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Abstract. We present a new construction of indecomposable type 0 abelian
groups of rank 2. We apply this new construction to study degree spectra of

such groups. As a corollary, we obtain a new computability-theoretic proof

showing that there exist continuum non-isomorphic type 0 indecomposable
abelian groups of rank 2.

1. Introduction

In this note, using basic concepts of computability theory, we present a new
method of constructing indecomposable abelian groups. Recall that a group is
indecomposable if it cannot be split into the direct sum of its two non-trivial sub-
groups. In the theory of abelian groups, constructing indecomposable groups has
always been an important topic. The earliest examples of indecomposable abelian
groups of rank 2 (to be defined) are due to Prüfer [Pru23], Levi [Lev19], and Pon-
tryagin [Pon34]. For more examples see, e.g., Kurosh [Kur37], Baer [Bae37], De
Croot [dG57], and Fuchs [Fuc57]; we also cite two very recent papers [AMMS14,
MS18].

Henceforth, all our groups are torsion-free, countable, and abelian. It is conve-
nient to view such groups as modules over the integers; then the (Prüfer) rank of a
group is the cardinality of its maximal linearly independent subset over Z. We will
usually also assume that the rank of an indecomposable group is at least 2 since
the case of rank 1 is trivial.

There is one special subclass of indecomposable groups which drew considerable
attention. These are groups which are “homogeneous of type 0”; to avoid a lengthy
introduction to Baer type theory, we just say that these are exactly the groups
such that all their rank 1 subgroups are infinite and cyclic. In what follows next
we usually suppress “homogeneous” and write simply “type 0”. The earliest and
easiest examples of indecomposable groups used infinite divisibility by primes, and
therefore were not type 0. For instance, it is not hard to show that the additive
subgroup of Q2 generated by {( 1

pn , 0), (0,
1
qn ), (

1
wn ,

1
wn ) : n ∈ ω}, where p, q, w are

distinct primes, is indecomposable. See the exercises 1-3 on page 127 of [Fuc73] for
more early examples of indecomposable groups using infinite divisibility, and for
the relevant bibliographic references.

More effort is needed to construct an indecomposable group (of rank > 1) while
keeping its type equal to 0. Examples of type 0 indecomposable groups are usually
built using somewhat indirect methods. For one such construction that uses alge-
braically independent p-adics over Q, see §88 of Chapter XIII in [Fuc73]. Further
examples with additional algebraic properties can be found in, e.g., [FL71]. A much
more direct proof is contained in [Pon34].
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One naturally seeks to analyse the computability-theoretic content of such con-
structions and estimate the complexity of the constructed groups. One of the stan-
dard invariants that reflect the computational content of a countable group (more
generally, a countable algebraic structure) A is its degree spectrum [Ric81]. We
recall that a computable presentation (a computable copy, a constructivization) of
an infinite countable group G is an isomorphic copy G′ of G such that the domain of
G′ is the set ω of all natural numbers and the group operation +′ of G′ is a Turing
computable function [Mal62, Rab60]. For a Turing degree a, define a-computable
presentation similarly. The degree spectrum of A is the set

DSp(A) = {a : A has an a-computable presentation}.
Much work has been done on degree spectra of groups and other structures; for
spectra of abelian groups see [Mel09, KKM13, Mel17, Dow97, CDS00]. If a class is
very restricted from the computability-theoretic perspective, then this is reflected
in the complexity of degree spectra that can be found in the class. The classical ex-
ample is that every low4 Boolean algebra is isomorphic to a computable one [KS00].

The class of type 0 indecomposable groups of rank 2 is seems very narrow in-
deed. Degree spectra of finite rank torsion-free abelian groups have been completely
described [CDS00, Mel09, CHS07]. But there are many more restrictions on the
class on top of having rank 2, so one might expect these restrictions to be reflected
in the possible degree spectra. It is easy to build computable type 0 rank 2 in-
decomposable groups1. Can we say more? The main result shows that, perhaps
unexpectedly, from the computability-theoretic perspective these groups are not
any simpler than just arbitrary finite rank torsion-free abelian groups.

Theorem 1. For every torsion-free abelian group G of finite rank there is a type
0 indecomposable group A of rank 2 such that DSp(G) = DSp(A).

We prove the theorem by effectively coding an infinite set into a group2. The
result can potentially be proven in many different ways, but we believe that the
construction that we give in our proof is new. It contains several fresh ideas that are
potentially more valuable than the result itself. One idea is that if the constructed
group was decomposable then it would be computable, but it is easy to see that
it is not. Perhaps, this approach can find applications in some situations when
algebraic arguments are less helpful. Also, to prove that the constructed group is
homogeneous we use the asymptotic speed of growth of the function k → pk (the
kth prime number); as far as we know, this idea is new as well.

