈ ω and show that βv is in the range of f . Suppose f has already been

defined for all u < v, and s is the least stage when that happened. Let n be largest
having the property

∑
k<n 2n

≤ s. There must be a stage t >
∑

k≤n 2k such that the
open ball τ2ω, where τ ⊂ βv, is the ball determined by the distances in dom( ft) and
range( ft). The construction ensures that the least special point from the ball must
be put into the range of f . If it has not already happened to βv, then βv must be
good for extension at stage t. �

Define a surjective self-isometry U of Cantor space:

if (αg(i))i∈ω is a Cauchy name then U(lim
i
αg(i)) = lim

i
f (αg(i)).

By Claims 7.1.2 and 7.1.1, the isometry U witnesses computable categoricity of
Cantor space. �

Remark 7.1.1. Note that (the index for) U witnessing computable categoricity of {0, 1}ω

may be obtained uniformly from (the indices for) the given computable structures on {0, 1}ω.

7.2 The Urysohn space

The rational Urysohn space QU is the Fraisse limit of finite rational-valued metric
spaces. The Urysohn space U is the closure of QU. We can effectively list all finite
rational-valued metric spaces. Therefore, the points in QU form a computable
structure of U. We will need the following definitions which can be found in [57]
and [69].
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Definition 7.2.1. Let X be a metric space. A map f : X → R+ is a Katetov map if for
z < X setting d(x, z) = f (x) defines a metric space on X ∪ {z} which extends X.

A map f is Katetov if, and only if, (∀x, y ∈ X)| f (x) − f (y)| ≤ d(x, y) ≤ f (x) + f (y).
The collection E(X) of all Katetov maps together with the metric supx∈X | f (x)− g(x)|
is a (complete) metric space. Informally, Katetov maps reflect all one-point metric
extensions of a given metric space.

Definition 7.2.2. A space X has the approximate extension property if for every finite
subset A of X, for every f ∈ E(X), and every ε > 0 there exists a point z ∈ X such that

(∀a ∈ A)|d(z, a) − f (a)| ≤ ε.

It is known that a Polish metric space has the approximate extension property if,
and only if, it is isometric to the Urysohn space ([69]). The approximate extension
property is equivalent to the extension property which is the approximate extension
property with ε = 0. The approximate extension property is central to the proof of
the theorem below.

Theorem 7.2.1. The Urysohn space is computably categorical.

Proof idea. The proof is essentially an effective version of the usual back-and-forth
argument. The problem is that we can not define the image of a point in one
step. The approximate extension property allows us to run the argument on the
special points with an “arbitrarily good precision”. This property allows us to
search for a point in a given computable structure (αi)i∈ω which is “approximately”
an image of a special point r form QU. As was mentioned above, a Polish metric
space has the approximate extension property if, and only if, it is isometric to the
Urysohn space. The proof of this fact (see, e.g., [69]) guarantees that it is possible to
define a sequence of “approximate” images of r so that it is a Cauchy sequence of
points from (αi)i∈ω . As is described in detail in the formal proof below, one can use
the approximate extension property to define an injection of QU into the closure
of (αi)i∈ω .

However, it does not guarantee the map is surjective. We should force every
special point from (αi)i∈ω to be in the closure of the image of the embedding of QU.
Clearly, it can not be implemented as it was done for Cantor space, because we don’t
know the precise distances between special points in (αi)i∈ω at a stage. We need to
make sure that, for every ε and n, the special element αn is in the ε-neighbourhood
of the image of QU.
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At a stage s, the element αn may be within the 2−m–neighbourhood of the
image of (a finite part of) QU. At a later stage we discover it is outside the 2−m−3–
neighbourhood of the current image. In this case we need to put a new special point
r fromQU into the domain of our map so thatαn belongs to the 2−2m–neighbourhood
of the image of r.

For technical reasons, we use movable markers on the (numbers of) special
elements from QU to implement this idea. The markers allow us to label elements
for which the map has already been defined. The formal details can be found in
the proof below.

Proof. Let (ri)i∈ω be the computable structure on U given by an effective listing of
the points in QU, and let (αi)i∈ω be another computable structure on U.

First, we define a computable double sequence ( f j,s)s, j∈ω of special points in (αi)i∈ω

such that lims f j,s exists with the rate of convergence computable uniformly in j,
and d(ri, r j) = d(lims fi,s, lims f j,s) for each i, j ∈ ω. In the construction for every k we
will have a strategy Lk which defines the computable sequence ( fk,s)s∈ω of special
points in (αi)i∈ω .

Strategy L0. Set f0,s = α0 for every s.

Given k > 0, suppose that for every i < k the (strategies Li enumerating) computable
sequences ( fi,s)s∈ω have already been defined, and for every i < k the point gi =

lims fi,s is computable uniformly in i. We have:

Strategy Lk. Suppose we need to define fk,s, and either s = 0 or fk,s−1 has already
been defined. Find a special point α in QU such that for every i < k

|d(ri, rk) − d(gi, α)| < 2−s,

and d( fk,s−1, α) < 22−s if s > 0. Set fk,s = α.

Clearly, if we can show that for every k, s at least one point α with the needed
properties exists (to be shown), then Lk eventually finds α (or any other point
satisfying these properties would work). If so, then gk = lims fk,s exists and is a
computable point. Furthermore, the computable index for the Cauchy name of
gk can be obtained uniformly form the computable indices for the Cauchy names
( fi,s)s∈ω of (gi)i<k. Thus, the map F : r j → g j is an isometry which is uniquely
expandable to a computable isometric embedding of U into itself. To define a
surjective embedding we need extra requirements (to be introduced later) and
movable markers.
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Movable markers. Recall that we identify special elements and their numbers. At
each stage of the construction we will have markers (mk)k∈ω on the special elements
form QU. If a special point r at stage s carries the marker mk, then we write
r s

k or mk,s = r. As usual for movable markers arguments, we will describe how
to effectively move all the markers at once instead of dealing with finitely many
markers at every stage of the construction. At the end of every stage s, for every k
there will be exactly one r such that mk,s = r, and every r will carry a marker. We
will show that for every k there exists a stage t such that mk,s = mk,t for every s ≥ t,
and for every r there exists k such that r = lims mk,s.

We need the following important modifications of Lk:

• Replace every instance of rk and ri in the strategy by mk,t and mi,t respectively,
where t is the stage of the construction at which Lk defines fk,s.

• If Lk defines fk,0 at stage t, declare mk,t = lims mk,s = mk and say that mk has
settled.

The isometric map will be defined by the rule lims mk,s → gk for every k.

The requirements for surjectivity. It is sufficient to meet, for every v,n ∈ ω, the
requirements:

Pv,n : (∃i) d(αv, gi) < 2−n.

The strategy for Pv,n. Suppose we are at stage t of the construction, and m0,t, . . . ,mj,t

are all the markers which have already settled. Equivalently, ( j+1) is least such that
f j+1,0 has not been defined yet. Wait until one of the two possibilities is effectively
recognized:

1. d(αv, gk) < 2−n holds, for some k ≤ j. In this case Pv,n is met. Stop the strategy.

2. d(αv, gk) > 2−n−1 holds for every k ≤ j. Find mh,t with h > j such that for every
k ≤ j

|d(mk,t,mh,t) − d(gk, αv)| < 2−n−2.

Define m j+1,t+1 = mh,t. Declare m j+1 settled. (Note that temporarily one special
point carries no marker.)

For every i > ( j + 1), in increasing order, find the least x such that rx does not
carry a marker ml with l < i and set mi,t+1 = rx. (In other words, move all the
non-settled markers one step left, avoiding the settled markers.)
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Then set f j+1,s = αv, for every s ≤ n + 2. Stop the strategy. Note that the
modified strategy L j+1 guarantees d(g j+1, αv) = d(g j+1, f j+1,n+2) < 22−(n+2) = 2−n,
and Pv,n is met.

Construction.

At stage t, let k be least such that mk,t has not settled yet. For every j ≤ k let the
modified L j define f j,s for at least every s ≤ t. Then let Pv,n with 〈v,n〉 = t act
according to its instructions, where 〈·, ·〉 is the usual computable bijection of ω2

onto ω.

Verification. We split the verification into claims.

Claim 7.2.1. For every k, the strategy Lk defines a computable infinite sequence ( fk,s)s∈ω of
special points.

Proof. The statement is clear for k = 0. Suppose for every i ≤ k the strategy Lk

defines a computable infinite sequence ( fi,s)s∈ω of special points, and either s = 0
or fk,s−1 has already been defined. Note that, by inductive assumption, we may
assume that we have indices for the Cauchy names of (gi)i<k (observe that the
values of ( fi,s)s∈ω depend on the values of ( f j,s)s∈ω, j<i only, and we can speed-up the
enumerations ( f j,s)s∈ω and postpone the definition of fi,s if needed). Therefore, if a
special point α satisfies the conditions |d(ri, rk)− d(gi, α)| < 2−s and d( fk,s−1, α) < 22−s,
then we will eventually see that it indeed satisfies these conditions. We need only
to show that at least one such α exists.

