
Computable Structure Theory:
A Unified Approach

Rodney Downey and Alexander Melnikov

December 5, 2024

Contents

Preface vi

I Computable presentability and effective duality 1

1 Introduction 2
1.1 A motivating example: fields . 3
1.2 Computable structures and spaces . 6

1.2.1 Computable countable structures . 6
1.2.2 Computable separable spaces . 9
1.2.3 Effective dualities . 11

1.3 Conflicting terminology˚ . 12

2 Foundations 15
2.1 Elementary computability theory . 16

2.1.1 Codings and computable functions . 16
2.1.2 Computable and computably enumerable sets 18
2.1.3 Kleene’s Recursion Theorem . 20
2.1.4 Oracle computability and Turing degrees . 21
2.1.5 The arithmetic hierarchy . 24
2.1.6 Π0

1 classes . 24
2.2 Early effective algebra . 27

2.2.1 Examples of computable and non-computable groups 27
2.2.2 The Henkin construction is computable . 35
2.2.3 Computable vs. constructive ordinals . 38
2.2.4 Historical remarks˚ . 42

2.3 Computability for real functions . 45
2.3.1 The constructive approach to functions . 45
2.3.2 The uniform approach to computability . 48
2.3.3 Type I computability vs. Type II computability 51
2.3.4 Historical remarks˚ . 54

2.4 Computable separable structures . 56
2.4.1 The basic definitions . 56
2.4.2 Computable Polish groups . 57
2.4.3 Computable Banach spaces . 61

i

2.4.4 Exercises: Comparing presentations of spaces 69
2.4.5 Historical remarks˚ . 74

2.5 What’s next? . 75

3 Priority constructions and computable linear orders 76
3.1 Priority techniques . 77

3.1.1 The Limit Lemma and injury-free approximation 78
3.1.2 The finite extension method . 82
3.1.3 Post’s problem and the finite injury method 85
3.1.4 Low c.e. sets . 87
3.1.5 Using (semi-)lowness˚ . 89
3.1.6 Finite injury arguments of unbounded type 92
3.1.7 Constructions involving infinite injury . 94
3.1.8 Further reading˚ . 100

3.2 Computable linear orderings . 101
3.2.1 The basic definitions, revisited . 101
3.2.2 Injury-free approximation. Feiner’s Theorem 102
3.2.3 Finite extension method. Richter’s Theorem and the Frolov-Montalbán The-

orem . 104
3.2.4 Finite injury. Tennenbaum’s Theorem . 107
3.2.5 Unbounded finite injury. Computable categoricity 108
3.2.6 The Fellner-Watnick Theorem . 111
3.2.7 Low linear orders. The Jockusch-Soare Theorem 123
3.2.8 Further related results˚ . 125

3.3 What’s next? . 129

4 Boolean algebras and computable compactness 130
4.1 Computable Boolean algebras . 131

4.1.1 Countable Boolean algebras . 131
4.1.2 Effective presentations of Boolean algebras 141
4.1.3 Low Boolean algebras. The proof of Theorem A(2). 145
4.1.4 Superatomic Boolean algebras˚ . 146
4.1.5 Feiner’s Theorem. The proof of Theorem A(1) 147
4.1.6 Stone spaces and computable trees . 154
4.1.7 Rank 1 Boolean algebras˚ . 157
4.1.8 Further related results˚ . 159

4.2 Computably compact spaces . 160
4.2.1 Definitions . 160
4.2.2 Deciding the intersection . 167
4.2.3 Calculus of effectively closed sets . 171
4.2.4 Computable Stone duality. Proofs of Theorem B(1,2) 180
4.2.5 Computably categorical Stone spaces . 185
4.2.6 Recursive profinite groups . 190
4.2.7 Further related results˚ . 194

4.3 What’s next? . 196

ii

5 Computable abelian groups and Pontryagin duality 197
5.1 Computable torsion-free abelian groups . 198

5.1.1 Abelian groups . 198
5.1.2 Effective presentations of torsion-free abelian groups 204
5.1.3 Dobrica’s Theorem . 213
5.1.4 Khisamiev’s Theorem A(3) . 217
5.1.5 An application to categoricity˚ . 221
5.1.6 Some further remarks˚ . 223

5.2 Effective Pontryagin duality . 225
5.2.1 From discrete to compact . 225
5.2.2 From compact to discrete . 233
5.2.3 Effective dualities and the proof of Theorem B(3). 238
5.2.4 Further related results: comparing notions˚ 240

5.3 What’s next? . 242

II Computable classification 243

6 Introduction 244
6.1 Classification via computation . 245

6.1.1 The three main approaches used in the book 245
6.1.2 Other approaches . 248

6.2 The main results of Part II . 249

7 Classification theory 252
7.1 Calculus of index sets for structures and spaces . 253

7.1.1 Discrete countable structures . 253
7.1.2 Compact spaces and groups . 260
7.1.3 Index sets and Friedberg enumerations . 269

7.2 Completely decomposable groups . 271
7.2.1 Background, notation, and conventions . 272
7.2.2 S-independence and excellent S-bases . 274
7.2.3 ∆0

3-categoricity and the proof of Theorem 7.2.2 278
7.2.4 Semi-low sets, and ∆0

2-categoricity . 280
7.2.5 Arbitrary completely decomposable groups 288

7.3 Applications to index sets . 296
7.3.1 Completely decomposable groups . 296
7.3.2 Products of solenoids. Proof of Theorem C 297
7.3.3 Concluding remarks and further related results˚ 298

7.4 What’s next? . 299

8 Nonclassification theory 300
8.1 Foundations . 301

8.1.1 Definitions and notation . 301
8.1.2 Σ1

1- and Π1
1-complete sets . 302

8.1.3 Index sets of discrete structures . 307
8.1.4 Index sets of separable structures . 309

iii

8.2 Effective reductions between classes . 313
8.2.1 Effective transformations between structures 313
8.2.2 Simple codings . 315
8.2.3 Integral domains and 2-step nilpotent groups˚ 320
8.2.4 A Type I version of effective completeness . 322

8.3 Torsion-free abelian groups and their connected duals 328
8.3.1 The isomorphism problem for torsion-free abelian groups 328
8.3.2 Comparing integral homology and Čech cohomology 330
8.3.3 The FF -completeness of torsion-free abelian groups 331
8.3.4 Compact spaces. Proof of Theorem D . 338
8.3.5 Exercises about degree spectra . 339
8.3.6 Further related results . 342

8.4 What’s next? . 342

9 Enumerating structures without repetition 343
9.1 Equivalence structures and limitwise monotonic sets 344

9.1.1 Computable equivalence relations . 344
9.1.2 Beyond computable categoricity˚ . 349
9.1.3 Calculus of limitwise monotonic sets and functions 350

9.2 Enumerating equivalence structures . 354
9.2.1 Preliminary analysis . 354
9.2.2 The setup . 355
9.2.3 A single node in isolation . 356
9.2.4 Coordination between different τ . 358
9.2.5 Coordination with junk collectors . 358
9.2.6 Formal construction. 361
9.2.7 Verification . 363

9.3 Computable abelian p-groups . 367
9.3.1 Abelian p-groups basics . 367
9.3.2 Computable abelian p-groups of Ulm type 1 372
9.3.3 Groups of finite Ulm type ą 1 . 384

9.4 Enumerating abelian p-groups . 393
9.4.1 Plan of the proof . 393
9.4.2 The basic strategy . 395
9.4.3 Actions of the strategy for pF,E, zq . 398
9.4.4 The outcomes . 398
9.4.5 The description of E ÞÑ H . 399
9.4.6 The tree of strategies for Ulm type 1 groups 401
9.4.7 The junk collector . 402
9.4.8 Construction . 404
9.4.9 Verification . 405

9.5 Computable profinite abelian groups . 408
9.5.1 Background . 408
9.5.2 Effective Pontryagin duality: the profinite case 410
9.5.3 Enumerating pro-p groups (Theorem E). 411

9.6 Further related results˚ . 412

iv

9.7 What’s next? . 413

10 Computable categoricity and computable dimension 414
10.1 Relative computable categoricity for algebraic structures 415

10.1.1 Relative computable categoricity . 415
10.1.2 Uniform computable categoricity . 433
10.1.3 Relative ∆0

2-categoricity˚ . 437
10.1.4 Exercises: Calculus of computable infinitary formulae 441
10.1.5 Relativising computable categoricity to an oracle˚ 445
10.1.6 Exercises: Beyond computable categoricity 454

10.2 Computably isometric Polish spaces . 460
10.2.1 Isometric computable categoricity . 460
10.2.2 Relative isometric computable categoricity 461
10.2.3 A characterisation of relatively c.c. Polish spaces 463
10.2.4 Uniform computable categoricity for Polish spaces 468
10.2.5 Type II vs. Type I for isometric computable categoricity 469

10.3 Computable dimension . 477
10.3.1 An algebraic structure of computable dimension 2 477
10.3.2 Goncharov’s ∆0

2-Theorem for discrete structures 485
10.3.3 Goncharov’s ∆0

2-Theorem for Polish spaces 487
10.3.4 Proof of Theorem F . 494

10.4 Further related results˚ . 495

Bibliography 500

Index 530

v

Preface

It is striking that Turing’s fundamental paper [487], which proposed the modern model of compu-
tation, focused on processes involving real numbers. That is, this seminal paper did not concern
itself only with discrete problems coded by integers. Rather, it had continuous problems (such as
the calculation of integrals by better and better approximations) hand in hand with the Entschei-
dungsproblem, which is the problem of algorithmic decidability for first-order logic. Thus, at the
dawn of the theory of computation, there was no real distinction between the continuous and the
discrete.

However, subsequent events saw a divergence in the study of computational processes in these
two domains; the discrete and the analytic were somehow treated as being quite different. They
had their own communities with computability and complexity theorists in the case of the discrete,
and people concerned with computable analysis and effective topology in the analytic settings.

In recent years, it has become noticeable that the ideas in the two areas are re-converging.
Analytic structures, particularly those coded by dense sequences, share much in common with
countable computable discrete structures.

In this book, we present a unified theory of computably presented structures com-
bining both countable and separable uncountable structures.

Our main objects of study are computable algebraic and topological structures such as linear
orderings, graphs, Boolean algebras, groups, separable Banach and Polish spaces. The theories of
these computable algebraic structures and computably presented spaces are now well-established
and wide ranging. It is our belief that the theories of computable separable spaces and computable
discrete algebraic structures are very tightly connected, and no firm line can be drawn between
them. In the book, we present results and techniques that establish direct links between these
theories.

It is essentially impossible to cover all major topics of the theory in one book, so we will have
to be selective. The basic themes we address include the following:

(a) What does it mean for an infinite structure to be computable?

(b) How can we compare different (computable) presentations of a structure?

(c) Can we classify computably presentable structures in a given class?

As we will see, such questions are directly related to the problems that lie in the foundations of
mathematics:

vi

(i) Is it possible to show that a given problem is undecidable?

(ii) How do we measure the complexity of a problem?

(iii) Can we classify structures in a given class?

Note that Question (iii) does not seem to be related to computability at all. Nevertheless,
computable structures can sometimes provide insights into problems of this nature, as will be
explained in the second part of the book. Roughly speaking, the first half of the book addresses
Questions (a)-(c), and the second half is mainly devoted to (i) - (iii).

In the light of our unifying theme, we will be introducing techniques in context. So, for example,
when we introduce the finite injury priority method, we will more or less immediately show how it
works in the context of computable structure theory. Similarly when a technique is introduced in
either a discrete setting or an uncountable one, we will endeavour to also show how it resonates in
the other setting.

The text provides a unified introduction to computability theory, computable algebra, and
computable Polish space theory. Some topics, particularly those in computable abelian group
theory and effective topological group theory, are presented in detail for the first time.

We had to limit the scope of the book to keep its length reasonable. Nevertheless, we believe
that we have captured the major themes of development for the last few decades, at least from our
biased point of view. We have also given references for further reading when we felt that including
the material would have upset the cost/benefit ratio. In this spirit, throughout the book we have
starred material. If a section is labelled with a star, this means that it can be safely ignored, as
it is not essential to the rest of the book. Some further material will be included in the form of
exercises, some of which will be given with hints.

Notes on exercises: The exercises in this book range from material we believe is suitable for
self-guided students to material that is either not essential to the rest of the book, relies on topics
not covered in the book, or is genuinely difficult—often at the level of a significant research paper.
Sometimes we have added hints, but for many exercises, we have simply provided a reference,
especially if the result is readily accessible in a paper available online. Exercises we consider
particularly suitable for students are marked with ˝, those that are either not essential or rely on
external material are marked with ˚, and genuinely difficult ones are marked with ˚˚.

Acknowledgements: We are grateful to our colleagues Keng Meng Ng, Denis Hirschfeldt, Steffen
Lempp, Mars Yamaleev, D. Reed Solomon, Daniel Turetsky, Noam Greenberg, Mathieu Hoyrup,
Nikolay Bazhenov, Paul Shafer, Luca San Mauro, Maxim Zubkov, Ruslan Kornev, as well as to
our students Xavier Enright, Alibek Iskakov, and Sapir Ben-Shahar, who suggested many useful
corrections. Thanks to Matthew Askes and Brendan Harding who helped with the diagrams.

vii

Part I

Computable presentability and
effective duality

1

Chapter 1

Introduction
In the first part of the book, we investigate the problem of computable presentability for spaces and
algebraic structures. Much of the theory revolves around a few basic definitions of computability
that are tested and compared in various natural classes of mathematical structures. In the next
few sections we will meet the main players in this book, and also give some of the main motivating
themes. We will always bear in mind our central theme of unifying the countable and uncountable.

In Part 1 of the book, we focus on results that establish a direct connection be-
tween algorithmic procedures in countable algebra and topology through effective
dualities.

These effective dualities include the recently established computable Stone duality and com-
putable Pontryagin duality. In the first part of the book we use these effective dualities to transfer
several classical results from effective countable algebra (to appear as Theorem A) to the topological
setting. These effective topological results, to be stated in Theorem B, appear to be fundamental.
In the second part we will use these dualities to transfer classification-type results about countable
algebraic structures to the uncountable setting.

The plan of this introductory chapter is as follows:

1. Section 1.1 motivates the considerations of the first half of the book.

2. Section 1.2 contains the main definitions of the book, the statements of Theorems A and B,
and also states the effective dualities mentioned above.

3. In Section 1.3 we review conflicting terminology as presented in the literature.

2

1.1 A motivating example: fields

To motivate the considerations of our book, and especially the first half of it, we consider several
more specific questions and sample results that naturally arise in the class of countable fields. As
we also see, effective processes in uncountable structures also arise naturally and perhaps even
inevitably.

We adopt the Turing-Church Thesis that says that a process is algorithmically computable if
and only if under some appropriate coding it becomes computable by a Turing machine. If the
reader is not familiar with these concepts, they should rely on their intuition and wait until Section
2.1 where we give the precise definitions.

We first consider the questions analysed in a classic paper of Metakides and Nerode [384] who
studied the “effective content of field theory.” The following examples are drawn from this paper.
Matakides and Nerode analysed the extent to which the following classical results were effective
or algorithmic: Consider the well-known algebraic results for countable structures given below,
ignoring the * symbols.

I (Steinitz) Every * field has a * algebraic closure.

II (Steinitz) Every * algebraically closed field has a * transcendence base.

III (Steinitz) Any two * algebraic closures of a * field F differ by an * F -automorphism.

IV (Artin-Schreier) Any * formally real field can be * ordered.

V (Artin-Schreier) Any two * real closures of a * ordered field F differ by a * F -automorphism.

VI (Krull) Any * proper Galois extension F 1 of a * field F has a * F -automorphism other than
the identity.

If the ˚ symbols are removed, then these are classical results [15, 483, 319]. The question is:

To what extent are these theorems algorithmic? What is their effective, or algorithmic
content?

If we restrict ourselves to finite dimensional fields, then all of them are algorithmically true by
Kronecker [318] in the sense that from the finite input data, we can build the relevant object, for
example the transcendence basis in Steinitz (II). But what if we wish to consider arbitrary countably
infinite fields? For instance, in the result of Steinitz (I), can we construct an algebraic closure for
any countably infinite field? What do we even mean by this?

The point here is that classical computability theory was developed to answer questions like the
Entscheidungsproblem1 where algorithms take finite descriptions of instances to finite descriptions
of their solutions. For instance, for the Entscheidungsproblem, a positive solution would need to be
an algorithm A which takes as input a description (or a code) for a formula of predicate logic. This
formula will commonly be given by its (Gödel) number n P N, although any coding of the formula
into a number would suffice. The algorithm A on input n will say 1 or 0 as to whether or not the
corresponding formula is true.

However, for question such as whether we can construct an algebraic closure of a countably
infinite field, the input itself is infinite. To give this question meaning, we surely demand that the

1The decision problem for first order logic.

3

input data, here being an infinite field or an infinite group, be given algorithmically. Then we would
ask that from the algorithm giving the input data we produce an algorithm for the solution. In
particular, it would be natural to guess that the ˚ symbols in (I) - (VI) above can be replaced with
“computable” or “computably presented”. So now the effective version of Steinitz (I) might read:

Every computable field has a computable algebraic closure.

A computable field is a tuple pF, ¨,`,“,´1 , 0, 1q with F being a computable set, upon which
the field operations are computable functions with input and output in N. That is, we present
the data via algorithms and then seek solutions we can obtain from this data. Using this formal
notion of computable presentability, we can formally illustrate that for (I) the answer is “yes”, as
proven by Rabin [440] (see §2.2.2). Moreover, as we will see, this effectivisation can be obtained as
part of a general basic result in computable structure theory: a computable version of the Henkin
construction for predicate logic.

However sometimes the answer to the effective version is “no”, such as for (IV), as proven by
Ershov [157]: There is a computable real closed field with no computable ordering. Only (I) and
(V) hold computably: (I) by Rabin [440], and (V) by effectivising Artin’s proof in [15]. The others
are also false for computable fields: the effective version of (III) was proven to be false by Frölich
and Shepherdson [185], and the rest can be found in Metakides and Nerode [384].

In the case of a “no” answer, we are then led to further questions such as:

Given that there is a computable formally real field with no computable ordering, and
the classical theorem says that there is some ordering, how complicated must such an
ordering be? For instance, does it always have some relatively simple ordering? Can we
effectively describe the collection of all compatible orderings?

Metakides and Nerode [384] showed that for a computable formally real field, the space of
orderings can be computably described as a Π0

1 class (Exercise 4.2.62). Such a class can be thought
of as the collection of infinite paths through a computable binary tree; a Stone space. Then we can
appeal to the general theory of Π0

1 classes (see Subection 2.1.6) to conclude, for example, that for
each computable real closed field, there must be an ordering L of low Turing degree. The ordering
L being low means that although L is not necessarily computable, we have L1 ”T H

1. This means
that the halting problem for Turing machines with oracle L is not computationally harder than the
halting problem for machines without an oracle. These notions will be later explained in detail in
Section 2.1.6.

We could also address very similar questions in other classes of structures, such as groups. For
the class of abelian groups, the natural analogy of (IV) is:

IV˚ (Mal’cev, after Levi) Any * torsion-free abelian group can be * ordered.

Again we interpret * as “computable”. Can every computable torsion-free abelian group be com-
putably ordered? In its simplest form the answer to this question is “no”, as shown by Downey
and Kurtz [135]. This negative answer to this question can be easily derived as a consequence of
the general results and methods developed in Section 5.1 for the class of torsion-free abelian groups
(see Exercise 5.1.49).

The reader will note that such questions can also have other interpretations. Classically, we
regard objects as being the same if they are isomorphic, but for computable structures, an isomor-
phism type might have many computable presentations (computable copies) of the same structure.

4

If a certain construction or property is not algorithmic for an effective version of a field or a group,
is there another computable copy where the construction or property becomes algorithmic? We
arrive at the following variation:

IV˚˚ Any orderable * group is (classically) isomorphic to an * ordered group.

In other words, taking * to be the property of being computable, if G is a computable group which is
orderable (but not necessarily computably orderable), is G (classically, not computably) isomorphic
to a computable group with a computable ordering?

Darbinyan [107] has used an elaborate construction to show that the answer is “no” in general.
But in contrast with (IV˚), the answer to (IV˚˚) is “yes” if G is abelian (Exercise 5.1.55). The
abelian case follows easily from a seemingly unrelated Dobrica’s Theorem 5.1.37 about computable
torsion-free abelian groups with computable bases. Quite interestingly, perhaps the best way to
apply the result of Dobrica to (IV˚˚) is to use the natural order in the uncountable field of real
numbers.

The reader might note that we have only considered countable structures in our treatment of
(I)-(VI) above. However, uncountable objects (such as Π0

1 classes and the field of reals) naturally
occur when we study effective presentations of countable structures. Also, Galois correspondence
characterises effective algebraic field extensions in terms of “recursive” profinite groups which will be
discussed in §4.2.6. Thus even if we are only interested in countable algebra, we also invariably have
to deal with algorithmic processes in uncountable spaces. Additionally we might also be interested
in studying uncountable structures on their own. For example, can we ask similar questions about,
e.g., separable Banach spaces and Polish groups? Natural questions of this type arise in analysis.
For example, given a “computable” continuous function on r0, 1s which is bounded below, can we
compute a minimum point? Can we compute its Riemann integral? As with r0, 1s, for a wide class
of topological spaces there are natural countable descriptions of them given by a computable dense
subset. Generally speaking, most (but not all) natural separable spaces coming from the classical
literature have computable presentations in this sense.

Most of the connections made between the algorithmic questions in the countable and uncount-
able realms that we discussed earlier were primarily technical in nature. Uncountable objects may
appear as technical tools inside effective algebraic proofs, e.g., Π0

1 classes help to effectively linearly
order a countable formally real field. Conversely, there is also a large body of literature that ap-
plies the ideas and methods in computable countable algebra to uncountable spaces. For sample
results see [369, 360, 268]. These results should also be viewed as technical generalisations from the
countable to the separable uncountable case.

As we have stated earlier, in the first part of the book we develop a unified theory that es-
tablishes a direct connection between algorithmic procedures in countable algebra and topology
through effective dualities. These connections usually follow the principle: a countable structure
in a certain class is algorithmically presented if and only if its uncountable “dual” is effectively
presented. Furthermore, we will see that statements similar to the examples presented above some-
times remain true for weaker notions of algorithmic presentability, such as c.e. presentability and
even computability relative to the halting problem (which is the canonical example of an undecid-
able problem). Examples of such properties include the effective versions of Stone and Pontryagin
dualities established in the first part of the book.

Precisely calibrating the level of algorithmic effectiveness required for a classical fact to work
computably often necessitates the development of relatively sophisticated machinery, which may not

5

be directly related to the classical result at hand. Further, questions that arise in such studies may
have no direct analogues in the respective fields of topology or algebra. In the second part of the
book, we will see that such investigations lead to methods for addressing classical (non-algorithmic)
mathematical questions using algorithmic means. However, in the first part of the book, we will
focus on a thorough examination of the computable presentability of structures and spaces, as
well as the associated machinery. We will defer the applications of these methods to classification
problems until Part 2.

1.2 Computable structures and spaces

In this section we give several formal definitions that will be used throughout the book, and then
we state Theorem A and Theorem B that are central to Part 1.

1.2.1 Computable countable structures

We assume that the reader is familiar with the notion of an algebraic structure. We adopt the
Turing-Church Thesis, which states that a process is algorithmically computable if and only if,
under some appropriate coding, it becomes computable by a Turing machine. Our algorithms are
abstract in the sense that we do not impose any time or resource bounds on them. In other words,
if a procedure is intuitively computable, then it can be taken to be formally computable.

A set X of natural numbers is computably enumerable (c.e.) if its elements can be listed by an
algorithm, but the order in which its elements appear could be unpredictable or unnatural. A set
is computable if we can algorithmically decide membership x P X. It is clear that any finite set
is computable, and any computable set is c.e., but the converse fails in general. For example, the
halting problem is the standard example of a c.e. set that is not computable (Proposition 2.1.5). The
halting problem encodes the set of all programs (for the universal Turing machine) that eventually
halt their computation. (All these notions will be formally introduced and clarified in Section 2.1.)
No further background in computability theory is assumed in this section.

Computable and c.e. presentations

Rabin [440] and, independently, Mal’cev [345, 346] proposed the following notion of computability
for a countable algebraic structure. For simplicity, we restrict ourselves to structures with only
finitely many operations and relations.

Definition 1.2.1 (Rabin, Mal’cev). An algebraic structure A is computably presentable (or
constructivisable) if there exists an algebraic structure B isomorphic to A whose elements form
a computable set of natural numbers, and the operations and relations on B are computable
(as functions and relations on the natural numbers).

Such an isomorphic copy B upon natural numbers is usually called a computable presentation, a
computable (isomorphic) copy, or a constructivisation of A. The notion above is now widely accepted
as the standard “base” notion of computable presentability for countable algebraic structures. There

6

are notions stronger than the definition given above, e.g., primitive recursive, decidable, polynomial-
time, punctual, and automatic presentations. However, in many situations an algebraic structure
satisfies the following weaker condition.

Definition 1.2.2. An algebraic structure A is computably enumerably (c.e.) presented (Σ0
1-

presented, positively presented) if it is isomorphic to the factor of a computable structure by a
c.e. congruence.

A congruence is an equivalence relation that “respects” the operations of the structure. This
means that for any operation f , whenever xi – yi we have that fpx0, . . . , xnq – fpy0, . . . , ynq. For
now, assume our structure is an algebra with no relations on it. We postpone the case of relations
until §3.2.1. A standard example of a c.e. presented structure is the factor of a computable group G
by a computably enumerable normal subgroup H. Such presentations are quite common in group
theory, where they are (somewhat confusingly) called “recursive” in the literature; more about this
in Section 1.3.

Example 1.2.3. Let G be a group. A finite presentation of G is a tuple xx1, . . . , xn | y1, . . . , ymy
such that

G – xx1, . . . , xny{xy1, . . . , ymy,

where xx1, . . . , xny is the free group F generated by x1, . . . , xn, and xy1, . . . , ymy is the normal
subgroup of F generated by the “relations”

y1, . . . , ym P xx1, . . . , xny

upon the “generators” x1, . . . , xn. A finite presentation is evidently also a c.e. presentation of
the group. Famously, the “word problem” (i.e., the congruence modulo xy1, . . . , ymy) might be
undecidable in a finitely presented group ([51, 416]). It is not hard to see that such a G with
undecidable word problem cannot have a computable presentation; for a detailed explanation see
§2.2.1 (this is Theorem 2.2.10).

Thus, the two main notions of effective presentability defined above (being c.e. presented and
having a computable presentation) already differ up to isomorphism for finitely presented groups.
However, in some broad classes, every c.e. presented structure admits a computable presentation,
but this typically requires a non-trivial proof. There has been considerable research in this direction
for finitely generated groups; for instance, refer to the somewhat dated but excellent survey [390].

The book is dedicated to the study of structures that are not finitely generated and are often not
even countable. Examples of computably and c.e. presented structures will be given in Section 2.2.

Relativisation and low presentations

Suppose that we have a structure that has no computable presentation, such as a c.e. presented
structure. It still makes sense to try to understand what is the best way to present such structures,
possibly through effective approximations or perhaps using additional computational power. In
§3.1.1, we will show that these two ideas typically lead to equivalent definitions.

7

A common approach to this is through relativisation. Using oracle Turing machines, we can
relativise Definition 1.2.1 to an oracle X, where X is a non-computable set written on the extra
oracle tape of the machine computing a presentation of the structure. For example, since every
c.e. set is computable relative to the aforementioned halting problem, a c.e. presented structure is
computably presentable relative to the halting problem.

Perhaps the most interesting case is when X is, in some sense, close to being computable. We
define X to be low if the halting problem for machines with oracle X is computationally no harder
than the halting problem for machines without an oracle (see Section 2.1.6 for details). It is well
known that there are low sets that are not computable. Nevertheless, low sets are usually viewed
as being close to computable. Thus, when X is low, the definition below can be viewed as being
somewhat effective.

Definition 1.2.4. An algebraic structure A is X-computable if the domain, the operations,
and the relations on A are X-computable, i.e., computable by a Turing machine with oracle X.

Richter [451] was perhaps the first to systematically investigate X-computable structures. We
will look at some of Richter’s results in §3.2.3. In some instances, having a low presentation implies
that a structure also has a computable presentation. In other circumstances, such as graphs or
abelian groups, this fails to be true. Results asserting that low presentability implies computable
presentability are very rare. We mention that recently, Marker and Miller [349] showed that every
low differentially closed field has a computable presentation. Another well-known result will soon
be stated.

Separating the notions: Theorem A

Linear orderings, Boolean algebras, and abelian groups are important players in this book. Not
only are they excellent vehicles for displaying techniques, but understanding them also yields im-
portant results about Polish spaces. To illustrate the interplay of lowness, c.e. presentability, and
computability, we will give detailed proofs of the following.

Theorem A.

1. There is a c.e. presented Boolean algebra not isomorphic to any computable Boolean
algebra.

2. Every low Boolean algebra has a computable presentation.

3. Every c.e. presented torsion-free abelian group is isomorphic to a computable group.

We will define all terms used in Theorem A in due course. The first fact is due to Feiner [162, 161],
the second to Downey and Jockusch [129], and the third result was established by Khisamiev [288].
It takes one more observation on top of Theorem A to fully separate low, c.e. and computable
presentability; this will be explained in Section 2.2.1.

8

Of course, our exposition of the theory of computable structures will not be limited to these
well-known results, but the three facts stated above should be viewed as being central to the first
few chapters of the book, which are naturally restricted to countable structures. However, these
fundamental results about Boolean algebras and torsion-free abelian groups will find applications
in later chapters when we prove analogous results about Polish spaces.

1.2.2 Computable separable spaces

What happens when a structure is not countable? In his famous papers [487, 488], Turing introduced
the concept of a step-by-step computation for real numbers. Paraphrasing Turing, we have the
following notion.

Definition 1.2.5. A real ξ is:

- right-c.e. if tr P Q : ξ ă ru is computably enumerable (c.e.);

- left-c.e. if tr P Q : ξ ą ru is c.e.;

- computable if it is both left-c.e. and right-c.e.

Equivalently, a real ξ is computable if there is a computable procedure that, on input n, outputs
a rational number r (represented as a fraction) such that |ξ´ r| ă 2´n. This notion of effectiveness
essentially relies on the density of the rationals in R. In other words, R is “computable” in the sense
that it is the completion of a computable countable set, the rationals. Various authors extended
this idea beyond the reals to cover classical separable Banach spaces and, more generally, complete
separable metric spaces (also called Polish spaces). For instance, one of the fundamental notions
in the theory of computable structures considered in this book is the following definition. This
definition was essentially due to Ceitin [82] and independently to Moschovakis [405].

Definition 1.2.6. A presentation of a Polish space M is given by a sequence pxiqiPω and a
complete metric d such that pxiqiPω is dense in pM,dq. A presentation pxiqiPω is:

- right-c.e. if tr P Q : dpxi, xjq ă ru are c.e. uniformly in i, j;

- left-c.e. if tr P Q : dpxi, xjq ą ru are c.e. uniformly in i, j;

- computable if it is both left-c.e. and right-c.e.

The points xi are usually called special, rational, or ideal points.

In the definition above, “uniformly in i, j” means that there is an algorithm that, when given
i, j as inputs, produces a listing of the corresponding set of rationals represented as fractions. In
the present book, we are mostly focused on compact spaces and the metric spaces associated with
Banach spaces, so the metric d is always assumed to be complete. However, Definition 1.2.6 depends
on the notion of isomorphism that we use. For instance:

• If we view spaces up to isometry, then the metric d in Definition 1.2.6 is fixed.

9

• If we view spaces up to homeomorphism, then the metric d in Definition 1.2.6 is merely
compatible with the topology of the space.

We could also view spaces up to quasi-isometry, homotopy, linear isometry for Banach spaces,
topological isomorphism for Polish groups, and so on. We say that a Polish space is computable
(left-c.e., right-c.e.) if it has a computable (respectively left-c.e., right-c.e.) presentation, and we
usually emphasise whether we use homeomorphism or isometry as the notion of equivalence. When
spaces are viewed up to isometry, we may refer to computable Polish presentations of the space as
“computable structures” or “computability structures” on the space. This terminology, coined by
Pour-El and Richards [435], will be convenient in the last chapter of the book.

Natural examples of computable Polish spaces come from functional analysis and topological
algebra: see Section 2.4 for many examples. Similar to the situation in computable countable
algebra, in Polish groups and separable Banach spaces we usually additionally require the standard
operations to be computable in some sense. The difficulty is that the input of such an operation
is an infinite sequence rather than a single natural number. There are several possible ways to
address this issue; some approaches turn out to be equivalent, but some are not. We will give a
more in-depth analysis of the assorted approaches to defining computable continuous real-valued
functions in §2.3, and will provide a general definition for Polish spaces in §2.4.1. For the purpose
of the present section, we restrict ourselves to Polish spaces with no additional operators.

Computable compactness

In the first half of the book, we will be mainly concerned with compact Polish spaces and groups.
Compactness plays a central role in classical analysis and topology. In the words of Hewitt [249],

“A great many propositions of analysis are:

- trivial for finite sets;

- true and reasonably simple for infinite compact sets;

- either false or extremely difficult to prove for noncompact sets.”

Since we are concerned with algorithmic problems on effective structures, it is often desirable to
use an algorithmic form of compactness. The following notion was first explicitly defined by Mori,
Tsujii, and Yasugi [403], to the best of our knowledge.

Definition 1.2.7. A computable Polish space M is called computably compact if there exists
a computable function that, given n, outputs a finite cover of M by open balls of radii ă 2´n

that cover M .

The definition and the many equivalent forms of it will be further elaborated in the relevant
section. Of course, the definition is naturally restricted to compact Polish spaces. The notion can be
extended to locally compact spaces and to spaces that are not necessarily computable Polish, but we
will not include this in our discussion. Computably compact presentations are very common in the
modern literature; we cite the two recent surveys [270, 139]. The notion is furthermore exceptionally
robust; we will prove the equivalence of the definition above to several other definitions.

10

Separating the notions: Theorem B

The reader undoubtedly recognises that Definitions 1.2.6 and 1.2.7, along with their relativisations,
give rise to various notions of effective presentability for Polish spaces—some appearing more nat-
ural, while others seemingly more artificial. For example: right-c.e. effectively compact spaces, low
Polish spaces, and so on. It seems to us that the three most natural and commonly occurring
presentations of (compact) Polish spaces are:

computably compact
Ó

computable Polish
Ó

right-c.e. Polish

with the obvious implications denoted by the arrows above. In computable algebra, theorems
separating and comparing the various notions of presentability such as c.e. presentable, computably
presentable, and low structures are at least half a century old. Results of this kind are typically
viewed as fundamental results of the theory. Thus, the following question arises naturally:

Can we separate by counter-examples the three notions of computable presentability for compact
Polish spaces defined above?

If we view spaces up to isometry, the question above is easy; see Exercise 2.4.30 for a hint.
However, if we view spaces up to homeomorphism, the situation becomes much more complex,
especially if we want our examples to come from a reasonably natural class of compact spaces. This
is where computable algebraic techniques and results (and specifically Theorem A) will become
very useful. Indeed, every item of Theorem A will be used to prove some item in the second main
result of the first part of the book that separates the three main notions for spaces:

Theorem B.

1. There exists a right-c.e. Stone space not homeomorphic to any computable Polish space.

2. Every computable Stone space is homeomorphic to a computably compact space.

3. There exists a connected compact computable Polish space not homeomorphic to any
computably compact space.

In contrast with Theorem A, Theorem B is very recent: 1. has been proven in [35], 2. in [245], and
3. in [341]. A variety of techniques are necessary to give a complete and detailed proof of Theorem
B. The central tools will be several effective dualities, which we state in the next subsection.

1.2.3 Effective dualities

Theorem B will be derived from Theorem A using several dualities that we state below, but we
delay the definitions until the relevant sections.

11

1. A Boolean algebra B has a computable presentation iff its Stone space pB has a computable
Polish presentation (Theorems 4.2.79 and 4.2.80).

2. Same as above, but for computableB and computably compact pB (Theorems 4.2.78 and 4.2.80).

3. A Boolean algebra B has a c.e. presentation iff pB has a right-c.e. Polish presentation (Theo-
rem 4.2.81).

4. A torsion-free abelian group G has a computable presentation iff the connected compact
domain of its Pontryagin dual pG has a computably compact presentation (Theorem 5.2.1).

5. A torsion-free abelian q-divisible group G has a ∆0
2-presentation iff pG has a computable Polish

presentation (Theorem 5.2.25).

In some sense, these results are perhaps more interesting (or “useful”) than Theorem B itself. These
dualities provide a direct link between computable algebra and computable topology. The effective
dualities will be employed in the second part of the book to investigate classification problems in
natural classes of structures and spaces.

To establish these (and a few additional) effective dualities, we need first to build the foun-
dational machinery. This spans several classical topics, including priority techniques, methods of
computable linear orders and computable Boolean algebras, the calculus of computably compact
spaces, basics of computable abelian group theory, and even elements of algebraic topology. While
we will not delve too deeply into these topics, we will provide references to the relevant literature.

Additionally, we will incorporate a number of classical results that, although not directly con-
nected to Theorems A and B, fit well within the broader narrative of the book.

Part I consists of four chapters (excluding the introduction). The algebraic complexity of the
chapters increases “monotonically in their index”. We begin Part I with a discussion of computably
enumerable sets which can be viewed as structures in the empty signature, and we end Part I with
theorems about topological groups.

1.3 Conflicting terminology˚

Recall that throughout the book, sections and subsections marked with ˚ can be safely skipped.

There are several traditions in computable mathematics, to name a few: the Turing-Markov style
of computable analysis [1], Mal’cev’s school in Russia and Kazakhstan [159], the Weihrauch style
of computable analysis in Germany [505], the Ash-Knight tradition in computable algebra in the
USA and Australia [20, 401, 402], and computable Banach space theory in the style of Pour-El and
Richards [435]. We also mention the closely related topics of effective descriptive set theory [406],
classical combinatorial group theory [343, 390]. Because of the Cold War, some of these traditions
had been largely isolated from each other for many decades. As a result, each of these traditions
developed quite distinctive terminology and notation. In this short section, we will discuss some of
the related terminology from the literature.

The versions of the fundamental definitions developed by different traditions are either equivalent
or very closely related. On the other hand, the exact same term can also correspond to two (or
more) non-equivalent notions, and this can be highly confusing.

12

For example, “recursively presented groups” in combinatorial group theory are called “c.e. pre-
sented groups” in this book2. A “recursively presented group with solvable word problem” is just
a “computable group” in our terms. Unfortunately, “recursive” and “computable” are often used
synonymously in the literature, so the term “recursive group” could potentially mean two different
things. To make matters worse, the term “recursive group” can mean something entirely different in
the context of profinite groups; e.g., [473]. In view of all these, we shall avoid the use of “recursive”
throughout the book whenever possible.

Fröhlich and Shepherdson [185] used the term “explicit presentation,” which can be traced back
to van der Waerden. Rabin [440] abandoned this old-fashioned terminology and coined the notion of
a computable algebraic structure, which we adopt. Some sources also refer to computable structures
as computable (or recursive) models, typically in the context of the effective content of model theory
(e.g., [229, 388]). In this approach, operations on the structure are often replaced with relations
coding their graphs. It is then required that the atomic diagram (the collection of quantifier-free
formulae with parameters from the computable domain of the structure) forms a computable set.
This definition is, of course, equivalent to our definition of a computable structure, up to a change
of notation.

There has been a longstanding tradition in the former USSR to use explicit numberings of
computable structures. This approach was suggested by Mal’cev [345]. For example, a construc-
tivisation ν of a countable group pG, ¨q is a surjective map (a “numbering”) ν : ω Ñ G such that
tpm,nq : νpmq “ νpnqu is a computable set and νpmq ¨ νpnq “ νfpm,nq for some computable
f : ω2 Ñ ω. If we require that tpm,nq : νpmq “ νpnqu is merely computably enumerable, then we
have a “positive” numbering of G. It is not hard to see that a group is constructivisable if and
only if it is computably presentable. Similarly, it admits a positive numbering if and only if it is
c.e. presented. The term “constructivisation” is quite illustrative and appealing, but for the sake
of standardising terminology, we shall also avoid this term in the book.

Similarly, the German school of computable analysis [505] also makes codings explicit, calling
them representations. These are partial functions from Baire space to the objects being represented.
In our case, we will be dealing with separable spaces, and hence such representations will simply
be (fast) Cauchy sequences. Adding such explicit representations would only obfuscate matters for
the issues we are interested in.

In contrast with the above two frameworks, the modern Ash-Knight style computable algebra
uses a much more simplified notation. There, elements of a computable presentation (Defini-
tion 1.2.1) are natural numbers rather than names of elements in some “ideal” structure. A similar
approach, but in the context of separable metric spaces, is usually taken in effective descriptive set
theory (see e.g., p. 96 of [406]). There, a recursive presentation of a Polish space is a dense subset
pxiqiPω of the space so that the relations

P pi, j,m, nq if and only if dpxi, xjq ă
m

n` 1
;

Qpi, j,m, nq if and only if dpxi, xjq ď
m

n` 1

are computable relations. Our definition of a computable Polish space is equivalent to saying that P
and Q are merely computably enumerable relations. It is easy to construct a discrete computable

2Authors working in combinatorial group theory referred to these as recursive groups because they had a pre-
sentation of the form xx1, . . . , xn, . . . |r1, . . . , rm, . . . y. They noted that by using a padding trick, the c.e. sets of
relations tri | i P Nu could be replaced by a computable set of relations. For example, replace ri with x´s1 xs1r1, if ri
is enumerated at a stage s.

13

Polish space (in the sense of Definition 1.2.6) that is not isometric to any recursive Polish space; see
Exercise 2.4.31. In this book, we will be mainly looking at spaces up to homeomorphism, and it is
not hard to show that every computable Polish space is computably homeomorphic to a recursive
one; this is Exercise 2.4.33. As we noted above, we shall avoid the use of “recursive” throughout
the book, justified by Exercise 2.4.33.

14

Chapter 2

Foundations

In this chapter we lay the theoretical foundation of the theory and support it with a number of
examples and counter-examples. All results in this chapter are related to the fundamental problem
of computable presentability of a structure, a function, or a space. Most results discussed in this
chapter are historic and are not directly related to Theorems A and B (or to their proofs). The
main result of the chapter is as follows:

Theorem (Melnikov [369]). There is a computable presentation of the space pCr0, 1s, dsupq in
which the norm is computable, but the operation ` is not.

The theorem will re-appear as Theorem 2.4.20. The theorem and its consequences will be used in
the final Chapter 10 of the book. The plan for this chapter is as follows:

1. Section 2.1 contains the background in computability theory sufficient for understanding all
proofs later in this chapter.

2. Section 2.2 contains classical examples of computable and c.e. presented structures and his-
torical “naive” computable constructions in algebra and model theory.

3. Section 2.3 compares various classical definitions of computability for functions RÑ R. The
old theorems and notions discussed in Section 2.3 lie in the foundations of computable Polish
and Banach space theory, even though in this section we restrict ourselves to the real line.

4. In Section 2.4 we introduce the notions of a computable Banach space and a computable
Polish group, and we observe that these notions are equivalent for real Banach spaces. We
also compare the notion(s) to the definition of a computable Polish space, and give several
relatively non-trivial examples and counter-examples, including Theorem 2.4.20.

Deeper results will require more advanced techniques which will be developed in later chapters.

15

2.1 Elementary computability theory

We use N and ω interchangeably to denote the set of non-negative integers. Notations such as 2ω

for Cantor space, the collection of all infinite binary sequences, are standard in the literature.

2.1.1 Codings and computable functions

Our initial concern is with functions of the form A Ñ B where A,B Ď N; i.e. partial functions on
N. If A “ N then the function is called total. Looking only at N may seem rather restrictive. Later
we will be concerned with functions which take subsets of the rationals or subsets of 2ω as their
domains. From the point of view of classical computability theory, where resources and efficiency
don’t matter, the definitions naturally extend to such objects by coding. For example, if we consider
the rationals Q, these can be considered as coded in N as follows:

Let r P Q´t0u; write r “ p´1qδ
´

p
q

¯

with p, q P N in lowest terms and δ “ 0 or 1. Then

define the Gödel number of r, #prq, as 2δ3p5q, with the Gödel number of r “ 0 to be 0.

Then by the fundamental theorem of arithmetic, # describes an injection from Q into N and
furthermore given n P N we can decide exactly which r P Q, if any, has #prq “ n. Similarly if σ is
a finite binary string, say σ “ a1, a2, . . . an, then we can define

#pσq “ 2a1`13a2`1 . . . ppnq
an`1,

where pn denotes the n-th prime. There are a myriad of other codings possible. One could code the
string σ by representing it as the number 1σ so that the string 01001 would correspond to 101001.
The above procedures are called “effective coding” since they give an algorithm for the relevant
injection. The actual coding and the way we represent objects does not matter too much until we
look at structures arising from computable analysis, where more care is needed.

Another common coding we will use is to code pairs of natural numbers via a pairing function,
which is any computable injection from N2 Ñ N with computable range. The standard pairing
function is the function xn,my “ 1

2 pn`mqpn`m` 1q `m. This extends naturally to finite tuples
of natural numbers: xn,m, py “ xxn,my, py, and so on.

Convention 2.1.1. Henceforth, unless otherwise indicated, we will always regard the objects under
discussion as being effectively coded in some fixed way.

As we have already stated earlier, we adopt:

Church-Turing Thesis. The collection of algorithmic partial functions on the positive inte-
gers are exactly those that can be simulated by Turing machines.

An excellent discussion of the subtleties of the Church-Turing thesis can be found in Odifreddi
[421]. A typical use of the Church-Turing thesis might be as follows. Suppose we can explain,
in sufficient detail, a certain algorithmic process and convince ourselves that our procedure is
intuitively mechanical. Then the thesis implies that with sufficient effort (perhaps also with enough
motivation) one could design a set of instructions for a Turing machine that would be able to
compute the process. This is similar to designing a pseudo-code in computer science, or even just

16

explaining how one could design such a pseudo-code, and then claiming that it can actually be
implemented in the required programming language if necessary. Even though this thesis might
seem a bit too relaxed, it will allow us to compress most proofs tenfold if not more, thus allowing
the proof to focus on the mathematical ideas.

The following fundamental property of partial computable functions will be essential throughout
this book.

Property 2.1.2 (Enumeration Theorem: Existence of the Universal Turing Machine). There
is an algorithmic way of enumerating all the partial computable functions. That is, there is a
partial computable function fpe, xq of two variables such that

fpe, xq “ ϕepxq

where ϕepxq denotes the e-th partial computable function on input x.

The point of Property 2.1.2 is that we can pretend that we have all the machines ϕ1, ϕ2 . . . in
front of us; to compute 10 steps in the computation of the 3rd machine on input 20, we can pretend
to walk to the 3rd machine, put 20 on the tape and run it for 10 steps; we write this as ϕ3,10p20q.

Notation 2.1.3. Let ϕe be the e-th partial computable function. The standard notations for the
result of s steps in the computation of ϕe on input x are ϕe,spxq and ϕepxqrss.

We write ϕe,spxq Ó or ϕepxqrss Ó to indicate that the computation halts in at most s steps;
otherwise, we write ϕe,spxq Ò or ϕepxqrss Ò. The exact choice of notation will depend on the
context; however, we will usually avoid placing the stage as a superscript. More generally, we adopt
the following standard

Notation 2.1.4. If A is an object that we compute, effectively enumerate, or computably approx-
imate, then the result of s steps in this computation is typically denoted either As or Arss.

Given any partial computable function f , there are infinitely many different algorithms to
compute it. If ϕe is one such algorithm for computing f , we say that e is an index for f . We
also write fpxq Ó to denote that x is in the domain of f , and therefore the computation of any
algorithm computing f halts on input x.

In many ways, Property 2.1.2 is the platform that makes undecidability proofs work since it
allows us to carry out diagonalisation arguments within the class of partial computable functions.
For instance we remind the reader of the following basic result.

Proposition 2.1.5 (Unsolvability of the halting problem). There is no algorithm which given e, x
decides if ϕepxq Ó. That is, there is no algorithm that returns 1 if the e-th machine on input x halts,
and returns 0 otherwise.

The following result, called the s-m-n Theorem, is due to Kleene.

Theorem 2.1.6 (The s-m-n Theorem). Suppose that gpx, yq is a partial computable function of
two variables. Then there is a total computable spxq such that for all x, y,

ϕspxqpyq “ gpx, yq.

17

We omit the proof. The above also holds if x and y are tuples x0, . . . , xm and y0, . . . , yn, and
there is also a version of the theorem that works for indices of Turing functionals (to be defined).

A basic notion in computability theory is m-reducibility. We say that a set A is many-one
reducible, or simply m-reducible to another set B, written as A ďm B, if there is a computable
function f such that for every x, x P A iff fpxq P B. We write A ”m B iff A ďm B and B ďm A.
The relation ďm is a pre-ordering and the equivalence classes are called m-degrees. The idea is
that an instance of asking whether “x P A” can be effectively transformed into a instance of the
question “fpxq P B”, so B is at least as computationally complicated as A.

We let K0 “ txe, xy : ϕepxq Óu denote the set representing the halting problem. A different,
diagonal version of the set is K “ tx : ϕxpxq Óu. These two sets are the same up to m-degree as we
now show.

Fact 2.1.7. K ”m K0.

Proof. Clearly K ďm K0 since x P K iff xx, xy P K0. To see K0 ďm K, define a partial computable
function g such that for all p, z,

gpp, zq “

"

1 if ϕxpyq Ó and p “ xx, yy,
Ò otherwise.

Via the s-m-n Theorem, there is a total computable sppq such that for all p, z,

ϕsppqpzq “ gpp, zq.

Then xx, yy P K0 iff spxx, yyq P K.

2.1.2 Computable and computably enumerable sets

For the next definition which already appeared in the introduction, recall that the characteristic
function χA of a set A Ď ω is the total function so that χApxq “ 1 if x P A, and χApxq “ 0
otherwise.

Definition 2.1.8. A set A Ď ω is called

(i) computably enumerable (c.e) if A “ dom ϕe for some e, and

(ii) computable if the characteristic function of A is computable.

We will let We denote the e-th computably enumerable set. That is, we let We “ dom ϕe and
let We,s “ tx ď s |ϕe,spxq Óu constitute s steps in the enumeration of We. The name computably
enumerable comes from the notion of being ‘effectively countable’ via the following characterisation.
The proof is a straightforward exercise.

Proposition 2.1.9. An infinite set A is computably enumerable iff there is a (total) computable
injective function f with fpNq “ A.

18

Thus we can think of a computably enumerable set as an infinite listing of its elements that can
be produced by an effective procedure. Notice that the listing of a c.e. set is not required to be in
increasing order. Proposition 2.1.5 tells us that K ”m K0 are c.e. sets which are not computable.
Another classical result is:

Theorem 2.1.10 (Post [431]). A set A is computable iff both A and its complement are computably
enumerable.

Proof. To decide whether a given number x P A, simultaneously list both A and its complement
and wait to see where x appears first. Clearly, x must be listed in A or its complement after finitely
many steps. Here we appeal to the Church-Turing thesis to see that this decision procedure can
be computed by a Turing machine and A is therefore computable. Without it the proof would be
unnecessarily tedious.

For instance, it follows that the complement of the halting problem, K, is not c.e..

Suppose we are interested in some property of partial functions, such as being total, which is
independent of their implementation. The collection of indices of all partial functions having this
property forms an index set, as defined below.

Definition 2.1.11. An index set is a set A Ď N such that if x P A and ϕx “ ϕy, then y P A.

For example, the collection of all indices of total computable functions

Tot “ te : ϕe is totalu

is an index set, whereas the halting problem K “ te : ϕepeq Óu is not, as we demonstrate in the
next subsection. The s-m-n Theorem 2.1.6 can be used to prove the following classical result.

Theorem 2.1.12 (Rice’s Theorem [448]). An index set A is computable iff A “ N or A “ H.
Furthermore if A ‰ N and A ‰ H then either K ďm A or K ďm A.

Proof. The proof of Rice’s Theorem is very similar to the proof that K0 ď K. Let A ‰ N, H be an
index set and without loss of generality, assume that e P A where dom ϕe “ H. (If e P A instead,
we swap the roles of A and A).

Since A ‰ H, fix some z P A. Then for some q, ϕzpqq Ó. By the s-m-n Theorem, there is a
computable spxq such that, for all y P N,

ϕspxqpyq “

"

ϕzpyq if ϕxpxq Ó
Ò if ϕxpxq Ò

.

Then ϕxpxqÓ implies ϕspxq “ ϕz and so spxq P A, and ϕxpxqÒ implies ϕspxq “ ϕe and so spxq R A.
Thus K ďm A.

Of course many decision problems are not coded by index sets and so can have decidable solu-
tions. Rice’s Theorem says that any nontrivial problem which is given purely in terms of machine
descriptions cannot be decidable. Index sets will play a central role in the second half of the book.

19

2.1.3 Kleene’s Recursion Theorem

A fundamental result in classical computability is the Recursion Theorem. Its proof uses the s-m-n
Theorem 2.1.6 and allows us to use the index of the set we are building in a construction, as part
of the construction of that very same set. This apparent circularity is what causes the Recursion
Theorem to appear counter-intuitive, but does not actually cause a problem because our functions
can be partial (computable) in general.

Theorem 2.1.13 (Recursion Theorem; Kleene [298]). Suppose that f is a computable function.
Then we can compute (from an index of f) a number n (called a fixed point of f) such that

ϕn “ ϕfpnq and hence, Wn “Wfpnq.

Proof. First define d via the s-m-n Theorem 2.1.6 as ϕdpuqpzq equals ϕϕupuqpzq if ϕupuq Ó and
ϕdpuqpzq is otherwise undefined. By the s-m-n Theorem, d is total. Given an index for f , find an
index v such that

ϕv “ f ˝ d,

noting that ϕv is total as well. Now letting n “ dpvq, the following calculation

ϕn “ ϕdpvq “ ϕϕvpvq “ ϕfdpvq “ ϕfpnq

shows that n is a fixed point for f .

There are many variations on the Recursion Theorem. For example, if fpx, yq is computable,
then there is a computable function npyq such that, for all y,

ϕnpyq “ ϕfpnpyq,yq.

This result is usually called the Recursion Theorem with Parameters (Exercise 2.1.16). We now
give a very simple application of the Recursion Theorem.

Example 2.1.14. We show that K “ te : ϕepeq Óu is not an index set. (This fact also follows
from Rice’s Theorem 2.1.12.) By the s-m-n Theorem 2.1.6, let f be a computable function such
that ϕfpnqpnq Ó and ϕfpnqpzqÒ for all z ‰ n. Suppose that K is an index set. By the Recursion
Theorem 2.1.13, let n be a fixed point for f , so that ϕn “ ϕfpnq. Choose m ‰ n, another index for
ϕn. Then ϕnpnq Ó and hence n P K, and yet ϕmpmq Ò and m R K, a contradiction. Note that this
example also shows that there is a partial computable function ϕn that halts only upon its own
index.

Exercises

Exercise˝ 2.1.15. Show that if g is a computable function there exists an index n such that
Wn “ t0, . . . , gpnqu.

20

Exercise˝ 2.1.16 (Recursion Theorem with Parameters; Kleene [298]). Suppose fpx, yq is a com-
putable function, then there is a computable function npyq such that, for all y,

ϕnpyq “ ϕfpnpyq,yq.

Exercise 2.1.17 (Double Recursion Theorem; Muchnik [410], Smullyan [475]). If f and g are
computable functions of two variables, there exist a, b such that ϕa “ ϕfpa,bq and ϕb “ ϕgpa,bq.

2.1.4 Oracle computability and Turing degrees

As we have seen, the key idea used in the proof of Rice’s Theorem 2.1.12 is that of reducibility.
Recall that the reduction used in Rice’s Theorem 2.1.12 is called an m-reduction, which is the
simplest reduction. More specifically, A ďm B if there is a computable function f such that x P A
iff fpxq P B. If f is 1-1, then we might emphasise the special nature of the m-reduction by writing
A ď1 B. This is called a 1-reduction. Of course, there is no reason why we should restrict ourselves
and ask the “oracle” B only one question in order to decide if x P A. What about finitely many
queries, perhaps bounded in some computable way dependent on the input x? This idea of more
a general oracle access was introduced in another classic paper of Turing [490]. In other words, we
can regard one problem B as being at least as hard as another problem A, by attaching to our
computer an infinite read-only memory tape that contains B. Following Turing [490], we formalise
this idea as follows.

We can extend the notion of a Turing machine to one with an extra read-only tape with infinitely
many cells. We call such Turing machines oracle Turing machines. We can regard a normal machine
as an oracle machine which never reads the extra oracle tape. The extra oracle tape can contain
an infinite sequence; this sequence can be identified with (the characteristic function of) a set B.
That is, B can be viewed as a function with range t0, 1u, and Bpxq “ 1 iff x P B. Of course, each
such function can also be viewed as an infinite string of 0-s and 1-s, with the n-th position being 1
iff Bpnq “ 1. In the same way that we could enumerate all partial computable functions, we also
get:

Proposition 2.1.18 (Turing [490]). There is a uniformly computable enumeration of all oracle
Turing machines tΦe : e P Nu.

We may identify ΦHe with ϕe.

Notation 2.1.19. We write ΦBe pnq or ΦepB;nq to denote the computation of the machine Ψe

with B stored in the oracle tape and performed with input n.

Then ΦBe,spnq or Φe,spB;nq denote the result of this computation after s steps (if there is any).
The other standard, related, but not always equivalent notations in the literature are ΦepB;nqrss
and ΦBe pnqrss, but these notations we will usually avoid. For example, if B is computably enu-
merable and Bs is the part of B listed by stage s, then ΦepB;nqrss should likely be interpreted as
Φe,spBs;nq rather than Φe,spB;nq, unless otherwise specified.

Since we identify a set A with its characteristic function, an oracle machine Φe can be viewed
as a functional that maps (partial) characteristic functions to (partial) characteristic functions:

B ÞÑ ΦBe ,

21

where both sides are viewed as functions. Having this interpretation in mind, we write ΦepBq to
mean pΦBe pnqqnPN. We will use this notation even when Φe is partial, in which case it maps partial
functions to partial functions. We thus refer to oracle machines as Turing operators or Turing
functionals to emphasise that we are interested in the fact that the operators act on sets (as opposed
to acting on numbers).

Definition 2.1.20 (Turing Reduction [490]). We say that A is Turing reducible to B, written
A ďT B, if A “ ΦBe for some e P N. That is, we can compute A using an oracle Turing machine
with an oracle for B.

We stress that there is no limit on the number of queries that can be used in a computation,
only that it is finite. Thus, ďm is a simple variation of Turing reduction as only one question is
asked by an m-reduction on each input x. We also adopt:

The Relativised Church-Turing Thesis: The partial functions that are algorithmically
computable relative to B are exactly those that are computable by a Turing machine that has
B stored in its oracle tape.

We write A ”T B to mean that A ďT B and B ďT A. This gives rise to an equivalence
relation, and the equivalence classes under ”T are of the form deg(A)“ tB : B ”T Au. The
equivalence classes encode the notion of “equicomputability” and are called Turing degrees, degrees
of unsolvability, or simply degrees throughout the rest of this chapter and the majority of the book
(unless specifically stated otherwise).

We always use boldface letters for degrees. We let 0 denote the degree of the computable sets.
If a degree contains a computably enumerable set, we will call it a computably enumerable degree.
Note that not every set in a c.e. degree is computably enumerable; for instance we have K ”T K
but K is not c.e.. Additionally, we will often mix notation by writing, for example, A ďT a, for a
set A and a degree a.

The use principle

Suppose ΦpA; xq Ó. Let upΦpA; xqq denote the use of this computation. Formally, upΦpA; xqq at
stage s is equal to

1`maxyďstApyq is used by s stages of the computation ΦpA; xqu,

if this maximum exists, and 0 otherwise. The extra 1 is only to make the notation A æ upΦpA; xqq
mean “the longest initial segment of A used in the computation of ΦpA; xq”, where A æ n “
A X t0, 1, . . . , n ´ 1u. If our notation gets a bit mixed up, this intended interpretation of the use
should be prioritised over the formal details. Also, note that no parameter of the computation
at stage s can be larger than s, so maxyďs can be safely replaced with maxy in the definition of
upΦpA; xqq. Also, there is a slight ambiguity in the interpretation of “s stages of the computation”,
i.e., of ΦpA; xqrss. If A “ YsAs is c.e. and is being listed, this will typically be interpreted as
ΦspAs; xq. If A is written on the oracle tape all at once in advance, then s in As should be
dropped. The intended interpretation will always be clear from the context. We identify sets with
their characteristic functions, and we further identify characteristic functions with strings of 0-s
and 1-s. For a finite string τ , Φpτ ;nq Ó usually (implicitly) assumes that the use of the computation
does not exceed the length of τ .

22

Lemma 2.1.21 (Use principle). Suppose ΦpA; xq Ó and let u “ upΦpA; xqq. Let B be any set such
that B æ u “ A æ u. Then ΦpA; xq “ ΦpB; xq.

Proof. Both A and B give the same answers to the oracle membership questions in the computa-
tions, hence the result must be the same.

The use principle implies that Turing operators are continuous maps 2ω Ñ 2ω. We will use this
observation extensively throughout the book.

The jump operator

Many notions we have seen so far can be relativised to an oracle. In particular, if A ďT B we say
A is computable relative to B, or B-computable. A B-computably enumerable set is defined to be
the domain of a partial B-computable function, and so on. Many notions and results can also be
relativised to any set B by replacing “computable” with “B-computable” throughout. For instance,
the following is the relativised version of the halting problem.

Definition 2.1.22 (Jump Operator). For any set A we define KA to be the halting problem for
machines with oracle A:

KA “ te : ΦAe peq Óu.

The set KA is also denoted A1 and is called the jump of A.

Since we can identify ΦHe with ϕe, we may assume that H1 “ K. Notice that KA is c.e. relative
to A. If the degree of A is a then we write a1 for deg(A1). Note that a1 makes sense since A ”T B
implies A1 ”T B

1. In fact, A ”T B implies A1 ”1 B
1; this is Exercise 2.1.26.

Notation 2.1.23. Noting the above equivalences, we will frequently identify Kpn´1q with Hpnq,
for any n ě 1.

By relativising Proposition 2.1.5, we have B ăT B1 for all B. Consequently we can define a
hierarchy of degrees

0,01,02, . . . ,0pnq,

This hierarchy is does not collapse and is closely related to the arithmetic hierarchy that we discuss
next. It can also be continued beyond ω iterations of the jump to form a transfinite hierarchy; we
will discuss it in later chapters.

Note that it does not follow from the definition that 0 ă a implies 01 ă a1 (though of course
0 ď a does imply 01 ď a1). The following notion was already mentioned earlier; e.g., see Theorem
A.

Definition 2.1.24. A degree a is low if a1 “ 01, and a set is low if its degree is low.

In the next chapter we will show that there exist low non-computable c.e. sets (Theorem 3.1.1).
Low degrees are usually thought of as being somewhat close to 0; this can be made formal using
the lown hierarchy that we shall not define here.

Exercises

Exercise˝ 2.1.25. Prove that B is c.e. relative to A iff B ď1 A
1.

Exercise˝ 2.1.26. Prove that if A ďT B then A1 ď1 B
1.

23

2.1.5 The arithmetic hierarchy

In this chapter we need only the definition and a few basic facts about the arithmetical hierarchy.
More about the hierarchy will be explained later. An n-ary relation is a set of tuples in Nn. We
define the classes Σ0

n, Π0
n, and ∆0

n as follows. A set B is Σ0
n if there is a computable relation

Rpx1, . . . , xn, xq with x P B iff

Dx1 @x2 D . . . Qnxn
looooooooooomooooooooooon

n´1 alternations of quantifiers

Rpx1, . . . , xn, xq holds,

where Qn is either @ or D depending on whether n is odd or even.
A set B is Π0

n iff B is Σ0
n. This means that a Π0

n set has a similar syntactical representation
as above except we now have the leading quantifier @ followed by n´ 1 alternations of quantifiers.
Note that we can always collapse two quantifiers of the form Dx1 Dx2 into a single Dx3 quantifier
using the pairing function, which is why it makes sense to count only the number of alternations of
quantifiers. Finally we say a set R is ∆0

n if it is both Σ0
n and Π0

n.

Theorem 2.1.27 (Kleene [299]). A set A is computably enumerable iff A is Σ0
1.

Proof. Suppose A is computably enumerable. Then A “ dom ϕx for some x, and y P A iff
pDsqpϕsxpyq Óq, noting that the predicate “ϕsxpyq Ó” is computable given x, y, s. Conversely, if A
is Σ0

1 then for some computable R we have y P A iff pDzqpRpz, yqq. Define a partial computable
function g by setting gpyq “ 0 if we can find some number z such that Rpz, yq holds, and gpyq Ò
otherwise. Then A “ dom g.

By Theorem 2.1.10, ∆0
1 “ Σ0

1 XΠ0
1 consists of exactly the computable sets. It also follows from

the undecidability of K that K P Σ0
1z∆

0
1 and its complement K P Π0

1z∆
0
1. We get the arithmetical

hierarchy of Kleene:

∆0
1 ∆0

2 ∆0
3 . . .

Σ0
1 Σ0

2

Π0
1 Π0

2

�
�

�
�

@
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�

Here lines mean inclusion (rightward along the page). In Section 3.1.1, we establish all the
inclusions and show that they are all proper. For instance, we will show that 0pnq P Σ0

nz∆
0
n.

However we will not need these facts in this chapter.

2.1.6 Π0
1 classes

We write 2ăω to denote the set of all finite strings (tuples) of zeros and ones. It can be identified
with the complete binary tree. Note that each infinite path through 2ăω is a (characteristic function
of a) set. Every such infinite path is naturally an element of 2ω.

A computable subtree of 2ăω is a computable collection S of strings of zeros and ones closed
under initial segments. Then P P 2ω is a path through S if for all of its finite initial segments σ
(written σ ă P) we have σ P S. We denote by rSs the collection of paths through S.

24

Definition 2.1.28 (Π0
1 class). A (binary) Π0

1 class C Ď 2ω is a collection of infinite paths through
a computable subtree of 2ăω.

An equivalent formulation is that C is a Π0
1 class iff there is a computable relation R on finite

strings such that
C “ tα P 2ω : @nRpα æ nqu.

We remark that a more general definition of a computably bounded Π0
1 class replaces 2ω with

a finitely and computably branching tree, meaning that at level n there are fpnq many nodes for
a computable function f . It is not difficult to show that for such a tree T and Π0

1 class C defined
on T , there is a Π0

1 class Ĉ defined on 2ω such that the members of C are in computable 1-1
correspondence with those of Ĉ, and have the same many-one degrees. (See Excercise 2.1.31.)

If there in no computable bound on the level n branching then the theory of such Π0
1 classes

is quite different. For example, every path might code H1, whereas later we will show that a
computably bounded Π0

1 class always has a member of low Turing degree. We will usually say
“Π0

1-class” when we actually mean computably bounded Π0
1 class, unless otherwise specified.

In this chapter we will only need the following well-known result. (More results will be presented
in §4.2.3.) In some sense, the class constructed below is as far from being decidable as possible.

Theorem 2.1.29. There exists a non-empty Π0
1 class with no computable paths.

Proof. Let A and B be disjoint c.e. sets. The the collection of separating sets P “ tX : X Ě

A and XXB “ Hu is a non-empty Π0
1 class. Such a class of sets separating disjoint c.e. sets is called

a separating class. A pair of c.e. sets A and B is effectively inseparable if there is no computable set
C, such that C Ě A and C Ě B. To prove the theorem it is sufficient to come up with an effectively
inseparable pair of c.e. sets. For example, by the proof of the incompleteness theorem, for Peano
Arithmetic (PA), the c.e. sets of (Gödel codes for) provable formulae A “ t#ψ : PA $ ψu and
B “ t#ψ : PA $ ψu form an effectively inseparable pair. (For a more straightforward example,
consider A “ te : ϕep0q “ 0u and B “ te : ϕep0q “ 1u.)

Exercises

Exercise˝ 2.1.30 (Folklore).

1. Show that, for every Π0
2 predicate @xDyRpx, y, zq where R is computable, we can uniformly

replace R with a computable predicate P so that for all z,

@xDyRpx, y, zq if and only if D8wP pw, zq,

where D8 stands for “there exists infinitely many”.

2. Same as above, but now uniformly replace P with an R.

3. In the notation above, prove that D8wP pw, zq if and only if Dă8wP pw, zq, where Dă8 stands
for “there exists at most finitely many”. (Note the negation is not applied to P .)

25

4. Iterate (1) and (3) to uniformly derive a general form of any Π0
n-predicate in terms of only

D8-quantifiers and at most one @-quantifier over a computable predicate.

5. Show that the naive analogue of (4) in terms of D and Dă8 fails for Σ0
n-predicates when n ě 4.

6. Show that, for every Π0
2 predicate @xDyRpx, y, zq where R is computable, we can uniformly

replace R with a computable predicate P so that for every x there exists at most one y with
so that P px, y, zq.

Exercise˝ 2.1.31. Suppose that f is a computable function and we make a computable tree T
such that for all ν P T , ν has at most fpnq many extensions. Show that elements in rT s are in
computable 1-1 correspondence to rT̂ s where T̂ P 2ăω.

Exercise˝ 2.1.32. Suppose C “ rT s, T Ď 2ăω, is a Π0
1.

1. Suppose C has only finitely many members (equivalently, there are only finitely many infinite
paths through T). Show that in this case all these members are computable.

2. Suppose ξ P C is isolated, meaning that there is a σ P T so that ξ is the only infinite path
through T that extends σ. Show that ξ is computable.

3. Suppose we are given an index e for T Ď 2ω and n P N so that C “ rT s has exactly n
members (n ą 0). Show that we can compute these members uniformly in e and n. (See also
Fact 4.2.45.)

Exercise˝ 2.1.33. Show that if P is a non-empty Π0
1 class Ď 2ω, then there exists α P P , such

that α has c.e degree. (Hint: Think about the rightmost or leftmost path in the computable tree
where P “ rT s.)

26

2.2 Early effective algebra

This section contains examples of computable, low, and c.e. presented structures. For instance,
we give examples of low and c.e. presented groups that have no computable presentation. We
often give only extended sketches of these results, skipping most of the details not related to
computability. Many of these examples will not be used in the rest of the book; they serve mainly
as (historical) examples. The results here are mainly motivational, and hence the reader could
skip the proofs of some of them without affecting their understanding of the details of the later
results. However, at least skimming through the proofs is advised. An exception to this rule is
Mal’cev’s Theorem 2.2.16, as its proof contains fundamental ideas that will reappear frequently
throughout the book. Familiarity with the elementary basics of group theory and field theory is
assumed throughout this section.

2.2.1 Examples of computable and non-computable groups

According to Definition 1.2.1, a computable group pG, ¨q is one where the domain is a computable
set and ¨ is computable. Using brute-force search through all elements of G, we can compute x´1

for any given x P G in a computable group G.

Elementary example of computable groups

Clearly, every finite group is computable.

Example 2.2.1. The following groups are easily seen to be computable:

1. Finitely generated abelian groups.

2. The free group Fκ of rank κ ď ω. (When κ “ ω, we can additionally make the free generating
set computable.)

3. The free abelian group of rank κ ď ω.

4. The invertible nˆ n-matrices over Q.

5. The nˆ n-matrices over Z having determinant 1.

6. The additive group of any vector space of dimension ď ω over Q.

7. The additive group of any vector space of dimension ď ω over any computable field (see
Exercises 2.2.22 and 2.2.22 for examples of computable fields).

8. Any group isomorphic to Fω{N , where Fω is the computable presentation of the rank ω free
group with a computable set of generators, and N is normal subgroup of Fω that is computable
(as a subset).

9. The subgroup of pQ,`q generated by t 1
pi

: i P Su, where pi range over a computably enumer-
able set of primes S.

10. The subgroup GS of pQ,`q generated by t1, 1
pni

: xi, ny P Su, where S is a c.e. set.

We leave the verification of 1.-10. to Exercise 2.2.21.

27

Further examples are provided by the following, perhaps unexpected, result.

Theorem 2.2.2 (Rabin [440]). Every finitely generated group of matrices over any field has a
computable presentation. (Note that computability of the field is not assumed.)

Proof. Suppose the group is generated by A1, . . . , Ak, and let U be the field. Consider the finitely
many elements of the field that are mentioned in A1, . . . , Ak. If P is the prime field of the same
characteristic as U , then all entries of any matrix from the group lie in a field of the form

U – P px0, . . . , xk, α0, . . . , αmq,

where the xi are algebraically independent over P , and the αj are algebraic over P px0, . . . , xkq.
(This is because we have only finitely many entries, so simply adjoin them to the prime field if
they are not already there.) By Exercises 2.2.22 and 2.2.23, the field U is computably presented.
Using the computable presentation of U , we can begin with A1, . . . , Ak and apply the (matrix)
product and the (matrix) inverse operations iteratively to generate a computable presentation of
the group.

We cite [339] for an alternative proof of Theorem 2.2.2.

Remark 2.2.3. Rabin [440] points out that Theorem 2.2.2 has the consequence that every finitely
generated group that is not computably presentable cannot have a faithful representation by ma-
trices over a field (we omit the standard definition). In particular, not every finitely generated
or even finitely presented group has a faithful presentation; e.g., Example 1.2.3 or Theorem 2.2.6
below. This consequence had been obtained before Rabin in 1940 by Fuchs–Rabinowitsch [196]
using purely algebraic methods.

A low group with no computable presentation

We give the first elementary example of a low group with no computable presentation. The result
is folklore.

Theorem 2.2.4. There exists a low subgroup of pQ,`q that has no computable presentation.

Proof. To establish the theorem, we give the first early example of a characterisation of com-
putable presentability which, in its slightly stronger form (to appear as Theorem 5.1.16), is usually
attributed to Mal’cev [346]. In the notation of Example 2.2.1(10), assume additionally that S is a
set of pairs xi, ny such that xi, ny P S implies xi, ky P S for all k ď n.

Proposition 2.2.5. GS is computably presentable iff S is computably enumerable.

Proof. One implication is given by Example 2.2.1(10). For the other implication, let A – GS Ď Q
be a computable group. Fix the isomorphic image g of 1 P GS in A. To enumerate S, list all x P A
and all positive integers m such that mx “ x` x` x` . . .` x

looooooooooomooooooooooon

x occurs m times

“ g. If pni x “ g for some x P A,

then put xi, ny in S. This process is clearly effective.

For example, if we take the complement K of the halting problem, and consider the set SpKq “
txi, 1y : i P Ku, we see that GSpKq has no computable presentation, by Post’s Theorem 2.1.10.

Theorem 3.1.1 (to be proven later) states that there is a low non-computable c.e. set X. Let
SpXq “ txi, 1y : i P Xu. By Proposition 2.2.5, the group GSpXq is computable relative to X and
thus is low. However, it has no computable presentation, again by Post’s Theorem 2.1.10.

28

A c.e. presented group with no computable presentation

In the context of groups, the definition of a c.e. presented structure (Definition 1.2.2) is equivalent
to saying that

G – xai | ri : i P Ny,

where ai form a computable set of free generators of Fω, and ri P Fω is a c.e. set of relations that
generate a normal subgroup that is c.e. as a subset of (this presentation of) Fω; we leave this to
Exercise 2.2.21. If the sets of ai and rj are both finite, we say that the group is finitely presented.
Evidently, every computably presented group is c.e. presented. In [440], Rabin gives the following
example which he attributes to Boone.

Theorem 2.2.6. There exists a finitely generated, c.e. presented group without a computable pre-
sentation.

Proof. Fix a set of natural numbers W and define

GW “ xx, y, u, t |uixu´i “ tiyt´i, i PW y.

Claim 2.2.7. In GW , uixu´i “ tiyt´i holds iff i PW .

Proof of claim. Omitted.

If W is c.e. then GW is clearly c.e. presented. Let W “ K, the halting problem.

Claim 2.2.8. GK is not isomorphic to any computable group.

Proof of claim. Assume there is a computable copy of GK , denote it A. Let f : GK Ñ A be an
isomorphism. Fix elements fpxq, fpyq, fpuq, fptq. There are only finitely many such parameters, and
we non-uniformly fix them; for more explanation see Remark 2.2.9 below. Then uixu´i “ tiyt´i iff

fpuqifpxqfpuq´i “ fptqifpyqfptq´i,

and the latter has to be decidable in A, a contradiction.

We conclude that GK has the desired property.

Remark 2.2.9. In the sketch above, we non-uniformly fixed a finite tuple of parameters. That is,
we designed a computable procedure P that works when the parameters are correctly chosen. This
can be viewed as follows: List all possible quadruples x̄0, x̄1, . . . , x̄i, . . . and consider all possible
procedures of the form P px̄0q, P px̄1q, We know that one of these procedures does the job, but
we do not necessarily know which one. We also used a non-uniform argument in the proof of
Theorem 2.2.2 when we fixed xi and αj , and in the proof of Proposition 2.2.5 when we fixed the
isomorphic image g of 1.

The proof of Theorem 2.2.6 can be pushed to a characterisation similar to Proposition 2.2.5.
Such characterisations exist among finitely presented groups too; we cite [95, 49, 50]. Combined with
the existence of non-computable low c.e. sets (Theorem 3.1.1), these results imply the existence of
c.e. presented groups that are also low, yet not computably presented. Using completely different
methods, in Corollary 9.3.23 we will give such examples among (non-finitely generated) abelian
groups. Thus, we limit ourselves to a brief discussion below of the finitely presented case, sufficient
to clarify Example 1.2.3 from the introduction.

29

Non-computable finitely presented groups

We outline the proof of the following fundamental result that appeared earlier as Example 1.2.3.

Theorem 2.2.10. There exists a finitely presented group not isomorphic to any computable group.

Proof sketch. The theorem can be derived from Theorem 2.2.11 and the two classical theorems that
we state below.

Theorem 2.2.11 (Higman Embedding Theorem [250]). Suppose that G is a finitely generated
group. Then G can be isomorphically embedded into a finitely presented group iff G has a c.e.
presentation.

We omit the proof, but we note that it is much simpler than the original early proofs of the
following classical:

Theorem 2.2.12 (Novikov [416], Boone [51]). There is a finitely presented group with undecidable
word problem1.

Proof of Theorem 2.2.12 using Theorem 2.2.11. Fix the finitely generated group GK witnessing
Theorem 2.2.6 and embed it into a finitely presented group H. Let f : GK Ñ H be the em-
bedding. Arguing as in the second half of the proof of Theorem 2.2.6, we can deduce that
K “ ti : fpuqifpxqfpuq´i “ fptqifpyqfptq´iu.

We now explain why Theorem 2.2.10 follows from Theorem 2.2.12. Observe that f in the proof
of Theorem 2.2.11 (and 2.2.6) was necessarily computable, but again non-uniformly (as explained
in Remark 2.2.9). Of course, the same argument works for any finitely generated c.e. presented
structure.

Proposition 2.2.13. Suppose A is a finitely generated structure (in a language with no relational
symbols). Then any two c.e. presented copies of A are computably isomorphic.

Proof. Let X and Y be two c.e. copies of A. Non-uniformly fix any finite tuple of generators x̄
in X and their isomorphic images ȳ in Y . There is a unique extension of the map x̄ ÞÑ ȳ to an
isomorphism between X and Y : just map x̄-terms to the respective ȳ-terms. This extension is
evidently computable.

Corollary 2.2.14. Suppose a finitely generated structure has a computable presentation A. Then
in any c.e. presentation B{„ of A, the c.e. equivalence relation „ is computable. In other words,
every c.e. presentation of A is computable (up to notation change).

Indeed, to decide x „ y in B, simply compute their isomorphic images in A and see whether
the images are equal. As we noted earlier, any finitely presented group is evidently c.e. presented.
Thus, to establish Theorem 2.2.10, it remains to combine the Novikov-Boone Theorem 2.2.12 with
the corollary above.

1That is, the equality modulo the relations is undecidable.

30

Groups with non-equivalent presentations

Mal’cev [345] was perhaps the first to propose that computable (presentations of) algebraic struc-
tures should be studied up to computable isomorphism. The inverse of a computable isomorphism
is also computable (via a brute-force search argument). Thus, computably isomorphic structures
exhibit identical computability-theoretic properties. We arrive at the important class of structures,
ones where computable isomorphism type and isomorphism type coincide.