The result has several immediate corollaries. For example, for any non-computable
Turing degree a there is a indecomposable type 0 group G of degree a:

{b : b computes a copy of G} = {b : b ≥ a}.
This is Corollary 1. Noting that our groups are not automorphically trivial [Kni86],
the upper cone is equal to the set of degrees of copies of the group. We also conclude

1For example, the group constructed on pages 384-385 of [Pon34] is evidently computable.

Since there exist computable (indeed, even automatic [BY17]) transcendental p-adic numbers, the
aforementioned construction in [Fuc73] can be performed computably as well.

2An expert in degree spectra will quickly recognize that another way to state the result is
that for every set S there is a group A in the class having spectrum {a : S is c.e. in a}. We
know that every torsion-free abelian group of finite rank has an enumeration degree in this sense

[Mel09, CHS07] (and thus the least jump degree [CDS00]; we omit the definition). Thus, it is
sufficient to code an arbitrary set of natural numbers in the ∃-diagram of the group A.
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that there is a indecomposable rank 2 group of type 0 without Turing degree. Since
there are continuum Turing degrees, we get a new computably-theoretic proof of
the following classical:

Theorem 2 (Theorem 88.4 of [Fuc73]). There exist continuum non-isomorphic
indecomposable type 0 groups of rank 2.

See Corollary 2 for more details.
Nothing beyond the basic definitions in algebra and computability theory (which

will be presented when necessary) is needed to understand the proof of Theorem 1.
A recursion theorist will perhaps appreciate our detailed proof of the theorem, but
of course, it could potentially be compressed. The methods and results of this paper
can surely be generalised to any finite rank. We keep this note short and leave the
generalisation to the reader.

2. Proof of Theorem 1

Proof. As discussed in the introduction, given any set S it is sufficient to produce
a group G such that G has an a-computable copy iff S is c.e. in a, and we can also
assume S ⊆ Z+ is not c.e. Fix an unbounded computable function φ : Z+ → Z+.
Let p1, p2, . . . be the listing of all primes in the usual increasing order. Assume
additionally that φ satisfies

(1) (∃k0) (∀k > k0) 0 < |t2 − φ(k)t1| < pk,

where t1, t2 ∈ Z are arbitrary such that at least one of them is not zero3.
Define the group GS,φ = (e1, xi : i ∈ S) ≦ Q2 = Qe1 ⊕ Qe2, where e1 and e2

are the standard unit vectors, and xi =
e1+φ(i)e2

pi
. Every element g of GS,φ can be

written as g = m1e1 +
∑

j∈J djxj , but this expression is not unique in general. It

is not difficult to see that the rank of this group is equal to 2 since e1 +φ(i)e2 and
e1 + φ(j)e2 are independent whenever φ(i) ̸= φ(j).

Lemma 1. GS,φ has an a-computable presentation if and only if S is c.e. in a.

Proof. If S is c.e. in a then the group clearly has an a-computable presentation since
φ is a computable function. For the other implication, note that the group GS,φ is
contained in the group [Z]PS

e1⊕ [Z]PS
e2, where PS = {pi : i ∈ S} and [Z]X stands

for the localisation of Z by X. In particular, when i /∈ S and pi ̸ |GCD(m,n), we
have me1+ne2

pi
/∈ [Z]PS

e1 ⊕ [Z]PS
e2 and, thus, mei+ne2

pi
/∈ GS,φ. On the other hand,

for any i ∈ S there exist m,n (more specifically, m = 1 and n = φ(i)) such that
mei+ne2

pi
∈ GS,φ. Now let H be a computable presentation of the group, and let

c1, c2 be isomorphic images of e1, e2, respectively. It follows that

S = {i : (∃m,n ∈ Z)(∃y ∈ H) [piy = mc1 + nc2 & pi ̸ |GCD(m,n)]},
which shows that S is computably enumerable in a. □

Write t(g) for the type of the least pure subgroup containing g. We will only use
the cases t(g) ̸= 0 and t(g) = 0, the former being the negation of the latter (which
was defined in the introduction). Our next goal is to show that the type of every
element in GS,φ is 0. We first need two simple lemmas. For an integer m and a
group-element x, we write m|x to express that m divides x in the group, that is,

3We could take φ to be, e.g., logarithmic or linear since the asymptotic speed of growth of
k → pk is nlog(n).
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my = x for some group element y. Recall that a subgroup A of G is pure [Fuc70]
if, for every a ∈ A and every integer m, m|a in G implies m|a in A.

