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Abstract. We present transformations of linearly ordered sets into or-
dered abelian groups and ordered fields. We study effective properties of
the transformations. In particular, we show that a linear order L has a
∆0

2 copy if and only if the corresponding ordered group (ordered field)
has a computable copy. We apply these codings to study the effective
categoricity of linear ordered groups and fields.
Key words: computable algebra, effective categoricity.

We study complexity of isomorphisms between computable copies of ordered
abelian groups and fields1. Recall that an ordered abelian group is one in which
the order is compatible with the additive group operation. Ordered fields are de-
fined in a similar manner. We say that an ordered abelian group A = (A; +,≤)
is computable if its domain A, the operation +, and the relation ≤ are com-
putable. Similarly, a field is computable if its domain and its basic operations
are computable. If A is computable and isomorphic to B, we say that A is a
computable copy (or equivalently, computable presentation) of B. We mention
that Malcev started a systematic study of computable abelian groups [18], and
Rabin initiated a systematic development of the theory of computable fields [22].

One of the main themes in the study of abstract mathematical structures
such as groups and fields is to find their isomorphism invariants. For instance,
in the case of countable abelian p-groups, Ulm invariants are well-studied (see
[26]). However, in the study of computable structures the isomorphism invari-
ants do not always reflect computability-theoretic properties of the underlying
structures. For instance, Malcev in [18] constructed computable abelian groups
G1 and G2 that are isomorphic but not computably isomorphic. In fact, in G1

the dependency relation is decidable, while in G2 it is not. Another example is
Khisamiev’s criterion obtained for computable abelian p-groups of small Ulm
length [13]. It is not clear how one can extend this result of Khisamaev to arbi-
trary Ulm length.

In the study of properties of computable structures, one can use different
types of transformation methods between the structures. The idea consists in
transforming a given class of computable structures into another class of com-
putable structures in such a way that certain desirable properties of structures

1 The author would like to thank his advisors Bakhadyr Khoussainov and Sergey S.
Goncharov for suggesting this topic. Many thanks to Andre Nies for his help in
writing the final version of the paper.
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in the first class are preserved under the transformation to the second class. Here
are some examples of this type. Hirschfeldt, Khoussainov, Shore and Slinko in [6]
interpret directed graphs in the classes of groups, integral domains, rings, and
partial orders. These transformations preserve degree spectra of relations and
computable isomorphisms types. Goncharov and Knight [12] provide a method
of transforming trees into p-groups to show that the isomorphism problem for
these groups is Σ1

1 -complete. Downey and Montalban [5] code trees into torsion-
free abelian groups to obtain the analogous result for the torsion-free case. For
more examples see [11]. In this paper we present transformations of linearly or-
dered sets into ordered abelian groups and ordered fields. We study effective
properties of these transformations. In particular, we prove the following result:

Theorem 1. There are transformations Φ and Ψ of the class of linear orders
into the classes of ordered abelian groups and ordered fields, respectively, such
that both Φ and Ψ preserve the isomorphism types. Moreover, a linear order L
has a ∆0

2 copy if and only if the corresponding ordered group Φ(L) (ordered field
Ψ(L)) has a computable copy.

As a consequence of this theorem and the results from [12], the isomorphism
problems for ordered abelian groups and ordered fields are Σ1

1 -complete.
The transformations Φ and Ψ are applied to investigate the complexity of

isomorphisms between computable copies of ordered abelian groups and fields.
We recall known concepts. A structure (e.g. group or field) is computably categor-
ical if there is a computable isomorphism between any two computable copies of
the structure. Computably categorical structures have been studied extensively.
There are results on computably categorical Boolean algebras [8] [16], linearly
ordered sets [23] [10], abelian p-groups [24] [9], torsion-free abelian groups [21],
trees [17], ordered abelian groups [7] and linearly ordered sets with function
symbol [4]. If a structure A is not computably categorical, then a natural ques-
tion is concerned with measuring the complexity of the isomorphisms between
computable copies of A. Here one uses computable ordinals. Let α be a com-
putable ordinal. A structure A is ∆0