Recall that we need to find a special point α in QU such that for every i < k
|d(ri, rk) − d(gi, α)| < 2−s, and d( fk,s−1, α) < 22−s if s > 0.

Recall that a Polish metric space has the approximate extension property if,
and only if, it has the extension property. The proof of this fact goes as follows.
We suppose that a space has the approximate extension property. We take finitely
many points and a Katetov map h on these points (equivalently, a potential 1-point
extension of the finite metric space on these points) and wish to find a sequence
which converges to some point in the space which realizes this map. We take
ε = 1/2 and take x1 which realizes the Katetov map with precision ε. We can set
ε = 1/4 and define x2 similarly, but there is no guarantee that d(x1, x2) is small. A
more careful analysis of the situation which makes use of the distance between
Katetov maps shows that it can be done (see, e.g., [69], Exercise 3 and the proof of
Theorem 3.4). It is not important for us how exactly it is done.
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Now we take the Katetov map which is given by d(gi,U(rk)), where U is some
self-isometry of the Urysohn space, and let fk,s play the role of xs in the explanation
above. The ultra homogeneity of the Urysohn space implies that the choice of U
does not matter, and the density of of (αi)i∈ω in U implies that we can set fk,s = α for
some special point α in (αi)i∈ω . �

Claim 7.2.2. The requirement Pv,n is met for every v,n ∈ ω.

Proof. Note that at least one of the two possibilities in the strategy for Pv,n will
be eventually effectively recognized. The effectiveness follows from the fact that
the indices for ( fi,s)s∈ω are given ahead of time, as it is explained in the proof of
Claim 7.2.1. The rest follows form the density of (ri)i∈ω and (αi)i∈ω and the strategy
for Lk. �

Claim 7.2.3. For every k, the movable marker mk settles, and every special point eventually
carries a settled marker.

Proof. At some stage t, the marker mk,t will be either used by an L- or P-strategy to
define fk,0. In both cases it will be declared settled. The construction is organized
so that at the beginning of stage t the least j such that r j does not carry a settled
marker will be occupied by mk,t, where k is least such that mk,t has not settled yet.
The marker will be declared settled by Lk at stage t. �

Denote the element which eventually carries the marker mk by ck. Define F by
setting F(ck) = lims fk,s, for every s, and then extending F to the whole U. The map
F is a surjective self-isometry computable w.r.t. (ri)i∈ω and (αi)i∈ω .

�

7.3 Subspaces of Rn, and a generalization.

In this section we characterize computably categorical subspaces of Rn, and also
suggest a sufficient condition for an arbitrary metric space to be computably cate-
gorical. In Theorem 7.3.4 we will show that this general condition is also necessary
for closed subspaces of Rn.
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7.3.1 Subspaces of Rn.

In this subsection d stands for the Euclidean metric. We denote the linear span of
M ⊆ Rn over R by 〈M〉R.

If M = Rn, then one may use the Gram–Schmidt process to show Rn is com-
putably categorical (Corollary 6.3.1). In the general case M ⊆ Rn, there are two
difficulties. First, M may not be a Banach space. Second, even if we isometrically
and computably embed M into Rn, we may not be able to run Gram - Schmidt
within M. The definition below is central to this section:

Definition 7.3.1. Let M ⊆ (Rn, d) be closed such that 〈M〉R has dimension m ≤ n, and
assume (M, d) possesses a computable structure. We say that points x0, . . . , xm ∈ M form
an intrinsically computable base of (M, d) if:

1. the vectors x0 − x1, . . . , x0 − xm are linearly independent in Rn,
2. for every computable structure (αi)i∈ω on (M, d) there is a surjective self-isometry W

of (M, d) such that W(x0), . . . ,W(xm) are computable in (αi)i∈ω .

We call m from the definition above the dimension of M. We show:

Theorem 7.3.1. Let M be a closed subspace of (Rn, d) having dimension m ≤ n which
possesses a computable structure. The following are equivalent:

1. (M, d) is computably categorical;

2. M has an intrinsically computable base x0, . . . , xm.

Proof idea. The proof of (1) ⇒ (2) is rather straightforward, we briefly outline
(2) ⇒ (1). Suppose we are given two computable structures on M. Using an
intrinsically computable base, we embed M into Rn and define new computable
structures on Rn. Then we observe that these new structures are computably
isometric via a surjective isometry which maps M onto itself. Then we show that
the restriction of this self-isometry to M is computable w.r.t. the given computable
structures on M, and conclude that M is computably categorical.

Proof. In the proof below, we consider the linear span of M within Rn and, without loss of
generality, set m = n.

We prove (1) ⇒ (2). Suppose (αi)i∈ω is a computable structure on (M, d). By the
density of (αi)i∈ω and the choice of M and n, we can choose special points x0, . . . , xn
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such that x0−x1, . . . , x0−xn are linearly independent. By our assumption, for every
computable structure (βi)i∈ω on (M, d) there exists a computable isometry

U : (M, d, (αi)i∈ω)→ (M, d, (βi)i∈ω).

The points U(x0), . . . ,U(xn) are computable in (βi)i∈ω .

We show (2)⇒ (1). We need the following fact. Although the fact is intuitively
clear, we give a proof of it which uses elementary affine geometry.

Fact 7.3.1. Every surjective self-isometry W of M can be uniquely extended to a surjective
self-isometry W of Rn. Furthermore, both W and its extension are completely determined
by the images of x0, . . . , xn.

Proof. Note that the points x0, . . . , xn are affine independent which means that the
smallest convex set containing the points has non-zero volume in Rn (recall that
here m = n). The volume is determined by the value of the Cayley-Maneger matrix
which involves only d(xi, x j), for i, j ≤ n. The isometry W preserves the values of
d(xi, x j) and, consequently, the images of x0, . . . , xn are also affine independent. Thus,
W(x0) −W(x1), . . . ,W(x0) −W(xn) are also linearly independent. The vectors x0 − xi

are linearly independent. Thus, every point z ∈M ⊆ Rn is uniquely determined by
d(z, xi), i ≤ n. On the other hand, every point y fromRn, and from M in particular, is
uniquely determined by the distances d(y,W(xi)), i ≤ n. Notice that these distances
are preserved under W. On the other hand, since x0 − x1, . . . , x0 − xn are linearly
independent, every element z ofRn can be uniquely written as z =

∑
0<i≤n fi(x0− xi),

where fi are reals. Now it is clear that the map

W :
∑

0<i≤n

fi(x0 − xi)→
∑

0<i≤n

fi(W(x0) −W(xi))

is the needed extension. �

By Fact 7.3.1, we may assume that W1(M) is a subset of an isometric copy ofRn.
Note that the proof of Fact 7.3.1 implies that W1(x0) −W1(x1), . . . ,W1(x0) −W1(xn)
are linearly independent within this copy.

Claim 7.3.1. Let v1, . . . , vn be linear independent vectors in Rn with ||vi|| and ||vi − v j||

computable. Then (
∑

1≤i≤n rivi)(r1,...,rn)∈Qn is a computable structure on (Rn, d), where d is
the Euclidean metric.
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Proof. The collection of points (
∑

1≤i≤n rivi)(r1,...,rn)∈Qn is clearly dense in Rn. We have

d2
E(r1v1 + . . . + rnvn, q1v1 + . . . + qnvn) = ||(r1 − q1)v1 + . . . + (rn − qn)vn||

2

=
∑

0<i≤m

(ri − qi)2
||vi||

2 +
∑

0<i< j≤m

2(ri − qi)(r j − q j)〈vi, v j〉.

BY the assumption, for every i, j ∈ {1, . . . ,n} the reals ||vi − v j|| and ||vi||. Thus,

the real 〈vi, v j〉 =
1
2

(||vi||
2 + ||v j||

2
− ||vi − v j||

2) is computable, for every i, j ∈ {1, . . . ,n}.
Therefore, the distances between the special points in (r1v1 + . . .+ rnvn)(r1,...,rn)∈Qn are
uniformly computable. �

Let (αi)i∈ω and (βi)i∈ω be computable structures on M. Let W1 and W2 be self-
isometries of M such that W1(x0), . . . ,W1(xn) are computable in (αi)i∈ω and W2(x0), . . . ,W2(xn)
are computable in (βi)i∈ω , respectively. Let vi = W1(x0) −W1(xi) and wi = W2(x0) −
W2(xi), for i ∈ {1, . . . ,n}. By the choice of x0, . . . , xn, these points as well as their
W-images are computable. Thus, the norms ||vi − v j||, ||wi − w j||, ||wi|| and ||vi|| are
computable reals, for every i, j ∈ {1, . . . ,n}. Fixing some effective enumeration of
all rational n-tuples, denote (

∑
1≤i≤n rivi)(r1,...,rn)∈Qn by (γi)i∈ω , and (

∑
1≤i≤n riwi)(r1,...,rn)∈Qn

by (θi)i∈ω .