Definition 2.2.15 (Mal’cev). An algebraic structure is computably categorical or autostable if
it has a unique computable presentation, up to computable isomorphism.

For example, finitely generated structures always possess computably unique presentations
(Proposition 2.2.13). Thus, computable categoricity can be viewed as a generalisation of being
finitely generated. But of course, there are many elementary examples that are not even close to
being finitely generated. For example, it is also well-known and easy to see that the Rado graph
(the random graph) is computably categorical, and so is the dense linear order pQ,ăq (Ex. 2.2.20).
But all these basic examples are relational structures. When a structure has operations, the analogy
with being finitely generated sometimes becomes more direct. For instance, the following historical
example is usually attributed to Mal’cev. Let Qα denote the additive group of the Q-vector space
of dimension α P N Y tωu (Q0 “ spanQH “ t0u). These groups are computably presented; this is
Example 2.2.1(6).

Theorem 2.2.16 (Mal’cev). Qα is computably categorical iff α is finite.

The strategy used in this proof below will be extended in later chapters to prove Khisamiev’s
Theorem 5.1.41, which is (3) of Theorem A. Khisamiev’s Theorem is not elementary, but it shares
some key ideas with the proof below.

Proof. We would like to use scalar multiplication, however, we cannot use it directly since it is not
in the language of groups. For an element x of an additive group and n a positive integer, write nx
to denote

x` x` x` . . .` x
looooooooooomooooooooooon

x occurs n times

.

Also define 0g “ 0, and when n is a negative integer, set nx “ p´nqp´xq. Clearly, the operation

pn, xq ÞÑ nx

is computable in any computable presentation of Qα. Further, given m ą 0 and an element a,
there exists a unique element y with the property my “ a, and we can just brute-force search for
y. Thus, more generally, the operation of scalar multiplication

pr, aq ÞÑ ra,

31

where r “
m

n
P Q, is also computable in any computable presentation of Qα. It follows that the

additive group structure on Qα uniquely and effectively determines the Q-vector space structure on
it. For instance, it makes sense to say that two elements of the group are linearly independent. We
are now ready to prove the theorem.

Assume α “ n P N. The case when n “ 0 is trivial; assume n ą 0. Given any two com-
putable copies A and B of the group, non-uniformly (recall Remark 2.2.9) fix some finite bases
ā “ a0, . . . , an´1 and b̄ “ b0, . . . , bn´1 in A and B, respectively. Define f : A Ñ B as follows. For
a P A, find integers m,m0, . . . ,mn´1 so that m ą 0 and

ma “
ÿ

iăn

miai.

In B, search of an element b so that
mb “

ÿ

iăn

mibi

and define fpaq “ b. This map would be an isomorphism of the respective vector spaces over Q (it
is linear), so it is evidently an additive group isomorphism between A and B. By the choice of n, ā
and b̄, for any a P A such coefficients m,m0, . . . ,mn´1 and an element b P B exist. Thus, they will
eventually be found. It follows that f is computable.

Now assume α “ ω. We prove that the additive group Qω admits two computable presentations
that are not computably isomorphic. Let A be the “natural” computable presentation A of Qω,
which is the collection of formal sums

ÿ

iPN
riai,

where almost all coefficients ri are zero. (Alternatively, we can view each individual element as a
finite tuple of rational numbers.) Given any two elements of this presentation, we can easily decide
whether they are linearly independent as vectors over Q.

We claim that it is sufficient to build a computable presentation B of Qω in which there is no
algorithm such that, given a pair of elements of B, decides whether they are linearly independent.
Indeed, suppose such a B has been constructed, and assume f : B Ñ A was a computable isomor-
phism. To decide whether x, y P B are linearly independent, calculate fpxq and fpyq and decide
this property in A. (This is essentially an m-reduction.)

To this end, we construct a computable presentation B “
Ť

sBs of Qω in which linear indepen-
dence for pairs of elements is undecidable. The idea is as follows. We reserve a sequence of elements
paiqiPN that we initially keep linearly independent. Initially, we may think of these ai as being the
elements of the standard basis of the natural presentation of Qω. However, we will change this
interpretation later for some (but not all) such ai. If i enters the enumeration of the halting set K
at stage t, declare a2i`1 “ ma2i, where m is a very large integer. Thus, we “discover” that a2i`1

is indeed dependent on a2i, but the coefficient m witnessing this is so large that we have not seen
it earlier. However, recall that we need to make sure that the group is computable, and if we are
not being careful enough we may end up with a c.e. presentation. In other words, if we declare two
elements unequal, we cannot possibly undo this at a later stage. The main subtlety is that we also
need to preserve inequalities declared in Bs when we define Bs`1. This is why we need m to be
very large.

Construction.

32

At stage 0, set B0 “ t0u and kp0q “ 0.

At the end of stage s, we have Bs that consists of all sums of the form
ÿ

iRKs

pr2ia2i ` r
1
2i`1a2i`1q `

ÿ

jPKs

r2ja2j , (2.1)

where i, j ď kpsq and the coefficients ri, r
1
i, r

2
i range over the (reduced) fractions with numerators

and denominators bounded by kpsq in their absolute value. The operation ` is declared on these
formal linear combinations naturally (i.e.,

ř

i riai `
ř

i qiai “
ř

ipri ` qiqai), provided that the
result stays in Bs. Otherwise, ` is declared undefined yet.

At stage s` 1, consider two cases.

Case 1. No new number enters K at stage s ` 1. Set kps ` 1q “ kpsq ` 1 and define Bs`1 to
consist of all sums of a similar form as we described above in (2.1), but with s replaced by s ` 1
throughout. Declare ` on these elements naturally as well, as above. Clearly Bs Ď Bs`1. Let
gs`1 : Bs Ñ Bs`1 be the subset embedding.

Case 2. Suppose j0 is enumerated into K at stage s` 1. Every element b P Bs can be expressed
as

b “ r2j0a2j0 ` r
1
2j0`1a2j0`1 `

ÿ

iRKs`1

pr2ia2i ` r
1
2i`1a2i`1q `

ÿ

jPKs

r2ja2j . (2.2)

Declare
a2j0`1 “ kpsq!a2j0

and define

gs`1pbq “ pr2j0 ` r
1
2j0`1kpsq!qa2j0 `

ÿ

iRKs`1

pr2ia2i ` r
1
2i`1a2i`1q `

ÿ

jPKs

r2ja2j .

Set kps ` 1q “ pkpsq ` 1q! and define Bs`1 just as we did in the first case. Note however that in
this case gs`1 : Bs Ñ Bs`1 is not the natural subset embedding.

Verification.

Claim 2.2.17. For every s, gs is injective.

Proof. The map is clearly injective in the first case. In the second case, assume gs`1pb
1q “ gs`1pbq,

where b is as in (2.2), and

b1 “ q2j0a2j0 ` q
1
2j0`1a2j0`1 `

ÿ

iRKs`1

pq2ia2i ` q
1
2i`1a2i`1q `

ÿ

jPKs

q2j a2j . (2.3)

Then we immediately get that q2i “ r2i for any i R Ks`1, and that q2j “ r2j for each j P Ks, and

r2j0 ` r
1
2j0`1kpsq! “ q2j0 ` q

1
2j0`1kpsq!

Since kpsq! is larger than both q2j0 and r2j0 , by considering this equality modulo kpsq! we conclude
that r2j0 “ q2j0 and, thus, r12j0`1 “ q12j0`1. (In fact, we should first turn this equality into an integer
equality and then consider it modulo kpsq!; we leave the elementary details to the reader.)

33

We now verify that gs`1 preserves the operation.

Claim 2.2.18. Assume b, b1 P Bs are so that b` b1 P Bs was defined at stage s. Then gs`1pb` b
1q P

Bs`1 and gs`1pb` b
1q “ gs`1pbq ` gs`1pb

1q.

Proof. The first case in the description of stage s ` 1 is obvious, we focus on the second case. In
the notation of (2.2) and (2.3) above, we clearly have

gs`1pb` b
1q “ rpr2j0 ` q2j0q ` kpsq!pr

1
2j0`1 ` q

1
2j0`1qsa2j0`1`

ÿ

iRKs`1

ppr2i ` q2iqa2i ` pr
1
2i`1 ` q

1
2i`1qa2i`1q `

ÿ

jPKs

pr2j ` q
2
j qa2j “

gs`1pbq ` gs`1pb
1q. (2.4)

Additionally,

|pr2j0 ` q2j0q ` kpsq!pr
1
2j0`1 ` q

1
2j0`1q| ď kpsq ` kpsq!kpsq ď kpsq!pkpsq ` 1q “ kps` 1q,

and therefore gs`1pb` b
1q P Bs`1.

We have defined a uniformly effective sequence of partial groups and partial embeddings

B0 Ñg1
B1 Ñg2

B2 Ñg3
B3 Ñg4

. . . .

As further explained in Remark 2.2.19 below, the claims guarantee that as the limit of this process,
we get a computable structure; denote it B.

Remark 2.2.19. From the two preceding claims, we deduce that we can safely take the union of
the nested sequence of Bi, identifying each element of Bs with its gs`1-image in Bs`1. In fancier
terms, we can take the “direct limit” of this effective sequence. In the sequel, we will often identify
elements of computable structures with their indices in ω; that is, the domain will often be thought
of as either ω or its initial segment. If an element b P Bs receives an index i P N, then we declare
that gs`1pbq also has index i, and so on. Another way to describe it is to say that i P N “changes
its interpretation” at stage s`1 to be gs`1pbq. The claims above guarantee that this interpretation
change also preserves the operation, whenever it is defined. Also, the finite part of the open diagram
(i.e., the quantifier-free atomic facts about the elements) defined at stage s is preserved at stage
s ` 1. This, in particular, includes both equality and inequality of elements (by the infectivity of
gs`1). In particular, in the limit we get a computable structure B in the language of one binary
operation `, not just a c.e. presented structure.

We now argue that B is isomorphic to Qω.
Since for each individual i, i can enter K at most once, we have that the sequence pgspa2i`1qqsPN

eventually stabilises at either a2i`1 or ma2i for some integer m that depends on i. Also, gspa2iq “

a2i, for every s and i, whenever it is defined. Every element b that ever enters Bs for some s
can be expressed as a linear combination of finitely many elements aj . It follows that the sequence
pgspbqqsPN stabilises for every such b, and its final value is an element in the Q -vector space spanned
by linearly independent elements

ta2i, a2j`1 : i P N, j R Ku

34

using coefficients in Q. Conversely, any such linear combination will eventually be added into B,
because kpsq is monotonically increasing. Thus, B – Qω.

Observe that in the resulting additive group B, a2i and a2i`1 are dependent iff i P K. As we
explained earlier, this implies that A is not computably isomorphic to B.

Can we describe computably categorical abelian groups? What about other structures? We will
return to computable categoricity later when we have enough tools.

Exercises

Exercise˝ 2.2.20. Show that the dense linear order of the rationals is computably categorical.

Exercise˝ 2.2.21 (Folklore after Rabin and Mal’cev).

1. Show that a (countable, discrete) group G is c.e. presented iff it is isomorphic to a factor
of a computable free group F (w.l.o.g. upon a computable generating set) by a c.e. normal
subgroup N .

2. Prove that G is computably presented iff N can be chosen to be computable.

The two exercises below are essentially due to Kronecker [318]; see also [185].

Exercise˝ 2.2.22. Let F be a computable field, and suppose α is algebraic over F . Show that
F pαq has a computable presentation. (Hint: Consider F rxs{xppxqy, where p P F rxs is irreducible
and ppαq “ 0.)

Exercise˝ 2.2.23. Let F be a computable field, and suppose x is transcendental over F . Show that
the fraction field F pxq has a computable presentation. (Hint: Use long division and the generalised
Euclidean algorithm to produce an effective list of irreducible polynomial fractions over F .)

Exercise˝ 2.2.24 (Metakides and Nerode [384]). Show that for a computable formally real field,
the space of orderings can be computably described as a Π0

1 class.

Exercise˝ 2.2.25 (Folklore after Hatzikiriakou and Simpson [246]). Fix a computable presentation
of a torsion-free abelian group. Show that the space of compatible linear orders on G can be
(effectively) identified with elements of a certain Π0

1-class C Ď 2ω.

2.2.2 The Henkin construction is computable

We assume that the reader is familiar with the Henkin construction from elementary model theory.
If the reader is not familiar with this material, they can skip this subsection, since we won’t need
elementary model theory in the sequel, with the exception of several exercises. We will, however,
occasionally encounter the following notion that we already mentioned at the beginning of the
chapter.

Definition 2.2.26 (Decidable structure). We call a structure A decidable if we can decide
all first order statements about tuples of elements in A. (That is, the full diagram of A is
computable.)

35

It is easy to find an example of a computable algebraic structure with no decidable presentation;
e.g., Exercise 2.2.33. Examples of groups with this property will be encountered later (e.g., The-
orem 5.1.18). In later chapters we will also see that such examples can be found among Boolean
algebras and linear orders as well. Here, we present a general method of producing decidable
structures using decidable theories.

A decidable theory has a decidable model

All our theories are first-order.

Definition 2.2.27. A theory T (in a computable language) is said to be decidable if there is an
algorithm that, given any sentence ϕ in the language of T , determines whether T $ ϕ.

The following theorem is folklore and can be found in, e.g., [156].

Theorem 2.2.28. A complete decidable theory T has a decidable model.

Proof. We simply observe that the Henkin construction is computable. Let T be a decidable theory,
and let tci : i P Nu be an enumeration of a computable set of new constants. Let tσi : i P Nu list
all sentences in the language LpT q of T together with tci : i P Nu. We construct a model A and its
complete decidable theory TA expanding T in stages. We construct the theory TA as tτn : n P Nu.
As usual in a Henkin construction, at stage 2e ` 1, if τe is of the form Dxθpxq, we add a Henkin
witness ci not occurring in

φ2e “def ^iď2eτi.

At stage 2e` 2, we force the completeness of the diagram as follows. Let x be the first sequence of
variables of the same length as c obtained from step 2e`1, which does not occur in ^iď2e`1τi Ñ σe.
Using the decidability of T , check if

T $ @xp^iď2eτi Ñ σeqrx{cs.

If this holds, let δ2e`2 “ σe. Otherwise, let δ2e`2 “ σe.
Define ci „ cj if and only if ci “ cj P TA. To define the model, consider the collection of all

equivalence classes modulo „, and declare that φ P TA holds on a tuple ā of equivalence classes if
it holds for some (equivalently, all) representatives of these classes. It is routine to verify that the
resulting extension TA of T is complete and computable, and that the structure A{ „ is computable
and is a model of T ; this is Exercise 2.2.34.

Deeper results in computable model theory require significantly more intricate techniques, but
we will not cover these results in the book; see, e.g., [229] for a gentle introduction. We will only
give a few elementary applications of the Henkin construction to algebra; see below.

An application to algebraic and real closures

The language of algebraically closed fields is L “ t`, ¨,´, 0, 1u, and the theory ACF has the field
axioms together with, for each n P ω,

ϕn ” @x1, . . . , xnDypx1 ` x2y ` ¨ ¨ ¨ ` xny
n “ 0q.

36

Recall that a theory admits elimination of quantifiers if, for every ϕ P LpT q, there is a quantifier-
free ψpx1, . . . , xnq P LpT q such that T $ @x1, . . . , xnpϕ Ø ψq. We say that T admits effective
elimination of quantifiers if we can compute ψ from ϕ uniformly. The following result is classical.

Theorem 2.2.29 (Tarski). ACF admits effective elimination of quantifiers.

Note that if T is a computable theory and is complete, then it is decidable.

Theorem 2.2.30 (Rabin [440]). Every field can be computably embedded into its computable alge-
braic closure.

Rabin’s original proof constructed the algebraic closure using a quotient of a polynomial ring
with infinitely many variables. We construct the algebraic closure by an effective Henkin-style
construction. See, for example, [183, Theorem 2.5] where this construction is carried out in reverse
mathematics.

Proof. Suppose F is a computable field. We first construct a computable algebraically closed field
K and a computable embedding α : F Ñ K. Let LF be the language of fields with constant symbols
for the elements of F , and let T be the theory of algebraically closed fields together with the atomic
diagram of F . Since F has an algebraic closure, the theory is consistent.

By Theorem 2.2.29, it is possible to effectively replace every formula φpāq in T (with parameters
ā P F) by a quantifier-free formula ψpāq such that

ACF $ φpāq Ø ψpāq.

By our assumption, F is a computable field. Thus, we can effectively check whether F |ù ψpāq and
conclude that T is decidable. Using the computability of Henkin’s construction (Theorem 2.2.28),
we obtain a computable (indeed, decidable) K in which F is naturally listed as a computably
enumerable subset named by the constants.

Computably list all elements of K that are algebraic over F . They form a computably enumer-
able subfield algpF q of K that is isomorphic to the algebraic closure F of F . To obtain a computable
presentation of F , re-enumerate the domain of algpF q by setting the first element that appears in
its enumeration equal to index 0, the second to 1, and so on. (More generally, any computably
enumerable substructure B of a computable structure A has a computable copy.) It is not difficult
to organise this enumeration so that it gives a natural computable embedding from F to this new
computable copy of F̄ ; we leave the details to Exercise 2.2.35. The range of this embedding does
not have to be computable, but it will of course be computably enumerable.

Rabin proved that computability of the image of F in its closure is equivalent to F having
a splitting algorithm. A field has a splitting algorithm if, given any polynomial in F rxs, we can
decide whether it splits over the field. The reason why this might be necessary can be seen in,
e.g., Exercise 2.2.22. One can easily construct a field without a splitting algorithm by a direct
diagonalisation; for an explicit example, consider Qp?pi : i P Kq. This computable field will have
non-computably isomorphic algebraic closures; see [185, 384].

Recall that an ordered field is real closed if every positive number has a square root, and all
polynomials of odd degree have at least one root. Let RCF denote the first-order theory of real
closed fields; it is well-known that RCF “ ThpR,`, ¨,ăq.

37

Theorem 2.2.31 (Tarski). RCF admits effective quantifier elimination.

The next theorem and its proof are very similar to what we had for algebraically closed fields.

Theorem 2.2.32 (Ershov [154], Madison [344]). Every computable ordered field can be computably
embedded into its computable real closure.

Proof. This is the same as the proof for algebraic closure, but using quantifier elimination in RCF
(instead of ACF).

For related results about differential and difference fields that require more advanced methods,
see [231, 242]. Analogous results are also known for abelian groups and their divisible hulls [474],
as well as torsion-free locally nilpotent groups [159]. We will not develop this topic any further;
[159] remains the standard reference for such constructions.

Exercises

Exercise˝ 2.2.33. An equivalence structure is an algebraic structure of the form pX,„q, where
„ is an equivalence relation. Prove that there is a computable equivalence structure that has no
decidable presentation.

Exercise˝ 2.2.34. Complete the proof of Theorem 2.2.28.

Exercise˝ 2.2.35. Complete the proof of Theorem 2.2.30.

Exercise˝ 2.2.36 (Folklore). Let V be a computable non-principal type in a complete decidable
theory T . Show that T has a decidable model that omits V .

2.2.3 Computable vs. constructive ordinals

Historically, the ordinals (the well-orders) were the first broad class of relational structures to be
studied thoroughly from the perspective of computable presentability. We assume that the reader
is familiar with the notation and the elementary properties of ordinals. For instance, recall that for
ordinals, β P α (both viewed as sets) means that β is an initial segment of α (viewed as an order).
Our definition of a computable structure, restricted to linear orders, gives the following notion of
computability for ordinals.

Definition 2.2.37 (Computable ordinal). A computable ordinal is the order type of some com-
putable well-ordering, that is pA,ďAq where A is a computable set and ďA is a computable well-
ordering on the set.

It is clear that if L is a computable well-order and R “ t` P L : ` ă xu is its initial segment,
then R is computable as well. The first non-computable ordinal is called “omega-one CK”, written
ωCK1 , where CK stands for “Church-Kleene”.

Now we discuss “constructive” ordinals due to Kleene [300, 301]. The idea is to associate
each ordinal with an algorithmically effective notation which carries information about immediate
successors, predecessors, and limit points. For example, this information is necessary to design
definitions by transfinite recursion. A computable presentation of a well-order does not have to
have this additional information about its points.

38

Kleene’s O. Recall that ϕe stands for the partial recursive function with index e. Define a system
of notations by specifying a set O, a function | ¨ |O, and a (strict) ordering ăO on O. Here |a|O “ α
means that a P O is a notation for α. This is done as follows:

• 1 is the notation for 0.

• If a is the notation for α then 2a is the notation for α` 1.

• We now define b ăO 2a if either b ăO a or b “ a.

• For limit ordinals α we give notations 3 ¨ 5e, where

ϕep0q ăO ϕep1q ăO ϕep2q . . .

and α is the least upper bound for |ϕepnq|O. (In particular, ϕe is total.)

• Define b ăO 3 ¨ 5e if there exists an n with b ăO ϕepnq.

Kleene’s O can be visualised as an infinitely branching, tree-like structure. It begins with

1, 2, 22, 222

. . . ,

which are the notations for 0, 1, 2, 3 . . ., but then it becomes infinitely branching at every limit
level. The branching occurs because there are, of course, infinitely many ways to list a sequence
converging to a limit ordinal α. Thus, at level ω, the “tree” splits into infinitely many infinite
chains of the form

3 ¨ 5e, 23¨5e , 223¨5e

, . . . ,

where e ranges over the total functions such that pϕepnqqnPN is a strictly increasing sequence (of
notations) below ω. Elements from two different “chains” corresponding to distinct indices are
incomparable under ăO.

Definition 2.2.38 (Constructive ordinal). The ordinals having notations in Kleene’s O are called
the constructive ordinals.

Note that there is a conflict of terminology with the post-Soviet tradition in computable math-
ematics. In that tradition, “constructive” was used as a synonym for “computable”. Fortunately,
these two notions of effective presentability for ordinals are actually equivalent.

Theorem 2.2.39 (Spector [481]). A countable well-order (ordinal) is constructive iff it has a
computable presentation.

We outline the proof suppressing some details and emphasising the important steps and ideas.
We refer the reader to Rogers [454] for a more detailed proof. The technique used in this proof will
not be particularly useful in the sequel; perhaps the only exception is the proof of Theorem 2.3.7,
which can also be skipped if necessary.

Proof ˚. We show that every constructive ordinal has a computable presentation.

39

Lemma 2.2.40. Suppose |a|O “ α, a P O. Then each β P α receives exactly one notation b ăO a.
All such unique notations below a can be computably listed, and ăO restricted to these notations is
computable.

Proof. The first assertion of the lemma follows from the definition of O. Essentially, this is because
O is a (set-theoretic) tree. It is usually said that

ppaq “ tb : b P O and b ăO au

is a “path” through O (below a). Notations that lie on the same path are comparable under ăO.
Every ordinal β P α receives a notation along ppaq.

We prove the second assertion of the lemma. Observe that the path below a can be enumerated
(uniformly in a). This is because b ăO b1 is equivalent to saying that there exist a0, . . . , ak P ppaq
so that a0 “ b, ak “ b1, and ai ăO ai`1 according to one of the atomic cases in the definition of
ăO. (This follows by induction on |a|O.) We can therefore list both the path ppaq and the order
ăO restricted to the path. For b ‰ b1 along the path, exactly one of the two possibilities b ăO b1

or b1 ăO b must occur. By Post’s Theorem 2.1.10, we can decide ăO for numbers coming from
ppaq.

Given α with a notation a in O, we use the lemma to produce a computable presentation of
α. The case when α is finite is again trivial. Suppose α is infinite. Fix a computable function
f : ω Ñ ppaq “ tb : b P O and b ăO au whose index can be computed uniformly in a. Define
L “ pω,ăq by the rule

i ă j if and only if fpiq ăO fpjq,

where fpiq, fpjq P ppaq and therefore ăO will eventually be decided for these values. It follows that
L “ pω,ăq – α is a computable presentation of α.

Now assume that α is a computable ordinal, and let L be its computable presentation. The
obvious issue is that, in L, the property “x is a successor” can be undecidable. The idea is to turn
L into a computable copy D of γ ą α where these properties are decidable.

Lemma 2.2.41. There is a computable presentation D of ω ¨p1`αq`1 in which we can additionally
decide whether x P D is a successor or a limit point. In the former case, we can additionally uni-
formly compute the predecessor of x, and in the latter case we can compute a computable monotonic
sequence pyiqiPN converging to x from below.

Sketch. Recall that L is a computable presentation of α. Clearly, 1` L` 1 also has a computable
presentation. Working effectively, we make progress towards replacing each point in 1`L by longer
and longer initial segments of the ω-chain. This way, we end up with a computable D – ω¨p1`αq`1.

In each ω-chain that we build, the first point is always a limit point, and the rest are successor
points. In the latter case, we can always compute the predecessor. In the former case, unless it is
the left-most point coming from the first ω-chain in ω ¨ p1 ` αq ` 1, it is a limit point. If x is like
that, then we can evidently list ty P D : y ă xu. We can uniformly choose an increasing, first-found
subsequence of ty P D : y ă xu to be the desired monotonic sequence pyiqiPN converging to x from
below.

40

We now show that the D constructed in the lemma above can be turned into a notation of γ
in O. If we succeed, then Lemma 2.2.40 will imply that α ă γ also has a notation in O. To turn
D into a notation in O, we would like to define npxq which, given x P D, outputs a notation for
ty P D : y ă xu in O. We will define a function fpe, xq that imitates the behaviour of npxq, and
then we will use the Recursion Theorem 2.1.3 to argue that for some e, fpe, xq “ ϕepxq; i.e., f
“knows” its own index. Thus, in the definition below, e should be understood as the (intended)
index of the procedure that we define.

Define a partial computable function fpe, xq by recursion as follows:

1. If x is the least point in D, set
fpe, xq “ 1.

2. If x is a successor point and y is its immediate predecessor, call fpe, yq (according to these
instructions applied to inputs e, y). If it halts, set

fpe, xq “ 2fpe,yq.

3. When x is a limit point, let pspx, iqqiPN be a uniformly computable sequence converging to x.
The function sp¨, ¨q is a computable function by our assumption about D. Using the s-m-n
Theorem 2.1.6, define ψ by the rule

ϕψpe,xqpiq “ ϕepspx, iqq,

and then set
fpe, xq “ 3 ¨ 5ψpe,xq.

This completes the definition of f . Even if f is partial, the instructions describing f in terms of e
still make sense. By the s-m-n Theorem 2.1.6, there is a total computable function g such that

ϕgpeqpxq “ fpe, xq,

for all e and x. By Recursion Theorem 2.1.3, we can assume that e is so that

ϕepxq “ ϕgpeqpxq “ fpe, xq,

for every x. By transfinite induction, npxq “ ϕepxq outputs a notation for ty P D : y ă xu in O. In
particular, when applied to the greatest element of D it gives a notation for γ in O, proving that
α ă γ is constructive as well.

Before we proceed, we note that a slight modification of the proof of Lemma 2.2.41 shows that
any c.e. presented well-order is isomorphic to a computable one (Exercise 2.2.44). Thus, ordinals do
not distinguish between computable and c.e. presentations, up to isomorphism. This observation
can be pushed to show that every hyperarithmetical ordinal has a computable copy (Exercise 8.1.25);
the hyperarithmetical hierarchy, which we briefly discuss next, extends the arithmetical hierarchy.
We also note that the Fellner-Watnick Theorem 3.2.23, which is the main result of Section 3.2.6,
can also be viewed as a generalisation of Lemma 2.2.41.

41

Extending the arithmetical hierarchy˚

It is possible to extend the arithmetical hierarchy beyond ω to the computable ordinals. The result-
ing hierarchy is called the hyperarithmetical hierarchy. For instance, we can uniformly effectively
define

Hpωq “ ‘nPNH
pnq “ txm,ny : m P Hpnqu,

and then define ∆0
ω to be the class of all sets computable relative to Hpωq. In the first part of the

book, we shall never actually go beyond ω. In Chapter 8 of the book we will see that this process
can be iterated beyond ω to (all) computable ordinals α ă ωCK1 .

Exercises

Exercise˝ 2.2.42. Show that if tαi : i P Nu is a computable collection of computable ordinals then
suptαi : i P Nu is a computable ordinal.

Exercise˝ 2.2.43. Produce a formal detailed proof of Lemma 2.2.41.

Exercise˝ 2.2.44. Show that there is a computable procedure which, on input a c.e. presentation
L of a well-order, outputs a computable copy of ω ¨ L. Conclude that every c.e. presented ordinal
has a computable copy.

2.2.4 Historical remarks˚

Neither of the authors is a historian of mathematics. With some trepidation, we offer some obser-
vations concerning the development of computable algebra.

The history of mathematics, and of algebra in particular, is deeply entwined with computation.
Almost all of pre-20th century mathematics was fundamentally algorithmic. A notable exception
to this is Hilbert’s Basis Theorem. Hilbert’s Basis Theorem [251] proves that every algebraic set
over a field can be described as the set of common roots of finitely many polynomial equations.
Famously, Hilbert’s proof does not actually compute this finite basis, but shows that the basis must
exist. This result was quite controversial at the time. Gordon, the supervisor of Emmy Noether,
was an expert in calculating invariants. He is supposed to have said of Hilbert’s proof:

“This is not mathematics; this is theology.”

Although this is likely a myth (since there is no record of it until 20 or so years after Gordon’s death),
it does reflect the mathematical thinking of the day. But it is also a salutary lesson in computable
mathematics. Suppose that we want to actually calculate the invariants guaranteed by Hilbert’s
Theorem, something which turns out to be quite important in physics. How do we do this? To
calculate a finite basis, we need not just an existence proof, but a computable version of the algebraic
result. In the case of Hilbert’s Basis Theorem, to do this calculation, we are led to the modern
theory of Gröbner bases. (We cite Buchberger [69], who actually invented Gröbner bases.) It is
certainly the case that authors such as Kronecker were quite sceptical of non-constructive methods.
Much of the classical algebra of the early 20th century was indeed computable. For example, we
will later give a modern interpretation of the Kronecker-Herrmann [318, 247] results about finite
extensions of fields, which demonstrates this effectiveness. Early editions of van der Waerden’s
seminal books [493] (supposedly based on Emmy Noether’s notes) had algorithmic proofs of various
results on rings and fields. Interestingly, in later editions, many such proofs were replaced by slicker

42

but less constructive proofs. Metakides and Nerode [385] gave an overview of the introduction of
non-computable methods in algebra in the 20th century.

As with the case of Gröbner bases, answering algorithmic questions often yields a much deeper
understanding of the mathematics where the question arises. One particularly fine example of this
phenomenon comes from Dehn’s work [109] from the early 20th century. Dehn analysed algorithmic
questions about finitely presented groups. Dehn gave geometric algorithms for solving the “word
problem” for certain kinds of finitely presented groups. He showed that certain classes of finitely
presented groups were not only c.e. presented but had the equality relation being computable. In
our terminology, they are computable groups. Dehn noted that the methods were specific to certain
classes of groups and did not apply in general. Based on this observation, he articulated the three
questions which provided a significant impetus to the huge area now called combinatorial group
theory :

1. Is every finitely presented group computable? (The word problem.)

2. Given x and y in a finitely presented group, can we algorithmically decide if x is conjugate to
y? (The conjugacy problem.)

3. Given two finitely presented groups, can we algorithmically decide if they are isomorphic?
(The isomorphism problem.)

Recall that in Example 1.2.3 we already encountered the celebrated theorem of Novikov [416] and
Boone [51] stating that there is a group that is finitely presented in which the word problem is
not algorithmically decidable. In the terminology of this book, there is a finitely presented (thus,
c.e. presented) group with no computable presentation. We cite the book [343] and the survey [390]
for a detailed exposition of the subject. Such investigations are closely related to decidability
problems for simplicial complexes in topology that we will discuss shortly.

In fact, we now know that the answers to all three of Dehn’s problems are negative. The
techniques developed to answer these algorithmic questions, such as small cancellation theory, HNN
extensions, and Higman’s Embedding Theorem 2.2.11, have proven to be enormously influential in
group theory (see, for example, Lyndon and Schupp [343]).

The modern study of computable abstract structure theory begins with the work of Fröhlich and
Shepherdson [185], Rabin [440], and Mal’cev [345, 346], particularly focusing on structures that are
either not groups or are not finitely generated. Fröhlich and Shepherdson studied computable field
extensions, and Mal’cev and Rabin also laid the foundations of the general theory of computable
structures that applies to arbitrary algebraic structures, not just groups or fields.

In modern terminology, Fröhlich and Shepherdson showed that there exist two algebraic closures
of a computable field with no computable isomorphism between the closures. It is worth noting
that Fröhlich and Shepherdson’s proof actually recycles a proof from van der Waerden [493]. It
is quite clear that although the authors of the early 20th century did not have access to a formal
theory of computation, which awaited the work of Turing and others in the 1930s, they definitely
had a sharp intuitive idea of what an algorithmic procedure was. We will see this demonstrated
again in the work of Borel in analysis.

Metakides and Nerode [384] later extended the Fröhlich-Shepherdson result. They showed that
computable algebraic closures are computably unique if and only if the field has a (separable) spli-
iting algorithm. By a splitting algorithm, we mean that there is a uniformly computable procedure
which decides if a polynomial over the field is irreducible. If there is such a splitting algorithm, the
”usual” construction of an algebraic closure becomes computable.

43

A hallmark paper was Rabin’s [440], where he proved the influential result that a computable
field has a computable algebraic closure, in spite of the fact that the usual “adjoining roots” method
may not be computable, as there may not be a splitting algorithm. Since a computable field may
lack a computable method of determining whether a given polynomial is irreducible, the classical
construction cannot be performed effectively. The hidden message is that there is some other way
to construct algebraic closures than the one usually taught to students.

Early work on the non-computability of aspects of computable groups, fields, and other alge-
braic structures usually involved coding the halting problem into the question at hand. Since the
1960s, a variety of combinatorial techniques have been developed to understand the classical theory
of computation, such as complex priority arguments (Soare [477]), Π0

1 classes (Cenzer [84]), effec-
tive measure theory (Downey-Hirschfeldt [125]), along with a strengthened understanding of the
model theory of algebraic structures. As a consequence, over the past 60 years, the study of com-
putable algebraic structures has grown into a technically deep theory. Early books on the subject
include [158, 20, 159]. The theory has many aspects, and it is essentially impossible to cover all
major topics of the theory in one book, so we will have to be selective. We will put much emphasis
on the aspects of the theory that are related to computable analysis and computable topology.
For other aspects of the theory, such as definability, Ash-Knight style forcing, and the true stages
techniques, see the books of Montalbán [401, 402].

44

2.3 Computability for real functions

This section presents several early examples of applications of computability in elementary analysis.
Some of the key notions introduced in this chapter will be important throughout the rest of the
book.

Recall that a real ξ is computable if, for every n, we can compute y P Q such that dpξ, yq ă 2´n,
where every rational is given as (e.g.) an irreducible fraction. A sequence pyiqiPN of rational numbers
with the property dpyi, yi`1q ă 2´i´1 is called a fast Cauchy sequence. If such a sequence converges
to ξ, then it is called a fast Cauchy name of ξ. Note that dpξ, yiq ă 2´i. We will sometimes omit
“fast” and say simply “Cauchy name”, and we sometimes omit N in the subscript and write simply
pyiqi. Thus, a real is computable iff it has a computable (fast) Cauchy name.

Notation 2.3.1 (Rc). Let Rc denote the set of all computable reals.

There are several potential notions of computability for a real function f : R Ñ R. Unfortu-
nately, the two most common definitions used in the literature are not equivalent, so in the end we
will have to make a choice.

Exercises

Exercise˝ 2.3.2. Take for granted that there exists a non-computable c.e. low set A Ď ω (Theo-
rem 3.1.1). Prove that in any non-empty interval of R there exists a left-c.e. real that is low but
not computable, and a right-c.e. real that is low but not computable.

Exercise˝ 2.3.3 (First stated in Rice [449], but likely known earlier). Show that the collection of
computable real numbers forms a real closed field.

Exercise 2.3.4. Recall that a real z is called left-c.e. if its left cut tq P Q : q ď zu is c.e. A real z
is called d.c.e. or weakly computable if there exist left-c.e. reals x and y such that z “ x´ y.

1. Show that a real z is left-c.e. if and only if there is a computable non-decreasing sequence of
rational numbers tqi : i P Nu such that limiÑ8 qi “ z.

2. (Ambos-Spies, Weihrauch, and Zheng [10]). Prove that z is weakly computable if and only if
there exists a computable sequence of rationals tdiu such that di Ñ z and

ř8

n“0 |dn`1´dn| ă
8.

3. (Ambos-Spies, Weihrauch, and Zheng [10]). Prove that the d.c.e. reals form a field.

4. (Ng [415], Raichev [442]). Prove that the collection of d.c.e. reals forms a real closed field.

2.3.1 The constructive approach to functions

As usual, let ϕ1, ϕ2, . . . be a standard enumeration of the partial computable functions. We call
e P N an index of x P Rc if e is the index of a function ϕe that lists a (rational, fast) Cauchy name
of x. We now consider two definitions of computability for a real function that refer only to inputs
in Rc.

45

Definition 2.3.5. A function f : Rc Ñ Rc is Markov computable if there exists a partial
computable function ν : ω Ñ ω such that, given any index e of x P Rc, νpeq exists, and is an
index of fpxq. We call the function ν : ω Ñ ω the index function of f .

The uniform (functional) version of this definition is as follows.

Definition 2.3.6. We call a function f : Rc Ñ Rc Borel computable if there exists an oracle Turing
Machine Φ such that, for all x P Rc, any computable Cauchy name pxiqiPN of x, and any n P N,

pΦpxiqipnqqnPN

is a fast Cauchy name of fpxq.

The definitions above are not due to Markov and Borel (more in §2.3.4); however, we shall use
this terminology because it appears to be standard (e.g., [24, p.22]). Borel computability seems to
be stronger than Markov computability. Nonetheless, these definitions are equivalent, as we now
show.

Theorem 2.3.7 (Kreisel, Lacombe and Shoenfield [317], Markov [353]). A function f is
Markov computable iff it is Borel computable.

Remark 2.3.8. In the literature, Theorem 2.3.7 is sometimes referred to as the Kreisel–Lacombe-
–Shoenfield–Ceitin Theorem. However, in his paper, Ceitin [82] merely extends the much earlier
result of Markov (announced in [350] and published in [353]) to computable Polish spaces. We
leave this more general version (for Polish spaces) to Exercise 2.4.35 since its proof is not really
that different from the proof we present below. Exercise 2.4.35 will find an unexpected application
in Part 2 of the book. In §8.2.4, it will be used to derive a theorem about effective reductions
between classes of countable algebraic structures. See also Exercise 2.4.36 for an analogous notion
for linear operators on computable Banach spaces.

Proof of Theorem 2.3.7. pðq Use the s-m-n Theorem 2.1.6 to compute an index for pΦpxiqipnqqnPN “
fpxq from the index for pxiqiPN. For that, replace the oracle Turing machine with a Turing machine
in which the computable oracle becomes a part of its program.
pñq This implication is quite neat. Assume f is Markov computable, and let ν be its index

function, so if e is an index of a fast Cauchy name of a computable real x, then the function νpeq is
total and lists a fast Cauchy name of fpxq. Our task is to produce a uniform procedure that has to
do something with sequences that are not necessarily computable Cauchy names. Since every finite
partial sequence is extendible to a computable one, we still need to define what the functional does
on them.

The naive idea is to use the first found computable Cauchy name, say an eventually constant
one, that agrees with the input on a long enough initial segment. The obvious danger is that we
may define the functional inconsistently. Indeed, the outputs for different computable fast Cauchy

46

names of x must converge to the same fpxq. It seems that to achieve this, one needs to be able to
see the future.

The actual idea is to “set a trap” using the Recursion Theorem 2.1.13. (In fact, we shall use
the Recursion Theorem with Parameters presented as Exercise 2.1.16.) Given ϕe, we will slow it
down to define ϕnpeq, which tests what ν (given by Def. 2.3.5) does on index e. It will attempt to
copy ϕe for a long enough initial segment, and then wait for an extension of this initial segment
that gives a different output under ν. If it has the opportunity, it will choose the values that make
the disagreement occur. The paradoxical self-referential nature of the Recursion Theorem will
imply that for computable fast Cauchy sequences, from some point on, the disagreement cannot
possibly happen. This will allow us to conclude that, no matter how we modify ϕe beyond this long
enough initial segment, all possible computable sequences extending this initial segment will yield
the same computation. In the definition of the functional, we will refer to ϕnpeq when we choose
our computable approximations to a possibly non-computable oracle. This will resolve the issue
informally discussed earlier.

The exact details are a bit tedious, though certainly not difficult. Unless the reader really wants
to understand the technical details, the clever formal proof below can be skimmed through, as these
techniques won’t really be used anywhere in the sequel.

Formal proof. We will use the following notation:

- For a finite tuple σ of natural numbers, let σ1 be the infinite string with prefix σ in which the
last bit of σ is repeated infinitely often. We identify σ1 with a function taking i to the ith
element σ1piq of σ1, and with some index of this function uniformly computable from σ.

- We also restrict ourselves to σ that are valid partial fast Cauchy, thus in particular making
σ1 a fast Cauchy for every such σ. Note that ν must halt on each such σ1.

- For a function g, we write g æt`1 to denote the partial function that is the restriction of g
to inputs t0, . . . , tu. We also identify strings with partial functions whose domains are initial
segments of ω. For instance, g æt`1 is identified with the string xgp0q, gp1q, . . . , gptqy, provided
that the values gp0q, gp1q, . . . , gptq are defined. Also, for a finite string σ, g æt`1Ď σ means
that g æt`1 is a prefix of σ (and, in particular, that gp0q, gp1q, . . . , gptq are defined).

Using the Recursion Theorem with Parameters (Exercise 2.1.16), define

ϕnpeq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Ò if νpeq Ò;

ϕe if νpeq Ó, ϕe is fast Cauchy

and either νpnpeqq Ò or νpnpeqq Ó‰ νpeq;

σ1 if νpeqrss Ó“ νpnpeqqrss Ó, t0, . . . , su Ď dompϕeq,

σ Ě ϕe æs`1, and νpσ1q ‰ νpeq;

ϕe æs`1 otherwise,

where s is the first stage at which νpnpeqq halts (if it does). Note also that we set it equal to
ϕe æs`1 if s is the first bit at which ϕe fails to be fast Cauchy. To see how the Recursion Theorem
with Parameters (Exercise 2.1.16) is used, replace npeq by z on the right-hand side. We have that
the index of the left-hand side depends uniformly on e, z, and thus the function we define can be
expressed as ϕhpe,zq. There is a computable n such that ϕhpe,npeqq “ ϕnpeq.

47

If ϕe is indeed a fast Cauchy sequence, then (in particular) νpeq is defined. We cannot have
νpnpeqq divergent or unequal to νpeq because then ϕnpeq would just copy ϕe, thus contradicting the
choice of ν. Therefore, νpeq “ νpnpeqq. In particular, there can be no σ1 extending the restriction
of ϕe to t0, . . . , su such that νpσ1q ‰ νpeq. Since for every σ1 necessarily νpσ1q Ó, it follows that
νpσ1q “ νpeq for any σ1 that agrees with ϕe on inputs 0, . . . , s. (Note that we only really used that
νpeq and νpnpeqq were both defined to conclude this.) Since we will wait for a disagreement forever,
ϕnpeq “ ϕe æs`1 is partial.

Suppose now that we have a fast Cauchy ϕi for which νpiq and νpnpiqq are also defined, and
such that ϕi agrees with ϕe on inputs t0, . . . , su. Here s “ speq is the parameter defined above
corresponding to e and npeq. Then, as before, we have νpiq “ νpnpiqq. Suppose νpiq ‰ νpeq, where
νpiq halts in s1 “ spiq steps, and additionally dompϕiq Ě t0, . . . , s1u. Without loss of generality,
suppose s1 ě s; the case when s ě s1 is symmetric. Then, using the same argument as we had for
νpeq, we conclude that νpiq “ νpτ 1q, where τ is a long enough finite string that agrees with ϕi up
to s1. Since s1 ą s and ϕi agrees with ϕe on inputs t0, . . . , su, τ 1 will also agree with ϕe on the first
s inputs. But since we assumed that νpiq ‰ νpeq and νpiq “ νpτ 1q, this contradicts the third clause
in the definition of ϕnpeq because τ 1 could be taken there to play the role of σ1.

Define a Turing functional Φ as follows. On input paiqiPN and an integer n, perform the following
steps. Keep verifying that |ai ´ ai`1| ă 2´i`1; if an i is found for which it fails, then declare the
functional divergent. Simultaneously, search for an index e such that νpeq is defined, νpnpeqq halts
in s steps, and ϕe (viewed as a sequence) agrees with paiqiPN on the first s bits. Output

Φpaiqiptq “ ϕνpjqptq for t ď s

where j is an index for a0, a1, . . . , as, as, as,
We verify that Φ is well-defined. Suppose some other e1, s1, and j1 are found. Because ϕe and

ϕe1 share an initial segment of length equal to either s or s1, we have

ϕνpjq “ ϕνpeq “ ϕνpe1q “ ϕνpj1q

by the same argument as we had above.
Now, assume paiqiPN is a computable fast Cauchy sequence with index j. Then ϕj will be among

the functions that satisfy the properties listed in the definition of Φ, although perhaps j will not
be the first index found that satisfies these conditions. But as we have just seen, this makes no
difference, as the result will still be ϕνpjq.

We remark that a lot of classical elementary real analysis can be effectivised using Markov
computability. This is the gist of the book by Aberth [1].

2.3.2 The uniform approach to computability

We now consider several definitions of a computable real-valued function that are not restricted to
computable reals. All these notions turn out to be equivalent.

Kleene’s approach

Recall that a fast Cauchy name of a real x is a sequence pxiqiPN of rationals such that |xi´x| ă 2´i´1.

48

Definition 2.3.9. We call a function

f : RÑ R

Type II (type two) computable if there is a Turing functional that, given a fast Cauchy name
of x, outputs a fast Cauchy name of fpxq.

Kleene (e.g., [302]) defined Type II computability for the Baire space ωω rather than for the
reals R. In the context of R, the definition (in its equivalent form) is usually attributed to Lacombe
[326, 327] and Grzegorczyk [227]; we will discuss these equivalent definitions shortly in §2.3.2.
This notion of computability is Type II in the sense that it is a functional, i.e., it maps not natural
numbers to natural numbers but sequences to sequences, and sequences can themselves be viewed as
functions. If natural numbers are Type 0 objects and functions are Type I objects, then functionals
are Type II. We remark that Markov computability, at least as stated in Definition 2.3.5, is Type I.

Notice that Definition 2.3.9 is simply an extension of Borel computability to arbitrary (fast)
Cauchy names. Consider also the following definition. We are not sure who was the first to use it,
but a specific uniform version of this notion due to Lacombe and Grzegorczyk will be defined in
the next paragraph.

Definition 2.3.10 (Effective continuity, the ε-δ version). A function f : R Ñ R is effectively
continuous if there is a c.e. family F of pairs pD,Eq of (indices of) basic open intervals with
rational endpoints such that

(C1) for every pD,Eq P F , we have fpDq Ď E;

(C2) for every real x and every basic open E Q fpxq, there exists a basic open D with pD,Eq P F
and x P D.

In the definition above, every interval is represented by its rational centre and its rational radius;
the Gödel number i of this pair is the index of the interval Ui. It is easy to see that the definition
above is equivalent to its topological version, as stated below; we leave the verification of this
equivalence as an exercise.

Definition 2.3.11 (Effective continuity). A function f : RÑ R is effectively continuous if there is
a c.e. set W so that for every open interval Ui,

f´1pUiq “
ď

pi,jqPW

Uj .

If there is such a W which is c.e. relative to X, then f is said to be X-effectively continuous.

So we obtain the trivial but important result:

Lemma 2.3.12. A function f : R Ñ R is continuous iff it is X-effectively continuous for some
oracle X.

49

We remark that in the definition of Borel computability, we do not have to require the Cauchy
sequences to be computable, though we still need their limits to be computable reals for the operator
to work correctly. It follows that Borel computability corresponds to effective continuity restricted
to Rc, meaning that we need to replace all basic open E and D with EXRc and DXRc throughout
Definition 2.3.10, and require x (and fpxq) to be in Rc. But of course, a Markov computable
function does not have to be continuous (or even defined) on all of r0, 1s.

The lemma below is also folklore and is similar to Theorem 2.3.7, but it is much easier to prove.

Lemma 2.3.13. The following are equivalent for a function f : RÑ R:

1. f is effectively continuous;

2. f is Type II computable.

The proof relies on the use principle and is left to Exercise 2.3.20. A complete proof of the
more general Lemma 4.2.9 will be presented later. The following properties of Type II computable
functions are immediate from the definitions.

Proposition 2.3.14 (Folklore). We write “computable” for “Type II computable”.

1. (Effective Bolzano-Weierstrass) If f : r0, 1s Ñ R is computable, then the reals supxPr0,1s fpxq
and infxPr0,1s fpxq are computable.

2. If f, g are computable on r0, 1s then so are the functions f`g, f´g, f ¨g, suptf, gu, inftf, gu,
and αg for any computable real α.

Computability via uniform convergence

Working independently, Lacombe [326, 327] and Grzegorczyk [227] gave the following definition of
a computable real-valued function on the unit interval. This notion can be extended to the whole
of R by, for example, considering intervals of the form r´n, ns, but for simplicity, we shall restrict
ourselves to r0, 1s throughout this subsection.

Definition 2.3.15. A function f : r0, 1s Ñ R is Lacombe-Grzegorczyk computable if:

1. f maps every computable sequence of points into a computable sequence of points, and

2. f is effectively uniformly continuous, i.e., there is a computable function h : ω Ñ ω such that,
for all x, y and all n, if we have |x´ y| ă 1

hpnq then |fpxq ´ fpyq| ă 2´n.

Another related notion was coined by Caldwell and Pour-El; e.g., [432].

Definition 2.3.16. A function f : r0, 1s Ñ R is uniformly computable if for every n we can compute
(the coefficients of) a polynomial ppxq P Q such that

sup
xPr0,1s

|fpxq ´ ppxq| ď 2´n.

Recall Definition 1.2.6 of a computable Polish space.

50

Fact 2.3.17. Let Cr0, 1s be the set of all real-valued continuous functions f : r0, 1s Ñ R under the
metric of uniform convergence

dsuppf, gq “ sup
xPr0,1s

|gpxq ´ fpxq|.

Then the collection PQ of all polynomial functions Qrxs restricted to r0, 1s is a computable dense
subset of Cr0, 1s, in the sense that, given (tuples of rationals describing) p, q P PQ and n P N,
dsuppp, qq can be uniformly computed to precision 2´n.

It follows that f : Cr0, 1s Ñ R is uniformly computable iff f is a computable point in the
computable Polish space pCr0, 1s, dsup, PQq. Further equivalences are contained in the following
theorem.

Theorem 2.3.18. For a function f : Cr0, 1s Ñ R, the following are equivalent:

1. f is Type II computable;

2. f is Lacombe-Grzegorczyk computable;

3. f is uniformly computable.

The proof is left to Exercise 2.3.21.

Exercises

Exercise˝ 2.3.19. Show that the functions cosx, sinx,
?
x (for x ě 0) and log x are all (Kleene)

computable, but step-functions with rational parameters are not (Kleene) computable relative to
any oracle.

Exercise˝ 2.3.20. Prove Lemma 2.3.13.

Exercise˝ 2.3.21. Prove Theorem 2.3.18.

Exercise˝ 2.3.22. Show that if f : r0, 1s Ñ R is (Type II) computable, and fp0q ă 0 and fp1q ą 0
then we can compute a real x P r0, 1s such that fpxq “ 0.

Exercise˝ 2.3.23. Verify Proposition 2.3.14 (2) above: If f : r0, 1s Ñ R is (Type II) computable,
then the reals supxPr0,1s fpxq and infxPr0,1s fpxq are computable.

2.3.3 Type I computability vs. Type II computability

A Markov computable function does not necessarily have to be defined on non-computable points,
let alone be continuous over the entire interval r0, 1s. Since every Type II computable function is
necessarily continuous, these two notions of computability are clearly different. It is possible to
build a Markov computable function with no continuous extension; see Exercise 2.3.26. However,
such results are not very satisfying.

Indeed, suppose f : r0, 1s Ñ R is Markov computable and additionally continuous. Does it have
to be Type II computable? Following the general pattern of the book, we prove:

51

Theorem 2.3.24 (Specker [480]). There is a continuous, Markov computable f : r0, 1s Ñ R
that is not Type II computable.

Proof. By Proposition 2.3.14, it is sufficient to construct a continuous Markov computable function
whose supremum is not computable. The proof proceeds through the following steps:

First, interpret 2ω as the Cantor (middle third) set in r0, 1s, such that the set of strings extending
a given finite string σ is in a natural 1-1 correspondence with the respective clopen set, which
is the Cantor set. Under this interpretation, which is the standard homeomorphic embedding
g : 2ω Ñ r0, 1s, computable reals in the Cantor set clearly correspond to computable paths through
2ω.

Using Theorem 2.1.29, fix a Π0
1 class C Ď 2ω without computable members. It follows, for

instance, that the closed set P “ gpCq has no computable points. Additionally, we can computably
enumerate a collection of basic open rational intervals such that they together make up r0, 1szP . For
that, initiate the effective list of the “middle thirds” straight away. If a clopen set X is enumerated
in 2ωzC, then also adjoin gpXq to the list.

Now fix a real α that is not computable but is left-c.e., in the sense that the left cut tq : q ă αu
is computably enumerable. (See Exercise 2.3.4.) For example, take

α “
ÿ

iPK

2´2i .

Let α “ lims αs be an effective approximation of α from below. We can set

αs “
ÿ

iďKs

2´2i ,

where Ks is the part of K enumerated by stage s. Although we do not necessarily know how close
αs is to α, we know that αs ď αs`1 ă α for every s, and that lims αs “ α.

Define a function f : r0, 1s Ñ R by the following construction.

Construction.

At stage s, consider each of the finitely many intervals of the form I “
“

k
3´s ,

k`1
3´s

‰

that have been
used in the definition of the Cantor set. If such an interval has not yet been declared out of P , then
set fs equal to αs on I. At each interval outside the Cantor set, define fs to be linear, using the
values of fs at the endpoints of the interval2. This finishes the description of fs.

Set fpxq “ lims fspxq for each x P r0, 1s.

End of construction.

Verification. It is clear that f is continuous, simply because it is the limit of the continuous fs
with the rate of uniform convergence of the sequence computable relative to K. We argue that the
function f constructed above is Markov computable.

2Note that fs´1 could have already been defined equal to αs´1 on I at the previous stage. In this case, the value
of f on I needs to be updated. Otherwise, if such an interval has left P at or before stage s, do not update f on I.

52

Let β be a computable point. Then it must be that β R P , and (as we mentioned above) it must
be inside a rational interval that is either outside the Cantor set or will eventually be declared out
of P . We can eventually see which of the two possibilities occurs.

If we see β R gp2ωq, the function is defined to be linear using its values at the endpoints of the
respective interval that contains β and is outside gp2ωq. If δ and γ are the left-most and right-most
points of the Cantor set relative to β, then note that both δ and γ are computable. In particular,
they cannot be in P , and therefore there will be a stage when some intervals containing these points
will be declared ’out’. At the stage at which this happens, we use the values of f at these two points
and linearity to calculate fpβq.

If β P gp2ωq, it must be that β R P . At the stage at which β is declared out (with a whole
ternary interval), we use the value of f on this interval according to the construction.

It follows that for every computable point β, we can uniformly calculate the final value of fpβq.
The procedure does not have to halt if β is not computable, but this is fine. It follows that f is
Markov computable.

We claim that sup f “ α, which is a non-computable left-c.e. real. This follows from the fact
that P is non-empty, so at every stage there will be an interval that is not declared out, and the
definition of f will keep getting updated.

Since α is not computable, f cannot be a Type II computable function, by Proposition 2.3.14.

When restricted to continuous functions r0, 1s Ñ R, Markov (Type I) computable functions are
not too different from Type II computable functions, in the following sense.

Proposition 2.3.25. Every Markov computable continuous function f : r0, 1s Ñ R can be computed
using the halting problem.

Proof. By Theorem 2.3.18, it is sufficient to use the halting problem to calculate, given ε “ 2´n, a
δ “ 2´m such that

|x´ z| ă δ Ñ |fpxq ´ fpzq| ď ε.

For a fixed δ “ 2´m and ε “ 2´n, the collection of all x, z for which the above implication holds
forms a closed subset of r0, 1s2. The condition holds for all x and y iff the open complement of this
set is empty. Thus, if it fails, then it must be witnessed by some rational x and z. The careful
choice of non-strict and strict inequalities, along with the Markov computability of f , implies that
the failure of |x ´ z| ă δ Ñ |fpxq ´ fpzq| ď ε is a c.e. condition. Indeed, the existence of rational
x, y such that

|x´ z| ă δ& |fpxq ´ fpzq| ą ε

can be discovered at a finite stage by calculating f on more and more rational inputs. It follows
that we can express that δ “ 2´m does not work for a fixed ε “ 2´n as an existential statement of
the form

DkRpk,m, nq,

where R is a computable relation. This implies that, given n, we can computably enumerate all m
for which it fails. With the help of the halting problem, we can decide whether the procedure of
searching for a counter-example halts. Therefore, given n, we can compute the least m that works
for n.

Recall that, for algebraic structures, if we had access to the halting problem, we could decide
equality in a c.e. presented structure. In this sense, for continuous functions, Markov computability

53

is related to Type II computability similarly to how c.e. presentations are related to computable
presentations in algebra. Likewise, Type II computable functions are more “honestly” computable
in the sense that they are (analytically) uniformly computable. In view of the equivalence of all
uniform definitions we have seen so far (e.g., Theorem 2.3.18), we will adopt the following unified
terminology:

A real function is computable if it is Type II computable.

Throughout the rest of the book, when we say that a continuous function is “computable”, we
mean that it is “Type II computable”.

Exercises

Exercise˝ 2.3.26 (Specker [480]). Use the method of proof of Theorem 2.3.24 to construct a
Markov computable function f : r0, 1s Ñ R with no continuous extension on r0, 1s.

Exercise 2.3.27 (Myhill [414]). Show that there exists a computable function r0, 1s Ñ R which is
differentiable, but does not have a computable derivative.

Exercise 2.3.28 (Pour-El and Richards [434]). Show that if the second derivative of a computable
function f : r0, 1s Ñ R exists and is continuous (but is not necessarily computable), then the
derivative of f is computable.

Exercise˚ 2.3.29 (Pour-El and Richards [434]). Show that there exists a computable function
f : r0, 1s Ñ R such that, for every n, the nth derivative f pnq exists (and, thus, is computable by the
previous exercise), but f pnq is not uniformly computable in n.

2.3.4 Historical remarks˚

The theory of computable analysis can be traced back quite a long way. Nearly four thousand years
ago, the Babylonians (see [174]) calculated

?
2 correctly as

1`
24

60
`

51

602
`

10

603
« 1.414213.

There is a long history of mathematicians trying to calculate important real constants such as e
and π explicitly, and we can see a direct line of reasoning to the work of Cauchy and other analysts
of the 18th and 19th centuries. In 1912, Borel [53] gave an informal definition of a computable real
number:

“We say that a number α is computable if given a natural number n, we can obtain a
rational number q that differs from α by at most 1

n .”

Borel had no formal definition of a computable procedure, so his definition of “we can obtain” was
vague, although he said that “the operation can be executed in finite time with a safe method that
is unambiguous.”

54

In his famous papers [487, 488], Turing initiated the theory of computable real number functions.
Indeed, he mentioned that one of his motivations for the invention of his famous machine model
was to describe real number computation. The term “computable real number” first appeared in
Turing [487]. However, Turing himself did not systematically develop the theory of computable real
number functions, which was taken up by Banach and Mazur [29]. They used the following notion:
A function f : Rc Ñ Rc is said to be Banach-Mazur computable (sequentially computable) if f maps
any given computable sequence priqiPN of real numbers into a computable sequence of real numbers
pfpriqqiPN. A function that is Markov computable must be Banach-Mazur computable, and while
the converse holds in some cases, it is not true in general [248]. Banach-Mazur computability is
perhaps too general for our purposes because it characterises functions as computable even if they
may not be computed in the typical sense, i.e., by a Turing machine. Their investigations were
unfortunately interrupted by the Second World War.

The subject was revived in the mid 1950s by Grzegorczyk and Lacombe (e.g., [226, 227, 225,
326, 327]) who laid out the foundations in detail. Around this time, there was a lot of material that
might best be called “computable calculus”, and in particular functions computable when restricted
to the field of computable real numbers in r0, 1s.

The Russian/Soviet school also adopted Turing’s ideas and further developed them (e.g., [351]),
and today Turing’s computable function is more commonly known as Markov computable. Much
of this work was by authors such as Zaslavskii and Ceitin in papers including [514, 515, 81]. We
cite the book of Aberth [1] for a detailed exposition of some of these early results. For many
bibliographic references covering results obtained before 1998, see [63].

The Type II approach to computability is commonly attributed to Kleene (e.g., [302]), although
many equivalent definitions were introduced by others around the same time. This approach to the
computability of continuous functions has become standard in the modern literature [505, 435]. In
this book, we exclusively focus on continuous functions, making this approach perfectly suitable for
our purposes. One can extend this idea to Type III by considering maps between functionals, etc.;
see Kleene [302] and Ershov [155] for a detailed study of computability in higher types.

55

2.4 Computable separable structures

In this section, we give the definitions of a computable Polish group and a computable Banach
space, and we provide examples. Following the general pattern of the chapter, we mainly focus on
establishing the foundations, i.e., we analyse and compare the definitions rather than apply them
to prove some effective analytic results.

2.4.1 The basic definitions

Recall the definition of a computable Polish space (Definition 1.2.6). Let pM,d,Xq be a computable
Polish space, where X is a dense countable sequence in M that can be identified with ω. Elements
of X are called special points.

A point ξ P M is computable if, for every n, we can compute x P X such that dpξ, xq ă 2´n.
A sequence pxiqiPN in X with the property dpxi, xi`1q ă 2´i´1 is called a fast Cauchy sequence. If
such a sequence converges to ξ, then it is called a (fast) Cauchy name of ξ. Note that dpξ, xiq ă 2´i.
A point is computable if it has a computable fast Cauchy name.

It is not hard to check that if pMi, di, Xiq, for i “ 0, . . . , k, are computable Polish spaces, then
so is

˜

ź

iďk

Mi, d,
ź

i

Xi

¸

,

where, for x̄ “ px0, . . . , xkq and ȳ “ py0, . . . , ykq, the metric is given by dpx̄, ȳq “
ř

i dpxi, yiq.
Similarly, the product of uniformly computable sequences of computable Polish spaces is also a
computable Polish space under the metric

ř

iPN 2´idpxi, yiq.

Convention 2.4.1. We will often identify a computable Polish space pM,d,Xq with its domain M
to simplify notation. However, the reader should keep in mind that M can have many different dense
subsets, and we hope that this relaxed notation will not cause any confusion. We will emphasise
which dense set is used when necessary. Additionally, the metric may or may not be fixed; this will
also be clear from the context.

Definition 2.4.2. Let X and Y be computable Polish spaces. We say that

f : X Ñ Y

is computable if there is a Turing functional which, on input a fast Cauchy name of x in X,
outputs a fast Cauchy name of fpxq.

The definition above is a direct generalisation of Definition 2.3.9 of Type II computability
for real functions. Lemma 2.3.13 will be extended to cover arbitrary computable Polish spaces
(Lemma 4.2.9). Thus, every computable f has to be (effectively) continuous.

Fix the standard computable presentation of the reals using Q and the usual metric. Also, fix
the computable presentation of the complex numbers given by Q` iQ and the complex norm.

56

Definition 2.4.3. Let M be a computable Polish space. A computable n-ary operation on M is
computable function of the form

F : X1 ˆX2 . . .ˆXn Ñ Xn`1,

where each Xi is either M or R or C.

We also view constants as computable operations that, on any input, produce the same com-
putable point. The definition below is essentially due to Stoltenberg-Hansen and Tucker [484].

Definition 2.4.4. A computable Polish algebra is a computable Polish space M together with
a sequence of (uniformly) computable operations on M .

The definition above should be compared with the definition of a (discrete) computable structure
due to Malcev and Rabin (Def. 1.2.1). In fact, it can be viewed as a generalisation of it in the
following sense. Given a computable algebraic structure M upon N, introduce the trivial discrete
metric by the rule dpx, yq “ 1 iff x ‰ y. This metric turns the computable algebraic structure into
a computable Polish algebra.

Perhaps the most important examples of computable Polish algebras are computable Banach
spaces and computable Polish groups, which we discuss next.

2.4.2 Computable Polish groups

A computable Polish group is a computable Polish algebra of the form pG, ¨,´1 q that happens to
be a group. In the computably compact case (Definition 1.2.7), we can drop the computability of
´1 from the definition without any loss of generality; this will appear later as Corollary 4.2.46. We
will see shortly that the same can be said about the additive groups of real Banach spaces.

Examples of computable Polish groups

We give a few examples of computable Polish groups that are not associated with Banach spaces.

Lemma 2.4.5. The following Polish groups (with their natural topologies) admit a computable
Polish presentation:

1. The unit circle group R{Z (under `).

2. The 3D rotation (special orthogonal) group SOp3q.

3. The additive group of p-adic integers.

4. The infinite symmetric group S8 of all permutations of N.

Proof. 1. is elementary, and the verification of 2. and 3. is left to Exercise 2.4.12.
We verify 4. This particular presentation was suggested in [220]. The obvious difficulty is that

even if a map f : NÑ N is injective, we can never be sure if it is surjective, and thus we can never

57

decide whether we should keep approximating it. In our presentation, an element of S8 is given as
a path through a tree that consists of pairs ph, h´1q where h is a permutation of N. This ensures,
via a local condition given by the tree, that the path encodes a permutation.

For strings σi, i “ 0, 1 with natural number entries, and of the same length N , by σ0 ‘ σ1 we
denote the string of length 2N which alternates between σ0 and σ1. That is, pσ0‘σ1qp2i`bq “ σbpiq
for i ă N , b “ 0, 1. The domain of our approximation structure for S8 is the computable tree of
strings

TreepS8q “ tσ ‘ τ : σ, τ are 1-1^ σpτpkqq “ k ^ τpσpiqq “ i whenever definedu.

For functions f0, f1 on N, we define a function f0 ‘ f1 on N by pf0 ‘ f1qp2i` bq “ fbpiq.
We view S8 as the group of objects of the form h ‘ h´1 where h is a permutation of N.

Our concrete presentation of S8 is the group defined on the paths of TreepS8q. We view the
paths through the tree as an ultrametric space (i.e., dpx, zq ď maxtdpx, yq, dpy, zqu), in which the
(ultra)metric is the usual longest common prefix metric3, and the dense set is given by permutations
having finite support. If f “ f0 ‘ f1 and g “ g0 ‘ g1 in S8, we define f´1 “ f1 ‘ f0 and
gf “ pg0 ˝ f0q ‘ pf1 ˝ g1q. It is immediate that these operations are computable.

Further examples of computable Polish groups are provided by the following elementary lemma
that first appeared in [313].

Lemma 2.4.6. A discrete group admits a computable Polish presentation iff it is computably pre-
sentable (in the sense of Definition 1.2.1).

Proof. If a discrete group is computably presented, then we use the trivial discrete metric

dpx, yq “ 1 iff x ‰ y

to turn it into a computable Polish group.
Suppose the group G is computable Polish with respect to some metric compatible with its

discrete topology and which makes the operations computable. All points in a discrete group are
always special because all points are isolated. In particular, the identity e has to be special.

Consider the free group F (freely and formally) generated by the special points. Every finite
”word” in the language of the group is a product of special points and their inverses4.

Since the identity e is isolated, there is a rational r ą 0 so that the basic open ball Bpe, rq
contains only e,

Bpe, rq “ teu.

To see whether y “ e, compute the real dpe, yq to precision r{8. If this approximation is ă r{4, then
y “ e. Otherwise, it must be ą r{2; in this case, y ‰ e. Note that these properties are mutually
exclusive and both are computably enumerable (c.e.). Thus, “y “ e” is a decidable property for
any computable point y in the group.

It follows from the argument above that we can decide when a word in F is equal to the identity
in our group G. Then G – F {R, where R is a computable normal subgroup of F generated by the

3The distance is set equal to 2´n, where n is the length of the longest common prefix of two strings.
4In particular, each such word can be viewed as a computable point uniformly in the indices of these special points

used to form the word. For example, x´1
17 x22x17 is a computable point whose fast Cauchy name can be produced

uniformly in the indices 17 and 22. Of course, x´1
17 x22x17 is equal to some special point xi; but for our proof to

work, we do not need to know which xi it is exactly.

58

elements (“words”) that are equal to e in G. As we discussed earlier, such groups admit computable
presentations (Exercise 2.2.21).

It can be shown that computable Polish groups are also closed under finite (or effectively count-
ably infinite) direct products (Exercise 2.4.14). We remark that Lemma 2.4.6 has an analogue for
right-c.e. Polish and c.e. presented Polish groups (Exercise 2.4.28); we leave the somewhat technical
definition of a right-c.e. Polish group to Exercise 2.4.27. Thus, Theorem 2.2.6 implies that there is
a right-c.e. Polish group that is not homeomorphic to any computable Polish group.

Computably compact groups

Recall that a computable Polish space M is called computably compact if there exists a computable
function that, given n, outputs a finite cover of M by open balls centred on special points and
having rational radii ă 2´n that cover M .

Definition 2.4.7. A computably compact group is a computable Polish group that is addition-
ally computably compact. That is, it is a computably compact space with computable group
operations upon the space.

As we mentioned earlier, the computability of the inverse operation can be derived from the
computability of the product; we delay the verification of this fact until Corollary 4.2.46. It is not
hard to see that the groups from 1. and 3. of Lemma 2.4.5 are indeed computably compact groups
(Exercise 2.4.13), but the verification of the computable compactness of SOp3q is delayed until
Exercise 4.2.64. Further examples can be obtained by noting that computably compact groups are
closed under taking direct products (Exercise 2.4.15). Non-trivial examples of computably compact
connected and profinite groups will be given in Chapters 5 and 9. In this subsection, we only briefly
discuss another interesting related notion due to Turing.

In [489], Turing defines an ε-approximation to a Polish group pG, ¨q as a finite group pXε, ‹εq
which is ε-dense in G, i.e.:

1. Xε Ď G and for each g P G, there exists an x P Xε with dpg, xq ă ε, and

2. for every x, y P Xε,
dpx ¨ y, x ‹ε yq ă ε.

Note that Turing did not require the operation on Xε to be the same as the operation on G.

Definition 2.4.8 (Turing [489]). A Polish group is approximable if for every ε ą 0, it has an
ε-approximation.

Every approximable Polish group is totally bounded and, thus, compact. While Turing did not
define the following notion, his non-effective definition above was arguably motivated by algorithmic
intuition.

Definition 2.4.9 (Essentially Turing [489]). A computable Polish group G is computably approx-
imable if, for every n ą 0, we can compute the strong index (i.e., a code of the finite tuple
representing) of a 2´n-approximation pXn, ‹nq to G, where Xn consists of special points.

59

It is easy to see that every computably approximable group is computably compact. In Chapter
4, we will see that every computably compact profinite group is also computably approximable
(Corollary 4.2.108), and it follows from the materials of Chapter 5 that every connected computably
compact abelian group is also computably approximable (Exercise 5.2.27). However, to draw these
conclusions, we will have to develop quite a bit of machinery. Here, we only state the following neat
result that should be compared to Theorem 2.2.2.

Theorem 2.4.10 (Essentially Turing [489]). Every approximable Lie group5 is computably ap-
proximable and, thus, admits a computably compact presentation. Indeed, such groups are exactly
the compact abelian Lie groups.

Proof sketch. In [489], Turing demonstrated that every approximable Lie group has to be compact
and abelian. It is well-known ([429]) that the compact abelian Lie groups are exactly the groups of
the form

F ˆ Tk,

where F is finite abelian, and T – pR,`q{pZ,`q is the unit circle group from Lemma 2.4.5(1).
It is routine to check that such groups are computably compact (Exercises 2.4.14 and 2.4.15) as
witnessed by their ε-approximations by finite subgroups.

In particular, the Lie group SOp3q is computably compact (Exercise 4.2.64) but is not approx-
imable (since it is not abelian). It follows that computable approximability is strictly stronger
than computably compact presentability among compact Lie groups. We note that there is an
approximable computable Polish group that is not isomorphic to any computably approximable
one; see Exercise 9.5.17. We are not aware of any further work in computable analysis that would
systematically study approximability of (compact) Polish groups.

Exercises

Exercise˝ 2.4.11 (Folklore). Let f : X Ñ Y be a computable surjective isometry between com-
putable Polish spaces X and Y . Show that f´1 is also computable.

Exercise˝ 2.4.12. Finish the proof of Lemma 2.4.5.

Exercise˝ 2.4.13. Show that the groups in parts 1 and 2 of Lemma 2.4.5 are computably compact.

Exercise˝ 2.4.14. Show that the direct product G ˆ H of computable Polish groups G and H
is also a computable Polish group. Produce a computable presentation of G ˆ H in which the
projections onto the components are computable maps.

Exercise˝ 2.4.15. Show that the direct product G ˆ H of computably compact groups is also
computably compact.

5A Lie group is a smooth manifold with a differentiable group operation.

60

2.4.3 Computable Banach spaces

We now turn to Banach spaces. We are mainly interested in Banach spaces over R, but of course,
the definition below can be easily extended to cover C-spaces.

Definition 2.4.16. A computable (real) Banach space is a computable Polish algebra of the
form B “ pB,`, ¨, 0q, where 0 is a constant, the metric on B induces the norm ||x|| “ dp0, xq,
which, together with ` and the scalar product ¨ : RˆB Ñ B, makes B a Banach space.

The definition above is a reformulation of the approach taken in, e.g., Pour-El and Richards [435].

Lemma 2.4.17 (Melnikov and Ng [376]). For a real Banach space B upon a fixed computable Polish
space induced by the norm, the following are equivalent:

1. pB,`,´q is a computable Polish group;

2. pB,`, ¨, 0q is a computable Banach space.

Furthermore, in 1. computability of ` implies computability of the additive inverse ´.

Proof. The implication 2 Ñ 1 is trivial because ´x “ p´1qx. We prove 1 Ñ 2.
To see that 0 is a computable point, fix any special point x from the dense sequence in B and

calculate 0 “ x´ x. This makes the norm ||x|| “ dpx, 0q computable. Clearly, for every n P N, we
can uniformly compute the point

x` x` x` . . .` x
looooooooooomooooooooooon

x occurs n times

,

and similarly when n P ´N. This makes the operations xÑ nx uniformly computable when n P Z.

Note that, for an integer m ą 0, ||my ´ x|| ă ε is equivalent to ||y ´
1

m
x|| ă

ε

m
. Thus, to

compute
1

m
x to precision 2´n, we have to find a special point y such that my is m2´n-close to

x. Here we do not assume that x is a computable point. Instead, we assume that its fast Cauchy
name is given to us (as an oracle). Since this search is uniform in x and m, we conclude that the

operations xÑ
1

m
x are uniformly computable.

If a is a real and r is a rational approximation to a, we have

||rx´ ax|| “ |r ´ a|||x||.

So, to compute ax to precision 2´n, we need to choose a rational r such that

|r ´ a| ď
2´n´1

maxt||x||, 1u

and calculate rx to precision 2´n´1. It follows that the uniform computability of scalar multiplica-
tion by rationals implies computability of scalar multiplication by reals. This finishes the proof of
1 Ñ 2.

To see why ` additionally determines ´, search for a point y such that ||x` y|| ă 2´m, which
is the same as to say that ||y ´ p´xq|| ă 2´m, i.e., y is 2´n-close to the point ´x.

61

In other words, assuming that we fix the metric associated with the norm on a separable (real)
Banach space B, we have:

B is computable Banach iff its additive group is computable Polish.

This fact simplifies the verification of computable presentability of Banach spaces.

Example 2.4.18. The following separable (real) Banach spaces are computable:

1. Separable Hilbert spaces.

2. The space Cr0, 1s “ Cpr0, 1s;Rq of continuous functions on the unit interval, under point-
wise operations and the supremum metric. The dense sequence is given by the polynomials
with rational coefficients. Alternatively, we can use piecewise linear functions with rational
parameters. (See also Fact 2.3.17.)

3. The spaces `p, where p is a computable real. Sequences with finite support form a computable
dense set.

4. The spaces Lpr0, 1s, where p is a computable real, and the dense sequence is given by, e.g.,
step functions with rational parameters.

5. The space Cpnqpr0, 1s;Rq of n-times continuously differentiable functions r0, 1s Ñ R, under
the norm

ÿ

iďn

sup
xPr0,1s

|f piqpxq|

and the point-wise operations. The dense sequence is again given by polynomials with rational
coefficients.

Some commonly encountered Banach spaces are not computably presentable. For example, `8,
the space of all bounded real sequences with the supremum norm, is not computably presentable
as it is not even separable. In Corollary 4.2.114, we will see that there exists an H1-computable
Banach space of the form CpK;Rq, where K is compact, that is not isomorphic to any computable
Banach space. Further, it can be shown that there is a low, right-c.e. presented Banach space not
linearly isometric to any computable Banach space (Exercise 2.4.40).

Reconstructing the group operation from the norm

Mazur and Ulam (see, e.g., [469, 492]) showed that every surjective self-isometry of a Banach space
is affine, and thus, when the norm is fixed, there is only one way to define ` to get (the additive
group of) a Banach space. Is this effectively true? In other words, can we strengthen Lemma 2.4.17
by dropping the computability of ` as well?

We will answer this question in the affirmative for separable Hilbert spaces, where ` can be
effectively recovered from the norm. As the central result of this section, we will prove that there
is a computable dense sequence in Cr0, 1s that computes the norm but does not compute `. These
results will later allow us to draw conclusions about the effective uniqueness of computable presen-
tations of these spaces.

62

Hilbert spaces

The proposition below states that in Hilbert spaces, the norm effectively determines the group
structure (thus, also the linear space structure by Lemma 2.4.17).

Proposition 2.4.19 (Melnikov [369]). Suppose a Hilbert space H has a computable Polish presen-
tation in which 0 is a computable point. (This makes the norm computable.) Then the operation `
is also computable with respect to this presentation.

Proof. Fix a dense sequence pαiqiPN in which the vector 0 is a computable point. Recall that
dpx, yq “ ||x ´ y||. For instance, ||x|| “ dp0, xq is computable for every computable point x. It is
well-known that the parallelogram identity

||x` y||2 ` ||x´ y||2 “ 2||x||2 ` 2||y||2

characterises Hilbert spaces within the class of Banach spaces. We show that the operation ` is
computable with respect to (w.r.t.) pαiqiPN.

Recall that points in the fixed dense sequence in a computable Polish or Banach space are called
special. Given a positive rational ε ă 1 and (fast) Cauchy names for points x and y, find a special
point z such that:

1. | ||z||2 ` ||x´ y||2 ´ 2||x||2 ´ 2||y||2 | ă δ,

2. | ||y ´ z|| ´ ||x|| | ă δ,

3. | ||x´ z|| ´ ||y|| | ă δ,

where δ “ ε{p2||x|| ` 2||y|| ` 3q. We may assume that δ ă 1. Applying the parallelogram identity,
we obtain

| ||z||2 ´ ||x` y||2 | ă δ.

Using the well-known formula for the inner product, we get

||x` y ´ z||2 “ ||x` y||2 ` ||z||2 ´ 2xx, zy ´ 2xy, zy.

Applying this formula again, we obtain

||y ´ z||2 “ ||y||2 ` ||z||2 ´ 2xy, zy

and
||x´ z||2 “ ||x||2 ` ||z||2 ´ 2xx, zy.

We combine the three equations above:

||x` y ´ z||2 “ p||x` y||2 ´ ||z||2q ` p||x´ z||2 ´ ||y||2q ` p||y ´ z||2 ´ ||x||2q.