α-categorical, if any two computable copies
of A are isomorphic via a ∆0

α function. In [19] McCoy studies ∆0
2-categorical

linear orders and Boolean algebras. In [1] Ash characterizes hyperarithmetical
categoricity of ordinals. In [17], for any given n > 0, a tree is constructed that is
∆0
n+1-categorical but not ∆0

n-categorical. Similar examples are built in the class
of abelian p-groups [3]. There are also examples of ∆0

n-categorical torsion-free
abelian groups for small n [20]. In this paper we apply the transformations Φ
and Ψ to construct ∆0

α-categorical ordered abelian groups and fields. We prove
the following theorem:

Theorem 2. Suppose α = δ+ 2n+ 1 is a computable ordinal, where δ is either
0 or a limit ordinal, and n ∈ ω. Then there is there is an ordered abelian group
(ordered field) which is ∆0

α-categorical but not ∆0
β-categorical, for any β < α.

Here is a brief summary of the rest of the paper. Section 1 provides some
necessary background and notation for ordered abelian groups. Sections 2 and 3
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prove Theorem 1 and Theorem 2 for the case of ordered abelian groups. Section
4 outlines both theorems for the case of ordered fields.

1 Basic concepts

We briefly introduce basic concepts of ordered abelian groups and computability.
Standard references are [25] for computability, [14] for the theory of ordered
groups, and [26] for abelian groups. We use + to denote the group operation,
0 for the neutral element, and −a for the inverse of a. We use notation na for
a+ . . .+ a︸ ︷︷ ︸
n times

, where n ∈ ω and a ∈ A. Note if n = 0 then na = 0. Therefore, every

abelian group is a Z-module. So one can define the notion of linear independence
(over Z). For more background on general linear algebra see [15].

Definition 3. Let X be a set. For x ∈ X, set Zx = 〈{nx : n ∈ Z},+〉, where
nx+mx = (n+m)x. The free abelian group over X is the group

⊕
x∈X Zx.

Thus, the free abelian group over X is isomorphic to the direct sum of
card(X) copies of Z. In this paper, when we write

∑
b∈Bmbb, where B is an

infinite subset of an abelian group and all mb’s are integers, we mean that the
set B0 = {b ∈ B : mb 6= 0} is finite. Thus,

∑
b∈Bmbb is just our notation for∑

b∈B0
mbb.

Recall that an ordered abelian group is a triple 〈G,+,≤〉, where (G,+) is
an abelian group and ≤ is a linear order on G such that for all a, b, c ∈ G the
condition a ≤ b implies a+ c ≤ b+ c.

If ϕ : A → B is a homomorphism of structures A and B, then we write aϕ
to denote the ϕ-image of a ∈ A in B, and we write Aϕ for the range of ϕ. Recall
that ϕ : A→ B is a homomorphism between ordered abelian groups A and B if
(1) (a+ b)ϕ = aϕ+ bϕ, and (2) a ≤ b implies aϕ ≤ bϕ for all a, b ∈ A.

If G1 = (A; +,≤) is a computable ordered abelian group isomorphic to G
then we say that G1 is a computable copy of G. As our groups are infinite and
countable, the domain A of G1 can always be assumed to be ω.

Recall that the arithmetical hierarchy [25] can be extended to the hyper-
arithmetical hierarchy [2] by iterating the Turing jump up to any computable
ordinal. We follow [2] in our notations for the hyperarithmetical hierarchy.

Definition 4. Let α be a computable ordinal. A structure A is ∆0
α-categorical

if there exists a ∆0
α-computable isomorphism between any two computable copies

of A. The structure is ∆0
α(X)-categorical if any two X-computable copies of A

have a ∆0
α(X) isomorphism between them.