Claim 7.3.2. The point αk is computable w.r.t. (γi)i∈ω uniformly in k, for every k ∈ ω.

Proof. We have αk =
∑

0<i≤n fivi for reals f1, . . . , fn. Given δ > 0 and a tuple of
rationals (q1, . . . , qn) such that | fi − qi| < δ for every i ∈ {1, . . . ,n}, we obtain

||

∑
0<i≤n

( fi − qi)vi||
2 =

∑
0<i≤n

( fi − qi)2
||vi||

2 +
∑

0<i< j≤n

2( fi − qi)( f j − q j)〈vi, v j〉

≤ δ2(
∑

0<i≤n

||vi||
2 +

∑
0<i< j≤n

2|〈vi, v j〉|).

The reals ||vi|| and |〈vi, v j〉| are computable, for every i, j ∈ {1, . . . ,n}. Therefore, the
positive real

(
∑

0<i≤n

||vi||
2 +

∑
0<i< j≤n

2|〈vi, v j〉|)

is computable. Thus, it is sufficient to show that fi is computable, for every i ∈
{1, . . . ,n}.
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By the choice of W1, the real d(αk,W1(xi)) is computable, for every i ≤ n. There-
fore, the real

B0 = d2
E(αk,W1(x0)) = ||

∑
0<i≤n

fivi||
2

is computable, and so is

Bk = d2
E(αk,W1(xi)) = ||(

∑
0<i≤n

fivi) − vk||
2,

for every i ∈ {1, . . . ,n}.
We express Bi using the inner products 〈vi, v j〉 and the norms ||vi||

2, for i, j ≤ n.
After a simplification, we get the system of equations

B0 − Bk

2||vk||
2 = fk −

∑
j,k

〈vk, v j〉

||vk||
2 f j.

The set {v1, . . . , vn} is a basis of Rn, which implies that the matrix corresponding to
this system is invertible. Furthermore, it has computable coefficients. Thus, for
every i ∈ {1, . . . ,n} the real fi is computable. �

Claim 7.3.3. The point βk is computable w.r.t. (θi)i∈ω uniformly in k, for every k ∈ ω.

Proof. Similar to the proof of Claim 7.3.2. �

By Claim 7.3.1, (γi)i∈ω and (θi)i∈ω are computable structures on (Rn, d). Taking
into account Fact 7.3.1, observe that these structures are computably isometric via
W(r1v1 + . . . + rnvn) = r1w1 + . . . + rnwn. By Claim 7.3.2, the embedding W1 of M
into Rn is computable w.r.t. (αi)i∈ω and (γi)i∈ω . By Claim 7.3.3, the embedding W2

of M into Rn is computable w.r.t. (βi)i∈ω and (θi)i∈ω . Note that M is closed, and the
inverse W−1

1 is computable on its domain w.r.t. (γi)i∈ω and (βi)i∈ω . Similarly, W−1
2 is

computable w.r.t. (θi)i∈ω and (αi)i∈ω . The following diagram commutes, where U is
W restricted to M:

(M, d, (αi)i∈ω)

W1
��

U
// (M, d, (βi)i∈ω)

W2
��

(Rn, d, (γi)i∈ω) W // (Rn, d, (θi)i∈ω)

This shows that U is computable w.r.t. (αi)i∈ω and (βi)i∈ω , proving the theorem. �
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The usual computable structure on Rn is given by the tuples of rationals which
are coordinates in an orthonormal base. The proof of Theorem 7.3.1 leads to a fact
which resembles similar results on computable closures in computable algebra:

Fact 7.3.2. Let M ⊆ (Rn, d) be closed such that 〈M〉R = Rn. For every computable
structure (αi)i∈ω onM = (M, d) there exists an isometric embedding U :M→ (Rn, d)
which is computable with respect to (αi)i∈ω and the usual computable structure on
Rn. Furthermore, its inverse is computable on its domain.

Proof. By the choice of n and the density of (αi)i∈ω inM, there exist special points
γ0, . . . , γn in (αi)i∈ω such that {γ0 − γ1, . . . , γ0 − γn} is linearly independent in Rn.
Denote γ0 − γk by vk, for every k ∈ {1, . . . ,n}. By Claim 7.3.1, the collection of points
(
∑

1≤i≤n rivi)(r1,...,rn)∈Qn is a computable structure on Rn. By Claim 7.3.2, the embed-
ding I ofM into Rn is computable with respect to (αi)i∈ω and (

∑
1≤i≤n rivi)(r1,...,rn)∈Qn .

By Theorem 6.3.2, the computable structure (
∑

1≤i≤n rivi)(r1,...,rn)∈Qn is computably iso-
metric to the usual structure on Rn via a computable isometry U. The composition
I ◦U :M→ R\ is the needed isometry. �

As a consequence of Theorem 7.3.1, many common computable compact subsets
of (Rn, d) with the inherited metric are computably categorical. In the following,
Bn(r) denotes the n-dimensional ball of radius r, and Cuben(r) stands for the n-
dimensional cube (with its inside) with edge of length r. In particular, Cube1(r)
is isometric to the interval [0, r]. The metrics on Bn(r) and Cuben(r) are Euclidean.
The following fact is rather straightforward:

Fact 7.3.3. Let Mn(r) be either the ball Bn(r) or the cube Cuben(r). The space Mn(r)
possesses a computable structure if, and only if, r is left-c.e.

Proof. Suppose r is left-c.e. and r = sups qs for a computable sequence of positive
rationals (qs)s∈ω . If Mn(r) = Bn(r) is a ball, then define a computable structure starting
from the geometrical center of Mn(r) and expanding the structure on the stages s
such that qs > qs−1. More formally, define a computable sequence of finite rational-
valued metric subspaces Xn such that for every m we have X〈k,m〉 ⊆ Bn(qm) and,
furthermore,

⋃
k X〈k,m〉 is a computable structure on Bn(qm). The sequence can be

organized so that d(x, y) is computable for every x, y ∈
⋃

k,m∈ω X〈k,m〉. The desired
structure is

⋃
k,m∈ω X〈k,m〉. The case when Mn(r) = Cuben(r) can be done similarly.

Suppose (αi)i∈ω is a computable structure on Mn(r). The real µ = sup{d(αi, α j) :
i, j ∈ ω} is clearly left-c.e. Note that µ = 2r if Mn(r) = Bn(r), and µ = r

√
n if

Mn(r) = Cuben(r). �
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We have:

Corollary 7.3.1 ([51]). For every n ∈ ω and every computable real r, the cube Cuben(r)
(the ball Bn(r)) is computably categorical.

Proof. We prove the corollary for Cuben(r) with n = r = 1, the general case is not
significantly different from the case n = r = 1. We show that {0, 1} is an intrinsically
computable base of [0, 1].

Let (αi)i∈ω be a computable structure on Cube1(1) = [0, 1].Define two uniformly
computable sequences, (θk)k∈ω and (ik)k∈ω of special points of (αi)i∈ω by recursion.
The sequence (θk)k∈ω will be a Cauchy name for 0, and the sequence (ik)k∈ω will
be a Cauchy name for 1. Let v and w be special points such that d(v,w) > 3/4
and d(v, 0) < d(w, 0). Set θ0 = v and i0 = w. We use these points as non-uniform
parameters. For k > 1, search in (αi)i∈ω for special points x and y such that d(x, y) >
1−2−k−2 and d(x, θk−1) < d(x, ik−1). Setθk = x and ik = y. This completes the definition
of (θk)k∈ω and (ik)k∈ω. Clearly, d(θk, 0) ≤ 2−k and d(ik, 1) ≤ 2−k, for every k ≥ 0. �

Remark 7.3.1. If in Definition 7.3.1 we replace “there exists a surjective self-isometry
W” by “for every surjective self-isometry W” then the corresponding analog of the
preceding theorem will state that every isometry from a space having such a base is
computable w.r.t. to any given computable structures. The proof needs only minor
adjustments.

As a consequence, we obtain:

Fact 7.3.4. Every self-isometry of [0, 1] with the usual metric is computable w.r.t. (αi)i∈ω

and (β j) j∈ω , for each computable structures (αi)i∈ω and (β j) j∈ω on [0, 1].