Taking into account δ ă 1, observe that

| ||x´ z||2 ´ ||y||2 | “ | ||x´ z|| ´ ||y|| | ¨ p||x´ z|| ` ||y||q

ă δp||y|| ` δ ` ||y||q

ă δp2||y|| ` 1q,

63

and similarly
| ||y ´ z||2 ´ ||x||2 | ă δp2||x|| ` 1q.

Thus,

||x` y ´ z||2 ď | ||x` y||2 ´ ||z||2 | ` | ||x´ z||2 ´ ||y||2 | ` | ||y ´ z||2 ´ ||x||2 |

ă δ ` δp2||y|| ` 1q ` δp2||x|| ` 1q

“ δp2||x|| ` 2||y|| ` 3q

“ ε.

It follows that we can produce a (fast) Cauchy name for x ` y uniformly in (fast) Cauchy names
for x and y.

The space Cr0, 1s

We write Cr0, 1s to denote the space of continuous real-valued functions on the unit interval; see
Example 2.4.18 for the definition. We fix the supremum metric

dpf, gq “ dsuppf, gq “ sup
xPr0,1s

|fpxq ´ gpxq|

associated with the supremum norm. We also fix the computable dense sequence pliqiPN consisting
of piecewise linear functions with finitely many rational breaking points. The theorem below states
that the supremum norm on Cr0, 1s does not effectively determine the operation `. Therefore, the
computability of ` cannot be dropped from the definition of a computable Banach space without
consequences. This also means that the aforementioned theorem of Mazur and Ulam does not hold
computably.

Theorem 2.4.20 (Melnikov [369]). There is a computable presentation of the Polish space
pCr0, 1s, dsupq in which the constant function 0 is a computable point but the operation ` is not
computable.

In other words, we shall construct a computable presentation of pCr0, 1s, dsupq in which the
norm is computable, but ` is not. The computability of 0 will be used later in a corollary.

We remark that, in the proof below, we split the main task into a number of sub-tasks that
are called requirements. We then prove the theorem by satisfying (“meeting”) these requirements
one by one. A special technique, called the priority technique, can sometimes help to meet all the
requirements even if they conflict with each other. However, as we will explain in due course, in the
present proof such conflicts can be completely avoided, and thus the proof is injury-free. Before we
turn to the formal proof, we informally explain the main idea behind a typical injury-free proof.

Requirements and direct diagonalisation. We have already seen several proofs with relatively non-
trivial constructions, e.g., Mal’cev’s Theorem 2.2.16 and Specker’s Theorem 2.3.24. However, the
former proof coded K (the halting problem) into the linear independence relation in a vector
space, and the latter coded K into the supremum of a continuous Markov computable function.

64

The present proof is a bit more complex than that, since it will rely on the direct diagonalisation
technique rather than on coding.

Typically, in such arguments, one has some overall goal that one breaks down into smaller
subgoals (“requirements”) for which it is argued that they are all eventually met in the limit. As an
archetype for such proofs, think of Cantor’s proof that the collection of all infinite binary sequences
is uncountable. One can conceive of the proof as follows.

Suppose we could list a collection of binary sequences S “ tS0, S1, ...u with Se “ se,0se,1.... Our
goal is to construct a binary sequence U “ u0u1... that is not on the list S. This should be thought
of as a game against our opponent who must supply us with S. We shall construct U in stages, at
stage t specifying only u0...ut, the initial segment of U of length t` 1.

Our requirements are the decomposition of the overall goal into subgoals of the form

Re : U ‰ Se,

one for each e P N. Of course, we know how to satisfy these requirements. At stage e, we simply
make ue ‰ se,e by setting ue “ 1 or 0, and making ue “ 1 iff se,e “ 0. Hence for all e, U ‰ Se;
all the requirements are met. This is a contradiction to the fact that S supposedly lists all infinite
binary sequences, as U is a binary sequence.

We now turn to the proof of Theorem 2.4.20. The proof that we present here is different from
the proof in [369]; it can be found in [376].

Proof idea. We build a computable Polish presentation X “ phiqiPN of pCr0, 1s, dq which consists of
points of the form hi “ lims hi,s, where hi,s is a computable double sequence of rational piecewise
linear functions. We will have that for each fixed i, the sequence phi,sqsPN eventually stabilises.
Since computability of ` implies computability of scalar multiplication (see Lemma 2.4.17), it is
sufficient to ensure that p1{2q¨ is not a computable operation with respect to phiqiPN. We also need
to ensure that the metric is computable, and so is the zero function.

Suppose we are diagonalising against the eth computable procedure Θe potentially representing
hi ÞÑ

1
2hi. We will use a witness hp which has constant value 16e on some small interval Ie

(reserved exclusively for this requirement). The basic strategy will wait for Θeppq to converge with
high accuracy. We then adjust hp on interval Ie by lowering its value hppzq by 8e for some z P Ie.
This will ensure that Θe is “killed”. To ensure that distances are preserved, we need to adjust hm
similarly on Ie for every hm that takes on values larger than 8e on Ie; see Fig. 2.2. This leaves
functions with norm ď 8e untouched after some stage.

The formal requirements. Let L “ pliqiPN denote the effective sequence of all continuous piecewise
linear functions with finitely many rational breakpoints (written rational p.l. functions) without
repetition; this sequence in dense in the space (Example 2.4.18). We construct X “ phiqiPN and
meet the following global requirements:

(1) For every i, there is some si such that hi,si “ hi,t for every t ě si.

(2) For every i, j and s, we have dphi,s, hj,sq “ dphi,s`1, hj,s`1q.

(3) For each m, there is exactly one k such that lims hk,s “ lm.

These three requirements clearly imply that X “ phiqiPN is a computable presentation of pCr0, 1s, dq.
We fix an effective listing pΨeqePN of all partial computable functions of two arguments that

satisfies the following conditions:

65

1. For every e, t, x, we have dpΨepx, tq,Ψepx, t`1qq ă 2´t´1, if Ψepx, tq and Ψepx, t`1q converge.

2. For every stage s and every e, t, x, we have Ψe,spx, tq Ó only if Ψe,spx, nq Ó for each n ď t.

To see that pΨeqePN exists, we start with some universal listing of all partial computable functions
of two variables and limit ourselves to only those which satisfy (1) and (2). For every e and x, set
Θepxq “ limnÑ8Ψepx, nq if the limit exists (where the limit is taken with respect to the metric on
M), and set Θepxq Ò otherwise.

Notation 2.4.21. At stage s we set Θe,spxq equal to Ψe,spx,mq if m is the largest such that
Ψe,spx,mq Ó, and we set Θe,spxq undefined otherwise. In the former case, we let θe,spxq “ m. Thus,
Θe,spxq is our stage s guess about Θepxq, and θe,spxq indicates the error between Θe,spxq and Θepxq.

We need to satisfy, for every e, the requirements:

Ne : Θe does not compute x ÞÑ 1
2x in X,

where Θe stands for the eth computable operator as defined in Notation 2.4.21.
In the following, pIeqePN stands for some effective listing of disjoint computable closed subinter-

vals of r0, 1s. We ensure that for each strategy Ne and each hi, Ne is only allowed to modify hi on
the interval Ie. More specifically, when Ne requests for the interpretation of hi to be changed at
a stage s, we always ensure that hi,spzq “ hi,s`1pzq for every z R Ie. The requirements Ne all act
independently and at most once during the construction.

The detailed strategy for Ne is as follows. It will have its own witness, a rational p.l. function
we P X. The function we, when first defined at stage 2e, is equal to 16e on the interval Ie, is equal
to zero at the endpoints of r0, 1s, and is linear outside Ie.

Figure 2.1: Function hp,2e “ we

Let p be such that we “ hp,2e. The strategy Ne does nothing until it sees a computation Θe,sppq
where θe,sppq ą e (see Notation 2.4.21). If we have

sup
zPIe

ˇ

ˇ

ˇ

ˇ

1

2
hp,spzq ´ hΘe,sppq,spzq

ˇ

ˇ

ˇ

ˇ

“ sup
zPIe

ˇ

ˇhΘe,sppq,spzq ´ 8e
ˇ

ˇ ą 2´e`1,

then the strategy does nothing for the rest of the construction, and we win Ne simply because

sup
zPIe

ˇ

ˇhΘe,sppq,spzq ´ fpzq
ˇ

ˇ ď d
`

hΘe,sppq, f
˘

ă 2´e,

66

and thus

d

ˆ

1

2
hppzq, fpzq

˙

ě sup
zPIe

ˇ

ˇ

ˇ

ˇ

1

2
hppzq ´ fpzq

ˇ

ˇ

ˇ

ˇ

“ sup
zPIe

ˇ

ˇ

ˇ

ˇ

1

2
hp,spzq ´ fpzq

ˇ

ˇ

ˇ

ˇ

ě 2´e,

where f “ limsÑ8 hΘe,sppq. Thus we assume that at stage s we have

sup
zPIe

ˇ

ˇhΘe,sppq,spzq ´ 8e
ˇ

ˇ ď 2´e`1. (2.5)

The strategy Ne will then act as follows. Introduce a new interpretation hp,t as described below.
(Notice that hp,s is equal to hp,2e on the interval Ie, but not necessarily outside this interval.)
Choose a small sub-interval J of Ie satisfying the following: For all current interpretations hi,s and
hj,s of X introduced so far, we have:

(i) hi,s is linear within J , i.e., hi,s has no breakpoints residing in J .

(ii) There is no pair z1, z2 P J such that hi,spz1q “ 8e and hi,spz2q ‰ 8e.

(iii) If there is some z P J such that hi,spzq “ hj,spzq, then hi,s æ J “ hj,s æ J .

It is clear that J can be found effectively, since the construction has only looked at finitely many
interpretations so far. Hence, each hi,s, when restricted to J , is either strictly monotonic and does
not take the value 8e, or else it is constant on J . Furthermore, each pair hi,s and hj,s is either equal
or non-intersecting in the interval J .

Now pick z to be the midpoint of J . For every interpretation hi,s such that hi,s æ Ie is strictly
above 8e, we set hi,s`1pzq “ 8e, hi,s`1pmin Jq “ hi,spmin Jq, and hi,s`1pmax Jq “ hi,spmax Jq. We
linearly interpolate hi,s`1 within J and keep hi,s`1 “ hi,s unchanged outside J . This is illustrated
by Figure 2.2.

Figure 2.2: The modifications needed to get hi,s`1.

Notice that this action only modifies each hi,s on the interval Ie. It is also straightforward to
check the following:

Lemma 2.4.22. Distances between the approximations are preserved.

67

Proof. Fix i, j. We argue that dphi,s, hj,sq “ dphi,s`1, hj,s`1q. Let m “ |hi,spmin Jq ´ hj,spmin Jq|
and M “ |hi,spmax Jq´hj,spmax Jq|. Since there are no breakpoints of hi,s and hj,s in J , we clearly
have

sup
vPJ

|hi,spvq ´ hj,spvq| “ maxtm,Mu.

Therefore, it is sufficient to see that

sup
vPJ

|hi,s`1pvq ´ hj,s`1pvq| “ maxtm,Mu.

If both hi,s and hj,s are modified, then this last equality follows easily from the fact that for
every min J ď v ď z, we have |hi,spvq ´ hj,spvq| ď m, and for every z ď v ď max J , we have
|hi,spvq ´ hj,spvq| ďM . Suppose, on the other hand, that hi,s ‰ hi,s`1 and hj,s “ hj,s`1. Then for
every v P J we have

hi,spvq ě hi,s`1pvq ě 8e ě hj,s`1pvq “ hj,spvq.

So we also have that supvPJ |hi,s`1pvq ´ hj,s`1pvq| “ maxtm,Mu.

Lemma 2.4.23. Ne is satisfied.

Proof. If Ne never acts, it is clearly satisfied, so we assume it acts at stage s as above. Since no
approximation will ever be changed again within Ie after Ne acts, we have hppzq “ hp,s`1pzq “ 8e,
and

hΘe,sppqpzq “ hΘe,sppq,s`1pzq “ mint8e, hΘe,sppq,spzqu.

By Equation (2.5) we have hΘe,sppq,spzq ě 8e ´ 2´e`1 and so hΘe,sppqpzq ě 8e ´ 2´e`1 ą 7e. Now

since θe,sppq ą e we have fpzq ą 7e´ 2´e ą 6e ą 1
2hppzq. Hence f ‰ 1

2hp.

Construction. We fix an effective ordering of the N -requirements. At stage s of the construction,
we simply let the strategies of the first s requirements act according to their instructions. Next,
if we do not see lm among phi,sqiďs at stage s ě m, we pick the least n such that hn has no
approximation so far and set hn,s “ lm. This concludes the construction.

Verification. We first show that the global requirements are met. For (1), fix i, and let t be
the first stage at which hi receives its initial approximation (namely, hi,t). Let D be such that
}hi,t} “ dp0, hi,tq ă 8D. Only the strategies Ne where e ď D can possibly change the approximation
at a later stage. Furthermore, if t ą s is such that hi,t ‰ hi,s, then }hi,t} ď }hi,s}. Each N -strategy
acts at most once. Thus, there exists a stage after which hi will be set to its final value, and so
(1) is satisfied. By Lemma 2.4.22, (2) is also satisfied. Finally, (3) is satisfied because for each
lm, after a stage where N0, . . . , ND no longer act, where }lm} ă 8D, any fresh assignment of lm to
an hi must be stable. Finally, observe that h0,s is never modified during the construction, so the
interpretation of 0 is computable.

This finishes the proof of Theorem 2.4.20.

The computable Polish presentation phiqiPN of pCr0, 1s, dsupq constructed above has several nice
properties, which will be important later. A computable Polish presentation X of pM,dq is rational-
valued if dpx, yq P Q for every x, y P X, and the distance d is represented by a computable function

68

of two arguments mapping each pair of special points px, yq to the corresponding rational number
dpx, yq (represented as a fraction). We also say that two computable Polish presentations L and L1

of pM,dq are limit equivalent if there is a total computable function gpx, sq : L ˆ N Ñ L1 of two
arguments such that the sequence pgpx, sqqsPN is eventually stable on every x, and

fpxq “ lim
sÑ8

gpx, sq

is an isometric bijection of L onto L1, where the limit is taken with respect to the standard discrete
metric on N.

Recall that L “ pliqiPN denotes the effective sequence of all continuous piecewise linear functions
in Cr0, 1s with finitely many rational breakpoints. The proof presented above gives a slightly
stronger version of Theorem 2.4.20.

Theorem 2.4.24 (Melnikov and Ng [376]). There exists a rational-valued computable Polish pre-
sentation X on pCr0, 1s, dq which is limit equivalent to L, and such that the constant zero function
0 is computable in X but the operation ` is not.

In Chapter 10, we will discuss computably categorical Banach spaces, where Theorem 2.4.24
will find an application.

Of course, Cr0, 1s does have a presentation that computes `, and the same can be said about
all common separable Banach spaces that we are aware of. It is currently not known if there
exists a pathological Banach space that has a computable Polish presentation but does not have a
computable Banach presentation, up to isometry.

Question 2.4.25. Is there a separable Banach space that has a computable Polish presentation
(as a Polish space under dpx, yq “ ||x´ y||) but is not isometrically isomorphic to any computable
Banach space?

2.4.4 Exercises: Comparing presentations of spaces

Computable topological spaces

In several exercises, we will use the following classical definition found in [316, Def. 3.1] and [224,
Def. 3.1]. (See also Kalantari and Weitkamp [278], Korovina and Kudinov [315], and Spreen [482].)
We shall typically restrict the definition to Polish spaces; however, it makes sense for arbitrary
countably based spaces.

Definition 2.4.26. A computable topological presentation of a topological space M is given by a
sequence pBiqiPN of non-empty basic open sets of M and a computably enumerable set W such that

Bi XBj “
ď

tBk : pi, j, kq PW u,

for any i, j P N.
A computable topological presentation (of a compact space) is effectively compact if there exists

a c.e. enumeration of finite tuples xi1, . . . , iky such that Bi1 , . . . , Bik is a cover of the space.
A computable topological presentation is strong if the relation txi, jy : Bi X Bj “ Hu is com-

putable.

69

Note that Definition 2.3.11 of an effectively continuous map makes sense for computable topo-
logical spaces if we interpret Ui as basic open sets. Whenever we say that a function or a home-
omorphism between computable topological spaces is computable, we always interpret it using
the natural generalisation of Definition 2.3.11. In Lemma 4.2.9, we will see that this approach is
equivalent to the usual definition in the context of computable Polish spaces.

We will see that the notion of a computable topological space is, in general, too weak to be
of any significant use. Surprisingly, any countably based T0 space (effective or not in any sense
whatsoever) admits a computable topological presentation; this will appear as Exercise 4.2.105. On
the other hand, it appears that the most natural extra effectiveness conditions, such as effective
regularity or normality, allow one to produce an effective compatible metric (to appear as Exercises
4.2.24 and 4.2.26), which is, of course, complete in the locally compact case. This includes the case
of an effectively compact presentation (Exercise 4.2.41). For instance, in the effectively compact
case, the notion turns out to be too closely related to the notion of a computably compact space
to be of any significant advantage (Exercise 4.2.41). However, some of the elementary material
related to computable topological spaces is viewed as common knowledge, so we include it here,
and throughout the book, to inform the reader. The more interesting and difficult facts about such
presentations will appear as exercises in later chapters (e.g., Exercises 4.2.24–4.2.26, 4.2.41, 4.2.104,
4.2.105, 4.2.112, 5.2.28 and 9.4.16).

Exercise˝ 2.4.27 (Folklore). 1. Show that for every right-c.e. Polish space, the collection of
basic open balls

tBpxi, rq : xi spatial and r P Q`u, where Bpxi, rq “ ty PM : dpxi, yq ă ru,

forms a computable topological space (Def. 2.4.26). [Combined with Exercise 2.4.30, this al-
lows one to define a right-c.e. presentation of a Polish group to be a right-c.e. Polish space to-
gether with effectively continuous operations upon the induced computable topological space.
See also Exercises 2.4.29, 2.4.28, 4.2.112 and 5.2.28 for more about such presentations.]

2. Show that two non-homeomorphic spaces can have identical computable topological presen-
tations. [Hint: Take any computable Polish space and consider its dense subset.]

3. Show that the product of computable topological spaces is again computable topological.

4. Let f : X Ñ Y and g : Y Ñ Z be computable (i.e., effectively continuous) maps between
computable topological spaces. Show that their composition is also computable.

5. Say that a map f : X Ñ Y between computable topological spaces is effectively open if,
given a listing of an open set U Ď X (given by some basic open sets making up U), we can
uniformly produce a listing of fpUq. Prove that the composition of effectively open maps is
again effectively open.

Exercise 2.4.28 (Koh, Melnikov, and Ng [313]). Show that for a discrete countable group G, the
following are equivalent:

1. G is c.e. presentable.

2. G admits a right-c.e. Polish presentation under the discrete topology (in the sense of Exer-
cise 2.4.27(1)).

Conclude that there exists a right-c.e. Polish group with no computable Polish presentation.

70

Exercise 2.4.29 (Koh, Melnikov, and Ng [313]). A computable topological group is a computable
topological space (Def. 2.4.26) with group operations ¨ and ´1 that are effectively continuous. Show
that the operations are also effectively open, i.e., given enumerations of open sets U , V , we can list

U ¨ V and U´1; see also Exercise 2.4.27(5). (Hint: For the inverse, note that
`

U´1
˘´1

“ U . This
also makes the map px, yq Ñ x´1y effectively continuous. Enumerate all basic open B for which
there is some basic open A satisfying

AX U ‰ H and A´1 ¨B Ď V.

The union of all such B is actually equal to U ¨ V . If B is enumerated by the procedure above,
let a P A X U . For each b P B, we have b “ a ¨ a´1b P U ¨ A´1 ¨ B Ď U ¨ V , and so B Ď U ¨ V .
Conversely, let a P U and b P V . Since a´1 ¨ ab “ b P V , let A,B be basic open sets containing a
and ab respectively, such that A´1 ¨ B Ď V . Thus, B will be enumerated by the procedure above
and ab P B.)

Computable and recursive Polish spaces

For the next two exercises, recall the definition of a “recursive” Polish space from Section 1.3: A
recursive presentation of a Polish space is a dense subset pxiqiPN of the space so that the relations

P pi, j,m, nq if and only if dpxi, xjq ă
m

n` 1
;

Qpi, j,m, nq if and only if dpxi, xjq ď
m

n` 1

are computable relations on ω4.

Exercise˝ 2.4.30 (Folklore). Show that the three notions of computable presentability of a Polish
space introduced in Section 1.2.2 differ up to isometry. (Hint: Note that there is a left-c.e. real that
is not right-c.e., and a right-c.e. real that is not left-c.e. Consider the arc space r0, αs Ď R under
the usual metric. Show that r0, αs is isometric to a computable Polish space iff α is left-c.e., and
r0, αs is isometric to a computably compact space iff α is computable.)

Exercise˝ 2.4.31 (Gregoriades, Kispéter, and Pauly [223]). Show that there exists a discrete
computable Polish space not isometrically isomorphic to any “recursive” Polish space. (Hint: In
a recursive space, we can decide whether the distance between a pair of points is equal to a given
n P N. Build a discrete space. To diagonalise against the n-th potential recursive presentation,
introduce a pair of points xn and yn so that dpxn, ynq “ n` εn, where εn is small and is controlled
by us. To make sure it works up to isometry, make the pair 2n-far from the points xm, ym, m ă n.)

Exercise˝ 2.4.32 (Folklore; e.g., [223, 373]). Recall that in our definition of a computable Polish
space we did not require that xi ‰ xj when i ‰ j in the dense sequence pxiqiPN. Show that every
computable Polish space is computably isometric (via the identity map) to a computable Polish
space in which there are no repetitions in the dense sequence. (Hint: Do not put xi into your new
refined sequence unless it looks sufficiently separated from the points you have already put in your
sequence. If this never happens, then xi must be in the completion.)

Exercise˝ 2.4.33 (Gregoriades, Kispéter, and Pauly [223]). Show that every computable Polish
space is homeomorphic to a “recursive” space. (Hint: Assume the dense pxiqiPN sequence has no

71

repetitions and is infinite; see Ex. 2.4.32. It is sufficient to replace d with a new metric αd, where
α is a positive computable real such that αdpxi, xjq ‰ r for every rational r. Build α using a

Cantor-style direct diagonalisation so that α ‰
r

dpxi, xjq
.)

Exercise˝ 2.4.34 (Folklore; e.g., [197]). Let K be a class of at most countable structures in a
computable language (signature). Assume the domains of all structures are either ω or its initial
segment. Fix a computable Polish presentation of ωω given by the finite strings in ωăω and the
longest common prefix ultrametric (cf. proof of Lemma 2.4.5). Show that K can be associated with
a subset CpKq of “codes” in ωω in a way that the computable elements (paths) of CpKq are in a
uniformly effective 1-1 correspondence with the computable structures in K. (Hint: Use specifically
reserved levels of ωăω to code the values of the operations and relations on various inputs.)

Exercise 2.4.35 (Ceitin [82]). Extend Kreisel-Lacombe-Shoenfield-Markov Theorem 2.3.7 to com-
putable Polish spaces.

Computable Banach spaces

Exercise 2.4.36 (Pour-El and Richards [435], Chapters 4 and 5 therein6). Fix a computable
Banach space B. Say that a linear operator T : B Ñ B is effectively determined if there exists a
uniformly computable sequence of points peiqiPN such that the sequence pei, T peiqq is dense in the
graph of T (viewed as a subset of Bˆ B).

1. Show that every (Type II) computable linear operator is effectively determined.

2. Show that every effectively determined operator that is furthermore bounded (equivalently,
continuous) is computable.

3. Prove that there is an effectively determined linear operator on a computable Hilbert space
(of infinite dimension) that is not bounded7.

4. Show that for every self-adjoint effectively determined linear operator T on a computable
Hilbert space, the eigenvalues of T are computable reals.

5. Show that there exists a (Type II) computable self-adjoint linear operator on a computable
Hilbert space whose eigenvalues do not form a uniformly computable sequence8.

Exercise˚ 2.4.37 (Pour-El and Richards [435], Chapter 4). Show that there exists a computable
(indeed, compact) self-adjoint operator T : H Ñ H on computable Hilbert space H with the
following properties.

1. The number λ “ 0 is an eigenvalue of T of multiplicity one (i.e., the space of eigenvectors
corresponding to λ “ 0 is one-dimensional).

6While certain parts of this exercise are undoubtedly non-elementary, reworking these results based on [435] is
appropriate for a student.

7We remind the reader that exercises marked with a ˚ are either challenging or require some material not covered
in the book. Those marked with two stars are especially difficult and are included primarily to inform the reader.

8We remark that all these results do not actually depend on the choice of the computable presentation of the
infinite-dimensional Hilbert space H, since it is effectively unique up to computable linear isometry [435] (cf. Theo-
rem 10.2.2). (The same can be said about any finite dimension too.) Further, any sequence pei, T peiqq witnessing
that T is effectively determined gives a computable dense sequence peiqiPN in the space. Thus, at least in the case
of H, the choice of the sequence does not really affect the definition, and thus we are dealing with a very natural
analogue of Type I (Markov) computability for operators on H.

72

2. None of the eigenvectors corresponding to λ “ 0 is computable.

Exercise 2.4.38 (Brattka [58]). 1. Show that if T : X Ñ Y is a computable bijective (bounded)
linear mapping between computable Banach spaces, then T´1 is computable.

2. Show that this is not uniform in general.

3. Prove that, indeed, the inversion mapping T ÞÑ T´1 is not computable in the caseX “ Y “ `p,
where p ě 1 is a computable real number.

Exercise˚ 2.4.39. Fix a Lebesgue space U whose dimension is at least 2 and whose exponent is
p. Prove the following:

(1) Show that if p is a computable real, then the space has a computable Banach presentation.
(Hint: Use the classification of separable Lp-spaces that can be found in, e.g., [83].)

(2) Assume U has a computable Banach presentation (i.e., U is linearly isometric to some com-
putable Banach space). Show˚ that the exponent p is right-c.e. if it is smaller than 2, and
otherwise it is left-c.e. (Brown, McNicholl, and Melnikov [68]).

(3) Extend˚˚ (2) to show that when p ě 2 or when the space is finite-dimensional, then p has to
be a computable real (McNicholl [361]).

Exercise 2.4.40. Prove that there exists a right-c.e. presented Banach space B (i.e., so that
the norm is right-c.e.) which is additionally low, but so that B is not linearly isometric to any
computable Banach space. (Hint: Recall that `p Ă `q when 1 ď p ă q, and this is true because the
norms satisfy ||x||p ď ||x||q. Fix a right-c.e. low real p ą 2 given by Exercise 2.3.2 and consider `p.
It is given by the dense linear space of vector with rational coordinates and having finite support;
this is a right-c.e. presentation which is indeed also low. By Exercise 2.4.39(3), `p is not linearly
isometric to any computable Banach space. Note the same argument would work for a left-c.e. p
as well.)

Exercise˚ 2.4.41 (Bosserhoff [54]). Let X be a Banach space. A sequence pxiqiPN P XN is a
Schauder basis of X if, for all x P X, there exists a unique sequence of coefficients paiqiPN P RN such
that

ř8

i“1 aixi “ x. In his famous book [28], Banach asked if every separable Banach space has a
Schauder basis. Banach’s question was solved by Per Enflo [153], who proved that there exists a
separable Banach space with no Schauder basis.

1. Show that Enflo’s construction is, in fact, computable.

2. Prove that there exists a computable Banach space with a Schauder basis, but without a
computable Schauder basis.

Exercise 2.4.42 (Qian [437]). Let B be a computable Banach space with a computable Schauder
basis pbiqiPN (Exercise 2.4.41). Show that the projection functions Pi :

ř

i λibi ÞÑ λi are computable,
uniformly in i. [Hint: Take for granted the following classical theorem of Banach [28]: Let B be
a Banach space and pbiqiPN Ď B a sequence of nonzero elements. Then pxiqiPN is a basis of B iff:
(1) there exists a constant K P R such that for all n,m P N with m ă n, and for all sequences
of scalars paiqiPN, we have }

řm
i“1 aibi} ď K }

řn
i“1 aibi} , and (2) the finite linear span of pxiqiPN is

dense in B. Now suppose M ě K, an upper bound on the basis constant of pbiqiPN. Fix some x P B.
Search for some pβs`1

i qiďm P Qăω such that
›

›x´
řm
i“1 β

s`1
i ei

›

› ă εs`1 where εs`1 is a value such

73

that εs`1 ă 4´s´1{M and 2M
`

4´s´1{M ` εs`1

˘

ă 2´s´1. Noting that }Pi} ď 2M , and assuming
a finite sequence pβsi qi for s has already been found, we obtain that

›

›

›

›

›

ÿ

i

βs`1
i bi ´

ÿ

i

βsi bi

›

›

›

›

›

8

ď max
k

›

›

›

›

›

Pk

˜

ÿ

i

βs`1
i bi ´

ÿ

i

βsi bi

¸
›

›

›

›

›

ď max
k
}Pk}

`

4´s{M ` εs`1

˘

ă 2´s´1.

In particular, we have that for each fixed i, pβsi qiPN is a fast Cauchy sequence converging to Pipxq.
See also Exercise 2.4.44 below.]

Exercise 2.4.43 (Downey, Greenberg and Qian [122]). Show that if B is a computable infinite
dimensional Banach space, then there is a computable infinite dimensional subspace B̂ of B with a
computable Schauder basis (Exercise 2.4.41).

Exercise˚ 2.4.44 (Pour-El and Richards [435]). Let X,Y be computable Banach spaces, and
let peiqiPN be a computable sequence in X whose linear span is dense. Let T : X Ñ Y be a
linear operator with closed graph whose domain contains tei : i P Nu and such that the sequence
pT peiqqiPN is computable in Y. Then T maps every computable element of its domain onto a
computable element of Y iff T is bounded.

2.4.5 Historical remarks˚

It was reasonably natural to extend early work on computable analysis (which was mostly com-
putable calculus) to computable metric spaces, and Ceitin [82] is one early example. It is fair to say
that the spaces with the most developed theory are computable compact spaces and computable
Banach spaces [435, 56]. The study of computable separable spaces, especially Banach spaces, has
attracted considerable interest, eventually culminating in books such as [1, 505, 435]. The system-
atic theory of computably compact spaces is a much more recent development, but it has been
increasingly popular in recent years, recently culminating in the two large surveys [270, 139], which
contain numerous results, proofs, and proof sketches. As assayed in Metakides and Nerode [385],
many of these foundational results recycle some of the earlier theorems in constructive analysis
presented in, e.g., Bishop [48]. However, more advanced results require more sophisticated tech-
niques, including the priority method. The theory of computable Polish groups is a very recent
development [375, 373], and this book is the first to present it comprehensively.

A historical curiosity is that for many decades, computable analysis had essentially been devel-
oping independently of the theory of countable computable structures. Only in the last decade,
beginning with [369, 268], has there been a line of systematic investigations aiming to unite com-
putable algebra and the theory of separable spaces; work in this direction is still ongoing. (See
[94, 68] and the survey [138].) The main motivation of such investigations is that many aspects of
these two theories are not really that different. As a result (as we will see in the present book),
methods and results of one can be applied to the other and vice versa.

Later in the book, we will also use the classical notion of a simplicial complex. The algorithmic
content of the topology of simplicial complexes is a classical field of study that is closely related to
group theory. For instance, Adyan [3, 4] and Rabin [438] showed that it is undecidable to determine
if two given finitely presented groups are isomorphic. Soon after, Markov [352] used these results
to show that it is undecidable whether two compact manifolds of dimension n ě 4, given as finite
simplicial complexes, are homeomorphic. Markov computably transformed a finite presentation of

74

a group xX|Ry into a simplex MxX|Ry homeomorphic to an n-manifold with fundamental group
xX|Ry, so that

xX|Ry – xY |Sy ðñ MxX|Ry –hom MxY |Sy.

This reduces the isomorphism problem for group presentations to the homeomorphism problem
for simplices representing n-manifolds, showing that the latter problem is also undecidable. For
n ď 3, the homeomorphism problem for manifolds, presented as finite simplicial complexes, is
decidable because of classification theorems; for n “ 3, this uses the work of Perelman on Thurston’s
geometrisation conjecture (see [322]). For more results, see [430].

One of our goals in the book is to partially extend these ideas of Markov and others to Polish
spaces that do not admit a triangulation, or perhaps are not even compact. To do so, we will use
methods of algebraic topology, more specifically, Čech cohomology, in one of our proofs. This idea
of using Čech cohomology first appeared in [341] and was then simplified and clarified in [139].
It is worth noting that much of classical algebraic topology is intrinsically computable. This is
made explicit in [412] for simplicial (co)homology and in [31] for integral (co)homology of finitely
generated groups. However, applications of algebraic topology in computable analysis are still rare.
It was pioneered by Miller in [391] for the special case of the n-sphere. The effective content of
algebraic topology and homological algebra has not yet been systematically explored.

2.5 What’s next?

To proceed, we must develop additional methods, especially priority techniques. In the next chapter,
we temporarily abandon computable analysis and the “actual” algebra (groups, fields, etc.) and
develop a sufficient technical apparatus in the purely combinatorial context of Turing degrees and
countable linear orders. We will return to separable spaces later, when we discuss Boolean algebras,
where these techniques and results established for linear orders will find applications to Boolean
algebras and their Stone spaces.

75

Chapter 3

Priority constructions and
computable linear orders

The main goal of this chapter is to establish the following result, which will be used to prove Feiner’s
Theorem A (1) in the next chapter.

Theorem (Fellner [164], Watnick [502]). There is a uniform procedure which, given a ∆0
3-

presentation of an infinite linear order L, outputs a computable copy of Z ¨ L.

All definitions will be clarified in due course. A detailed proof of the Fellner-Watnick Theorem
will be given in §3.2.6, where it will also be put into context. (Indeed, the original motivation
behind proving the theorem was essentially unrelated to Feiner’s Theorem A (1).)

We will need a lot more background in pure computability theory than was sufficient in the
previous chapter. The chapter is divided into two sections:

1. Section 3.1 provides a brief introduction to the priority method. It includes the proofs of
classical results in degree theory that are traditionally used to explain and demonstrate the
priority techniques.

2. Section 3.2 applies the techniques explained in Section 3.1 to computably and c.e. presented
linear orders. It culminates with two substantially different detailed proofs of the Fellner-
Watnick Theorem.

The results presented in this chapter are many decades old and have been included in many
excellent books and surveys. Thus, we often choose to give a friendly extended sketch (where
appropriate) instead of giving a stage-by-stage construction and its verification in gory detail. We
expect that the reader should be able to fill out the missing formal details if needed. But, of course,
we shall give a complete and detailed proof of the main result of the chapter stated above.

76

3.1 Priority techniques

Computably enumerable sets lie at the core of classical computability theory. The original impetus
for computability theory was the study of effective processes in mathematics, seeking tools to show
that, for instance, no algorithm can solve Hilbert’s Entscheidungsproblem [252] (the problem of
algorithmic decidability for first-order logic), nor is there one to solve Dehn’s fundamental group
theory problems, including the word, conjugacy, and isomorphism problems [109]. The original
undecidability proofs tended to encode Turing machines into the problem at hand. Authors did
not study properties of computability by abstracting away from a specific context. Nonetheless, it
is evident that the use of effectively generated undecidable sets, such as the halting problem, was
implicit in all the early foundational papers. Post’s highly influential paper [431] pioneered the idea
that computability could be studied separately by removing the context and examining the sets, as
well as the processes generating those sets, themselves. In the words of Soare [477, p.ix]:

“Post [431] stripped away the formalism associated with the development of recursive
functions in the 1930’s and revealed in a clear informal style the essential properties of
r.e. sets and their role in Gödel’s incompleteness theorems.”

This idea of abstracting essential properties from applied contexts is not new and permeates math-
ematics; consider group theory, ideal theory, linear algebra, etc. As we can see, this idea is also
essential to our book. We will take some time to develop the basic tools and machinery related to
computably enumerable sets and degrees in isolation from algebra, analysis, or topology.

The main goal of this section is to accumulate enough techniques to prove two classical results
that we will state shortly. For the first result below, recall that a set A ď H1 is called low if
A1 ďT H

1.

Theorem 3.1.1. There exists a c.e. non-computable low set.

The theorem is considered folklore; see [477, Theorem VII.1.1]. The proof of Theorem 3.1.1 is based
on the methods used in the proof of Friedberg-Muchnik Theorem 3.1.21, which we also include.
In Section 2.2, we already discussed one application of Theorem 3.1.1 to effective presentations of
groups. Recall that Proposition 2.2.5 and Theorem 2.2.6 were established by “coding” a c.e. set W
into a group GW . This allowed us to separate the construction of the set from the definition of the
respective group.

Unfortunately, it is often essentially impossible to separate the computability-theoretic combi-
natorics of sets and degrees from algebra using a coding technique. As a result, even in the context
of linear orders, the use of more advanced priority techniques applied directly to the structure often
seems inevitable. While certainly not always unavoidable, the infinite injury method is often the
first line of attack, and the brute-force proofs using this method tend to be more flexible (i.e., easier
to modify) than the “clever” proofs that avoid infinite injury.

It will be instructive to see the technique applied in the pure setting of sets, without any
irrelevant combinatorics specific to the class of linear orders. Perhaps the most transparent and
clear application of the infinite injury machinery known to us is the modern proof of the following
result due to Lachlan [325] and Yates [513].

77

Theorem 3.1.2. There exists a minimal pair of non-computable c.e. sets.

(Non-computable c.e. sets A and B form a minimal pair if for all sets C, if C ďT A,B, then C is
computable.)

We shall also present several classical results, such as Sacks’ Splitting Theorem 3.1.34, that fit
well into the story and will also help the reader to understand the priority technique. The finite
injury of unbounded type used in the proof of Sacks’ Splitting Theorem will be implemented in
the description of computably categorical linear orders. Another classical result, the Friedberg
Enumeration Theorem 3.1.43, which requires a “degenerate” infinite injury, will be important in
Chapter 9 of the book.

3.1.1 The Limit Lemma and injury-free approximation

We use the notions and notation introduced in Section 2.1. For instance, we shall use the notation
0pnq, Hpnq, K0, ďm, ďT , Σ0

n, ∆0
n, Π0

n, ΦpA; xq Ó without further clarification. We use ΦpA;xq and
ΦApxq interchangeably. In this section we write ΦpAq to mean pΦApnqqnPN, in which case we usually
(implicitly) assume ΦApnq P t0, 1u whenever defined. We also write A æ m for t0, 1, . . . ,m´1uXA.

The Limit Lemma

We identify sets with their characteristic functions; for instance, Apxq “ 1 is the same as saying
that x P A. Also, if g is a total function in two arguments and |ts : gpx, sq ‰ gpx, s ` 1qu| ă 8,
then we say that lims gpx, sq exists and is equal to the value z such that z “ gpx, sq for infinitely
many s. Recall the use principle (Lemma 2.1.21).

Lemma 3.1.3 (Shoenfield’s Limit Lemma [466]). A ďT K iff there is a computable function
gp¨, ¨q such that, for all x,

1. lims gpx, sq exists;

2. lims gpx, sq “ Apxq.

Proof. pñq Suppose A ďT K so that for some procedure Φe, we have ΦepKq “ A. Define gpx, sq “ 0
if Φe,spKs; xq Ò or Φe,spKs; xq Ó‰ 1 and gpx, sq “ 1 otherwise, where K “ YsKs is some computable
enumeration of K. Given x, let u “ upΦepK; xqq. Let s “ spxq be any stage where Ks æ u “ K æ u.
Let t ě s be the least stage such that Φe,tpK; xq Ó. As Kt æ u “ Ks æ u “ K æ u, we have, by the
use principle, Φe,tpK; xq “ Φe,tpKt; xq “ Φe,qpKq;xq “ ΦepK; xq for all q ě t. Then for all q ě t,
gpx, tq “ gpx, qq “ Apxq by definition.
pðq Suppose such a function g exists. Without loss of generality, we can assume that gpx, 0q “ 0

for all x. We construct a computably enumerable set B and a reduction Γ so that ΓpBq “ A. Then
A ďT K since B is c.e. (see Section 2.1). Put xx, ny into B iff

|ts : gpx, sq ‰ gpx, s` 1qu| ě n.

78

The reduction Γ is then defined as follows: on input x, compute the least n such that xx, ny R B.
Then x P A iff n is odd (since gpx, 0q “ 0, by assumption).

Intuitively, in the pðq part of the above proof, K was used to decide whether

pDsqpgpx, sq ‰ gpx, s` 1qq

and hence, computably in K, calculate the limit of gpx, sq. Such arguments can be made formal
using the s-m-n Theorem 2.1.6. We will see a similar use of 01 very shortly in the proof of Theorem
3.1.14, where the use of the s-m-n Theorem will be clarified. In the literature, similar details are
often completely omitted, and we shall typically omit these details as well.

As we have seen, we can relativise results, definitions, and proofs in computability theory. For
instance, the Limit Lemma above relativises to show that A ďT KB iff there is a B-computable
function fpx, sq such that Apxq “ lims fpx, sq for all x. Combining this with induction, we get the
following generalisation of the Limit Lemma 3.1.3.

Corollary 3.1.4. Suppose that n ě 1. Then, A ďT H
pnq iff there is a computable function g of

n` 1 variables such that for all x,

Apxq “ lim
s1

lim
s2
. . . lim

sn
gpx, s1, s2, . . . , snq.

We also have the following useful fact characterising the arithmetical degrees.

Theorem 3.1.5 (Folklore). Suppose that n ě 0.

(i) B is Σ0
n`1 iff B is c.e. in some Σ0

n set if and only if B is c.e. in some Π0
n set.

(ii) Hpnq is Σ0
n-complete, in the sense that Hpnq is Σ0

n and for all Σ0
n sets B, B ďm H

pnq.

(iii) B is Σ0
n`1 iff B is c.e. in Hpnq.

(iv) B is ∆0
n`1 iff B ďT H

pnq.

Proof. (i) This is essentially Theorem 2.1.27. If B is c.e. relative to some Π0
n set D, then for some e,

x P B iff Ds Dσ Ă D px PWσ
e,sq.

Now since x P Wσ
e,s is a computable property, the result follows since the property σ Ă D is ∆0

n`1

and hence Σ0
n`1, as it is a combination of Σ0

n statements (asserting that certain things are in D)
and Π0

n statements (asserting things outside of D).
(ii) This follows by induction (exercise).
(iii) By (i) and (ii).
(iv) Note that B is ∆0

n`1 if and only if B and B are both Σ0
n`1, and hence c.e. in Hpnq by

(ii). If a set and its complement are both c.e. in X, then they are computable in X, and hence
B ďT H

pnq.

The result above can be relativised to any oracle X. For that, define classes ΣXn and ΠX
n (also

denoted Σ0
npXq and Π0

npXq or sometimes Σ0,X
n and Π0,X

n) using X-computable relations in place
of computable relations as the base. The jump operator correlates very nicely with levels of the

relativised hierarchy. For instance, it follows from the theorem above that ∆H
pmq

n “ ∆0
n`m and

ΣH
pmq

n “ Σ0
n`m, and similarly for ΠH

pmq

n .

79

Remark 3.1.6. This correspondence between classes is also uniform, in the sense that given an

index of a set in ΣH
pmq

n , we can uniformly and effectively produce its index (its description) as a

member of Σ0
n`m, and vice versa. (Similarly for ΠH

pmq

n .)
For instance, if S “ dom ΦpH1; e, xq, then

x P S if and only if Da@bRpfpeq, a, b, xq,

whereR is a computable predicate and f is a total computable (indeed, primitive recursive) function.
Informally, the primitive recursive function f simply turns a description of Φ into a description of
R, but it does not actually need to have access to the oracle. The proof uses a careful analysis of
the iterated Limit Lemma; we omit it and refer the reader to Rogers [454].

Movable markers and m-completeness

Note that in Theorem 3.1.5(ii), we can replace Σ0
n and Hpnq with Π0

n and Hpnq, and the result
would still hold. We can further extend Theorem 3.1.5(ii). To do so, we shall define the notion of

Σ0
n- and Π0

n-completeness for an arbitrary set, not just Hpnq (respectively, Hpnq).

Definition 3.1.7. If C is a class of sets, we say that B is C-complete if B is in C and, for any A
in C, we have that A ďm B. If we do not require that B is in C, then we say that B is C-hard.

It is usually assumed that the reduction used to witness completeness (or hardness) is the m-
reduction, but occasionally other reductions are used as well; for instance, one may wish to use
ďwtt, as defined in Exercise 3.1.9.

The theorem below is folklore. The standard movable markers technique used in its proof will be
quite useful in applications to structures (e.g., Theorem 3.2.11 in the next section). This technique
will be useful in later chapters too, especially in Chapter 5. The movable markers technique is a
precursor to the finite injury technique, and indeed, some of the simplest finite injury proofs are
perhaps best viewed as dynamic approximation proofs using movable markers.

Theorem 3.1.8. (i) Fin “ tx : domϕx is finiteu is Σ0
2-complete.

(ii) Tot “ tx : ϕx is totalu and Inf “ tx : domϕx is infiniteu are both Π0
2-complete.

(iii) Cof “ tx : domϕx is cofiniteu is Σ0
3-complete.

Proof. We prove (i). We know that K 1 is Σ0
2-complete. By the s-m-n Theorem 2.1.6, we have a

computable function f such that

ϕfpxqpsq Ó iff Dt ě s pΦKtx,tpxq Ò,

where pΦ behaves exactly like Φ, except that it automatically Ò for at least one step if the use on
argument x changes from stage t´1 to t. Then fpxq is in Fin iff x P K 1. The proof of (ii) is similar
and is omitted.

80

We outline a proof of (iii) that uses the movable markers technique. Suppose that S P Σ0
3.

Thus, there is a computable relation Rpx, y, s, tq such that for all x,

x P S if and only if Dy@sDtRpx, y, s, tq.

Using Exercise 2.1.30, replace this computable relation with another computable relation P such
that

x P S if and only if DyD8zP px, y, zq.

Given x, we shall (uniformly in x) build a computable function fx such that

dom fx is cofinite if and only if DyD8zP px, y, zq.

Our construction will be effective in x, and we will appeal to the s-m-n Theorem 2.1.6 to conclude
that, for some total computable g,

fx “ ϕgpxq,

and this g will be the function witnessing the Σ0
3-completeness of Cof.

At stage s, we will have N “ YyPNIy,s, where each Iy,s is an interval of the form

Iy,s “ rmy´1,s,my,ss,

so that m´1,s “ 0 for all s, and my,0 “ y for all y. At stage s, the values of my,s`1 will be
determined in the construction using P and the previous values my,s. These values will be the
“movable markers” mentioned earlier. For every s, we shall additionally have

my,s`1 ě my,s,

so the “markers” can only be “moved” to a larger value.
We shall move my,s only if one more z is discovered for y (at stage s) such that P px, y, zq holds;

if this happens, we say that P “fires” for y via z (at stage s). In this case, we shall “move” all the
“markers” mv,s (v ě y) by setting

mv,s`1 :“ mv`1,s

for all v ě y. We shall also declare fx,s`1pmy,sq Ó“ 1, but we shall keep fx,s`1pma,s`1q Ò for all
ma,s`1, a P N. Note that, by induction,

pmy´1,s`1,my,s`1q Ď dom fx,s`1,

for every y and s.
If, for some y, the predicate “fires” infinitely often, i.e. DyD8zP px, y, zq, then assume y is the

least such. In this case, we see that for all v ă y, limsmv,s “ mv ă 8 exists, while for all w ě y,
limsmv,s “ 8. In particular, Iy will be cofinite, making domfx also cofinite.

Otherwise, if @yDă8zP px, y, zq, we will have that limsmv,s “ mv ă 8 for all v P N. In this case,
we shall end up with infinitely many finite intervals Iy, one for each y. The function will remain
undefined on all the boundary points my, making the complement of its domain infinite.

81

Exercises

Exercise˝ 3.1.9. We say that A ďwtt B (where wtt stands for “weak truth table”) if there is a
Turing functional Φ and a computable f such that ΦB “ A and for each x, the use ϕBpxq ă fpxq.
Show that A ďwtt H

1 iff there are computable functions h and f , such that, for all x, Apxq “
lims hpx, sq and |ts : hpx, s` 1q ‰ hpx, squ| ă fpxq.

Exercise˝ 3.1.10. Prove that the index set K1 “ te : We ‰ Hu is Σ0
1-complete.

Exercise˝ 3.1.11. Prove that the index set Disjoint = txe, iy : We XWi “ Hu is Π0
1-complete.

Exercise˝ 3.1.12 (Rogers). Prove that the index set Comp = te : We is computable u is Σ0
3-

complete.

Exercise˝ 3.1.13. A property P is called computably invariant if, given any computable bijection
f : ω Ñ ω, A Ă ω has P iff fpAq has P . For example, being c.e. is computably invariant. Show
that being an index set is not computably invariant.

3.1.2 The finite extension method

The finite extension method is a somewhat blunt tool, but it is a good place to start. One can
view this method as the purely set-theoretic version of the injury-free diagonalisation that we have
already encountered in the proof of Theorem 2.4.20. The idea is that we build our set step by step,
as a sequence of its initial segments, satisfying a list of requirements. The construction does not
actually have to be computable, and thus the resulting set will also typically be non-computable.

Recall that Rice’s Theorem 2.1.12 showed that all index sets are of degree ě 01. In 1944,
Post [431] observed that all then known computably enumerable problems had the property that
they were either of Turing degree 0 or 01. He posed

Post’s Problem. Does there exist a c.e. degree a with 0 ă a ă 01?

As we see in the next section, Post’s Problem was finally solved by Friedberg [181] and Much-
nik [409] using a new and ingenious method called the priority method; this is Theorem 3.1.21. The
method used to solve this question was an “effectivisation” of an earlier finite extension method
discovered by Kleene and Post, the priority method.1 Kleene and Post proved the following.

Theorem 3.1.14 (Kleene and Post [303]). There exist degrees a and b both below 01 and such that
a|b. (That is, they are incomparable.)

Proof of Theorem 3.1.14. We construct A “ limsAs and B “ limsBs in stages, and meet the
requirements below for all e P N:

R2e : ΦepAq ‰ B, R2e`1 : ΦepBq ‰ A.

Note that if A ďT B, then there must be some procedure Φ with ΦpBq “ A. Hence, if we meet
all the Rn, then A ęT B since we meet all the R2e`1 requirements. Similarly, B ęT A since we
meet all the R2e requirements. Thus, A and B will have incomparable T -degrees. The fact that
A,B ďT H

1 will come from the construction and will be observed at the end.

1It is possible to solve Post’s problem without a priority argument; see Downey and Hirschfeldt [125]. The
methods used there are more difficult than the priority method.

82

The argument is a finite extension one in the sense that at each stage s we specify a finite
portion of A, namely As, and a finite portion Bs of B. Both As and Bs will be specified as strings
of length ď ts for some parameter ts inductively defined in the construction. The key invariant is
that for all stages u ě s, As ĺ Au and Bs ĺ Bu, where X ĺ Y means that (the finite binary string
coding the characteristic function of) X is an initial segment of Y .

Thus, in a finite extension argument, after stage s we can only extend the portion of A (or B)
we have specified so far. Or, to put it another way, at a later stage, we cannot change the sets on
anything we have so far specified.

Construction.

Stage 0. Set A0 “ B0 “ λ (the empty string). Set t0 “ 0.

Stage 2e`1. (Attend R2e.) We will have specified A2e, B2e, and t2e at stage 2e. Pick some number
x, called a witness, with x ą t2e, and see if there is a string τ extending A2e such that

Φepτ ;xq Ó .

If such a τ exists, choose the first such τ and set A2e`1 “ τ . For all q with q ď x, set

B2e`1pqq “

$

’

&

’

%

B2epqq, if q ď maxtz : z P B2eu,

1´ Φepτ ;xq, if q “ x,

0, otherwise.

Set t2e`1 “ maxtx, |τ |u. If no such τ exists, then set A2e`1 “ A2e, B2e`1 “ B2e, and t2e`1 “ x
(which is ě t2e ` 1).

Stage 2e` 2. (Attend R2e`1.) Proceed as we did in stage 2e` 1, except with the roles of A and B
reversed.

End of Construction.

Verification. To verify the construction, we prove that we meet Rj for all j, and in fact, we meet
Rj at stage j ` 1. This is proven by induction on j. First, note that for all n, tn`1 ą tn. We
suppose that we have met Rj for all j ă n by stage n, and the parameter tn is so large that it
will protect all the computations for j ă n. Without loss of generality, n “ 2e. Now, at stage
n ` 1, there are two cases to consider. If there is a τ extending An with Φepτ, xq Ó, our action
is to adopt τ as our next An`1 and cause ΦepAn`1;xq ‰ Bn`1pxq. We will then set tn`1 to be
large enough that for all n1 ě n, for all z with z P upΦepAn`1;xqq, An1pzq “ Anpzq, and hence
ΦepA;xq “ ΦepAn`1;xq ‰ Bn`1pxq “ Bpxq. The other case is that no such τ exists. Then, since A
is an extension of An, it can only be that ΦepA;xq Ò, and hence in either case, we meet Rn.

Finally, we argue that A,B ďT H
1. Notice that the construction is in fact fully computable

except for the decision as to which case we are in at stage n. There, we must decide if there is some
τ with a convergent computation. For instance, at stage 2e` 1, we must decide

Dτ, srA2e ĺ τ ^ Φe,spτ ;xq Ós.

83

This is a Σ0
1 question uniformly in x, and hence can be decided by H1. Specifically, use the s-m-n

Theorem 2.1.6 to construct a computable function ϕspxf,σ,xyq such that for all z, ϕspxf,σ,xyqpzq “ 1
if Dτ, srσ ĺ τ ^ Φf,spτ ;xq Ós and ϕspxf,σ,xyqpzq Ò otherwise. Then

Dτ, srσ ĺ τ ^ Φf,spτ ;xq Ós

if and only if spxf, σ, xyq P H1.

We again remark that the reasoning at the end of the above proof is quite common: H1 can
answer any ∆0

2 “ Σ0
2 XΠ0

2-question and hence any Σ0
1- and Π0

1-question. We also note that neither
A nor B constructed above can possibly be finite, even though we did not explicitly ensure that
they were infinite. (But of course, we could always extend the sets at the stages when no τ exists
arbitrarily.)

A slightly more subtle application of the finite extension argument is the following. We say that
a pair of degrees a,b ‰ 0 form a minimal pair if c ă a,b implies c “ 0. That is, the infimum
a^ b “ 0.

Theorem 3.1.15 (Kleene and Post [303]). Given a ‰ 0, there exists b ‰ 0, such that a and b
form a minimal pair.

Extended sketch. We will be given A of degree a. We need to meet the requirements

Re,i : ΦAe “ ΦBi “ f total, implies f computable.

We construct B using the finite extension method. Suppose that we have constructed Bs and dealt
with Re1,i1 for xe1, i1y ă s, and s “ xe, iy. We ask,

”Do there exist t, x, and σ with σ extending Bs, and ΦAe,tpxq Ó‰ Φσi,tpxq Ó?”

If so, we let Bs`1 “ σ. If not, Bs`1 “ Bs. If we can find such parameters, we force ΦAe ‰ ΦBi .
If we cannot and ΦAe “ ΦBi is total, then it must be computable, since for any x, we simply start
computing Φσi,tpxq for all σ of length ď t and t ě s and Bs ĺ σ. We know one will halt by totality

and it must be the correct answer. This is a computable method of evaluating ΦBi pxq “ ΦAe pxq.

The reader should note that in the proof above, B ďT A
1.

Exercises

Exercise˝ 3.1.16. A set is called immune if it is infinite and has no infinite c.e. subsets.

1. Use the finite extension method to construct an immune set A ďT H
1.

2. Suppose that A is an immune set and a P A. Show that there is no computable permutation
p of ω with ppAq “ Aztau.

3. A set B is called bi-immune if both B and B are immune. Construct a set B ďT H
1 which

is bi-immune.

Exercise˝ 3.1.17. A set A is called low if A1 ”T H
1. Use the finite extension method to construct

A ďT H
1 such that A is non-computable and low.

84

Exercise˝ 3.1.18. A set A is called autoreducible if there is a Turing functional Φ such that for
all x,

Apxq “ ΦpAztxuqpxq “ Apxq.

That is, for each x, A can determine if x P A, without using x in any query to itself. For example, a
complete theory T has this property since, for each (code of) a sentence x, x P T iff x R T . Using
the finite extension method construct a set A ďT H

1 which is not autoreducible.

Exercise 3.1.19 (Friedberg Completeness Criterion and lown sets; Friedberg [180]).

1. Suppose X ěT H
1. Show that there exists a set A such that A1 ”T X ”T A‘H

1.

2. Use the first part to construct a set B which is low2 and not low. That is, B2 ”T H
2, and

B1 ąT H
1.

Exercise 3.1.20 (Jockusch and Shore [272]). Using the techniques of the previous question, show
that for any e P N and any X ěT H

1, there is a set A such that A‘WA
e ”T A‘H

1 ”T X. (Note
that the previous question is the special case with WA

e “ A1.)

3.1.3 Post’s problem and the finite injury method

A more subtle generalisation of the finite extension method is the priority method. We begin by
looking at the simplest incarnation of this elegant technique, the finite injury priority method. This
method is somewhat like the finite extension method but with backtracking.

The idea behind this method is the following. As an illustration, let’s reconsider Post’s Problem
that asks for incomplete c.e. degrees. In the result below, we will construct c.e. sets A and B with
incomparable Turing degrees. We need to satisfy the requirements

R2e : ΦepAq ‰ B,

R2e`1 : ΦepBq ‰ A,

but this time we are not allowed to use an oracle in the construction.
Each requirement picks a follower x which it intends to use for diagonalisation and initially

keeps it out of the respective set (say, B). It seems that we need to know the answer to

“Does τ with Φτe pxq Ó exist or not?”

to decide which strategy to pursue. But the idea is that we first guess that no such τ exists for our
witness x. This means that nothing is really done for the sake of R2e, save keeping x R Bs, unless
we see a stage where some τ ĺ As exists. If such a stage occurs, then we will try to make A extend
τ and win as before by putting x into B if necessary. So whatever case occurs, we will win.

However, this change can potentially affect the computation of some other R2e1`1. The require-
ment R2e1`1 may have already found its computation, put y into A, and wants to preserve the
computation of Φe1 on Bs. However, it is possible that x ď upΦe1pBs; yqq. If Re enumerates x into
Bs, it will “injure” R2e1`1, in the standard terminology.

To make sure that every requirement is eventually met, we put a “priority ordering” on them
and will allow Rj to injure Ri if Rj has higher priority than Ri. In our case, if j ă i. If Ri is
injured at stage s, then we will “initialise” the requirement Ri; i.e., we will restart its strategy by
picking a new large follower.

We now turn to the formal proof of the Friedberg-Muchnik Theorem.

85

Theorem 3.1.21 (Friedberg [181], Muchnik [409]). There exist c.e. sets A and B such that A
and B have incomparable Turing degrees.

Proof. We build c.e. sets A “ YsAs and B “ YsBs and satisfy the requirements below.

R2e : ΦepAq ‰ B,

R2e`1 : ΦepBq ‰ A.

The strategy for a single Rj. We begin by looking at the strategy for a single Rj . Without loss of
generality let j “ 2e.

(i) Initially, we will pick a new fresh number x “ xpjq to follow Rj . This number is targeted for
B, and of course, we have x R Bs.

(ii) We wait for a stage t ą s to occur with Φe,tpAt;xq Ó“ 0 “ Btpxq. If stage t does not occur
then we must have ΦepA;xq ‰ Bpxq.

(iii) Should stage t occur, set At`1 “ At, and put x into Bt`1 ´Bt, causing

Φe,t`1pAt`1;xq “ 0 ‰ 1 “ Bt`1pxq “ Bpxq.

In the construction, we will protect this computation with priority j “ 2e.

Note that when we take action (iii), we might injure R2e1`1 if x ď upΦe1,tpBt;x
1qq, which is the

use of the computation Φe1,tpBt;x
1q.

Definition 3.1.22. We say that Rj requires attention at stage s if j is least such that one of the
following pertains:

(1) Rj has no follower at stage s.

(2) Rj has a follower xpj, sq at stage s and furthermore, supposing that j “ 2e,

Φe,spAs;xpj, sqq Ó“ 0 “ Bspxpj, sqq.

(If j “ 2e` 1, then we reverse the roles of A and B.)

Construction.

Stage 0. Set A0 “ B0 “ H.

Stage s ą 0. Find the least j with Rj requiring attention. We suppose that j “ 2e without loss of
generality. Adopt the appropriate case below.

(1) Pertains. Find a number x larger than any number seen so far in the construction and
appoint xpj, sq “ x. Initialise all Rj1 with j1 ą j. That is, cancel all followers associated with
Rj1 .

86

(2) Pertains. Initialise all Rj1 for j1 ą j. Set As “ As´1 but set Bs “ Bs´1 Y txpj, squ.

End of construction.

Verification. We prove by induction on j that

(a) each Rj receives attention only finitely often,

(b) lims xpj, sq “ xpjq exists,

(c) Rj is met.

For an induction, assume (a), (b), and (c) hold for all j1 ă j. Let s0 be a stage good for j: that
is, for all s ě s0 and all j1 ă j,

paq1 Rj1 does not require attention at stage s, and
pbq1 xpj1, sq “ xpj1, s0q.

Choose s0 to be minimal such. (Indeed, it would be enough to fix s0 so that Rj1 (j1 ă j) will
not require attention after s0.) It can only be that Rj receives attention via (i) at stage s0` 1, and
is appointed a large fresh follower x “ xpj, s0 ` 1q. By the choice of s0, x is never cancelled: the
only requirements that could cancel x are Rj1 for j1 ă j. There are two possibilities.

The first is that (2) never pertains (with x). In this case, there is no stage t ą s0 ` 1 with
Φe,tpAt;xq Ó“ 0 “ Btpxq. This means that either ΦepA;xq Ò or ΦepA;xq ‰ 0 “ Bpxq. In either case,
we win.

The second case is that (2) pertains to Rj at some stage s ą s0 ` 1. In this latter case, we act
to cause a disagreement at stage s, namely

Φe,spAs;xq “ 0 ‰ 1 “ Bspxq.

Now since we initialise all Rk for k ą j, and new followers are always appointed large and fresh, it
follows that this stage s disagreement is permanent.

In either case, Rj only receives attention at most twice more after stage s0, and is met. Fur-
thermore, xpj, s0 ` 1q “ xpj, tq “ xpjq for all t ą s0. This concludes the induction and, hence, the
proof of the Friedberg-Muchnik Theorem.

We remark that the above proof is an instance of the simplest of all finite injury arguments,
as it is an example of what is called “bounded injury” in the sense that we can put a computable
upper bound in advance on the number of injuries that Rj can possibly have. In this case, the
bound is 2j ´ 1.

3.1.4 Low c.e. sets

We have accumulated enough techniques to prove the main result of this subsection. Recall that
a set A is low if A1 ďT H

1. (Since A ďT A1, then necessarily A ďT H
1.) We are ready to prove

Theorem 3.1.1 that says that there exist c.e. non-computable low sets. We give two proofs. As far
as we know, the first, indirect proof was first suggested by Soare [476].

87

Indirect proof of Theorem 3.1.1. We show that the two sets constructed in the proof of the Friedberg-
Muchnik Theorem 3.1.21 are low. For that, using (the functional version of) the s-m-n Theo-
rem 2.1.6, we define a computable h such that

ΦhpeqpA; yq “

#

0 if ΦepA; eq Ó;

Ò otherwise.

If A and xp2e, sq are as in the proof of Theorem 3.1.21, then we define

gpe, sq “

#

1 if Φhpeq,spAs;xp2e, sqq Ó“ 0;

0 otherwise.

We argue that ḡpeq “ lims gpe, sq is well-defined; this is essentially because R2e can be injured only
finitely many times. Indeed, if D8s gpe, sq “ 1, then actually lims gpe, sq exists and is equal to 1. This
situation corresponds to the existence of infinitely many s such that Φhpeq,spAs;xp2e, sqq “ 0. How-
ever, if s is large enough so thatR2e is never injured again, then the computation Φhpeq,spAs;xp2e, sqq
and the value xp2e, sq are final. It follows that ḡ is the characteristic function of A1. Hence, by the
Limit Lemma 3.1.3, we have A1 “ te : lims gpe, sq “ 1u ďT K.

The proof above is clever, however, it is not really any easier than the direct construction that
we outline below.

Sketch of a direct proof of Theorem 3.1.1. We construct a c.e. set A in stages. To make A non-
computable, we need to meet the requirements

Pe : A ‰We.

To make A low, we meet the requirements

Ne : D8s Φe,spAs;xq Ó ùñ ΦpA;xq Ó .

If we define gpx, sq “ 1 iff Φe,spAs;xq Ó and gpx, sq “ 0 otherwise, then, provided that the con-
struction is stage-by-stage computable, gpx, sq will be computable. Moreover, if we meet every Ne,
then lims gpe, sq “ gpeq exists for each e, because A is c.e., and ΦpA;xq Ó implies that for some s,
ΦpA;xq “ Φe,spAs;xq. As in the previous proof, this will guarantee that A1 “ te : lims gpe, sq “
1u ďT K.

The strategy to meetNe is as follows. If Φe,spAs;xq Ó, then try to ensure thatAs æ upΦe,spAs;xqq “
A æ upΦe,spAs;xqq by initialising all lower-priority requirements. This forces the lower-priority
strategies to choose new large numbers as followers. The new followers will be too large to injure
the computation Φe,spAs;xq after stage s.

The strategy for Pe is as follows. While As XWe,s “ H, Pe picks a follower x larger than any
number seen so far. Then, if we see x PWe,s, put x into As`1.

We arrange the requirements in priority order according to their index:

N0 ą P0 ą N1 ą P1 ą N2 ą

In the construction that we omit, the priority method sorts the actions out. Note that since Pe
picks fresh numbers, Pe does not injure any Nj for j ă e. It is easy to see that any Ne can be
injured at most e times, and Pe is met as it is initialised at most 2e times.

88

Exercises

Exercise˝ 3.1.23 (Soare [477]). A set X is called semi-low if HX “ te : We XX ‰ Hu ďT H
1.

Let A be a c.e. set. Prove that the following are equivalent:

(a) A is semi-low;

(b) There is an enumeration A “ YsPNAs of A such that for all e, pD8sq rWe,s ´ As ‰ Hs Ñ

We ´A ‰ H.

(c) There exists a computable function f such that for all e:

(1) We XA “Wfpeq XA, and

(2) We XA “ HÑWfpeq is finite.

Exercise˝ 3.1.24 (Soare [477]). Show that every low set is semi-low. Let C be a c.e. set. Show
that there is a c.e. set A with A ”T C and A is semi-low.

Exercise˝ 3.1.25 (Soare [477]). Let D0, D1, . . . be the standard enumeration of finite sets, where
(say) a set is represented by a finite tuple in 2ăω with index n. Show that for every (infinite) c.e. set
A, the c.e. set X “ tn : Dn X A ‰ Hu has the property te : We XX ‰ Hu ”T A

1. (In particular,
every non-low c.e. degree contains a c.e. set X whose complement is not semi-low.)

Exercise˝ 3.1.26 (Ladner [328]). 1. Use the finite injury method to construct a c.e. set which
is not autoreducible (see Exercise 3.1.18).

2. Show that a c.e. set A is autoreducible iff there exist c.e. sets A1\A2 “ A with A ”T A1 ”T

A2. (Such sets are called mitotic.)

Exercise˝ 3.1.27 (Friedberg’s Splitting Theorem [182]). Show that if A is any non-computable
c.e. set, then there exist two disjoint c.e. sets A1, A2 such that A1 \ A2 “ A, and both A1 and A2

are non-computable.

Exercise˝ 3.1.28. A c.e. set A is called simple if A is coinfinite and A is immune (Ex. 3.1.16). A
strong array is a computable collection of finite sets D “ tDfpnq : n P Nu with f computable. We
say that a set X is hyperimmune if X is infinite and for every infinite strong array D there is some
n with Dfpnq Ę X. We say that A is hypersimple if A is infinite and hyperimmune. Construct a
c.e. set A which is simple but not hypersimple.

Exercise˝ 3.1.29. A set X is called effectively immune if it is infinite and there is a computable
function g such that We Ă X implies that |Wgpeq| ă gpeq. Prove that if A is c.e. and A is effectively
immune, then A ”T H

1.

3.1.5 Using (semi-)lowness˚

In this subsection, we will examine how lowness can be used in constructions, particularly in the
context of c.e. sets. This idea can be extended to handle semi-low sets (defined in Exercise 3.1.23),
which will be used in Section 7.2 of Chapter 7 to describe ∆0

2-categoricity of a broad class of groups.
We will not need this technique until Chapter 7, and the impatient reader may skip this section
and return to it later.

Whilst it is not easy to pinpoint the very first use of lowness, one early example was due to
Robinson [453] (see Exercise 3.1.33). Lowness allows for a kind of “verification” of configurations of

89

a low c.e. set, building on the theme that low sets resemble computable sets. We can use lowness to
test whether some computation involving the low set X should be trusted, as follows. For example,
suppose X “ YsXs is c.e. and low, and for some s, we have

ΦXse,spnq Ó“ 0

with use upe, n, sq “ upΦe,spXs;nqq. For the sake of some diagonalisation, perhaps we wish to
enumerate n into some other set Y if this is a correct computation. However, at a later stage
t, some y ď upe, n, sq might enter XtzXs, and then the computation ΦXse,spnq Ó“ 0 might later

change to ΦXte,t pnq Ó“ 1 (if the computation converges at all). Note that this can only happen if

Xs æ upe, n, sq ‰ X æ upe, n, sq. The following is an example of a lemma which can be used to test
whether Xs æ upe, n, sq “ X æ upe, n, sq. In the lemma, the finite set Dm is our way to approximate
Xs æ upe, n, sq; this will be further explained after we prove the lemma.

Lemma 3.1.30. Suppose that X is low. Then

Y “ Yj “ tj | Dm PWjpDm Ď Xqu ďT H
1,

where Dm is the mth canonical finite set.

Proof. By the definition of Y , we have Y P ΣX1 . By Theorem 3.1.5, relativised to X, this implies
Y ďT X

1. Since X is low, X 1 ”T H
1, and thus Y ďT H

1.

The way that this is used is as follows. Consider the situation described above, where we wish
to test

“Is ΦXse,spnq Ó“ 0 final?”

at every stage s. This will be associated with some requirement Re that monitors Φe. For the sake
of Re, we will build a c.e. set Wgpeq whose index is given by the Recursion Theorem 2.1.13. Initially,
Wgpeq “ H. We know that Y “ Ygpeq ďT H

1. By the Limit Lemma 3.1.3, there is a computable
function h with the property Y piq “ lims hpi, sq for all i.

Now, assume that hpgpeq, sq “ 0 and ΦXse,spnq Ó“ 0 with use upe, n, sq. The idea is to put m into

Wgpeq,s, where Dm “ Xs æ upe, n, sq, and use it as a “test”. One of two things can happen:

• hpgpeq, tq changes to 1 for some t ě s` 1, or

• some y ď upe, n, sq enters Xt ´Xs for some t ą s.

Note that, knowing that one of the two must happen, we can pause the construction to wait and
see which occurs. In the former case, we will believe that ΦXse,spnq “ 0 is correct, and we then act
accordingly in the construction. In the latter case, we will know that the computation at stage s
is not correct and will act accordingly. Note that if we believe the former case, it is possible that
some y ď upe, n, sq might enter Xv ´Xs at some v ě s. However, note that Dm Ę X and, hence,
m R Y . Therefore, at some stage t1 ě t, we will have hpgpeq, t1q “ 0. We can then repeat the action.
However, since we know that lims hpgpeq, sq exists, from some point onwards, we must eventually
get the correct answer.

More generally, we might have the opportunity to use the Recursion Theorem 2.1.13 and the
Limit Lemma 3.1.3 if some query to X is (uniformly) ∆0

2. If we can somehow argue that either

90

the oracle must change or our guess about the monitored computation must change, then we can
imitate the method described above by (uniformly) retrying until our guess is finally correct.

This idea might work under an assumption weaker than lowness. For instance, in Exercise
3.1.23, we defined a set Z to be semi-low if

te : We X Z ‰ Hu ďT H
1.

In Exercises 3.1.24 and 3.1.25, we observed that semi-lowness is not a degree-invariant property,
and that it is generally weaker than lowness. However, the condition te : We X Z ‰ Hu ďT H

1

might be sufficient to implement the general methodology described above in specific cases. We
illustrate this technique with a simple application that only requires the (complement of a) set to
be semi-low.

Theorem 3.1.31 (Downey and Jockusch [128]). Show that if C is a low c.e. set, then there exists
a c.e. set A ďT C, such that A ­ďm C. Indeed, assuming that C is semi-low is enough.

Sketch. We give a sketch that emphasises the use of (semi-)lowness and omits the combinatorics
related to the finite injury technique.

We construct a c.e. set A ďT C and meet the requirements

Re : A ­ďm C via ϕe.

Let C “ YsCs be an enumeration of C so that at most one element enters Cs`1´Cs at every stage
s.

To ensure A ďT C, we will allow x to enter As`1 ´ As only if some y ď x enters Cs`1 ´ Cs;
this is called simple permitting.

For the sake of Re, we will build an auxiliary c.e. set Ve “ Wgpeq whose index is given by the
Recursion Theorem 2.1.13. As C is (semi)low,

S “ tj |Wj X C ‰ Hu ďT H
1.

By the Limit Lemma 3.1.3, we have a computable function h with Spjq “ lims hpj, sq for all j.
Initially, we have Wgpeq “ H and (without loss of generality) hpgpeq, sq “ 0. If y P Cs`1zCs, then
look for the least e such that Re seems unsatisfied by diagonalisation, and there is some x R As such
that ϕe,spxq Ó and y ď x. If ϕe,spxq P Cs`1, then keep x out of At at stages t ą s. If ϕe,spxq R Cs`1,
then we can enumerate ϕe,spxq into Wgpeq,s. Now we can delay our decision as to whether to put
x P A by waiting to see whether hpgpeq, tq “ 1 for some t ě s, or ϕe,spxq enters Ct. As above,
one of the two events must occur. In the latter case, we win again. In the former case, we have a
certification that ϕe,spxq R C. Then we put x into As`1 and believe we have won. Notice that this
second case can only occur finitely many times as lims hpgpeq, sq exists. The argument then works
by finite injury.

Exercises

Exercise˝ 3.1.32. (Downey and Jockusch [128]) We say that A ďtt B if there is a Turing functional
Φ such that ΦX is total for all X and ΦB “ A. Show that if C is a low c.e. set, then there exists a
c.e. set A ďT C, such that A ­ďtt C.

Exercise 3.1.33. (Robinson [453]) Let b and e be c.e. degrees such that c ă b, and c is low.
Then there exist incomparable low c.e. degrees a0 and a1 such that b “ a0 Y a1 and ai ą c for
i “ 0, 1.

91

3.1.6 Finite injury arguments of unbounded type

There are examples where the number of injuries is finite, but not bounded by any computable
function. One such classical example is Sacks’ Splitting Theorem below. We write X \ Y for the
disjoint union of X and Y .

Theorem 3.1.34 (Sacks [457]). Let B,C be c.e. sets, and assume C is non-computable. Then
there exist disjoint c.e. sets A0, A1 such that B “ A0 \A1 and C ęT Ai, for i “ 0, 1.

Corollary 3.1.35. If B is a non-computable c.e. set, then there is a c.e. set A such that H ăT

A ăT B.

Proof of Corollary 3.1.35. Note that if B “ A0 \ A1, then B ”T A0 ‘ A1 (Exercise 3.1.36). By
setting C “ B in the theorem, we see that the only possibility is that A0 ”T A1, and that A0 and
A1 are both incomplete and below B.

Proof sketch of Theorem 3.1.34. Let C “ YsCs and B “ YsBs be computable enumerations of C
and B, respectively. Without loss of generality, we will assume that we are given an enumeration
of B such that exactly one number enters Bs`1´Bs at stage s` 1. We build Ai “ YAi,s in stages
and meet the requirements

Ne,i : ΦepAiq ‰ C,

for every e P N and i P t0, 1u. Also, for every s, we put the unique bs P Bs`1 ´Bs into exactly one
of A0,s`1 ´A0,s or A1,s`1 ´A1,s. This causes B “ A0 \A1.

To meet Ne,i, we define the length of agreement function

`ipe, sq “ maxtx : @y ă xrΦe,spAi,s; yq “ Cspyqsu

and the maximum length of agreement function,

mipe, sq “ maxt`ipe, tq : t ď su.

We also define the restraint function

ripe, sq “ maxtupΦe,spAi,s;xqq : x ď mipe, squ,

where u is the use of the respective computation. Note that we used ă in the definition of `i and
ď in the definition of ri, which reflects that we will try to preserve at least one disagreement in the
Φe-computation by restraining elements to enter the respective Ai below ripe, sq. This is sometimes
called Sacks’ preservation strategy.

In the construction, if x P Bs`1 ´ Bs, see if there is a xe, iy ď s least such that x ď ripe, iq. If
yes, then choose xe, iy least such and put x in A1´i,s`1 ´ A1´i,s. If no such xe, iy exists, then put
x in A0,s`1 ´A0,s.

We now sketch the verification. Suppose N0,0 is not met, i.e., Φ0pA0q “ C. By induction, we
see that the definition of r0 ensures that the Φ0-computation with use below r0p0, sq is final. This is
because all numbers that appear in B below r0p0, sq will be put into A1, for every s. But this would
imply that A0 has to be computable, and thus so would be C, contradicting the choice of C. It thus
follows that Φ0pA0q ‰ C. Let x be the least such that either Φ0pA0qpxq Ò or Φ0pA0qpxq Ó‰ Cpxq.
In the former case, it must be that we never see a divergent Φ0pxq-computation, for otherwise we’d
preserve it. (This is where it is important that we preserve at least one disagreement.) In the

92

latter case, the definition of r0 ensured that we preserve the Φ0pA0qpxq-computation as soon as it is
discovered at some stage s. In either case r0p0, ¨q cannot possibly increase after some stage. Thus,
lims r

0p0, sq exists.
By induction on xe, iy, we argue that (for every i and e) lims r

ipe, sq exists, and that every Ne,i
is met. For that, repeat the argument above for Ne,i assuming the stage is large enough so that, for

all xe1, i1y, the values ri
1

pe1, ¨q have reached their limits. Further, assume the stage is so large that
all elements of B below maxxe1,i1yăxe,iy r

i1pe1, ¨q have been listed in B by that stage. Using this stage
and the initial segment of B as a non-uniform parameter, repeat the analysis above to conclude
that lims r

ipe, sq exists and Ne,i is met.
In contrast with the previous two theorems, the number of times ripe, sq can increase, and thus

the number of times Ne,i can be “injured”, cannot be computably bounded.

Exercises

While none of the exercises below are marked with a star, some of them are not straightforward.
The reader might want to look at the cited papers for the details. (The same is true about the
exercises after the next subsection.)

Exercise˝ 3.1.36. Show that if A0, A1 are c.e. sets and B “ A0 \A1, then B ”T A0 ‘A1.

Exercise˝ 3.1.37 (Ambos-Spies [9]). Use a movable marker construction to show that there is a
Turing-complete computably enumerable set A such that if A1 \ A2 “ A is a c.e. splitting of A,
then one of A1 or A2 is low.

Exercise˝ 3.1.38. A set Y is called highn if Y pnq ”T H
pn`1q. If n “ 1, we say that Y is high.

Use Exercise 4.2.59 to construct a set A ăT H
1 which is high. (Hint: Theorem 3.1.1 constructs a

c.e. set W such that for each D, D ăT W
D ”T D

1.)

Exercise˝ 3.1.39 (Jockusch and Soare [272]). Prove the Pseudo-Jump Theorem:

(i) For each e such that X ăT X‘W
X
e for all X, construct a c.e. set A such that A‘WA

e ”T H
1.

(See Ex. 3.1.20.)

(ii) Use part (i) to construct a high c.e. set A ă H1. (Hint: Consider WX
e to be the construction

of a non-computable set c.e. relative to X and low relative to X.)

(iii) Use part (ii) to construct a low2 c.e. set.

(iv) Show that there are c.e. sets Ai, Bi for i P N, such that An is properly lown and Bn is properly
highn (i.e., not lown´1 and not highn´1, respectively).