Lemma 2. The subgroup generated by e2 is pure in GS,φ.

Proof. Suppose we have ng = ce2, for some n, c ∈ Z and g = m1e1 +
∑

j∈J djxj ∈
GS,φ. Then n(m1 +

∑
j∈J

dj

pj
) = 0, because {e1, e2} is a basis of GS,φ. Since all

these primes are distinct, this implies pj |dj , for all j ∈ J . On the other hand,

n
∑

j∈J
djφ(j)

pj
= c and thus c = n

∑
j∈J d′jφ(j) for some d′j ∈ Z witnessing n|ce2.

□

Lemma 3. If t(g) ̸= 0 for a nonzero g ∈ GS,φ then there is an infinite set of
primes P ⊆ PS = {pi : i ∈ S} such that p|g, for every p ∈ P .

Proof. First, we claim that GS,φ has no non-zero elements of infinite p-height, for
each fixed prime p. Recall that the p-height of an element x is the largest power h
of p such that ph|x. Every element g ∈ GS,φ can be viewed as an element of the
group Q2. If there is a non-zero element of an infinite p-height, then we would have
g
pn = r1e1+r2e2

pn = r1
pn e1 +

r2
pn e2 ∈ GS,φ, for all n. In particular, after finitely many

reductions we would have
r′1e1+r′2e2

p2 ∈ GS,φ, where the greatest common divisor of

the numerators of r′1 and r′2 is not divisible by p. (If both numerators of r1 and r2
were divisible by a power of p, say p3, then take n = 5.) But GS,φ is generated by
fractions that do not have p2 in their denominators, for any choice of p. Therefore,
if the set R = {p : p is prime and p|g} was finite then t(g) = 0 would hold.

Now assume P = R ∩ PS is finite, and therefore R \ PS is infinite. As above,
consider g = r1e1 + r2e2, and let U be the finite set of primes that divide both
numerators of r1 and r2. Since D = R \ PS is infinite, there must be a prime
q ∈ D \ U . For this prime we have,

r1e1 + r2e2
q

/∈ [Z]PS
e1 ⊕ [Z]PS

e2,

contradicting GS,φ ⊂ [Z]PS
e1 ⊕ [Z]PS

e2 which holds by construction. The contra-
diction shows that P = R ∩ PS must be infinite. □

Proposition 1. GS,φ is a homogeneous group of type 0.

Proof. Recall that φ satisfies (1). Suppose GS,φ is not homogeneous. Then, by
Lemma 3, for some non-zero g ∈ GS,φ there must exist arbitrarily large primes pk
such that pk|g and k ∈ S. Suppose this element is g = m1e1 +

∑
j∈J djxj ̸= 0. Let

t1, t2 ∈ Z be such that
∏

j∈J pjg = t1e1 + t2e2. Clearly, g ̸= 0 implies that at least

one of t1, t2 is not zero. For any pk /∈ J , pk|g if, and only if, pk|t1e1 + t2e2. (Note
that t1, t2 do not depend on k here.) If additionally k ∈ S then pk|(t1e1 + t2e2)

implies pk|t1e1 + t2e2 − pkt1xk. Recall that xk = e1+φ(k)e2
pk

, thus

t1e1 + t2e2 − pkt1xk = (t2 − φ(k)t1)e2

is divisible by pk in the group. By Lemma 2 we must have

t2 − φ(k)t1 = 0 mod pk.

By the choice of g, the index k ∈ S in the equation above can be chosen arbitrarily
large. But (1) says that there exists k0 such that t2 − φ(k)t1 ̸= 0 mod pk, for all
k > k0. This is a contradiction. □
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Finally, to finish the proof of the theorem, recall that S is not computably
enumerable. If GS = Gφ,S was non-trivially decomposable, GS = G1 ⊕ G2, then
each summand Gi would have to be a type 0 rank 1 group and, thus, would be
isomorphic to Z. However, G does not have a computable presentation by Lemma 1,
but the group Z ⊕ Z is clearly computable4. □

Corollary 1. For any Turing degree a > 0 there is an indecomposable type 0 group
G of Q2 having degree a.

Proof. Let A ∈ a. Apply Theorem 2 above with S = A⊕A. □

Corollary 2. There exist continuum many non-isomorphic indecomposable type 0
groups of rank 2.

Proof. Different choices of Turing degrees in the previous corollary will clearly give
non-isomorphic groups since their spectra are different. □
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