Proof. A straightforward modification of the proof of the preceding corollary shows
that {0, 1} is an intrinsically computable base of [0, 1] having the stronger property
from Remark 7.3.1. �

As a consequence, every two computable structures on [0, 1] are equivalent
(that is, the identity map is computable w.r.t. to these structures). It is natural to
ask what is the number of non-isometric computable structures on an interval of
length r, where r is left-c.e. We show:

Theorem 7.3.2. Let n be a positive natural and r a left-c.e. real. The following are
equivalent:

1. r is computable,
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2. the space Cuben(r) is computably categorical,

3. there exists only finitely many computable structures on Cuben(r) which are pairwise
not computably isometric.

Proof. The implication (1) → (2) is given by Corollary 7.3.1, and the implication
(2)→ (3) is trivial. We show ¬(1)→ ¬(3).

Suppose r is a non-computable left-c.e. real. Consider the simplest case Cube1(r) =

[0, r]. We define infinitely many structures on [0, r], as follows. For a natural m > 0,
letα(m)i and β(m)i be the m’th rational in any fixed enumeration of positive rationals
from the left cuts of 2−mr and (1 − 2−m)r, respectively. Clearly, (α(m)i)i∈ω is a com-
putable structure on [0, 2−mr], and β(m)i is a computable structure on [0, (1− 2−m)r].
Note that 0 does not belong to either (α(m)i)i∈ω or (β(m)i)i∈ω.

Define a computable structure (h(m)i)i∈ω on [0, r], as follows. Let h(m)0 = 2−mr.
Given i > 0, let

h(m)i =

 2−mr + β(m)k, if i = 2k,

2−mr − α(m)k, if i = 2k − 1.

Observe that the distance between any two points from (h(m)i)i∈ω is uniformly
computable, and the sequence (h(m)i)i∈ω in dense in [0, r].

We show that (h(m)i)i∈ω is not computably isometric to (h(n)i)i∈ω if m > n. Pick
a surjective isometry U of [0, r] and assume (towards a contradiction) that U is
computable with respect to (h(m)i)i∈ω) and (h(n)i)i∈ω). The point U(h(m)0) has to be
computable in (h(n)i)i∈ω. Note that U(h(m)0) is either 2−mr or (1−2−m)r. In either case,
d(U(h(m)0), h(n)0) is not computable as it is a rational multiple of r, contradicting
the choice of U. This finishes the proof for the case Cube1(r) = [0, r].

Suppose n > 1 and r is a non-computable left-c.e. real. For each m ∈ ω define
(h(m)i)i∈ω as folows. The sequence (h(m)i)i∈ω consists of n-tuples in which the first
component is taken from (h(m)i)i∈ω, and the other components are rationals < r.
It is not difficult to see that (h(m)i)i∈ω is a computable structure on Cuben(r). An
argument similar to the case n = 1 shows that (h(m)i)i∈ω is not computably isometric
to (h(k)i)i∈ω, if m , k. In the case n > 1 we have more than two isometries, but still
only finitely many. The distance between (h(n)0, 0, . . . , 0) and (h(n)0, 0, . . . , 0) can be
expressed as r · v, where v is a computable real which depends on the isometry.
This finishes the proof. �
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7.3.2 A sufficient condition

We say that a collection B of points of a metric spaceM = (M, d) is an automorphism
base of M if and only if any nontrivial surjective self-isometry of M necessarily
moves at least one of its elements – or, equivalently, the global action of any such
surjective self-isometry is completely determined by that on B. We need an effective
version of this notion:

Definition 7.3.2. We say that a finite automorphism base B = {b1, . . . , bk} of a Polish space
M = (M, d) is an effective automorphism base ofM if:

1. For every computable structure (αi)i∈ω onM there is a surjective self-isometry U of
M such that U(b1), . . . ,U(bk) are computable in (αi)i∈ω ,

2. For every rational ε > 0 we can compute a rational δ ∈ (0, 1) such that for every
x, y ∈ M the inequality sup j |d(b j, x) − d(b j, y)| < δ/Cx,y implies d(x, y) < ε, where
Cx,y = 1 + supi d(bi, x) + supi d(bi, y).

Thus, points in M are effectively determined by their distances to points in
an effective automorphism base. Clearly, if the diameter of M is finite we can
eliminate (1 + supi d(bi, x) + supi d(bi, y)) from (2.) in Definition 7.3.2. If the diameter
ofM is infinite, then Cx,y is needed to make Theorem 7.3.3 work for subspaces of
Rn. We show:

Theorem 7.3.3. Suppose a Polish spaceM possesses a computable structure. IfM has an
effective automorphism base thenM is computably categorical.

Proof. Suppose {b1, . . . bk} is an effective automorphism base for M. Let (αs)s∈ω

and (βs)s∈ω be two computable structures onM. Let W1 and W2 be surjective self-
isometries such that W1(b1), . . .W1(bk) are computable w.r.t. (αs)s∈ω and W2(b1), . . .W2(bk)
are computable w.r.t. (βs)s∈ω. Let U = W−1

1 ◦W2. We show that U is computable
with respect to (αs)s∈ω and (βs)s∈ω.

Note that W1(b1), . . . ,W1(bk) is an effective automorphism base. Therefore, with-
out loss of generality, we may assume W1 = Id. Thus, we assume the points
U(b0), . . . ,U(bk) are computable w.r.t. (βs)s∈ω, and the points b0, . . . , bk are computable
w.r.t. (αs)s∈ω.

Given ε > 0 and a special point αs, compute the rational δ < 1 corresponding to
ε. Find a special point βv such that

sup
j
|d(b j, αs) − d(U(b j), βv)| <

δ
2 + 2 sup j d(b j, αs)

.
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By the density of (βs)s∈ω, such a special point can be effectively found. We have
d(b j, αs) = d(U(b j),U(αs)) and d(b j,U−1(βv)) = d(U(b j), βv). Note that δ < 1 implies
sup j |d(U(b j),U(αs)) − d(U(b j), βv)| < 1. Consequently,

2 + 2 sup
j

d(b j, αs) > 1 + sup
j

d(U(b j), βv) + sup
j

d(U(b j),U(αs))

and

|d(U(b j),U(αs)) − d(U(b j), βv)| <
δ

1 + sup j d(U(b j), βv) + sup j d(U(b j),U(αs))
.

By the choice of δ, we obtain d(U(αs), βv) < ε, showing that U(αs) is computable
w.r.t. (βs)s∈ω. Thus, U is a computable map. �

Corollary 7.3.2. The unit circle S1 with the distance given by the shortest arc between
points is computably categorical.

Proof. Let (αi) be a computable structure on S1. This structure contains special
points α0, α1 such that d(α0, α1) < 1/2. It is straightforward to check that α0, α1 form
an effective automorphism base of S1. �

Effective automorphism bases yield an alternative characterization of com-
putable categoricity of subspaces of Rn:

Theorem 7.3.4. A closed subspace M of Rn which possesses a computable structure is
computably categorical if, and only if,M has an effective automorphism base.

Proof. By Theorem 7.3.3, it is sufficient to show that M contains an effective au-
tomorphism base provided that M is computably categorical. Let (αi)i∈ω be a
computable structure on M. Let n be least such that M isometrically embeds
into Rn. By Theorem 7.3.3, the spaceM contains an intrinsically computable base
b0, . . . , bn. Without loss of generality, we may assume that b0, . . . , bn are computable
w.r.t. (αi)i∈ω . By Fact 7.3.2, we may assume thatM is a subspace ofRn such that each
αi is computable in the usual structure on Rn uniformly in i. As a consequence,
the points b0, . . . , bn are computable in the usual computable structure on Rn. By
the definition of intrinsically computable base, the elements b0, . . . , bn satisfy (1.) of
Definition 7.3.2. It remains to check (2.) of Definition 7.3.2 for b0, . . . , bn.

Let ε < 1, and suppose x, y ∈ M are such that

|d(b j, x) − d(b j, y)| < δ/(1 + sup
i

d(bi, x))

163



for every j ∈ {1, . . . , k}.
Let v j = b j − b0 for j ∈ {1, . . . ,n}. There are uniquely defined tuples of reals

f = ( f1, . . . , fn) and h = (h1, . . . , hn) such that

y =
∑

1≤ j≤n

f jv j and x =
∑

1≤ j≤n

h jv j.

Define
u = (d2(b0, y) − d2(b1, y), . . . , d2(b0, y) − d2(bn, y));

w = (d2(b0, x) − d2(b1, x), . . . , d2(b0, x) − d2(bn, x)).