Exercise˝ 3.1.40. Use the Recursion Theorem to show that the proof of Sacks’ Splitting Theorem
shows that if A is a c.e. non-computable set and H ­ďT C, then we can find a c.e. splitting
A0 \A1 “ A, such that C ­ďT Ai for i P t0, 1u and also that A0 and A1 are low.

Exercise 3.1.41 (Downey and Stob [149]). Show that if A is c.e. and A ” H1, then there is a
c.e. splitting A0 \ A1 “ A such that H ăT A0 ďT A1. (Hint: Use the Recursion Theorem 2.1.13
to force two elements into A.)

Exercise 3.1.42 (Downey and Stob [149]). We say that a coinfinite c.e. set A is promptly simple
if there is a computable function f such that, for all e, if |We| “ 8, then D8sDxppx P We,s`1 ´

We,sq ^ x P Afps`1qq. Show that the splitting theorem in the previous exercise holds if we assume
that A is promptly simple.

93

3.1.7 Constructions involving infinite injury

We now give two examples of priority methods involving infinite injury to the requirements.

Enumerating of all c.e. sets without repetition

Recall that there is a uniform enumeration pWeqePN of all c.e. sets; however, this uniformly c.e.
list contains many repetitions. The theorem below states that the standard enumeration can be
replaced with another one, pViqiPN, in which every We will appear as some Vi, and furthermore,
i ‰ j implies Vi ‰ Vj .

Theorem 3.1.43 (Friedberg Enumeration Theorem [180]). There exists a uniformly c.e. col-
lection tVi : i P Nu of c.e. sets that mentions each c.e. set exactly once.

We call the enumeration tVi : i P Nu a Friedberg enumeration of the c.e. sets. We will return to
1-1 enumerations in Chapter 7, where a good understanding of the proof below will be very helpful.

Proof. We have that tWe : e P Nu lists all c.e. sets. An obvious strategy is to choose minimal
indices, SMIN“ te0, e1, . . . u meaning that ei`1 is the first j ą ei such that Wj R tWe : e ď eiu.
The problem is that this is a complicated set, which is certainly not computable (Exercise 3.1.53).
However, the idea of the proof below is to try to guess such minimal indices and send wrong guesses
to the garbage.

For the construction, we will first construct a sequence tVi : i P Nu listing all c.e. sets which are
not ω exactly once. Then we can add ω as V´1. We let V0 “ H. In the construction, at each stage
s we will have a list tVi : i ď ppsqu, for some ppsq ě s. These are designated as either active or
garbage. If Vi is active, it will be simulating exactly one Wepiq. If it is declared as garbage at some
stage s, we will make it equal to t0, . . . , niu where ni is some large fresh number, hitherto unseen
in the construction.

At stage s ` 1 of the construction, each active Vi has an associated test tpiq. Perform the
following steps.

(i) For each active Vi, see if there is some e1 ă epiq such that We1 æ tpiq “ Wepiq æ tpiqrs ` 1s,
which means that this equality holds at stage s (i.e., We1,s`1 æ tpiq “ Wepiq,s`1 æ tpiq, and
tpiq “ ts`1piq is the test for Vi at stage s ` 1). If so, then we declare that Vi is garbage and
find a (least unused) fresh number i1, declare that Vi1 is active, and epi1q “ epiq and tpi1q to be
large and fresh.

(ii) For each active Vi, see if there is some garbage Vj with j ă i, and Vj æ tpiq “ Vi æ tpiqrs` 1s.
If so, then we declare that Vi is garbage and find a fresh number i1, declare that Vi1 is active,
and epi1q “ epiq and tpi1q to be large and fresh.

(iii) If We ‰ Hrs` 1s and it is least with no Vi simulating We, then for the least unused j, let Vj
simulate We, define jpeq “ e, and tpjq to be large and fresh.

(iv) Finally, for all active Vi, make Vi “Wepiqrs` 1s.

94

We argue that this construction works. It is evident that if Vi is garbage, then Vi “ t0, . . . , niu
and ni is unique to i. This means that all the garbage Vi are distinct. We say that Vi is permanently
active if it is never made into garbage. Suppose that We ‰ ω is given and e is its minimal index.
Then we claim that there is some permanently active Vi with epiq “ e. If We “ H, then there is
nothing to prove as V0 “ H. If We ‰ H, then by step (iii) of the construction, we will associate
some Vi with e at some stage s. Now, if this is not permanent, then Vi must get turned into garbage
either by (i) or (ii). We have that (i) pertains only if some We1 æ tpiq “We æ tpiqrss. If this happens,
then we will reset Vi to a new Vi1 , but with a larger tpi1q. Call this new Vi1 and others generated
by its transitive closure under (i) or (ii) heirs of Vi. There can only be finitely many heirs to Vi
generated by (i), since e is a minimal index, so We ‰ Wj for all j ă e. There can also only be
finitely many heirs by (ii). Each time (ii) is invoked, We æ tpiq Ě t0, . . . , nju for some nj Ñ 8,
meaning that We “ ω, a contradiction. Thus for each e there is an i with We “ Vi. If e is not a
minimal index, and e1 is some other index for We, then each Vi with epiq “ e1 will be turned into
garbage by clause (i) and We. If We “ ω, this is also true by clause (ii). Thus each We ‰ ω has a
unique Vi simulating it.

The above construction can be viewed as having a sort of “infinite injury”. If we think of the
requirements being

Re : If e is a minimal index, then there is some i such that Vi “We,

then the requirement Rk can be “injured” by the requirement Re at some stage s if e ă k and We

agrees with Wk up to some large testing threshold tpiq at stage s. If, in fact, k is not a minimal
index, then Rk will be “injured” infinitely often by a higher priority Re. Of course, in this case, Rk
is also satisfied since k is not a minimal index.

A minimal pair of c.e. sets

In the next theorem, we give another example of an infinite injury construction, where more coor-
dination is required between the different requirements. In that construction, we shall introduce
the notion of a priority tree to help organise the process. Other terminology introduced there, such
as expansionary stages, is now standard in the modern literature.

Theorem 3.1.44 (Lachlan [325], Yates [513]). There exist non-computable c.e. sets A and B
such that for all sets C, if C ďT A,B then C is computable.

As we have seen earlier, the degrees of such sets are called a minimal pair. In Theorem 3.1.15,
we constructed a minimal pair by finite extension and forcing a disagreement where we could. That
method is not possible for c.e. degrees, and something new is needed.

Proof. We construct A “ YsAs and B “ YsBs in stages to satisfy the requirements below for e P N:

Re : A ‰We;
Qe : B ‰We;
Ni,j : ΦipAq “ ΦjpBq “ f and f is total ùñ f is computable.

95

We meet the Re and the Qe by a Friedberg-Muchnik type strategy. That is, we shall pick a (fresh)
follower x, targeted for A in the case of Re, and wait until x enters We,s. Of course, should x never
enter We,s for any s, then x R pWe YAq and hence A ‰We. Should x enter We,s for some stage s,
then we can win forever by putting x into At at some t ě s.

The tricky requirements are the Ni,j . We will first discuss how to meet a single Ni,j in isolation
and then look at the coherence problems between the various requirements and the solution to these
provided by the use of a tree of strategies.

One N -requirement in isolation. For a single Ni,j , we will need the auxiliary functions

`pi, j, sq “ maxtx : @y ă xpΦi,spAs; yq Ó“ Φj,spBs; yq Óqu

and
m`pi, j, sq “ maxt`pi, j, tq : t ă su.

We call `pi, j, sq the length of agreement function and call m`pi, j, sq the maximum length of agree-
ment function. As with the Sacks Splitting Theorem 3.1.34, note that the maximum length of
agreement function is a sort of “high water mark” for lengths of agreement seen so far. We shall
call a stage xi, jy-expansionary if the current length of agreement exceeds the previous high water
mark. That is, s will be called xi, jy-expansionary if `pi, j, sq ą m`pi, j, sq. Also, we let mupi, j, sq
denote the maximum element used in any computation below `pi, j, sq.

The key idea for a single Ni,j is the following. We allow some element x to enter A below the use
of Φi, but nothing to enter B below the respective use of Φj that (used to) make the computations
equal below `pi, j, sq. We do not allow any further elements ď mupi, j, sq to enter B until the next
xi, jy-expansionary stage u. It can only be that Bupzq “ Bspzq for all z ď mupi, j, sq, and hence,
by the use principle,

Φj,spBs; yq “ Φj,upBu; yq,

for any y ď `pi, j, sq. But since u is expansionary, this means that

Φi,upAu; yq “ Φj,upBu; yq “ Φj,spBs; yq “ Φi,spAs; yq.

That is, even though the Φi,upAu; yq-computations might have changed because x entered A, the
result of the computation on y below the previous length of agreement remains the same. This,
in particular, implies that Ni,j will be met, since to compute f we just need to know the result
of this computation. Finally, we remark that if no expansionary stage u ą s is ever found then
ΦipAq ‰ ΦjpBq. Figure 3.1 might be helpful here.

Coherence. Consider two N -requirements N and N 1. Now suppose that N has higher priority than
N 1. Now N requests us to only put numbers into A or B during its expansionary stages ts1, s2, . . .u.
Similarly, N 1 might request us to only put numbers in during stages tt1, t2, . . .u. The problem is
that these sets of stages might be disjoint. Then N blocks us from putting numbers into A or B at
stages ti, and N 1 blocks us from putting numbers in during stages si. Hence, the pair might block
us from ever putting numbers into A or B.

This problem can be fixed as follows. We will have two versions of N 1, one believing that N
has infinitely many expansionary stages, and the other will think that N has only finitely many
expansionary stages. The latter will be initialised every time a new N -expansionary stage is found;
it will respect the restraints imposed by N but will ignore N otherwise. The other version of N 1

will believe that N has infinitely many expansionary stages. This version will become active only

96

<i,j>

<i,j>

Figure 3.1: Recovery of computation.

97

at these expansionary stages. It will slow down its computation by making moves only at the
stages s1, s2, . . . and will define its expansionary stages to be a subset of the expansionary stages
of N . It will also coordinate its restraint with N , making sure that the A-side and the B-side are
never simultaneously blocked. This version of N 1 strategy will remain dormant between s1, s2, . . .,
and indeed, it may be forever abandoned in case N has only finitely many expansionary stages.
However, the restraint (on A or B) imposed by this version of N 1 will have to be respected by
weaker priority strategies, including the other version of N 1. Indeed, there is no way to know which
version of N 1 has the right guess about N , so we must keep all possibilities open.

Now, if we also had to consider N2, it would need four clones, two for each version of N 1. Note
that this case analysis starts to resemble the full binary tree. The standard, modern way to organise
such constructions is to make this idea explicit by introducing the tree of strategies. This tree helps
to manage the case of multiple N -strategies, not just the two or three we considered above. Every
strategy will have multiple versions, each associated with a node in a tree of “guesses” that aids in
predicting the behaviour of other (clones of) strategies in the construction.

We now turn to the formal details.

The Priority Tree. We use the tree T “ t8, fu˚, i.e., the full binary tree consisting of finite strings
of 8-s and f -s, including the empty string λ. We assign Ni,j to σ in T iff |σ| “ xi, jy, where |σ|
denotes the length of σ. Also, if |σ| “ 2e then we also assign Re to σ and if |σ| “ 2e` 1 we assign
Qe to σ. For a requirement M , we will write Mσ for the version of M at σ.

We use lexicographical ordering ăL on finite strings in T induced by 8 ă f . We will say that
Mσ has higher (or stronger) priority than Mτ if σ ăL τ. As before, we also write σ ĺ τ if σ is an
initial segment of τ ; we slightly abuse notation and also include the case when τ is infinite. We
write σpa to denote the string τ which is the extension of σ using symbol a adjoined to the end of
σ.

Definition 3.1.45. (a) We define the notions σ-stage, m`pσ, sq, and σ-expansionary stage by
induction on |σ|.
(i) Every stage s is a λ-stage.
(ii) Suppose that s is a τ -stage with |τ | “ xi, jy. Let `pτ, sq “ `pi, j, sq. Define

m`pτ, sq “ maxt`pτ, tq : t is a τ -stage ă su.

We say that s is τ -expansionary if `pτ, sq ą m`pτ, sq and declare s to be a τp8-stage. If
`pτ, sq ď m`pτ, sq, we declare that s is a τpf -stage. We define TPs to be the unique σ of length s
with s a σ-stage.

Definition 3.1.46. (a) We say that Rσ requires attention at stage s if We,s X As “ H (where
2e “ |σ|), s is a σ-stage and one of the following holds.
(i) Rσ currently has no follower.
(ii) Rσ has a follower x PWe,s.

We define Qσ to require attention similarly.

Construction.

Step 1. Compute TPs. Initialise all versions of requirements at guesses τ ęL TPs.
Step 2. Find the Rσ or Qσ of highest priority that requires attention at stage s. Without loss

98

of generality, we will suppose this to be Rσ. Initialise all requirements at guesses τ with τ ęL σ.
Adopt the appropriate case below.

- Definition 3.1.46 (i) holds. Appoint xpσ, sq “ s to follow Rσ. (Remember, s is larger than all
computations seen so far by convention.)

- Definition 3.1.46 (ii) holds. Enumerate x into As`1.

End of Construction.

Verification. Let TP be the leftmost path visited infinitely often: That is, λ ĺ TP and for all τ , if
τ ĺ TP , then τp8 ĺ TP iff D8spτp8 ĺ TPsq. Otherwise, τpf ĺ TP .

Lemma 3.1.47. All the Re and Qe have versions that are met, and for all τ ĺ TP , Rτ (or Qτ)
acts only finitely often.

Proof. This lemma is proven by induction on e. We consider Re. Let σ ĺ TP with |σ| “ 2e. Fix a
stage s0 such that for all τ ăL σ and s ą s0:
(i) if τ ł σ, s is not a τ -stage;
(ii) if M is a Q or R requirement assigned to τ , then M will not act at stage s.

Assuming s0 to be least and a σ-stage, we can assume that either We,sXAs0 ‰ H (in which case
we are done), or Rσ receives attention via Case (i) getting a follower x at stage s0. This follower is
immortal by the choice of s0 and the induction hypothesis. It will succeed in meeting Re as in the
basic module since it has priority at each σ-stage.

Lemma 3.1.48. All the Ni,j have versions that are met.

Proof. Again, we prove this by induction. Let σ ĺ TP with |σ| “ xi, jy. Choose s0 as in Lemma
3.1.47, so that no higher priority action can cause grief to Nσ. Now, if σpf ĺ TP , we are done
since lim inf `pi, j, sq ă 8 and hence ΦipAq ‰ ΦjpBq.

So we suppose that σp8 ĺ TP . To compute ΦipA;xq, find the least σp8-stage s “ spxq ą s0

such that `pσ, sq ą x. Note that this can be computed from the parameters s0 and σ. We claim
that ΦipA;xq “ Φi,spA;xq. To see this, note that by Step 1 of the construction we will initialise all
τ ęL TPs at stage s. In particular, at stage s by choice of s0 and since we appoint new followers to
be large, and we are never above or left of σp8 after stage s0, the only numbers which are below s
and can enter A or B after stage s are followers associated with γ ě σp8. Such followers can enter
their target sets only at σp8 stages s ě s0. That is, they can only enter at σ-expansionary stages.
In particular, as with the basic module, we can argue that for any σp8-stage t ě s, at most one of
A or B can change below mupσ, tq before the next σp8-stage t1 ą t.

Thus, exactly as in the basic module, we have that

Φi,spAs;xq “ Φi,tpAt;xq “ Φj,spBs;xq “ Φj,tpBt;xq “ ΦipA;xq “ ΦjpB;xq,

for all σp8-stages t ą s.

The minimal pair theorem is proved.

99

3.1.8 Further reading˚

A more extended introduction to priority techniques can be found in [125]. For finite injury tech-
niques, the old-fashioned but thorough book by Rogers [454] is a good reference. The reader
interested in c.e. sets and degrees is referred to Soare [477] for many further results and a large
number of exercises. We remark that [477, Chapter VIII] presents alternative methods for handling
combinatorics in infinite injury proofs, such as the Window and Thickness Lemmas, and also the
Pinball Machine Model. The former approach is now typically considered old-fashioned and will
not be used in this book, while the latter is also unnecessary for our purposes. For historical notes,
see [478, part V].

Exercises

Since all the exercises below seem to require infinite injury, none of them is particularly easy.
However, most of these results are old classics, and their proofs can be easily found in the literature.

Exercise˝ 3.1.49 (Downey and Welch [150], Ambos-Spies [9]). Construct a non-computable c.e.
set A such that if A “ A1\A2 is a c.e. splitting of A, then the degrees of A1 and A2 form a minimal
pair. (Hint: Modify the tree from the minimal pair argument. Use requirements Pe : A ‰We, and

Nxi,j,ky : Wi \Wj “ A^ ΦWi

k “ Φ
Wj

k “ f total Ñ f computable.)

Exercise˝ 3.1.50. A set A is called piecewise computable if Ares “def txe, xy : xe, xy P Au, the e-th
slice (column) of A is computable for every e.

1. Construct a c.e. set B such that, for each e, Bres is an initial segment of ωres, and Bres is finite
iff ϕe is not total. We will say that B codes H2.

2. Show that if B codes H2, then B1 ”T H
2. That is, B is high.

Exercise 3.1.51. In the notation and terminology of the previous exercise, A Ď B is called a thick
subset if for every e, Ares “˚ Bres, meaning that |BreszAres| ă 8. Show that if A is a thick subset
of a set B coding H2, then A is also high.

Exercise 3.1.52 (Thickness Lemma – Shoenfield [467]). This is a weak form of the full Thickness
Lemma. We refer the reader to Chapter VII of Soare [477] for more details. Thick subsets were
defined in the previous exercise. Use the infinite injury method to prove that if H ăT C is c.e. and
B is a c.e. set coding H2, then there is a thick subset A Ď B with C ­ďT A. This shows that there
is an incomplete high c.e. degree.

Exercise˚ 3.1.53 (Meyer [387]). Let MIN “ te : @j ă eϕj ‰ ϕeu, and SMIN “ te : @j ă
eWe ‰ Wju. Show that for any acceptable enumeration of the partial computable functions, MIN
”T SMIN ”T H

2.

100

3.2 Computable linear orderings

In this section, we use the computability-theoretic techniques described in the previous section to
prove several classical results about computable linear orders. We begin with the main definitions
restricted to the class of linear orders. A detailed proof of the Fellner-Watnick Theorem, which
is the main result of the present chapter, will be given in Section 3.2.6. Similarly to the previous
section, we organise the results according to their combinatorial complexity. The most notable
results include:

Theorem 3.2.1 (Feiner [161]). There is a c.e. presented linear order not isomorphic to any
computable one.

Theorem 3.2.2 (Goncharov and Dzgoev [211], Remmel [446]). A computable linear ordering
A is computably categorical (Definition 2.2.15) iff A has only a finite number of adjacencies.

In fact, Dzgoev announced Theorem 3.2.2 in 1978, but it was published only locally as a report2.

3.2.1 The basic definitions, revisited

Recall that a linear order is just a partial order in which every two elements are comparable under
ď.

Definition 3.2.3. A computable linear ordering (or more precisely, a computable presentation of
its order type) is a linear ordering pA,ďq where A is a computable set, and the ordering relation ď
is a computable relation.

We typically assume that our order is countably infinite, as there is not much to say about the
finite ones. Standard linear orderings such as ω, Z, and Q are computably presentable.

Definition 3.2.4. We say that a linear ordering pL,ďLq is c.e. presented if L is a computable set,
and ďL is a c.e. relation.

The way to think about a c.e. presentation is that we will discover if x ďL y, but may not know
whether x ăL y since we can later discover x “L y. Thus, a c.e. presented linear ordering is
pA,ăAq{ ”, where ” is a c.e. equivalence relation3.

2The report is available at the library of the Sobolev Institute of Mathematics. According to Goncharov’s Math-
SciNet review of [446], the reference is: Dzgoev “On constructivizations of some structures” (Russian), Akad. Nauk
SSSR, Sibirsk. Otdel., Novosibirsk, 1978 (manuscript deposited at VINITI on July 26, 1978, Deposition No. 1606–79).

3Note that each ”-class has to be convex in the sense that if a ăA b ăA c and a ” c, then a ” b ” c. Conversely,
every convex equivalence relation on A can be used to define a quotient linear order.

101

3.2.2 Injury-free approximation. Feiner’s Theorem

In this subsection we construct a c.e. presented order with no computable isomorphic copy; this is
Feiner’s Theorem 3.2.1 (for linear orders). The rest of the subsection is devoted to accumulating
enough lemmas and propositions to prove the theorem.

Recall that a structure is computably categorical if any two computable copies (presentations)
of the structure are computably isomorphic. For example, the usual back-and forth method shows
that pQ,ďq is computably categorical. Therefore, from the perspective of computable mathematics,
all computable presentations of pQ,ďq are essentially the same. Thus, there is no ambiguity in the
statement of the following lemma.

Lemma 3.2.5. pA,ďq is a computably presentable iff there is a computable subset of pQ,ďq iso-
morphic to pA,ďq.

Sketch. Suppose pA,ďq is a computably presented linear order. Use the ”forth” step in the usual
back-and-forth proof of categoricity for pQ,ďq, but apply it to elements of pA,ďq. Of course, even
if A is itself dense, we do not have to make f onto. In fact, by the density of Q, we can additionally
ensure that fpAq is actually a computable subset of Q, not merely a c.e. subset. To achieve this,
note that at any stage s, it is safe to declare finitely many rationals currently outside the range
of fs to be permanently outside of fpAq. By the density of Q, we always have enough points to
further extend the embedding.

The other implication in the statement of the lemma is obvious.

Evidently, the lemma can be relativised to any oracle. Suppose L is ∆0
2. Relativise Lemma 3.2.5

to 01. This gives a ∆0
2 subset of Q so that the induced order is computable. Thus, we can think of

L as being a ∆0
2 set L “ lims Ls with a uniformly computable order on each Ls. Additionally, we

can further exploit the density of Q to make sure that, once x is declared out of L, it never comes
back:

Lemma 3.2.6. If L is a ∆0
2 ordering then L – L̂ for some Π0

1 subset of Q.

Sketch. Suppose L P ∆0
2. So L “ lims Ls. When x P Ls`1 ´ Ls, use the density of Q to choose a

point x̂ P Q with Gödel number bigger than any number seen so far in the construction and map
fs : xÑ x̂ consistently with ft´1. We will continue with this map unless x leaves Lt at some least
t ą s, which means that the order has been redefined on x. If x P Lt ´ Lt`1, then we throw x̂ out
of the range of f forever. We let f “ lims fs. If x P L then from some point onwards, x P Lt. If
x R L, then from some point onwards, x R Lt. Thus f : L – L̂ where L̂ is the ordering formed by x̂
which are added to L̂ and never leave.

We will need the following folklore lemma that, in particular, implies that every ∆0
2-presented

linear order admits a c.e. presentation.

Lemma 3.2.7. Every Π0
1 subset of Q is isomorphic (as an order) to a c.e. presented linear order.

Proof. We can of course assume that L̂ Ď Q is non-empty, say x P L̂. (Without loss of generality
and up to a notation change, we could assume x “ 0.) We build a c.e. presentation L of L̂, where
the latter is of course viewed as a sub-order of the rationals, and the former consists of computably
ordered natural numbers N modulo a c.e. equivalence relation ”. At a stage s we will have defined
only finitely many equivalence classes in Ls, each class currently consisting of finitely many numbers:

r`0s, r`1s, . . . , r`cpsqs.

102

The classes are linearly ordered, and one of these classes contains x. At a later stage some of these
classes may be declared equal, i.e., united into a bigger class. We also construct a map φ : QÑ N
such that its restriction to L̂ induces an isomorphism from L̂ onto L “ pN,ďq{ ”. At a stage s we
will have defined a finite partial map φs that induces an order-isomorphism between finitely many
points in L̂s X r0, . . . , ss and finitely many classes in Ls.

When an element r is enumerated into QzL̂ we say that r leaves L̂. Assume that at every stage
at most one element leaves L̂.

The idea is that, when r ą x leaves L̂ at stage ps ` 1q, we want to declare it equal to the
right-most point q ă r of the order that is still there. Similarly, when r ă x, we declare it equal
to the left-most point q ą r that has not yet left the order. Of course, we cannot quite do it in
Q itself; indeed, think about the points in-between r and q. However, we can do this in L which
currently has no classes between rφsprqs and rφspqqs.

More formally, if r ą x leaves L̂ at stage ps ` 1q, search for the right-most point q ă r in Ls
(which must exist) and declare φspqq ” φsprq. (Define ”s`1 by modifying the current approximation
”s of ” in the obvious way so that ”s`1 is an equivalence relation; we omit the details.) The case
when r ă x is symmetric. Then extend φs to a map φs`1 defined on L̂s`1Xr0, . . . , s` 1s naturally.

The map ψ “
Ť

s ψs is onto by the construction, and ” is also approximated via ”s, which

results in a c.e. congruence inducing a c.e. presentation L of some linear order. If x, y P L̂ then
rφpxqs ď rψpyqs in L iff x ď y in L̂.

Corollary 3.2.8. Every ∆0
2 presentable linear order is isomorphic to a c.e. presentable one.

Remark 3.2.9. In the proof of the lemma above, we in fact showed that a Π0
1-subordering L̂

of Q is computably isomorphic to a c.e. presented linear order, in the following sense. There is a
computable f : QÑ N so that its restriction to L̂ induces an isomorphism between L̂ and L “ N{ ”.
Conversely, it can be shown that a c.e. presented linear ordering L is computably isomorphic (in
the same sense) to a Π0

1 subset L̂ of Q. To see why, assume we have already defined fpxq and fpyq,
but now we have discovered fpxq ” fpyq. Since one of the two elements (x or y) are now out of the
Π0

1 set, the definition of f does not have to be adjusted. Thus, usually, c.e. presented orders can be
computably identified with Π0

1 subsets of the rationals without any loss of generality.

In a linear ordering L “ pL,ďq, an n-block (or a complete block of size n) is a set x1 ă x2 ă

¨ ¨ ¨ ă xn such that pxi, xi`1q is an adjacency for all i ă n, x1 is a left limit point or the first point
of the ordering, and xn is a right limit point, or the last point of the ordering.

Definition 3.2.10. If L “ pL,ďq is a linear ordering, then BpLq “ tn : L contains an n-blocku.

Note that BpLq is a classical invariant. We have the techniques to show that it is also an effective
invariant, in the following sense. If L is a computable ordering then BpLq is Σ0

3.

Theorem 3.2.11 (Lerman [336]). If S P Σ0
3, then there is a computable L with BpLq “ S.

Proof. The proof resembles that of Theorem 3.1.8 (iii). Let S be Σ0
3 and hence we have computable

R such that
n P S iff Dx@sDtRpn, x, s, tq.

The construction begins with the sum of infinitely many computable copies of Z

Z` Z` Z`

103

Between the xn, xy-th copy and xn, xy ` 1-st copies we will use a construction to add some new
points in stages. At each stage s, between copy xn, xy and copy xn, xy ` 1 we will have constructed
a finite ordering As consisting of three suborderings As “ Cs ` D ` Es. We will have a counter
spn, xq to count the firings of xn, xy. Initially, spn, xq “ 0. At stage 1 we set D to have exactly n
elements, and C1, E1 to be empty. At each stage s` 1 for s ě 1, we always add one element to the
left end of Cs, and to the right end of Es. If n, x has fired for spn, xq we set spn, xq “ spn, xq ` 1.
In this firing case we will also add some new points, one to the right end of Cs and one to the left
end of Es. No such points are added if no firings for spn, xq happen.

Now the observation is that if xn, xy fires for all of its spn, xq (that is, n P S is witnessed by x)
then C and E both grow into copies of Z, so that C ` D ` E “ Z ` n ` Z. Then n P BpLq. If
only finitely many firings, then the second part of the construction for xn, xy is invoked only finitely
often, and hence C `D ` E “ Z, for every x. That is, n R BpLq. That is n P S if n P BpLq.

Theorem 3.2.11 combined with the lemmas proved earlier allows us to construct a c.e. presented
linear order not isomorphic to any computable one; this appeared as Theorem 3.2.1 earlier.

Proof of Feiner’s Theorem 3.2.1. Applying Theorem 3.2.11 in relativised form, given any set S
which is ΣX3 , there is a X-computable linear ordering L with BpLq “ S. Letting X “ K “ H1,

and choosing S “ 0p4q that is in ΣH
1

3 zΣ
0
3, (by Post’s Theorem), we obtain a ∆0

2 such order. By
Lemma 3.2.6, the order is isomorphic to a Π0

1 subset of Q. By Lemma 3.2.7, it has a c.e. presentation.
If L so constructed was isomorphic to a computable L̂, then BpL̂q P Σ0

3 (as L̂ is computable), but
this contradicts BpL̂q “ BpLq “ S R Σ0

3.

Finally, we remark that in a decidable linear order L the block invariant BpLq becomes com-
putable. Consequently, Theorem 3.2.11 implies that there is a computable linear order with no
decidable presentation.

3.2.3 Finite extension method. Richter’s Theorem and the Frolov-Montalbán
Theorem

Recall that in Section 2.2 we presented a way to “encode” a c.e. set into a presentation of a group.
In Theorem 3.2.11, which was the key step in the proof of Theorem 3.2.1, a Σ0

3 set was “coded”
into the block relation of an order. However, this coding depended on the fixed Σ0

3-approximation
of the given set:

n P S iff Dx@sDtRpn, x, s, tq,

where R was computable. The same set can have many different Σ0
3-approximations, i.e., many dif-

ferent potential such R. Thus, this transformation from Theorem 3.2.11 was not really well-behaved
from the algebraic standpoint. Although this weak, notation-dependent coding was sufficient for
our purposes, it has its limitations. For a set S to be an actual “Σ0

3-invariant” of the respective
order, Theorem 3.2.11 has to be slightly modified, as follows.

Lemma 3.2.12 (Folklore). Given a set S, we can produce a linear order LpSq such that S is ΣX3
iff LpSq has an X-computable presentation.

Sketch. Use the shuffle sum of order-types Z and Z`n`Z. The shuffle sum
Ţ

iPN Li of order-types
pLiqiPN is obtained by replacing any point in Q with a copy of Li for some i, so that each Li gets

104

densely distributed in the resulting order4. Note that any permutation ρ of ω results in the same
order-type:

ě

iPN
Li –

ě

iPN
Lρpiq.

It is not difficult to see that, given a computable sequence pLiqiPN of uniformly computable linear
orders, we can computably turn it into their shuffle sum

Ţ

iPN Li. In the proof of Theorem 3.2.11,
we essentially produced a computable sequence of orders pLiqiPN such that the order-type Z`n`Z
appeared among the Li iff n P S. Clearly, different Σ0

3-approximations of S will give different such
Li. Define L “

Ţ

iPN Li and note that the resulting order-type depends only on S, and not on its
Σ0

3-approximation.

The transformation described above is much better behaved. For example, if we replace S with
the join of S with its complement (denoted S‘S), then LpS‘Sq has an X-computable presentation
iff S‘S is ΣX3 iff S is ∆X

3 iff S ďT X
2. In modern terminology, a linear order can have an arbitrary

“second jump degree”.
Can we do better than that? What about a Σ0

1-coding of a set into a linear order? That is, can
we find a construction of LpSq such that LpSq is computably presented if and only if S is Σ0

1, and
so that this could also be relativised?

We shall not attempt to define exactly what a Σ0
1-coding of a set into a structure is, since

issues such as uniformity will lead to a multitude of definitions. However, we should expect from
any such “coding” that, given any set A, we can produce a structure MpAq so that MpAq has an
X-computable copy if and only if X ě A, via an argument similar to the one we had above for the
“Σ0

3-coding” given by Lemma 3.2.12.
We now use the finite extensions technique to illustrate that no such sufficiently well-behaved

Σ0
1-coding is possible in the setting of linear orderings.

Richter’s Theorem

In the theorem below, a and b stand for Turing degrees.

Theorem 3.2.13 (Richter [450]). Suppose a ‰ 0 and pA,ďq is an a-computable presentation of
a linear ordering. Then there is another b ‰ 0 and a presentation pB,ďq which is b-presentable,
such that a,b form a minimal pair.

Proof. We modify the technique of Theorem 3.1.15. In view of Lemma 3.2.5, we might as well
regard A as a subset of Q. We need to build another subset B of Q to meet the same requirements:
Re,i : ΦAe “ ΦBi “ f total, implies f computable. The only extra condition is that A – B as
orderings. The only problem is the following. In the proof of Theorem 3.1.15, we could consider
any σ with Bs ĺ σ as a potential oracle for an x-computation. Now, our idea of making A – B
is that at stage s of the construction, we will have fixed a finite part of A, As “ ta1, . . . , anpsqu
(ai ăQ aj) and Bs “ tb1, . . . , bnpsqu with ai ÞÑ bi as our partial isomorphism. Now, it might be
that rai, ai`1s is an adjacency of pA,ďq, so that a σ which includes a rational between bi and bi`1

cannot be used in a potential computation, as the stage s partial isomorphism cannot be extended
to one including an element between bi and bi`1. Thus, we need to distinguish between finite
subintervals of As and infinite ones. By adding enough points between elements, we can assume
that rational s is in the domain of A, and that if rai, ai`1s is finite, it is an adjacency. This means

4That is, between any pair of blocks of the form Li and Lj , and for any k, there is a block of the form Lk.

105

that we can correspondingly break Bs into a finite number of blocks which are infinite, for example
r8, b1s, rb4, b5s, rb6, b7s, say would correspond to the fact that A has infinitely many elements left of
a1, between a4 and a5, and between a6 and a7. Note that rbi, bi`1s XQ is a computable set. Then
we call σ an acceptable string if σpnq “ 1 implies that n “ bi for some i, or n P pbi, bi`1q for some
rbi, bi`1s where A X rai, ai`1s is infinite. The proof is more or less identical to that of Theorem
3.1.15, and we ask for x, t and an acceptable σ with ΦAe pxq Ó‰ Φσi pxq Ó, and if so, let Bs`1 “ σ,
and extend the partial isomorphism by adding enough elements of A to make As`1 Ñ σ.

Actually, Richter proved a more general model-theoretical result generalising Theorem 3.2.13;
see Exercises 3.2.58-3.2.62 at the end of the chapter. What about a Σ0

n-coding for other choices of
n? We shall return to this question in §3.2.6.

The Frolov-Montalbán Theorem

Let adj denote the adjacency relation, that is, adjpx, yq if x ă y and there is no z so that x ă z ă y.
The following neat result was independently proven by Montalbán [399] and Frolov [190].

Theorem 3.2.14. For a linear order L, the following are equivalent:

1. L has a low presentation;

2. L has a ∆0
2-presentation in which the adjacency relation is also ∆0

2.

Proof. For 1 Ñ 2, recall that A ďT A
1 ”T H

1, and that the X-computability of L implies adj ďT
X 1.

The proof of the harder implication, 2 Ñ 1, combines ideas from the proof of Theorem 3.2.13
with Exercise 3.1.17. We will build a copy B of pL,ăq with domain tb0, b1, . . . u. Indeed, we will
build a bijection f : tb0, b1, . . . u Ñ L “ t`0, `1, . . .u and then define the order on B by “pulling
back” the order on L along f . To clarify what this means, we need to introduce a notation.

For each σ P 2n, let ψσpx0, . . . , xnq be the formula in the language of linear orders that completely
describes the order on x0, . . . , xn, depending on the values of σ. That is,

ľ

i:σpiq“1

ψi ^
ľ

i:σpiq“0

 ψi,

where each ψi is a conjunction of atomic facts of the form xi ă xk and xi ą xk, for k ă n. Let
DpBq P 2ω be the diagram of B; that is, we have that

B |ù ψσpb0, . . . , bnq if and only if σ Ď DpBq.

At each stage s we define a finite one-to-one partial map ps : B Ñ L with domain tb0, . . . , bnsu,
and then we will let f “

Ť

s ps. Given a finite one-to-one partial map p that maps b0, . . . , bn
to `0, . . . , `n, let Dppq be the σ P 2n such that ψσp`0, . . . , `nq holds in L. Then we will have
DpBq “

Ť

nDppnq.

Construction:

• Let p0 map b0 to `0.

106

• At stage s` 1 “ 2e, extend ps to ps`1 in any way so that be is in the domain of ps`1 and `e
is in the image.

• At stage s ` 1 “ 2e ` 1, we want to use H1 to decide the jump of DpBq. Suppose ps maps
b0, . . . , bns to `0, . . . , `ns . We will argue that, using H1, we can decide whether

Dq Ě ps such that teuDpqqpeq Ó;

for now, take this property for granted. If the answer is positive, H1 can search for witnesses
σ and y and use them to define ps`1, adding y to the range of ps. In this case, H1 knows that
e P DpBq1. Otherwise, we let ps`1 “ ps, and then H1 knows that e R DpBq1.

We have built B. To check that DpBq1 ďT H
1, it remains to verify that H1 can decide whether

there exists an extension q Ě ps such that teuDpqqpeq Ó, where ps maps b0, . . . , bns to `0, . . . , `ns .
This is where we use that bot ă and adj are ∆0

2 in L. Indeed, since H1 computes adj in L, it knows
whether

Dσ Ě ps teu
σpeq Ó & L |ù Dy ψσp`0, . . . , `ns , yq.

To see why, use H1 to see which of the `j are in the same block, and which are not. Then see if
there is a σ that obeys these restrictions and σ Ě ps teu

σpeq Ó. Using H1, list the order on L and
see if σ corresponds to a sub-order. It could be that σ claims the existence of 5 points between
(e.g.) `1 and `2. Using that adj is computable in H1, we can see whether there are enough points
between `1 and `2. Indeed, either a pair `1 ă x ă y ă `2 is an adjacency or not. In the latter case
we can H1-computably search for a point between x and y. It could be that we discover that `1 and
`2 are in one block which is too small. In this case we try again, and search for a σ1 that obeys this
new restriction. It remains to note that there are only finitely many intervals between `0, . . . , `ns .
Thus, eventually, we either find some extension or conclude that no such extension exists.

It is natural to ask whether every low linear order is isomorphic to a computable order. While
for Boolean algebras the answer to the analogous question is positive (to appear as Theorem 4.1.25),
we will see that for linear orders, the answer is negative (Theorem 3.2.45).

3.2.4 Finite injury. Tennenbaum’s Theorem

There are many illustrations of the finite injury method in the theory of computable linear orderings.
One where the conflicts between the requirements are quite apparent is the following theorem. We
write L˚ to denote the linear order anti-isomorphic to L, i.e., the order in which ă is reversed to
ą. For example, ω˚ is the order of negative integers.

Theorem 3.2.15 (Tennenbaum). There is a computable copy of ω`ω˚ with no infinite computable
ascending or descending suborderings.

Extended Sketch. We will build the ordering pA,ďAq in stages. The domain of A will be N, so
suborderings correspond to subsets of N. Recall that We denotes the e-th c.e. set. We meet the
requirements:

R2e : |We| “ 8 ÑWe is not an ascending subordering of A,

R2e`1 : |We| “ 8 ÑWe is not a descending subordering of A.

107

Additionally, we must ensure that the order type of pA,ďAq is ω ` ω˚. To this end, we will
build A as B ` C, where we will refer to the members of B as blue and those in C as red.

At each stage s, we will let:

Bs “ b0,s ăA b1,s ăA ¨ ¨ ¨ ăA bn,s,

and similarly,

Cs “ cm,s ăA cm´1,s ăA ¨ ¨ ¨ ăA c0,s.

Thus, we need to ensure that for all i, limi ci,s “ ci exists, and similarly lims bi,s “ bi exists.
(We could explicitly add this as a new requirement, but it is unnecessary, as we will see.)

Now, the blue part is, of course, the ω part, and the red part is the ω˚ part of A. At any stage
s` 1, a red element can become blue and vice versa. If bi,s becomes red, then every element x P Bs
with x ěA bi,s will also become red. If bi,s is the ďA-least element that becomes red and k elements
become red, then at stage s ` 1, the blue elements are now b0,s, . . . , bi´1,s, and the red ones are
cm`k,s, cm`k´1,s, . . . , c0,s. That is, bj,s`1 “ bj,s for j ď i ´ 1, and cj,s`1 are the same for j ď m,
while for j ą m, they are defined as the erstwhile blue elements.

We wish to ensure that We is not an ascending (blue) ω sequence. If We contains a blue element,
then it cannot be such a sequence. So the obvious strategy for R2e is to wait until we see some red
bi,s P We,s and make it red, as indicated. To ensure we don’t do this for all elements, we will only
consider bi,s ą 2e, so that R2e has no authority to recolour elements t0, 1, . . . , 2eu.

On the other hand, R2q`1 is trying to prevent Wq from being an infinite (red) ω˚ sequence, and
similarly, it wants to make red elements blue. If we allowed R2q`1 to undo the work we just did for
R2e by making the erstwhile bi,s blue again, we would undo the work needed to meet R2e. Thus,
when we act on Rk, we will do so with priority k, making some element the colour demanded by
Rk, unless Rk1 for k1 ă k wishes to change its colour.

So, we say R2e requires attention at stage s if it is not currently declared satisfied, and we see
some bi,s P We,s not protected by any Rk for k ă 2e and bi,s ą 2e. Similarly, R2q`1 requires
attention if some ci,s, instead of bi,s, satisfies the analogous conditions.

The construction is as follows: if any k requires attention, take the smallest such k, and perform
the re-colouring demanded by Rk. At each stage, we will add one more blue element to the right
of Bs`1 and one more red element to the left of Cs`1. The remaining details involve letting the
requirements “fight it out” by priorities.

An induction on k shows that we meet Rk. Once the higher priority requirements have ceased
activity, if Rk requires attention via some n P Wd,s, whatever colour Rk assigns to n will remain
fixed, as Rk has priority. Finally, if Wd is infinite, such an n will occur. It should be clear that the
resulting order is isomorphic to ω˚ ` ω.

Note that Rk can only be injured at most Op2kq many times.

3.2.5 Unbounded finite injury. Computable categoricity

Recall that a structure is computably categorical if any two computable presentations of the
structure are computably isomorphic. Since computable isomorphisms preserve essentially all
computability-theoretic properties, as a consequence of Theorem 3.2.15, we have:

Corollary 3.2.16. The linear order ω ` ω˚ is not computably categorical.

108

We have already mentioned that pQ,ďq is computably categorical. Recall that Theorem 3.2.2
states that this is more or less the only such ordering. More specifically, it says that a computable
linear ordering A is computably categorical if and only if A has only a finite number of adjacencies.

Proof sketch of Theorem 3.2.2. One direction is clear: if we non-uniformly map the adjacencies,
then between them the orderings are dense and we can use Cantor’s argument.

So suppose that pA,ďAq has infinitely many adjacencies. We need to build a computable B – A
to meet the following requirements:

Re : ϕe is not an isomorphism from B to A.

To make B – A, we will build an isomorphism f : B Ñ A. This will be built as fpxq “ lims fspxq
with fs a partial map from Bs to As. Thus, for simplicity of notation, we have fs : bji ÞÑ aji for
i ď s.

At stage s ` 1, a new element as`1 enters As`1 ´ As, and perhaps ai ăA as`1 ăA aj . Then
we would need to add an element bs`1 with bi ăB bs`1 ăB bj , and fs`1pbs`1q “ as`1. Clearly,
this will build an isomorphism, but it is merely copying. This will change when we discuss how we
meet the requirements, as we’ll need to “move” the isomorphism.

Because we will later be possibly making ftpbq ‰ fspbq, we will need to make sure that we also
meet the requirements:

Nb : lim
s
fspbq “ fpbq exists,

and, additionally, in the construction, we will make sure that for every a P A there is a b P B such
that fpbq “ a. The ordering of the priorities will be:

R0, N0, R1, N1,

We discuss how we meet a single requirement R0 in isolation. Then we observe that we can let
the priority method sort the construction so that all requirements are met.

One R0 in isolation. Clearly, we need to do nothing unless ϕ0 is total, so we will be monitoring
the behaviour of ϕ0, waiting for it to halt on more and more inputs. Suppose that we knew that
rai, ajs was an adjacency in A. We could wait for ϕ0,tpbpq Ó“ ai, ϕ0,tpbqq Ó“ aj to occur. If rbp, bqs
is not a Bt-adjacency, it never will be; so if we simply preserve the current ft : Bt Ñ At. This
will guarantee that ϕ0 cannot be an isomorphism from B to A, as it takes a non-adjacency to an
adjacency. If rbp, bqs really is an adjacency, our action will be to split it in Bt`1, manufacturing the
destruction of ϕ0 as a possible isomorphism.

Since R0 has the highest priority, we proceed as follows. We know that A is infinite, so new
elements must occur either to the left of ftpbpq or to the right of ftpbqq. Suppose the former. Let
bi0 ăB bi1 ăB ¨ ¨ ¨ ăB bik denote the points of Bt left of bp, and suppose that the new element as`1

is between fpbiv q and fpbiv`1q (if it occurs to the left of bi0 or to the right of bik , it is easier, but
similar). We add a new point bt`1 between bp and bq, and redefine ft`1pbt`1q “ ftpbpq, and define
ft`1pbpq “ fpbikq, and similarly shift ft`1pbidq left for biv ăB bid ăB bp, but leave ft`1pbieq “ ftpbieq
for bie ďB biv . We call this an R0-attack on rai, ajs. Fig. 3.2 and Fig. 3.3 might be helpful to see
what is happening.

109

Bs

As

as`1

New element enters here

. . .

. . .

.

.

Figure 3.2: Stage s

Bs`1

As`1

bp bq

aj

bs`1

New element added here

.

.

. . .

. . .

No change Preimage shifted No change

Figure 3.3: Stage s` 1

Clearly, R0 cannot know which pairs in A are adjacencies, so we will R0-attack the current
adjacency with the smallest Gödel number. Once we have attacked, we regard R0 as satisfied,
unless the adjacency rai, ajs used in the attack is split in A at a later stage s1. In that case, we will
allow R0 to become active again and try to attack the adjacency of As1 having the smallest Gödel
number.

Since A has adjacencies, we will eventually meet R0, after a finite (but unknown in advance)
number of attacks. Note that this will potentially injure each Nj for j ą 0, as each time we attack,
we do keep a partial isomorphism at stage t` 1, but we shift ft on some elements.

The general case is similar but has some further difficulties. In particular, we clearly need to
use the fact that the order has infinitely many adjacencies, not just one.

An outline of the general case.
We would like to attack Re in a similar way, by splitting the pre-image of some adjacency rai, ajs

in At. But now Re must respect Nj for j ă e. The strategy will attempt to preserve ftpjq “ fpjq
(with its respective priority). In particular, Re cannot shift f on these few points.

These few points split Bt (and, hence, At) into finitely many intervals. Let ai0 ăA ai1 ăA ai2 ăA
¨ ¨ ¨ ăA aie´1 list these points in A, and let the corresponding points be labelled as f´1paij q “ bij .
Then A is split into

tz : z ăA ai0u Y
e´2
ğ

p“0

raip , aip`1
q \ tz : aie´1

ďA zu,

and this induces the corresponding partition of Bt into sub-intervals (retracting via ft).
The idea is simple: at least one of these sub-intervals has infinitely many adjacencies. Thus Re

pursues its strategy in each of the sub-intervals, noting that shifting can occur in an infinite sub-

110

interval without disturbing the endpoints. This allows Nj to be met for j ă e while still meeting
Re.

The remaining details are a routine application of the finite injury method; this is left as Exer-
cise 3.2.18.

Exercises

Exercise˝ 3.2.17. Construct a copy of ω such that the adjacency relation has degree 01.

Exercise˝ 3.2.18. Give a detailed formal proof of Theorem 3.2.2.

Exercise˝ 3.2.19. A computable partial ordering pP,ďq is a computable set P and a partial
ordering ď which is a computable relation on P ˆP . A linear extension of a partial ordering pP,ďq
is a linear ordering with the same domain P , pP,ďq such that if x ď y then x ď y. A classical
Szpilrajn extension theorem states that every partial ordering has a linear extension. Prove that a
computable partial ordering has a computable linear extension.

Exercise 3.2.20 (Schwarz [460]). Let L be a computable linear ordering. Prove that the following
are equivalent.

(i) L contains a dense interval.

(ii) Every computable linear ordering L̂ isomorphic to L has a non-identity computable automor-
phism.

Exercise˝ 3.2.21. The well-known Dushnik-Miller ([151]) theorem states that every infinite linear
ordering has a nontrivial (order-preserving) self-embedding. That is, f : LÑ L is order-preserving
and for some x P L, fpxq ‰ x. Show that there is a computable copy L of pω,ăq, such that L has
no nontrivial computable self-embedding.

3.2.6 The Fellner-Watnick Theorem

A slight modification of Lerman’s Theorem 3.2.11, namely Lemma 3.2.12, shows that any Σ0
3-set

S can be realised as a computable isomorphism invariant of a linear order LpSq, in the sense
that S P Σ0

3 iff LpSq is computably presented (and this can be relativised). On the other hand,
Richter’s Theorem 3.2.13 gives very strong evidence that there is no reasonable coding of Σ0

1-sets
into computable linear orders. In this section, we will prove that, for n ą 3, a Σ0

n-set can also
be realised as an “effective invariant” of a computable linear order. To prove the result, we shall
establish two standard “jump inversion” theorems for linear orders.

Of course, linear orders can have much more complicated invariants than just sets. For instance,
given any linear order A, replace every point of the order by the order-type pQ` 2`Qq, which is
the dense order of Q followed by two points and by another copy of Q. Denote the resulting order
by QpAq “ pQ ` 2 ` QqA. It should be clear that A – B iff QpBq – QpAq, and thus A can be
viewed as the isomorphism invariant of QpAq. Similarly, we can define ZA by replacing every point
of A by a copy of the order-type of the integers. We begin with the much simpler transformation
A ÞÑ QpAq.

Theorem 3.2.22 (Downey and Knight [134]). A linear ordering A is ∆0
2-presentable iff QpAq “

pQ` 2`QqA is computably presentable.

111

The proof is left as an exercise (Exercise 3.2.48), but the idea is clear. We can assume A is Π0
1,

so simply build a copy of Q` 2`Q around a point z P A unless z leaves A, in which case absorb
the “junk” into the other copies of Q. A far more complex theorem is the following:

Theorem 3.2.23 (Fellner [164], Watnick [502]). A linear order A has an H2-computable
presentation iff ZA is computably presentable.

Before we turn to the proof, we will put it in context. There is a standard operator in the theory
of linear orderings called the condensation operator, defined as follows.

Definition 3.2.24. Let B be a linear order. The (finite) condensation CF pBq of B is the result of
identifying any two elements of B which are finitely far apart.

A discrete linear ordering is one where every element has an immediate predecessor and imme-
diate successor (save perhaps the first point with no predecessor, and the last with no successor).
If B is discrete and has neither first nor last points, then it is easy to see that it must be of order
type ZA for some ordering A, so that CF pBq – A. In some sense, B “ C´1

F pAq. It is not hard to
see that if B is computable, then CF pBq ďT H

2 since it takes two quantifiers to ask if x and y in B
are finitely far apart. This gives one implication in Theorem 3.2.23. Rosenstein [456] asked if the
reverse implication held. This was answered in the affirmative by Fellner [165] and independently
Watnick [502], and then independently rediscovered by Downey (unpublished).

The first proof of Theorem 3.2.23

The first proof that we present splits the construction of a computable copy of ZL into two lemmas.
As far as we know, Zubkov was the first to note that the proof of Theorem 3.2.23 can be split
into two finite injury proofs, but he never published his new proof. Montalbán takes a very similar
approach in his book [401], but using (slightly) different methods.

Let adj denote the adjacency relation, i.e., adjpx, yq holds if x ă y and there is no z such that
x ă z ă y.

Lemma 3.2.25. Let L be a non-empty ∆0
2 linear order. Then the order ZL has a computable

presentation in which adj is a computable relation. This is uniform.

Proof. The proof does not actually need L to be infinite, it merely requires that L ‰ H. Nonetheless,
suppose the domain of L is (indexed by) N:

|L| “ t`i : i P Nu,

and ăL is ∆0
2; the case of an initial segment of ω is essentially the same, up to a minor adjustment.

Notation 3.2.26. For a linear order Γ and x, y P Γ, define x ! y if for the equivalence classes of
x and y in CF pΓq, rxs and rys, we have rxs ă rys in CF pΓq. This is the same as to say that x ă y
and there are infinitely many points between x and y.

We build a computable linear order Γ with computable adjacency relation, in which every
block (aka equivalence class in CF pΓq) is isomorphic to Z. Additionally, we construct a ∆0

2-map
ψ : LÑ CF pΓq and for every i ‰ j, we meet the requirements

112

Ri,j : `i ă `j if and only if ψp`iq ! ψp`jq.

The map ψ will range over representatives of classes in CF pΓq. At every stage we will have
defined ψsp`jq “ mi,s. We will then prove that, for every i,

mi “ lim
s
mi,s “ lim

s
ψsp`iq “ ψp`iq

exists, and that the requirements are met, that each mi lies in a Z-block, and that every block has
some mj in it. We will not make ψs explicit in the construction, and will instead work only with
mi,s. Our strategies will work with `i (and mi) rather than with the requirements; the requirements
will be met somewhat indirectly, as a result of our actions.

Strategy for `0. In the construction, we will place m0,s “ m0 and will begin building a Z-block rm0s

around m0. We will denote the finite portion of rm0s at stage s by M0,s. For every s, we will have
m0,s “ m0.

Strategy for `i, i ą 0. The strategy assumes that ăL restricted to `0, . . . , `i´1 and approximated
using the Limit Lemma 3.1.3, has not changed since the previous stage. If the approximation to
ăL has changed on `0, . . . , `i´1, then the strategy is instantly initialised (to be clarified). If Mj,s,
j ă i, are the finite portions of Z-blocks around mj,s (j ă i) built so far, and mi,s is undefined,
then the strategy:

1. places mi,s between (or to the left or to the right of) the blocks Mj,s so that

`k ÞÑ mk,s, k ď i

is an isomorphism between the current approximation to ăL on `0, . . . , `i and m0,s, . . . ,mi,s,
and

2. initiates the construction of Mi,s, which is (an attempt to build) a copy of Z around mi,s

disjoint from Mj,s pj ă sq.

In mi,s is defined, then make progress in building the Z-block around mi,s by placing a few more
points around mi,s, let the resulting block be Mi,s`1, and set mi,s`1 “ mi,s.

Initialisation. If a strategy `i (i ď s) needs to be initialised, then let k be a strategy so that Mk,s

is adjacent to Mi,k. In particular, Mk,s is defined and thus the `k-strategy has not been initialised
yet.

1. Set mi,s undefined.

2. Incorporate all points of Mi,s into Mk,s and set Mi,s undefined.

Construction.
At stage 0, only the strategy for `0 acts.
At stage s, see if any strategies for `i (i ă s) need to be initialised. If so, initialise them one by

one, until no strategies that need to be initialised are left. Then let the strategies for `i (i ď s) act
according to their instructions.

113

Verification. By induction, we prove that limsmi,s exists. The case when i “ 0 is trivial, since the
strategy working with `0 is never initialised. The case i ą 0 follows by a straightforward induction,
since our approximation to ăL on `0, . . . , `i´1 will eventually settle. Recall ψsp`iq “ mi,s. Let
mi “ limsmi,s and ψp`iq “ lims ψsp`iq “ mi.

Claim 3.2.27. For every i ‰ j, Ri,j is met.

Proof. Let s be so large that mi “ mi,s and mj “ mj,s. Without loss of generality, assume
`i ă `j . The instructions of the strategies working with `i and `j guarantee that mi ă mj . Further,
Mi “

Ť

těsMi,t and Mj “
Ť

těsMj,t do not intersect and are isomorphic to Z each. It follows that
ψp`iq ! ψp`jq.

Note we also showed that for every i there is an s such that Mi “
Ť

těsMi,t. We must also
have that Mi – Z. It remains to note that for every s,

Γs “
ğ

iďs

Mi,s,

and that every point x ever placed in Γ will eventually find itself in one of the Mi-blocks. We
conclude that Γ – ZL, as witnessed by ψ, the elements mi, and their Z-blocks Mi.

Finally, it remains to observe that no points will be put between an adjacent pair x, y P Mi,s,
for any i, s, even if this block will be later incorporated into some other block, due to initialisation.
Thus, the adjacency relation is computable in Γ.

The second lemma may look a bit less interesting, but it will in fact be more useful in the sequel.
We state it in a slightly more general form than is needed to prove the theorem, because we shall
need the stronger lemma in the next chapter. Also, compare the lemma with Theorem 3.2.14.

Lemma 3.2.28 (Downey and Jockusch [129]). Suppose L is a ∆0
2-linear order in which the adja-

cency relation is ∆0
2. Then there exists a computable linear order pL which is, up to isomorphism,

L except for an adjacency in L may be replaced by a finite block. If the linear order has infinitely
many adjacencies and has no greatest and no least element, then we can produce pL uniformly.

Proof. Without loss of generality, we may assume that L Ď Q having least and greatest elements
and infinitely many adjacencies. We prove that there is a computable linear ordering pL Ď Q and a
function h : LÑ pL such that the following conditions hold:

(i) h is 1–1 and order preserving and maps the least (greatest) element of L to the least

(resp. greatest) element of pL.

(ii) If ra, bs is an adjacency of L, then rhpaq, hpbqs X pL is finite.

(iii) If c P pL´ rangephq, then

pDa, bqra, b P L and adjpa, bq and hpaq ă c ă hpbqs.

By the Limit Lemma, L has a recursive approximation Ls (so that for almost all s, a P
L if and only if a P Ls). We may further assume that

adjpa, bq implies ts : pDcqpa ă c ă b & a, b, c P Lsqu is finite.

Using the ∆0
2–ness of adj, we can “speed up” any approximation to L to get one with this

property. We may also assume that the least and greatest elements of L are in L0. We will
construct pL “ YspLs, and h “ lims hs in stages.

114

At the initial stage s “ 0 we map the least (greatest) element of L to 0 (respectively, 1) with
highest priority and never change h on these arguments. At stage s, we are allowed to add new
elements to pL between the current values of hpaq and hpbq, pa ă bq, only if there exists c P Ls with
a ă c ă b. Thus (ii) will hold.

As before, let q0, q1, ¨ ¨ ¨ be an effective enumeration of Q. We require that any element added
to pL at stage s be of the form qm with m ě s. Hence pL will be computable.

We have the following requirements:

R2m : qm P L ùñ hpqmq Ó &hpqmq P pL;

R2k`1 : qk P pL´ hpLq ùñ pD i, jq

adj pqi, qjq & hpqiq ă qk ă hpqjq.

Assign priorities as usual (the argument is finite injury). The construction is arranged so that
domphsq Ď Ls for every stage s. When we set hspqmq “ qk, this assignment has the priority of
Rp, where p “ mint2m, 2k ` 1u. If qm P Lt for all t ě s and no requirement of higher priority
than Rp acts after stage s, we will then have htpqmq “ qk for all t ě s (and hence hpqmq “ qk).

Strategy for R2m. If qm P Ls`1 and hspqmq is not defined, define hs`1pqmq “ qt where t is chosen

so that t ą m and this definition keeps hs`1 order preserving. Add qt to pL. If qm leaves L or a
higher priority requirement R2k`1 acts, cancel this value of h and start over. If qm P L, this will

happen only finitely often, and hpqmq “ lims hspqmq will exist and be in pL.

Strategy for R2k`1. Suppose qk P pLs ´ hspLsq. (This situation arises when qk is put into pL by
some R2m, but its apparent h-preimage seems to leave L or qk is cancelled as an h-image by higher
priority action.) Further, assume that there do not exist i and j with hpqiq and hpqjq defined with
stronger priority than that of R2k`1 such that adjs pqi, qjq and hspqiq ă qk ă hspqjq. Cancel all
lower priority values of h. Choose i and j with hspqiq and hspqjq defined with stronger priority than
R2k`1 such that hpqiq ă qk ă hpqjq and phpqiq, hpqjqq contains no values of h defined with stronger
priority than that of R2k`1. (Such i and j exist because we initially defined h on the least and
greatest elements of L with highest priority.) By hypothesis, adjs pqi, qjq does not hold. As long as
it continues not to hold, search for t such that qt P L and qi ă qt ă qj by effective approximation.

Set hpqtq “ qk (without changing pL). If the candidate for t changes, start over by undefining all
lower priority values of h. Also, if adj pqi, qjq starts to hold, or qi or qj appears to leave L, start
over.

These strategies combine by a standard finite injury argument. We omit further details, which
are routine. The construction of pL is uniform. Recall however that we assumed that L had the
greatest and the least element. We shall remove the least and the greatest element from pL if
necessary. In case when L had no least or greatest element, these extra elements could not be a
part of an adjacency.

Apply Lemma 3.2.25 relativised to H1 to obtain a ∆0
2-copy of the order ZA in which the adja-

cency relation is also ∆0
2. Now apply Lemma 3.2.28 to produce a computable presentation of ZA;

note that replacing an adjacency by a finite block does not change the isomorphism type of ZA.
Note this is all uniform.

The first proof of the Fellner-Watnick Theorem 3.2.23 is complete.

115

The second proof of Theorem 3.2.23 using the tree of strategies˚

We now present a very detailed proof of Theorem 3.2.23 that uses the techniques from the proof of
the Minimal Pair Theorem 3.1.44. The impatient reader may skip this subsection, as we will not
need to use the tree of strategies until Chapter 9.

As we have seen, infinite injury can be replaced with two finite injury constructions in the specific
case of Theorem 3.2.23. However, it appears that such iterated proofs are not always possible. It
seems that in many situations, using the tree of strategies is a much more flexible approach, even
if it may result in longer arguments.

The following proof was taken from Downey [119].

Infinite injury proof of Theorem 3.2.23. Recall we are given a H2-computable presentation of a
linear order A, and we must produce a computable presentation of ZA.

We assume A is non-empty, and indeed, we shall assume A is infinite, as the case when A is
finite is elementary. We will also see that the proof is uniform, in the sense that given the index e
for ΦH

2

e – A, we can computably produce an index for a computable copy of ZA.
Recall that in Lemma 3.2.6 we established that any ∆0

2 order is isomorphic to a Π0
1-subset of the

rationals. Relativising this to H1, we obtain that we only need to deal with Π0
2 subsets of pQ,ďq.

This relativisation does not affect uniformity (see Remark 3.1.6).
The proof involves an infinite injury argument, similar to the construction of a minimal pair, as

detailed in Theorem 3.1.44.
Before presenting the formal construction, we will informally explain how our construction

works.

A nice representation of A. Let A be a Π0
2-copy of the order. We let Q “ tx0, x1, x2, . . .u be a

computable enumeration of Q.
First, we take a nice representation of A as first suggested by Jockusch, as follows. By

the standard representation of a Π0
2 set, we may suppose, without loss of generality, that A “

tfpiq |ϕfpiq is totalu, where tϕi : i P Nu lists the partial computable functions; see Theorem 3.1.8.
We replace this representation with a better one, given by a tree that controls strategies. One nice
property of this better representation is that if j1, . . . , jn is any finite subset of A, then j1, . . . , jn
all “appear to be in A” together infinitely often. This is done as follows.

Define a stage s to be a σ-stage (for σ P 2ăω) by induction on the length of σ, |σ|, as follows:

1. Every stage s is a λ-stage (λ is the empty string).

2. If s is a τ -stage and |τ | “ j “ fpiq, then if ϕfpiq,spyq Ó where

y “ µztz R domϕfpiq,t : t is a τ -stage and t ă su,

we say s is a τp0-stage. Otherwise, s is a τp1-stage.

Then A is the ”true path” of the above tree, in the following sense. Let β be the leftmost path
visited infinitely often so that λ ĺ β, and if σ ĺ β, we have σp0 ĺ β iff D8s ps is a σp0-stage);
otherwise, σp1 ĺ β. Then

A “ tj : |σ| “ j and σp0 ĺ βu.

We say that xj appears to be in A at stage s if s is a σ-stage and |σ| “ j. We define σs
to be the unique string with |σs| “ s and s is a σs-stage. Then we say that A appears to be
tj : τp0 ĺ σs and |τ | “ ju at stage s, and define As to be this set.

116

Remark 3.2.29. Notice that @s px0 P Asq because every stage is a λ-stage. This seemingly non-
uniform assumption does not actually make the proof non-uniform. This is because when we realise
an infinite (or indeed, non-empty) ∆0

2 order A as a Π0
2-subset of Q, we can always assume that x0

(or any fixed point) is in the subset. To ensure this, fix the first element in the domain ω of A and
immediately map 0 to x0. This will never be changed.

Recall that ω˚ denotes the order of the negative integers.

A good model for pB, ăq “ pC´1
F pAq, ďq. We must perform three basic tasks:

1. For points xi P A, we must build ω˚xiω.

2. We must “incorporate” all xj R A, as well as all the auxiliary points from our attempts to
build ω˚xjω into blocks of the form ω˚xiω for some xi P A.

3. We must ensure that nothing else is built.

A good model for B is given as follows. At stage s, we have a set of balls with various markings
on them, arranged in a line. We have a supply of new balls we must add to this line, either inserted
or added to the ends. These new balls will be z-balls, y-balls, or xi-balls. The intention is that
z-balls are attempting to be a part of an ω˚-block, y-balls part of an ω-block, and xi-balls part of
A. Later, we may change our mind and convert y to z, or xi to y or z. However, if an xi-ball turns
into a y-ball, it can’t change back.

The line of balls is referred to as the surface. An xi-ball on the surface will be marked with a
guess σ P 2ăω. If there is a stage s where this guess proves wrong, we turn this xi into a y- or a
z-ball (with no guess).

The xi-balls we must place on the surface at stage s are simply those that appear to be in A
at stage s. Roughly speaking, we must place the y’s and z’s around the xi’s that appear in A at s,
according to our definition of As above.

The strategies. To satisfy our three aims, we must have a strategy dictating where to place our
new balls at each stage. This strategy must overcome several problems, whose solutions we outline
below.

Incorporations. As a first approximation, let us suppose that we have three points which appear in
A at stage s in the order

xj ă xi ă xk.

Now suppose that really xj , xk P A and xi R A. What we shall know is that xj and xk appear
in A together infinitely often, but xi only appears to be in A finitely often. For simplicity, let us
suppose that xj and xk are successors in A. Thus, @p pxj ď p ď xk and p P AÑ p “ xj or p “ xkq.
We see that locally B “ C´1

F pAq should be one copy of ω˚ ` ω at xj and ω˚ ` ω at xk, with xi
not there. To achieve this, we shall incorporate xi into the block of xj . (The entire construction is
“left justified”.) We do this as follows. At stage s, when xj appears to be in A, we must add one
z before xj and one y following xj . As it stands, we put z immediately before xj , but put y as far
right as possible to be consistent with our current picture of A at stage s.

That is, to place y for the sake of xj , we go as far right as possible until we see an xp also
appearing in A (or reach the end of As), and then repeat the process for xp. For example, a typical

117

situation might be

zzz xj yz xi yz xk ¨ ¨ ¨xp ¨ ¨ ¨ at stage s´ 1
zzzz xj yz xi yz xk ¨ ¨ ¨xp

loooooooooooomoooooooooooon

no change

yz xp ¨ ¨ ¨ at stage s

At stage s, it appears that xj P As and xp is the next member of As. This strategy works because xj
and xk appear in A together infinitely often, so we build infinitely many z’s before xj , and similarly
before xk. (In this case, p “ k.) Additionally, since xi appears in A only finitely often, we build
only finitely many y’s and z’s between xj and xk, and after that, we almost always incorporate xi
into xj ’s ω-block whenever xj and xk appear in A together. Hence, we end up with the following
structure:

ω˚xj yy ¨ ¨ ¨ yzz ¨ ¨ ¨ z
looooooomooooooon

finite

xi yy ¨ ¨ ¨ y ¨ ¨ ¨
loooomoooon

ω

ω˚xk ¨ ¨ ¨

Thus, we achieve ω˚xjωω
˚xk, as required. We refer to this strategy as incorporation, since we

ensure that if xi doesn’t appear in A infinitely often, it gets incorporated into some block.

The problem. So far, we have explained how to place the y- and z-balls. The crucial property
that allows this strategy to succeed is ensuring that between any two successive points of A (e.g.,
pxj , xkq), the wrongly placed “false points” (like xi) can be rearranged into an ω-ordering.

Now, suppose that infinitely often, a new xt appears so that xj ă xt ă xk appears in A at some
stage st. It seems reasonable to place xt between xj and xk. However, it is critical to determine
how we should relate such xt to xi (in the previous notation).

Eventually, it will no longer appear that xi P A, so placing anything between xj and xi seems
unnecessary. That is, although in the Q-order we may have xj ă xt ă xi, if it does not seem that
xi P A when we need to place an xt-ball, we shall place xt beyond xi in the following order:

xj ă xi ă xt ă xk.

Note that xk appears in A at the same time.
Thus, assuming we are working to the right of x0, our guiding principle is to always try to place

new xi’s as far right as possible.

This brings us to a minor point.

We shall assume that x0 is the least member of A.

This simplifies the presentation. When a new xi appears, we first determine if xi ă x0 or
x0 ă xi. If xi ă x0, we work similarly, mutatis mutandis, so that everything proceeds to the left.

Summarising so far, our key idea is that we don’t build between any xp and xq if xq is xp’s
current successor and xp doesn’t appear to be in A at the stage. This approach helps us overcome
the problems induced by our strategy above.

The next situation we must consider is when xt, xj , xi, xk above are all in A, but infinitely
often it appears that xj P A, xi R A, and xk P A, and infinitely often it appears that xj P A, xi R A,
and xt R A.

118

Following our strategy above, at stage s0, when xt appeared for the first time, we placed the
balls in the order

xj xi xt xk pat stage s0q

when their actual order (in A) is xj xt xi xk. We did this since it appeared that xi R A at stage s0.
But later, we see that xi P A and also xj , xt, and xk P A at some stage s1 ą s0. We now realise
that our initial guess regarding xt’s position was incorrect and now place

xj xt xi x̂t xk.

Here, x̂t denotes a group of balls around xt’s old position. We can’t remove these balls but also
don’t wish to build an ω˚ ` ω block around x̂t, so our solution is to relabel the x̂t-balls as y- or
z-balls.

This then gives rise to another problem. Later, we again see xt P A, but now xi R A. We can’t
use the xt position between xj and xi since we originally placed it there only because xj and xi
appeared in A. Perhaps in another scenario, xi R A and xt P A, but infinitely many such xt get
inserted between xj and xi. We really should place new xt as far right as possible consistent with
our current picture of As. If, later, it appears that xj and xi are in A, we again build around
the xt we placed between xj and xi last time and cancel its current position. This leads to the
fundamental idea of the proof.

Labelling. Whenever we place an xt on the surface into a new position for the first time, we give
it the label σ Ď σs with |σ| “ t ` 1. Thus, we are indicating where xt’s correct position should
be, assuming σ is correct. If we must move xt, we do so because some xi encoded in this guess,
which appeared to be out of A, now appears to be in A, and i ă t. (Of course, in σt this will
appear as τp1 with |τ | “ i.) The condition i ă t is simply to determine which ball to move.
When we move xt, we give its new position a “better” label. The correct position for xt is a stable
position corresponding to the leftmost label visited infinitely often. The reader should note that, at
any particular time, xt might have several positions labelled on the surface; only (at most) one is
correct. Here we need another notion. Let ďL denote the lexicographic ordering on the tree. The
reader should interpret σ ďL τ as σ “ τ or σ is stronger than τ . Note that only those σ ďL τ will
always have their apparent positions uncancelled. Those τ ďL σ only get visited finitely often and
so only move σ finitely often. Hence, we shall argue that σ reaches a stable position and so does
xt. We now give the formal details of the construction, although we hope that the reader can see
them for themselves.

Construction of C´1
F pAq “ B, stage s` 1.

Step 1 (Cancellation): Compute σs. Cancel all positions marked τ for τ ­ďL σs. Regard these now
as y-balls and similarly, any z-balls associated with them become y-balls.

Step 2 (Placing xj-balls): In order of j, for each τ with |τ | “ j and τp0 Ď σs, proceed as follows:
If there is currently an (uncancelled) position marked τp0 on the surface, do nothing. If there

fails to be such a position, establish one by placing an xj-ball marked τp0 as far right as possible.
This will be on the right of Bs´1 unless there is an xi-ball marked γp0 Ď τp0 and xj ă xi. In this
case, for the ăQ-least such xi, we place xj immediately left of xi and put s z-balls immediately
preceding xi, i.e., xjzzz ¨ ¨ ¨ zxi.

Step 3 (Placing y, z-balls): Now place y- and z-balls as indicated in the discussion. That is, place
another z-ball before x0. Now go right and find the first xj-ball, if any, marked γp0 Ď σs for some

119

γ. If there are no y- or z-balls between xj and its predecessor, add a y-ball followed by a z-ball.
If there are already blocks of y’s and z’s preceding xj , add one further y to the y-block and one
further z to the z-block. Continue until we get to the right end. Here, add one y-ball.

End of construction.

Verification. For the sake of the following lemmata, we shall adopt the following definitions:

Definition 3.2.30. We say a ball n appears to be in an x-ball g’s ω˚-block at stage s if n is a
z-ball and, if m is any ball with m between n and g, then m is a z-ball.

Definition 3.2.31. We say a ball n appears to be in an x-ball g’s ω-block at stage s if g has guess
σ for some σ ĺ σs (and g is not cancelled at s), g ď n, and one of the following conditions is
satisfied:

1. (a) there exists an x-ball g in domBs with g ď n ă ĝ such that ĝ has guess ĺ σs; and

(b) there does not exist an x-ball in domBs with guess ĺ σs and g ă r ď n;

and

(c) there exists a y-ball p in domBs such that n ď p ă ĝ; or

2. there does not exist an x-ball ĝ in domBs with g ă ĝ.

Remark 3.2.32. The intuition here is that either n occurs beyond the largest apparent member of
A at s (in 2), or n occurs before the z-block of two apparently consecutive (at s) elements of A at
stage s.

We also say that position g (an x-ball) receives attention at stage s if the number of elements in
g’s apparent ω˚-block at s increases. Let β denote the leftmost path. That is, as in the discussion,
β is the leftmost path visited infinitely often.

Lemma 3.2.33 (Stable position lemma). Every xi reaches a stable position. That is, either xi R A,
in which case xi receives attention finitely often (in total), or xi P A, in which case there is a unique
xi-ball that receives attention infinitely often (and is, of course, never cancelled). This ball is marked
σp0 ĺ β with |σ| “ i.

Proof. By induction. Suppose for all j ă i, the lemma holds. Let s0 be a stage such that
@s0 pσp0 ďL σsq. Let s1 ą s0 be the least σp0-stage exceeding s0. At stage s1, choosing s0

minimal, we may suppose that we place an xi-ball h, marked σp0. We claim that this is xi’s stable
position.

First, this position cannot be cancelled. We only cancel positions when their guess appears
wrong (in step 1 of the construction). By 1 above, this cannot occur. Hence, this position is never
cancelled.

Second, this position receives attention infinitely often since σp0 ĺ β, and so D8spσp0 ĺ σsq by
the definition of β.

Finally, hi is unique. To see this, let g be another xi-ball that receives attention infinitely often.
This ball g must have guess γ, for some γ with |γ| “ i ` 1. There are three possibilities: either
γ ďL β and γ ł β, γ ĺ β, or β ďL γ. In the first case, there are only finitely many γ-stages. We
only add to this xi-ball’s z-block at γ-stages (by construction), and so such an xi-ball can receive
attention at most finitely often.

120

If γ ĺ β, then γ “ σp0. There are two possibilities: either g was appointed at a stage t before xi
(i.e., before s1), or g was appointed after h, so at a stage s2 ą s1. In the first case, our assumptions
concerning the minimality of s1 mean that there is a η-stage t̂ with t ď t̂ ď s0, with η ďL γ and
η ‰ γ. Such a stage cancels g. If g is appointed after stage s1, then g was appointed at a σp0-stage.
We only appoint new positions if there is not already a σp0-position available. There is, of course,
one—namely, the one occupied by h. Thus, we wouldn’t have appointed g after all.

Finally, if β ăL γ, then σp0 ł γ. By step 1, at each σp0-stage, we cancel any x-balls marked γ.
Hence, g gets cancelled and so wouldn’t have received attention after all.

Lemma 3.2.34 (True z-ball lemma). Let xi P A. Let x̂i denote xi’s stable position (given by
Lemma 3.2.33). Suppose n is an ω˚-ball of x̂i at stage s1. Then n is a z-ball of x̂i at every σp0-
stage where σp0 ĺ β and |σ| “ i. Also, if zpn, sq is the number of balls between n and x̂i at stage
s, then for all s ě s1, zpn, sq “ zpn, s1q (“ zpnq, say).

Proof. Let n and x̂i be as above at stage s1. By the definition of an ω˚-ball, n is a z-ball, and there
are no balls between n and x̂i save for z-balls. The construction (in step 2) specifically ensures that
when we place new x-balls xj ă x̂i, we do not disrupt any currently placed z-balls. In particular, no
new γj balls can be placed between n and x̂i. This, of course, means that zpn, sq “ zpn, s1q “ zpnq
since new z-balls are always placed on the left end of x̂i’s apparent ω˚-block.

Lemma 3.2.35 (True ω˚-block lemma). Let xi P A and x̂i be as in Lemma 3.2.34. Then in B
there appears an ω˚ x̂i-block.

Proof. By Lemma 3.2.34 and the fact that x̂i receives attention infinitely often, we thus add in-
finitely many z-balls before x̂i.

Definition 3.2.36. Suppose n is a z-ball of some x̂i. Then we say n is a stable ω˚-ball, and we
say n adheres to x̂i as an ω˚-ball.

Lemma 3.2.37 (ω-adherence lemma). Let m be any ball, and suppose m is not a stable xi-ball or
a stable ω˚-ball. Then there exists a stable xi-ball x̂i and a stage spmq such that:

1. m appears to be an ω-ball of xi at each σp0-stage ą spmq, where σp0 ĺ β and |σ| “ i.

2. If dpm, x̂i, sq denotes the number of balls between m and x̂i at stage s, then @s ą spmq pdpm, x̂i, sq “
dpm, x̂i, spmqq “ dpm, x̂iqq.

In this case, we say m adheres to xi as an ω-ball.

Proof. This is the main lemma that our machinery—discussed before the construction—is meant
to achieve. Either m is an unstable z-ball, an unstable xj-ball for some j, or a y-ball. All of these
cases are similar and can, roughly speaking, be treated simultaneously. Let s be the stage when m
was placed on the surface. If m was an xj-ball, set cpmq “ m. If m was a y-ball, find the ď-greatest
x-ball xj alive at stage s with xj ď m and set xpmq “ xj . (Note: xj does not need to be apparently
in A at s. Also, xj may later die or xj may be x̂j .) Finally, if m was a z-ball, find the ď-least
x-ball xj such that m ě xj , and set cpmq “ xj . Note that m appears to be in xj ’s z-block at stage
s. Since there are no dormant x-balls between m and cpmq, as in Lemma 3.2.34, we cannot place
more balls between cpmq and m after stage s due to the way we place balls. It therefore suffices to
argue the lemma for xpmq “ xj instead of m.

121

Without loss of generality, assume xj “ cpmq is unstable, and either xj is eventually cancelled
or xj is never cancelled but only appears in A finitely often.

Now let x̂j be the ď-greatest stable position ď xj in B at stage s.

Claim 3.2.38. After stage s we cannot add a stable position x̂t with x̂i ă x̂t ă xj.

Suppose not, and x̂t is such. Let σp0 be the guess of xt. The only time we place such a ball
x̂t between balls already on the surface is because the guess forces us to. That means there must
be some ball xq with guess γp0 (say) and x̂i ă x̂t ă xq ă xj forcing x̂t ă xj . Since this is so, by
priorities of movement it must be that q ă t.

For suppose otherwise, and t ă q. Now xq must be already present on the surface at the stage
s when xi enters. Since this is a new position for xt there must be no position marked σp0 on the
surface at stage s. Hence it cannot be that the guess γp0 of xq extends σp0, because if this was
so we would already have put down a xt-ball g marked σp0 by the time we put γp0 down for zq.
But then this ball g cannot have been cancelled in the intervening stages since if g were cancelled,
so too xq would have been cancelled. (Note g would be cancelled since σp0 ­ďL σs but then as
σp0 ĺ γp0, γp0 ­ďL σs). Hence we see q ă t.