2 Proof of Theorem 1 for ordered abelian groups

We define a transformation Φ of the class of linear orders into the class of ordered
abelian groups as follows.
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Definition 5 (Definition of Φ(L) and G(L)). Let L = 〈{li : i ∈ I},≤〉 be
a linear order. Let G(L) be the free abelian group defined over L and ordered
lexicographically with respect to L. More formally,

1. The domain of G(L) consists of formal finite sums mi1 li1 + mi2 li2 + . . . +
mik lik , where lij ∈ L, 0 6= mij ∈ Z and li1 > li2 > . . . > lik in L.

2. The operation + is defined coordinate-wise to make 〈G(L),+〉 free over L.
3. The order is defined by the positive cone as follows: mi1 li1 + mi2 li2 + . . . +

mik lik > 0, where L |= li1 > li2 > . . . > lik , iff mi1 > 0.

It is easy to check that the structure G(L) is an ordered abelian group. Now
define L? = L ∪ {?}, where the new element ? is the least element of order L?.
We set Φ(L) = G(L?).

The linear order L can clearly be identified with a subset of G(L) under the
mapping l → 1 · l. If i : L → Li is an isomorphism of linear orders then we say
that i : L→ Li ⊂ G(Li) is an L-embedding of L into G(Li).

Definition 6. For g ∈ G, where G is an ordered abelian group, the absolute
value of |g| is g if g ≥ 0, and −g otherwise. Two elements g, h ∈ G are
Archimedean equivalent, written g ∼ h, if there is an integer m > 0 such
that |mg| > |h| and |mh| > |g|. The equivalence classes of ∼ are called the
Archimedean classes of G.

The following lemma describes the Archimedean classes of G(L).

Lemma 7. Two nonzero elements g, h ∈ G(L) are Archimedean equivalent if
and only if they can be written as follows:

g = mj lj +
∑
li<lj

mili, h = nj lj +
∑
li<lj

nili,

where mj 6= 0 and nj 6= 0.

Proof. If there are such decompositions then g and h are Archimedean equiv-
alent. Now suppose g ∼ h. By the definition of G(L), every nonzero element a
of G(L) can be presented uniquely as a = mi1 li1 +mi2 li2 + . . .+mik lik , where
li1 > li2 > . . . > lik in L. Thus g = mj lj+

∑
li<lj

mili and h = nklk+
∑
lt<lk

ntlt.
Suppose lj 6= lk. Without loss of generality we may assume lj < lk. Then
|mg| < |h|, for all m ∈ Z+. This is a contradiction.

Definition 8. Let [a]∼ be the Archimedean equivalence class of a ∈ G = G(L).
Let L(G) = 〈{[a]∼ : a ∈ G, a 6= 0},�〉, where [a]∼ � [b]∼ if G |= |a| < |b| or
[a]∼ = [b]∼.

Proposition 9. The linear orders L0 and L1 are isomorphic if and only if the
ordered abelian groups G0 = G(L0) and G1 = G(L1) are isomorphic.

Proof. If L0
∼= L1 then clearly G0

∼= G1. Suppose L0 = 〈{νi : i ∈ I},≤〉. By
Lemma 7, L(G0) = 〈{[νi]∼ : i ∈ I},�〉 ∼= 〈{νi : i ∈ I},≤〉 = L0

∼= L(G1) ∼= L1.
Thus G0

∼= G1 implies L0
∼= L1.
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As a consequence of Proposition 9, Theorem 9 and ([12], Theorem 4.4 (d)), we
have the following:

Corollary 10. The isomorphism problem for ordered abelian groups is Σ1
1 -

complete.

Proposition 11. Let L be a 0′-computable linear order with least element. Then
there is a computable presentation H of G(L) and a 0′-computable L-embedding
i : L→ H.

Proof. Without loss of generality we assume that the domain of L is ω, and the
least element of L has ω-number 0. The diagram D0(L) of L is 0′-computable.
Thus its characteristic function is the limit of a computable function. At Step t
we define a finite approximation of D0(L) enumerating this computable function,
and we denote this approximation by Dt

0(L). We require that Dt
0(L) is consistent

with the axioms of finite linear order on elements {0, 1, . . . , t}. We denote this
linear order by Lt. At Step t, the procedure enumerates a finite part Dt

0(H) of
D0(H), the finite ordered semigroup Ht which is described by Dt

0(H), and a
finite map it : Lt → Ht.