As we have seen in the proof of Claim 7.3.2 in Theorem 7.3.1, the computability
of b0, . . . , bn implies that there is a computable matrix B with a computable inverse
such that f = B · u and h = B · w. Let D be the matrix which corresponds to the
Gram–Schmidt orthogonalization of v1, . . . , vn. By the choice of v1, . . . , vn, the matrix
D and its inverse are computable. Let || · || stand for the usual norm in the space Rn

of n-tuples of reals. We have

d2(y, x) = ||DB(u) −DB(w)||2 ≤ ||DB||2||u − w||2,

where ||DB|| > 0 is a computable real. Let δ = min{ε
1

4||DB||
√

n
, ε} and

δ1 =
δ

1 + sup j d(b j, x) + sup j d(b j, y)
.

We obtain

||u − w||2 =
∑

1≤ j≤n

(d2(b0, y) − d2(b j, y) − d2(b0, x) + d2(b j, x))2

<
∑

1≤ j≤n

(2δ1 sup
i

(d(bi, y) + d(bi, x)))2

≤ 4n(δ1(1 + sup
j

d(b j, x) + sup
j

d(b j, y)))2

= 16nδ2.

Therefore, d(y, x) < ||DB|| · 4
√

nδ ≤ ε. This finishes the proof. �

Thus, Theorem 7.3.3 is a generalization of (2) → (1) part of Theorem 7.3.2 to
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metric spaces which are not subspaces of Rn. We obtain:

Corollary 7.3.3. For a closed subspaceM of Rn, the following are equivalent:
1. M is computably categorical;
2. M has an intrinsically computable base;
3. M has an effective automorphism base.

Proof. By Theorem 7.3.3 and Theorem 7.3.4. �
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Chapter 8

K-triviality in metric spaces

In this chapter we generalize the notion of K-triviality to the more general setting
of a computable metric space.

8.1 Preliminaries

We use the notation in [80]. In particular, we write s ≤+ t to denote that s ≤
t + O(1). Throughout the chapter we will use the usual Cantor pairing function
〈a, b〉 = a + 1

2 (a + b)(a + b + 1) to encode pairs of natural numbers by a single number.
We provide some formal definitions of concepts particular to this chapter, most of
which have already been discussed above.

8.1.1 K-triviality for functions

Fix some effective encoding of tuples x over ω by binary strings, so that K(x) is
defined for any such tuple. The following extends the definition of K-triviality for
subsets of ω, which can be identified with {0, 1}-valued functions.

Definition 8.1.1. We say that a function f : ω→ ω is K-trivial if

∃b∀n K( f �n) ≤ K(n) + b.

By the following, K-triviality for functions may be reduced to K-triviality for
sets.

Proposition 8.1.1. A function f : ω→ ω is K-trivial if and only if its graph
Γ = {〈n, f (n)〉 : n ∈ ω} is K-trivial in the usual sense of sets.
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Proof. First suppose that f is K-trivial. We have

K(Γ�n(n−1)/2) ≤+ K( f �n) ≤+ K(n),

since to describe Γ�n(n−1)/2 it is enough to know the values of f up to n. For a set A,
if there is a computable increasing sequence {qn}n∈ω such that K(A�qn) ≤+ K(n) then
A is K-trivial [80, Ex. 5.2.9]. Therefore the set Γ is K-trivial.

Now suppose that Γ is K-trivial. Recall that a set X is called low for K if
K(y) ≤+ KX(y) for each string y. By [79], K-triviality implies lowness for K (also
see [80, Section 5.4]). Thus, K( f �n) ≤+ KΓ( f �n). Clearly KΓ( f �n) ≤+ K(n). Thus
K( f �n) ≤+ K(n), as required. �

Note that the result does not depend on the particular choice of a pairing
function: if we use an alternative pairing function, then the graph of f in terms of
that pairing function is m-equivalent to Γ. Hence it is K-trivial iff Γ is. We could also
formulate a similar theorem for other encodings of function by sets; for instance, a
function f is K-trivial iff S is K-trivial, where S is given by the rule that 1 + f (n) is
the n + 1-th element of S minus the n-th element of f .

Note that the implication from right to left in Proposition 8.1.1 relies on the
hard result of [79], which has a non-uniform proof. It is not known whether
Proposition 8.1.1 is uniform, that is, whether a constant for the K-triviality of f can
be computed from an index for Γ (say, as an ω-c.e. set) and its K-triviality constant.
We conjecture that this is not the case.

Let f ⊕ g be the function u such that u(2n) = f (n) and u(2n + 1) = g(n). The
following is a consequence of the corresponding fact for sets; see [80, 5.2.17].

Corollary 8.1.1. If f , g are K-trivial as functions, then so is f ⊕ g.

Proof. Use that fact that K-trivials are downward closed under Turing reducibility
(see [80]). �

8.1.2 Solovay functions

Recall that a computable function h : ω → ω is called a Solovay function [9] if
the lim infr[h(r) − K(r)] exists (and is a finite integer). Solovay [94] constructed an
example of such a function. The following simpler, recent example is due to Merkle
(unpublished). We include the short verification for completeness’ sake.

Fact 8.1.1. There is a Solovay function h.
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Proof. Let U denote the optimal prefix-free machine. Given r = 〈σ,n, t〉, if t is least
such that Ut(σ) = n, define h(r) = |σ|. Otherwise let h(r) = r.

We have K(r) ≤+ h(r) because there is a prefix-free machine M which on input σ
outputs r = 〈σ,U(σ), t〉 if t is least such that Ut(σ) halts. If σ is also a shortest string
such that U(σ) = n, then we have h(r) = |σ| = K(n) ≤+ K(r). �

The following generalizes a known fact for sets, also due to Merkle, to the
setting of functions.

Fact 8.1.2. Let h be as in the proof of Fact 8.1.1. Let f : ω → ω be a function such that
∀r K( f �r) ≤ h(r) + b. Then f is K-trivial via a constant b + O(1).

Proof. Given n, let σ be a shortest U-description of n, and let t be least such that
Ut(σ) = n. Let r = 〈σ,n, t〉. Then

K( f �n) ≤+ K( f �r) ≤ h(r) + b = |σ| + b = K(n) + b. �

8.2 Computable points and K-trivial points

In the following we fix a computable metric spaceM = (M, d, (αi)i∈ω). We will use
letters p, q etc. for special points in M. They will be identified with natural numbers
via the listing above. Recall that a point x is computable if one can effectively
determine arbitrarily good approximations of x that are special points.

8.2.1 K-trivial points: definition and examples

A positive rational δ is viewed as a fraction n
v where gcd(n, v) = 1, which we

effectively encode by a single natural number iδ. For i = iδ and p ∈ ω we let
K(δ) := K(i) and K(p, δ) := K(p, i). The following is the main definition of the
chapter.

Definition 8.2.1. Let b ∈ ω. We say that a point x ∈M is K-trivial via b, or K-trivial(b)
for short, if for each positive rational δ there is a special point p such that

d(x, p) ≤ δ ∧ K(p, δ) ≤ K(δ) + b. (8.1)

A point x ∈M is called K-trivial if it is K-trivial via some b.

Choosing a different effective encoding of the rationals will merely lead to a
different constant b in (8.1), without affecting the set of K-trivial points. Thus we
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might as well use the canonical encoding of a positive rational δ: If δ = n
v where

gcd(n, v) = 1 let iδ = 〈n, v〉. (This yields the listing 1, 1/2, 2, 1/3, 3, 1/4, 2/3, . . . of the
positive rationals.)

Clearly each computable point is K-trivial. There may be no others:

Example 8.2.1. There is an infinite compact computable metric spaceM with an incom-
putable point such that each K-trivial point is computable.

Proof. Let ω denote Chaitin’s halting probability. We have ω = limsωs where
ωs =

∑
{2−|σ| : Us(σ) ↓}. LetM be the computable metric space with domain {ωs : s ∈

ω} ∪ {ω}, the metric inherited from the unit interval and with the computable
structure given by αs = ωs.

Assume for a contradiction that ω is a K-trivial point. Given n pick p = ωs as in
(8.1) for δ = 2−n. We can compute ωs �n (the first n bits of the binary expansion of
ωs) from p and n. Since d(ω,ωs) ≤ 2−n, this shows that K(ω �n) ≤ K(p,n) + O(1) ≤
K(n) + O(1), which contradicts K(ω�n) ≥ n −O(1) for sufficiently large n. �

In Theorem 8.4.1 we will show that each computable complete metric spaceM
without isolated points contains an incomputable K-trivial point. Instead of giving
a direct construction, we will derive this from the corresponding fact in Cantor
space, using two facts: Proposition 8.4.2 below that K-triviality is preserved by
a computable map from one metric space to another, and a result of Brattka and
Gherardi that there is a 1-1 computable map from Cantor space into M, which
hence also preserves incomputability of points.

8.2.2 Number and distribution of K-trivial points for a constant b

Firstly, we note that few numbers p can satisfy the second inequality in (8.1):

Fact 8.2.1. For δ ∈ Q+, we have |{p ∈ ω : K(p, δ) ≤ K(δ) + b}| = O(2b).