Since q ă t and x̂t is a stable position, we must have that xq is also a stable position. (Remember,
in this case, σp0 ĺ γp0 and σp0 ĺ β. If xq’s position is cancelled, so too is anything, in particular
x̂t, marked σp0.) In either case, we see that no such xq (and hence x̂t) can exist, giving (3.2.38).
Thus, we have Claim 3.2.38 that there are no stable positions between cpmq “ xj and x̂i. We now
show that xj adheres to x̂i.

Let xi1 , . . . , xin list those x0-balls alive at stage s with x̂i ă xi1 ă ¨ ¨ ¨ ă xin “ xj . Let spmq
be the least stage such that for all j with 1 ď j ď n we have

1. either xij is cancelled at stage spmq, or

2. @s ą spmq pγj ł σs where γj is the guess of xij).

Such a stage must exist by Claim 3.2.38 and the definition of stability. As the notation suggests,
we claim that this x̂i pspmqq is correct, namely that

Claim 3.2.39. 1. xj appears to be an ω-ball of x̂i at each σp0-stage ą spmq.

2. dpxj , x̂i, spmqq “ dpxj , x̂i, sq for all s ą spmq.

By construction, 2 ñ 1 because of the way we place y-balls and the fact that x̂i is stable. We
argue that 2 holds in a similar way to our argument that there are no stable x-balls between xj
and x̂i. Suppose dpxj , x̂i, spmqq ă dpxj , x̂i, sq for some least s ą spmq.

There are two ways we might insert new balls between xj and x̂i. Either the new ball n is a y-
or a z-ball placed between x̂i and xj because we see that xq appears in A at s for x̂i ă xq ă xj
(notice that xq ă xj and q ‰ ik for any 1 ď k ď n by choice of spmq), or the ball is a new x-ball xd,
say, placed there because again we see xq whose guess appears correct with x̂i ă zq ă zj . Again,
xq ‰ xj or xik for any 1 ď k ď n. We claim that in either case, no such zq can exist.

Using the reasoning of Claim 3.2.38, xq, which did not exist at stage s, must have appeared at
a stage where some of the xik for i ď k ď n looked correct, since otherwise we would have placed
it beyond xj . Also, using the same reasoning as Claim 3.2.38, it must be that q exceeds those xik
that forced it in (otherwise, xik would be cancelled first). Thus, since xq’s guess extends such xik ’s
guess, xq’s guess appears correct at best only when xik ’s does too. But the choice of spmq means

122

that xik ’s guess never again looks correct. Thus, xq’s guess also never again looks correct. Hence
stage s can’t exist after all. This clinches 2 and hence Claim 3.2.39, and the lemma follows.

Lemma 3.2.40 (Truth of outcome lemma). Let n be any ball. Then either n is a stable x-ball, or
n adheres to a stable x-ball.

Proof. By Lemmas 3.2.35 and 3.2.37.

Lemma 3.2.41. CF pAq – B.

Proof. The desired isomorphism is induced by the injection AÑ B given by x̂j ÞÑ xj . The lemmata
and the addition of y points achieve the rest.

The second proof of the Fellner-Watnick Theorem 3.2.23 is complete.

Corollary 3.2.42 (Watnick [502]). For n ě 1, a linear ordering L has an Hp2nq-computable
presentation iff ZnL is computably presentable

Recall that in §3.2.3 we discussed the possibility of producing a linear order in which a set
serves as its Σ0

n-invariant. The well-known application of the Fellner-Watnick Theorem 3.2.23 and
Theorem 3.2.22 is the following:

Corollary 3.2.43. Fix any n P N, n ą 2, and let S be an infinite set. There is a linear order LpSq
such that LpSq has an X-computable presentation if and only if S is Σ0

n.

Proof. The case when n “ 3 is covered by Lemma 3.2.12; let L̂pSq denote the order corresponding
to the case when n “ 3. If n “ 2k ` 1, where k ą 1, then let LpSq “ Zk´1L̂pSq. If n “ 2k ` 2,
where k ě 1, then consider pη ` 2` ηqZk´1L̂pSq.

Recall also that no nice Σ0
1-coding of a set into a linear order can possibly exist, as follows from

Richter’s Theorem 3.2.13. What about the case when n “ 2? It follows from a result of Knight [304]
that the case when n “ 2 is also impossible; we omit the proof of this result.

3.2.7 Low linear orders. The Jockusch-Soare Theorem

An interesting application of the Fellner-Watnick Theorem 3.2.23 is the following result about low2

discrete linear orders. Recall that a set X is low if X 1 ”T H
1, and it is lown if Xpnq ”T H

pnq.
Recall also that a discrete linear ordering is one where every element has an immediate predecessor
and an immediate successor, except perhaps the first point with no predecessor and the last with
no successor, if they exist. The corollary below was first established by Downey and Moses [147]
for discrete low orders, and then Frolov [189] noted that the result clearly holds for low2 discrete
orders as well.

Corollary 3.2.44. Every low2 discrete linear order has a computable copy.

Proof. We use the machinery accumulated for linear orders in the previous subsections without
explicit reference. Suppose X is low2, and suppose A is X-computable. Relativising to X, we
conclude that D “ CF pAq has to be an X2-computable copy. Since X2 ”T H

2, the copy is also ∆0
3

(hence, Π0
2). It could be that A starts with ω or ends with ω˚, or both. In each of the four possible

cases, we could remove the greatest or the least point of D (or both) if necessary and produce a ∆0
3

copy of the resulting D̃. Using the Fellner-Watnick Theorem 3.2.23, we can produce a computable

123

presentation of ZD̃. To get a computable presentation of A, we may have to adjoin ω to the left of
ZD̃ and ω˚ to the right of it.

For many years, it was not known whether every low linear order had to be isomorphic to a
computable one. The question was resolved by Jockusch and Soare [273], who proved the following:

Theorem 3.2.45 (Jockusch and Soare [273]). There is a low linear order not isomorphic to any
computable linear order.

The original proof of the theorem found in [273] involved infinite injury. We give a fairly
elementary injury-free proof of this theorem, which is inspired by the recent result of Frolov and
Zubkov [188]. The injury will be completely eliminated using Theorem 3.2.14.

Proof. We identify computable linear orders with c.e. subsets of the rationals; we slightly abuse
notation and let pWeqePN be the uniform listing of all such subsets. We construct a ∆0

2 linear order
L with a ∆0

2 adjacency relation and meet:

Re : L flWe.

Theorem 3.2.14 will guarantee that L has a low presentation. The linear order L will have the form:
ÿ

ePN
η ` p2xe, 0y ` 1q ` η ` Le ` η ` p2xe, 1y ` 1q ` η,

where η – pQ,ăq, and each Le will have no blocks of odd length. Each Le will have the form

ÿ

iPIe

η `Be,i ` η,

where the sizes of the finite blocks Be,i will be even and increasing monotonically in i, and Ie will
be either ω or finite, depending on the outcome of the Re-strategy.

Note that, in We, it is Π0
1pH

1q to tell whether a given collection of points constitutes a block
of a given size. Since we will be working relative to H1, if We – L, then there will be a stage at
which the blocks p2xe, 0y ` 1q and p2xe, 1y ` 1q are finally located. If Le fl We, then of course we
may have infinitely many unsuccessful Π0

1pH
1q-attempts to locate these blocks. All activities of the

strategy will be restricted to the sub-order of We which is between the current best candidates for
p2xe, 0y ` 1q and p2xe, 1y ` 1q (if there are any).

The idea is that, in We, we can use H1 to ask if there are at least m points between a pair of
points x, y, while in L we do not have to declare this immediately. We shall use this as leverage to
diagonalise against We using Le. There will be no interactions between different strategies.

Strategy for Re. Initially, when it first becomes active, the strategy proceeds as follows:

(1) Create two blocks, Be,0 and Be,1, in Le and keep |Be,0| “ 2 and |Be,1| “ 4.

(2) Wait for We to reveal two blocks of size (at least) 2 and 4. Meanwhile, make progress in
building Le – η` 2` η` 4` η by placing points between the blocks and declaring them to be
non-adjacent.

(3) Suppose We responds at stage s by showing blocks of similar size, say C and D. Let m be the
number of points between Be,0 and Be,1 in Lerss. Using H1, check whether there are 2m ` 2
points between C and D.

124

(3.a) If there are ď 2m` 2 points, then proceed to build Le – η ` 2` η ` 4` η.

(3.b) Otherwise, suppose there are more than 2m ` 2 points between the blocks. Then adjoin
Be,1 to Be,0 to create one n-block, where

n “ 2m` 2` |B0rss| ` |B1rss|

is of course even. To achieve this, place one extra point into every non-adjacency empty
interval between B0 and B1, and declare all successor pairs to be adjacent. (Place two
points in one such interval to make sure n is even.) Proceed to building Le – η ` n` η.

In (1) and (2) we diagonalise trivially. In (3.a), Le has no blocks of size ą 4, while the respective
part of We does. In (3.b), C and D cannot be part of one block of size n, while in Le we will end
up with one block of size n.

Thus, We must respond by changing its guess about the location of the p2xe, 0y ` 1q- and
p2xe, 1y ` 1q-blocks in We. In this case, the Re-strategy is restarted.

If i is the number of times the strategy has been restarted, then the strategy initiates building
two blocks, Be,2i and Be,2i`1 in Le, located to the right of all other blocks Be,j , j ă 2i, which were
created by the previous diagonalisation attempts.

Initially, the size |Be,2i| of Be,2i is declared to be a very large even number, and also |Be,2i`1| “

2|Be,2i|. Thus, the strategy initially attempts to build

Le –

˜

ÿ

jă2i

η `Be,j ` η

¸

`Be,2i ` η `Be,2i`1 ` η,

where j ranges over all blocks produced by the previous diagonalisation attempts of Re.
Then the strategy proceeds to its new diagonalisation attempt (1)-(3), but with Be,2i and Be,2i`1

playing the roles of B0 and B1, respectively. Since the sizes of Be,2i and Be,2i`1 are much larger
than all other blocks currently in Le, the analysis of (1)-(3) remains the same.

So either Re is met at an i-th iteration of the strategy, or we proceed to build infinitely many
blocks inside Le. Of course, this infinitary outcome is possible only if We does not have an interval
isolated by blocks p2xe, 0y ` 1q and p2xe, 1y ` 1q, and in this case Re is also met.

3.2.8 Further related results˚

Beyond ω

Corollary 3.2.42 has a transfinite extension due to Ash, Jockusch and Knight [19] and Ash [18]; we
omit the statement. The proof of this corollary is rather tedious, and goes beyond the material
covered in the book. There are other books written which carefully present these methods. These
methods introduced by Harrington [232, 233] are historically called “worker arguments” and “true
stage” arguments. For detailed presentations, we refer the reader to Ash and Knight [20], and
Montalbán [401, 402]. For worker arguments in the context of linear orders specifically, see [19].

Analogues of the Fellner-Watnick Theorem

With some modifications, an analogue of the Fellner-Watnick Theorem works for ω or ω˚ in place
of Z.

125

Theorem 3.2.46 (Ash [18]). Let X be a H2-computable linear ordering. Then the following linear
orders are computably presented.

(i) ω ¨X, and

(ii) ω˚ ¨X.

While the transformations X ÞÑ ω ¨X and X ÞÑ ω˚ ¨X in the theorem above are uniform for
some order-types X, it is not uniform in general; see Exercise 3.2.57.

Relative to any non-computable oracle

Structures (that are not linear orders) can have the property that they are X-computably pre-
sentable iff X ąT H; this surprising theorem was established by Slaman [471] and, independently,
Wehner [503]; see Exercises 3.2.63 and 3.2.64. It may seem surprising, but the following is a
longstanding open question.

Question 3.2.47 (Downey). Is there a linear ordering L which has presentations of every nonzero
degree, but no computable presentation?

In his PhD Thesis [393], Russel Miller showed that there is a linear ordering which has a
presentation of every nonzero ∆0

2-degree, yet has no computable copy. It is also known (though
unpublished) that this can be an ordering with presentations in every hyperimmune degree, where
a is hyperimmune if it computes a function not dominated by any computable function (see also
Exercise 3.1.28); we omit the details. Also, for any n ě 2 there exists a linear order that has an
X-computable copy iff X is not lown; see [186].

Further reading

For a more complete introduction to the theory of linear orders, we recommend reading the some-
what dated technical survey [119]. A more recent technical survey is [191], though it covers a more
limited range of topics. For a detailed discussion of various results related to Question 3.2.47 but
not restricted to linear orders, we cite the relatively recent (but rapidly ageing) survey [167], which
contains no proofs but includes over 300 bibliographic references to the relevant literature.

Historical remarks

En passant, effective linear orderings have been studied since the 1940’s and 50’s, both in computable
analysis and in the context of computable ordinals and their use in hierarchies in computability
theory. We have also seen that Kleene [300] used computable well-ordered sets to give meaning to
Turing degrees above 0pωq. Specker [480], gave the first explicit example of a computable linearly
ordered ascending sequence of rationals whose limit is a (left-c.e.) noncomputable real.

As far as we know, the first studies of the general class of computable linear orderings (and
Boolean algebras) for their own sake began in the late 1960’s with Feiner’s thesis [161]. This
thesis was the first to systematically focus on the subtle distinction between c.e. presentations
and computable presentations in structures that are neither groups nor rings, and are not finitely
generated. Effective linear orderings and Boolean algebras witnessed a lot of study in the 1970’s
and early 1980’s particularly by Remmel, Lerman, LaRoche, Goncharov, and Dzgoev. We refer
the reader to [119] for more on such developments. One significant feature of these results is the

126

necessity for tools that enable much more indirect coding than had previously been seen in groups
and fields. Most natural codings in linear orderings seem to use two or three quantifiers, and
methods involve infinite injury arguments. Boolean algebras are even worse necessitating difficult
techniques such as the Feiner’s hierarchy as we will see in the next chapter.

Exercises

Exercise˝ 3.2.48. Prove Theorem 3.2.22.

Exercise˝ 3.2.49 (Folklore). Prove that there is a c.e. presentable linear ordering not isomorphic
to a low2-presentable one.

Exercise˝ 3.2.50. Use Theorem 3.2.22 to show that there is a computable linear order L which is
not isomorphic to any computable linear order with computable adjacency relation.

Exercise˝ 3.2.51 (Downey and Moses [147]). Show that if L is a semi-low (see Exercise 3.1.23)
discrete linear ordering then it has a computable copy.

Exercise˝ 3.2.52 (Rosenstein [456]). Show that if X P Σ0
2, then there is a computable linear

ordering of order type
η ` n0 ` η ` n1 ` η ` . . .

where n0 ă n1 ă n2 ă . . . lists X in order. (Recall that this is called a strong η-representation of
X.)

Exercise 3.2.53 (Fellner [165]). Show that if Y P Π0
2, then Y has a strong η-representation (see

the previous exercise).

Exercise˚ 3.2.54 (Lerman [336]). Show that if S P Σ0
3, then there is a computable linear ordering

L of order type
Z` n0 ` Z` n1 ` Z` . . .

where n0 ă n1 ă . . . lists S in order of magnitude. This is called a strong Z-representation of S.

Exercise 3.2.55 (Moses [408]). Show that for every n, there exists an n-decidable linear order with
no pn ` 1q-decidable presentation. (Recall that a computable structure is n-decidable pn ě 1q if
we can uniformly decide first-order statements with n-1 alternations of quantifiers in the structure.
For example, in a 2-decidable structure we can decide @D-statements.)

Exercise˚ 3.2.56 (Chisholm and Moses [91]). Show that there is a linear order that is n-decidable
for all n P N, but has no decidable presentation.

Exercise˝ 3.2.57. Show that the procedure in Theorem 3.2.46 cannot possibly be uniform5. (Hint:
Fix a uniform sequence of H2-computable linear orderings pLiqiPN of the isomorphism types ω and
Z, so that Li – Z iff the Π0

4-predicate holds. Conclude that ωLi witnesses the Π0
4-completeness of

“Li has the least element”, which contradicts the natural complexity of this property.)

See also Exercises 9.1.30 and 9.1.32.

5We are thankful to Maxim Zubkov for pointing this non-uniformity to us.

127

Exercises about degree spectra

The degree of the isomorphism type of a structure of A to be the least Turing degree a, such that A
has an a-computable copy, if such least degree exists. The exercises below are based on the results
of Richter that can be found in [450, 451].

Exercise˝ 3.2.58. Show that if a is the degree of an order-type (in the sense defined above), then
a “ 0.

Exercise˝ 3.2.59. Suppose (i) and (ii) below hold for a degree a and a theory T over a finite
language L.

(i) There is an infinite computable sequence of finite structures tAi : i P Nu such that Ai is not
embeddable into Aj for i ‰ j.

(ii) For each S ď ω, there is a structure AS such that:

(iia) AS is a countable structure of T .

(iib) AS ďT S.

(iic) Ai is embeddable into AS iff i P S.

Then there is a structure of L whose isomorphism type has degree a.

Exercise˝ 3.2.60. Let a be any degree.

(i) There is an abelian group whose isomorphism type has degree a.

(ii) There is a lattice whose isomorphism type has degree a.

(iii) There is a graph whose isomorphism type has degree a.

Exercise 3.2.61. We define the computable embedding condition as follows. Given a structure A,
a finite structure C and an embedding f : C Ñ A, define the class AC,f to be

tD : D is a finite structure extending C embeddable into A via a map extending fu.

Then A satisfies the computable extension property iff for all structures C isomorphic to a finite
substructure of A, and for all functions f embedding C into A, the class AC,f is infinite and
computable. Show that for any a-computable structure A satisfying the computable extension
property, there is Turing degree b and a b-computable presentation of A so that a and b form a
minimal pair. (Hint: Generalise the method used in the proof of Theorem 3.2.13.The key fact is
that the AC,f is a computable collection, and this accords with the notion of acceptable string in
the proof of Theorem 3.2.13.)

Exercise 3.2.62. Derive Theorem 3.2.13 (equivalently, Exercise 3.2.58) as a consequence of the
previous exercise.

Exercise˚ 3.2.63 (Wehner [503]). A computable enumeration (a numbering) of a family of sets S is
a c.e. set W such that S “ tW rns : n P Nu, where W rns “ tx : xn, xy PW u. Note we allow repetitions
in the uniform enumeration of S. Show that there exists a family of sets that has an X-computable
enumeration iff X ąT H. (Hint: Consider the family tF ‘tnu : F finite Ď ω and F ‰Wnu. Given
X ąT 0, use initial segments of X to extend finite sets in the family while avoiding Wn.)

Exercise˝ 3.2.64 (Slaman [471], Wehner [503]). Deduce from the previous exercise that there is
a structure that has an X-computable presentation iff X ąT H. (We remark that Slaman gave a
direct proof of this result that did not use Wehner’s family.)

128

3.3 What’s next?

In the next chapter, we will use linear orders to study Boolean algebras and their Stone spaces from
the computability-theoretic standpoint. Results and techniques developed for linear orders will be
rather useful, though certainly not unavoidable. Nonetheless, for the sake of exposition, we shall
often choose to give a proof that uses linear orders over a proof that uses other methods.

129

Chapter 4

Boolean algebras and computable
compactness
In this chapter we establish p1q and p2q of Theorem A and p1q and p2q of Theorem B; we state these
results as separate theorems below:

Theorem (Feiner [162]). There is a c.e. presented Boolean algebra not isomorphic to any
computable one.

Theorem (Downey and Jockusch [129]). Every low Boolean algebra has a computable presen-
tation.

Theorem (Bazhenov, Harrison-Trainor, Melnikov [35]). There exists a right-c.e. Stone space
not homeomorphic to any computable Polish space.

Theorem (Harrison-Trainor, Ng, Melnikov [245]). Every computable Polish Stone space is
homeomorphic to a computably compact one.

In order to prove these results, we give a brief introduction to the theory of computable Boolean
algebras and then to the theory of computably compact spaces. The chapter is subdivided into two
sections:

1. Section 4.1 contains a brief introduction to the theory of effectively presented Boolean alge-
bras. It includes the proofs of the theorems of Feiner, and Downey and Jockusch.

2. Section 4.2 lays the foundations of the theory of computably compact spaces, which will be
useful throughout the rest of the book. It also provides detailed proofs of the remaining two
results stated above.

We relate these subjects and connect them to the materials from the previous chapter using several
effective versions of Stone duality between Boolean algebras, totally disconnected compact Polish
spaces, and the interval algebras of linear orders. Although we do not restrict ourselves to the
techniques and facts necessary to prove the results stated above, our exposition of these topics is
very far from being complete.

130

4.1 Computable Boolean algebras

Boolean algebras were introduced by George Boole in his book, The Mathematical Analysis of
Logic (1847). Boole sought to develop a calculus of logical truths, building on Leibniz’s earlier
ideas. These algebraic structures are particularly important in logic and much less so outside of
it. Consequently, the set-theoretic and model-theoretic aspects of Boolean algebras are very well-
studied. The algorithmic aspects of computable Boolean algebras are also well-understood, with
the field having an extensive theory, numerous results, and powerful techniques. As a consequence,
we will need to be selective. In our book, Boolean algebras will be predominantly used as a tool
to study the algorithmic aspects of totally disconnected compact spaces. Our introduction to the
theory will therefore be rather brief and mostly restricted to the results that we need for proving the
stated above theorems of Feiner and Downey-Jockusch. For a much more detailed introduction, we
refer to Goncharov’s book [207] and Remmel’s survey [447]. Many results concerning computable
Boolean algebras proven before 2000 can be found in [207, 447]. We will provide the reader with
further references in due course.

4.1.1 Countable Boolean algebras

The definition of a Boolean algebra

Fix a set S, the collection of all its subsets PpSq, and some U Ď PpSq closed under union, intersec-
tion, and complement relative to S, i.e., X̄ “ SzX. We can view U as an algebraic structure in which
the individual elements are the subsets and the algebraic operations are Y, X, and X “ X “ SzX.
This algebraic structure can also be viewed as a partial order under the subset relation Ď, in which
the greatest element is S and the least is H; this order is a distributive lattice with “relative com-
plements”; we omit the formal definitions. Note that A Ď B iff A X B “ A iff A Y B “ B, so we
could include the order in our signature if necessary.

Now suppose we are given an algebraic structure B in the language t_,^, ,̄ 0, 1u, where _, ^, ¯
are simply algebraic operations that do not necessarily carry any set-theoretic interpretation. Can
we put down a comprehensive list of axioms that would guarantee that the structure can be realised
as U Ď PpSq for some S? In other words, can we find a set S and an interpretation that matches
elements of B with elements of PpSq so that _, ^, ¯ become Y, X, and under this interpretation?
It is well known that the answer is affirmative, and the theorem asserting this is known as Stone
duality. To make sense of Stone duality formally, we first define the algebraic structures associated
with it that are called Boolean algebras.

Definition 4.1.1. A Boolean algebra is an algebraic structure equipped with two binary op-
erations ^ and _, a unary operation ¯ (also sometimes denoted or 1), and two distinguished
elements 0 and 1 that satisfy the following axioms that hold for all elements a, b, c from the
domain of the structure:

131

1. a_ pb_ cq “ pa_ bq _ c

2. a^ pb^ cq “ pa^ bq ^ c

3. a_ b “ b_ a

4. a^ b “ b^ a

5. a_ pa^ bq “ a

6. a^ pa_ bq “ a

7. a_ pb^ cq “ pa_ bq ^ pa_ cq

8. a^ pb_ cq “ pa^ bq _ pa^ cq

9. a_ 0 “ a

10. a^ 1 “ a

11. a_ a “ 1

12. a^ a “ 0

Familiar examples include the simplest Boolean algebra 2 “ t0, 1u consisting of two elements 0
and 1, and the Boolean algebra consisting of finite and co-finite subsets of the non-negative integers,
under the set-theoretic operations.

We could use the axioms above to establish various expected properties such as 0̄ “ 1 and
1̄ “ 0, and that 1 is the unique element satisfying axiom 10, etc. We certainly do not claim that
the axioms above are optimal in any sense. In fact, some of the axioms can be removed from the
list above since they can be derived from the rest of the axioms. Unlike groups or fields, it seems
that there is no fixed collection of axioms that would be accepted as ‘standard’ in the literature.
For instance, in his book [207], Goncharov views Boolean algebras as structures in the language
^,_,¯ (i.e., without 0 and 1) that satisfy the following axioms:

i. a_ b “ b_ a

ii. a_ pb_ cq “ pa_ bq _ c

iii. a_ pb^ cq “ pa_ bq ^ pa_ cq

iv. a_ b “ a^ b

v. a_ a “ a

vi. pa_ āq _ b “ b

vii. ¯̄a “ a

Then Goncharov derives the existence of the uniquely defined 0 “ a ^ ā and 1 “ a _ ā that
do not depend on the choice of a. (We suggest that the reader verify this claim and also derive
some of the axioms i. – vii. from 1. – 12. and vice versa.) Goncharov’s choice of axioms is a bit
more optimal, in the sense that his definition has fewer axioms. It can be shown using automated
reasoning (see [359]) that Boolean algebras can be defined using just one axiom:

pppx_ yq1 _ zq1 _ px_ pz1 _ pz _ uq1q1q1q1 “ z,

where x1 stands for x (writing it down using ¯ is a challenge). Even though this is definitely a
peculiar result, it is not practical in the sense that this axiom is neither natural nor convenient.

There are many other ways to define Boolean algebras using alternative operations. For example,
we can view a Boolean algebra as a complemented distributive lattice with greatest and least
elements. Alternatively, it can be viewed as a Boolean ring. The list goes on. In each case, one can
reconstruct the operations ^ and _ from the operations used in these definitions in a nice, finitistic
way. We will not provide any further analysis of the axiomatic approach to Boolean algebras, as it
seems to be irrelevant to our story; for more details, see [207].

132

Ideals, filters, and Stone duality

Before we discuss Stone duality in more detail, we should mention two other notions central to
the theory of Boolean algebras. An ideal I in a Boolean algebra B is a non-empty subset that is
closed under _ and also has the property that b ^ i P I for any i P I and b P B. In particular,
it follows that 0 P I: since I ‰ H, we can take i P I and conclude that ī ^ i “ 0 P I. Following
the general pattern in commutative algebra, it is usually additionally assumed that 1 R I. The
reason is that ideals should correspond to kernels of homomorphisms between Boolean algebras,
and in the literature, it is almost uniformly assumed that 1 ‰ 0. For instance, if I is an ideal in B,
we can define the factor-algebra B{I following the usual procedure of forming congruence classes
modulo I. (We can define a “ b mod I if x M y “ px ^ ȳq _ px̄ ^ yq P I, where M denotes the
operation of “symmetric difference”.) If we allowed 1 P I, in which case, of course, I “ B, then we
would say that I is proper if 1 R I. We assume 1 R I for any ideal I. Under this assumption, an
ideal is maximal if, well, it is maximal (among all ideals under inclusion). An ideal is prime if for
any element a, either a or ā is in the ideal. The following lemma is not hard to show. We include
its proof merely as an illustration of a typical use of the axioms. As we will explain shortly after
the proof of the lemma, we will be able to avoid such formal arguments throughout the rest of the
chapter.

Lemma 4.1.2. In a Boolean algebra, an ideal is maximal iff it is prime.

Proof. Suppose I is prime. Any other ideal J Ą I must have a R I. By the assumption on I,
ā P I Ď J , and thus

1 “ a_ ā P J ,

showing that I must be maximal.
Conversely, fix a maximal I. Suppose a is such that a, ā R I. Extend the sets I Y tau and

I Y tāu, closing them under _ and under ^ with any element of the Boolean algebra. Denote the
resulting ideals Ja and Jā. It is clear that both Ja and Jā properly extend I and thus must contain
1. The ideal Ja consists of elements of the form px_aq^ b, where x P I and b P B. The description
of Jā is similar, mutatis mutandis. In particular, for some x, y P I and b, c P B, we have

1 “ px_ aq ^ b and 1 “ py _ āq ^ c.

It is not difficult to derive from the axioms that whenever 1 “ z ^ w, it must be that z “ w “ 1.
So we conclude that

1 “ x_ a and 1 “ y _ ā.

But then we have
x_ y “ px_ yq _ 0 “ px_ yq _ pa^ āq,

and applying the distributivity axioms, we obtain

x_ y “ px_ y _ aq ^ px_ y _ āq “ p1_ yq ^ p1_ xq “ 1^ 1 “ 1 P I,

and this contradicts I ‰ B.

It is also not too difficult to show that if I is maximal in B, then the factor B{I is just the
two-element Boolean algebra t0, 1u. Additionally, given any non-zero element a P B, there exists a
maximal ideal I such that a R I. The construction of such an I is fairly standard in commutative

133

algebra. It is not hard to show that when we have a ‰ b, for non-zero a and b, there exists a
maximal I such that either a P I and b R I, or b P I and a R I. In other words, maximal ideals
separate points in B.

If we swap ^ and _ in the definition of an ideal, we obtain the dual notion of a filter (closed
under ^, stable under _ with any element of B). We also usually assume 0 is not in our filter.
(Indeed, if we swap ^ and _ and 1 with 0 in the Boolean algebra, in the resulting Boolean algebra,
ideals will become filters and filters will become ideals.) A maximal filter is called an ultrafilter.
Similarly to the situation with maximal ideals, a filter F is an ultrafilter iff either a P F or ā P F ,
for any a P B. Indeed, F is an ultrafilter iff I “ BzF is a maximal ideal, and vice versa. Recall
that if I is maximal, then I is the kernel of a homomorphism B Ñ t0, 1u. Under this map, the
complement of I is the ultrafilter corresponding to the pre-image of 1 under this homomorphism.
Of course, ultrafilters also separate points in B.

We now return to Stone duality. One version of Stone duality is stated below.

Theorem 4.1.3. Every Boolean algebra is isomorphic to some subalgebra U Ď PpSq, where S is
the set of its ultrafilters (alternatively, the set of its maximal ideals).

We will give a complete proof of a different version of Stone duality later in Theorem 4.1.6.
Since we will never actually use this particular version of the duality, we omit the formal details
that are easy to find in the literature; e.g., [207].

Theorem 4.1.3 proof idea. Using slightly tedious but not difficult arguments (cf. Lemma 4.1.2), we
find that our Boolean algebra B is isomorphic to some subset of PpSq in a certain canonical way:

a P B is associated with tF : a P Fu,

where F P S ranges over ultrafilters in B. Since ultrafilters separate points, the induced map is an
isomorphic embedding from B into PpSq; let U be the range of this embedding.

Assuming Stone duality, we suggest the following:

Do not memorise the axioms of Boolean algebras. Instead, think of the elements of the
algebra as being (some) subsets of a fixed set S (identified with 1) and of ^, _, and x̄ as being
X, Y, and Szx, respectively.

This informal approach is obviously not always satisfactory, but it can be used to guide the
reader’s intuition.

Atoms

Define a ď b if a ^ b “ a; this partial order corresponds to the subset relation under the duality.
We say that an element a ‰ 0 splits if there are two non-zero elements x, y such that

a “ x_ y and x^ y “ 0.

This is, in fact, equivalent to saying that there is a non-zero b ă a. In this case, we have that a
splits into b and b̄^ a:

a “ b_ pb̄^ aq.

134

The element b̄^ a is sometimes called the complement of b relative to a.
Note that the set

â “ tb : b ď au

of all elements below a can be viewed as a Boolean algebra in which a plays the role of 1. When
a ‰ 1, it is actually not a subalgebra in the usual model-theoretic sense (if we put 1 into the
language). It is a principal ideal in the sense that it is the smallest ideal that contains a ‰ 1. A
finitely generated ideal can be defined similarly: it is the smallest ideal I that contains some finite
collection of elements a0, . . . , ak P I, which are then called its generators. Of course, the generators
are not unique for such an I. Indeed, it is easy to see that any finitely generated ideal is principal;
consider â, where a “ a0 _ a1 _ . . . _ ak is the supremum/union of the finitely many generators
a0, . . . , ak.

More generally, we can take any collection of elements of a Boolean algebra and define the
ideal generated by these elements. This is done by closing the set under finite unions and under
intersections with arbitrary elements of the algebra. One such ideal that we shall refer to later is
the ideal generated by all atoms in the algebra.

Definition 4.1.4. A non-zero element a of a Boolean algebra is called an atom if it does not split,
i.e., there is no b ‰ 0 such that b ă a.

The most elementary case of Stone duality is when the Boolean algebra is finite. Indeed, if we
could keep splitting an element, then the algebra would be infinite. It follows that every element of
the algebra has to be the union of finitely many atoms. In this case, we can take the set of atoms
to be S, and the algebra to be PpSq. This, in particular, shows that two Boolean algebras having
the same finite cardinality must be isomorphic, and that it has to be of the form Ppt1, . . . ,muq,
and thus has to have size 2m. This gives a complete classification of finite Boolean algebras.

Unfortunately, countably infinite Boolean algebras are much more complicated and are essen-
tially unclassifiable up to isomorphism; we will discuss this in detail in Chapter 7. Researchers in
this area have developed various tools to study broad subclasses of computable Boolean algebras.
For instance, we will soon explore another version of Stone duality that relates Boolean algebras
to linear orders. We will then discuss a version of Stone duality in terms of trees, and finally, in
terms of abstract Stone spaces. This last version of duality will be used to derive corollaries in
computable topology.

Interval representation

Fix a linear order L. Since all our orders will be countable, we can view L as a subset of the
rationals. Consider the new linear order L˚ “ L Y t`,8u, where 8 is a new element larger than
any element of L, and ` is also a new element which is smaller than any element of L. Consider the
set IntalgpLq consisting of finite unions of left-closed right-open intervals of the ordering L˚:

IntalgpLq “ tra0, b0q Y ra1, b1q Y . . .Y rak, bkq : ai, bi P LY t`,8u, k P Nu,

where
ra, bq “ tx : a ď x ă bu

for each fixed a, b P L Y t`,8u. We can additionally assume that a0 ă b0 ă . . . ă ak ă bk when
k ą 0. When k “ 0, we allow the possibility a0 “ b0 to ensure that we always have

ra0, a0q “ r`, `q “ r8,8q “ H P IntalgpLq

135

even in the extreme pathological case when L Ď Q is empty. Note we also always have r`,8q “
t`u Y L P IntalgpLq.

Lemma 4.1.5 (Folklore). Under the set-theoretic operations, IntalgpLq is a Boolean algebra. Fur-
thermore, if L is computable, then so is the Boolean algebra IntalgpLq.

Proof. It is clear that the process described above is computable, so we only need to check that
IntalgpLq is indeed a Boolean algebra. Observe that IntalgpLq Ď Ppt`u Y Lq and is closed under
intersection, union, and complementation. Since t`u Y L has a least element, namely `, IntalgpLq
also has the greatest element under inclusion, namely

r`,8q “ t`u Y L.

Thus, we have that IntalgpLq Ď Ppt`u YLq contains both the greatest and the least element of the
Boolean algebra PpL Y t`uq. Since Boolean algebras are defined by universal axioms, the lemma
follows.

The following result is also folklore.

Theorem 4.1.6 (The Interval Representation Theorem). Every Boolean algebra is isomorphic to
an interval algebra IntalgpLq of a linear ordering L.

Proof. Let B “ YsBs with B0 “ t0, 1u, and Bs`1 ´ Bs “ tbsu. We will define at each stage a

subalgebra xBs containing Bs.
Define L0 as the ordering with two points labelled 0 and 1; in the notation above, these elements

will play the roles of ` and 8. Thus we have the induced mapping g0 with 0 ÞÑ H and 1 ÞÑ r0, 1q.

At stage s`1, we will have a set Atomss “ tas1 , . . . , asnu listing the atoms of the subalgebra of xBs,
together with the linear ordering Ls “ 0, xs1 , . . . , xsn “ 0, so that gspasj q “ rxsj´1

, xsj q induces an

isomorphism from the subalgebras xBs to IntalgpLsq.

At stage s` 1, if bs is in xBs, we need do nothing. Otherwise, for each a “ asi such that bs splits
a (i.e., both x^ bs and x^ bs are non-trivial), add a new point y to Ls`1 between xsj´1

and xsj to
split the interval

rxsj´1 , xsj q

into rxsj´1 , yq Y ry, xsj q. Map asj ^ bs to one of them, say, rxsj´1 , yq, and map asj ^ bs to ry, xsj q.

Note that this generates two new atoms for zBs`1.

Let c1, . . . , cm denote the atoms of zBs`1 below bs. Clearly, we have ensured that the induced
map

gpbsq “ gpc1q Y ¨ ¨ ¨ Y gpcmq

works. The result follows.

The construction in the proof of Theorem 4.1.6 was restricted to r0, 1s X Q. Thus, we will
occasionally denote the extra elements ` and 8 used to define IntalgpLq by 0 and 1, respectively. It
should be clear from the context when 0 corresponds to an element of the linear order and when it
refers to the least element of a Boolean algebra, and similarly for 1. We remark that non-isomorphic
linear orders can have isomorphic interval Boolean algebras; a sufficient condition will be presented
in Theorem 4.1.12.

136

Sums of interval algebras

If we have a sequence of Boolean algebras An “ IntalgpLnq, n P N, then we write
ÿ

nPN
An

to denote
IntalgpL0 ` 1` L1 ` 1` L2 ` . . .q.

It is, of course, straightforward to define
ř

iPI Ai, where I is some other set of indices. We remark
that we can define

ř

iPI Ai to be
ř

iPI IntalgpLiq for any choice of Li such that Ai – IntalgpLiq.
Up to isomorphism, the result will not depend on the choice of Li as long as Ai – IntalgpLiq for
all i. In this subsection, a Boolean algebra will always be given as an interval algebra, thus for the
purposes of this section,

ř

iPI Ai is merely a notational convenience.
Before we proceed, we should perhaps justify the use of the extra “ones” in the sequence

L0 ` 1` L1 ` 1` L2 `

If we take just two orders, say L0 and L1, then

r`,8q “ r`, 1q Y r1,8q,

where ` is the extra element that we had to adjoin to the left of L0, the point 8 is an extra point
added to the right of L1, and the 1 is the point in-between L0 and L1 (which should not be confused
with the greatest element r`,8q of the Boolean algebra IntalgpL0`1`L1q). Now it should be clear
that the principal ideal generated by r`, 1q is essentially IntalgpL0q, in which the extra point 1 plays
the role of 8. Similarly, the principal ideal of IntalgpL0` 1`L1q generated by r1,8q is essentially
IntalgpL1q, but this time the extra point 1 plays the role of `. Furthermore, r`, 1q “ r1,8q in
IntalgpL0 ` 1` L1q. In this sense, we have that

IntalgpL0 ` 1` L1q “ IntalgpL0q ` IntalgpL1q,

and this sum is direct or disjoint in the sense explained above.
In the case of infinitely many Li,

ř

iPI IntalgpLiq can also be viewed as the infinite “disjoint
sum” of the respective IntalgpLiq. (It is not quite the same as the direct sum of infinitely many
vector spaces because the algebras Bi “ IntalgpLiq sort of “accumulate below 8”. This process
can be described topologically in terms of Alexandroff compactification of the disjoint union of the
dual spaces of Bi; more about topology later.)

Cantor-Bendixson derivative

Notice also that in the proof of the Representation Theorem 4.1.6, we get a 1-1 correspondence
between atoms in B and adjacencies in L. This correspondence implies the alignment of the
condensation derivative for linear orderings (where adjacencies are identified) with the Cantor-
Bendixson derivative defined below.

Definition 4.1.7 (Cantor-Bendixson derivative). For a Boolean algebra B and x, y P B, define
x “1 y iff x and y differ by finitely many atoms. Then the α-th Cantor-Bendixson derivative
of B, denoted by DαpBq, is defined via D0pBq “ B, Dpβ`1qpBq “ Dpβq{“1

, and for limit α,
DpαqpBq “ Xλăα D

pλqpBq.

137

For example, the interval algebra of ω becomes the two-element Boolean algebra after taking
the derivative. This is because any two elements that differ by finitely many atoms are identified
modulo the ideal generated by the atoms. Similarly,

B “ Dp1qpIntalgpω2qq “ Intalgpωq,

and indeed
B “ DpmqpIntalgpωnqq “ Intalgpωn´mq,

whenever m ă n. This process can be iterated over ordinals α. Let Dpαq also denote the natural
homomorphism from B to its α-th derivative DpαqpBq; we will only need the case when α is finite.

Definition 4.1.8. The Cantor-Bendixson rank of B is defined as the least α such that DpαqpBq “
Dpα`1qpBq.

That is, the algebra either vanishes after α iterations or becomes atomless. In the case when
B is countable, which is the only case we ultimately care about, α has to be countable. Since all
countable atomless Boolean algebras are isomorphic via the usual back-and-forth argument, if α is
the rank of B and DpαqpBq is non-trivial, then DpαqpBq has to be isomorphic to IntalgpQq.

Definition 4.1.9. If b P B is such that Dpnqpbq is an atom in DpnqpBq, then we say that b is an
n-atom.

For example, if the principal ideal generated by b is isomorphic to Intalgpωq (after we declare
b “ 1), then b is a 1-atom. In fact, this gives a complete description of 1-atoms; we omit the proof.
Similarly, an n-atom is characterised by the respective principal ideal being a copy of Intalgpωnq;
the transfinite analogy also works. Also, it should be clear that DpαqpIntalgpQqq “ IntalgpQq for
any α. This is simply because IntalgpQq has no atoms at all.

We will be using the Cantor-Bendixson derivative when we look at Feiner’s Theorem. Our proof
of Feiner’s Theorem will use the Fellner-Watnick Theorem 3.2.23, and thus we will be using interval
algebras of the form IntalgpZnLq. Observe also that IntalgpZq “ Intalgpω˚q ` Intalgpωq, where ω˚

is the order of the negative integers. It is easy to see that Intalgpω˚q – Intalgpωq, so IntalgpZq is
just the sum of two 1-atoms, in the sense that its greatest element 1 splits into two 1-atoms. In
particular, multiplying a discrete order L by Z (from the left) results in replacing every atom in the
respective interval algebra by a pair of 1-atoms. It may not be immediately obvious, but IntalgpZ2q

is the sum of two 2-atoms, and so on. The situation is a bit different in the interval algebra Z ¨Q;
we have Dp1qpIntalgpZ ¨Qqq “ IntalgpQq. It does not contain any 1-atom, but it has plenty of atoms
“all over the place”. For instance, it satisfies the following property for n “ 0.

Definition 4.1.10. Fix n ě 0. We say that an element x of a Boolean algebra B is atomic (or
0-atomic) if for each non-zero y ď x, there is some atom z ď y. We say that x is n-atomic (for
n ą 0) if Dpnqpxq is atomic in DpnqpBq.

The definition has a transfinite extension, but we will not need it.

Definition 4.1.11. Fix n ě 0. An element b of an algebra is 0-atomless or simply atomless if the
principal ideal generated by the element is isomorphic to IntalgpQq (when we declare b “ 1). More
generally, b is n-atomless if Dpnqpbq is atomless in DpnqpBq.

138

According to the definition above, the least element 0 is not atomless. Similarly, if an element
is a finite union of atoms, then it is not 1-atomless, and so on.

The two definitions above are related as follows: Since all countably infinite atomless Boolean
algebras are isomorphic, a is atomic iff no (non-zero) b ď a is atomless. In particular, α-atoms are
atomic, but any algebra of the form IntalgpL`Qq is not.

The Remmel-Vaught Theorem

We can ask many questions about the relationships between orderings and successivities, algebras
and atoms, and order-types of L and isomorphism types of IntalgpLq. To prove the Downey-
Jockusch Theorem about low Boolean algebras, we will need the following important result of this
kind. Vaught [496] proved this result for atomic Boolean algebras, and Remmel [445] extended it
to all countable Boolean algebras.

Theorem 4.1.12 (Remmel-Vaught). (i) Suppose that B is any Boolean algebra having infinitely

many atoms, and let pB be the algebra obtained from B splitting each atom of B a finite number
of times. Then pB is isomorphic to B.

(ii) (Rephrasing (i) in terms of linear orderings). Suppose that L and pL are linear orderings with

infinitely many adjacencies, and g : LÑ pL is an order-preserving embedding such that

(a) if rx, yq is finite in L then rgpxq, gpyqq is finite in pL, and

(b) if z P pL is not in the image of L, then there are x, y in L such that rx, yq is finite and
z P rgpxq, gpyqq.

Then IntalgpLq – IntalgppLq.

Proof. We use the form (i). Let xY y denote the subalgebra generated by Y in IntalgpQq. Here

and henceforth, ď means ďr0,1s since we view L and pL as suborderings of Q – Q X r0, 1s. For a
subalgebra X of IntalgpQq, let IpXq denote the ideal generated by X, and ApXq denote the set of

atoms of X. It is relatively easy to see that B{IpApBqq – pB{IpAp pBqq.

To demonstrate that B is isomorphic to pB, let B “ tbi : i P Nu and pB “ tci : i P Nu. We build

the isomorphism in stages, at each stage n, specifying a subalgebra Bn of B, a subalgebra pBn of
pB, and an isomorphism fn : Bn Ñ pB. Inductively, we suppose that these parameters satisfy the
following conditions.

(i) a P Bn is the union of exactly n atoms of B iff fnpaq is the union of exactly n atoms of pB.

(ii) If a P Bn and a R IpApBqq then

- fnpaq R IpAp pBqq,

- fnpaq ” a mod IpAp pBqq, and

- |tb P ApBq : b ď au| “ |tc P Ap pBq : c ď fnpaqu|.

139

Since 0B “ 0
pB “ 0Q and 1B “ 1

pB “ 1Q, at stage 0 the identity map can play the role of f0 and
will satisfy (i) and (ii). At stage 1, we do nothing else. Let n ě 1.

Stage 2n. Assume that at stage 2n ´ 1 we have (i) and (ii) and additionally, xtb0, . . . , bn´1uy Ď

B2n´1, and xtc0, . . . , cn´1uy Ď pB2n´1. Let a0, . . . , as list ApBnq so that f2n´1pa0q, . . . , f2n´1pasq list

Ap pBq. If bn P B2n´1, do nothing. Otherwise, let B2n “ xBn Y tbnuy. We can renumber the list of
atoms so that the atoms of B2n are

a0 ^ bn, a0 ´ bn, . . . , aj ^ bn, aj ´ bn, aj`1, aj`2, . . . , as.

We define f2n on the atoms of ApB2nq and then extend it via the naturally induced map. For i with
j ` 1 ď i ď s, let f2npaiq “ f2n´1paiq. For the remaining i with 0 ď i ď j, we define f2npai ^ bnq
and f2npai ´ bnq depending on one of the cases below.

Case 1. ai is the union of exactly m atoms of B. Then for some k, ai^ bn is the union of k atoms
of B. Now f2n´1paiq is the union of exactly m atoms of pB. Thus we let c be such that c is the
union of exactly k atoms ď f2n´1paiq, and define f2npai^ bnq “ c and f2npai´ bnq “ f2n´1paiq´ c.

Case 2. ai R IpApBqq. By hypothesis, ai ” f2n´1paiq mod IpApBqq. Thus ai ^ bn ” f2n´1paiq ^
bn mod IpApBqq and ai ´ bn ” f2n´1paiq ´ bn mod IpApBqq. There are now 3 subcases.

Subcase 2a. |tb P ApBq : b ď ai ^ bnu| “ |tb P ApBq : b ď ai ´ bnu| “ 8. Then we can let
f2npai ^ bnq “ f2n´1paiq ^ bn, f2npai ´ bnq “ f2n´1paiq ´ bn.

Subcase 2b. |tb P ApBq : b ď ai ^ bnu| “ m ă 8, and |tb P ApBq : b ď ai ´ bnu| “ k ă 8.

Then there are exactly m “ k atoms in pB below f2n´1paiq, say, ci1 , . . . , cim`k . Then let d “

rf2n´1paiq ^ bn ´ ^
m`k
j“1 cij s ^ ^

m
j“1cij . Then d has exactly m atoms of pB under it, and d ”

f2n´1 ^ bn mod IpAp pBqq. Then we let f2npai ^ bnq “ d and f2npai ´ bnq “ f2n´1paiq ´ d.

Subcase 2c. Exactly one of ai ´ bn or ai ^ bn has infinitely many atoms under it. Without
loss of generality, suppose that |tb P ApBq : b ď ai ^ bnu| “ m ă 8. Since ai ^ bn ” f2n´1paiq ^

bn mod IpAp pBqq, it follows that f2n´1paiq^bn has only finitely many atoms under it, say ci1 , . . . , cik .
By renumbering, let g1, . . . , gm denote the first m atoms under f2n´1paiq. Let

d “ rf2n´1paiq ^ bn ´^
k
j“1cij s ^ ^

k
j“1gj .

Then d has exactly m atoms of pB under it and d ” f2n´1paiq ^ bn mod IpAp pBqq. We can now
define f2npai ^ bnq “ d and f2npai ´ bnq “ f2n´1paiq ´ d.

Finally, we let pB2n “ xtf2npxq : x P ApB2nquy. At odd stages, we do essentially the same thing

except we use f´1 and go from pB2n`1 back to B2n`1. In this way, one can easily see that Ynfn
defines an isomorphism from B to pB.

We remark that the isomorphism constructed in the proof of (i) of the Remmel-Vaught Theorem
above is not computable in general; see Exercise 4.1.18. In his thesis [485], Thurber proved an
extension of the Remmel-Vaught Theorem. Specifically, Thurber replaced “atoms” in the above
with “n-atoms”, which are the atoms of the n-th Cantor-Bendixson derivative of the Boolean
algebra. See also Knight and Stob [308]. We will not need these more general results.

140

Exercises

Exercise˝ 4.1.13. A Boolean algebra is atomic if every non-zero element of it bounds an atom.
Show that if B is an infinite atomic Boolean algebra, and B{xAtpBqy – 2, then B – Intalgpωq. Here
xXy denotes the ideal generated by X, AtpY q denotes the atoms of Y , and 2 is the two-element
algebra.

Exercise˚ 4.1.14 (Thurber [485]). Let n ě 1. Let B1 and B2 be Boolean algebras such that

• B1 has infinitely many n-atoms, and

• B2 results from B1 by splitting its n-atoms a finite number of times.

Show that B2 – B1.

4.1.2 Effective presentations of Boolean algebras

Recall that a Boolean algebra is computable if its domain and its operations are computable.
The Interval Representation Theorem 4.1.6 is clearly computable. Thus we obtain the following
immediate

Corollary 4.1.15. Every computable Boolean algebra is isomorphic to an interval algebra IntalgpLq
of a computable linear ordering L. Furthermore, this is also uniform.

We can use the corollary to apply methods and results developed in Chapter 2 to Boolean
algebras. For instance, the corollary below follows from the corresponding results for linear orderings
from Chapter 3. As far as we know, this was first observed by (cf., Feiner [163, Remarks 1-2]) for
n “ 2 and by Odintsov and Selivanov [423] for arbitrary n P N.

Corollary 4.1.16.

(i) Every Σ0
n-(resp. ∆0

n-, Π0
n-) presentable Boolean algebra is representable as IntalgpLq with

L Σ0
n-(resp. ∆0

n-, Π0
n-) presentable. Furthermore, every Boolean algebra is isomorphic to a

subalgebra of the free Boolean algebra IntalgpQq of the same degree.

(ii) Consequently, every Π0
n`1-presentable Boolean algebra is isomorphic to a Σ0

n-presented one.

Here, Σ0
n-presentability is understood in the sense of a factor IntalgpQq{I, where I is a Σ0

n ideal,
and similarly for ∆0

n-, Π0
n-presentability. In the case of ∆0

n-presentability, this can lead to some con-
fusion since it can stand for X-computable presentability for some X P ∆0

n. Fortunately, in the case
of countable Boolean algebras, these notions of ∆0

n-presentability are equivalent (Exercise 4.1.20).
Boolean algebras can be constructed directly to satisfy a list of requirements. However, it is

sometimes useful to instead build L in stages,

L “
ď

s

Ls,

and consider
IntalgpLq “

ď

s

IntalgpLsq “
ď

s

Bs,

where we can pass from Ls to Bs “ IntalgpLsq with all possible uniformity.

141

To illustrate this technique, we give one important application of the Remmel-Vaught Theo-
rem 4.1.12. Recall that a structure is computably categorical if any two computable presentations
of the structure are computably isomorphic. It is quite easy to see that β “ IntalgpQq is computably
categorical. For that, use a straightforward back-and-forth procedure similar to that used for the
dense linear order Q. It follows that, similarly to linear orders, there are no interesting examples of
computably categorical Boolean algebras, and indeed, L is computably categorical iff IntalgpLq is.

Theorem 4.1.17 (Goncharov and Dzgoev [211], LaRoche [331]). A Boolean algebra is com-
putably categorical iff it has only finitely many atoms.

We give only an extended sketch that emphasises the role of the Remmel-Vaught Theorem 4.1.12
and omits some of the standard combinatorics related to priority constructions. A complete formal
proof of the result can be found in [445], where it is derived from more general facts about the
complexity of the set of atoms in a Boolean algebra. (See also Exercise 4.1.23.)

Extended Sketch. Suppose B is a computable Boolean algebra that has only finitely many atoms.
Then it is either finite or is the sum of a finite algebra and the atomless algebra β “ IntalgpQq.
In each of these cases, one could easily construct a computable isomorphism between any two
computable copies of B.

Now suppose B has infinitely many atoms. The idea is as follows. We build a computable copy
A of B, and we meet:

Pe : ϕe : B Ñ A is not an isomorphism,

where pϕeqePN is the effective list of all partial computable functions, as usual. To meet Re, we will
search for the next available atom b P B, wait for ϕepbq Ó“ a P A, and make sure a is not an atom
by splitting it, if necessary. We also have to meet the global requirement

A – B.

This is done by making sure that A is obtained from B by splitting some atoms of B into finitely
many atoms. Then we will have A – B by the Remmel-Vaught Theorem 4.1.12.

If we choose to use linear orders and interval representations, we could view B “ IntalgpLq. In
this case, we have A “ IntalgpL1q, where L1 is obtained from L by putting finitely many points
inside some of the adjacencies in L. We can build A “around” B and essentially assume B Ď A
and L Ď L1. (Formally, we would have to define a computable isomorphic embedding ψ : B Ñ A,
but this formalism would only obscure the main idea.) Under an appropriate effective indexing of
the domain, we can view elements of B as natural numbers. We say that an element b P B has its
index smaller than the index of c P B if the number associated with B is smaller than the number
associated with c. The order of indices has order-type ω and should not be confused with the linear
order L.

At stage s, we will have a finite algebra Bs Ď B and a finite part As Ě Bs of A. We also have
Bs Ď Bs`1 and As Ď As`1 for every s. We then set A “

Ť

sAs and B “
Ť

sBs. If it makes things
easier, think of Bs “ IntalgpLsq and As “ IntalgpL1sq, where Ls Ď L1s are finite linear orders, and
where L “

Ť

s Ls and L1 “
Ť

s L
1
s.

142

The strategy to meet Pe is as follows.

1. Fix a witness b P B with the smallest index that is an atom in Bs and has never been used
before by Pe or Pj with j ă e.

2. Wait for ϕepbq to converge.

3. Meanwhile, monitor b and see if it splits in Bt for some t ą s. If it ever happens, initialise
the strategy by picking a new witness.

4. If a “ ϕe,tpbq P At is not an atom in At, then do nothing unless b later splits in B; in the
latter case, go to 3.

5. If a “ ϕe,tpbq Ó is an atom in At, then consider the subcases:

(a) If a is restrained from splitting (to be clarified shortly in (b)) by some Pi with i ă e,
then initiate the strategy by picking a new witness.

(b) Otherwise, split a in At`1 into a0 and a1 and restrain a0 and a1 from being split by
strategies Pj , j ą e.

6. From now on, monitor the element c P B naturally identified with a P A (i.e., ψpcq “ a under
the inclusion map ψ : B Ñ A). If at some later stage it splits in B into (say) c0 and c1, then:

(a) Associate c0 with a0 and c1 with a1 under the inclusion relation1.

(b) Remove the restraint from a0 and a1 that was earlier imposed by Pe.

Think of Pi as having its priority higher than Pj if i ă j.

Construction. To define As, we will mainly just copy Bs into As unless some extra atoms have to
be adjoined to AszBs due to the actions of the Pe-strategies. At stage s, let strategies Pe, e ă s,
act according to their instructions.

Verification (sketch). Instead of giving a dry formal verification by induction, we shall give a
detailed informal explanation that emphasises the algebraic nature of the strategies.

We first discuss one strategy in isolation. Suppose first that Pe is the only requirement, and
that we do not have to worry about any other Pj for j ‰ e. We claim that in this case the strategy
described above guarantees that ϕe cannot be an isomorphism from B to A. The strategy will
be initialised only finitely many times. This is because we always search for a follower having the
smallest index among the available atoms in Bs. Eventually we will find an element that is indeed
an atom in B even though we will never be sure that it actually is an atom. Thus, we can assume
that b never splits, Pe is never initialised, and b is the permanent witness for Pe. In this case, the
outcomes are:

- ϕepbq never converges;

1In other words, we recycle a0 and a1 by setting ψpc0q “ a0 and ψpc1q “ a1. This is done to guarantee that we
will end up with A – B by the Remmel-Vaught Theorem 4.1.12.

143

- ϕe is not injective or fails to respect the algebraic operations2;

- ϕepbq Ó“ a and a is already not an atom in At;

- ϕepbq Ó“ a is artificially split by the strategy in At`1.

In each of these cases, ϕe cannot possibly be an isomorphism, because any isomorphism has to be
a total injective homomorphism that maps atoms to atoms.

Now suppose we have only two strategies, say P0 and P1. The only case when P1 needs to worry
about P0 is when P0 restrained some element, say a0, due to its actions in 5pbq, and then later we
discover

ϕ1pb̃q “ a0,

where b̃ is the current witness of P1. Since the restraint imposed by P0 has not been lifted from a0,
it means that a0 still looks like an ‘extra’ atom in AzB. In this case, we cannot possibly afford to
split a0 further, because in the presence of infinitely many strategies it may potentially result in a0

bounding infinitely many elements, and this is very bad for the Remmel-Vaught Theorem 4.1.12,
at least in its weakest form. We therefore initialise P1 and resume searching for a witness whose
image under ϕ1 is not restrained by P0. If we fail to find such a witness, then ϕ1 cannot be onto,
and thus it cannot be an isomorphism.

Now consider P0 and its interactions with P1. The strategy for P0 completely ignores P1. In
particular, it is allowed to split an element restrained by P1. As a result, we may end up with
(say) a0 P AzB restrained by P1, which is further split into ã0 and ã1 that are restrained by
P0. Note that the priority of the restraint imposed on atoms in AzB increases as we further split
restrained elements. Consequently, in the presence of all strategies, every element that has ever
been introduced in AzB can be further split only finitely many times.

The construction is a standard finite injury argument in which every strategy can be initialised
only finitely many times. Thus, by induction, Pe will never be initialised after some stage t. Note
that we cannot possibly have all elements of A permanently restrained by strategies Pj , j ă e,
simply because B is infinite. Also, B has infinitely many atoms, and therefore (as was already
explained above) Pe will eventually find a stable witness. Finally, as we have already argued above,
some atoms of B will perhaps be split into finitely many atoms in A, and otherwise, A is not really
different from B. By the Remmel-Vaught Theorem 4.1.12, we conclude that A – B.

Exercises

Exercise˝ 4.1.18 (Folklore). Suppose that computable Boolean algebras B and B̃ satisfy the
assumptions of (i) in the Remmel-Vaught Theorem 4.1.12.

1. Show that B and B̃ do not have to be computably isomorphic.

2. Calculate the optimal upper bound ∆0
n on the complexity of isomorphism between such B and

B̃. In particular, for this n, show that there are such B and B̃ that are not ∆0
n´1-isomorphic.

2In other words, it is not even an injective homomorphism. The possibility is often completely omitted in the
literature perhaps because it is viewed as ‘completely obvious’. The same can be said about some other ‘trivial’
outcomes that are often not even mentioned.

144

Exercise 4.1.19 (Remmel [443]). Recall that an ideal M of a Boolean algebra B is maximal if
1 R M and for all b P B, either b or b are in M . Show that if B is a computable Boolean algebra
and I is a computable proper ideal of B, then there is a computable maximal ideal M of B with
I ĎM.

Exercise˝ 4.1.20 (Folklore). 1. Show that a Boolean algebra B is computable (or computably
enumerable) iff B –comp IntalgpQq{I for some computable (or computably enumerable) ideal
I.

2. Extend this result to Π0
n, Σ0

n, and ∆0
n presentations and ideals, respectively, for any n P N.

Exercise 4.1.21. 1. (Folklore). Show˝ that if tPi : i P Nu is a computable list of propositional
symbols, then the free Boolean algebra P generated by taking propositional formulae on this
list generates a computable copy of IntalgpQq.

2. (Essentially Martin and Pour-El [354]). Show˚ that there is a c.e. copy of IntalgpQq whose
only c.e. filters are finitely generated.

Exercise˝ 4.1.22 (Remmel [445]). Recall that a set is immune if it is infinite and has no infinite
computably enumerable subsets. Show that every computable Boolean algebra with infinitely many
atoms is isomorphic to a computable Boolean algebra in which the set of atoms is immune.

Exercise˚ 4.1.23. Let AtpBq denote the set of atoms of a Boolean algebra B.

1. (Remmel [444]). Show that if B is a computable Boolean algebra with infinitely many atoms,
then B has a computable copy C, such that AtpCq ěT H

1. (Hint: Use the Remmel-Vaught
Theorem 4.1.12.)

2. (Downey [118]). Show that if B is a computable Boolean algebra with infinitely many atoms,
then B has a computable copy C, such that AtpCq ­ěT H

1.

Exercise˚˚ 4.1.24 (Montalbán [398]). Suppose that B is a computable Boolean algebra having
infinitely many atoms, and let a be the Turing degree of the set of atoms in B. Show that for every
d so that d3 ě a3 there exists a computable copy of B in which the set of atoms has degree d.

4.1.3 Low Boolean algebras. The proof of Theorem A(2).

Recall that Theorem 3.2.45 states that there is a low c.e. presented linear order not isomorphic to
a computable one. We have seen low groups that are not isomorphic to computable ones too; e.g.,
Proposition 2.2.5. It is natural to ask whether the analogue of Theorem 3.2.45 holds for Boolean
algebras.

Theorem 4.1.25 (Downey and Jockusch [129]). Suppose that B is a low Boolean algebra.
Then B is isomorphic to a computable Boolean algebra. Indeed, if B is H1-presentable and the
atom relation for B is H1-computable, then B has a computable copy.

Theorem 4.1.25 appeared earlier as Theorem A(2), but it states a bit more than was stated
in Theorem A(2). Also, Theorem 4.1.25 should be compared with the Frolov-Montalbán Theo-
rem 3.2.14.

145

Proof. We can view a low Boolean algebra as Intalg(L), the interval subalgebra of a low linear
subordering of the rationals, Q. Without loss of generality, we can suppose L has infinitely many
adjacencies.

In light of Theorem 4.1.12(ii), to establish the desired result, it suffices to show that for any
low linear ordering L Ď Q having infinitely many adjacencies, there is a computable linear ordering
pL Ď Q which is the same as L except that some adjacencies are replaced with finite blocks. But
since L is low, it satisfies the premises of Lemma 3.2.28; thus such a pL indeed exists. Observe
that the argument actually shows that any ∆0

2-presented Boolean algebra with a ∆0
2 set of atoms

is isomorphic to a recursive Boolean algebra.

The following conjecture is longstanding.

Conjecture 4.1.26 (Downey). Every lown Boolean algebra is isomorphic to a computable one.

The most recent progress on this question is the following.

Theorem 4.1.27 (Knight and Stob [308]). Every low4 Boolean algebra is isomorphic to a com-
putable one.

There is not much further evidence to support this conjecture. Harris and Montalbán [235]
demonstrated that there is a genuine problem with the case n “ 5, so new ideas will be needed.
Another result indicating that the problem might be exceptionally combinatorially hard is [396].

4.1.4 Superatomic Boolean algebras˚

We now very briefly discuss one important and well-studied class of Boolean algebras arising from
ordinals. The class has many equivalent definitions (characterisations). We give the definition that
involves the Cantor–Bendixson derivative (Definition 4.1.7).

Definition 4.1.28. The Boolean algebra B is superatomic if Xpαq “ 2 for some ordinal α, where
2 is the trivial two-element Boolean algebra.

Theorem 4.1.29 (Goncharov [199]). For a Boolean algebra B, the following are equivalent:

1. B is computable and superatomic.

2. B – Intalgpαq for some computable ordinal (well-order) α.

3. B – Intalgpωβ ¨ kq, for some computable ordinal β and positive k P N.

The non-effective version of the theorem is folklore; we cite [207, Proposition 1.5.7] and [207,
Corollary 1.6.1]. The proof of the result is omitted, but we note that 3 Ñ 2 and 2 Ñ 1 are essentially
obvious. We refer to p. 57 of [207] and to [199] for the details, and we refer to Exercise 8.1.26 for a
proof sketch of 1 Ñ 3.

In particular, if ωCK1 denotes the least non-computable ordinal, then IntalgpωCK1 q does not have
a computable copy; indeed, it does not even have a (hyper)arithmetical copy (this follows from
Exercise 8.1.25). On the other hand, it is easy to see that a c.e. presented superatomic Boolean
algebra has a computable presentation: combine Exercise 2.2.44 with Corollary 4.1.16. (Indeed,
every hyperarithmetical superatomic Boolean algebra is isomorphic to a computable one, as follows
from Exercise 8.1.25.) Thus, Feiner’s Theorem 4.1.30 that we discuss next cannot be witnessed by
a superatomic Boolean algebra.

146

4.1.5 Feiner’s Theorem. The proof of Theorem A(1)

We would like to obtain a result for Boolean algebras analogous to Feiner’s Theorem 3.2.1 for
linear orders. However, we claim that the methods used in Chapter 1—specifically, coding some
arithmetical set such as a Σ0

3-set and then relativising, as we did for Theorem 3.2.1 using Lerman’s
Theorem 3.2.11—cannot be directly applied here.

Suppose we attempt to use IntalgpLq, where L is constructed as in Theorem 3.2.11. Notice that

IntalgpLq – IntalgppLq, where pL replaces each block of size n in L with one of size 2. (Here, we
are using the Remmel-Vaught Theorem 4.1.12.) It is not difficult to build a computable copy of
IntalgpLq.

We could attempt to code a more complicated arithmetical set using n-atoms. However, as
mentioned earlier, Thurber proved an extension of the Remmel-Vaught Theorem 4.1.12 to n-atoms,
leading to similar challenges.

Feiner’s idea was to use n-atoms for all n P N to “code” a uniformly Σ0
n relation Spnq into a

computable (or c.e. presented) Boolean algebra. That is, the membership n P S is uniformly Σ0
n. To

achieve this, he defined a new measure of complexity for sets computable from Hpωq “ ‘nPNH
pnq:

Hpωq “ txx, ny : x P Hpnqu,

that reflects the degree of uniformity necessary to compute the set.

Theorem 4.1.30 (Feiner [161, 162]). There exists a c.e. presentable Boolean algebra not iso-
morphic to any computable Boolean algebra.

The result appeared earlier as Theorem A(1). Our proof is similar to the version given by
Thurber in his PhD Thesis [485].

The plan of the proof

For a Boolean algebra B, we will examine

SB “ tn : B satisfies Γnu,

where tΓn : n P Nu is a family of certain algebraic properties (predicates) that can be uniformly
effectively described. These properties can be viewed as infinitary computable sentences in the
language of Boolean algebras, but to keep things simple, we will avoid using infinitary logic.

Our algebra B will be set equal to the sum of principal ideals of the form

IntalgpZn`1 ` 1`Qq and IntalgpZnQ` 1`Qq,

but we will not use the block of the second kind for some of the n. The property Γn will say
that IntalgpZnQ ` 1 ` Qq “ IntalgpZnQq ` IntalgpQq is among the blocks that we used. Here,
IntalgpQq serves as a “separator” between different coding locations of the form IntalgpZn`1q and
IntalgpZnQq.

If B is computable, then we will see that the complexity of checking Γn is Σ0
2n`3 uniformly in

n. We will clarify what this means later. It is therefore sufficient to produce a c.e. presented B
in which checking whether Γn holds is not uniformly Σ0

2n`3. This will be done using a variety of
techniques and tools, including the Fellner-Watnick Theorem 3.2.23.

147

The property Γn

Our plan is to use algebras (actually, principal ideals) of the form

IntalgpZn`1 ` 1`Qq and IntalgpZnQ` 1`Qq

as coding locations.
Recall that an element is atomic if every non-zero element below it bounds an atom, and that

an element is atomless if it generates an infinite atomless principal ideal; in particular, 0 is not
atomless. Recall also that x is n-atomic (for n ą 0) if Dpnqpxq is atomic in DpnqpBq, and that b is
n-atomless if Dpnqpbq is atomless in DpnqpBq.

Definition 4.1.31. For a Boolean algebra B, a P B and a natural number n ą 0, define the
following properties:

• γnpaq holds when:

1. a is pn´ 1q-atomic, and

2. a is n-atomless.

• Define Γn to be the property saying that

Dx γnpxq.

Example 4.1.32. When n “ 1 the property says that there is an element a that is atomic (0-
atomic) and that it becomes atomless after taking the derivative once. It is clear that Γ1 holds
in IntalgpZQ` 1`Qq as witnessed by any element coming from the ZQ-part. (For instance, take
x “ r`, aq, where a is the separating element between ZQ and the extra copy of Q.)

Example 4.1.33. We argue that Γ1 fails in IntalgpZ2 ` 1 ` Qq. Fix x P IntalgpZ2 ` 1 ` Qq and
assume that γ1pxq holds. The element x is a finite union of half-open intervals I0, . . . , Ik. None of
these intervals can come from the dense part of the order, for in this case x would not be atomic.
This means that x comes from the principal ideal isomorphic to IntalgpZ2q, which is the sum of
two 2-atoms. If all of the intervals I0, . . . , Ik making up x contain only finitely many points, then
it means that Dp1qpxq “ 0. This is impossible because x has to be 1-atomless and, in particular,
non-zero in Dp1qpBq. On the other hand, if at least one of the intervals, say Ij , contains infinitely
many points, then this means it has a copy of a 1-atom in it. This is the same as saying that
Dp1qpxq bounds an atom, so in this case x cannot be 1-atomless either. We conclude that Γ1 fails
in IntalgpZ2` 1`Qq. Of course, there is nothing special about Z2 in this example, it could just as
well be Zm for any m.

Example 4.1.34. We argue that Γ1 fails in B “ IntalgpZ2Q` 1`Qq. For suppose x P B is such
that γ1pxq holds. If I0, . . . , Ik make up x, then all of these half-open intervals must have empty
intersection with Q. (Otherwise, not every element below x will bound an atom; this is similar to
Example 4.1.33.) If each of these Ij is fully contained in some copy of Z2, then either x is the sum of
finitely many atoms or bounds a 1-atom. But this means that in this case x cannot be 1-atomless.
The only case that is left is when at least one of these Ij contains infinitely many copies of Z2.
But after taking the derivative, these will turn into infinitely many atoms, and thus x cannot be
1-atomless in this case either.

148

In the proposition below, fix any
B “

ÿ

iPN
Bi,

where for each i P N, Bi is either IntalgpZnQ` 1`Qq or IntalgpZn`1 ` 1`Qq for some n P N. For
the purposes of the proof, we may assume that n ą 0.

Proposition 4.1.35. Then Γn holds in B iff there is an i such that Bi is isomorphic to IntalgpZnQ`
1`Qq.

Proof. The proof is essentially a generalisation of the examples above. If some Bi is isomorphic to
IntalgpZnQ ` 1 ` Qq, then take a equal to any subinterval of ZnQ in Bi and see that γnpaq holds
because a is pn´ 1q-atomic and a is n-atomless.

Now assume none of the Bi has the form IntalgpZnQ` 1`Qq, but Γn holds on B. So fix a such
that γnpaq holds. It takes n derivatives to make a atomless, and after taking the derivative pn´ 1q
times, a becomes atomic. So in particular, it takes exactly n derivatives to make a atomless, which
means Dpnqpaq generates IntalgpQq.

As in the examples preceding the proposition, let a “ I0 Y I1 Y . . . Y Ik, where the Ij are
non-empty half-open intervals in the linear order L of B “ IntalgpLq. We identify each Ij with the
respective element of the algebra. The linear order L looks as follows:

L “ L0 ` 1`Q` 1` L1 ` 1`Q` 1` L2 ` . . . ,

where each Li is either of the form ZmQ or of the form Zm for some m. None of the Ij can possibly
intersect the Q-components, for in this case, a would not be n-atomic.

Some of the Ij can possibly intersect some of the ZmQ or Zm for m ą n. If Ij intersects an
interval of this sort, then it intersects only one interval of this sort because of the Q-separators.
Also, we claim that such an Ij has to vanish after taking n derivatives. For if it does not, then it
has to have an atom below it after taking n derivatives, and thus a cannot be n-atomless.

If Ij overlaps with some of the Zm for m ă pn ´ 1q, then there is only one such Zm. Then Ij
vanishes after taking pn´ 1q derivatives. Similarly, if Ij intersects some interval of the form ZmQ
for m ă n, then it has to vanish already after taking pn ´ 1q derivatives. This is because if it
becomes dense after taking pn´ 1q derivatives, then a cannot be pn´ 1q-atomic.

The only case left is when Ij intersects Zm for m “ pn´ 1q. Since it cannot overlap with any of
the Q-parts, Ij Ď Zn´1. Now, it could certainly be pn´ 1q-atomic, since Zn´1 is the union of two
pn´ 1q-atoms. However, it completely vanishes after taking n derivatives.

We conclude that every Ij in a “ I0 Y I1 Y . . . Y Ik has to vanish after taking n derivatives.
But a was supposed to be n-atomless, so it should generate an ideal isomorphic to IntalgpQq after
taking n derivatives. This is a contradiction.

Complexity analysis

Recall that Γn states that Dx γnpxq, where γnpaq holds when a is pn´ 1q-atomic and n-atomless.

Lemma 4.1.36. Suppose B is an infinite computable Boolean algebra. Then the complexity of
checking Γn in B is Σ0

2n`3 uniformly in n.

A discussion before the proof. Formally, “Σ0
2n`3 uniformly in n” means that there is a computable

binary predicate
Rpxx0, . . . , x2n`3y, nq

149

such that
B satisfies Γn iff Dx0@x1Dx2@x3 . . . Dx2n`3Rpxx0, . . . , x2n`3y, nq,

where x. . .y is the computable indexing of all finite tuples, e.g., xx0, x1, x2y is defined to be xxx0, x1y, x2y

and so on. Equivalently, we could instead say that there is an oracle (partial) procedure U such
that

B satisfies Γn iff UH
pωq

pnq Ó,

where, on input n, the procedure is allowed to use only the Hp2n`2q-section of

Hpωq “ txx,my : x P Hpmqu.

In the proof below, the upper bounds on the complexity are obtained using induction in n.
In the process of establishing these upper bounds, we will also establish the required uniformity.
Recall that the elements of B are natural numbers, and that the operations in B are computable.
(For simplicity and without loss of generality, we can assume that the domain of B is the whole of
N.) This also makes the induced order

a ď b if and only if a^ b “ a

computable as well. Since we interpret elements of B as natural numbers, and the operations and
relations on these elements also live within N, the formulae that we shall write in the argument
below can be viewed as first-order formulae in arithmetic augmented by the finitely many symbols
for the operations of B.

The complexity of the subsets of N that these formulae define is derived based on counting
the number of alternating number-quantifiers over a computable property. Only the alternations
of quantifiers matter, since (e.g.) DxDy . . . can be replaced with Dw pw “ xx, yy& . . .q. So we put
the formula into its normal form and count the alternations of quantifiers in the quantifier prefix.
Although this is a standard technique, so far in the book we have not yet seen an argument of this
form that would require induction.

Proof. When n “ 0, it is Π0
1 to say that an element is an atom; just say that a ‰ 0 and it does not

split. An element a is atomless if every element below it splits, i.e.,

a ‰ 0 & @x ď a rx ‰ 0 ùñ pD v, w ‰ 0q pv _ w “ x& v ^ w “ 0qs,

which is Π0
2. Also, an element a is atomic if

@ non-zero x ď a Db ď x b is an atom,

which is Π0
3.

When n “ 1, the congruence

x „1 y if and only if Dp1qx “ Dp1qpyq

requires checking whether x “ y or x M y “ px ^ ȳq _ px̄ ^ yq is a finite join of atoms. The latter
is a search for a k and atoms a0, . . . , ak P B so that x M y “ a0 _ a1 _ . . ._ ak; this is Σ0

2. It also
follows that

x ď1 y if and only if x^ y „1 x,

150

which is the analogy of ď in Dp1qpBq, and is also Σ0
2.

An element a is a 1-atom if Dp1qpaq is an atom in B{ „1, and „1 is Σ0
2. An element a is a

1-atom iff a 1 0 and it does not split, i.e., it is not the case that for some v, w,

v, w 1 0 & v _ w „1 x & v ^ w „1 0.

This is a conjunction of Π0
2 and DΠ0

2, which is Π0
3. This makes „2 Σ0

4.
By induction, we obtain that being n-atom is a Π0

2n`1-property, and that „n and ďn are Σ0
2n-

relations.
Recall that a is n-atomic when Dpnqpaq is atomic in DpnqpBq. This is the same as to say that

a n 0 and for any x ďn a such that x n 0, there exists an n-atom b ďn x. Since being n-atom is
a Π0

2n`1-property, we obtain that being n-atomic is Π0
2n`3. Recall that a is n-atomless if Dpnqpaq is

atomless in DpnqpBq. This is the same as expressing the property of being atomless but using the
Σ0

2n relations „n and ďn instead of “ and ď. This analysis gives the upper bound of Π0
2n`2.

According to its definition, γnpaq states that a is pn´ 1q-atomic (this is Π0
2n`1) and n-atomless

(which is Π0
2n`2). We conclude that the upper bound for the complexity of

Γn if and only if Da γnpaq

is Σ0
2n`3.
It remains to discuss the uniformity. Given n, we can computably produce the first-order

sentence (in arithmetic augmented with the operations of B) that “defines” the Γn. We elaborated
this procedure in the inductive proof above; clearly, the proof was effective.

This definition of Γn requires only access to the operations of the Boolean algebra on top of the
usual arithmetic. Since B is computable, these operations are given by (finitely many) computable
functions on N. If we fix the indices of these computable functions (which are now shared among all
of these sentences representing Γn), we can uniformly Σ0

2n`3-effectively verify these sentences.

Constructing the coding blocks

Recall that our aim is to build a c.e. presented algebra of the form

B “
ÿ

iPN
Bi,

where for each i P N, Bi is either IntalgpZnQ ` 1 ` Qq or IntalgpZn`1 ` 1 ` Qq for some n P N.
In this algebra, we will have that “B satisfies Γn” is not uniformly Σ0

2n`3. However, to keep B
c.e. presented we need this invariant to be close enough to being uniformly Σ0

2n`3. We are ready
to state a technical fact that, after a bit of work, implies Feiner’s Theorem.

Proposition 4.1.37. Suppose “n P S” is uniformly Σ0
2n`3. Then there is a computable Boolean

algebra B of the form
B “

ÿ

iPN
Bi,

where for each i P N, Bi is either IntalgpZnQ` 1`Qq or IntalgpZn`1` 1`Qq for some n P N, and
so that

S “ tn : Γn holds in Bu.

(By Proposition 4.1.35, we have that S “ tn : Di Bi – IntalgpZnQ` 1`Qqu.)

151

Proof. We begin with constructing the elementary building blocks.

Lemma 4.1.38. There is a uniform procedure which, given a Π0
2n`2-predicate R and i P N, con-

structs a computable copy of ZnQ if Rpiq holds, and a computable copy of Zn`1, otherwise.

Proof. It is sufficient to prove the case when n “ 0 and then apply the Fellner-Watnick Theo-
rem 3.2.23 n times. This is because our proof of the Fellner-Watnick Theorem was uniform assum-
ing the input order was infinite. (Indeed, it was uniform when the input-order is just non-empty.)
The Π0

2-predicate is represented as @xDyP px, y, iq, where P is computable. Start with building a
copy of Z, but every time the predicate “fires” make progress in turning Z into a copy of Q. That
is, if a witness y found for one more x, add a point to every current adjacency of Z.

Now fix a Σ0
2n`3-predicate and view it as DiRpiq, where R is Π0

2n`2. The lemma above gives a
uniformly computable sequence of linear orders Li, so that:

1. each Li is either ZnQ` 1`Q or Zn`1 ` 1`Q, and

2. some Li is ZnQ` 1`Q iff the Σ0
2n`3-predicate holds.