The idea of the construction can be illustrated by the following example.
Suppose at Step t−1 we have Lt−1 = . . . lk < lk+1 < . . . and it−1 : Lt−1 → Ht−1.
At Step t we may have lk+1 < lk. In this case we declare it−1lk+1 to be equal to
Mtlk, where Mt is a big natural number. We will require the it-images of lj to be
positive in the group for every t. Therefore it−1lk+1 = Mtlkit−1 will preserve the
order, but will glue the Archimedean classes of these elements. Then we may add
new free generators to our group and redefine i. The existence of least element
makes the construction simpler.

Step 0. Set H0 = {0, a0}, L0 = {0}, D0
0(H) = {a0 > 0, 0+0 = 0}, D0

0(L) = ∅
and 0i0 = a0.

Suppose that Dt−1
0 (L), Lt−1, Dt−1

0 (G), Ht−1 and it−1 have been defined by
the previous stages. Then Step t proceeds as follows:

Step t. Perform at most t stages in approximation of D0(L) on {0, 1, . . . , t} ⊂
ω starting with Dt−1

0 (L), until getting an approximation Dt
0(L) that respects the

axioms of a linear order with the least element 0.
We say that n ∈ ω, n ≤ t − 1, is at the wrong place if there is k ∈ ω

such that (1.) ω |= k < n, and (2.) Dt−1
0 (L) ` n < k but Dt

0(L) ` k < n, or
Dt−1

0 (L) ` k < n but Dt
0(L) ` n < k.

Let Rt be the set of all numbers that are declared to be at the wrong place
at Step t. There is a disjoint partition Rt = Rt0 ∪ Rt1 ∪ . . . such that Rtj =
[rtj,1, . . . , r

t
j,h(t)] is an interval (with end-points, i.e. closed) in Lt−1, for every j.

By our hypothesis, L has least element 0 (evidently 0 6∈ Rt for all t). Therefore
the partition Rt = Rt0 ∪ Rt1 ∪ . . . can be chosen in such a way that for every j
there is a number ktj ∈ ω such that ktj /∈ Rt and Dt−1

0 (L) says that the successor
of ktj is in Rtj .

Let Mt be a natural number greater then any number we have ever used in
our procedure so far. For every Rtj = [rtj,1, . . . , r

t
j,h(t)] add to Dt−1

0 (H) formulas
corresponding to the following new equations:
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rtj,1it−1 = Mt ·ktjit−1, rtj,2it−1 = M2
t ·ktjit−1, . . . , rtj,h(t)it−1 = M

h(t)
t ·ktjit−1.

Let D(t) be Dt−1
0 (H) extended by this set of formulas.

For every k ∈ Rt and for k = t add a new element xk > 0 to Ht−1, and for
every k ≤ t set

kit =

{
kit−1, if n /∈ Rt and k 6= t,

xk, otherwise.

Extend the order on Ht−1 to (Rt ∪ {t})it. This new extended order must
meet the following requirements: (1) Ltit ∼= Lt (as linear orders) and (2) for all
k, s /∈ Rt, Dt−1

0 (G) ` kit−1 < sit−1 iff D(t) ` kit < sit. These are the only
restrictions on the extended order on new elements {xk}k∈Rt . Therefore we can
make these new elements look Archimedean independent of the all previously
defined elements. Thus, we can always find an extended order satisfying (1) and
(2). We can put xk between the previously defined Archimedean classes to make
sure that Ltit ∼= Lt. Requirement (2) will be satisfied automatically.

Set Ht = {
∑

0≤k≤t nk · (kit) : |nk| ≤ M t+1
t } and define + on this set using

the restriction: a, b ∈ Ht implies a+ b ∈ Ht, for all a, b. Then extend the linear
order on Ltit to the whole of Gt lexicographically. Set Dt

0(G) = D0(Ht).