Proof. Chaitin [18] proved that there are only O(2b) strings v of length n such that
K(v) ≤ K(n) + b. To prove the fact at hand, one adapts, for instance, the proof in [80,
2.2.26] of his result, with the change that one lets M(σ) = n if U(σ) = 〈i,n〉, where
n ∈ ω encodes δ. �

We now show that a similar bound holds for the number of points that are
K-trivial(b). Furthermore, such a point x is determined by a highly compressible
special point p close by.
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Proposition 8.2.1. Let b ∈ ω. (i). At most O(2b) many x ∈ M are K-trivial(b). (ii).
There is a rational δ > 0 as follows. If a point x is K-trivial via b, then there is a
special point p with K(p, δ) ≤ K(δ) + b such that x is the only K-trivial(b) point with
d(x, p) ≤ δ.

Proof. Suppose that distinct points x1, . . . , xk ∈ M are K-trivial(b). Pick a rational
δ > 0 such that 2δ is less than d(xi, x j) for any i , j, and choose pi for xi, δ according
to (8.1). Then all the pi are distinct. By Fact 8.2.1, this implies that k = O(2b), hence
(i) holds. If k is chosen maximal then xi is the only K-trivial(b) point x such that
d(x, pi) ≤ δ, which establishes (ii). �

8.2.3 Dyadic K-triviality

We mostly work with the apparently weaker form of Definition 8.2.1 of K-triviality
in metric spaces where δ only ranges over rationals of the form 2−n.

Definition 8.2.2. A point x ∈ M is dyadically K-trivial via b if for each n ∈ ω there is
a special point p such that

d(x, p) ≤ 2−n
∧ K(p,n) ≤ K(n) + b. (8.2)

Clearly, a point that is K-trivial via v is dyadically K-trivial via v + O(1). We will
show in our main result Theorem 8.3.1 that being dyadically K-trivial via b already
implies having a Cauchy name that is K-trivial as a function via 2b + O(1), which in
turn easily implies being K-trivial via 2b + O(1). Thus, up to a computable change
in constants, dyadic K-triviality is the same as K-triviality.

From this point on, we use the usual “level-by-level” enumeration of special
points σ(0ω) in Cantor space: 0(0ω), 1(0ω), 00(0ω), 01(0ω), · · · , and we use the similar
coding for Baire space. Suppose a point f in Cantor or Baire space is K-trivial
in the usual sense. Then it is clearly dyadically K-trivial: given n, let p be the
special point determined by f �n, namely p(i) = f (i) for i < n and p(i) = 0 for
i ≥ n. The p is a witness in (8.2). Conversely, each dyadically K-trivial point f
is K-trivial in the usual sense, because given n, if p is a witness in (8.2), we have
K( f �n) ≤ K(p,n) + O(1).

Recall that the unit interval [0, 1] is a computable metric space with the usual
distance function and the computable structure given by an effective listing without
repetition of the rationals in [0, 1]. Suppose a point x has binary expansion 0.A
where A is an infinite bit sequence (set). If A is K-trivial then as a witness p in (8.2)
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we may use the dyadic rational 0.(A�n). Conversely, suppose x ∈ [0, 1] is dyadically
K-trival. Given n let p be a witness in (8.2), and let σ be the first n bits in the binary
expansion of p. Then K(σ) ≤ K(p,n) + O(1); furthermore, 0.σ − 0.(A �n) = c2−n for
some c ∈ {−1, 0, 1}. Therefore K(A�n) ≤ K(n) + O(1).

8.2.4 We cannot replace the term K(p, δ) in Definition 8.2.1 by K(p)

We provide the example showing that, even in Cantor space,the suggested replace-
ment is not an adequate generalization of K-triviality. The “dyadic” version of this
generalization is that

∀n∃p [d(x, p) ≤ 2−n
∧ K(p) ≤ K(n) + O(1)]. (8.3)

This is in fact equivalent to

d(x, αp) ≤ δ and K(p) ≤ K(δ) + O(1), (8.4)

because from δ > 0 one can compute the least n such that 2−n
≤ δ. Then a witness

p for n in (8.3) is also a witness for δ in the new definition. Recall from [27] that a
K-trivial is not Turing complete.

Proposition 8.2.1. There is a Turing complete Π0
1 set A ∈ {0, 1}ω satisfying condi-

tion (8.3).

Proof. For a string α over {0, 1}, let g(α) be the longest prefix of α that ends in 1, and
g(α) = ∅ if there is no such prefix. We say that a set A is weakly K-trivial if

∀n [K(g(A�n)) ≤+ K(n)].

This implies (8.3): given n let p = g(A �n)0∞, then d(p,A) ≤ 2−n. (As an aside, we
note that every K-trivial set is weakly K-trivial. Every weakly K-trivial set with an
infinite computable subset is already K-trivial by [80, Ex. 5.2.9].)

We now build a Turing complete Π0
1 set A that is weakly K-trivial. We maintain

the condition that
∀i∀w [γi < w→ K(w) > i], (8.5)

where γi is the i-th element of A. This implies that A is Turing complete, as follows.
We build a prefix-free machine N. When i enters ∅′ at stage s, we declare that
N(0i1) = s. This implies K(s) ≤ i + d for some fixed coding constant d. Now
i ∈ ∅′ ↔ i ∈ ∅′γi+d

, which implies ∅′ ≤T A.
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We let A =
⋂

As, where As is a cofinite set effectively computed from s, A0 = ω,
[s,∞) ⊆ As, and As+1 ⊆ As for each s. We view γi as a movable marker; γs

i denotes
its position at stage s, which is the i-th element of As.

Construction of A and a prefix-free machine M.
Stage 0. Let A0 = ω.

Stage s > 0. Suppose that there is w such that i := Ks(w) < Ks−1(w). By convention,
we may assume that w is unique and w < s. Thus, there is a new computation
Us(σ) = w with |σ| = i at stage s.

If w ≤ γs−1
i then let As = As−1. If w > γs−1

i then, to maintain (8.5) at stage s, we
move the marker γi: we let As = As−1− [γs−1

i , s), which results in γs
i+k = s + k for k ≥ 0,

while γs
j = γs−1

j for j < i.
In any case, declare M(σ) = g(As�w).

Verification. Clearly, each marker γi moves at most 2i+1 times, so A =
⋂

s As is an
infinite co-c.e. set. Furthermore, condition (8.5) holds because it is maintained at
each stage of the construction.

We show by induction on s that

∀n [K(g(As�n)) ≤+ Ks(n)]. (8.6)

For s = 0 the condition is vacuous. Now suppose s > 0 and (8.6) holds for s− 1. We
may suppose that w as in stage s of the construction exists, otherwise (8.6) holds at
stage s by inductive hypothesis.

As in the construction let i = Ks(w), and let σ be the string of length i such that
Us(σ) = w. If w ≤ γs

i then As = As−1, so setting M(σ) = g(As�w) maintains (8.6).
Now suppose that w > γs

i . Let n < s. We verify (8.6) at stage s for n.
If n ≤ γs−1

i then As �n= As−1 �n and Ks(n) = Ks−1(n), so the condition holds at
stage s for n by inductive hypothesis. Now suppose that n > γs−1

i . By (8.5) at stage
s − 1 we have Ks−1(n) > i, and hence Ks(n) ≥ i (equality holds if n = w). Because
n,w > γs−1

i and we move the marker γi at stage s, we have g(As�n) = g(As�w). Thus,
setting M(σ) = g(As�w) ensures that the condition (8.6) holds at stage s for n. �

8.3 A point is K-trivial iff it has a K-trivial Cauchy name

As before we fix a computable metric space M = (M, d, (αi)i∈ω). Recall that a
sequence (ps)s∈ω of special points is called a Cauchy name if d(ps, pt) ≤ 2−s for each
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s, t ∈ ω, s < t. If x = lims ps, we say that (ps)s∈ω is a Cauchy name for x. Note that
d(x, ps) ≤ 2−s for each s. Via the underlying listing of special points (αi)i∈ω we may
view a Cauchy name as a function ω → ω. Our main result is the corresponding
fact for K-triviality.

Theorem 8.3.1. Let x be a point in a computable metric spaceM.

(i) If x has a Cauchy name that is K-trivial as a function via u ∈ ω, then x is a K-trivial
point via u + O(1).

(ii) If x is a K-trivial point via v ∈ ω, then x has a Cauchy name that is K-trivial as a
function via 2v + O(1).

We begin with proving the easier part (i). Recall that before Definition 8.2.1 we
fixed an effective encoding of positive rationals δ by natural numbers iδ. It is easy
to verify that δ ≥ 2−iδ for each δ.