Of course, the p1`Qq-part can be added uniformly and essentially independently to the more
complicated part of each such Li. Our application of the Fellner-Watnick Theorem is uniform, and
thus the construction of the Li is uniform in i. Indeed, the whole module corresponding to Σ0

2n`3

is uniform in n.
Let R stand for the uniformly Σ0

2n`3-instance “n P S”. Define the linear orders Uxn,iy “ Li,
where Li are as described above for this specific R, and xn, iy is just the pairing function. Set
Bm “ IntalgpUmq for every m P N, and define

B “
ÿ

mPN
Bm.

It follows from Proposition 4.1.35 that B is exactly what we need.

The final step in the proof

It is not difficult to construct a set S such that the relation n P S is uniformly Σ0
2n`4 but not

uniformly Σ0
2n`3. This fact can be stated in the following, more general terms. Fix a total strictly

increasing computable function f . We write Σ0
xfpnqy to denote the class of all sets X such that the

relation “n P S” is uniformly Σ0
xfpnqy. In our case, fpnq “ 2n` 3.

Lemma 4.1.39. In the notation above, there is a set S P Σ0
xfpnq`1yzΣ

0
xfpnqy.

Proof. Let Sn be the effective uniform listing of all (uniform partial procedures that could poten-
tially define) Σ0

fpnq-sets. Declare n P S if n R Sn, and set n R S otherwise.

It is useful to view Σ0
n`m-sets and sets Σ0

n relative to Hpmq. Similarly, Σ0
fpnq`1-sets can be

viewed as Σ0
fpnq-sets relative to H1.

In particular, if we fix S P Σ0
x2n`4yzΣ

0
x2n`3y, we can apply Proposition 4.1.37 and produce a ∆0

2

Boolean algebra B in which Γn codes n P S. We can then appeal to Corollary 4.1.16 and conclude

152

that B is c.e. presented. But note that in Corollary 4.1.16, ∆0
2 stands for the complexity of the

congruence. There are two ways to explain why Corollary 4.1.16 is sufficient.
The first explanation is algebraic. We can always reduce the complexity of any presentation of

a Boolean algebra to the complexity of “ in this presentation, as follows. We can start with the
free countable (atomless) Boolean algebra F generated freely by the elements of B, and then B is
isomorphic to F {I, where I is generated by all elements of F that are equal to 0 when interpreted
as elements of B. (This is Exercise 4.1.21(1).)

The second explanation is combinatorial. In the proof of Proposition 4.1.37, we will end up
with a ∆0

2 linear order, and we know from the previous section that it has a c.e. presentation.
It should be clear now that the interval algebra of this order, which is exactly our B, also has a
c.e. presentation.

If the reader is still uncomfortable with these explanations, in the next section we will give
a direct proof of the c.e. presentability of any H1-computable Boolean algebra; this is Proposi-
tion 4.1.50. This proof will not rely on linear orders and will not refer to any of the previous results
(including the present proof), so there will be no danger of circularity.

We conclude that B is c.e. presented, but it cannot possibly have a computable presentation.
This is because Proposition 4.1.35 and Lemma 4.1.36 would then imply that S P Σ0

x2n`3y, contra-
dicting the choice of S.

The proof of Feiner’s Theorem is complete.

Applications and consequences

As we remarked earlier, Feiner’s technique has found numerous other applications. We refer the
reader to Goncharov’s book [207]. We give one illustration. Recall that an algebraic structure is
decidable if its full first-order diagram is decidable.

Theorem 4.1.40 (Goncharov). There is a computable Boolean algebra B not isomorphic to any
decidable Boolean algebra.

Sketch. In a decidable Boolean algebra, the set of atoms has to be computable. This is because
being an atom is a first-order property in the language of Boolean algebras. It is therefore sufficient
to construct a computable Boolean algebra that is not isomorphic to any computable algebra with
a computable atom relation.

This is done using Feiner’s coding technique. It is not hard to see that the uniformly Σ0
2n`3

properties Γn described in the proof of Feiner’s Theorem (see Lemma 4.1.36) become uniformly
Σ0

2n`2 in any computable algebra with a computable set of atoms (exercise). By Lemma 4.1.36 and
Proposition 4.1.35, it is sufficient to fix a set S P Σ0

x2n`3yzΣ
0
x2n`2y and apply Proposition 4.1.37.

The proof above does a bit more than claimed in the theorem. It is known (e.g., [207]) that
the computability of the atom relation is equivalent to the computable algebra being 1-decidable,
i.e., that we can decide the D-diagram of the algebra. (This is because every existential formula
in the language of Boolean algebras can be computably rewritten into an equivalent quantifier-free
statement in the language extended by the atom relation. This is folklore that can be traced back to
Tarski.) An n-decidable presentation is defined similarly. Feiner’s techniques can be used to show

153

that there exist pn`1q-decidable Boolean algebras with no n-decidable presentations; we leave this
to Exercise 4.1.41. For an in-depth study of n-decidable Boolean algebras, we cite Alaev [6].

Exercises

Exercise˝ 4.1.41 (Goncharov [201, 207]). Prove that, for every non-zero n P N, there is an n-
decidable Boolean algebra that has no pn` 1q-decidable presentation.

Exercise˚ 4.1.42 (Goncharov [201]). Show that for any natural number n, there exists a com-
putable, n-atomic but not pn` 1q-atomic Boolean algebra, which has no decidable presentation. In
contrast, prove that every computable ω-atomic Boolean algebra has a decidable presentation.

Exercise˚ 4.1.43 (Goncharov [202]). Prove that there exists a Boolean algebra that is n-decidable
for all n P N, yet has no decidable presentation.

4.1.6 Stone spaces and computable trees

We have used interval representations of Boolean algebras, but sometimes it is more convenient
to use tree representations. This approach allows us to convert problems about Boolean algebras
into problems concerning Π0

1-classes, as defined in Section 2.1.6. This technique will also be very
important in proving the two effective topological versions of Stone duality in the next section.

Stone spaces

Recall that one version of Stone duality, Theorem 4.1.3, says that a Boolean algebra is isomorphic
to the set-theoretic sub-algebra of its ultrafilters (equivalently, maximal ideals).

Definition 4.1.44. The Stone space pB of a Boolean algebra B is defined to be the set X of all
ultrafilters of B.

Such spaces are also occasionally called profinite spaces. One can equivalently define pB to be the
set of all homomorphisms from B to 2. But, of course, ultrafilters in B are in a 1-1 correspondence
with such f : B Ñ 2. Indeed, if f is a homomorphism of B onto 2, then f´1p1q is an ultrafilter in
B, and f´1 is a maximal ideal in B. Conversely, given an ultrafilter F , its complement I “ BzF
is a maximal ideal, and it follows that B{I – 2 via f , so that f´1p1q “ F .

We could view the set pB of all ultrafilters in B as a topological space. The space is topologised
as follows: If b P B, the family of all ultrafilters of B having b as an element is a typical basic clopen
(closed and open) subset of pB. (Equivalently, tf : fpaq “ 1u.) Going in the other direction, the

clopen subsets of pB form a Boolean algebra of sets which is isomorphic to B.
The crucial observation is that when we replace the internally defined notion of an ultrafilter

with the external definition of topology, the duality becomes topological too. Specifically, we have
the following folklore fact:

Theorem 4.1.45 (Topological Stone Duality). For Boolean algebras B and C, B is isomorphic to

C iff pB is homeomorphic to pC.

The topological version of Stone duality allows a great deal of flexibility in the way we represent
the Stone space of B. This is because the algebra B is isomorphic to the algebra of the clopen sets
of pB. This exact same process would work for any space M provided that M –hom

pB. For example,
we state without proof the following well-known topological characterisation of Stone spaces.

154

Lemma 4.1.46 (Folklore). For a Hausdorff space X, the following are equivalent (up to homeo-
morphism):

1. X is a Stone space;

2. X is the inverse (projective) limit of finite discrete spaces;

3. X is compact and totally disconnected.

Since we will not need these characterisations in this section, we will not clarify the standard
terminology used in the lemma above. We will return to the topological characterisations in the
next section. Instead, we now describe some other, fairly explicit ways to represent Stone spaces
using trees.

Tree representations

We want to represent the Stone spaces of c.e. Boolean algebras as Π0
1 classes. Let T be a subtree

of 2ăω. Topologise rT s by letting the basic open sets be those of the form rtσα : α P 2ωus, where
σ P T . Then rT s is a Polish space. The standard metric between ξ, η P rT s is defined to be

dpξ, ηq “ 2´n,

where n is the length of the longest common initial segment of ξ and η, but one could also use
Cantor’s middle third construction and the metric inherited from r0, 1s. In particular, the space
rT s is compact (being a closed subset of r0, 1s). To see that rT s is compact directly, use that T is
finite-branching, i.e., it contains only finitely many strings of any given length.

The basic open sets are in fact clopen, i.e., open and closed. The collection of all clopen sets,
which are exactly the finite unions of basic clopen sets, forms a Boolean algebra. Recall that 2ăω

stands for the tree of finite strings of 0-s and 1-s, including the empty string, up to the prefix
relation.

Lemma 4.1.47. The Stone space of all ultrafilters of any countable Boolean algebra is homeomor-
phic to rT s for some tree T Ď 2ăω.

Proof. Let tbnunPω be a listing of the universe of a countable Boolean algebra B. For any string
σ P 2ăω, let bσ P B be defined as

Ź

tbn : σpnq “ 1u^
Ź

tbn : σpnq “ 0u, where bλ “ 1B by convention
(λ is the empty string). Let T “ tσ P 2ăω : bσ ‰ 0Bu. If f P rT s, let Uf “ tbn : fpnq “ 1u. It is
easily seen that Uf is an ultrafilter of B and that the mapping f ÞÑ Uf is a homeomorphism of rT s
onto the Stone space of B.

We say that a tree T Ď 2ăω represents the Boolean algebra B if rT s is homeomorphic to the
Stone space of B.

Remark 4.1.48. We note that there are at least two possible interpretations of the term “tree
representation of a Boolean algebra” that can be encountered in the literature. In [207], Goncharov
uses a different notion that he calls a “tree basis”. Goncharov’s approach is algebraic rather than
topological. He views elements of the tree as independent generators, and under his approach dead
ends of the tree correspond to atoms. In our approach, however, atoms correspond to isolated
paths. Goncharov’s approach is most convenient in the study of decidable Boolean algebras, while
our approach is best suited for computable and c.e. presented Boolean algebras. These two tree
representations are further compared in [423].

155

We see that for a countable Boolean algebra B, its Stone space is compact and separable. The
following proposition gives connections between the computability properties of Boolean algebras
and their representing trees. A string σ is called a terminal node of a tree T if σ P T and no string
τ properly extending σ is in T . We write λ for the empty string.

Proposition 4.1.49 (Folklore; see [423]). (i) Every computable Boolean algebra is represented
by some computable tree T Ď 2ăω with no terminal nodes. Conversely, every computable tree
T Ď 2ăω with no terminal nodes represents some computable Boolean algebra.

(ii) Every c.e. presented Boolean algebra is represented by some computable tree T Ď 2ăω. Con-
versely, every computable tree T Ď 2ăω represents some c.e. presented Boolean algebra.

Proof. The first statement of the first part follows immediately by effectivizing the proof above that
every countable Boolean algebra is represented by some tree T Ď 2ăω. The converse is also easy to
check. For the second part, assume that B is a c.e. Boolean algebra. The above argument produces
a tree T Ď 2ăω which represent B and is co–c.e., i.e. 2ăω´T is c.e. But then there is a computable
tree U Ď 2ăω such that rU s “ rT s. (Let U consist of all strings σ P 2ăω such that no string τ Ď σ
has been enumerated out of T by stage |σ| in a fixed enumeration of 2ăω´T .) The converse is easy
to check because if T is a computable tree, tσ P T : rTσs ‰ Hu is co–c.e. by König’s Lemma.

This new correspondence allows us to give alternative proofs of some results about represen-
tations of Boolean algebras. For example, we can give an alternative proof of the instance of
Corollary 4.1.16 that was necessary in the final step of our proof of Feiner’s Theorem 4.1.30.

Proposition 4.1.50 (Feiner). Each H1–computable Boolean algebra is isomorphic to some c.e. pre-
sented Boolean algebra.

Proof. By Proposition 4.1.49 it suffices to show that for any H1–computable tree T Ď 2ăω with no
terminal nodes, there is a computable tree rU s Ď 2ăω such that rU s – rT s. To each string σ P T
we assign a string fpσq P U , where f will be a certain H1–computable partial function. We will
have that, for σ, τ P T , that fpσq ĺ fpτq iff σ ĺ τ . From this it follows easily (as T has no terminal
nodes) that each string in the range of f is extendible to a path in rU s. Conversely, each string
extendible to a path in rU s will be extendible to a string in the range of f . From this it follows
that f induces a homeomorphism ϕ from rT s to rU s, i.e. ϕpgq “

Ť

σĺg fpσq, for g P rT s.
To construct f and U , we use tTsusPN, a computable approximation to T . By modifying this

approximation if necessary, we may assume that for each s, the set Ts is a nonempty tree with no
terminal nodes. Let s0 be the least number s such that for all t ě s and all strings σ P 2ăω with
|σ| ď 1, σ P T iff σ P Tt. Then fpλq will be a string in U of length s0. Note that we may computably
approximate s0 in such a way that our initial approximation is 0, and if our approximation at s` 1
differs from that at s, then our approximation to s0 at stage s ` 1 is simply s. Thus our initial
approximation to fpλq is λ, and we start the construction of U by letting it agree with T0 on strings
of length at most 1. (Note that T0 contains λ and at least one string of length 1 since it is a
nonempty tree with no terminal nodes.) In building U at stage s` 1, we decide membership in U
for all binary strings of length s` 1, and we assume inductively that U contains at least one string
of length s. If our approximation to s0 changes at stage s` 1, then we effectively choose a string τ
of length s in U and let it be our new candidate for fpλq. We want the rest of the construction of U
to take place above τ , so we omit from U all strings of length s`1 which do not extend τ . Further,
we act in the belief that the approximation Ts`1 to T is correct on binary strings of length 1. Thus,
for i ď 1, we put τ"i into U iff the string xiy P Ts`1. (This puts at least one string of length s` 1

156

into U because Ts`1 contains at least one string of length 1.) Obviously, this process must converge
because our approximation to s0 converges. The inductive step for defining fpσ"iq for i ď 1 given
fpσq is similar. We will have fpσ"iq ľ fpσq"i and |fpσ"iq| will be the least number s such that
s ą |fpσq| and for all t ě s and all j ď 1, σ"i"j P T iff σ"i"j P Tt.

In the final Boolean algebra subsection below we give a result that puts together all our methods
developed so far, including tree representations, Downey-Jockusch Theorem 4.1.25, and Feiner’s
Theorem 4.1.30. We will not need this result in later chapters.

4.1.7 Rank 1 Boolean algebras˚

Jockusch and Soare [274] essentially showed that, much in the spirit of Richter’s Theorem 3.2.13, one
has to use transfinite methods and uniformity to code any non-trivial information into a Boolean
algebra (see Exercise 8.3.41). That is, there is no natural “coding” of Σ0

n-sets into computable
Boolean algebras, for any finite n. Also, the use of n-atoms for arbitrarily large n P N seemed
crucial in our proof of Feiner’s Theorem 4.1.30. This leads to the following question.

Question 4.1.51. Is there an arithmetical Boolean algebra of finite Cantor-Bendixson rank not
isomorphic to a computable one?

In this subsection, we use tree representations to answer this question in the affirmative.

If X is any Stone space, the Cantor–Bendixson derivative X 1 of X is the set of non–isolated
points of X, with the subspace topology. In terms of trees, isolated points correspond to isolated
paths. If X is a topological space, let IpXq denote the closed set of points in X which are limit
points of the isolated points of X. If X is a Stone space, then so is IpXq (in the relative topology).

The following easy construction shows that every separable Stone space is homeomorphic to
IpXq for some separable Stone space X of Cantor–Bendixson rank ď 1.

Definition 4.1.52. Let T Ď 2ăω be a binary tree. Define a new tree F pT q Ď 3ăω by starting with
2ăω and then attaching an isolated path to each node of T .

The paths through F pT q are those infinite strings which either consist entirely of 0’s and 1’s
or else consist of a string in T followed by an infinite string of 2’s. The isolated paths in rF pT qs
are clearly those of the latter form, so IprF pT qsq “ rT s. It also follows from these remarks that
rF pT qs1 “ r2ăωs which is a perfect space. Hence the Cantor–Bendixson rank of rF pT qs is at most
1.

Theorem 4.1.53 (Downey and Jockusch [130]). There is a c.e. presented Boolean algebra B of
Cantor–Bendixson rank 1 which has no computable presentation.

Proof. Let B0 be a Boolean algebra which is Hp3q–c.e. but not isomorphic to any Hp3q–computable
Boolean algebra. Such a Boolean algebra may be obtained by relativizing the proof of Feiner’s
theorem to Hp3q. Let T Ď 2ăω be a Hp3q–computable tree which represents B0. Such a tree T
exists by Proposition 4.1.49, relativised to Hp3q. Finally, let B be a Boolean algebra represented
by F pT q, where F pT q is as defined in Definition 4.1.52. It is clear that B has Cantor–Bendixson
rank at most 1. The following lemmas will show that B satisfies the rest of the conclusion of the
theorem.

Lemma 4.1.54. B is not isomorphic to any computable Boolean algebra.

157

Proof. Suppose for a contradiction that B is isomorphic to B1, a computable Boolean algebra.
Let T1 be a computable tree without terminal nodes which represents B1. Such a tree T1 exists
by Proposition 4.1.49, and rT1s – rF pT qs where T is as chosen above. It follows that IprT1sq –

IprF pT qsq “ rT s. We now define a Σ0
2 tree T2 Ď T1 such that rT2s – IprT1sq. First, let I be

the set of strings σ on T1 such that any two extensions of σ on T1 are compatible. It is easily
seen (using the fact that T1 has no terminal nodes) that I is the set of nodes of T1 which lie on a
unique (necessarily isolated) branch of T1. Let T2 be the set of nodes σ P T1 such that there exist
incompatible strings τ1, τ2 which are each in I and extend σ. It is easy to see that I is Π0

1, and so
T2 is Σ0

2, and that rT2s – IprT1sq. Finally, let T3 be the set of strings σ P T2 such that there exists
f P T2 with f Ě σ, i.e. T3 is the set of extendible nodes of T2. By König’s Lemma, T3 is also the
set of nodes σ of T2 which have extensions in T2 of each length ě |σ|, so T3 P Π0

3. Thus T3 is a
Hp3q–computable tree, and it clearly has no terminal nodes. But rT3s “ rT2s – IprT1sq – rT s, so
T3 represents B0. Thus by Proposition 4.1.49, B0 is isomorphic to some Hp3q–computable Boolean
algebra, in contradiction to our choice of B0.

Since B is not isomorphic to any computable Boolean algebra, it does not have rank 0, so its rank
is exactly 1. It remains to show that B is isomorphic to some c.e. Boolean algebra. The following
lemma (relativised to H1) is the main step in showing that B is isomorphic to some c.e. Boolean
algebra.

Lemma 4.1.55. Let U Ď 2ăω be a Hp2q–computable tree. There is a computable tree V Ď 3ăω

with no terminal nodes such that rV s – rF pUqs.

Proof. By Theorem 4.1.25, it is sufficient to build a H1-computable V with a H1-computable set of
atoms (isolated paths). Using Proposition 4.1.49 (relativised to H1), we can fix a Σ0

2-tree Û (and
indeed, even a ∆0

2-tree) such that rU s “ rÛ s.
The proof is therefore reduced to the following situation, which is then relativised to H1. We

are given a c.e. U Ď 2ăω, and we have to construct a computable V Ď 3ăω with no terminal nodes
such that rV s – rF pUqs, and so that V has a computable set of atoms.

This is quite straightforward. Put an atom (an infinite isolated path) of the form σ2ω whenever
σ is enumerated into U Ď 2ăω. We also declare it an atom (or isolated) immediately. Since the
2ω-part does not contain isolated paths, we end up with a computable tree with a computable
set of isolated paths. If σ is not on a path in 2ω, then (by compactness) it bounds only finitely
many nodes, so only finitely many extra atoms will be added below σ when compared to U . We
can assume without loss of generality that τ “ σ´, the predecessor of σ, is in U . In particular, τ
already bounds an atom τ2ω in V .

Without loss of generality, our Boolean algebra is infinite, and therefore the procedure described
above will result in a (tree representing) a Boolean algebra having infinitely many atoms. By the
Remmel-Vaught Theorem 4.1.12, we can completely remove the finite collection of atoms (paths)
in V bounded by each such σ R U , and end up with a (tree representing) an isomorphic algebra.
This is possible because τ “ σ´ already bounds an atom, so we can identify this atom with the
finite set of atoms below σ and apply the Remmel-Vaught Theorem 4.1.12. We conclude that
rF pUqs – rV s.

Lemma 4.1.55 (relativised to H1) shows that there is a H1–computable tree V Ď 2ăω with no
terminal nodes such that rV s – rF pT qs. Then, by relativising Proposition 4.1.49 to H1, it follows
that V represents some H1–computable Boolean algebra B2, and B2 – B since they are represented

158

by V and F pT q, respectively. By Proposition 4.1.50, since B1 is H1–computable, it is isomorphic
to some c.e. Boolean algebra, and thus so is B.

Exercises

Exercise˝ 4.1.56. Prove Feiner’s Theorem 4.1.30 using generating trees instead of interval alge-
bras.

Exercise 4.1.57. A an algebraic structure A is said to be primitive recursive if the domain and
the operations of the structure are (uniformly) primitive recursive. A primitive recursive structure
is fully primitive recourse or punctual if the domain of the structure is ω (or an initial segment
of ω). A primitive recursive structure is punctually 1-decidable if there is a primitive recursive
procedure that, given an existential sentence with parameters from the structure, outputs ´1 if
this sentence fails, and otherwise returns the tuple of elements of the structure witnessing the
existential quantifiers. A bijection f : ω Ñ ω is punctual if both f and f´1 are primitive recursive.

1. Prove˝ that every punctually 1-decidable structure is punctual.

2. Show that every computable Boolean algebra has a punctual presentation (Kalimullin, Mel-
nikov, and Ng [282]).

3. Show that a Boolean algebra has a punctually 1-decidable presentation iff it has a computable
copy in which the set of atoms is computable. Conclude that every 1-decidable Boolean
algebra has a punctually 1-decidable presentation (Alaev [7], also rediscovered by Downey
and Askes [23]).

4. Prove that a Boolean algebra has a unique 1-decidable presentation up to punctual isomor-
phism iff it is computably categorical (Alaev [7]).

5. Show that for a computable Boolean algebra B with a computable set of atoms, the following
are equivalent (Dorzhieva et al. [115]):

• Every 1-decidable presentation A of B is computably isomorphic to some punctually
1-decidable P – B.

• B splits into finitely many C0, ..., Ck such that each Ci is either atomless, an atom, or a
1-atom.

(Compare this description with Exercise 10.1.95.)

4.1.8 Further related results˚

As mentioned earlier, there are numerous papers and results concerning computable Boolean alge-
bras. The standard references for results proven before 2000 are [207] and [447]. Another reference
is Odintsov’s survey [422], which, however, overlaps significantly with [207]. When it comes to
more recent results, there are few comprehensive surveys available. One notable reference is [43],
although it focuses on specific topics rather than providing a broad overview.

159

4.2 Computably compact spaces

In this section, we return to computable separable spaces. We prove that there exists a computable
right-c.e. Stone space that is not homeomorphic to any computable Polish space, and that every
computable Polish Stone space is homeomorphic to a computably compact one. These were stated
as (1) and (2) of Theorem B in the first chapter.

To prove these results, we will establish two more versions of Stone duality, but this time not
restricted to spaces of the form rT s, where T Ď 2ăω. To handle an arbitrary compatible metric, we
will need to develop the foundations of the theory of computably compact and computable Polish
spaces, which will also be important in the next sections.

This section is based on [139].

4.2.1 Definitions

All of our spaces are Polish (separable and completely metrisable) spaces. Such spaces are also
sometimes called Polishable. All spaces in this section are non-empty and compact, unless stated
otherwise. In all our definitions we fix some metric compatible with the topology of the space. Since
we are mainly interested in compact spaces where any compatible metric is complete, we always
assume that the metric is complete.

Computable Polish spaces

Recall Definition 1.2.5:

Definition 4.2.1. A real ξ is

- right-c.e. if tr P Q : ξ ă ru is computably enumerable (c.e.);

- left-c.e. if tr P Q : ξ ą ru is c.e.;

- computable if it is both left-c.e. and right-c.e..

A Polish space pM,dq is right-c.e. presented or admits a right-c.e. metric if there exists a
sequence pαiqiPN of M -points which is dense in M and such that for every i, j P N, the distance
dpαi, αjq is a right-c.e. real, uniformly in i and j. The definition of a left-c.e. Polish space is obtained
from the notion of a right-c.e. Polish space using the notion of a left-c.e. real, mutatis mutandis.

In this section we usually consider Polish spaces under homeomorphism, that is, a Polish space
has a right-c.e. (Polish) presentation if it is homeomorphic to the completion of a right-c.e. metrised
space. To emphasise that neither the metric nor the dense sequence is fixed, we may occasionally
use the term “computably metrised” rather than “computable Polish”. Since most of our spaces
are compact, the metric is automatically complete.

Definition 4.2.2. A Polish space is computably presented if there is a (complete, compatible)
metric on the space which is computable, i.e., is both right-c.e. and left-c.e..

160

Basic open balls

Fix a Polish space, a dense sequence in the space, and a complete compatible metric d. A basic
open ball is a ball of the form tx : dpx, cq ă ru, where c is the “centre” of B that comes from the
fixed dense set, and r P Q is its “radius”. For a basic ball B, we write rpBq for the radius of B,
and we use cpBq to denote its (distinguished) centre. For a basic open ball B, write Bc for the
basic closed ball with the same centre and radius as B. The closure B of B does not have to be
equal to Bc in general (think of an isolated point in BczB). In this section, B and Bc should not
be confused with the (set-theoretic) complement of B; if we ever need to consider the complement
of B, we will write MzB. The set-theoretic inclusion of basic open balls is not c.e. in a computable
Polish space in general. The following stronger notion is c.e.; it will be very useful.

Definition 4.2.3. A basic open ball B is said to be formally included in a basic open ball D,
written B Ďform D, if rpBq ` dpcpBq, cpDqq ă rpDq.

The definition works for closed (or closures of) basic balls as well. This notion has been around
for many decades; see, e.g., [482], where it is called strong inclusion. Formal inclusion is transitive;
this is because dpx, yq ` r2 ă r1 and dpy, zq ` r3 ă r2 (together with the triangle inequality) imply
dpx, zq ` r3 ă r1. If the centres and the radii are computable (not necessarily special and rational,
respectively), formal inclusion remains c.e.. The same can be said about formal disjointness defined
as follows. Two basic open balls B and D are formally disjoint if rpBq ` rpDq ă dpcpBq, cpDqq.
We note that strong inclusion remains c.e. in the context of right-c.e. metric spaces, while strong
disjointness remains c.e. in left-c.e. metric spaces.

Definition 4.2.4. Let X be a computable Polish space. For a point x P X, its name is the set

Nx “ ti P N : x P Biu,

where pBiqiPN is an effective listing of all basic open balls in X.

Recall that a point x P X is computable if there is a computable fast Cauchy sequence pxiqiPN
such that dpxi, xq ă 2´i. Of course, 2´i can be replaced with 2´i`17 or even 2´fpiq for a sufficiently
nice computable f if necessary, and these will be (computably) equivalent notions. We therefore
allow dpxi, xq ă 2´i`1 and dpxi, xq ă 2´i´1 for such a sequence when convenient. In fact, this
slightly annoying index can be completely removed from consideration using names of points.

Fact 4.2.5. A point x in a computable Polish space is computable iff Nx is computably enumerable.

We leave the proof as an exercise (Exercise 4.2.20).

Definition 4.2.6. An open name of an open set U Ď X is a set W Ď ω such that

U “
ď

iPW

Bi.

An open set is c.e. or effectively open if it has a c.e. open name. A closed name of a closed set
C Ď X is the open name of XzC. A closed set is effectively closed if XzC is effectively open.

Open names can be used to “topologise” another standard notion that we encountered earlier.
Recall that in Definition 2.4.2 we defined a function f to be computable if there is a Turing functional
which, on input a fast Cauchy name of x in X , outputs a fast Cauchy name of fpxq.

161

An enumeration operator is a Turing operator (see §2.1.4) that is allowed to use only positive
information about its oracle, i.e., when it asks a question “n P X?” it can only use the positive
answer “yes” in its instructions. It can be made more formal by allowing only instructions of
the form “if n P X then do” and never using instructions of the form “if n R X then do”. The
formal definition is as follows: A c.e. set W can be associated with a map B ÞÑ A according to
the rule A “ tx : pDuqpxx, uy P W ^Du Ď Bqu, where pDuquPN is a listing of all finite sets (given
as tuples or finite strings). An enumeration operator turns enumerations into enumerations. A
formal treatment of such operators and the induced enumeration reducibility can be found in [454].
Definition 2.4.2 is actually equivalent to the following.

Definition 4.2.7. We say that f : X Ñ Y is computable if there exists an enumeration operator
that, given (any enumeration of) the name Nx of x P X, outputs (some enumeration of) the name
Nfpxq of fpxq P Y .

To see why Definition 2.4.2 is equivalent to the definition above, note that Fact 4.2.5 was indeed
uniform. Thus, we can computably turn an enumeration of Nx into a fast Cauchy name and vice
versa.

Effectively continuous maps

The following definition is a generalisation of Definition 2.3.10.

Definition 4.2.8. Let X and Y be computable Polish spaces. A function f : X Ñ Y is effectively
continuous if there is a c.e. family F of pairs of (indices of) basic open sets such that:

(C1) for every pU, V q P F , we have fpUq Ď V ;

(C2) for every point x P X and every basic open E in Y such that fpxq P E, there exists a basic
open D in X with pD,Eq P F and x P D.

As we now show, this is equivalent to saying that, for some c.e. set F , f´1pBiq “
Ť

pi,jqPF Bj .

(This follows from the elementary lemma below, which is a generalisation of Lemma 2.3.13.)

Lemma 4.2.9. Let f : X Ñ Y be a function between computable Polish spaces. Then the following
conditions are equivalent:

1. f is effectively continuous.

2. There is an enumeration operator Φ that, on input an open name of an open set V in Y , lists
an open name of the set f´1pV q in X.

3. f is computable, that is, there is an enumeration operator Ψ that, given the name of a point
x P X, enumerates the name of fpxq P Y .

Proof. p1q Ñ p2q. Suppose V “
Ť

iPW Bi. Note that (C2) implies that

f´1pV q “
ď

tD P X : pD,Eq P F & Di PW pD,Biq P F u,

and thus the name of f´1pV q can be listed using only positive information about W , with all
possible uniformity.
p2q Ñ p3q. Note that B P Nfpxq iff f´1pBq contains a basic open set in Nx.

162

p3q Ñ p1q. Define a collection F of pairs pD,Eq of (indices of) basic open sets in XˆY as follows.
Fix a basic open E in Y . Enumerate all basic open D in X, and for each such D, enumerate all
finite collections D,A1, . . . , Ak of basic open sets (in X) such that D Ďform XiďkAi (meaning that
D is formally contained in each Ai). Feed these finite collections to Φ and wait for some E to be
enumerated in the output. When E is enumerated (if ever), put pD,Eq into F .

We claim that F defined above satisfies (C1) and (C2). We check (C1). If pD,Eq P F , then
fpDq Ď E. Indeed, suppose d P D. There exists a sequence D,A1, . . . , Ak such that ϕtD,A1,...,Aku

enumerates E. Recall D Ďform XiAi implies D Ď XiAi, thus for any d P D the sequence listed by

ϕN
d

will contain E, and therefore fpDq Ď E.
We now check (C2). Fix x P X and a basic open E Q fpxq. We must show that for some basic

open D Q x, pD,Eq P F . By assumption, ϕN
x

enumerates Nfpxq that contains E. Suppose E
is listed with use A1, . . . , Ak. Since the Ai all contain x, there exists a basic open D Q x that is
formally included in their intersection. Since the operator uses only positive information about its
oracle, it will list E on input tD,A1, . . . , Aku as well, and thus pD,Eq will be enumerated into F .
(Indeed, in this argument, D does not actually need to be given to ϕ.)

The proof above also works for right-c.e. spaces. It also works for computable topological spaces
with c.e. formal (strong) inclusion that can be defined abstractly without any reference to a metric;
see, e.g., [375, 482].

The definition of computable compactness

Recall that a complete metric space M is compact iff it is totally bounded; that is, for every ε ą 0,
there exists a finite set F of points such that every point of the space has distance less than ε to at
least one point from F . A straightforward effectivisation of this criterion is the following definition
that already appeared in the first chapter.

Definition 4.2.10. A computable Polish space is called computably compact if there exists a
computable function that, given n, outputs a finite tuple of basic open balls of radii ă 2´n

that cover M .

When we consider finite covers, we usually say that we can compute a finite cover by basic
open balls if we can compute the index of a finite set that codes the indices of the finitely many
centres and the rational radii of basic open balls in the cover. This should not be confused with
enumerating a finite cover, i.e., listing one ball after another in a c.e. fashion.

Fact 4.2.11. Every compact computable Polish space is ∆0
2-compact.

Proof. Let M “ pM,d, ppiqiPNq be a compact computable metric space. A compactness modulus of
M is any function that bounds

hpnq “ mintj : @i Dk ă j dppi, pkq ď 2´nu

from above. We call h the least modulus of compactness.
Note that if hpnq “ j, then the 2´n`1-basic open balls centred in p0, . . . , pj cover the space.

Since dppi, pkq ď 2´n is a Π0
1 condition, if it fails, then its failure is witnessed by a special point.

163

Since the quantifier Dk ă j is bounded, and since the space is compact, h is computable relative to
H1.

We note that a compact computable Polish space is computably compact iff it has a computable
modulus of compactness.

The other two standard definitions

Definition 4.2.10 says that for every n we can compute one finite cover of the space by basic 2´n-
balls. From the computability-theoretic perspective, this definition does not seem quite as good as
having access to all finite covers.

Definition 4.2.12. We define a computable Polish space to be ˚-computably compact if the col-
lection of all finite covers of M by basic open balls can be given as a c.e. collection of explicit finite
sets.

As we explain next, Definition 4.2.12 is also equivalent to:

Definition 4.2.13. We say that a computable Polish space is computably countably compact if
there is a partial computable operator that, on input of any potential c.e. open basic cover, halts if
it is a cover and outputs some finite sub-cover.

Interestingly, the two potential definitions suggested above (and a few more) turn out to be
equivalent to Definition 4.2.10.

Theorem 4.2.14 (Folklore). For a computable Polish space M , the following are equivalent:

1. M is computably compact;

2. M is ˚-computably compact;

3. M is computably countably compact.

Proof. The implication p2q Ñ p1q is obvious, and the equivalence of p2q and p3q is also elementary
(Exercise 4.2.22).

Assume p1q; we prove p2q. Take a finite collection pBiq of basic open sets and assume it is a cover.
We must argue that eventually we will be able to effectively recognise that it is indeed a cover. The
idea is that there exists an ε “ 2´n so small that every ε-cover of M is formally contained in this
given cover. (This will be the “Lebesgue number” of the cover, in particular.) This will also be
true for the ε-cover that will be given to us according to the definition of computable compactness.
Since formal inclusion is c.e., we will be able to recognise that this formal inclusion has occurred.

It remains to prove that such an ε exists. We argue non-computably. Let ci be the center of Bi,
and ri be its radius. Define for every i a function fipxq “ ri ´ dpx, ciq if x is in the ball Bi, and 0
otherwise. Define gpxq “ supi fipxq, which is also continuous. If pBiq indeed was a cover, then the
function g would be strictly positive because each x is inside one of the Bi.

Let v be its infimum that is achieved somewhere, by compactness. Take a rational ε “ 2´m less
than v{2. Then for every point y, for some i, we have ε ă ri ´ dpy, ciq; that is,

dpy, ciq ` ε ă ri,

equivalently, Bpy, εq Ăform Bi. This inclusion will still hold if we replace ε with an even smaller ε1.
Thus, in particular, every basic open ε1-ball is formally included in one of the Bi. Consequently,
p1q implies p2q.

164

Remark 4.2.15. The proof of p1q Ñ p2q above additionally tells us that, for any given finite basic
cover, there is an ε small enough so that any ε-cover formally refines the given cover. Also note
that to recognise formal inclusion in a c.e. way, we do not need the radii ri to be rational numbers;
uniformly computable (real) ri will suffice.

In view of Lemma 4.2.14, henceforth we use computable compactness and ˚-computable com-
pactness interchangeably, and without further comment.

Elementary examples

Examples of computably compact spaces are the unit interval r0, 1s, the unit circle that can be
viewed as the set of complex numbers having norm one: tξ P C : ||ξ|| “ 1u, the Hilbert cube,
Cantor space 2ω, and also geometric realisations (with rational parameters) of finite simplicial
complexes that are central to algebraic topology. Simplicial complexes will be used as a tool later
in the book.

One fundamental example comes from the theory of Π0
1 classes. Cantor space 2ω is a computable

Polish space under the longest initial segment metric defined in §4.1.6: the distance between ξ, η P
rT s is defined to be

dpξ, ηq “ 2´n,

where n is the length of the longest common initial segment of ξ and η. Recall that in §2.1.6 we
gave the following definition. A Π0

1 class C is decidable if the tree T Ď 2ăω such that rT s “ C is
computable and has no dead ends. The fact below is immediate:

Fact 4.2.16. Any non-empty decidable Π0
1 class can be viewed as a computably compact space.

Explanation. Let C Ď 2ω be a decidable Π0
1-class. The computable dense set is given by the effective

enumeration of all paths through T of the form `σ, where σ ranges over all finite strings in T and
`σ is the left-most infinite extension of σ along T . This makes C computable Polish. Computable
compactness follows from the computable compactness of 2ω and the computability of T . Indeed,
we can list all 2´n-covers corresponding to the basic clopen sets centred in σ P T at level n of T .

We shall give much more intricate examples of computably compact spaces in due course.
There are several properties of computably compact spaces that are immediate from the defini-

tions. These, for instance, include those summarised in the following:

Proposition 4.2.17.

1. Let f : M Ñ R be computable and M be computably compact. Then supxPM fpxq and
infxPM fpxq are computable real numbers. Furthermore, this is uniform.

2. The class of (non-empty) computably compact spaces is closed under taking (finite or com-
putably infinite) direct products. More specifically, if pMiqiPI is a uniformly computable se-
quence of spaces, where I P NY tωu, then the direct product

ź

iPI

Mi

under (say) the metric
ÿ

iPI

2´i
dpxi, yiq

1` dpxi, yiq
,

165

where xi denotes the ith projection of x P
ś

iPIMi, is a computably compact metric space.

We omit the elementary proof and leave it to Exercise 4.2.23. We remark that in (2), the choice
of a dense computable sequence is not canonical.

Exercises

Some of the exercises below would be marked with at least one ˚ if they did not include extended
hints.

Exercise˝ 4.2.18. Prove that a (compact) computable Polish space is computably compact if, and
only if, for every n we can computably produce a finite tuple of basic closed balls that cover the
space.

Exercise˝ 4.2.19 (Folklore). Recall that the Hilbert cube is the space H “ r0, 1sω. The metric on
the Hilbert cube H is given by Prop. 4.2.17(2). Since the usual metric on r0, 1s is bounded by 1,
we can simply use

ř

i 2´idpxi, ziq for two points pxiqiPN, pziqiPN P H. Show that for a computable
Polish (compact) M , the following are equivalent:

1. M is homeomorphic to a computably compact space;

2. M is homeomorphic to a computable closed subset of H.

Exercise˝ 4.2.20. Prove Fact 4.2.5.

Exercise˝ 4.2.21. Prove Theorem 4.1.45.

Exercise˝ 4.2.22. Complete the proof of Theorem 4.2.14.

Exercise˝ 4.2.23. Prove Proposition 4.2.17.

Exercise 4.2.24 (Dyment [152], Schröder [459]). It is easy to extend the notion of a c.e. (effectively)
open set and an effectively closed set to computable topological spaces (Def. 2.4.26). A computable
topological space X is effectively normal if, given (names of) disjoint effectively closed sets C0 and
C1, we can effectively produce (names of) disjoint effectively open sets U0 and U1 that separate
C0 and C1, i.e., so that C0 Ď U0 and C1 Ď U1. Prove the Effective Urysohn Lemma: Let X be
an effectively normal computable topological space. Given disjoint effectively closed sets A and B
uniformly produce a computable (i.e., effectively continuous) function fA,B : X Ñ r0, 1s so that
fA,B æA“ 0 and fA,B æB“ 1. (Hint: Follow the standard textbook argument (e.g., [413, Thm 33.1])
but with one minor modification. To define the map, instead of the set of all rationals, use the set
of the dyadic rationals.)

Exercise 4.2.25 (Amir and Hoyrup [11]). Show that any effectively compact, strong computable
topological space (Def. 2.4.26) is effectively normal (Ex. 4.2.24).

Exercise˚ 4.2.26 (Dyment [152], Schröder [459]). Suppose that in an effectively normal (com-
putable topological) space X there exists an effective enumeration pCi, DiqiPN of all (computable
indices of) disjoint effectively closed subsets in X, perhaps with repetition. Assume that, addi-
tionally, for every x P X and every open U Q x there exist disjoint effectively closed C Q x and
D Ě pXzUq. Show that there exists a compatible metric on the space that can be realised as a

166

computable (Type 2) function X2 Ñ R. (Hint: Use Exercise 4.2.24 to produce a uniformly effective
list of functions

fCi,Di : X Ñ r0, 1s

that map the respective Ci to 1 and vanish at Di. Define g : X Ñ r0, 1sω to be

gpxq “ pfCi,DiqiPN,

where the computable metric on r0, 1sω is given by dppxiqiPN, pyiqiPNq “
ř

i 2´i|xi´yi|. The function
is computable. Since effectively closed sets separate points, it follows that g is injective, and thus
g is a computable homeomorphic embedding of X into r0, 1sω.)

Exercise˚˚ 4.2.27 (Miller [392]). Recall that the name of a point x in a computable Polish space
is

ti : x P Biu,

where pBiqiPN is an effective list of all basic open balls of M (Def. 4.2.4). An oracle Y computes
some fast Cauchy name of a point iff Y can enumerate Nx; this is Fact 4.2.5 (relativised). The
degree spectrum of a point x PM is

DSpM pxq “ tY P 2ω : Nx is c.e. relative to Y u.

1. Prove˝ that for any computable Polish space M and any x PM , there is some point y P H “

r0, 1sω (see Exercise 4.2.19) such that DSpM pxq “ DSpHpyq.

2. Prove that for any computable Polish space M and any x PM , there is some point f P Cr0, 1s
(Example 2.4.18(2)) such that DSpM pxq “ DSpCr0,1spfq.

3. Show˚˚ that there is an f P Cr0, 1s such that DSpCr0,1spfq contains no least Turing degree.

4.2.2 Deciding the intersection

One standard way of using a (finite) cover of a compact space in dimension theory and algebraic
topology is to use Alexandroff’s notion of a nerve, which we will need (and will properly define) in
the next chapter. The nerve of a cover is a simplicial complex in which the faces are the collections
of basic open sets that have a non-trivial intersection; i.e., each basic open set is a 0-dimensional
simplex (a node), and balls tB,C,Du form a 2-dimensional face if B X C XD ‰ H, and so on.

From the computability-theoretic standpoint, the issue with this definition is that, for a fixed
finite open cover, the non-emptiness of each specific intersection is merely Σ0

1, and this cannot be
improved in general. However, if we choose our covers very carefully, we can use special covers
where we can decide intersections. Our next result shows that in a computably compact space we
can find one such nice ε-cover for every ε P Q. To state the result formally, we push the notion of
computable compactness to its limits.

Definition 4.2.28 (Downey and Melnikov [139]). A set of basic open balls is X-decidable if for
every finite sequence of balls B0, . . . , Bi from the set, we can computably decide whether

Ş

iBi “ H.

Definition 4.2.29 (Downey and Melnikov [139]). A (compact) computable Polish M is nerve-
decidable, or ˚˚-computably compact, if for every n ą 0 we can computably find a finite 2´n-cover
Kn (represented as a finite tuple of basic open balls) of M so that Kn is X-decidable uniformly in
n. (By Remark 4.2.15, we can additionally assume that Kn`1 formally refines Kn.)

167

Theorem 4.2.30 (Downey and Melnikov [139]). A computable Polish M is nerve-decidable (˚˚-
computably compact) iff it is computably compact.

Proof. Obviously, ˚˚-computably compactness implies computable compactness. To this end, we
assume computable compactness of M . Recall that, for a basic open B, we write Bc for the basic
closed ball with the same centre as B, and that the closure B of B does not have to be equal to Bc

in general.

Lemma 4.2.31. Suppose M is computably compact. Then, for basic closed balls Bci and Bcj , the
property Bci X Bcj “ H is c.e. uniformly in i, j. The same is true for any finite collection of basic
closed balls.

Proof. The open set MzBci is c.e.. Indeed, we just list all the basic open balls that are formally
disjoint from Bci . Thus, the union of the complements, which is the complement of the intersection
Bci X Bcj , is also c.e. open. It covers the space iff the intersection is empty. By computable
compactness of M , this is c.e. The case of finitely many balls is similar.

If S is a finite cover, then for each subset tB1, . . . , Bku of S, exactly one of the possibilities is
realised:

paq
Ş

iďk B
c
i “ H, or

pbq
Ş

iďk Bi ‰ H, or

pcq
Ş

iďk B
c
i ‰ H but

Ş

iďk Bi “ H.

Note that there are only finitely many conditions like that in total. Also, pbq is c.e., and paq is
c.e. by Lemma 4.2.31. However, pcq is more complex. We argue that there is an ε-cover for which
the third possibility pcq is never realised for any finite collection of balls from the cover. If we
succeed in proving that such a cover always exists, we will just search for a cover such that each
finite collection of basic balls in the cover satisfies either paq or pbq.

Fix a finite ε{2-cover of the space by basic open balls, and replace each ball in the cover with a
ε-ball with the same centre. Let S be this new ε-cover. The third alternative pcq can be witnessed
by at most one choice of radii. If this is the case, shrink the radii of all B P S by a δ ă ε{2. Then
paq and pbq will still hold.

A stronger condition

It will be convenient to have a computable system of covers pKnq so that not only each Kn is X-
decidable but the whole collection

Ť

nKn is X-decidable. We are not sure whether such covers can
be uniformly constructed for basic open balls with rational radii (represented as a pair of integers),
but we can contract such a system for balls with centres in special points and uniformly computable
radii that are not necessarily rational. We call such balls basic computable open.

Definition 4.2.32 (Downey and Melnikov [139]). A computable Polish M is strongly computably
compact if for every n ą 0 we can computably find a finite 2´n-cover Kn (represented as a finite
tuple of basic computable open balls) of M so that

Ť

nKn is X-decidable.

As before, by Remark 4.2.15, we can additionally assume that Kn`1 formally refines Kn.

168

Theorem 4.2.33 (Downey and Melnikov [139]). A computable Polish space is computably
compact iff it is strongly computably compact.

Proof. By slightly increasing the radii of all the balls in a cover, we can ensure their radii are
rational. Thus, every strongly computably compact space is computably compact. To this end, we
assume the space is computably compact.

Iterate the proof of the previous Theorem 4.2.30. Suppose we have come up with a X-decidable
K0 and need to find K1 so that K0 YK1 is X-decidable. But to find such a cover, we might have
to slightly shrink the radii of the balls that we have already put into K0. But note K0 must still
satisfy the closed properties

Ş

iďk B
c
i “ H and finitely many open properties

Ş

iďk Bi ‰ H. The
former is not an issue since the radii will decrease. The latter however needs to be maintained more
carefully. When we first discover the finitely many open relations of the form of finitely many strict
inequalities (when K0 is first introduced), we also compute a rational parameter δ0 ą 0 such that
the relations will still hold if we decrease the radii of the balls by at most δ0. This is possible since
the conditions are just finitely many strict inequalities.

We then define δ0,n “ 2´n´2δ0 and note that
ř

i δ0,i ă δ0. We intend to shrink the radii of
each ball in K0 by at most δ0,s at stage s. This will make the radii in the balls computable while
maintaining the finitely many conditions that K0 needs to satisfy.

We also iterate this. When we define K1, we will have more open conditions to maintain for
K0 YK1. We compute a δ1 ą 0 and set δ1,n “ 2´n´2δ1. We also ensure that δ1,n ď δ0,n, for every
n. When we define (our first approximation to balls in) K2 at stage t, we will allow balls in K0 to
shrink by at most δ1,t ď δ0,t and balls in K1 by at most δ1,t. All the finitely many conditions will
still be satisfied.

We iterate this process until, in the end of the construction, we finally get a collection of
computable balls

Ť

nKn. We leave the formal details to Exercises 4.2.37-4.2.39.

Remark 4.2.34. In the proof of Theorem 4.2.33, instead of using basic open covers, we could use
basic closed covers. We can also come up with any combination of open, closed and closures (e.g.,
decide whether Bi XBj XB

c
k “ H) for any computable balls in K constructed in Theorem 4.2.33.

Also, by Remark 4.2.15, we can always assume that Kn`1 is formally contained in Kn, and this
will still be true if we choose working with closed covers.

Definition 4.2.35. If a computable sequence pKnq of finite 2´n-covers of computable balls satisfies
the properties described in Theorem 4.2.33 and Remark 4.2.34, then we say that pKnq is a fully
X-decidable system of covers of the space3.

Lemma 4.2.36. Let K “
Ť

nKn be a fully X-decidable system of covers of a computably compact
M . Then, for every closed ball Dc in K we can enumerate all basic open B in M such that
B XDc ‰ H.

3These Kn are represented as a uniformly computable sequence of indices of radii and centres, and we can choose
whether we want to consider open, closed, or closures of open balls that have these parameters. For instance, when
we say “Bcpr, qq is in Kn” or “Bpr, qq in Kn”, or the same for Bpr, qq, we really mean that parameters xr, qy are
listed in Kn (where q is given as an index of a computable real).

169

Proof. Suppose B X Dc ‰ H and let x be any (not necessarily special) point in the intersection.
Suppose the radius of B is δ, and let c1 be the centre of B, and r1 its radius. For some positive δ,
we have dpx, c1q “ r1 ´ δ. Fix n so that 2´n ă δ{2, and consider the finite set Kn. Since Kn is a
(closed or open) cover of the whole space, there must exist some C P Kn such that x P C. Since
x P Dc, it must be that C XDc ‰ H, and (by our assumption) this can be recognised computably.
We claim that for this C, we have that C is formally included into B. Indeed, if c2 is the centre of
C and r2 is it radius, then we have that dpx, c2q ă r2 ď 2´n ă δ{2, and therefore

dpc1, c2q ` r2 ď dpx, c1q ` dpx, c2q ` δ{2 ă r1 ´ δ ` δ{2` δ{2 “ r1,

which is the same as to say that C is formally included into B. It follows that B intersects Dc iff
there is an n ą 0 and a ball C P Kn such that C X Dc ‰ H and C is formally included into B.
This is a Σ0

1-property.

Exercises

Exercise˝ 4.2.37. Give a complete formal proof of Theorem 4.2.33.

Exercise˝ 4.2.38 (Folklore; see [57]). Prove the Effective Baire Category Theorem: Let pUiqiPN
be a sequence of uniformly c.e. dense open subsets of a computable Polish M . Then for any basic
open B in M there is a computable ξ P B X

Ş

iPNMi.

Exercise˝ 4.2.39 (Hoyrup4). Derive Theorem 4.2.33 using the Effective Baire Category Theorem
(Exercise 4.2.38).

Exercise˚ 4.2.40 (Downey and Melnikov [139]). The covering dimension of M is the least n P
NY t8u such that every open cover of M has a refinement of order n` 1, i.e., each point belongs
to at most n ` 1 sets. It is well-known that a compact space of covering dimension n can be
homomorphically embedded into R2n`1. Use X-decidable covers to prove that any computably
compact Polish space of covering dimension n can be computably homomorphically embedded into
R2n`1.

Exercise˚ 4.2.41 (Hoyrup, Melnikov, and Ng [267]). The notions of computable topological,
strong computable topological, and effectively compact topological presentations were introduced
in Definition 2.4.26. Show that, for a compact Polish space X, the following are equivalent:

1. X has an effectively compact strong topological presentation.

2. X admits a computably compact Polish presentation.

Conclude that every effectively compact topological space admits a ∆0
2-Polish presentation.

(Hint: To see why 2 Ñ 1, use a strongly X-decidable system of covers. For the other implication,
check that every X satisfying 1. also has the properties necessary to produce the metric given in
Exercises 4.2.24, 4.2.25 and 4.2.26. Note the resulting metric is necessarily complete. Produce a
computable dense sequence and verify that the presentation is computably compact.)

Exercise˚ 4.2.42 (Downey and Melnikov [139]). This exercise establishes that the computably
compact spaces are exactly those whose continuous diagram is decidable. While it is not difficult,
it requires some background in continuous logic ([46]). Let pM,dq be a computable Polish compact

4Personal communication.

170

space of diameter ď 1. Define the (full) continuous diagram of pM,dq as follows. The atomic
formulae are just dpx, yq and the constant functions 0 and 1. We close these formulae under finite

iterations of sup, inf,^,_,
1

2
¨, and ´. We say that M is continuously decidable if its continuous

diagram is uniformly Type II computable. That is, given (the Gödel number of) a continuous
formula φpx̄q from the full continuous diagram of M , we can uniformly produce an index for a
Turing operator that computes the function

rφpx̄qs : Mn Ñ r0, 1s,

where x̄ “ x1, . . . , xn. Show the following are equivalent:

1. M is continuously decidable;

2. M is computably compact.

4.2.3 Calculus of effectively closed sets

The notion of an effectively closed set is a generalisation of a Π0
1 class (§2.1.6). We have already

seen this notion in Definition 4.2.6, but we state it again here.

Definition 4.2.43. A closed subset C of a computable PolishM is effectively closed (Π0
1-closed,

or simply Π0
1) if MzC is c.e. open.

In this subsection we present some well-known basic results about effectively closed sets that will
be important in the sequel.

Elementary properties of effectively closed sets

It should be clear that effectively closed sets are closed under finite unions and arbitrary computable
intersections (meaning that the effective procedures listing the complements must be uniformly
indexed). The following lemma is also an immediate consequence of the definition:

Lemma 4.2.44 (Folklore). Suppose f : A Ñ B is a computable surjection, and assume C is
effectively closed in B. Then f´1pCq is effectively closed (in A).

Proof. This is because Azf´1pCq “ f´1pBzCq is c.e. open by Lemma 4.2.9.

Another observation is an easy generalisation of a well-known fact about Π0
1 classes (Exer-

cise 2.1.32).

Fact 4.2.45 (Folklore). Suppose P “ tpu is effectively closed singleton in a computably compact
space X. Then the only point p of P is computable, and this is uniform.

Proof. Given n, search for a basic open ball D of radius 2´n and basic open B1, . . . , Bm P XzP
such that D,B1, . . . , Bm cover X. Then p P D.

171

Corollary 4.2.46. Let G be a computably compact space with a computable (multiplicative) group
operation upon the space. Then the operation of taking the inverse is also computable in G.

Proof. To se why the identity element is computable, observe that

tx |x ¨ x “ xu “ teu,

which is effectively closed. Thus, e is computable by Fact 4.2.45. Given x, to compute x´1 consider
the closed set

ty |x ¨ y “ eu “ tx´1u

and observe that it is effectively closed relative to x. Thus, the computability of x Ñ x´1 follows
from Fact 4.2.45 (relativised).

Recall that in Theorem 2.1.29 we saw that a non-empty Π0
1 class (i.e., an effectively closed subset

of 2ω) may contain no computable points. We now prove a well-known theorem of Jockusch and
Soare [271] that guarantees that every effectively closed subset of a computably compact space has
a low point. This theorem will be used in §7.1.2 and in many exercises throughout the book.

Theorem 4.2.47 (The Low Basis Theorem; Jockusch and Soare [271]). Let X be a computable
compact space and suppose C Ď X is effectively closed (Π0

1-closed) and non-empty. Then C
has a low point (i.e., a point computable relative to a low degree).

The result is often stated for the special important case when X “ 2ω in the literature. An even
stronger version can be found in [61], but we won’t need this level of generality.

Proof of Theorem 4.2.47. We need a few observations:

Fact 4.2.48. Let C,D be Π0
1-closed subsets of a computably compact X.

1. The condition C XD “ H is Σ0
1.

2. If C has no computable members then either C XD is infinite or empty.

Proof. C XD “ H is equivalent to saying that their complements cover X, and this is c.e.. C XD
is itself Π0

1, and if it is finite then it has an isolated point. (To apply Fact 4.2.45, consider the
intersection of the class with the basic closed ball of small enough radius that contains the isolated
point.)

If we identify the dense set in the space with ω, a (fast) Cauchy name pxiqiPN can be treated as

a function f : ω Ñ ω. This clarifies the notation Φ
pxiqiPN
e that we use throughout the rest of the

proof.

Fact 4.2.49. Fix e. The collection of all points x P X that have a fast Cauchy name pxiqiPN such

that Φ
pxiqiPN
e peq Ó forms an effectively open set, and this is uniform in e.

172

Proof. Any computation Φ
pxiqiPN
e peq Ó is witnessed by a finite initial segment pxiqiďs. Every fast

Cauchy extension of pxiqiďs will share the same computation with pxiqiPN. This gives a basic open
ball of radius 2´s centred in xs. Being an initial segment of a fast Cauchy name is Σ0

1 (we use
strict ă in dpxi, xi`1q ă 2´i´1). We can effectively list all such initial segments. This, all such balls
‘forcing’ the halting computation can be effectively listed.

We use these facts implicitly throughout the rest of the proof.

If C has a computable point then there is nothing to prove. So suppose C has no computable

points. For an index e, let He be the effectively open set of points h such that Φ
pxiqiPN
e peq Ó for some

fast Cauchy pxiqiPN of h. Then H0 X C Ď C is Π0
1 and thus is either empty or it is infinite. If it is

empty then set D0 “ C, otherwise let D0 “ H0 X C Ď C. If De has been defined, let De`1 be De

if He`1 XDe “ H, and otherwise let De`1 “ He`1 XDe (which has to be infinite).
A collection of sets has a finite intersection property if the intersection of any finite sub-collection

of sets in the family is non-empty. One of the equivalent formulations of compactness is that a
space is compact iff any family of closed sets having the finite intersection property has non-empty
intersection.

The resulting family of closed sets has the finite intersection property, and thus they share at
least one common point. Let ξ P XiPNDi. Let pyiqiPN be a fast Cauchy name of ξ. To see whether

Φ
pyiqiPN
e halts, use H1 to check whether He intersects De´1 (where D´1 “ C). If the intersection is

empty, then Φ
pyiqiPN
e peq Ò. Otherwise, Φ

pyiqiPN
e peq Ó. It follows that pyiqiPN is low.

Computable closed sets

Effectively closed sets, Π0
1-classes, computable functions, and computably compact spaces are closely

technically related. To make this relationship explicit, we need one more definition. As usual, we
identify basic open balls with their indices.

Definition 4.2.50. A closed subset of a computable Polish M is c.e. if tB : B basic open and BX
C ‰ Hu is c.e..

Sets that satisfy the definition above are sometimes called computably overt in the literature.

Lemma 4.2.51 (Folklore). A closed subset C of a computable Polish space M is computably enu-
merable iff C possesses a uniformly computable (in M) dense sequence of points5.

Proof of Lemma 4.2.51. Suppose C possesses such a computable sequence pαiqiPN. Then the density
of the sequence in C implies that Bi X C ‰ H iff Djαj P Bi, which is a uniformly Σ0

1 statement.
Now suppose C is a computably enumerable closed subset of M . Our goal is to construct a

uniformly computable (finite or infinite) sequence of points pαiqiPI that is dense in C. The proof
below does not have to be non-uniform, but for notational convenience we split it into two cases,
namely, when C is finite or infinite.

If C is finite, then it clearly contains only computable points. To see why, assume it is not
empty (in this case there is nothing to prove) and let x be any point in C. Take a ball small enough
so that txu P B X C. To get an 2´n-approximation to x, wait for a basic open B1 of radius ă 2´n

so that B1 X C ‰ H and additionally B1 is formally contained in B.

5Observe that the dense sequence makes C a computable Polish space under the induced metric.

173

Without loss of generality, we assume C is infinite. We uniformly approximate a computable
sequence by stages. Before we describe stage s, recall that two basic open balls U and W are
formally s-disjoint if rpUq ` rpW q ă dpcpUq, cpW qq and this can be seen after calculating the radii
and the distance with precision 2´s. Then U and W are formally disjoint if the are formally
s-disjoint for some s.

At stage 0, search for a basic open ball B0,0 of radius ă 1 such that B0,0 X C ‰ H. If such a
ball is never found then do nothing. If it is every found, go to the next stage.

At stage s ą 1 first check whether there exists a basic open ball with index ă s which is
formally s-disjoint from B0,s´1, . . . , Bs´1,s´1. If such a basic open B exists, then choose the first
fund Bs,s Ďform B and Bi,s Ďform Bi,s´1, i ă s such that Bj,s X C ‰ H, the Bj,s are pairwise
formally disjoint and rpBj,sq ă 2´s, j “ 0, . . . , s. Otherwise, if no such B exists, fix the first
found pairwise formally disjoint B0,s, . . . , Bs,s that intersect C, have radii ă 2´s, and such that
Bi,s Ďform Bi,s´1 for i ă s (note there is no further restriction on Bs,s). This ends the construction.

Let αi be the unique point of the Polish space such that tαiu “
Ş

jěiBi,j . Since the construction
is uniform and the radii of balls are rapidly shrinking, the points αi form a uniformly computable
sequence. Since each of the Bi,j (j “ i, i ` 1, . . .) intersects C and C is closed, each αi P C. It

remains to check that pαiqiPN is dense in C. Let pαiqiPN be the completion of pαiqiPN.

Suppose c P C. We claim that c P pαiqiPN. Assume c R pαiqiPN, and there is a ball U centred in

c which is outside pαiqiPN. There will be a basic open ball B1 Q c of radius at most 2´n and which
is formally contained in U with precision 2´n:

dpcpUq, cpB1qq ` rpB1q ă rpUq ` 2´n.

Then at every stage s ą n`4 the balls Bi,s´1, i “ 0, . . . , s´1 will be formally s-disjoint from B,
as will be readily witnessed by the metric. At some late enough stage s1 we will get a confirmation
that B X C ‰ H. There exist only finitely many basic balls that have their index smaller than
the index of B. Therefore, eventually B will be used to define Bt,t Ďform B, contradicting the

assumption that U X pαiqiPN “ H.

Definition 4.2.52. A closed subset of a computable Polish M is computable if it is c.e. and
effectively closed.

As we mentioned immediately after the statement of Lemma 4.2.51, a c.e. closed subset of a
computable metric space M can be viewed as a computable Polish space under the induced metric.
The proposition below is also folklore.

Proposition 4.2.53. For a closed subset C of a computably compact M , the following are equiva-
lent:

1. C is a computably compact subspace of M ;
2. C is computable.

Proof. Assume (1). It is clear that C is c.e. (by Lemma 4.2.51). To list its complement, fix x PMzC.
Let δ “ infcPC dpx, cq. Then any δ{4 -cover of C must be formally disjoint from any ball centred in
y with dpy, xq ă δ{4. For every n, fix a finite 2´n-cover K of C. It follows that MzC is equal to
the union of the (uniformly) effectively open sets Un, where

tB : B basic open and B is formally disjoint from every ball in Ku.

174

It follows that (2) holds.

Now assume (2). C is computable Polish by Lemma 4.2.51; let pyjq be the computable dense
subsequence. Fix ε “ 2´n. We need to find an ε-cover of C by basic open balls. Note that yj does
not have to be special in M , and thus basic open balls in C do not have to be basic open in M .
Nonetheless, an open ball of M centred in a computable point y and having a computable (more
generally, left-c.e.) radius r is effectively open:

Bpy, rq “
ď

tBpx, qq : dpx, yq ` q ă ru,

that is, Bpy, rq it is the union of basic open balls formally contained in it. Note effective openness
of Bpy, rq is uniform in y and r. Regardless of whether the balls involved are basic or not, as long
as their centres and radii are computable, the relation of formal containment remains c.e.

If a finite collection K of basic open (in C) balls formally contains a cover K 1 by basic open (in
M) balls, then clearly K is a cover of C. We claim that this condition is also necessary (for K to
cover C).

From the proof of Lemma 4.2.14 we know that, for a given cover K of C by (basic or not) open
balls there is a small enough ε such that every ε-cover of C will be formally contained in at least
one ball of K.

Take δ “ ε{4. Fix a finite δ-cover K 1 of C by balls that are centred in special points of M , not
C. Every B1 P K 1 intersects C at some point x, and by the choice of δ, dpx, cntrpB1qq ` δ ă ε, thus
Bpε, xq Ąform B1. By transitivity of formal inclusion, we have that B1 must be formally contained
in some ball in K.

By computable compactness of M and computability of C, we can produce at least one δ-cover
K 1 of C by basic open balls of M , uniformly in δ. (To see why, replace every basic open ball in the
c.e open name of MzC by the effective union of balls of radii at most δ that are formally contained
in it. This gives a new c.e. enumeration of the complement of C but with balls of radii at most δ.
Then take the c.e. collection of all basic δ-balls that intersect C. Together these sets of balls cover
M . Initiate the combined enumeration of these two c.e. sets and wait until at some finite stage we
discover that we have a cover of M .) Since formal inclusion is c.e., this gives a procedure of listing
covers of C by basic balls (in C).

An immediate consequence of the proposition above is as follows.

Proposition 4.2.54. Suppose K “
Ť

nKn is a fully X-decidable system of covers of a computable
Polish M . Then each computable closed ball Dc in K is a computable closed set (thus, is a com-
putably compact subspace of M), and this is uniform.

Proof. Lemma 4.2.36 says that each such Dc is c.e. closed. If x PMzDc, then x inside an open ball
C that is formally disjoint from Dc, and we claim that such balls can be computably enumerated.
To see why, let c be the centre of Dc and r its radius, and assume dpc, xq “ r ` δ. There must be
a special xi such that dpxi, xq ă δ{2. Take the basic open ball C “ Bpxi, δ{2q. Then the distance
between their centres is dpc, αq ą r` δ´ dpxi, xq ą r` δ´ δ{2 “ r` δ{2, which is the sum of their
raddii. So the balls are formally disjoint. Thus, the c.e. union of such open balls formally disjoint
from Dc makes up the complement of Dc.

175

Maps between computably compact spaces

The lemma below is well-known; e.g., [506, Theorem 3.3].

Lemma 4.2.55. Suppose f : X Ñ Y is a computable map, and assume X is computably compact.
Then fpXq is computably closed (in Y) and computably compact.

Proof. Let pxiq be a computable dense sequence in X. Then pfpxiqq is dense in fpXq. (Every
α “ limj xj for some subsequence pxjq and, by continuity, fpαq “ limj fpxjq, so fpXq Ď clpfpxiqq.
Suppose ξ P clpfpxiqq, say ξ “ limj fpxjq. By compactness, pxjq has a convergent subsequence
pxjkq, so let z “ limk xjk P X be its limit. Then fpzq “ limk fpxjkq “ limj fpxjq “ ξ.)

Initiate the enumeration of f´1pCq for each such basic open C; note it could be that some of
these f´1pCq will be undefined. At some stage the preimages must cover the whole X. This gives
a way of producing at least one 2´n-cover of fpXq uniformly in n; now apply Lemma 4.2.14.

Combining Lemma 4.2.55 with Proposition 4.2.53, we get:

Corollary 4.2.56. Suppose f : X Ñ Y is computable and X is computably compact.

• If f is surjective then Y “ fpXq must be computably compact.

• fpXq is a computable closed subset of Y .

In computable algebra, the inverse of a computable bijective map is clearly computable as well.
In contrast, there is no reason why the inverse of a computable bijection between spaces has to
be computable even if its inverse is continuous (we mention here that this is actually true for
isometric maps). The theorem below is elementary and is folklore (e.g., [61, Corollary 6.7]), but it
is rather important because it tells us that effectively continuous maps are the right morphisms in
the category of computably compact spaces.

Theorem 4.2.57. Suppose f : X Ñ Y is a computable bijection between computable Polish
spaces, and assume X is computably compact. Then Y is also computably compact, and f´1 is
computable.

Proof. Computable compactness of Y follows from the corollary above. Given a (not necessarily)
special point y P Y , act computably relative to y. The set Y ztyu is effectively open relative to y.
Since f is computable, f´1pY ztyuq is effectively open relative to y. Since f is bijective, we have
that

Xzf´1pY ztyuq “ tf´1pyqu,

which is a y-effectively closed singleton in X; apply Fact 4.2.45.

In a computably compact group, the uniformly g-computable translation maps x Ñ x ¨ g and
x Ñ g ¨ x have g-computable inverses. For instance, for each computable point g both maps are
effectively open, meaning that they uniformly map names of open sets into names of open sets. The
effective openness of the group operation can be derived in absence of computable compactness (see
[313]), but we won’t need this fact.

176

Exercises

Exercise˝ 4.2.58. Fix a computable linear operator T : B Ñ B, where the dimension of the
computable Banach space B is finite. Show that the eigenvalues of T are computable, in the sense
that they must be of the form ξ`iη, where ξ, η are computable reals. (Compare to Exercise 2.4.37.)
[Hint: Use Fact 4.2.45.]

Exercise˚ 4.2.59 (Jockusch and Soare [271]). Show that there is an infinite Π0
1 class C (i.e.,

an infinite effectively closed C Ď 2ω) such that, for all f, g P C, if f ‰ g, then f and g have
incomparable Turing degrees.

Exercise˚ 4.2.60 (Jockusch and Soare [271]). Prove the following: Given any nonempty Π0
1 class

C Ď 2ω which has no computable members, and any countable sequence of non-computable Turing
degrees taiu, C has 2ℵ0 members fi, mutually Turing incomparable, such that the degree of fi is
incomparable with each ai.

Exercise 4.2.61 (Jockusch and Soare [271]). Show that any nonempty Π0
1 class C Ď 2ω which has

no computable members contains f, g whose greatest lower bound in the Turing degrees in 0. (Use
Ex. 4.2.60 noting that the lower cone of each degree is countable.)

Exercise 4.2.62 (Metakides and Nerode [384]). Recall that a field F is orderable iff it is formally
real, i.e., ´1 is not a sum of squares in F .

1. Let F be a computable formally real field. Show that the class of compatible orderings on F
can be represented as a Π0

1-class. Conclude that every computable, orderable field admits a
low compatible ordering.

2. Conversely, let C be a Π0
1-class. Show˚ that there is a computable formally real field so that the

compatible orders on F are in effective 1-1 correspondence with elements of C. Conclude that
there is a computable, orderable field which is not computably orderable. [Hint: Matakides
and Nerode effectivise the earlier work of Craven [98, 99]. Take a computably presented
real closed field R (e.g., the real closure of Q using Theorem 2.2.32) and note that R has a
computable order which (ignoring the field operations) is dense. Consider the field Rpyq. The
space XpRpyqq of compatible orderings of Rpyq is in an 1-1 effective correspondence with the
Cantor space, which can be thought of as the Stone space of the atomless Boolean algebra
freely generated by half-open half-closed intervals in R. Further, each clopen set in this space
has the form Uf “ to P XpRpyqq : o makes fpyq ą 0u. If R “ tb0, b1, . . .u then such an f
can be chosen to be a product of linear factors of the form y ´ bi (up to a sign). This gives
a way to effectively represent a Π0

1-class as XpRpyqqz
Ť

iPW Ufi , where W is a c.e. set. Take

F “ Rpty, 2n
a

´fipyq : i P W,n P Nuq, noting that fipyq have to be negative with respect to

any compatible order, while the algebraic elements 2n
a

´fipyqmust all be positive. A naturally
constructed computable copy of F will have the property that its space of compatible orders
XpF q is effectively homeomorphic to C.]

Exercise˚ 4.2.63 (Miller [395]). Suppose A is a computable algebraic field (i.e., algebraic over
its prime subfield) with a splitting algorithm (i.e., an algorithm that given a polynomial decides
whether it is irreducible). Prove that for any computable presentation B of A there exists an
isomorphism f : B Ñ A so that f is low.

177

Exercise 4.2.64. Show that the group SOp3q admits a computably compact presentation. (Hint:
Recall M3pRq is an inner product space under Frobenius inner product trpATBq. Noting that
QT “ Q´1 when Q P SOp3q, we see that SOp3q is contained in the computably compact closed ball
B “ Bcp0, 3q of M3 under the Frobenius norm. Since SOp3q is defined by the equation detpQq “ 1,
it is effectively closed in B. To list a dense set of SOp3q, use Rodrigues’ formula.)

Exercise˝ 4.2.65 (Brattka [60]). Let X and Y be computably Polish spaces and f : X Ñ Y , and
assume X is computably compact. Then f is computable iff graphpfq is effectively closed and iff
graphpfq is computable closed.

Exercise˝ 4.2.66 (Folklore; e.g. [139]). 1. Show that the space of all compact (or closed) sub-
sets CpHq of the computable presentation of H “ r0, 1sω described in Exercise 4.2.19 is a
computable Polish space. (Hint: The metric is given by the Hausdorff distance dHpX,Y q :“
max

supxPX dpx, Y q, supyPY dpX, yq
(

. The countable dense set is formed by finite discrete
subsets of special points of H.)

2. Show that for a c.e. closed subset C of H, C is computable iff C is a computable point in the
computable presentation CpHq described in the hint above.

Exercise˚ 4.2.67 (Brattaka, de Brecht, Pauly [61]; see also [139]). Show that a compact com-
putable Polish space X is computably compact iff there is a computable surjective f : 2ω Ñ X.

Exercise 4.2.68 (Folklore; e.g., [269]). Let X be a computable Polish space and let K Ď X be
compact. Say that K is semicomputable if we can list all finite open covers of K by basic open
balls, as tuples of their strong indices. (This resembles the notion of computable compactness, but
we do not assume that K is computable Polish; we use the basic balls of the larger space to list all
finite covers of K.) Show that K is computably compact iff K is c.e. closed and semicomputable.

Exercise 4.2.69 (Iljazović [268]; see also [139]). Show that any isometric computable Polish pre-
sentation of a computably compact space is also computably compact. (Note that we do not require
that the isometry is computable.)

Exercise˝ 4.2.70 (Folklore). Suppose X is a computably compact subspace of a computable Polish
space Y . Show that the inf-distance dinfpy,Xq “ infxPX dpy, xq from a point y to the subspace X
is a computable function.

Exercise˝ 4.2.71 (Folklore; see Metakides and Nerode [385]). We say that a closed subspace C of
a computable Polish space X is located if y ÞÑ dinfpy, Cq “ infcPC dpy, cq is a computable function
X Ñ R. Show that, for a finite-dimensional subspace C of a computable (real) Banach space, the
following are equivalent:

1. C is located;

2. C has a basis consisting of computable points.

[Hint: We can assume C ‰ H. If C is located, then use a straightforward iterative procedure to
approximate a computable b0 P C. If C ´ Rb0 ‰ H, then (non-uniformly) fix a basic closed ball
disjoint from Rb0, and repeat the procedure within the respective open ball to find b1. Repeat until a
finite computable basis b̄ of C is found. Conversely, suppose C has a basis b̄ consisting of computable
points. The basic case is when the dimension is 1 and b̄ “ xby. Note dinfpx,Cq “ infαPR ||αb´x|| ď
||x||, as witnessed by α “ 0. On the other hand, |α|||b|| ´ ||x|| “ ||αb|| ´ ||x|| ď ||αb ´ x||, which

178

means that when |α|||b|| ´ ||x|| gets larger than ||x||, we cannot possibly achieve the infimum of

||αb´ x||. In other words, if |α| ą ξx “
2||x||

||b||
the infimum cannot be attained. Thus, dinfpx,Cq “

inft||αb ´ x|| : α P r´ξx, ξxsu. Since r´ξx, ξxs is computably compact relative to x, this value is
also computable relative to x (uniformly in x). To understand the inductive step, consider the case
b̄ “ xb0, b1y. Let δ1,x “ dinfpx,Rb1q “ infλPR ||λb1 ´ x||, which is uniformly computable in x. As

before, ||α0b0`α1b1||´||x|| ď ||α0b0`α1b1´x||, and assuming α0 ‰ 0, |α0|||b0`
α1

α0
b1|| ě |α0|δ1,b0 .

We can bound the range of α0 to r´2||x||{δ1,b0 , 2||x||{δ1,b0s. A similar bound, this time using δb1 ,
can be put on α1. This bounds the choice of pα0, α1q to an x-computably compact subset of R2, and
the case when dim C “ 2 follows. The general case of dim C “ n ą 1 is not very much different.
It uses the distances from bi to the spans of b̄´ tbiu to calculate parameters (that are computable
by the I.H.) which give a way to bound the search to an x-computably compact set in Rn.]

Exercise˝ 4.2.72. Let X be a located closed subset (Ex. 4.2.71) of a computable Polish space M .
Show that X is computably closed. Further, if M is computably compact, then every computably
closed X ĎM is located, but without the computable compactness of M , this fails in general (even
for compact M).

Exercise˝ 4.2.73 (Folklore). Recall that two norms || ¨ || and || ¨ ||1 on a Banach space B are

equivalent, written || ¨ || „ || ¨ ||1, if there exists c ą 0 such that for all x P B,
1

C
||x|| ď ||x||1 ď C||x||.

Note that this is an equivalence relation on the collection of all norms on B.

1. Prove that if || ¨ || „ || ¨ ||1, then the identity operator Id on B is a homeomorphism from
pB, || ¨ ||q to pB, || ¨ ||1q. [Hint: For a scalar λ, define λBrpvq “ B|λ|rpλvq and observe CBεpxq Ď

B1εpxq Ď
1
CBεpxq, where the notation should be self-explanatory.]

2. Prove that all norms on Rn are equivalent. [This can be found in any textbook that covers
Banach spaces.]

3. Show that if || ¨ || „ || ¨ ||1 and both norms turn B into a computable Banach space, then
Id : pB, || ¨ ||q Ñ pB, || ¨ ||1q and id´1 are computable. [Hint: Use that y P B1εpxq implies
y P CBεpyq Ď B1δpyq Ďform B1εpxq for some δ. By decreasing the radii of some of these
balls slightly if necessary, we can assume that the condition is open, i.e., it is stable under
a slight variation of the parameters involved. In particular, y P CBεpuq Ď B1δpuq Ďform
B1εpxq for some special u. Thus, to calculate id´1pB1εpxqq, list all basic open CBεpuq so that
B1δpuq Ďform B1εpxq.]

Exercise˝ 4.2.74. Show that the closed unit ball in a finite-dimensional computable Banach space
is computably compact. [Hint: The closed unit ball B is evidently c.e. closed, so it is sufficient to list
all finite basic open covers of B. Assume the dimension is n; let e1, . . . , en be linearly independent
special points. (Note that such special points exist.) We can replace the original dense set with the
dense linear set

ř

iďn riei, ri. P Q`. Define (say) the usual || ¨ ||8-norm on
ř

iďn riei. This gives
a computable Banach presentation of Rn under || ¨ ||8. The closed unit || ¨ ||8-ball D is evidently
computably compact (with respect to || ¨ ||8), and so are the n-scaled || ¨ ||8-balls nD of radii n.
If || ¨ || is the original norm, then η : pa1, . . . , anq ÞÑ ||

ř

iďn aiei|| is a computable map Rn Ñ R
(and thus nD Ñ R). Recall that all norms on Rn are equivalent and induce the same topology
(Ex. 4.2.73). The closed unit || ¨ ||-ball B will be a closed subset of nD for some n. The special

179

points that lie in the c.e. open η´1pp0, 1qq are dense in B, and we can use η´1p1,8q to list the open
complement of B in nD. This makes B a computably closed subset of the computably compact
nD. By Proposition 4.2.53, B is computably compact, but with respect to the || ¨ ||8-norm. We can
now appeal to Theorem 4.2.57 and Exercise 4.2.73 to conclude that B is also computably compact
with respect to || ¨ ||. Alternatively, we could directly list finite || ¨ ||-covers of B, as follows. If

|| ¨ || ď m ¨ || ¨ ||8, then every
δ

m
-basic || ¨ ||8-ball will be contained in a δ-basic || ¨ ||-ball, and this

gives a way of listing finite covers of B with respect to the original norm. We remark that this
exercise can also be derived from Exercise 4.2.92; see the hint to Exercise 4.2.94.]