Lemma 12. The map limt it = i : L −→ Li is a 0′-computable isomorphism of
linear orders.

Proof. For every k ∈ ω and every t0, kit0 = limt kit if and only if k /∈ Rt,
for all t ≥ t0. Indeed, kit 6= kit−1 if and only if k is declared to be at the
wrong place at Step t. But the diagram of L is 0′-computable, and the definition
of Rt uses the natural order of ω. By a simple inductive argument, limt kit
exists for all k. Thus i is 0′-computable. By the construction, Ltit ∼= Lt. By our
assumption, for all k, s ∈ L there is t0 such that k, s /∈ Rt, for all t ≥ t0. Thus
D0(L) ` s < k ⇔ Dt

0(L) ` s < k ⇔ Dt
0(H) ` sit < kit ⇔ D0(H) ` si < ki.

The output D0 = ∪tDt
0(H) of the procedure is a computable diagram of ordered

abelian group H = ∪tHt. Finally, by our construction and by Lemma 12, H ∼=
G(Li). This finishes the proof.

Now Theorem 1 follows from Propositions 9 and 11. Indeed, Φ(L) = G(L?),
L? has least element ?, L is X-computable if and only if L? is, and L? ∼= L?0 if
and only if L ∼= L0.

3 Proof of Theorem 2 for ordered abelian groups

In this section all groups are free lexicographically ordered abelian groups. So
let L be a linear order, and let i : L→ G = G(Li) be an L-embedding. Consider
the projection map π : G \ {0} → L defined by the following rule. If g ∈ G,
g 6= 0 and g = mj lj +

∑
li<lj

mili, then gπ = (mj lj +
∑
li<lj

mili)π = lj ∈ L.
Note that in this particular representation of g we list the corresponding free
generators in the decreasing order. This map has a number of useful properties.
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(1) liπ = l, for all l ∈ L.
(2) π induces a homomorphism of the linear order (G+,≤) onto L, where G+

is the cone of (strictly) positive elements.
(3) For all nonzero a, b ∈ G, a ∼ b if and only if aπ = bπ (see Lemma 7).
(4) Let τ : G \ {0} → L(G) be the canonical map with respect to ∼, i.e.

aτ = [a]∼ for all a ∈ G, a 6= 0. If γ : L(G) → L is an isomorphism such that
iτ = γ−1, then τγ = π (by (1)− (3) and the proof of Proposition 9).

Lemma 13. Let L and L0 be linear orders and let i : L→ G and i0 : L0 → H
be L- and L0-embeddings respectively. Also let π0 : H → L0 be the projection. If
ϕ : G → H is an isomorphism (of ordered abelian groups) then iϕπ0 : L → L0

is an isomorphism (of linear orders).

Proof. It is not hard to see that iϕπ0 is a homomorphism of linear orders. The
isomorphism ϕ preserves Archimedean equivalence, and every Archimedean class
in L(G) has exactly one representative xi for some x ∈ L. Thus every element
of L(H) has exactly one representative xiϕ for some x ∈ L. Therefore iϕτ0 :
L → L(H) is an isomorphism, where τ0 : G \ {0} → L(H) is the canonical
homomorphism, see (4) above. Thus, iϕτ0γ0 is an isomorphism of L onto L0,
where γ0 : L(H)→ L0 is an isomorphism such that i0τ0 = γ−10 . By property (4)
of projection maps applied to π0, iϕτ0γ0 = iϕπ0.

Now we turn to computable properties of the embedding described above.
Let G = G(L) be computable. By the proof of Proposition 9, L is isomorphic

to 〈G \ {0},≤〉/ ∼, where ∼ is the Archimedean equivalence. The relation ∼
is Σ0

1 , thus L has a Σ0
1 -presentation, and it is 0′-computable. There is a 0′-

computable set of representatives of L(G) in G. Recall that we identify L with
the set of free generators of G(L).