Suppose now the function f is K-trivial via u, and a Cauchy name for x. Given
δ > 0 let i = iδ. If n is least such that δ ≥ 2−n, then we can take p = f (n) as a
witness for K-triviality in the sense of (8.1). We have i ≥ n ( f (n) appears among
f (0), . . . , f (i)), and hence

K( f (n), i) ≤ K( f �i+1) + O(1) ≤ K(i) + u + O(1).

Since K(i) is the same as K(δ) and K(p, i) is the same as K(p, δ), this shows (i).

In 8.2.2 we defined the auxiliary concept of dyadic K-triviality, and noted that
being K-trivial via v implies being dyadically K-trivial via v + O(1). The following
lemma will close the circle by establishing (ii).

Lemma 8.3.1. Suppose that the point x ∈M is dyadically K-trivial via b. Then x has
a Cauchy name f that is K-trivial as a function via 2b + O(1).

Proof. After adding a natural number to the Solovay function h from Fact 8.1.1, we
may suppose that ∀r K(r) ≤ h(r).

The c.e. tree T. By a tree we mean a set T ⊆ ω<ω that is closed under taking prefixes.
As usual, [T] denotes the set of (infinite) paths of a tree T. We define a c.e. tree
T such that each f ∈ [T] is a Cauchy name after leaving out f (0) and f (1). Let
T =

⋃
s Ts, where we define the trees

Ts = {(p1, . . . , pv) : ∀i ≤ v [Ks(pi, i) ≤ h(i) + b] ∧ (8.7)

∀i < v [d(pi, pi+1) ≤ 2−i+1]}.
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A thin c.e. subtree G of T. In the setting of Example ??, T is a full 2-branching tree,
consisting of all the tuples of the form (〈r0, 0〉, 〈r1, 1〉, . . . , 〈rv, v〉) where ri ∈ {0, 1}.
This shows that T may contain lots of Cauchy names consisting of witnesses for
dyadic K-triviality; we cannot expect that each such Cauchy name is K-trivial as a
function. Therefore we will prune T to a c.e. subtree G that is so thin that all strings
τ in it are compressible in the sense that K(τ) ≤ h(|τ|) + b + O(1); hence each infinite
path is dyadically K-trivial by Fact 8.1.2.

We say that a special point p ∈ ω is present at level n of a tree B ⊆ ω<ω if there is
η ∈ B such that η has length n and ends in p. While G is only a thin subtree of T, we
will ensure that each special point present at a level n of T is also present at level
n of G. This will show that [G] still contains a function that (after leaving out the
first two values) is a Cauchy name for x. (In Example ?? there are only two labels
at each level of T, so for G ⊆ T we can simply take the tuples where each ri is 0,
except possibly the last. Then the only path of G is a computable Cauchy name of
the limit point x.)

We will build a computable enumeration (Gs)s∈ω of the tree G where Gs is a tree
contained in Ts for each s.

Why can each string in G be compressed? Suppose at a certain stage, a new leaf
labelled p appears at level n of T, but is not yet present at level n of G. Suppose also
that p is a successor on T of a node labelled q. Inductively, q is already present at
level n− 1 of G; that is, there already is a node η of length n− 1 on G that ends in q.
Since p is present at level n of T, there is aU-description showing that K(p,n) ≤ h(n)+b
(that is, there is a string w with |w| ≤ h(n) + b such that U(w) = 〈p,n〉). Since p is not
present at level n of G, this U-description is “unused”. Hence we can use it as a
description of a new node η = η p̂ in G. This ensures that K(η) ≤ h(n) + b + O(1).

Note that we make use of the fact that once a string η in G is compressible at
a stage, it remains so at all later stages. This is the reason we need the Solovay
function h. If we tried to satisfy the condition K(η) ≤ K(n) + b + O(1), we might fail,
because K(n) on the right side could decrease later on. We also needed the Solovay
function to ensure that T is c.e.

In the formal construction, we build a prefix-free machine L (see [80, Chapter 2])
to give short descriptions of these nodes. The argument above is implemented via
maintaining the conditions (8.9) and (8.10) below.

A slower computable enumeration (T̃s)s∈ω of T. We define a computable enumeration
(T̃s)s∈ω of T that grows “one leaf at a time”. The T̃s are subtrees of the Ts. Let T̃0

consist only of the empty string. If s > 0 and T̃s−1 has been defined, see whether
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there is τ ∈ Ts − T̃s−1. If so, choose τ least in some effective numbering of ω<ω. Pick
v maximal such that τ�v∈ T̃s−1, and put τ�v+1 into T̃s. Clearly we have T̃s ⊆ Ts and
T =

⋃
s T̃s.

Three conditions that need to be maintained at each stage. For strings τ, η ∈ ω<ω we
write τ ∼ η if they have the same length and end in the same element. Recall that
each label present at a level n of T needs to be also present at level n of G. Actually,
in the construction we ensure that for each stage s, each label p that is present at a
level n of T̃s is also present at level n of Gs:

∀τ ∈ T̃s ∃η ∈ Gs [τ ∼ η]. (8.8)

To make sure that each η ∈ G satisfies K(η) ≤ h(|η|) + b + O(1), we construct,
along with (Gs)s∈ω, a computable enumeration (Ls)s∈ω of (the graph of) a prefix-free
machine L. Let m,n range over natural numbers, and v,w over strings. We maintain
at each stage s the conditions

∀η ∈ Gs ∀m
[
0 < m ≤ |η| → ∃v [ |v| ≤ h(m) + b ∧ Ls(v) = η�m]

]
; (8.9)

if Us(w) = 〈p,n〉, then
[
w ∈ dom(Ls) → p is at level n of Gs

]
. (8.10)

Construction of (Gs)s∈ω and (Ls)s∈ω.

Stage 0. Let G0 contain only the empty string. Let L0 = ∅. Clearly the conditions
(8.8,8.9,8.10) hold for s = 0.

Stage s > 0. Inductively we assume that (8.8,8.9,8.10) hold for s − 1.
If T̃s−T̃s−1 is empty go to the next stage. Otherwise there is a unique τ ∈ T̃s−T̃s−1.

Let n = |τ|. By the definition of the computable enumeration (T̃r)r∈ω, we have
τ = τ p̂ for some τ ∈ T̃s−1. Since τ ∈ Ts, by the definition in (8.7) we have
Us(w) = 〈p,n〉 for some U-description w such that |w| ≤ h(n) + b.

If p is already present at level n of Gs−1, then go to the next stage. Otherwise,
by (8.10) for s − 1, we have w < dom(Ls−1), i.e., we have not yet used w as an
L-description.

By (8.8) for s − 1, there is η ∈ Gs−1 such that τ ∼ η. Now let η = η p̂. (Note that
η ∈ Ts because η ∈ Gs−1 ⊆ Ts and Ks(p,n) ≤ h(n) + b. ) Put η into Gs. Set Ls(w) = η.
Then conditions (8.8,8.9,8.10) hold at stage s. Go to the next stage.

Verification. Given a function f : ω → ω, let f̂ denote the function given by f̂ (n) =
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f (n + 2). If f ∈ [T] then f̂ is a Cauchy name.
Note that the prefix-free machine L = Lb is obtained uniformly in b, so we can

build a prefix-free machine M such that M(0b1σ) = Lb(σ) for each binary string σ.
Hence, if f ∈ [G] then by condition (8.9) and Fact 8.1.2, f̂ is K-trivial as a function
via 2b + O(1). The following now concludes the proof of the lemma.

Claim 8.3.1. There is f ∈ [G] such that f̂ is a Cauchy name of x.

Since x is dyadically K-trivial, for each n we can choose pn as in (8.2). Then
(p1, . . . , pn) ∈ T. So by (8.8) we can choose a string ηn ∈ G of length n that ends in pn.

For each n there are only finitely many p such that K(p,n) ≤ h(n) + b. So each
level of T is finite. Thus, by König’s Lemma, there is an infinite path f on the
subtree of G consisting of the strings that are a prefix of some ηn. For each r > 0
there is n such that f �r� ηn. So n ≥ r. Hence

d( f (r − 1), x) ≤ d( f (r − 1), pn) + d(pn, x) ≤ 2−r+2 + 2−n
≤ 2−r+3.

This shows that f̂ is a Cauchy name for x.
This concludes Lemma 8.3.1, and thereby establishes Theorem 8.3.1. �

8.3.1 An analog of Theorem 8.3.1 for plain Kolmogorov complex-
ity C.

We adapt the foregoing proof. We say that a function f : ω→ ω is C-trivial via u if
C( f �n) ≤ C(n) + u for each n.