Exercise˝ 4.2.75. Suppose T : B Ñ D is a computable linear map between computable Banach
spaces, where B is a computable Banach space of finite dimension. Show that ||T || is computable
uniformly in the index for T . [Hint: Use Exercise 4.2.74, Proposition 4.2.17(1), and the formula
||T || “ supt||Tx|| : ||x|| ď 1u.]

Exercise˝ 4.2.76 (Computable Banach–Alaoglu Theorem; Brattka [59]). Let B be a computable
Banach space. Show that there is a computably compact space X such that the closed unit ball
of the dual space B1 can be computably embedded into X as a Π0

1 closed (thus, compact) subset.
[Hint: Without loss of generality, we may assume there are no repetitions among the special points
pxiqiPN of B (Exercise 2.4.32). Consider the space

ś

iPNr´||xi||, ||xi||s. Every linear operator can be
associated with a point in the space, and by continuity, the property of being linear is Π0

1. We note
that here, the effective correspondence between the closed unit ball and the respective Π0

1 is not in
the Type II sense with respect to the norm on B1. The induced topology is the weak˚ topology.
Clearly, we cannot hope for a stronger result, as the unit ball in B1 may not be compact.]

4.2.4 Computable Stone duality. Proofs of Theorem B(1,2)

One of the topological characterisations of Stone spaces stated in Lemma 4.1.46 was as follows. A
(Polish) X is a Stone space if, and only if, X is a compact and totally disconnected, i.e., it has no
non-trivial connected subsets. The latter is equivalent to saying that the compact Polish space X
is totally separated, i.e., whenever x ‰ y are points in X, there has to be a clopen set U such that
U Q x and XzU Q y (folklore). Having this property in mind, we say that a clopen split of M is a
pair of disjoint (cl)open sets X,Y such that X \ Y “ M . The dual Boolean algebra is then equal
to the Boolean algebra of all clopen sets of the space under the set-theoretic operations.

Computable Stone duality

Various versions of the elementary lemma below can be found in, e.g., [266, 139, 245]. Fix a compact
M and assume it is computably metrised. Suppose an oracle Z is powerful enough to uniformly
list all basic finite covers of M . Then we say that M is Z-computably compact.

Lemma 4.2.77. Suppose M is computable Polish. If M is Z-computably compact, then there is a
uniformly Z-computable list all clopen splits of M .

Proof. Recall that two basic open balls Bpc1, r1q and Bpc2, r2q are formally disjoint if r1 ` r2 ă

dpc1, c2q. Two sets of basic open balls are formally disjoint if any pair of basic open balls, one
coming from the first set and the other from the second, are formally disjoint.

180

Suppose M “ X\Y is a clopen split, and let δ be the infimum-distance between these compact
open sets

δ “ inf
px,yqPXˆY

dpx, yq.

(Since X ˆ Y is compact and d is continuous, it attains its infimum at some pair px0, y0q. In
particular, δ ą 0.)

Suppose 0 ă ε ă δ{4. Then every finite ε-cover will consist of two formally disjoint subsets of
basic open balls. Indeed, every ball covering a point in X cannot contain a point in Y , and every
ball covering a point in Y cannot contain a point in X. If a basic open B has its centre in X and
D has its centre in Y , then the distance between their centres is at least δ, while the sum of their
radii is at most δ{2 ă δ, making them formally disjoint. The same can be said about the respective
closed basic balls.

On the other hand, if a finite open cover of M consists of two formally disjoint subcovers, then
these subcovers induce a split of M into clopen components. Since the property of being formally
disjoint is a c.e. property, Z is able to list all such covers.

Another way to state the lemma above is that any modulus of compactness of M (see the proof
of Fact 4.2.11) can computably enumerate the clopen splits of M .

Theorem 4.2.78 (Hoyrup, Kihara, and Selivanov [266]). Let M be a computably compact Stone
space (a totally disconnected compact Polish space). Then the Boolean algebra of its clopen subsets
admits a computable presentation.

Proof. Fix a fully X-decidable system of covers K “
Ť

nPNKn. Using the previous Lemma 4.2.77,
effectively list all clopen splits of M into (open, formally disjoint names of) pairs of clopen sets.
Let pXi, Yiq be the enumeration of these clopen splits; both of them have to be non-empty since
each of them has to at least contain the centre of at least one basic ball. Both Xi and Yi are given
by their open as well as their closed covers, whichever is more convenient (recall Remark 4.2.34
and the discussion after when we argued that closed and open balls can be used interchangeably).
Write X1

i for the corresponding Yi in a clopen split; and let X0
i be another notation for Xi.

The Boolean algebra is generated by the empty set and arbitrary finite non-empty conjunctions
of the form

Ź

iX
εi
i , where εi P t0, 1u. Since the system of covers K is fully X-decidable, we can

indeed decide whether such a finite intersection is empty. In other words, if F is the free Boolean
algebra generated by the Xi, then the Boolean algebra of clopen sets of M is isomorphic to F {I,
where I is a computable ideal generated by the empty conjunctions. This makes the Boolean algebra
computable.

This result allows us to establish the following representation theorem.

Theorem 4.2.79 (Harrison-Trainor, Melnikov, and Ng [245]). Let M be a computable Polish Stone
space. Then the Boolean algebra of clopen subsets of M admits a computable presentation.

Proof. Let M be the computable space. Recall that H1 can list all finite covers of the space, by
Fact 4.2.11. Use Lemma 4.2.77 and relativise the previous Theorem 4.2.78 to get H1-computable
presentation of the Boolean algebra of clopen sets.

Suppose we are given a non-zero element of the Boolean algebra. It is a non-empty clopen set
represented via a finite union of basic balls. By slightly increasing the radii, we can assume they
are given by rational parameters while still keeping the complement of the component formally

181

disjoint. We can ask whether there exist two unequal special points x, y that are contained in this
clopen set. This element is an atom iff no such pair of points exists. This question is uniformly
Σ0

1 in the finite parameter representing the clopen set. Even though it takes H1 to list such finite
parameters, when we are already given such a parameter, H1 can decide the property.

Thus, the atom relation is H1-computable in the resulting H1-computable Boolean algebra. By
Theorem 4.1.25, the Boolean algebra of clopen sets has a computable copy.

The proof of Theorem B(2)

Recall that (2) of Theorem B states that every computable Polish Stone space is homeomorphic to
a computably compact Stone space. It follows from the theorem below.

Theorem 4.2.80 (Harrison-Trainor, Melnikov, and Ng [245]). For a countable Boolean algebra

B and its dual Stone space pB, the following are equivalent:

1. B has a computable presentation;

2. pB has a computable Polish presentation;

3. pB has a computably compact presentation.

Proof. In the previous section, we explained that the dual Stone space pB of a computable Boolean
algebra B can be represented as the collection of infinite paths rT s through a computably branching,
computable tree T without dead ends. We also explained in Fact 4.2.16 that rT s can be viewed as
a computably compact Polish space. The remaining implication is given by Theorem 4.2.79.

Right-c.e. spaces and the proof of Theorem B(1)

Recall that a Polish space is right-c.e. if there is a dense sequence pαiqiPN such that dpαi, αjq are
uniformly right-c.e. reals, i.e., reals approximable from above. The sequence pαiqiPN may contain
repetitions; equivalently, it is possible that dpαi, αjq “ 0 for some i, j. In contrast with the com-
putable Polish case, these repetitions cannot be removed in general. We will see that Π0

1 classes
can be viewed as right-c.e. metrised spaces. The following effective version of Stone duality was
established in [35].

Theorem 4.2.81. Let B be a countable Boolean algebra, and let pB be the dual Stone space.
Then the following conditions are equivalent:

(a) B has a c.e. presentation,

(b) pB admits right-c.e. presentation.

182

Before we prove this version of Stone duality, we explain how to use it to prove (1) of Theorem B.
Recall that (1) of Theorem B says that there exists a right-c.e. Stone space that is not homeomorphic
to any computable Polish space.

Proof of Theorem B(1). For a c.e. presented Boolean algebra B given by Feiner’s Theorem 3.2.1.
Then B does not have computable copies. By Theorem 4.2.81, one can assume that the Polish
space pB is right-c.e.. On the other hand, since B is not computably presentable, Theorem 4.2.80
implies that pB is not homeomorphic to any computable Polish space.

In the remainder of the section, we prove Theorem 4.2.81.

Proof of Theorem 4.2.81

Let T be a subtree of 2ăω. As usual, rT s denotes the set of all infinite paths through T . We say
that T is a pruned tree if for any σ P T , there is a path x P rT s, which goes through σ. We write
2ω to denote the complete binary tree, i.e., 2ω “ r2ăωs.

In the final step of the proof of Feiner’s Theorem 3.2.1 we observed that every countable Boolean
algebra B is a factor of the atomless Boolean algebra F pBq freely generated by the elements of B.
If B is c.e. presented then it is of the form F pBq{I, where I is a c.e. ideal. The topological version of
this observation is Proposition 4.1.49(2) which says that B has a c.e. presentation iff B is isomorphic
to the algebra of clopen subsets of rT s for some computable T .

We prove (a)ñ(b) of Theorem 4.2.81. Suppose that a Boolean algebra B has a c.e. presentation.
By Proposition 4.1.49, fix a computable T such that B is isomorphic to the algebra of clopen subsets
of rT s. Equivalently, we can fix a co-c.e. pruned tree T with this property (by compactness, we can
remove the dead ends in a c.e. way).

We define a right-c.e. Polish presentation pM,dq for the space pB. We put M “ rT s, and the
distance d is induced by the standard ultrametric on the Cantor space 2ω (i.e., dpξ, ηq “ 2´n, where
n is the length of the longest common prefix of two unequal elements ξ, η P 2ω). Indeed, we prove
the following, more general fact.

Fact 4.2.82. A non-empty Π0
1 class Ď 2ω can be viewed as a right-c.e. Polish space given by a

right-c.e. ultrametric on the Cantor space 2ω.

We build a dense sequence pαiqiPN inside pM,dq — our construction needs to ensure that the
distances dpαi, αjq are uniformly right-c.e.. Note that in general, a special point αi could be equal
to αj for i ‰ j.

Fix an effective sequence of finite trees pTsqsPN such that for any σ P 2ăω:

• if σ P Ts, then |σ| ď s;

• if |σ| ď s and σ R Ts, then σ R Ts`1;

• σ P T iff pDs0qp@s ě s0qpσ P Tsq;

• for every s, there is at most one τ P TszTs`1;

The sequence pTsqsPN is constructed as follows. Since the tree T is co-c.e., we choose an effective
enumeration of its complement: 2ăωzT “

Ť

sPN Vs. At a stage s` 1, we proceed as follows. First,
we add to Ts`1 all nodes σ such that |σ| “ s ` 1, σ R Vs, and the parent of σ belongs to TszVs.

183

After that, we consider a finite set F “ TsXVs. We choose a node τ P F with maximal length, and
delete it from Ts`1.

Now we are ready to construct our dense sequence pαiqiPN. From now on, we assume that the
distance dp¨, ¨q is induced by the metric on 2ω.

At a stage s, for every i ď 2s, we define αirss as a string σ such that |σ| “ s and σ P Ts. Some
of these numbers i could be declared inactive. In the end, we will obtain αi as lims αirss.

At stage 0, we define α0r0s and α1r0s as empty strings.
Stage s` 1. For each active i ď 2s, we proceed as follows. The string αirss satisfies one of the

following two cases.
Case 1: αirss P Ts`1 and there is a child σ of αirss such that σ P Ts`1. We define αirs`1s “ σ.
Note the following: if x P 2ω and αirss Ę x, then dpx, αirs` 1sq “ dpx, αirssq.
Case 2: otherwise, either αirss R Ts`1, or αirss P Ts`1 and no child of αirss belongs to Ts`1.

Since the tree T is pruned, this implies that αirss R T .
We find the largest n ă s such that for the string τ :“ αirss æ n, there is a ξ Ą τ with |ξ| “ s`1

and ξ P Ts`1. (Recall that ρ æ n stands for the initial segment of ρ of length n.) Note that the
nodes ξ æ pn ` 1q and αirss æ pn ` 1q are siblings. Since T is pruned, one can show that every
σ Ě αirss æ pn` 1q does not belong to T .

For the chosen n, there could be several ξ satisfying the conditions above. We choose the
leftmost one and set αirs ` 1s “ ξ. We note that every x P 2ω satisfies one of the following three
conditions:

1. Suppose that τ Ę x. Then dpx, ξq “ dpx, αirssq.

2. Suppose that αirss æ pn` 1q Ď x. Then x is not a path through T .

3. Otherwise, we have ξ æ pn` 1q Ď x. Then dpx, ξq ď 2´n´2 ă 2´n´1 “ dpx, αirssq.

For each i such that 2s ă i ď 2s`1, we search for the leftmost σ P Ts`1 such that |σ| “ s ` 1
and σ R tαjrs ` 1s : j ă iu. If such σ exists, then put αirs ` 1s “ σ. Otherwise, for all t ě s ` 1,
we set αirts “ α0rts, and we declare this i inactive.

This concludes the description of our construction. It is not hard to show that every bit of
αirss can change only finitely many times. Hence, αi “ lims αirss is well-defined. Furthermore, the
sequence tαiuiPN is dense in prT s, dq.

The properties of the construction ensure that

dpαirs` 1s, αjrs` 1sq ď dpαirss, αjrssq for all i, j, s.

Therefore, for a rational q, the condition dpαi, αjq ă q holds iff there is a stage s such that
dpαirss, αjrssq ă q. We deduce that the reals dpαi, αjq are uniformly right-c.e., and the Stone

space pB has a right-c.e. Polish presentation.

Proof of (b)ñ(a). Suppose that the Stone space pB has a right-c.e. Polish presentation pM,dq.
This presentation is, in particular, ∆0

2 Polish. By Theorem 4.2.80 relativised to H1, B has a ∆0
2

presentation. By Proposition 4.1.50, B has a c.e. presentation as well.

The proof of Theorem 4.2.81, and therefore of Theorem B(1), is complete.

184

4.2.5 Computably categorical Stone spaces

We apply out techniques to completely describe Sone spaces that have a unique computably compact
presentation, up to computable homeomorphism. As we showed in Theorem 4.2.57, the inverse of
a computable bijection between computably compact spaces is necessarily computable as well.
Therefore, the following definition first proposed in [35] makes sense.

Definition 4.2.83. A compact space is computably categorical if it possesses a unique com-
putably compact presentation, up to computable homeomorphism.

We emphasise that the definition above uses computable homeomorphisms to compare spaces.
Recall that all our Stone spaces are Polish.

Theorem 4.2.84 (Bazhenov, Harrison-Trainor, and Melnikov [35]). A Stone space S is computably

categorical iff the dual Boolean algebra pS is computably categorical. (Thus, by Theorem 4.1.17, these
are exactly the Stone spaces having only finitely many isolated points.)

Proof. By Theorem 4.2.80, S has a computably compact presentation iff the Boolean algebra pS has
a computable presentation. We use it without explicit reference. We give a somewhat brute-force
proof of Theorem 4.2.84 similar to the argument in [35]; it utilises various theorems and facts proved
in this chapter6.

Suppose the dual Boolean algebra pS is computably categorical. Then, by Theorem 4.1.17, pS has
only finitely many atoms. Under the duality, this translates to S having only finitely many isolated
points. Consequently, either S is finite or is homeomorphic to 2ω \ F , where F is finite. (Here \
stands for the operation of taking the disjoint union of spaces, so that in the resulting space each
of the two components is declared clopen.) In both cases it is easy to show that S is computably
categorical; this is Exercise 4.2.85.

Now assume that S is computably categorical. Let A and B be two computable presentations of
the Boolean algebra pS. Using Proposition 4.1.49, produce two computable, computably branching
trees with no dead ends T and Γ so that

rT s – pA – S – pB – rΓs.

Recall that every node σ in T is labeled by some element a of A, so that each clopen set rσs of
all paths extending σ naturally corresponds to the principal ideal tc | c ď au, in the sense that the
elements labelling the nodes extending σ generate this ideal. If a0, . . . , an is the complete list of all
elements corresponding to (i.e., labelling) the nodes of T at some level m, then

a0 _ a1 _ . . ._ an “ 1

and
ai ^ aj “ 0, for all 0 ď i ă j ď n.

6There are other ways to prove the theorem. For example, one could view the dual space of X (the dual algebra
of X) to be the collection of all continuous homomorphisms X Ñ t0, 1u. Then one could argue that the calculation
of the ‘dual maps’ is effective too.

185

As a consequence of all these properties, every element a P A can be expressed as a finite _-
combination of elements labelling some nodes in T ; the same can be said about B and rΓs. In this
sense, the elements labelling the nodes of the tree form a ‘basis’ of the respective Boolean algebra.
The same can be said about nodes in Γ and elements of B. Under the usual shortest common prefix
ultrametric, both rT s and rΓs are evidently computably compact (Fact 4.2.16).

Let ψ : rT s Ñ rΓs be a computable homeomorphism, which must exist by our assumption about
S – rT s – rΓs. Let A æ T denote the collection of elements of A that label the nodes in T (together

with 0 which does not label any node in T); define B æ Γ similarly. Define ψ̂ For every a P A æ T
as follows.

Set ψ̂p0q “ 0. To define ψ̂paq for a non-zero a P A æ T , let σ P T be the node labeled by a.
Use computable compactness of rT s and rΓs to find non-zero elements b0, . . . , bn P B æ Γ that label
τ1, . . . , τn P Γ, respectively, such that

ψprσsq “ rτ1s \ rτ1s \ . . .\ rτns,

where (as before) \ stands for the operation of taking disjoint union. It is not hard to see that such
strings τi can be found effectively and uniformly in the index of σ; this is Exercise 4.2.86. Define

pψpaq “ b0 _ b1 _ . . ._ bn.

Since every x P A can be expressed as a union of nodes in a P A æ T , this map is naturally extended
to all A by the rule

pψpxq “ _i pψpaiq,

where ai range over the finitely many incompatible (under ď) elements in A æ T that make up x.

It should be clear that the map pψ is well-defined on all of A, because ψ is a well-defined homeo-
morphism. For the same reason pψ is also onto. It is routine to check that, additionally, pψ respects
the Boolean algebra operations, and that the only pre-image of 0B is 0A; this is Exercise 4.2.87.
Therefore, pψ is a computable isomorphism of Boolean algebras A and B.

Very little is known about computably categorical compact spaces. We suspect that much
stronger results can be established that will eclipse Theorem 4.2.84. Computably categorical profi-
nite abelian groups will be described in Section 9.5. We discuss computable profinite groups next.

Exercises

Exercise˝ 4.2.85 (Bazhenov, Harrison-Trainor, Melnikov [35]). Show that Cantor space is com-
putably categorical (in the sense of Definition 4.2.83). Conclude that any Stone space with only
finitely many atoms is also computably categorical.

Exercise˝ 4.2.86. In the notation of Theorem 4.2.84, show that for every σ P T we can uniformly
effectively find (incompatible) strings τ1, . . . , τn P Γ such that ψprσsq “ rτ1s \ rτ1s \ . . .\ rτns.

Exercise˝ 4.2.87. Finish the proof of Theorem 4.2.84 by showing that pψ is an isomorphism of A
onto B.

Exercise 4.2.88 (Hoyrup [265]). A subset of a Polish space M is Gδ is it is of the form
Ş

iPN Ui,
where Ui are open. It is effectively Gδ if the Ui are uniformly c.e. open sets. Assume that X
is effectively Gδ and contains a computable (in M) dense (in X) sequence of points. Prove the

186

following effective version of Alexandrov’s Theorem (see [286, (3.11) Theorem] or [262, Thm 2-76]):
There exists a complete metric dX that turns X into a computable Polish space upon the dense
sequence. Furthermore, M -computable points in X uniformly correspond to computable points
in pX, dXq. (Hint: Fix a sequence pαiq of special points in M . For some computable gi, Ui is
an effective union of open balls Bn “ Bpαgipnq, rnq with rational radii rn and centres αgipnq. Let

fi,npxq “ max

"

0,
r ´ dpx, αgipnqq

r

*

and define fi “
ř

n 2´nfi,n. Then fipxq “ 0 iff x R Ui. For

x, y P Ui, define the metric dipx, yq “ dpx, yq `
ˇ

ˇfipxq
´1 ´ fipyq

´1
ˇ

ˇ. Together with the c.e. set of
special points that lie in Ui, this metric turns Ui into a computable Polish space. Define

dXpx, yq “
ÿ

i

2´i´1 dipx, yq

1` dipx, yq

which, together with the computable dense sequence in X, turns X into a computable Polish space.
Note that a dX -fast Cauchy sequence is also d0- fast Cauchy, and since d ď d0, implies it is d-fast
Cauchy. On the other hand, fi are uniformly d-computable and bounded by 1. This makes dX
computable relative to d, and so any d-fast Cauchy name can be uniformly turned into a dX -fast
one.)

Exercise 4.2.89 (Le Roux and Ziegler [333]). Show that there exists a connected Π0
1 closed subset

of r0, 1s3 with no computable points.

Exercise˚ 4.2.90 (Miller [391]). Recall that an arc is a topological space homeomorphic to the
unit interval r0, 1s. Prove the following facts:

1. There is a Π0
1 arc in R2 which is not computable (as a closed set).

2. There is a computable closed arc in R2 with non-computable endpoints.

Exercise˚ 4.2.91 (Miller [392]). Identify the Hilbert cube with its natural computable presentation
described in Exercise 4.2.19. A subset S Ď r0, 1sω is convex if, whenever d P r0, 1s and α, β P S, then
dα` p1´ dqβ P S, where the sum is defined component-wise. Prove that there exists a non-empty
convex Π0

1 closed subset of the Hilbert cube r0, 1sω containing no computable points.

Exercise˚ 4.2.92 (Miller [391]). Fix a natural computable presentation of Rm induced by Qn
under the Euclidean metric.

1. Suppose X Ď Rm is Π0
1 (effectively closed) and homeomorphic to an n-sphere. Show that X

has to be computable (as a closed set).

2. Y Ď Rm homeomorphic to an n-ball, and both Y and its boundary spere are Π0
1 closed. Show

that Y is computable.

Exercise˚ 4.2.93 (Burnik and Iljazović [70]). If X is a connected 1-manifold with boundary, then
X is a topological line (i.e. X – R), a topological ray (i.e. X – R`), a topological circle, or an
arc. Show that each semicomputable (Exercise 4.2.68) 1-manifold with finitely many connected
components is computable.

Exercise 4.2.94. Let B be a computable (real) Banach space of finite dimension, and assume
V Ď B is a Π0

1 linear subspace. Prove that V is computably closed. [Hint: First, note that we
can fix a finite basis of B consisting of computable points. For that, observe that every subset

187

generated by a finite computable tuple over R is closed; iterate starting with t0u. As explained in
Exercise 4.2.73, B is computably homeomorphic to the “standard” presentation of Rn in which we
can use the Euclidean norm or the8-norm upon Qn. The computable homeomorphism is witnessed
by the identity operator and it has computable inverse. Under this effective homeomorphism, the
unit ball S of B becomes a Π0

1 subset of Rn (indeed, computably closed by Exercise 4.2.74), and SXV
becomes a Π0

1 subset of Rn homeomorphic to an m-ball for some m ď n. By Exercise 4.2.92, this
set is computably closed, and thus so is SXV (in B). By Lemma 4.2.51, we can fix a B-computable
dense sequence in S X V, and its Q-linear span is computably dense in V.]

Exercise 4.2.95. Show that for a finite dimensional (linear) subspace V of a computable real
Banach space, the following are equivalent:

1. V is c.e. closed;

2. V has a basis consisting of computable points;

3. V is located (defined in Exercise 4.2.71);

4. V is Π0
1 assuming dimB ă 8;

5. V is computably closed.

[Hint: Use Exercises 4.2.71 and 4.2.94.]

Exercise 4.2.96. Let B and D be computable real Banach spaces and assume the dimension of B
is finite. Let T : B Ñ D be a computable linear operator. Show that kerpT q “ tx : T pxq “ 0u is
computably closed in B. [Hint: Use Exercise 4.2.94. We remark that one could instead use linear
algebra to derive this fact, as follows. Fix a computable finite basis b̄ of B; this can be done as
explained in the hint to Exercise 4.2.94. Using this basis, produce the matrix representing the
linear operator; we note that all the coefficients in the matrix are computable reals, though we do
not necessarily promise that we can decide which ones are equal to zero or pairwise equal. We
do, however, know that this matrix can be transformed into one in the reduced row echelon form
in finitely many (not necessarily uniformly effective) steps. The resulting matrix will still have
all its coefficients as computable reals, and we can non-uniformly determine which ones are zero
and which are not. Using this row echelon form, we can produce the basis for the null space of
T following the usual textbook steps. The elements of this basis of kerpT q will be represented as
linear combinations of the points in the finite basis b̄ that we fixed earlier, with coefficients being
computable reals. The Q-span of these elements is dense in kerpT q.]

Exercise 4.2.97. Let T : B Ñ D be a computable linear operator between computable Banach
spaces, let K “ kerpT q “ tx : T pxq “ 0u, and assume dim kerpT q ă 8. Show that B{K is a
computable Banach space. [Hint: Use Exercise 4.2.95 to conclude that the standard quotient norm
||x||B{K “ infvPK ||x` v|| is computable; use the same dense set as in B. More generally, this works
for any located linear subspace K.]

Exercise 4.2.98 (Effective Hahn–Banach Theorem in finite dimension; Metakides and Nerode [385]).
Let B be a computable Banach space of finite dimension (over R), and let Y Ď B be a c.e. closed
linear subspace of B. Show that every computable linear T : Y Ñ R has a computable linear
extension L : B Ñ R such that ||T || “ ||L||. [Hint: In view of Exercises 4.2.97 and 4.2.95, we may
assume T is injective on B, and Y is computably closed in B. Further, by scaling, we may assume
that ||T || “ 1. Use the following well-known fact. Let pX, } ¨ }q be a normed space, Y Ď X a linear

188

subspace, x P X, and let Z be the linear subspace generated by Y Y txu. Let F : Y Ñ R be a
linear functional with }F } “ 1. A functional G : ZÑ R with G|Y “ F |Y is a linear extension of F
with }G} “ 1 iff p:q supuPYpF puq ´ }x ´ u}q ď Gpxq ď infvPYpF pvq ` }x ´ v}q. Noting that B has
a basis ȳx̄ consisting of finitely many computable points, where ȳ spans Y, extend T to one more
point x in x̄ as follows. Observe that both the sup and the inf in p:q are left- and right-c.e. reals,
respectively; indeed, these values can be approximated using a dense computable sequence in the
c.e. closed Y. Thus, either p:q defines a computable real or a non-singleton interval. In the latter
case, non-uniformly pick any rational in this interval. In both cases, we can use a computable real
to define the extension of T to x. To obtain L, iterate this process finitely many times7.]

Exercise 4.2.99 (Effective Hahn–Banach theorem fails in general; Metakides, Nerode, and Shore [386],
based on Bishop [48]). Show that there exists a computable Banach space X and a computable lin-
ear functional T : Y Ñ R on a c.e. closed (indeed, computably located) linear subspace Y Ď X
with computable norm }T }, such that every extension L : X Ñ R to the whole space with the
same properties has a larger norm. [Hint: The basic idea for the diagonalisation module for (1)
is depicted in the figure below. Initially, define T to be the identity on the x-axis, and define the
norm on R2 to be (say) || ¨ ||2´s at stage s. With respect to this norm, the shape of the unit ball
is as depicted in the diagram. The key observation is that, when a ‰ 0, the only linear extension
of T having norm 1 is that which fixes the bottom-right edge of the parallelogram. The same
can be said about the norm || ¨ ||˚

2´s
, but this time the top-right edge needs to be fixed. As 2´s

approaches 0, both norms approach the L1-norm || ¨ || on R2. In particular, we can ‘switch gears’
arbitrarily late in the construction, and turn || ¨ ||˚

2´s
into || ¨ ||2´s or vice versa. This provides a

way to diagonalise against one potential computable extension Φe. To obtain the theorem, put the
resulting sequence of computable Banach spaces He together using the Hilbert space direct sum.
That is, X “

À

ePN He “

h P
ś

ePN He :
ř

ePN }hpeq}
2
He ă 8

(

, under the sum-of-squares norm.]

Exercise˝ 4.2.100. Prove that there is a Π0
1 (effectively closed) subset of r0, 1s that is not home-

omorphic to any computable Polish space. (Hint: Use Theorem 4.2.80.)

Exercise 4.2.101 (Melnikov and Ng [380]). Show that every left-c.e. Stone space is homeomorphic
to a computably compact space.

Exercise˚ 4.2.102 (Harrison-Trainor, Melnikov, and Ng [245]). Show that for any computable
ordinal α there exists a computable Polish space M and Π0

1 (effectively closed) subset X of M so
that X is not homeomorphic to any ∆0

α-Polish space. (The classes ∆0
α will be defined formally in

Chapter 10. For now, assume α P N.)

7Metakides and Nerode [385] also note that, following the ideas of Bishop [48], this non-uniformity can be avoided
if we relax the condition and require that ||T || ď ||L|| ` ε, where ε ą 0 is any fixed rational. Then such an extension
always exists and can be found uniformly (in all parameters, including ε). For that, they use a relaxed version of
condition p:q: p:εn q supuPYpp1` εnqF puq ´ }x´ u}q ď Gpxq ď infvPYpp1` εnqF pvq ` }x´ v}q. They note that this
search can thus be restricted to a computably compact subset of the respective finite power of Rn, much in the spirit
of the hint to Exercise 4.2.71. Thus, in particular, if we take

ś

np1` εnq ă 1` ε, we can iterate this process infinitely
many times as well. In other words, if we begin with a computable linear operator T on a located finite-dimensional
subspace, we can effectively find a linear extension L of T so that ||T || ď ||L|| ` ε. Also, as noticed by Brattka [59],
if such a computable T defined on a c.e. closed (not necessarily finite-dimensional) subspace Y admits a unique
extension of the same norm to the entire space, then this extension has to be computable. Indeed, the inf and the
sup in p:q are still (uniformly) right- and left-c.e. if Y is c.e. closed, and this makes the unique real defined by p:q
uniformly computable. It does not matter whether x P Y, as this process still works.

189

Figure 4.1: The idea for the diagonalisation module in Exercise 4.2.99. The parallelograms
with corners tp0, 1q, p1 ` a, aq, p0,´1q, p´1 ´ a,´aqu, tp0, 1q, p1 ` a,´aq, p0,´1q, p´1, aqu, and
tp0, 1q, p1, 0q, p0,´1q, p´1, 0qu serving as the unit balls for || ¨ ||a, || ¨ ||˚a , and || ¨ || on R2.

Exercise 4.2.103 (Hoyrup, Melnikov, and Ng [267]). Prove that for a (separable) Stone space S

and the dual Boolean algebra pS, the following are equivalent:

1. S has an effectively compact computable topological presentation (Definition 2.4.26);

2. S has 01-compact computable topological presentation;

3. S has a ∆0
2-compact Polish presentation;

4. S has a ∆0
2-Polish presentation;

5. S has a right-c.e. Polish effectively compact presentation;

6. pS has a c.e. presentation;

7. pS has a ∆0
2-presentation.

Recall that in Exercise 4.2.41 we saw that every effectively compact computable topological space
has a ∆0

2 Polish presentation (which is in fact ∆0
2-compact). Conclude that this upper estimate

(i.e., ∆0
2) cannot be be improved to “computable” in general. Further, conclude that there exists an

effectively compact topological space that is not homeomorphic to any effectively compact strong
computable topological space (Definition 2.4.26).

Exercise˚ 4.2.104 (Bazhenov, Melnikov, and Ng [37]). Show that every ∆0
2-Polish space (i.e., a

Polish space computable relative to 01) is 02-computably homeomorphic to a computable topological
space.

Exercise˚˚ 4.2.105 (Hoyrup, Melnikov, and Ng [267]). Show that every countably-based T0-space
has a computable topological presentation.

4.2.6 Recursive profinite groups

In this subsection we apply the machinery of computably compact spaces to profinite groups. We
assume that the reader is familiar with the notion of a projective (aka inverse) limit in the context
of groups.

190

Definition 4.2.106 (La Roche [324], Smith [473]). A profinite group is recursive if it can be
represented as the projective (aka inverse) limit of computable linear sequence of finite groups
pFiq under surjective fi : Fi`1 Ñonto Fi, where all these finite objects are uniformly computably
represented by their strong indices (i.e., as indices of finite tuples).

In the theorem below, by a computably compact presentation we mean a computably compact
Polish space with a computable group operation. By Corollary 4.2.46, the inverse operation is
computable as well.

Theorem 4.2.107 (Downey and Melnikov [139]). For a profinite group G, the following are
equivalent:

1. G has a recursive presentation (in the sense defined above);

2. G has a computably compact presentation.

Proof. Clearly, every recursive presentation can be viewed as a computably compact presentation
(exercise). Now assume we are given a computably compact presentation of a profinite group.
Using Lemma 4.2.77, computably list all clopen components of the group. Our plan is to list all
normal clopen subgroups and then calculate their quotients to define a recursive inverse system
representing the group.

To say that a clopen component is a normal subgroup, use the fact that every clopen component
is a computable subspace of the group, and thus is computably compact, by Proposition 4.2.53. To
see if a clopen C is a subgroup, search for a pair of finite covers, say pBiq and pDjq, of C such that
for every i, j there is a k with the property

Bi ¨Bj Ď Dk

and for every i there is a k such that
B´1
i Ď Dk.

We also search for a finite cover pUnq of G such that for all n and i there is a k with

U´1
n ¨Bi ¨ Un Ď Dk.

We argue that such a cover exists, and this will imply that we can computably list all clopen normal
subgroups of G. Then we explain how to use these subgroups to build a recursive presentation of
the group.

Since the clopen component C can be expressed as a (finite) union of open balls, the preimages
of the clopen component under the computable maps x, y ÞÑ xy, x ÞÑ x´1 and z, x ÞÑ z´1xz in the
respective product spaces can be uniformly listed. If C were not a normal subgroup then there will
be special points witnessing this, and these would be witnessed together with sufficiently small basic
open balls containing them. On the other hand, if C is a normal subgroup then every equation of
the form, say,

z´1xz “ y,

191

where x, y P C and z P G, would be witnessed by small enough basic open balls containing these
points, i.e.,

U´1 ¨B ¨ U Ď D,

where z P U , x P B, and y P D. These products of these balls would give a cover of the respective
compact product space. It follows that we can find a finite subcover.

We conclude that we can list all clopen normal subgroups of G. Note that, by the uniform
computable compactness of each such clopen C, we can compute the diameter of C, which is
supx,yPC dpx, yq. Using the techniques of Lemma 4.2.77 and Theorem 4.2.78 – that basically can be
summarised by saying that we take the next cover by very small balls – we can furthermore produce
a nested sequence of (finite open names of) clopen normal subgroups tCi : i P Nu such that:

1. Ci`1 Ď Ci formally8,

2. diamCi ă 2´i.

3. For every i there exists a computable finite tuple pxi,jq of special points (given by its strong
index) such that pxi,jCiq is a cover of G.

4. For every i, j, n, if xi,jCi`1 Ď xi`1,nCi`1 then this inclusion is formal.

5. When j ‰ j1, xi,jCi`1 X xi,j1Ci`1 “ H.

If we succeed, then
Ş

iPN Ci “ teu, thus giving us a uniformly computable ‘basis of identity’ con-
sisting of clopen normal subgroups of G. We will then use the cosets to calculate the finite G{Ci
and the homomorphisms from G{Ci`1 onto G{Ci.

More formally, we proceed by recursion. Assume Ci´1 has been defined. We search for a Ci
that satisfies all these five conditions. If we drop ‘formal’ in all these conditions, then it should be
clear that such a Ci and xi,j must exist. Then fix such a Ci.

By Lemma 4.2.77 and the analysis of normality above, a normal clopen Ci will eventually be
found, and furthermore both Ci and the finitely many cosets mod Ci will be represented as a finite
collections of balls. Our task it to show that we can effectively recognise that these finite parameters
describing the cosets define what we need. For that, we might need to adjust the finite covers by
refining them so that, for instance, the inclusion is witnessed by formal inclusion of covers. This is
done as follows.

We satisfy p1q by choosing the radii of a finite cover describing Ci small (see Remark 4.2.15),
and we satisfy p2q by evaluating the computable diameter of the clopen set (this is again essentially
done by further refining the cover). Here we use that Ci is indeed a computable closed set because
of Lemma 4.2.77, so we can apply Proposition 4.2.53.

We elaborate why we will eventually find special points pxi,jq and will eventually recognise that
they satisfy (3). For that, note that each coset of Ci is open, and thus in particular contains a
special point, say x. In particular, every coset mod Ci has the form xCi. Since for every special x
its coset xCi is the image of Ci under the computable map y ÞÑ xy and Ci is computably compact
with all possible uniformity, by Lemma 4.2.55 we conclude that xCi is also computably compact,
and with all possible uniformity. By refining the cover of xCi (see Remark 4.2.15), we can ensure
that all set-theoretical inclusions of xCi into the clopen sets seen so far in the construction hold

8We can avoid using formal inclusions entirely in this case using that the sets are clopen. Similar for condition
p4q below.

192

formally. We can also ensure that if two cosets do not intersect then this is also witnessed formally:
take the radii of open balls much smaller than the pairwise distances between the finitely many
clopen sets. This gives a way of computably recognising condition p5q. We can also wait for finitely
many such special points xi,j so that the respective cosets xi,jCi cover the whole space.

To reconstruct the computable operation on G{Ci, calculate the product and the inverse on the
special points xi,j with a sufficient precision until you see that the result is in one of the cosets
modulo Ci. This is all computable because the cosets xi,jCi are (uniformly) given by their finite
open covers, and the operations on G are computable.

Finally, use effectiveness of condition p4q to calculate the surjective group-homomorphism φi :
G{Ci`1 Ñ G{Ci that maps every xi`1,jCi`1 to the unique coset xi,j1Ci that contains it. This
gives a computable surjective inverse system pG{Ci, φiqiPN the (inverse, projective) limit of which
is topologically isomorphic to G. Since the system is uniformly computable (in the sense of strong
indices of finite sets), this gives a recursive presentation of G.

It is not difficult to produce an example of a profinite group that has a computable Polish
presentation but has no computably compact presentation. This result follows from an example
that can be found in [373]. We also state:

Corollary 4.2.108. Every commutable compact profinite group is computably approximable (Def-
inition 2.4.8).

Proof. The 2´i-approximations are uniformly given by the Fi in Definition 4.2.106.

Exercises

For a computable compact space X, the space of all probability measures PpXq is a computable
Polish space under the Wasserstein metric defined to be

dwpµ, νq “ sup |

ż

fdµ´

ż

fdν|,

where the supremum is taken over all 1-Lipschitz functions upon X; that is, |fpxq´ fpyq| ď dpx, yq
for every x, y P X. The dense set is given by Dirac measures which are the probability measures
concentrated at finitely many special points of X. If X is a group than there exists a unique
probability measure which is invariant under left translation by any element, called the (left) Haar
measure. (There is one for the right translation too.)

Exercise 4.2.109 (Marcone and Valenti [347]). If X is computably compact then so is PpXq.

Exercise˚ 4.2.110 (Pauly, Seon, and Ziegler [427]; see also [139]). For a compact computable
Polish group G, the Haar measure in G is computable (as a point in PpGq) iff G is computably
compact.

Exercise˚ 4.2.111 (Bagaviev et al. [27]). Prove that every computable Polish space can be com-
putably isometrically embedded into the natural presentation of Cr0, 1s. (See [139] for a proof
that uses computable compactness. We note, however, the the proof from [27] gives a uniformly
primitive recursive embedding.)

193

Exercise 4.2.112 (Koh, Melnikov, and Ng [313]). We defined right-c.e. Polish presentations for
groups in Exercise 2.4.27(1). In Exercise 2.4.28, we observed that there exists a discrete right-
c.e. group not isomorphic to any computably Polish group. Prove that there exists an effectively
compact (as a topological space according to Def. 2.4.26) right-c.e. Polish profinite abelian group
not isomorphic to any computably compact group.

4.2.7 Further related results˚

As we mentioned earlier, this section is based on [139], which contains many more applications
of computable compactness. Further excellent references are [270, 64]. When it comes to totally
disconnected spaces specifically, the most closely related further reference is perhaps [380]. The
standard references for computable Banach spaces are [56] and [435]. We also cite the recent
survey [122].

We now very briefly discuss a few more recently established computable dualities.

Effective Banach–Stone duality

We state, without proof, another effective duality—this time between Stone spaces and Banach
spaces. The classical Banach–Stone Theorem states that Banach spaces CpX;Rq and CpY ;Rq are
isometrically isomorphic iff X and Y are homeomorphic.

Theorem 4.2.113 (Bazhenov, Harrison-Trainor, and Melnikov [35]). Let X be a separable Stone
space and let CpX;Rq be the Banach space of continuous functions X Ñ R. Then the following are
equivalent:

(1) CpX;Rq has a presentation as a computable Banach space9;

(2) X has a computably compact presentation.

We emphasise that in (1) we consider CpX;Rq up to isometric linear isomorphism, but in (2)
we view X up to homeomorphism. We omit the proof, but note that it uses the Downey-Jockusch
Theorem 4.1.25. Koh, Melnikov, and Ng [311] have recently proven that there is a computable
Banach space of the form CpK;Rq such that K is not homeomorphic to any computably compact
space; see Exercise 9.1.36 for a hint. Thus, the effective Banach–Stone Theorem fails in general
(at least in the strongest form). Theorems 4.2.113, 4.1.30, 4.2.80, and 4.2.81 combined give us the
following corollary that we have already mentioned in Chapter 2 (§2.4.3):

Corollary 4.2.114. There exists an H1-computable Banach space of the form CpK;Rq, where K
is a right-c.e. Stone space, that is not linearly isometric to any computable Banach space.

As we noted in §2.4.3, there exist a low right-c.e. Banach space not linearly isometric to any
computable Banach space (see Exercise 2.4.40 for a hint). Theorem 4.2.113, combined with Theo-
rem 4.1.25 about low Boolean algebras, gives the following peculiar consequence.

Corollary 4.2.115. Suppose CpX;Rq has a low Banach space presentation. If X is a Stone space,
then CpX;Rq is isometrically isomorphic to a computable Banach space.

In fact, it follows from Theorem 4.1.27 that the same can be said about low4 Banach spaces of this
form, by Theorem 4.1.27.

9Equivalently, as a computable Polish group, by Lemma 2.4.17.

194

Effective Gelfand duality

We also remark that it has recently been demonstrated in [71] that the Gelfand Duality Theorem
between commutative unital C˚-algebras CpK;Cq and the respective compact domains K holds
effectively. That is, the C˚-algebra CpK;Cq has a computable C˚-presentation (i.e., as a Banach
space with additional operations ˆ and x ÞÑ x˚) if, and only if, K is homeomorphic to a com-
putably compact space. The effective content of Gelfand Duality has been further investigated by
McNicholl in [363]. Under some mild extra effectiveness conditions, it has been shown that (much
like computable Stone duality) computable Gelfand Duality preserves computable categoricity in
the right sense ([363]). Further algorithmic properties of C˚-algebras related to the general theme
of the book have recently been established by Fox [175, 176] and Fox, Goldbring and Hart [177].

Duals of computable Banach spaces

If B is a computable and hence separable Banach space, then its dual (the space of bounded linear
functionals BÑ R) is not necessarily separable, let alone computable. The non-computability of the
dual space is a significant impediment to the development of a theory of computable Banach spaces.
Alternative methods must be found to replace classical arguments using the dual. For example,
Brattka [56] showed that the dual space B1 of a computable Banach space B is always a computable
Banach space in a certain generalised sense. Just as effective Pontyragin and Stone dualities can
be used to relate computable separable and discrete structures, this effective Banach space duality
could potentially be used to develop a detailed and meaningful theory of non-separable Banach
spaces. We also remark that the following question appears to be open:

Question 4.2.116. Suppose B is a computable Banach space, and assume the dual B1 of B is
separable. Is it true that B1 is linearly isometric to a computable Banach space?

Some partial results were obtained in [62], where it was shown that if B has a computably
shrinking effective Schauder basis (we omit the definitions), then B1 has a natural computable
Banach presentation. McNicholl conjectured that for a real 1 ă p ă 2, if p is right-c.e., then the
Lebesgue space Lpr0, 1s has a computable Banach presentation. In view of the well-known formula
1

p
`

1

q
“ 1 for the exponent of the dual space and Exercise 2.4.39(2), a positive solution to the

conjecture would imply that the answer to the question above is negative.

Computable t.d.l.c. groups and their dual ordered groupoids

A bit more is known about totally disconnected Polish groups, but not much more beyond the
materials of §4.2.6 and Section 9.5 in Part II. The study of effective profinite groups began with
Metakides and Nerode [384], La Roche [324], and Smith [473, 472]. Smith [473] showed that a
profinite group is recursive iff it is topologically isomorphic to a decidable Π0

1 class rT s where the
group operations are computable. Our Theorem 4.2.107 generalises his result to the case when the
metric is not necessarily an ultrametric. As Smith [473] observed, Waterhouse’s result [501] can be
effectivised to prove a computable version of Galois correspondence between computable algebraic
field extensions and profinite groups; we omit the statement.

In Lemma 2.4.5, we already encountered a non-compact totally disconnected group S8, which
is the group of all permutations of N. Various effective aspects of S8 were investigated in [220].
The special case of totally disconnected locally compact (t.d.l.c.) groups has been thoroughly

195

investigated in [382, 341, 380]. In [382], it is also established that each t.d.l.c. group is effectively
dual to the partially ordered groupoid of its clopen cosets, which is a countable structure. This
is similar to the effective Stone duality established in this section, but the proof for t.d.l.c. groups
is much more subtle. Pontryagin duality, which we discuss in the next chapter, is effective for
computable abelian t.d.l.c. groups as well ([341]), but we will prove it only for profinite groups in
Section 9.5.

4.3 What’s next?

In the next chapter we prove another computable duality, this time between computable torsion-
free abelian groups and certain computably compact spaces. Various fundamental results about
computably compact spaces developed in this chapter will find direct applications in the next
chapter. The tools developed for Boolean algebras will not be directly applied in the next chapter;
however, working with Boolean algebras has hopefully prepared the reader for the somewhat more
“truly algebraic” class of torsion-free abelian groups.

196

Chapter 5

Computable abelian groups and
Pontryagin duality

In this chapter we prove the following results that appeared in the introduction as (3) of Theorem
A and (3) of Theorem B, respectively.

Theorem (Khisamiev [288]). Every c.e. presented torsion-free abelian group is isomorphic to
a computable one.

Theorem (Lupini, Melnikov, and Nies [341]). There exists a connected compact computable
Polish space not homeomorphic to any computably compact space.

The key technical tool connecting these two theorems is a computable version of Pontryagin
duality. Similarly to Stone duality between Boolean algebras and totally disconnected compact
spaces, Pontryagin duality associates discrete countable abelian groups with compact connected
Polish spaces of a certain kind. However, in contrast with Boolean algebras and Stone spaces, the
relationship between the two theorems stated above is not quite as direct. It is more technical and
involves a computable version of Čech cohomology, among other things. The chapter is (again)
naturally split into two halves:

1. Section 5.1 contains a brief introduction to computable torsion-free abelian groups sufficient
to prove theorems of Dobrica and Khisamiev which are required to prove effective Pontryagin
duality.

2. Section 5.2 uses the results of Section 5.1 and Section 4.2 to prove two effective versions of
Pontryagin duality necessary for establishing the second main theorem stated above. To prove
these effective duality results, we will also need some elements of topological group theory
and algebraic topology.

197

5.1 Computable torsion-free abelian groups

5.1.1 Abelian groups

All groups in this section are additive and abelian. We assume that the reader is familiar with the
standard notions of a factor-group, the order of an element, and the direct product of groups. The
standard references for pure abelian group theory are Fuchs [194, 195] and Kaplansky [285]; we
also recommend Kurosh [323] for a smooth and gentle introduction. We briefly review some basic
notions specific to the field of abelian groups. Further notions will be introduced as needed.

Abelian groups basics

All our groups are additive and abelian. It is customary to use additive notation for the group
operation in the abelian case. Recall the direct sum of abelian groups pAiqiPI is the group of all
sequences paiqiPI , ai P Ai, that have finite support (i.e., are eventually 0). The standard notation
is
À

iPI Ai. This shouldn’t be confused with the direct product of pAiqiPI , which is not countable
when I is infinite, unless almost all Ai are trivial.

Let A be an abelian group. Given a positive n P Z and a P A, define

na “ a` a` a` . . .` a
looooooooooomooooooooooon

a repeated n times

,

and also define p´nqa “ ´pnaq and 0a “ 0. We do not adjoin this operation to the language of
groups and use it as an abbreviation. Using this notation, we list a few well-known standard notions
and facts below.

Property 5.1.1. Let A be an abelian group.

(i) A is torsion-free if na ‰ 0 for any n ‰ 0 and each non-zero a P A.

(ii) A is torsion if for every a there exists an n ą 0 such that na “ 0. The least non-zero n such
that na “ 0 is the order of a.

(iii) The collection of all elements in A having finite order forms a subgroup T pAq, and A{T pAq is
torsion-free.

(iv) The torsion subgroup T pAq further splits into a direct sum of maximal p-subgroups TppAq, in
which the order of every element is some power of the respective prime p.

Thus, in some sense, the study of abelian groups can be partially reduced to the theories of
torsion-free and p-groups. Unfortunately, an abelian group does not necessarily split into a direct
sum of its torsion and torsion-free subgroups. However, these two classes are traditionally viewed
as central.

In this chapter we restrict ourselves to the class of torsion-free abelian groups.

The following definition will be rather important throughout the chapter.

198

Definition 5.1.2. Let A be an abelian group. Then a1, . . . , ak P A are linearly independent
(Z-independent, Prüfer independent) if for each m1, . . . ,mk P Z, the equality

m1a1 ` . . .`mkak “ 0

implies mi “ 0 for all i ď k. We say that a1, . . . , ak are linearly dependent otherwise. A basis
of A is a maximal linearly independent subset of A.

We will apply linear dependence mostly in the context of countable torsion-free abelian groups.
We will see that countable torsion-free abelian groups are exactly the additive subgroups of

À

iPN Q,
the Q-vector space of dimension ω that we have already encountered in Theorem 2.2.16. In this
group, Z-independence is equivalent to the usual linear independence over Q. The rank of a (count-
able) torsion-free abelian group A is the smallest α ď ω such that A ő

À

iPαQ. One can show
that the cardinality of any basis of a torsion-free abelian A is exactly the rank of A. The rank of
a finite subset of a group is defined similarly; we omit this material since it essentially repeats the
standard notions and proofs from linear algebra, with only very minor adjustments. Some further
details will be given later (e.g., Lemma 5.1.10, Exercise 5.1.44). Another intuitively clear property
is stated below.

Lemma 5.1.3. Suppose ψ : AÑ G is a homomorphism of torsion-free abelian groups that maps a
basis B of A into a linearly independent set in G. Then:

1. ψ is injective, and

2. ψ maps any basis of A into a linearly independent set in G.

Proof. We verify (1). If ψpgq “ 0, then for some integers nb, almost all of which are zero, we have

ψ

˜

ÿ

bPB

nbb

¸

“
ÿ

bPB

nbψpbq “ 0.

Since ψpBq is independent in G, nb “ 0 for all b P B.

Part (2) is left as an exercise.

Free abelian groups

The free abelian group of rank α ď ω is the group of the form
À

iPα Z, i.e., it is the direct sum of
α copies of pZ,`q. If pfiqiPα are some fixed generators of these direct summands, then a typical
element of this group has the form

ř

imifi, where mi P Z and mi “ 0 for almost all i. In this case,
we may also write

À

iPI Zfi to emphasise the choice of generators. Every generating set of a free
abelian group that generates it freely is a basis (with respect to Z-independence), but not every basis
is necessarily a generating set.

It is well known that a subgroup of a free abelian group is itself free abelian. We omit the
proof. It follows that every abelian group is isomorphic to a factor of the form F {H, where F (and

199

thus, H) are free abelian. The method of proof is similar to that used for Boolean algebras. If
A “ tai : i P Iu, then fix the free abelian group

F “
à

iPα

Zai

formally generated by ai P A. Then H is defined to be equal to
ř

imiai for all formal linear
combinations with mi P Z such that

ř

imiai “ 0 in A. Note that in A, we can give each element
miai a meaning, while in F , mia is just a formal expression. It is not hard to see that A – F {H.

The lemma below is also well known.

Lemma 5.1.4 (Rado [441]). Let G ő F be free abelian groups. There exist linearly independent
generating sets g1, . . . , gk and f1, . . . , fm (k ď m) of G and F , respectively, and integers n1, . . . , nk
such that for each i ď k, we have gi “ nifi.

We omit the proof, which can be found in most textbooks that cover abelian groups; e.g., see
[329, Theorem 7.8], where it is stated and proven in a slightly more general form. From the lemma
and rank considerations, it follows easily that any finitely generated abelian group is a direct sum of
cyclic groups. This consequence is known as the classification of finitely generated abelian groups in
the literature. (Indeed, the lemma can be viewed as a reformulation of the classification of finitely
generated abelian groups.) In the torsion-free case, these cyclic subgroups are infinite and, thus,
are copies of Z. In particular, every finitely generated torsion-free abelian group is free abelian.

Divisibility and pure subgroups

For a P A and a non-zero n P Z, the equation nx “ a does not have to be solvable in A. If there is
such a solution, then we write n|a and say that n divides a (in A). If for every k P N we have nk|a,
then we write n8|a and say that n infinitely divides a. We will use the following standard notions
and facts, which can be found in [194].

Property 5.1.5. Let A be an abelian group.

1. A subgroup B of A is pure or serving if for each b P B and n P Z, if n|b in A, then n|b already
in B.

2. A group D is divisible if n|d for every non-zero n P N and every d P D.

3. Every abelian group A can be isomorphically embedded into a divisible group.

4. For a torsion-free group A and a subset X of A, we can define the pure closure pXq˚A of X in
A to be the least pure subgroup of A containing X.

5. A pure cyclic subgroup C “ xxy of an abelian group A detaches as its direct summand:
A “ B ‘ C, for some B ő A.

6. Every finitely generated subgroup H of A that is pure in A detaches as a direct summand of
A, that is,

A – C ‘H

for some C ő A.

200

In a torsion-free group, there may exist at most one solution of nx “ a when a ‰ 0; indeed,
if there were two solutions x0 ‰ x1, then we would have npx0 ´ x1q “ 0 for x0 ´ x1 ‰ 0. Thus,
4. really makes sense only for a torsion-free group.

We explain 3. Fix F {H – A, where F is free abelian and H is a (free abelian) subgroup of
F . If F is generated freely by pfiqiPN, then we can embed it isomorphically into the vector space
DpF q over Q upon the basis pfiqiPN. Then DpF q{H makes sense because H ő F ő DpF q, and
also DpF q{H contains F {H as a subgroup. Since DpF q is divisible, so is any of its homeomorphic
images: this is because nx “ a becomes nφpaq “ φpxq under any homomorphism. Thus, DpF q{H
is divisible and contains an isomorphic copy of F {H – A.

Similarly to the algebraic closure of a field, a divisible group containing A can be chosen “min-
imal” in some standard sense that we will not define. It is unique up to isomorphism over A; it is
called the divisible hull of A or the divisible closure of A. (We remark that this fact also has an
effective analogue; see Exercise 5.1.36.) For example, if A is torsion-free and pbiqiPI is a basis of A,
then the divisible closure of A is

À

iPI Qbi, i.e., the (additive group of the formal) vector space over
Q upon the basis pbiqiPI . Note that A is naturally contained in

À

iPI Qbi, because every element x
of the torsion-free A can be represented as

1

m

ÿ

iPI

mibi,

where almost all integers mi “ 0, the integer m is strictly positive, and mx “
ř

iPNmibi. Such a
linear combination must exist because pbiqiPI is a basis of A. If we additionally assume that m ą 0
is the least positive integer such that mx “

ř

imibi for some mi P Z, then the choice of the integers
m,mi becomes unique for each x ‰ 0. The torsion-freeness of A implies that the well-defined
correspondence

x ÞÑ
1

m

ÿ

iPI

mibi,

is a 1-1 homomorphism (Lemma 5.1.3). Thus, the most useful intuition that one could adopt when
working with torsion-free abelian groups is as follows.

Think of the elements of a torsion-free abelian group as “vectors” of the form 1
m

ř

imivi,
where the sum is finite (alternatively, almost all coefficients mi are zero) and the vi range over
some basis in a vector space over Q.

It will also be useful to avoid thinking of vi as Q-tuples, and rather, to think of them as formal
sums. The reason is as follows. When considering formal sums, we can leverage the algebraic
structure and properties of these sums more effectively. Also, a torsion-free abelian group is usually
not closed under division by a non-zero integer. It is only closed under ` and ´ and, thus, under
multiplication by an arbitrary m P Z. In this sense, torsion-free abelian groups are generalisations
of vector spaces over Q. Nonetheless, this analogy with vector spaces can be extremely misleading.
For instance, unlike vector spaces, a torsion-free group of rank ą 2 does not have to split into a
direct sum of non-trivial subgroups (folklore after Pontryagin and Levi). Torsion-free abelian groups
may look tame, but in reality, they are much more poorly understood than, e.g., countable torsion
abelian groups. No convenient invariants are known for countable torsion-free abelian groups of
rank ą 1, and thus we shall proceed with caution.

201

Linear span and pure subgroups

Fix a torsion-free abelian G.

Definition 5.1.6. For a set S Ď G, we write spanpSq for the set of all elements that are “linearly
spanned by S”:

spanpSq “ tx P G : Dk P N Dm,n0, . . . , nk P Z Dc0, . . . , ck P S mx “
ÿ

0ďiďk

niciu.

That is, spanpSq it consists of all elements that can be expressed as a linear combination of some
finite subset of S. (But notice the coefficient in front of x.) If S “ H we can agree that spanpSq “
t0u.

Remark 5.1.7. In G, spanpBq should not be confused with xBy, which is the subgroup of G
generated by B. (We have that B is linearly independent iff B generates xBy freely.)

In a torsion-free group, we have a nice description of linear span.

Lemma 5.1.8. Let G be torsion-free and S Ď G. Then spanpSq is equal to the least pure subgroup
of G containing S (Property 5.1.5(4)):

spanpSq “ pSq˚G.

Proof. The case when S “ H is trivial, so we can assume S ‰ H. Since every element of spanpSq
satisfies mx “

ř

i nici, for some ci P S and m,mi P N, we have that spanpSq Ď pSq˚G simply because
each such x is a solution of a linear equation with parameters from S. Conversely, suppose x P pSq˚G
but x R spanpSq, which means that x is independent of S. But we can build a pure subgroup of G
starting with S, and then iteratively adjoining all solutions to linear equations (if there are any in
G) with parameters in the set we defined so far, and then closing it under the group operations.
By induction, at every step we will have only elements that are linearly dependent on S. This way
we will construct a pure subgroup of G that contains S but does not contain x, contradicting the
minimality of pSq˚G.

Observe that the procedure described above actually gives an algorithm that, given a subset S
of a computable torsion-free G, enumerates spanpSq “ pSq˚G with all possible uniformity.

Definition 5.1.9. Fix S Ď G, where G is torsion-free. We say that x and y are independent over
S if x R spanpS Y tyuq and y R spanpS Y txuq.

In particular, we have that x R spanpSq “ pSq˚G, and the same can be said about y. The
definition above essentially induces the notion of linear independence in the factor-group G{pSq˚G
which itself is torsion-free; see Exercise 5.1.34. The following lemma is immediate.

Lemma 5.1.10. In a torsion-free abelian group G, the span operator induced by linear independence
satisfies the following properties for any A,B Ď G and a, b P G.

1. A Ď spanpAq and spanpspanpAqq “ spanpAq,

2. A Ď B ñ spanpAq Ď spanpBq,

3. spanpAq is the union of the sets spanpF q where F ranges over finite subsets of A, and

202

4. if a P spanpAY tbuq and a R spanpAq, then b P spanpAY tauq.

Proof. (1), (2) and (3) follow immediately from the definition of the span and Lemma 5.1.8. We
therefore check only (4). If a P spanpA Y tbuq and a R spanpAq, it means that ma “ x ` nb, for
some x P pAq˚G “ spanpAq and non-zero m,n P N. But then nb “ ma ´ x P spanpA Y tauq, as
required.

The lemma above says that the closure operator A ÞÑ spanpAq induced by linear independence
is a “pregeometry” or a “Steinitz closure system”; we will not use it, but it can be useful [244]. For
instance, the properties of the lemma suffice to show that every linearly independent set can be
extended to a basis, and that the cardinalities of any two bases are the same; this is Exercise 5.1.44.
(For the specific case of the closure operator acl, detailed proofs of these facts can be found in [348,
Ch.6].)

Restricting independence

Let A be an abelian group. Recall that elements a1, . . . , ak P A are dependent if

Dm1, . . . ,mk m1a1 ` . . .`mkak “ 0,

where not all mi are equal to zero. These unbounded existential quantifiers correspond to un-
bounded search. A computable restricted version of this notion is defined as follows. Fix s P N.
We write Z |ďs to denote the set of integers of absolute value ď s,

Z |ďs“ tm P Z : |m| ď su.

If a is a non-zero element in a torsion-free group, then xay – Z, and thus the notation xay |ďs also
makes sense:

xay |ďs“ tma : |m| ď su.

More generally, we write xa1, . . . , aky |ďs to denote the collection of all sums of the form
ř

iďkmiai,
where |mi| ď s.

Definition 5.1.11. We say that a1, . . . , ak P A are s-independent if

@m1, . . . ,mk P Z |ďs m1a1 ` . . .`mkak “ 0 ùñ m1 “ m2 “ . . . “ mk “ 0,

and we say that they are s-dependent, otherwise.

We typically also assume k ď s in the definition, but this is optional. Of course, s-dependence
implies dependence.

If G is indexed by natural numbers, G “ tg0, g1, . . .u, then we write spanspSq to denote the col-
lection of all elements in the group having their indices ď s that are s-dependent on S. That
is, x P spanspSq if x P tg0, . . . , gsu, there is a k ď s, elements a1, . . . , ak P S, and integers
m,m1, . . . ,mk P Z |ďs, m ‰ 0, such that

mx “ m1a1 ` . . .`mkak.

In various effective constructions, it is often convenient to assume Gs “ tg0, . . . , gtpsqu rather than
tg0, . . . , gsu, where tpsq depends on s. Then we restrict x to Gs.

203

Unfortunately, spans is not nearly as well-behaved as span; for example, already (1) of Lemma 5.1.10
fails for spans. Perhaps, the best we can say about spans is

spanpSq “
ď

sPN
spanspSq,

and that for all s,
spanspSq Ď spans`1pSq.

Partial groups

Since our groups are torsion-free, all their non-trivial finitely generated subgroups are infinite.
However, we will need to deal with finite objects of the form spanspSq which are finite “segments”
of subgroups of the group. More formally, we say that a A Ď G is a partial subgroup if it satisfies
the group axioms whenever the operation is defined.

A homomorphism of partial groups is a map that preserves the operations whenever they are
defined. The (external) direct sum of partial groups A‘B is defined as the partial group of tuples
pa, bq, where a P A and b P B, under the partial component-wise operation.

We cannot usually apply algebraic group-theoretic techniques to partial groups directly. Every
time we will have to find a way to extend a given partial group to an actual group. For instance,
at stage s, we will typically have Cs “ spanspBsq Ď G, for some finite set Bs Ď G. The set Bs will
typically be s-independent, but perhaps not linearly independent in G. However, it is evidently
independent in the free group F “ F pBsq (formally) freely generated by Bs. When Bs Ď G, the
formal free group F does not have to be a subgroup of G. For instance, we may later discover
that Bs is t-dependent in G, for some large t. We will use F to decide some local properties about
spanspBsq, one such application is described in the remark below.

Remark 5.1.12. Using, e.g., Rado’s Lemma 5.1.4 and linear algebra applied to the free abelian
group F formally generated by Bs, we can uniformly computably figure out the ranks of tuples in
Cs “ spanspBsq as seen in F . (A different method that entirely avoids integer linear algebra will
be presented in the proof of Lemma 5.1.22.) These ranks will not necessarily be equal to the actual
ranks in G, however, if all coefficients witnessing the equalities that we need are sufficiently small,
this will typically be enough to “switch gears” in the construction. For example, we may want
to replace Bs with some other set B̃s so that B̃s and Bs are linearly interchangeable, i.e., Bs Ď
spanpB̃sq and B̃s Ď spanpBsq. If all the coefficients witnessing Bs Ď spanpB̃sq and B̃s Ď spanpBsq
are smaller than t, where t is some parameter sufficient for our purposes, we could still replace Bs
with B̃s even though Bs is actually not even linearly independent. We can perform all calculations
in F . This is because we are really using Bs Ď spantpB̃sq and B̃s Ď spantpBsq. While we search for
such a t and B̃s, we may discover that Bs is not t-independent. In this case, we usually abandon
the strategy.

5.1.2 Effective presentations of torsion-free abelian groups

All our groups are additive and at most countable. A group is computable if its domain is a
computable set, and the group operations are computable. Of course, unless we forbid unbounded
search, it is sufficient to assume that only ` is computable.

We say that H ő A is a computable subgroup of a (computable) group A if the domain of H
is a computable subset of the domain of A. We define Σ0

n- and Π0
n-subgroups in a similar fashion.

204

The free abelian group on countably many generators clearly has a computable presentation with
a computable generating set. We denote this presentation by Zω. In the context of abelian groups,
the main definitions of the book can be formulated as follows.

Definition 5.1.13. Say that an abelian group A is Σ0
n-presentable if A – Zω{H for some Σ0

n-
subgroup H of Zω, and say that A is Π0

n-presentable if A – Zω{H for a Π0
n-subgroup H of Zω.

Define ∆0
n-presentations similarly.

For instance, an infinite countable abelian group A has a computable (c.e.) presentation iff A is
isomorphic to Zω{H, where H ő Zω is a computable (respectively, c.e.) subgroup of Zω (exercise).
A group admits a ∆0

n-presentation iff it has a 0pn´1q-computable copy, so there is no danger of
confusion.

Any c.e. subgroup of a computable group has a computable presentation. (A c.e. subgroup
should not be confused with a c.e. presented group.) To see why, fix a computable function f such
that rangepfq “ H ő A, where A is computable. Set hi “ fpiq. Given i, j, we can find the unique
k such that hi `A hj “ hk, and similarly for ´. This gives a computable copy of H. Clearly, the
range of f does not have to be computable in general. Also, evidently, this observation works for
arbitrary computable structures and their c.e. substructures, not just groups.

Computable subgroups of the rationals

One of the earliest examples of a full description of computable groups in a given class belongs to
Mal’cev [346]. Fix any element a P A of an additive group and any positive integer n. Recall that
we say that n ą 0 divides a (in A) and write n|a if

Dx P A x` x` x` . . .` x
looooooooooomooooooooooon

n times

“ a.

Such an x (if it exists) is unique if A is a subgroup of pQ,`q.
It should be clear that, up to isomorphism, the groups having their Z-rank equal to 1 are exactly

the non-null subgroups of Q; we leave this to Exercise 5.1.29. Suppose H ő pQ,`q is a non-null
group, and let p0, p1, . . . be the standard listing of all primes.

Definition 5.1.14. The characteristic of a non-zero element h P H is a sequence pα0, α1, . . .q where
αi “ 8 in case pki |h for all k, and otherwise αi is the largest k ě 0 for which pki |h within H. We
also say that αi is the p-height of h.

Two characteristics χ “ pα0, α1, . . .q and ξ “ pβ0, β1, . . .q are equivalent, written χ » ξ, if

ÿ

i

|αi ´ βi| ă 8,

which means that they can differ for finitely many i where furthermore the respective αi and βi
must both be finite. The »-equivalence class of h is called the (Baer) type of h, written tHphq. It
is not hard to see that any two non-zero elements of H ő Q are of the same type (Exercise 5.1.30).
It thus makes sense to define the type of H, denoted by tpHq, to be tHphq for some (equivalently,
any) non-zero h P H.

Theorem 5.1.15 (Baer [26], after Levi [337]). Suppose A,B ő Q are non-trivial groups (equiva-
lently, rkpAq “ rkpBq “ 1). Then A – B iff tpAq “ tpBq.

205

We leave the proof of the theorem to Exercise 5.1.30. To describe computable subgroups of Q,
we need to slightly adjust the standard invariants. Given a characteristic χ “ pα0, α1, . . .q, define

Sχ “ txi, ky : αi ě k ě 0u.

Clearly, χ » ξ iff Sχ “
˚ Sξ, i.e., the sets agree up to a finite difference. We say that a type t is

computably enumerable (c.e.) if for some (equivalently, for all) χ P t the set Sχ is c.e.

Theorem 5.1.16 (Mal’cev [346]). Suppose A ő Q is of type t. Then A has a computable presen-
tation iff t is c.e..

Proof. If A has a computable presentation, then fix any non-zero element a of A and search through
all other elements of the group and evaluate the operation on them to computably list Sχpaq. On the
other hand, assume Sχ P t is c.e.. Then define the additive subgroup of the rationals Hχ generated
by the set

"

1

pki
: xi, ky P Sχ

*

.

It follows from Theorem 5.1.15 that Hχ – A. The group Hχ (under the additive group operations
inherited from Q) is evidently a c.e. subgroup of Q, and, thus, is computably presentable.

Recall that Theorem 3.1.1 states that there exists a c.e. non-computable low set A. If we
“encode” A into a subgroup of Q via pi | 1 iff i P A, then we obtain a low group with no computable
presentation; we mentioned this already in Chapter 1, see also Exercise 5.1.31. The reader should
also take a few moments to convince themselves that every c.e. presented subgroup of pQ,`q has a
computable copy (Exercise 5.1.33).

Remark 5.1.17. Together with Theorem 2.2.6 and Theorem 3.1.1, the observations discussed
above imply that the three notions of effective presentability defined in §1.2.1 (low, c.e., computable)
are pairwise non-equivalent already in the class of groups. However, the historical example given in
Theorem 2.2.6 was not commutative. It is also known that the notions differ in the class of abelian
groups as well, as will be explained in Chapter 9 (see Corollaries 9.3.22 and 9.3.23).

Decidable subgroups of the rationals˚

Recall that a group is decidable if it is computable and, furthermore, we can decide first-order
statements about arbitrary tuples of elements in the group. Following the general theme of the
book, we separate the notions of decidable and computable groups for subgroups of the rationals.
Since the technical details related to the model-theoretic aspects of abelian groups will not be used
in the sequel, we give only a sketch.

Theorem 5.1.18. There exists a computable torsion-free abelian group that is decidable relative to
a low oracle, but has no decidable presentation.

Sketch. In model theory, one proves that abelian groups admit quantifier elimination down to
Boolean combinations of existential formulae that involve only divisibility conditions of the form
m | x, i.e., Dymy “ x. In the context of computable mathematics, a result of this sort is the
following fact (see [291, Prop.1.1]).

Proposition 5.1.19. For an abelian group G upon the domain N, the following are equivalent:

206

1. pG,`q is decidable;

2. ThpGq is decidable, pG,`q is computable, and the predicates ppi | ¨qiPN are uniformly com-
putable, where pi | x is the predicate of divisibility by the i-th prime number.

We skip the proof.
Let A be a low non-computable c.e. set (Theorem 3.1.1). Let GA be the subgroup of pQ,`q

generated by
"

1

pi
: i P A

*

.

It is also known that, for any set A Ď ω,

ThpGAq “ ThpZq.

This can be concluded after calculating the Szmielew invariants of the groups (for the invariants,
see, e.g., [291]). This calculation is relatively straightforward; see [198, Thm 17] where this result
is stated in the required form. Finally, it is well-known that the theory of the integers with `
is decidable (e.g., [158]). It follows from Theorem 5.1.16 that, for a c.e. set A, the problem of
decidable presentability of GA can be completely reduced to the decidability of the divisibility
predicates ppi | ¨qiPN.

We claim that the decidability of GA is equivalent to the computability of A. If H is any decid-
able presentation of G, then the predicates have to be uniformly computable by Proposition 5.1.19.
This provides a method to decide i P A, as follows. Fix any non-zero element of the group and
appeal to Baer’s classification Theorem 5.1.15. Conversely, if A is a computable set, then we can
use the straightforward construction in Theorem 5.1.16 to build a computable copy of the group
in which, additionally, the divisibility predicates are decidable. Thus, if A is low c.e. but not com-
putable (Theorem 5.1.16), then GA has a computable copy that is decidable relative to the low
oracle A, but has no decidable presentation.

The proposition above should be compared with Theorem 4.1.40 for Boolean algebras. Similarly
to Theorem 4.1.40, we indeed separated 1-decidability and computable presentability for abelian
groups.

Groups with linear dependence algorithm

Recall that in Theorem 2.2.16 we constructed a computable presentation of Qăω “
À

iPN Q that
has no computable basis. But of course, Qăω has a nice computable copy with a computable basis.
Therefore, the notion defined below is not presentation-invariant.

Definition 5.1.20. We say that a computable torsion-free abelian group A has a linear dependence
algorithm if, given any a1, . . . , ak P A, we can uniformly decide if a1, . . . , ak are linearly dependent.

Of course, in the definition above k ą 0 is not fixed. We remark that this definition is an adaptation
of the similar definition from the theory of computably vector spaces [383] and a special case of
the more general notion of a computable pregeometry [148, 244]. It follows from Proposition 5.1.19
that having a linear dependence algorithm does not imply decidability or even 1-decidability. This
is only to be expected, since linear (in)dependence is not a first-order property.

207

Remark 5.1.21. It can be shown that if G is a homogeneous completely decomposable group that
is not divisible, then every decidable copy of G has an algorithm for linear independence [33] (to
appear as Exercise 7.2.23). We delay the definition of (homogeneous) completely decomposable
groups until Part 2, where they will play a significant role.

The fact below is well-known and holds much more generally in terms of effective pregeometries
(e.g., [244]).

Fact 5.1.22. For a computable torsion-free abelian group A, the following are equivalent:

1. A has a linear dependence algorithm;

2. A has a computable basis;

3. A has a c.e. basis.

All implications are effectively uniform.

Proof. The implication p1q Ñ p2q is an exercise, and p2q Ñ p3q is straightforward. (For p1q Ñ p2q,
build a basis B in stages. Also, specifically make sure that the element with index s is in spanBs.)
We prove p3q Ñ p1q. Fix a c.e. basis B. To decide whether x1, . . . , xn are dependent or not, find a
finite set A Ď B such that tx1, . . . , xnu Ď spanpAq. Then x1, . . . , xn are independent iff there exist
a1, . . . , an P A such that

a1, . . . , an P spanptx1, . . . , xnu Y pAzta1, . . . , anuqq.

The latter is a Σ0
1-property. Since for tx1, . . . , xnu being dependent is Σ0

1, we conclude that the
property is ∆0

1, as desired.

Is every computable torsion-free abelian group isomorphic to a computable group with a linear
dependence algorithm? Below, we provide a positive answer to this question. But first, we give a
characterisation of computable linear independence that will be useful later.

A useful characterisation of computable linear independence

In the next section, we will need to construct the dual of a torsion-free abelian group (to be defined).
For that, we will need to uniformly computably access the finitely generated subgroups of our group
(as opposed to merely its finite partial subgroups). More specifically, we will need to view a torsion-
free abelian group as a “computable direct limit” (union) of finitely generated groups, where each
such group also comes with its finite basis that generates it; cf. Definition 4.2.106.

Definition 5.1.23. We say that a computable G is tractable if there exists a uniformly computable
ascending sequence of finitely generated abelian groups pFiqiPN with the following properties:

1. G “
Ť

iPN Fi.

2. t0u “ F0 Ď F1 Ď F2 Ď F3 Ď . . . is a uniformly computable sequence in which the set-theoretic
embeddings are also computable.

3. For every Fi (i ą 0) we can uniformly compute a (strong index for a) finite set of elements
h0, . . . , hkpiq such that

Fi “ xh0y ‘ xh1y ‘ . . .‘ xhkpiqy.

208

Recall that a subgroup H of an abelian A is pure (in A) if, for any h P H and each positive integer
k, Da P A ka “ h implies Du P H ku “ h. A finitely generated (f.g.) subgroup of A that is pure in A
detaches in A (i.e., forms a direct summand of A); this appeared earlier as Property 5.1.5(6). Recall
that we write xh1, . . . , hky for the f.g. subgroup of the given group generated by h1, . . . , hk, and
that xh1, . . . , hky |ďt denotes the partial subgroup of it consisting of linear combinations

ř

i nihi,
where |ni| ď t, i “ 1, . . . , k.

Lemma 5.1.24 (Melnikov [373]). Let G be a computable torsion-free abelian group. The following
are equivalent:

1. G is tractable.

2. G has a computable basis.

Proof of Lemma. Suppose G has a computable basis B “ tb1, b2, . . .u (we include the possibility of
B being finite or even empty). Enumerate B and G. Suppose at a stage we have effectively defined
a f.g. partial subgroup

Gs “ xh1, . . . , hky |ďt,

where k, t depend on the stage, the hi are linearly independent in G, and indeed spanph1, . . . , hkq Ď
spanpb1, . . . , bkq in G. (It actually must be that spanph1, . . . , hkq “ spanpb1, . . . , bkq.) Furthermore,
by linear independence we have that each hi generates a finite initial segment of the infinite cyclic
group, and also that

Gs “ xh1y |ďt ‘ . . .‘ xhky |ďt .

Suppose a new element h enters the enumeration of the group. Before taking action, keep adjoin-
ing elements bk`1, bk`2, . . . from the basis B to h1, . . . , hk (noting that th1, . . . , hk, bk`1, bk`2, . . .u
forms a basis of G). At a later stage we will have a f.g. partial group of the form

G1u “ xh1y |ďu ‘ . . .‘ xhky |ďu ‘xbk`1y |ďu ‘ . . .‘ xbk1y |ďu

containing Gs. We keep doing so until we find a linear combination

mh “
ÿ

iďk

nihi `
ÿ

kăjďk1

n1jbj ,

where the integer coefficients m,ni, and n1j are reduced and m ą 0 is smallest such. We are ready
to define Gs`1. It will be a large enough finite partial subgroup approximating xh,G1uy. If m “ 1,
then we have h P G1u and set Gs`1 “ G1u. Otherwise, suppose m ą 1. In this case, without loss of
generality, xhy is pure in X “ xh,G1uy; if it is not, replace h with h0 so that xh0y “ phq

˚
X . (Using

Rado’s Lemma 5.1.4, fix linearly independent generating sets of xhy and X with the nice properties
described in Lemma 5.1.4; it has to be that h is a multiple of some basic h0 in X given by the
lemma, since the only 1-element generating sets of xhy are thu and t´hu.) Since xhy is pure and
cyclic, we have

xh,G1uy “ xhy ‘H.

We choose any direct decomposition of H into cyclic summands, and we wait until a late enough
stage v such that the generators of all these summands appear in the enumeration of G at stage v.
Then we set Gs`1 “ xh,Gvy |ďv.

209

In both cases, we also record the information about the generators of Gs`1 and the natural
embedding of Gs into Gs`1. It is clear that this embedding is fully determined by how the generators
of Gs are expressed in terms of the fixed generators of Gs`1.