Proposition 14. Suppose G = G(L) is computable. Let S ⊂ G be a 0′-computable
set of representatives of L(G). There is a set of representatives C ⊂ G of L(G)
and a 0′′-computable bijective map β : S → C such that:

(1) s ∼ sβ, for all s ∈ S;
(2) there is an automorphism ψ of G such that Lψ = C, and lψ ∼ l for all

l ∈ L.

Proof. Consider the following 0′′-computable procedure, which builds the set C.
We will show later that this set satisfies the needed requirements. We will define
β later as well.

At Step 0 we set C0 = {l0}, for some l0 ∈ L. Suppose that Ct−1 has been
defined at Step (t-1). At Step t search for a finite family of elements C(t) such
that:

(1) c > 0, for all c ∈ C(t);
(2) c � c′, for all c 6= c′ such that c, c′ ∈ Ct−1 ∪ C(t);
(3) for every h ∈ G, every c ∈ C(t) and every integer k s.t. |k| > 1, h ∼ c

implies kh+ c ∼ c;
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(4) if g ∈ G is the element with ω-number t then g =
∑
c∈Ct−1∪C(t)mcc

(where mc is an integer, for every c).
Set Ct = Ct−1 ∪ C(t) and proceed to Step t+1.

Lemma 15. For every t, Step t halts.

Proof. If C(t) satisfies (3) and c ∈ C(t), then c = lj +
∑
li<lj

mili, for some

lj ∈ L. Indeed, if c = lj +
∑
li<lj

mili, then (3) holds, by Lemma 7. If c =

mj lj +
∑
li<lj

mili and |mj | > 1, then (3) fails for h = lj and k = −mj .

Thus, if Ct−1 has been defined then Ct−1 = {lj +
∑
i∈Kj

mili : j ∈ Jt−1},
where Jt−1 and all the Kj ’s are finite. The element g with ω-number t can be
written as g =

∑
k∈I(t) nklk, for some finite set I(t). If we set C(t) = {lk : k ∈

[I(t)∪
⋃
j∈Jt−1

Kj ]\Jt−1} then the requirements (1)−(4) will be satisfied. Thus,

there is at least one extension of Ct−1 which satisfies (1)− (4).

Let C =
⋃
t Ct. By Lemma 15 and requirement (4) of Step t, every element

of G can be written as
∑
c∈C mcc. This decomposition is unique because C

is linearly independent (by requirement (2)). Therefore, G (without order) is
isomorphic to the free abelian group over C.

Now suppose s ∈ S, s =
∑
c∈C mcc. By requirement (2) of the procedure and

Lemma 7, there is the unique cs ∈ C such that cs ∼ s. Let sβ = cs. This map is
0′′-computable.

For every lj ∈ L let ljψ = c, where c ∈ C and c ∼ lj (this element is
unique, as above). Then close ψ under + and − by setting (g− h)ψ = gψ− hψ.
It is not hard to see that ψ is bijective and preserves + and −. On the other
hand,

∑
j∈J nj lj = nj0 lj0 +

∑
lj<lj0

nj lj > 0 iff nj0 > 0. But (
∑
j∈J nj lj)ψ =∑

j∈J nj(lj +
∑
li<lj

mili) > 0 iff nj0 > 0. Thus ψ is an automorphism of G.

Proposition 16. Let L be a (countable) linear order with the least element and
let α > 2. Then L is ∆0

α(0′)-categorical if and only if G(L) is ∆0
α-categorical.

Proof. (⇒). Suppose G ∼= G0
∼= G(L). Consider the 0′-computable sets L

and L0 of representatives of L(G) and L(G0) respectively. Sets L and L0 with
corresponding induced orders are isomorphic to L (see Proposition 9). By our
assumption, there is a ∆0

α isomorphism ϕ : L → L0. By Proposition 14 there
are 0′′-computable bijective maps β : L → G(L) and β0 : L0 → G(L0) such that
G = G(Lβ) and G0 = G(L0β0). Thus β−1ϕβ0 : L → L0 can be extended to a
∆0
α isomorphism of G onto G0.