A point x ∈ M is called C-trivial via v if for each positive rational δ there is a
special point p such that

d(x, p) ≤ δ ∧ C(p, δ) ≤ C(δ) + v. (8.11)

Clearly (i) of Theorem 8.3.1 holds in the setting of plain complexity C, via the same
proof. To prove an analog of (ii) for C, we replace the Solovay function h by a
logarithm function. Let log2 n denote the largest integer k such that 2k

≤ n. Clearly,
with a shift in constants, condition (8.11) implies its dyadic variant: for each n
there is a special point p such that d(x, p) ≤ 2−n

∧ C(p,n) ≤ C(n) + v + O(1). Since
C(n) ≤+ log2 n, this in turn implies the condition

∀n∃p [d(x, p) ≤ 2−n
∧ C(p,n) ≤ log2 n + b]. (8.12)
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(where b = v + O(1)).
We now obtain an analog of Lemma 8.3.1.

Proposition 8.3.1. Suppose that (8.12) holds for a point x. Then x has a Cauchy name f
such that C( f �n) ≤ log2 n + 2b + O(1).

Proof. Let h(n) = log2 n + d where the constant d is chosen so that h(n) ≥ C(n) for
each n. Now we follow the proof of Theorem 8.3.1(ii) with this definition of h. The
machines Lb and M are defined as before but based on a plain universal machine.
So they now become plain machines. �

This leads to a characterization of computable points via algorithmic informa-
tion theory.

Corollary 8.3.1. A point x is C-trivial iff it is computable.

Proof. The implication from right to left is clear. For the converse, adapting the
proof of Chaitin’s result in [80, Thm. 5.2.20(ii)] to functions shows that each function
f as in the foregoing proposition is computable. So x has a computable Cauchy
name. �

8.4 Preservation results and existence of K-trivial points

We apply our main result Theorem 8.3.1 in order to obtain information on K-trivial
points that is not at all obvious from the Definition 8.2.1. First we provide some
more background on computable metric spaces.

8.4.1 Computable maps, and equivalent computable structures

Definition 8.4.1. LetM,N be computable metric spaces. A map F : ⊆ M → N is
called computable if there is a Turing functional Φ such that for each x in the domain
of F and for every Cauchy name α for x, Φα is a Cauchy name for F(x).

Recall that a computable map F is called effectively uniformly continuous if there
is a computable function h : ω → ω such that for x, y ∈ M, d(x, y) ≤ 2−h(n) implies
d(F(x),F(y)) ≤ 2−n. (For instance, if F is Lipschitz with constant 2c, then F is
effectively uniformly continuous via h(n) = n + c.) We now show that for such F,
the Turing functional Φ above can be chosen to be a weak truth-table reduction;
that is, the use is computably bounded.
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Proposition 8.4.1. Suppose a computable map F is effectively uniformly continuous via
h. Then there is a Turing functional Φ as in Definition 8.4.1 such that for each α,n the use
of Φα(n) is bounded by h(n + 2) + 1.

Proof. Suppose F is computable via the Turing functional Φ̃. To define the functional
Φ, given a Cauchy name α for a point x, let α[n] denote the Cauchy name γ that
follows α up to h(n + 2) and then repeats, that is, γ(i) = α(i) for i < h(n + 2) and
γ(i) = α(h(n + 2)) for i ≥ h(n + 2). Let

Φα(n) = Φ̃α[n](n + 2).

Then h(n + 2) + 1 is a use bound as required. To show that β = Φα is a Cauchy
name for y = F(x), note that d(x, αh(n+2)) ≤ 2−h(n+2), and hence d(y,F(αh(n+2))) ≤ 2−(n+2).
Furthermore, since α[n] is a Cauchy name for α(h(n + 2)), we have d(F(αh(n+2)), βn) ≤
2−(n+2). Therefore

d(y, βn) ≤ d(y,F(αh(n+2))) + d(F(αh(n+2)), βn) ≤ 2−(n+1).

Therefore d(βs, βt) ≤ 2−s for t ≥ s, and β converges to y. �

Recall the following:

Definition 8.4.2. We say that computable structures (qi)i∈ω and (ri)i∈ω on a metric
space (M, d) are equivalent if the identity and its inverse are computable when the
identity is viewed as a mapM→N , whereM = (M, d, (qi)i∈ω) andN = (M, d, (ri)i∈ω).

For instance, if we apply a computable permutation to the special points, we
obtain an equivalent structure.

8.4.2 Preservation of K-triviality

The following generalizes the fact [79] that the class of K-trivial sets is closed
downward under Turing reducibility.

Proposition 8.4.2. LetM,N be computable metric spaces, and let the map F : M → N
be computable. If x is K-trivial inM, then F(x) is K-trivial inN .

Proof. Let α be a K-trivial Cauchy name for x. Since F is computable, there is a
Cauchy name β ≤T α for F(x). Then β is K-trivial by Proposition 8.1.1 and the result
of [79] that K-triviality for sets is closed downward under ≤T. �
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If F is effectively uniformly continuous, then one can also give a direct proof
which avoids the hard result from [79]. Moreover, from a K-triviality constant for
x one can effectively obtain a K-triviality constant for F(x), which is not true in the
general case.

To see this, note that, by Proposition 8.4.1, we have β = Φα for a Turing functional
Φ with use bounded by some computable function g. Then

K(β�n) ≤+ K(α�g(n)) ≤+ K(g(n)) ≤+ K(n).

The increase in constants is fixed, because it only depends on Φ and g.
Since the identity map is Lipschitz, we obtain that K-triviality in a computable

metric space is invariant under changing of the computable structure to an equiv-
alent one:

Corollary 8.4.1. Suppose a point x is K-trivial via b with respect to a computable structure
on a metric space. Then for any equivalent structure on the same space, x is K-trivial via
b + O(1).

In the previous chapter we showed that all computable structures on the unit
interval are equivalent (Fact 7.3.4). This means that K-triviality is intrinsic to the
unit interval as a metric space.

8.4.3 Existence of non-computable K-trivial points

A Polish (i.e., complete separable metric) space is said to be perfect if it has no
isolated points. In the following we take Cantor space {0, 1}ω as the computable
metric space with the usual computable structure.

Proposition 8.4.1. [11, Proposition 6.2] Suppose the computable Polish space M
is perfect. Then there is a computable injective map F : {0, 1}ω → M which is
Lipschitz with constant 1.

Theorem 8.4.1. LetM be a perfect computable Polish space. Then for every special point
p ∈M and every δ > 0 there exists a non-computable K-trivial point x such that d(x, p) ≤ δ.

Proof. We may assume δ ∈ Q. Note that {x : d(x, p) ≤ δ} with the inherited com-
putable structure is again a perfect computable metric space N . By the result of
Brattka and Gherardi there is a computable injective Lipschitz map F : {0, 1}ω →N .

Let A be a non-computable K-trivial point in Cantor space. Then x = F(A) is
K-trivial in N , and hence inM, by Proposition 8.4.2; actually only the easier case
of Lipschitz functions discussed after 8.4.2 is needed.
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As Brattka and Gherardi point out before Proposition 6.2, the inverse of F is
computable (on its domain). Thus, if x is computable then so is A, which is not the
case. �

8.4.4 K-trivial compact sets

Given a Polish space M, let K(M) denote the Polish space of compact subsets of
M with the Hausdorff distance (the maximum distance that a point in one set can
have from the other set). If M is a computable metric space then K(M) carries a
natural computable structure where the special points are the finite sets of special
points in M. Thus we have a notion of K-trivial compact sets.

If M is Cantor space {0, 1}ω, then the computable structure on K(M) is easily
seen to be equivalent in the sense of Definition 8.4.2 to the one where the special
points are the clopen sets. Barmpalias et al. [8] studied a notion of K-triviality for
compact subsets V in Cantor space. For instance, they built a non-empty K-trivial
Π0

1 class V without computable paths. We will show that their notion coincides
with ours.

They noted that the definition they gave originally is equivalent to requiring
that the subtree TV = {σ : [σ]∩V , ∅} of {0, 1}<ω is K-trivial. For the latter condition
it suffices to ask that K(TV[n]) ≤+ K(n) for each n, where TV[n] is (a suitable string
encoding of) the finite set {σ ∈ TV : |σ| = n}.

Fact 8.4.1. Let V ⊆ {0, 1}ω be closed. Then
V is a K-trivial point in K({0, 1}ω)⇔ TV is K-trivial as a set.

Proof. ⇐: Let Pn =
⋃
{[σ] : σ ∈ TV[n]}. Then the Pn are witnesses for dyadic K-

triviality of V according to Definition 8.2.2.
⇒: For each n let Pn be a clopen set such that d(Pn,V) < 2−n and K(Pn,n) ≤+ K(n).
Then for each string σ of length n we have [σ]∩V , ∅ ↔ [σ] ⊆ Pn. This shows that
TV is K-trivial. �
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