(⇐). Suppose that G(L) is ∆0
α-categorical. Let L0 and L1 be 0′-computable

copies of L. By Proposition 11, there are computable ordered abelian groups
G0
∼= G1

∼= G(L) and 0′-computable L0- and L1-embeddings i0 : L0 → G0 and
i1 : L1 → G1. By our assumption there is a ∆0

α isomorphism ϕ : G0 → G1. Let
π1 : G1 → L1 be a 0′-computable projection such that i1π1 = idL1 . By Lemma
13, the map i0ϕπ1 : G0 → G1 is a ∆0

α isomorphism.

The following result has already been mentioned:
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Theorem 17 (Ash, [1]). Let α be a computable ordinal. Suppose ωδ+n ≤ α <
ωδ+n+1, where δ is either 0 or a limit ordinal, and n ∈ ω. Then α is ∆0

δ+2n-
categorical and is not ∆0

β-categorical, for β < δ + 2n.

By Proposition 16 and relativized Theorem 17, G(ωδ+n) is ∆0
δ+2n+1-categorical

and is not ∆0
β-categorical, for β < δ + 2n+ 1. This proves Theorem 2.

4 Ordered fields

Let L = 〈{xi : i ∈ I},≤〉 be a (nonempty) linear order. Consider the ring of
polynomials Z[L] and the field of rational fractions Q(L) with the set L used as
the set of indeterminates. Informally, we will define an order on Q(L) such that
xi is infinitely large relative to xj if L |= xi > xj .

First, we order the set of monomials
∏
i x

εi
i lexicographically relative to L. We

illustrate this definition by the following examples. Suppose L |= x3 < x2 < x1.
Then x1x3 > x42x

3
3 since the first monomial has indeterminate x1 which is L-

greater then any indeterminate in the second monomial. We have x1x2 > x1x
3
3

since L |= x2 > x3. Finally, x1x
3
2 > x1x

2
2x3 because the L-greatest indeterminate

x2 in which these two monomials differ has power 3 in the first monomial, and 2
in the second. For any given p ∈ Z[L] we can find the largest monomial B(p) of
p relative to the order defined above. We denote by C(p) the integer coefficient
of B(p) and let p > 0 if C(p) > 0. Finally, p

q > 0 (q > 0) if and only if p > 0.

One can see that Q(L) with this order respects all the axioms of ordered fields
(see [15]).

Definition 18. Suppose L is a linear order. Recall L? = L ∪ {?} with least
element ?. Set Ψ(L) = Q(L?).

Definition 19. Let F be an ordered field. For any g ∈ F we define its absolute
value |g| to be g if g ≥ 0, and −g if g < 0. Two elements a and b of F are
Archimedean equivalent, written a ∼ b, if there is integer m > 0 such that
|am| > |b| and |bm| > |a|.

Suppose a ∈ Q(L). Let π(a) = xi where xi is the L-greatest element of L that

appears in the numerator of a. Say, π(
x3
1x2+x

2
1x3

x2x3−x3
) = x1, if L |= x1 > x2 > x3.

Note that for a, b > 1 and a, b � 1, a ∼ b if and only if π(a) = π(b). Denote
by Q1(L) the set of all elements of Q(L) which are greater than 1 and that are
not Archimedean equivalent to 1. Then (Q1(L)/ ∼) ∼= L. Therefore, we have
established the following

Proposition 20. Let L and L0 be linear orders. Then Q(L) ∼= Q(L0) if and
only if L ∼= L0.

The proofs of Theorems 1 and 2 for fields are similar to the proofs for ordered
groups. In the proof of Theorem 1 we declare xi = xMj (for a large number M) to
make xi ∼ xj . In the proof of Theorem 2 we need the same technical propositions.
In the proof of Proposition 14 for fields we use slightly modified requirements to
the extensions which respect the new definition of Archimedean equivalence.
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