Strictly speaking, pGsqsPN is a sequence of finite partial subgroups, not a sequence of f.g. sub-
groups of G (as required). Otherwise, all the other properties that we need are satisfied by the
sequence pGsqsPN. But note that G “

Ť

iPNxGsy. Based on this observation, we claim that xGsy is
a uniformly computable subgroup of G. Indeed, for any g P G, wait for g P Gv (s ď v), and then
use the information about Gv, its generators, and how Gs is embedded into Gv to see if g P xGsy.
Finally, observe that the embedding of xGsy into xGsy is completely determined by the embedding
of Gs into Gs`1. Thus, G “

Ť

iPNxGsy witnesses that G is tractable.
Conversely, suppose G is a tractable constructive group, and let pFiqiPN be an ascending sequence

of its subgroups witnessing its tractability. Suppose we have g1, . . . , gk P G. Then for some large
enough m we must have g1, . . . , gk P Fm. The generators of Fm have to be linearly independent in
Fm and, thus, in G. Since we can compute a full decomposition of Fm into infinite cyclic summands,
we can decide whether g1, . . . , gk are independent using Fact 5.1.22.

How to approach c.e. presented abelian groups

In this paragraph we discuss several useful ways to approach c.e. presented torsion-free abelian
groups. We will need this in the proof of Khisamiev’s Theorem 5.1.41.

Let A be our group and U “ L{E its c.e. presentation, where L is free abelian. A good way
to think about U is to assume its domain is ω, the operations are computable, but the equality
between elements is merely c.e.; equivalently, being equal to 0 is a c.e. unary relation. We have not
yet dealt with c.e. presented structures that are not locally finite, i.e., where a finite subset does
not necessarily generate a finite substructure. The difference is quite apparent: declaring x “ 0 in
a torsion-free abelian group results in setting mx “ 0 for all m P Z. However, we can process only
finitely many relations at any given stage. To make matters worse, at any finite stage we can really
only examine a finite partial subgroup of U . While it is clear what this meant for a computable U ,
in the case of a c.e. presented group this needs to be further clarified.

Property 5.1.25. Assume U “ L{E is a c.e. presented abelian group, where L is computable free
abelian, and E is its c.e. subgroup. Without loss of generality we may assume the following about
L and E:

A) L is given together with a computable linearly independent set p`iqiPN that generates it freely.
In particular, we may assume the rank of L is ω.

B) We may assume that Es “ xe0,sy‘. . .‘xekpsq,sy, where e0, . . . , ekpsq P L are linearly independent.
Note that Es is an infinite object. It is given by the index of its independent generating set
e0,s, . . . , ekpsq,s P L.

C) Since U is torsion-free, we can further assume Es is pure in L; equivalently, L{Es is torsion-free
(Exercise 5.1.34). Indeed, if x P Es and mh “ x, we know that for some t ě s, h P Et, for
otherwise U “ L{E would not be torsion-free. Thus, we can just put h into Es straight away.

D) By taking npsq sufficiently large, we may assume

Es ő Ls “ x`0y ‘ . . .‘ x`npsqy;

note Ls is also an infinite object and is given by the parameter npsq.

210

E) Appealing to Rado’s Lemma 5.1.4 (combined with brute force search), we see that Es is a
computable subgroup of Ls, uniformly in s.

F) Assuming U is torsion-free, the index of the free abelian group Ũs “ Ls{Es can be obtained
uniformly from the indices of Es and Ls. Further, using brute-force search combined with
Rado’s Lemma 5.1.4, we can uniformly compute a linearly independent subset u0, . . . , uqpsq of

Ũs that generates it freely. We may set

Us “ pxu0y ‘ . . . xuqpsqyq|ďs.

To avoid various pathologies (e.g., the `j-coefficients of representatives of the cosets of ui being
too large), we may wish to replace |ďs with |ďtpsq, where tpsq is a monotonic function1. More
generally, by increasing q and t when necessary, we can always assume that Us is sufficiently
large; for example, we may assume that it contains a linearly independent set of size s.

G) To relate Us`1 with Us, we use the fact that Es ő Es`1 ő Ls`1, where all subgroups are
computable subsets, uniformly in s (by E). We have that Ũs “ Ls{Es, and we can computably
identify Ls{Es with a (computable) subgroup of Ls`1{Es. Further, by the Third Isomorphism
Theorem,

Ls`1{Es`1 –
Ls`1{Es
Es`1{Es

.

Using that all independent generating sets are uniformly computable in all these groups (as
subsets of L), we can uniformly compute

η̃s : Ls`1{Es Ñ
Ls`1{Es
Es`1{Es

and its restriction ηs to Ls{Es ő Ls`1{Es,

ηs : Ls{Es Ñ
Ls`1{Es
Es`1{Es

,

where the range of ηs is computable in
Ls`1{Es
Es`1{Es

, uniformly in s. By F, we may further assume

that the partial group Us`1 is large enough so that ηspUsq Ď Us`1, and thus we arrive at

ηs : Us Ñ Us`1

which are uniformly computable homomorphisms of finite partial groups.

We leave further formal verification of the possibility of the assumptions summarised in A – G
above as an exercise.

1For example, the function defined recursively via tp0q “ 2 and tps` 1q “ 2ptpsq ` 1q! will usually suffice. It will
significantly exceed all numbers mentioned in all parameters at stage s. This is because all these calculations can be
performed in polynomial time instead of brute-force using linear algebra. Alternatively, we may first perform all our
calculations using brute-force (or any method) and choose tpsq to be large enough so that the partial subgroup Utpsq
includes all elements of Ũs that we need; cf. Remark 5.1.12.

211

Remark 5.1.26. Of course, all of these assumptions can be made about computable groups as
well, but in the computable case the maps ηs : Us Ñ Us`1 are additionally injective. (Recall
Remark 2.2.19 in the proof of Mal’cev’s Theorem 2.2.16.)

In summary, the sequence of Us and ηs has pretty much every conceivable algorithmic property
we could possibly hope for. To define U , at stage s ` 1 monitor ηs to see which elements of Us
need to be identified (declared equal modulo E) in Us`1. The domain of U can still be indexed by
natural numbers, however, with repetition. Deciding whether i and j represent the same element
of the abstract group is c.e., since we need to see whether for some s, these indices are declared
equal in Us. However, the operation ` on these indices is computable, since it can be computed
inside the large enough Us. Since the maps ηs : Us Ñ Us`1 are restrictions of homomorphisms
η̃s : Ũs Ñ Ũs`1, these calculations agree with the group operations throughout the entire sequence
pUsqsPN. This presentation of U will be used in the proof of Khisamiev’s Theorem 5.1.41.

Remark 5.1.27. The index of a coset in U is always assumed to be equal to the index of its
smallest representative at every stage. It follows that for every coset x` E in U there is a stage s
large enough so that the index of x`Es in Us is equal to the index of x`E in U . In particular, we
can use the smallest index representative technique in a c.e. presented group as well. (In the context
of computable groups, we will use this technique shortly in the proof of Dobrica’s Theorem 5.1.37.)
However, we need to keep in mind that the index of an element (coset) in Us may not be final at a
stage, but it will settle at some stage.

Alternatively, we could use the uniformly computable sequence of finitely generated (free abelian)
groups Ũs with distinguished independent generating sets, and uniformly computable homomor-
phisms ηs : Ũs Ñ Ũs`1. Then our presentation can be viewed as the direct limit

lim
ÝÑ
sPN
pŨs, ηsq “

˜

ğ

sPN
Ũs

¸

{ ” (5.1)

of the computable (linear) direct system pŨs, ηsqsPN. (We shall write simply lim
ÝÑsPN Ũs if there is

no danger of confusion.). We give more details. For u, v P
Ů

sPN Ũs, we set u ” v if after several

iterative applications of the η-homomorphisms, the images of v and u become equal in some Ũs.
Also, to define ` on classes r¨s” modulo ”, fix u P Ũs and v P Ũt; assume t ď s. Iteratively apply
the η-homomorphisms to u until the result of this process a is in Ũs. Set

rus” ` rvs” “ ra` vs”,

where a ` v is calculated in Ũs. Since we’ve been avoiding explicit use of formalisms related to
direct limits, we will leave the verification of U – lim

ÝÑsPN Ũs to Exercise 5.1.35.

On the other hand, observe that ” is clearly c.e. on \sPNŨs. This gives the following useful
fact. Recall that a finite presentation of a group is a tuple xa0, . . . , ak|r0, . . . rny of generators and
relations upon these generators. Since all our groups are abelian, we may assume that a0, . . . , ak
are generators of the free abelian group of rank k,

À

iďk Z, and r0, . . . rn P
À

iďk Z. Note that the

groups Ũs in p5.1q are uniformly finitely presented. Conversely, we clearly have:

Fact 5.1.28. Let G be an abelian group. Suppose there is a uniformly computable directed sequence
pŨs, ηsqsPN of finitely presented (abelian) groups and homomorphisms ηs : Ũs Ñ Ũs`1, where each

212

Ũs is given by a finite set of generators and relations, and whose direct limit (given by p5.1q) is
isomorphic to G. Then G is c.e. presented, and the index of the c.e. presentation can be obtained
uniformly from the index of the sequence pŨs, ηsqsPN.

Thus, for an abelian group, being c.e. presented and being presented via an effective direct
limit (5.1) are synonymous, and this is uniform. This observation was certainly already known
to Baumslag, Dyer, and Miller [31], though in a slightly different context and terminology. This
approach won’t help in the proof of Khisamiev’s Theorem, but it will be useful in Section 5.2.

Exercises

Exercise˝ 5.1.29. Show that, up to isomorphism, the rank 1 torsion-free abelian groups are exactly
the non-zero subgroups of pQ,`q.

Exercise˝ 5.1.30. Check that any pair of non-zero elements in a given subgroup of Q have the
same type. Prove Theorem 5.1.15.

Exercise˝ 5.1.31. Show that for any set A there exist subgroups GA and HA of pQ,`q such that
GA has an X-computable copy iff A is c.e. relative to X, and HA has a computable copy iff A ďT X.

Exercise˝ 5.1.32. Generalise Theorem 5.1.16 to additive subgroups of pQn,`q. (Hint: Consider
a maximal Q-independent subset of G ď pQn,`q. Produce an invariant for G generalising Sχ that
uses the fixed basis as a parameter.)

Exercise˝ 5.1.33. Let G be an additive subgroup of pQn,`q, for some finite n. Show that G has
a c.e. presentation iff G has a computable copy. (Hint: Use Ex. 5.1.32.)

Exercise˝ 5.1.34. Let A be torsion-free abelian. Show that H ő A is pure in A iff H{A is
torsion-free.

Exercise˝ 5.1.35. Verify that the definition involving the direct limit (see (5.1)). Check that ” is
an equivalence relation and that the operation ` defined after (5.1) turns \iŨi{ ” into an abelian
group isomorphic to U .

Exercise˚ 5.1.36 (Smith [474]). The divisible closure (the divisible hull) of an abelian group A
is “the smallest” divisible group D that contains A. Formally, if C is divisible and A Ñ C is an
isomorphic embedding, then there is an embedding of D into C over A. Show that every computable
abelian group A can be computably embedded into its computable divisible closure.

5.1.3 Dobrica’s Theorem

Theorem 5.1.37 (Dobrica [114]). Every computable torsion-free abelian group is isomorphic
to a computable group with a computable basis.

213

Idea

We are given a computable (torsion-free abelian) A. If A has a finite basis, then there is nothing
to prove. We therefore assume that the rank of A is infinite. We transform A into a computable B
having a computable maximal linearly independent set C “ pciqiPN, as follows.

Build a ∆0
2 isomorphism θ : B Ñ A. Initially, let θ copy A into B without any change. Suppose

we have θpciq “ ai P A, i “ 0, 1, At a later stage, we may discover that, in A, a0 and a1 are
linearly dependent. (The case of more than two ai’s is similar.) The idea is to use a modification
of the strategy from the proof of Mal’cev’s Theorem 2.2.16; however, it will need to be modified
further. Choose the first found d P A which currently looks independent of a0 and define

θpc1q “ a1 ` t!d,

where t is larger than any number mentioned so far in the construction. If previously

mθpxq “ m0a0 `m1a1,

then we have to set

mθpxq “ m0a0 `m1pa1 ` t!dq “ pm0a0 `m1a1q `m1t!d,

where pm0a0`m1a1q is divisible by m as witnessed by the previous image of x, and m1t!d is divisible
by m because m ă t (recall t is large). This is exactly why we used the factorial. In particular, the
relation mx “ m0c0 `m1c1 will be preserved under θ.

If d is indeed independent of a0, then so is a1 ` t!d; furthermore, a1 ` t!d and d will have equal
linear spans over a0. Otherwise, the strategy will be repeated with a fresh d1, and then perhaps d2

(etc.) until a dpkq truly independent over a0 is found. In particular, it follows that this process of
correcting mistakes will eventually stabilise2.

Construction

We build a computable group B and its computable basis C “ pciqjPN. At every stage t, we also
define a partial map θt : Bt Ñ At. We also assume that for each t the partial group At is sufficiently
large in the sense of Property 5.1.25 (F) and Remark 5.1.26.

At stage 0, begin with C0 “ H in B0, and let B0 copy A0 via θ0 “ Id, i.e., without any nontrivial
permutation.

Let ai “ θt´1pciq P At´1, i ă t.

Stage t. We subdivide the stage into several phases:

(a) Choose k ă t largest such that θt´1pc0q, . . . , θt´1pckq are 2pt` 1q!-independent in At. Choose
dk`1, . . . dt P At such that

a0 . . . , ak, ak`1 ` t!dk`1, . . . , at´1 ` t!dt´1, dt

2The construction below can be viewed as a movable markers argument, where each “movable marker” i corre-
sponds to θpciq P A for some ci P C. When the value θpciq needs to be changed, we “move” the “marker” to a new
value. We will, however, not make movable markers explicit since the main complexity of the proof is not related to
computability-theoretic combinatorics.

214

form a 2pt ` 1q!-independent set, and dk`1, . . . dt P At have the smallest possible indices
(lexicographically).

(b) Define θt as follows.

(b.1) For each cr, k ă r ă t, set

θtpcrq “ θt´1pcrq ` t!dr “ ar ` t!dr.

(b.2) Declare θtpciq “ θt´1pciq for every i ď k.

(b.3) Introduce ct and declare θtpctq “ dt.

(b.4) For each x P Bt´1 such that mx “
ř

jăt njcj , set

θtpxq “ θt´1pxq `
ÿ

tąrąk

nrt!

m
dr.

(b.5) For every a P At that does not already have a θt-preimage, if

ma “
ÿ

jďt

njθtpcjq, where m, |nj | ď t,

introduce a new element b in Bt, declare

mb “
ÿ

jďt

njcj

in Bt, and set θtpbq “ a.

Go to the next stage.

Verification

Claim 5.1.38. Every stage of the construction eventually terminates its search.

Proof. In (a), we search for elements in At which are 2pt` 1q!-independent. If θtpci,0q, . . . , θtpci,kq
are indeed independent, then such elements must exist because the rank of At is infinite. Such
elements (independent or not) will eventually be found.

In (b.4), for each x such that mx “
ř

jďt njci,j , we set

θtpxq “ θt´1pxq `
ÿ

těrąk

nrt!

m
dr;

such an element exists because m ă t.

Claim 5.1.39. At the end of every stage t, each θt is an injective homomorphism of partial groups.

215

Proof. By induction on t. The case when t “ 0 is trivial. Suppose θt´1 is an injective homomorphism
of partial groups. Then, by induction, θt clearly respects the group operations whenever they are
defined. Thus, we need only to verify that θt is injective.

Suppose x, z P Bt´1 and therefore θt´1 is defined on x, z P dom θt´1, where

nz “
ÿ

j

njcj ,

mx “
ÿ

j

mjcj .

If θt´1 and θt are equal on the domain of θt´1, then there is nothing to prove. Suppose θ needs to
be redefined. Assume θtpzq “ θtpxq, then

θtpxq “
ÿ

rąk

mrt!

m
dr ` θt´1pxq,

and

θtpzq “
ÿ

rąk

nrt!

n
dr ` θt´1pxq.

These values satisfy the equations:

mθtpxq “
ÿ

jďk

mjθt´1pcjq `
ÿ

rąk

mrpθt´1pcrq ` t!drq,

nθtpzq “
ÿ

jďk

njθt´1pcjq `
ÿ

rąk

nrpθt´1pcrq ` t!drq.

Multiply the first equation by n and the second by m, and then subtract the first one from the
second one. According to the instructions in (a) at stage t, the values θt´1pcjq and θt´1pcrq ` t!dr
form a 2pt ` 1q!-independent set. In particular, it must be that, for every r ą k, t!nmr “ t!mnr,
and since both m,n ‰ 0, we arrive at

mrt!

m
“
nrt!

n
, for each r ą k.

Now recall that

θtpxq “
ÿ

rąk

mrt!

m
dr ` θt´1pxq

and

θtpzq “
ÿ

rąk

nrt!

n
dr ` θt´1pzq.

Since
ř

rąk

nrt!

n
dr “

ř

rąk

mrt!

m
dr by the above remarks, and θtpzq “ θtpxq by our assumption, we

must have that
θt´1pzq “ θt´1pxq.

Since θt´1 is injective by the inductive hypothesis, z “ x.

216

It remains to argue that injectivity is maintained when we extend the domain of θ in (b.3) and
(b.5). Recall that in (a) we chose a0, . . . , ak, ak`1 ` t!dk`1, . . . , at´1 ` t!dt´1, dt to be 2pt ` 1q!-
independent, where ai “ θt´1pciq, i ă t. Thus, in (b.3) and, more generally, in (b.5), injectivity
is maintained: this is because different choices of coefficients nj ď t will result in different linear
combinations in At.

Claim 5.1.40. For every x P B, limt θtpxq exists.

Proof. Since B “ spanpCq, it is sufficient to check the lemma for elements of C. In (a) we always
choose a0, . . . , ak, ak`1`t!dk`1, . . . , at´1`t!dt´1, dt to be 2pt`1q!-independent, where ai “ θt´1pciq
for i ă t, so that the index of the tuple of di is lexicographically the smallest possible. Also, we
make sure that dk`1, . . . , dt P A have the lexicographically smallest possible indices. In particular,
by induction, if θ has settled on c0, . . . , ck before stage t, then after finitely many attempts we will
find a stable θ-image for ck`1.

Define θpxq “ limt θtpxq. Since θt is injective at every stage, θ is injective too. It is a homo-
morphism because each θt is (of partial groups). It remains to check that θ is onto. Since in (a)
we choose dk`1, . . . , dt P A so that they have the least possible indices among all choices available,
it follows that tθpciq : i P Nu is a maximal linearly independent subset of A. To see why, assume
there exists w P A independent of tθpciq : i P Nu. Go to a large enough stage of the construction
to get a contradiction. Further, by (b.4) and (b.5), we have θpBq “ span θpCq. We conclude that
the map θp¨q “ lims θsp¨q is a well-defined (Claim 5.1.40) surjective homomorphism B Ñ A, which
is furthermore injective by Claim 5.1.39. Under θ, the computable subset C of B corresponds to a
maximal linearly independent set in A.

The proof of Dobrica’s Theorem is complete.

5.1.4 Khisamiev’s Theorem A(3)

Theorem 5.1.41 (Khisamiev [288]). Every c.e. presented torsion-free abelian group is isomor-
phic to a computable group. Furthermore, if the group is non-trivial, then this computable copy
can be built uniformly in the index of the c.e. presentation.

Khisamiev’s Theorem is more subtle than Dobrica’s Theorem 5.1.37. As far as we know, the only
published proof of the result can be found in [288] where it is stated in more general terms. Our
proof is different from the non-uniform proof in [288] (which is similar to the non-uniform proof of
Dobrica’s Theorem 5.1.37 presented above). In our proof, we do not assume that the rank of the
group is infinite. But of course, if the rank is finite, an easy non-uniform argument shows that the
group has a computable presentation; this is Exercise 5.1.46. We will need the extra uniformity in
applications.

Proof. Let U ` L{E be a c.e. presentation of a non-trivial torsion-free abelian group. We assume
that L and E in U “ L{E satisfy A)-G) of Property 5.1.25. In particular, by C), we assume that
if x is declared equal to zero at a stage, then any element h such that mh “ x for some m is also
immediately declared zero.

217

The setup

We build a computable presentation C and a ∆0
2 isomorphism f : C Ñ U . At every stage, we

have a finitely generated partial group Cs and a (finite, homomorphic) embedding fs of Cs into the
c.e. presentation U . We will also have

Cs “ spanspBsq,

where
Bs “ tb0, b1, . . . , bsu,

is s-independent. It is important to note that spanspBsq should attempt to copy the span of fspBsq
in Us; of course, it could be later discovered (in Ut) that fspBsq is not linearly independent, and
indeed, can even contain elements equal to zero. Our task, however, is to try to keep Bs independent.
To achieve this, fpbiq of some of these bi will likely need to be corrected. Unlike the previous proof
of Dobrica’s Theorem 5.1.37, we may have to also declare the current values of Bs to be dependent
and redefine the values of some of these bi in C by introducing new interpretations for such bi in C.

Setting up the correction procedure

At some stage we may discover that the set fpBsq is linearly dependent. In general, fspBsq can
become dependent in two different ways:

1. fspBsq is dependent in U because we discovered some non-trivial linear combination with
large coefficients that we have not examined before.

2. Some previously non-zero h P spans fspBsq is declared equal to zero in U .

The former situation could happen in a computable U too, but the latter is specific to c.e. pre-
sented groups. Nonetheless, these two cases are not really that different. In the second case, we
also have

mh “
ÿ

iďs

nifspbiq,

where m ‰ 0, and h is declared equal to 0. Because of our assumptions about the enumeration
of U ,

ř

iďs nifspbiq “ 0 in U . Thus, in the second case we also have
ř

iďs nifspbiq “ 0, but the
coefficients ni do not have to be “large”.

The correction procedure

Recall that the s-independent Bs “ tbi : i ď su is our attempt to approximate a basis of C at stage
s, and Cs “ spanspBsq. In the notation above, when fspbj`1q is discovered to be in the span of

tfspb0q, fspb1q, . . . , fspbjqu

in Us`1, we should be able to declare

bk P spanptb0, b1, . . . , bjuq,

for k “ j ` 1, . . . , s. Let j be smallest with this property. The case when fspb0q is declared 0 in U
will be considered separately.

218

The algebraic recycling strategy. We can view

Cs “ spansptb0, b1, . . . , bsuq

at stage s as a finite initial segment of a free abelian group F freely generated by b0, b1, . . . , bs; see,
e.g., Remark 5.1.12 and the discussion preceding it. Using Lemma 5.1.4, fix d0, . . . , dj and c0, . . . , cs
such that

xd0, . . . , djy “ xb0, . . . , bjy and xc0, . . . , csy “ F,

and furthermore di “ kici for some integers ki, i “ 0, . . . , j. Rank considerations imply that these
generating sets must be linearly independent (in F), and thus each generates the respective group
freely. Pick a very large natural number M and declare

ck “Mk´jc0, j ă k ď s.

SinceM is very large, it defines an isomorphic embedding ξ of the partial group spansptb0, b1, . . . , bsuq
into xc0, . . . , cjy; the reasoning is exactly the same as in the old Mal’cev’s Theorem 2.2.16.

Note xc0, . . . , cjy Ě spanstb0, . . . , bju. The map ξ fixes c0, . . . , cj and, thus, also does not move
spanstb0, . . . , bju. However, it clearly puts bj`1, . . . , bs into the span of tb0, . . . , bju.

Declare fs`1 to be the linear extension of fs to the initial segment of xc0, . . . , cjy that was
sufficient to perform the manipulations described above (i.e., to define ξ). At the end of this
process, declare bk, k ě s, undefined.

The spacial case when fspb0q is discovered to be in E (i.e., is 0 in Us`1) is explained below.

Complete initialisation. Using the algebraic recycling strategy explained above with j “ 0, put all
bk, 0 ă k ď s, into xc0y. (In particular, b1, . . . , bs will be declared undefined and b0 will be put in
xc0y.) Once this is done, pick a non-zero element u P Us`1 having the smallest index (in the sense
of Remark 5.1.27) and declare fs`1pc0q “ u. Extend fs`1 linearly to all other elements listed so far
in xc0y. In particular, fs`1pb0q P xuy. Note b0 has not been declared undefined.

Redefining bk, k ą j. Suppose j, 0 ď j ď s is the largest index so that bj is defined (see Re-
mark 5.1.27). Pick fresh aj`1, . . . , as`1 and declare

Cs`1 “ Cs ‘ pxaj`1y ‘ . . .‘ xas`1yq |ďs`1 .

Define fs`1pbiq “ ai, i “ j ` 1, . . . , s ` 1. Choose uj`1, . . . , us`1 P Us`1 with the least indices
(lexicographically and in the sense of Remark 5.1.27) such that

fs`1pb0q, . . . , fs`1pbjq, uj`1, . . . , us`1

are ps` 1q-independent in Us`1. Set

fs`1pbkq “ uk, k “ j ` 1, . . . , s,

and then extend fs`1 linearly to Cs`1.

Finally, we need to make sure that f “ lims fs is surjective. This substage of stage s ` 1 will
be performed after the “redefining bk” substage described above, and so the (preliminary) values
of fs`1 and Cs`1 will already be defined.

219

Extending the range of fs`1. If there is a u P cls`1pfs`1pCs`1qq that is not in the range of fs`1,

u “
1

n

ÿ

iďs`1

nifs`1pbiq,

then introduce a c in Cs`1 (together with kc, |k| ď n), set

c “
1

n

ÿ

iďs`1

nibi,

and declare fs`1pcq “ u. Extend fs`1 linearly to Cs`1.

Construction

Build C, f and B in stages.

At stage 0, define B0 “ tb0u, C0 “ t0, cu, where b0 is interpreted as c (c ‰ 0), and set f0pcq “ u,
where u ‰ 0 is the smallest index element of Us that is not equal to 0.

At stage s ` 1, if fspb0q is declared 0 in U (i.e., is listed in Es`1), then initialise the whole con-
struction according to the instructions of complete initialisation. Otherwise, let j be largest such
that tfspb0q, . . . , fspbjqu are s ` 1-independent in Us`1. Perform the algebraic recycling strategy
to put bk (k ě j) into the span of b0, . . . , bj , and then perform the “redefining bk” procedure as
described above to (re)define the values of bj`1, . . . , bs`1 and to define fs`1. Finish the step with
the “extending the range of fs`1” sub-step.

Proceed to the next stage.

Verification

Both the recycling strategy and the complete initialisation strategy allow us to preserve the finite
open diagram of Cs when we define Cs`1, via the usual argument (this was explained in detail in
Mal’cev’s Theorem 2.2.16). We have two cases.

In the first case, we suppose the rank of U is infinite. Then, by induction, we argue that for
every i, the value of bi and also fpbiq eventually settle.

Indeed, b0 is never redefined. Also, the complete initialisation strategy eventually locates a
non-zero element in U , and once this happens fpb0q will never be redefined again. This is because
we always use the smallest index element u; see Remark 5.1.27. (This is where we need U ‰ t0u.)

The recycling strategy makes sure that, whenever the f -images of some elements are either
discovered dependent or equal to zero, they are put into the span of b0, . . . , bj for the largest j
so that fspb0q, . . . , fspbjq still look independent. Furthermore, in this case fs`1pbiq “ fspbiq for
all i ď j. Thus, since we always choose the new f -images for bj`1, . . . , bs to have the smallest
possible indices lexicographically, we conclude that in the limit of the process fpBq is maximal
linearly independent in U . Since f is evidently a homomorphism, it follows that f is injective
(Lemma 5.1.3). Further, C “ spanpBq by construction, and furthermore in the very final phase of
the construction we ensured that f : B Ñ U is extended to the entire U “ spanpfpBqq. It follows
that in this case C – U via the ∆0

2 isomorphism f .

220

In the second case, assume the rank of U is n. Since U is non-trivial by our assumption, n ą 0.
In this case the values bk, k ą n never settle in the construction. However, for each i ă n, both
bi and fpbiq eventually settle, and thus fpcq eventually settles for each c P spantb0, . . . , bn´1u.
Further, C is built to be equal to spantb0, . . . , bn´1u, and in the last phase of the construction we
ensured that f : C Ñ U “ spanptfpb0q, . . . , fpbn´1quq, where f “ lims fs, is surjective. Since f is a
homomorphism and maps a basis to a basis, we conclude that f is a ∆0

2-isomorphism of C onto U .

The proof of Khisamiev’s Theorem is now finished.

Combined with Dobrica’s Theorem 5.1.37, we obtain:

Corollary 5.1.42. Every c.e. presented torsion-free abelian group has a computable presentation
with a computable basis.

5.1.5 An application to categoricity˚

Recall that an algebraic structure is called computably categorical if it has a unique computable
presentation, up to a computable isomorphism.

Theorem 5.1.43 (Nurtazin [417]). A computable torsion-free abelian group is computably categor-
ical iff its rank is finite.

Sketch. (For a complete proof, see, e.g., [203, 244].) The case when the group is the zero group is
trivial. Suppose G has a finite basis b0, . . . , bk, k ě 0. Fix any other computable copy H and any
isomorphism f : G Ñ H. We argue that f is computable. Non-uniformly fix b0, . . . , bk P G and
fpb0q, . . . , fpbkq P G. Given g P G, search for integers m,n0, . . . , nk such that

mg “
ÿ

iďk

nibi.

In H, search for h such that
mh “

ÿ

iďk

nifpbiq.

It must be that h “ fpgq, by torsion-freeness (as explained in §5.1.1).
Now assume the rank of G is infinite. By Dobrica’s Theorem 5.1.37, we can assume that

the group G has a computable basis. Our proof of Khisamiev’s Theorem 5.1.41 gives a strategy of
building a computable copy H of any given c.e. presented torsion-free group so that, when necessary,
we can declare

bk P spantb0, b1, . . . , bju, k ą j,

where Bs “ tbi : i ď su is our attempt to approximate a basis. Of course, the strategy works for
computable groups as well.

The idea is to apply this strategy to build a computable copy H of G without a computable
basis. If we succeed, then H and G cannot be computably isomorphic. This is because if we had
a computable isomorphism h : G Ñ H, then the image of the computable basis of G would be a
c.e. basis of H; apply Fact 5.1.22 to get a contradiction. (Compare this argument with the proof
of Mal’cev’s Theorem 2.2.16.)

221

By Fact 5.1.22, to build H – G without a computable basis it is sufficient to diagonalise against
all potential algorithms for linear independence in H. Interpret the e-th computable ϕe as the
e-th potential algorithm for linear (in)dependence. We may assume e ą 0. Build H and a ∆0

2

isomorphism f : H Ñ G, as follows.

1. Let H copy G via f .

2. Wait for ϕe to declare b0, . . . , be independent.

3. If this ever happens, use the algebraic strategy above to declare bk P spantb0, . . . , be´1u for
e ď k ď s, introduce new interpretations for these bk in H.

4. Then use elements linearly independent over tfspbiq : i ă eu (i.e., in G{ spanptfspbiq : i ă euq)
to define fs`1pbkq, e ď k ď s.

The rest of the proof is a standard finite injury argument; we omit it.

Exercises

Exercise˝ 5.1.44. Using Lemma 5.1.10 prove that every linearly independent subset of a torsion-
free abelian group can be extended to a basis of the group, and that all bases of the group have the
same cardinality.

Exercise˚ 5.1.45 (Dobrica [114]). Prove Dobrica’s Theorem 5.1.37 for arbitrary computable
abelian groups.

Exercise˚ 5.1.46. Give a direct non-uniform proof that every c.e. presented torsion-free abelian
group of finite rank has a computable presentation.

Exercise˝ 5.1.47. Give a complete and detailed proof of Theorem 5.1.43.

Exercise˚ 5.1.48. Prove Khisamiev’s Theorem 5.1.41 using a modification of the combinatorial
strategy from the proof of Dobrica’s Theorem 5.1.37.

For the next exercises, recall that an (additive, abelian) group G is ordered if a ď b implies
a ` c ď b ` c, for any a, b, c P G. It is well-known that an abelian group is orderable iff it is
torsion-free; we cite books [314, 193] for a general exposition of the theory of ordered groups. Also,
if ď is an order in an ordered abelian G, then we say that a, b P G lie in the same Archimedean
class, or Archimedean equivalent (written a „ b) if there exist non-zero integers n,m such that
a ď nb and b ď ma. The Archimedean classes are also ordered under the induced ras„ ď rbs„ iff
a ď b, which is well-defined on the classes. While none of the exercises below is marked with a star,
some of them are certainly non-trivial, especially those based on the results of Solomon [479].

Exercise˝ 5.1.49 (Downey and Kurtz [135]). Show that there is a computable copy of the free
abelian group that is not computably orderable. (Use a simplified version of the strategy from
Khisamiev’s theorem.)

Exercise 5.1.50 (Melnikov [366]). Show that, given a ∆0
2 linear order L with a least element, we

can produce an ordered group GpLq so that the ordering ď of the Archimedean classes of GpLq is
isomorphic to L. (Combine the strategy from the previous exercise with a ∆0

2 approximation of L.)

222

Exercise˝ 5.1.51 (Solomon [479]). Show that if G is a computable presentation of a torsion-free
abelian group of rank 1, then G has exactly two orders both of which are computable.

Exercise˝ 5.1.52 (Solomon [479]). Prove that if G is a computable presentation of a torsion-free
abelian group with finite rank strictly greater than 1, then G has orders of every Turing degree.

Exercise 5.1.53 (Solomon [479]). Let G be a computable presentation of a torsion free abelian
group with infinite rank. Show that G has orders of every degree a ěT 01.

Exercise 5.1.54 (Solomon [479]). Show that there exists a Π0
1-class C Ď 2ω so that for any

computable presentation of a (torsion-free) abelian group G, C does not realise the orders on G in
the sense of Exercise 2.2.25. (Hint: Use the previous three exercises and Exercise 4.2.59.)

Exercise˝ 5.1.55 (Solomon [479]). Use Dobrica’s Theorem to prove that every computable torsion-
free abelian G is isomorphic to a computably ordered, computable H. (Hint: Embed the group
into the additive group of computable reals using, e.g., the reals

?
pi.)

5.1.6 Some further remarks˚

The strategy we utilised in Dobrica’s Theorem was invented by Nurtazin [417], as far as we know. Of
course, the key idea behind the strategy can be traced (at least) back to Mal’cev; see Theorem 2.2.16.
Dobrica [114] adopted a modified version of this strategy. (We remark that the other standard
spelling of Vyacheslav’s family name is Dobritsa.) Notably, Dobrica’s theorem does not require
the group to be torsion-free in its full generality. Khisamiev [288] further extended this strategy
to c.e. presented groups. Khisamiev’s result answered a question of Baumslag, Dyer, and Miller
[31], which was raised in the context of homologies of finitely presented groups; more about this in
§8.3.2.

Goncharov, Lempp, and Solomon [215] applied this combinatorial strategy to ordered abelian
groups, proving analogous versions of Dobrica’s and Nurtazin’s Theorems for such groups. However,
as we have seen, this combinatorial strategy is not the ultimate method for handling computable
torsion-free abelian groups. In fact, it appears that the strategy can often be circumvented if
necessary. For instance, our proof of Khisamiev’s Theorem avoids this combinatorial approach
altogether, replacing it with an application of Rado’s Lemma to (partial) groups. In [203], Gon-
charov bypasses the combinatorial strategy entirely when demonstrating that every abelian group
of infinite rank has infinitely many computable copies, up to computable isomorphism. However, it
is worth noting that he does reference Dobrica’s Theorem when he fixes a copy with a computable
base. Much more recently, Harrison-Trainor, Melnikov, and Montalbán [244] gave a simultaneous
proof of Dobrica’s Theorem and Nurtazin’s Theorem, avoiding the combinatorial strategy using the
notion of a c.e. pregeometry (see the discussion after Lemma 5.1.10).

The study of abstract computable pregeometries had been initiated long before [244]. Notions of
independence play a central role in the study of the combinatorial properties of effectively presented
vector spaces and of other structures with an appropriate notion of independence. Such studies were
quite popular in the 1970s and 1980s; the standard reference is the fundamental paper of Metakides
and Nerode [383], see also [110, 111, 112, 468, 117] and, for applications to reverse mathematics,
[470]. Many results on subspaces of computable vector spaces remain true in the abstract setting
of computable pregeometries (closure or span operators) – see the survey [148].

The main meta-theorem in [244] pushes this intuition even further. For instance, it follows
from the meta-theorem that the natural analogies of Dobrica’s Theorem and Nurtazin’s Theorem

223

hold for real closed fields and differentially closed fields, with respect to their natural notions of
independence [244]. Also, [244] gives a combinatorially much simpler proof of the aforementioned
results from [215] about ordered groups. The method from [244] has been applied in [373] to give a
new ”factorial-free” proof of Dobrica’s Theorem for abelian groups that are not necessarily torsion-
free. In our book, we do not need this degree of generality. However, [244, 148] could be worth
looking at.

We shall return to discrete abelian groups in Part 2, where a much more in-depth analysis of
(torsion-free, abelian) completely decomposable groups will be presented in Chapter 7. Computable
torsion-free abelian groups (that are not completely decomposable) will be used as a technical tool
in Chapter 8 to study connected spaces. Finally, the theory of computable abelian p-groups and
their computable profinite duals will be presented in Chapter 9.

224

5.2 Effective Pontryagin duality

In this section, all groups are additive and abelian. Pontryagin duality is one of the main tools of
abstract harmonic analysis (see textbook [173]), and it will also play a central role in this section.
Let T “ pR,`q{pZ,`q, the unit circle group. Alternatively, T is the multiplicative group of the
complex numbers having norm 1. For any locally compact topological group G, form its dual group

pG “ tχ | χ is a continuous group homomorphism from G to Tu.

It is easily seen that pG is itself a topological group under the operation pχ`ξqpaq “ χpaq`ξpaq and
the topology of uniform convergence. We will only need the case when G is either compact Polish
or discrete countable. If G is compact Polish, then the topology of uniform convergence is exactly
the topology given by the metric supxPGp|χpxq ´ χpyq|q on the space of all continuous functions

GÑ T, in which pG forms a closed set. We will soon explain (§5.2.1) an easy way to think about pG
for a discrete countable G.

Pontryagin duality states that if G is compact or discrete abelian, then G –
p

pG. It is not hard
to see that pG is discrete when G is compact. This means that the discrete dual pG of a compact
abelian G contains all the information about G. Thus, the duality essentially reduces the study
of compact abelian groups to the algebraic theory of abelian groups; a detailed exposition of this
theory can be found in [340]. We note that van Kampen extended the duality to arbitrary locally
compact abelian groups, but we will focus on the compact Polish/discrete countable case. As we

noted earlier, a locally compact abelian G is discrete iff pG is compact abelian, and in this case, G
is torsion-free (abelian) iff pG is connected compact. We take all these properties for granted and
refer to the books [429, 404] for proofs.

The main goal of this section is to prove (3) of Theorem B. Recall that it states that the notions
of effective compactness and computable Polish presentability differ in the class of connected Polish
spaces, up to homeomorphism. Much of the work necessary to prove Theorem B(3) has been done
in the previous section and in the previous chapter. In this section, we establish the following:

Theorem 5.2.1 (Melnikov [373], Lupini, Melnikov, and Nies [341]). Let G be a (countable,
discrete) torsion-free abelian group. Then G has a computable presentation iff the connected

compact domain of its dual pG has a computably compact presentation.

Theorem 5.2.1 does not require the group operations on pG to be computable. It will follow from
the proof that, whenever the domain of the compact connected pG has a computably compact copy,
it must also have a computably compact copy in which the group operations are computable. This
theorem and its unexpected counterpart, Theorem 5.2.25, for ∆0

2 groups and computable Polish
spaces will be crucial in the proof of Theorem B(3).

5.2.1 From discrete to compact

IIn this subsection, we describe how to build a computable compact presentation of pG given a
computable discrete torsion-free G. This provides one implication in Theorem 5.2.1.

225

Proposition 5.2.2. Suppose G is computable torsion-free. Then pG admits a computably compact
presentation. Furthermore, pG can be realised as a computable closed (thus, computably compact)
subgroup of the computably compact group

A “
ź

iPN
Ti,

where each Ti is a copy of the natural computably compact presentation of the unit circle group
T “ R{Z. If G has infinite rank, then this is uniform.

The proof below heavily relies on the material from the previous section and on the calculus of
computably compact sets developed in the previous chapter. Modulo these results, the construction
of a computably compact copy of pG and its verification are not too difficult.

Proof of Proposition 5.2.2. The direct product

A “
ź

iPN
Ti

of infinitely many identical copies Ti of T carries the natural product metric

Dpχ, ρq “
8
ÿ

i“0

1

2i`1
dipχi, ρiq,

where each di denotes the shortest arc metric on Ti.
Every compact abelian group can be realised as a closed subgroup of A, as follows. Suppose

G “ tg0 “ 0, g1, g2, . . .u is a countably infinite discrete group. Let HompG,Tq be the subset of
A “

ś

iPN Ti, consisting of tuples χ “ pχ0, χ1, . . .q, where each such tuple represents a group homo-
morphism χ : G Ñ T such that χpgiq “ χi P Ti. Since G is discrete, every group homomorphism

χ : G Ñ T is necessarily continuous. Thus, pG – HompG,Tq. Since being a group homomorphism
is a universal property, HompG,Tq is closed in A. Thus, Pontryagin duality implies that every
separable compact abelian group is homeomorphic to a closed subgroup of A. Our task is to show
that this presentation can also be computably closed, though it is not guaranteed for an arbitrary
computable presentation of G (Exercise 5.2.15). This will require some work.

We say that a point x P T is rational if the respective point of the unit interval is a rational num-
ber. Then T, equipped with rational points and the shortest arc metric, is evidently a computably
compact Polish group.

Lemma 5.2.3. Under the metric D and the component-wise operation, A is a computably compact
Polish group.

Proof. The underlying space A is a computable product of computably compact spaces; this was
already stated in Proposition 4.2.17 earlier. The computable dense set is given by sequences paiqiPN,
where ai is a rational point in Ti, and almost all ai are equal to zero. The group operation is clearly
computable.

Using Dobrica’s Theorem 5.1.37, fix a computable presentation H of G that admits a computable
maximal linearly independent set. By Fact 5.1.22, this is equivalent to saying that in H we can
decide whether a given tuple of elements is dependent or not.

226

Recall that in Definition 5.1.23 we defined a tractable presentation as follows. A computable
torsion-free H is tractable if there exists a uniformly computable ascending sequence of finitely
generated abelian groups pFiqiPN with the following properties:

1. H “
Ť

iPN Fi.

2. t0u “ F0 Ď F1 Ď F2 Ď F3 Ď . . . is a uniformly computable sequence in which the set-theoretic
embeddings are also uniformly computable.

3. For every Fi (i ą 0), we can uniformly compute a finite set of elements h0, . . . , hkpiq such that

Fi “ xh0y ‘ xh1y ‘ . . .‘ xhkpiqy.

By Lemma 5.1.24, H is tractable, and furthermore, the proof of Lemma 5.1.24 is uniform. Before
we proceed, note that pZ – T (Exercise 5.2.13).

Lemma 5.2.4. Suppose a computable torsion-free abelian group H is tractable. Then HompH,Tq
is a computably closed subset of A “

ś

iPN T.

Proof of Lemma 5.2.4. Suppose C Ď
ś

iPN Ti is a closed subgroup, then let Ci Ď Ti denote the
projection of C onto Ti. (By the torsion-freeness of H, we will actually have Ci “ Ti when i ą 0 and
C0 “ t0u. We, however, stick with the notation Ci to emphasise that we are dealing with projections
of C.) We say that Ci is defined by a primitive relation if one of the following possibilities is realised:

(1) there is a j ă i and a positive integer k such that every χ P C satisfies χi “ kχj ,

(2) there is a j ă i and a non-negative integer k such that every χ P C satisfies kχi “ χj ,

(3) there exist u, v ă i such that every χ P C satisfies χi “ χu ´ χv,

(4) there exist u, v ă i such that every χ P C satisfies χi “ χu ` χv.

In each of the four cases, we assume that every finite sequence pχ0, . . . , χiq, where χj (j ď i)
satisfies the respective linear conditions, can be extended to an infinite sequence χ P C. Note, if
j “ k “ 0 in p2q, then essentially there is no restriction on χi since χ0 “ 0. We also say that
C Ď

ś

iPN Ti is effectively predictable if each Ci is defined by a primitive relation that can be
computed uniformly in i.

Claim 5.2.5. Every effectively predictable (thus, closed) subgroup of
ś

iPN Ti is a c.e. closed subset
of

ś

iPN Ti.

Proof of Claim. Recall that the dense sets in Ti are given by rational points. Fix the computable
(in A) dense (in C) sequence that is given by the sequences of rationals that satisfy the primitive
relations. This makes C c.e. by Lemma 4.2.51.

Claim 5.2.6. Every effectively predictable subgroup of
ś

iPN Ti is effectively closed (Π0
1) in

ś

iPN Ti.

Proof. A sequence χ is not in C if there is an i such that the i-th relation fails. This is an effectively
open condition.

227

By definition, computable closed sets are those Π0
1 sets that are additionally c.e. closed. Since

computable closed subsets of computably compact spaces are themselves computably compact by
Proposition 4.2.53, it remains to prove the following claim.

Claim 5.2.7. Suppose pFiqiPN is a tractable computable presentation of a (discrete and torsion-free)

abelian group G. Then HompH,Tq – pG is effectively predictable.

Proof of Claim. Suppose H “ th0 “ 0, h1, . . .u. Our goal is to define Ci Ď Ti and list primitive
relations defining each of the Ci Ď Ti in terms of some Ck, k ă i. Using Rado’s Lemma 5.1.4, we
can uniformly effectively refine the sequence pFiqiPN witnessing Definition 5.1.23 and assume that
for every i, there exists an a P Fi`1 such that either Fi`1 “ xay‘Fi or Fi`1 “ xFi, ay and for some
m we have ma P Fi`1, where m is assumed to be the least such. (See the proof of Lemma 5.1.24
where this was explained.)

We can effectively find full decompositions of Fi and Fi`1 and the embedding, and thus we can
effectively figure out which of the two possibilities is realised. Since we need to define characters, we
need to specify the index of a in the enumeration of H “ th0 “ 0, h1, . . .u. So suppose a “ hj P H.

In the former case, do not put any restriction on χi (formally, we declare that 0 ¨ χi “ χ0 “ 0
in (2)). For every n there exists an element hk “ nhjp“ naq; we will also set Ck “ Tk and declare
χk “ nχj as the respective primitive relation.

Otherwise, if we have ma P Fi and a “ hj P H, then we check what is the k such that
hk “ mhj P Fi, k ă j, and declare χk “ mχj . For each 0 ă n ă m, there exists an element
hk “ nhjp“ naq. As in the previous case, we will set Ck “ Tk and declare χk “ nχj as the
respective primitive relation.

We also keep working towards closing C under ` and ´. Whenever we have hk “ hj ` hi,
declare χk “ χj ` χi, and similarly for ´. (We can assume that k ą i, j, and we allow i “ j.) The

procedure described above witnesses that C “ HompH,Tq – pG is effectively predictable.

The proof of Lemma 5.2.4 is finished.

Thus, we conclude thatHompH,Tq is computable closed in A which is itself computably compact

by Lemma 5.2.3. Proposition 4.2.53 implies that HompH,Tq – pH – pG is computably compact.
Together with the computable group operations inherited from A, it forms a computably compact
group.

The proposition above can be restated in terms of computable direct and inverse limits, if
necessary, and it essentially says that the well-known property

{lim
ÝÑ
iPN

Gi – lim
ÐÝ
iPN

pGi

holds computably for discrete torsion-free G “ lim
ÝÑiPNGi (where Gi ő G are finitely generated)

assuming G has an algorithm for linear independence. We remark that the torsion-freeness of G in
Proposition 5.2.2 can be dropped; see Exercise 5.2.16. We will return to this in Chapter 9, where we
will carefully verify this effective correspondence between inverse and direct limits of finite abelian
groups.

Remark 5.2.8. The proof of Dobritsa’s Theorem 5.1.37 is uniform in the case when the rank of G
is infinite, and Fact 5.1.22 is uniform as well. The rest of the argument above is uniform without
any restriction on the rank of G. In conclusion, provided that G has infinite rank or we have access

228

to its basis, the index of the computably compact presentation of pG constructed in the proposition
above can be obtained uniformly from the index of G (and the index of its basis, if it is given).
This assertion could be true without any restriction on the rank, but it would require a much more
careful proof (if true), and more importantly, we won’t need full uniformity.

Turning a ∆0
2 discrete group into a computable Polish space

Fix a prime number q.

Definition 5.2.9. We say that H is q-divisible if q8 | h for every h P H, i.e., for any n P N,

@h P H Dy P H qny “ h

holds in H.

The lemma below will be crucial in the proof of Theorem B(3). It is also somewhat unexpected.

Lemma 5.2.10 (Melnikov [374]). Assume a ∆0
2 group H is torsion-free abelian and q-divisible.

Then its Pontryagin dual pH has a computable Polish presentation.

Proof. We buildG ő A “ Tω, where, as before, T is the “natural” computably compact presentation
of the unit circle group. Our goal is to ensure G – pH.

Using Dobrica’s Theorem 5.1.37 relativised to 01, fix a ∆0
2 presentation with a ∆0

2 basis B.
Taking the retract of the domain under a suitable ∆0

2 map, we can ensure that the indices of the
basic elements form a computable set3. We can additionally assume that the index of the zero
element is 0.

The basis freely generates a free abelian subgroup of H. Every non-zero element h P H satisfies
a relation of the form

nh “
ÿ

bPB

mbb,

where n ą 0 and almost all coefficients mb are zero. We can view H as a Σ0
2 subgroup of V|B| “

À

iăcardpBqQ so that the basis B is equal to the standard basis of V|B|, where B is a computable
set. To list H as a subgroup of V|B|, it is sufficient to list elements h P H that satisfy relations of
the form

pvh “
ÿ

bPB

mbb,

where p ranges over primes and v over positive integers. Note that if such an h exists, then it is
unique. We computably guess whether the relation holds in the group in the spirit of the Limit
Lemma 3.1.3. The relation holds in the group iff

ř

bPBmbb

pv
P H.

Since H is a Σ0
2 subgroup in general, the relation holds if we eventually never see it to fail. However,

if the relation fails, we can have infinitely many stages at which we believe that the relation might
hold.

3The case of a finite basis is trivial. If the domain of H is ω and B Ď ω is infinite, fix an injective ∆0
2 map

f : ω Ñ ω so that tfp2k ` 1q : k P Nu “ B and tfp2kq : k P Nu “ GzB. It is defined to be the map that lists the
respective ∆0

2 sets in natural increasing order. We define the new ∆0
2 presentation of the group by setting ai “ aj`ak

if fpiq “ fpjq ` fpkq, which is 01-computable. In this presentation, f´1pBq is a computable set.

229

We reserve a special copy Th of T for every such generator h, including Tb for each b P B. In
this notation, the elements of G are sequences of the form pχhqhPH going through the computably
compact A –

ś

hPH Th. Similarly to the proof of Proposition 5.2.2, we would like to declare
mχh “

ř

bPBmbχb for all χ P ThXG whenever we have a relation mh “
ř

bPBmbb. This, however,
seems to require H1 in general, so we cannot just get away with relativising Proposition 5.2.2.

An informal outline of the basic strategy. The idea is to ensure that, in the dual group, mχh “
ř

bPBmbχb holds up to (say) error 2´s at stage s, and therefore it can be corrected later if nec-
essary. If we decide that mχh “

ř

bPBmbχb no longer holds for any h (in the spirit of the Limit
Lemma 3.1.3), we will be able to turn it into a relation of the form qkh “

ř

bPBmbb, where q is the
fixed prime (so that the group is q-divisible) and k is very large.

We provide additional details. At each stage, we will place only finitely many rational points
into each circle. Suppose we initially have a relation of the form

mχh “
ÿ

bPB

mbχb, (†)

which is approximated by finitely many intervals in the respective copies of the unit circle, with an
error of 2´s at stage s. If this relation is consistent for h and remains unchanged, we will continue
to refine these intervals, making them smaller. Consequently, we will obtain a closed set where
the relation indeed holds. The process of shrinking intervals will enable us to approximate a dense
computable subset of this closed set.

Now suppose we no longer believe in the relation mχh “
ř

bPBmbχb at stage s. At this stage,
we have only finitely many intervals approximating the relation with precision 2´s. Choose k
sufficiently large such that each of these finitely many intervals in Th contains at least one point of
the form r

qk´m
, where r ď pqk ´mq. Under the map x ÞÑ qkx, the point r

qk´m
on the unit circle is

mapped to
rqk

qk ´m
“
rpqk ´m`mq

qk ´m
“ r `

rm

qk ´m
“

rm

qk ´m
. (‡)

In other words, x ÞÑ mx and x ÞÑ qkx agree on all points of this form. Consequently, for these
points,

qkχh “
ÿ

bPB

mbχb (*)

will also hold “up to 2´s”, which corresponds to

Dh qkh “
ÿ

bPB

mbb

in H, and this holds vacuously since the group is q-divisible. Therefore, we can consistently switch
the approximation of our closed set locally, perhaps making further necessary adjustments, as
explained below.

Remark 5.2.11. For instance, if we are dealing with the relation mh “ b and changing it to
qkh “ b, then we need to introduce 2´s-approximations for many new pre-images of b under the
(adjusted) map. For example, there are only two pre-images under the map x ÞÑ 2x, but there are
four pre-images under the map x ÞÑ 4x. Such adjustments can make the c.e. closed set that we
build not effectively closed (not Π0

1) in general.

230

Then we introduce a fresh circle corresponding to the relation

mh “
ÿ

bPB

mbb,

and repeat the process. If the relation indeed holds, then we will eventually find a “stable” circle
realising it. Otherwise, we will continue adding circles to witness the q-divisibility of the group, and
as a result, no circle will actually realise the relation. The verification is similar to Proposition 5.2.2,
but, as explained in Remark 5.2.11, we cannot guarantee computable compactness.

Note there is essentially no interaction between strategies working with different generators of
H in V|B|. There are only two further subtleties that perhaps need to be discussed.

1. What if, at some stage, we mistakenly believe that mh “ b and nh “ b for m ‰ n? Our
presentation H of G, using V|B|, automatically resolves all such issues, since every subgroup
of V|B| is clearly torsion-free.

2. The relations of qn-divisibility play a special role in the construction; in particular, we must
ensure that all elements are q8-divisible. In the construction, we implement the basic strate-
gies only for generators with relations of the form nh “

ř

bPBmbb, where n and q are co-prime.
Meanwhile, we manually introduce more and more new circle-components for relations of the
form qkh “ b, for each b. To ensure that no such relations are missing, we continue adding
circles corresponding to elements g such that g “ mh (as in the proof of Proposition 5.2.2).

Now the reader hopefully sees how to organise the construction, but we include a (somewhat
compressed) formal proof nonetheless. To make our proof a bit more transparent, we will actually
split the relation mχh “

ř

bPBmbχb into two relations: χr “
ř

bPBmbχb and mχh “ χr. Thus, we
will apply the strategy outlined above to relations of the form mχh “ χr. This is, of course, a mere
notational convenience.

Formal proof. We first provide a “crude” construction that manipulates copies of the unit circle
and relations of the form nχh “

ř

bPBmbχb, which seemingly yields a merely 01-computable Polish
presentation of the dual group. We then combine this crude definition with the approximation
technique outlined above to define a computable Polish group.

The crude construction. For every b P B, reserve a copy Tb of the unit circle group. At stage
s of the crude construction, introduce one more Tb and monitor one more relation of the form
pvh “

ř

bPBmbb. For every such relation that had not previously been considered, do the following:

(a.1) Introduce a copy of the unit circle group Tr and declare

χr “
ÿ

bPB

mbχb.

(a.2) Introduce a new copy of the unit circle group Tr,0 and declare it active.

(a.3) Declare pvχr,0 “ χr. (Informally, χr,0 is our initial attempt to define a “stable” circle for h.)

For every relation that has already been considered, check if it still holds according to the Σ0
2-

approximation that we fixed above. If it does not hold, then let u be largest such that Tr1,u is
currently active, and so that χr1 “ pwχr1,u was declared at the stage when Tr1,u was introduced.

231

(b.1) Declare Tr1,u inactive and declare χr1 “ pvχr1,u dismissed.

(b.2) Choose k very large (to be clarified) and declare χr1 “ qkχr1,u.

(b.3) Introduce a new copy Tr1,u`1 of the unit circle group and declare it active.

(b.4) Declare χr1 “ pvχr1,u`1.

The construction builds a system of circles and relations between them. If in step pb.2q we define
k carelessly, we might end up with a crude construction that builds a ∆0

2-closed subgroup of Tω.
We now explain how this crude construction can be approximated computably.

Approximating the crude construction computably. Note that, for intervals I, J Ď T with rational
end-points and m P Z, both mI and I ` J are also intervals with rational end-points.

Definition 5.2.12. For a finite equation of the form mh “
ř

bPBmbb, its ε-name is a finite

collection of open basic intervals U ih P Th and U jb P Tb of diameter ε with the following properties:

1. U jb cover Tb;

2. U ih cover Th;

3. If mx “
ř

bPBmbyb holds for x P Th and yb P Tb then for some intervals U ih Q x and U jbb Q yb,

mU ih “
ÿ

bPB

mbU
jb
b .

To define G, we monitor the crude construction. At each stage s, we perform the following
steps:

1. Enumerate additional points into each copy of the unit circle that has been introduced by the
crude construction.

2. For every declared relation that has not yet been dismissed, except for those declared in pb.4q
of the current stage, refine its 2´s`1-name to a 2´s-name.

3. For every relation of the form χr “ qkχr,u introduced at a (b.2)-type substage of the current
stage for some r, replace the 2´s`1-name of the dismissed relation χr “ pvχr,u with a 2´s-
name of χr “ qkχr,u.

In particular, in step (b.2) we choose k sufficiently large so that substep (3) can be executed
according to (‡) and the discussion preceding it. This ensures that we obtain a closed subset C of
the constructed copy of Tω, consisting of all characters that satisfy the relations introduced during
the construction. (Note that this copy is not literally

ś

hPH Th, because it requires H1 to identify
the circle corresponding to h P H.)

The verification. We first explain how to list a dense subset of C. At every stage, we list only finite
tuples of special points in the constructed copy of Tω that satisfy the currently declared relations
up to 2´s (in the sense of Definition 5.2.12). During the construction, we will keep refining and
extending each such finite tuple, so that the result will converge uniformly to an infinite tuple

232

of points going through the whole of Tω. This is done arbitrarily, say, by choosing the smallest
available index among the special points that obey the current 2´s-names (Definition 5.2.12).

It should be clear that C is equal to the completion of the uniformly computable list of points
that we build according to the procedure described above. To finish the verification, note that C is
topologically isomorphic to the character group of H, and therefore is a computable presentation
of pH – pG under the operations inherited from Tω.

Exercises

Exercise˝ 5.2.13 (Folklore). Show that the unit circle group T and the group of integers Z are
dual to each other. Show that cyclic groups are self-dual.

Exercise˝ 5.2.14 (Folklore). Let A,B be either discrete or compact abelian groups. Show that
{A‘B – pA‘ pB.

Exercise 5.2.15 (Melnikov [373]). Prove that the Π0
1-closed subset HompG,Tq of A defined in the

proof of Proposition 5.2.2 does not have to be computably compact in general, i.e., without the
extra assumption that the computable discrete group G has a computable basis.

Exercise˚ 5.2.16 (Melnikov [373]). Prove Proposition 5.2.2 for arbitrary computable abelian G.
(Hint: Use Exercise 5.1.45.)

5.2.2 From compact to discrete

In this subsection, we establish the remaining implication of Theorem 5.2.1, and also its version
for connected computable Polish spaces and ∆0

2-groups. Before we proceed, we need to review the
basic definitions from algebraic topology. The reason is that, for a compact connected abelian G,
its torsion-free dual group is isomorphic to the first Čech cohomology group (to be clarified). Thus,

to finish the proof of Theorem 5.2.1, we need to calculate the latter for a computably compact pG.
We explain all terms below.

Simplicial (co)homology

We very briefly review the classical notions of simplicial homology and cohomology; for a thorough
introduction see [411].

Geometric simplicial complexes. Recall that a simplicial complex is essentially a space with a
triangulation. A simplex is the higher-dimensional counterpart of a triangle. Thus, a point is a
0-simplex, a line segment is a 1-simplex, a triangle is a 2-simplex, and so on. Objects in the space
composed solely of these simplices are called simplicial complexes. A (geometric) simplicial complex
K in Rn is a collection of simplices in Rn such that:

1. Every face of a simplex in K is also in K, and

2. The intersection of any two simplices in K is a face of each of them.

We will only need the case where the complex is finite (i.e., composed of finitely many simplices).

233

An n-simplex on pn`1q vertices in Rm, where m ě n, can be easily parameterised using linearly
independent vectors. If we have w0, . . . , wn P Rm such that v1 “ w1 ´ w0, . . . , vn “ wn ´ w0 are
linearly independent, then the simplex is parameterised via

#

n
ÿ

i“1

αivi :
n
ÿ

i“1

αi “ 1 and αi ě 0, i “ 1, . . . , n

+

.

It is not difficult to see that when vi are computable, the resulting object is computably compact,
but we will not need this. What we need is the cohomology group of a (finite) abstract simplicial
complex. These notions are defined below.

Abstract simplicial complexes. An abstract simplicial complex is essentially a higher-dimensional
generalisation of a graph. It consists of:

1. a set V of objects called vertices, and

2. a set S of subsets of V called simplices such that:

(a) σ P S and τ Ď σ implies τ P S, and

(b) for each v P V , tvu P S.

If τ Ď σ, we say that τ is a face of σ. If σ has k ` 1 elements, then its dimension is k.
We are interested in finite simplicial complexes. Every finite abstract simplicial complex can be

realised as a geometric simplicial complex, but we will not actually need it. In fact, all parameters
in such a realisation can be chosen to be rational. Since we know there is one, we can simply search
for it. Thus, the geometric realisation is also uniformly effective in the right sense. We omit further
details. However, it is perhaps useful to have some geometric intuition when working with abstract
simplicial complexes.

Computing homology. Suppose K “ pV, Sq is a finite abstract simplicial complex. Orient every
simplex in S by choosing the order of vertices. The orientation can, for instance, be defined using
the sign of the determinant of rv1´v0, . . . , vk´v0s in the geometric realisation; recall the vectors can
be taken to have rational coordinates. However, the orientation can be done essentially arbitrarily
(more details below); it is known that we always arrive at the same (co)homology groups as a result.
Thus, we do not actually have to calculate a geometric interpretation.

If σ P S, we assume it is already oriented and write σ “ pv0, . . . , vkq. We also write pv0, . . . , pvi . . . , vkq
to denote the (oriented) face of σ that has all vertices except for vi, and which has the orientation
from v0 to vk. A simplicial k-chain is a finite formal sum

ÿ

i

ciσi,

where ci P Z and σi are oriented k-simplices, i.e., for each i, σi “ pvi,0, . . . , vi,kq for some vi,j P V .
Also, we would like to have pv0, v1q “ ´pv1, v0q. More generally, if π is a permutation of vertices

in σ and τ is obtained from σ by applying this permutation, then we also declare σ “ sgnpπqτ ,
where sgn is the sign of the permutation. Equivalently, swapping two adjacent vertices results in
a change of the sign of σ in the group. Either way, we have finitely many generators and finitely
many relations upon these generators that we define computably.

234

We arrive at a computable finitely generated abelian group

Ck “ Gk{Rk,

where Gk is freely generated by oriented k-chains and Rk is freely generated by the aforementioned
relations. By Rado’s Lemma 5.1.4, we can uniformly computably find a set of generators of the
resulting finitely generated abelian group so that these generators determine a (complete) direct
decomposition of Ck “ Gk{Rk into cyclic summands. Also, define the boundary operator Bk by the
rule

Bkpv0, . . . , vkq “
ÿ

iďk

p´1qipv0, . . . , pvi . . . , vkq.

This can be extended to k-dimensional chains linearly, thus inducing a group homomorphism

Bk : Ck Ñ Ck´1.

(We can set B0 equal to the zero map 0.) Note that, so far, all definitions were uniformly computable
in the strongest sense possible.

It is well-known and easy to see that Bk ˝ Bk`1 “ 0, and thus

Im Bk`1 Ď Ker Bk.

Definition 5.2.17. Define the k-th homology group of a finite simplicial complex K to be

HkpKq “ Ker Bk{Im Bk`1.

The other standard notation is HkpK;Zq to emphasise that we used coefficients ci P Z when we
defined k-chains. It could be any other abelian group, but we will not need this degree of generality.

We see that simplicial homology is computable.

Fact 5.2.18 (Folklore; see [411]). Given a (strong index of an abstract) simplicial complex, we
can uniformly compute its i-th homology group represented as

À

iďkxaiy, where a0, . . . , ak are the
generators of the group such that the orders of the cyclic xaiy are also uniformly computable.

We leave the formal verification of this fact as an exercise. (Chapter 1 (Section 11) of [411]
contains a rather detailed verification of Fact 5.2.18.)

Simplicial cohomology. Following the general pattern of the book, we will need a notion that is dual
to homology. For the chain of groups and homomorphisms

¨ ¨ ¨ Ñ Ci`1
Bi`1
Ñ Ci

Bi
Ñ Ci´1 Ñ ¨ ¨ ¨

define the dual “cochain”

¨ ¨ ¨ Ð C˚i`1
di
Ð C˚i

di´1
Ð C˚i´1 Ð ¨ ¨ ¨

where

C˚i :“ HompCi,Zq

is the abelian group of all homomorphisms from Ci to Z and

di´1 : C˚i´1 Ñ C˚i

235

is the homomorphic map dual to Bi in the sense that

pdi´1fqpcq “ fpBicq,

for any f P C˚i and c P Ci. The above relation also fully determines what the map di´1 does on
every such f . Also, each element f of C˚i is fully described by where it maps the finitely many
generators of Ci. This is all uniformly computable. It s not hard to show that Imdi´1 Ď Ker di.
(When i “ 0 assume Impd´1q “ t0u.) We arrive at:

Definition 5.2.19. Define the i-th cohomology group of a finite simplicial complex K to be

HipKq “ Ker di{Imdi´1.

Again, HipK;Zq is the other standard notation, because in our definitions Z can be replaced
with some other abelian group G throughout, giving the notions “with coefficients in G”. We will
need only cohomologies “with coefficients in Z”. It is not difficult to see that a version of Fact 5.2.18
holds for the cohomology groups as well; we delay the verification of this claim until later (this is
Claim 5.2.22).

Čech cohomology

We follow Section 73 of [411]. Given a compact M , let N be the directed set of all its finite open
covers (under refinement). Since the covers by basic ε-balls, where ε ranges over positive rationals,
are cofinal among all covers, without loss of generality we can restrict ourselves only to covers by
basic open balls with rational radii. For instance, N could be a nerve-decidable system of covers
(Definition 4.2.29) well-ordered under formal refinement instead of the usual refinement.

For each cover K from the system N , recall that its nerve NpKq is the collection of all subsets
in the cover that intersect non-trivially. One can view NpKq as a (finite, abstract) simplicial
complex in which the n-dimensional faces are exactly the n-element subsets X of NpKq such that
Ş

tY : Y P Xu is a non-empty set. For these finite simplicial complexes, we can define their
cohomology groups

HipNpKqq “ kerpdiq{ impdi´1q

(with coefficients in Z). If we have two covers, K and K̃, and K̃ refines K, then any refinement
map

r : NpK̃q Ñ NpKq, such that rpBq Ď B̃,

is simplicial in the sense that the images of the vertices of a simplex always span a simplex. Indeed,
if several balls intersect, then the bigger balls that contain them must obviously intersect as well.

This map induces a map between k-chain complexes as well. It is well known that, furthermore,
it induces homomorphisms

ψi
K,K̃

: HipNpKqq Ñ HipNpK̃qq

between the respective i-th cohomology groups; see Section 73 of [411] for a careful verification.
Keep refining covers and keep “extending” the respective cohomology groups; note, however, that
some elements of HipNpKqq can be declared equal to zero when we “extend” them to HipNpK̃qq.

236

Consider the group obtained in the limit of this process. Recall the discussion after Property 5.1.25,
where in (5.1) we (somewhat informally) introduced the notion of the direct limit in the specific
context of well-ordered systems of finitely generated abelian groups. We arrive at:

Definition 5.2.20. In the notation above, let the i-th Čech cohomology group HipMq of M
be the (direct) limit of HipNpKqq, K P N , induced by the (inverse) system N .

For a finite simplicial complex, its Čech cohomology is isomorphic to its simplicial cohomology;
see the last chapter of [411]. The i-th Čech cohomology groups are homeomorphism invariants of
the given space. (In particular, the definition of HipMq does not depend on the choice of covers, as
long as every cover is eventually refined by an ε-cover, for any ε ą 0.) Proving this fact is actually
not that difficult, but due to the complexity and length of the definitions involved, we omit it.
We refer the reader to the last chapter of [411]. We take these properties of Čech cohomology for
granted. Our next task is to analyse the computability-theoretic complexity of Čech cohomology.

Computing Čech cohomology

Recall that a (discrete, countable) group is c.e. presented if it is isomorphic to a factor of a com-
putable free group by a computably enumerable subgroup. In other words, the operations of the
group are computable but the equality is c.e..

Theorem 5.2.21 (Lupini, Melnikov, and Nies [341]). For a computably compact space M , its
i-th Čech cohomology group admits a c.e. presentation uniformly in i.

The proof below first appeared in [139]; it is different from the proof in [341].

Proof of Theorem 5.2.21. As we noted above, we can assume that we are given a system of 2´n

covers N that is linearly nested under formal inclusion and is X-decidable (nerve-decidable); by
Theorem 4.2.33 and Remark 4.2.34, this can be done uniformly computably.

Fix a X-decidable finite cover K and a positive i P N.

Claim 5.2.22. The groups HipNpKqq are finitely presented, and the strong index of HipNpKqq
can be obtained uniformly uniformly from K and i.

Proof. The finite complex NpKq is computable because the cover K is X-decidable. A close exam-
ination of the definitions shows that, given K (as a finite set of parameters) and i, we can compute
the generators of Ci “ HompCi,Zq and compute di. In the notation of Definition 5.2.19, we can
uniformly computably find a finite set of independent generators pajq of Kerpdiq and a finite set of
generators pbsq of Impdi´1q.

Recall that a group admits a c.e. presentation if it is isomorphic to a factor of a computable
group by a Σ0

1 subgroup.

Claim 5.2.23. The direct limit limKPN HipNpKqq admits a c.e. presentation.

237

Proof. Recall that N consists of X-decidable covers linearly ordered under the refinement relation.
The refinement relation is c.e. and implies refinement. As explained earlier, if we have K Ďform K 1

in N , the it (uniformly effectively) induces a simplicial map between the respective nerves NpKq and
NpK 1q. The latter in turn uniformly computably induces a homomorphism between the respective
cohomology groups φ : HipNpKqq Ñ HipNpK 1qq. By Claim 5.2.22, these abelian abelian groups
are (uniformly) finitely presented. It follows that

lim
KPN

HipNpKqq “ HipMq

can be viewed as a c.e. presentation of HipMq, by Fact 5.1.28.

It is clear that the proofs of the claims above are uniform in i. This finishes the proof of the
theorem.

5.2.3 Effective dualities and the proof of Theorem B(3).

Recall that Theorem 5.2.1 states that, for a discrete torsion-free abelian group G, G has a com-
putable presentation iff the compact connected domain of the dual group pG admits a computably
compact presentation. Note that we do not need to assume that the operation of pG is computable.
And here is why.

Theorem 5.2.24 (Folklore). For a compact connected Polish abelian group H,

H1pHq – pH,

where as usual pH denotes the Pontryagin dual of H, and H1pGq stands for the first Čech cohomology
group of the underlying space.

One does not need the operation of G to define H1pGq; therefore homeomorphic connected
compact abelian groups are necessarily isomorphic as topological groups. The proof of this theorem
is essentially a direct calculation; it is omitted since it is not really related to our story. See Exer-
cise 9.5.18 in Part 2 of the book for a hint. For a detailed proof of Theorem 5.2.24, see pp. 474–477
of [263]. For an even more detailed (and quite technical) general exposition of cohomology theories
of compact abelian groups, we cite [264].

Proof of Theorem 5.2.1. If G is computable torsion-free, then its dual is computably compact by
Proposition 5.2.2. Conversely, if the underlying space of the connected pG is computably compact,
then by Theorem 5.2.21, we can calculate a c.e. presentation of H1pGq. By Theorem 5.2.24, we

obtain a c.e. presentation of the torsion-free abelian group
p

pG – G (by Pontryagin duality). By
Khisamiev’s Theorem 5.1.41, G has a computable copy.

We will also use the following version of effective Pontryagin duality established in [374]. Fix a
prime q.

Theorem 5.2.25 (Melnikov [374]). Suppose G is a q-divisible torsion-free abelian group. Then

G has a ∆0
2 presentation iff the compact dual pG of G has a computable Polish presentation (as

a space).

238

Proof. If G is ∆0
2, then pG is computable by Lemma 5.2.10. Otherwise, if pG is computable, then

pG is computably compact relative to 01, by Fact 4.2.11. Relativise Theorem 5.2.1 to obtain a ∆0
2

presentation of G.

We note that another version of effective Pontryagin duality, this time between torsion discrete
and profinite abelian groups, will be established in Section 9.5.

Recall that to prove Theorem B(3), we need to find an example of a connected compact space
that has a computable Polish presentation, but has no computably compact copy.

Proof of Theorem B(3)

Fix a non-computable c.e. set A; we can take A to be low (Theorem 3.1.1). Consider the group of
the rationals GA generated by the set

"

1

2k
,

1

pi
: i P A and k P N

*

,

where ppiqiPN is the natural list of all prime numbers. By Malcev’s old result (Theorem 5.1.16)
and the remarks after Theorem 5.1.16, GA has an X-computable copy iff A is computable relative
to X. In particular, GA has a ∆0

2 presentation, but it has no computable presentation. Also, GA
is clearly torsion-free and 2-divisible. It follows from Theorem 5.2.25 that the connected compact
domain of pGA has a computable Polish presentation. However, Theorem 5.2.1 implies that the
compact connected domain of pGA cannot possibly have a computably compact presentation, as it
would contradict the choice of A.

The proof of Theorem B(3) is complete.

Exercises

Exercise˝ 5.2.26. Let pAiqiPN be discrete abelian groups. Show that

{

à

iPN
Ai –

ź

iPN

xAi.

Exercise 5.2.27. Show that every computably compact abelian group admits a computably ap-

proximable presentation in the sense of Definition 2.4.8. (Hint: Given G, consider
p

pG and use that
the proof of Proposition 5.2.2 produces a computably approximable group.)

Exercise˚˚ 5.2.28 (Effective Birkhoff-Kakutani Theorem; Koh, Melnikov and Ng [313]). A com-
putable topological group is a computable topological space (Def 2.4.26) with group operations ¨ and
´1 that are effectively continuous. (See also Exercise 2.4.29.) Let G be a computable topological
group. Show:

1 There exists a computable left-invariant metric4 realised as an effectively continuous functional
GˆGÑ R.

4That is, a metric d compatible with the group topology that has the property dpz ¨x, z ¨yq “ dpx, yq, for all x, y, z.

239

2 Further, in cases when the group is either abelian or locally compact, it is possible to produce
an effective dense sequence, giving a right-c.e. Polish presentation of the group.

3 Conclude that for locally compact and for abelian groups, computable topological and right-
c.e. presentability (Exercise 2.4.27) are equivalent.

4 Note that the result in (3) cannot be improved to “computable Polish” in general. (This follows
from Exercises 2.4.28 and 4.2.112.)

Exercise˚ 5.2.29 (Melnikov and Ng [380], Lupini, Melnikov, and Nies [341]). Take for granted the
well-known van Dantzig’s Theorem, which says that a totally disconnected locally compact (t.d.l.c.)
group always contains a compact open subgroup. Prove that the following are equivalent for an
infinite t.d.l.c. (Polish) group:

1. G – prT s, ¨,´1 q, where:

(a) T is either the natural copy of 2ăω (in which case the group is profinite) or is obtained
by joining ω-many natural copies of 2ăω below the common root;

(b) the operations are computable upon the space rT s of paths through T .

2. G is computable Polish and furthermore computably locally compact ([512, 507]): There is a
uniform procedure which, given (the name Nx of) any point x, outputs a basic open B and
a computable compact K Ď G such that x P B Ď K, where K is given by a sequence of finite
open 2´n-covers so that each ball in the cover is centred in a (computable) point in K and
has a rational radius.

3. Show˚˚ that if G is additionally abelian, then (1) and (2) are equivalent to G being the limit
of a computable inverse system of uniformly computable abelian groups:

A0 Ðψ0
A1 Ðψ1

A2 Ðψ2
. . . ,

where the groups Ai are uniformly computable and the kernel of the surjective homomor-
phisms ψi are finite and are uniformly given by their strong indices (i.e., as finite sets).

Exercise˚ 5.2.30 (Lupini, Melnikov, and Nies [341]). Suppose that A is a computably locally
compact t.d.l.c. group, as defined in Exercise 5.2.29.

1. Show that the dual pA of A is also computably locally compact. (This is not how it is stated
in [341], but the proof in [341] gives computable local compactness.)

2. If additionally pA is also t.d.l.c., then A is computably locally compact iff pA is computably
locally compact.

5.2.4 Further related results: comparing notions˚

In this chapter, we completed the task of separating right-c.e., computable Polish, and computably
compact spaces up to homeomorphism, and we did so using effective dualities. Both left- and right-
c.e. Polish spaces form natural subclasses of ∆0

2 Polish spaces. It has been shown in [37] that every
∆0

2 Polish space admits a computable topological presentation, which is another classical notion of
presentability in effective topology (Definition 2.4.26). The notions and the implications between

240

Computable topological

∆0
2 Polish

left-c.e. Polish right-c.e. Polish

computable Polish

computably compact

Figure 5.1: Notions of computable presentability for Polish spaces.

computable topological

right-c.e. Polish

computable Polish

computably (locally) compact computably tdlc

Figure 5.2: Notions of computable presentability for locally compact Polish groups.

them are summarised in the figure below. Arrows illustrate the implications between these notions
up to homeomorphism.

It has been shown in [37, 245, 266, 341, 35], culminating in [311], that the only implications
between the notions in Fig. 5.1 are those depicted in the diagram. Some of these results appeared (or
will appear) as exercises throughout the book; e.g. Exercises 4.2.24–4.2.26, 4.2.41, 4.2.104, 4.2.105,
and 9.4.16. For example, in Exercise 4.2.104, we saw that every (not necessarily computable)
Polish space admits a computable topological presentation, making such “presentations” essentially
meaningless. On the other hand, in the compact case, there this notion can be used to give (yet)
another equivalent form of computable compactness (Exercise 4.2.41). In the context of closed
surfaces, a few more notions were compared in [241]; it was discovered that all these notions are
arithmetically equivalent to each other. Not all of the papers cited above rely on dualities to
compare these notions up to homeomorphism. For example, the key combinatorial tool in [311] (see
Exercise 9.1.36) is the notion of a limitwise monotonic set. We will introduce and utilise limitwise
monotonic sets and functions in Chapter 9.

We now briefly discuss computable Polish groups. The second diagram illustrates implica-
tions between several natural notions of effective presentability for locally compact groups, up to
topological group-isomorphism. Arrows illustrate the evident implications, and the dashed arrows

241

represent the implications recently established in [313, 380]. Examples of compact and discrete
groups separating the notions of “right-c.e. Polish” and “computable Polish” have been suggested
in [313, Section 5]. In Theorem 4.2.107 we proved that for profinite groups, recursive and com-
putably compact presentations are synonymous. Computably tdlc groups generalise the notion of a
recursive profinite group; in Exercise 5.2.29 we extended Theorem 4.2.107 to such groups. See also
Exercise 5.2.28 that establishes that locally compact “computable topological” groups are precisely
the right-c.e. Polish ones, up to topological isomorphism. We will return to computably presented
Polish groups in Part 2.

A special case of a computable Polish group is a computable Banach space (Lemma 2.4.17).
Banach spaces are usually viewed up to linear isometry (equivalently, up to isometric group-
isomorphism). For left-c.e., right-c.e., and computable Banach spaces compared up to linear isom-
etry, see Exercise 2.4.40.

5.3 What’s next?

We have finished proving Theorems A and B, and we have established several effective dualities
in the process. In the second part of the book we will use these dualities to transform results
about discrete structures into results about Polish spaces and groups. The second part will also be
generally more technically challenging. For example, a generalisation of the infinite injury technique,
the infamous 03 (zero-triple) technique, aka the “Lachlan monster”, will be used to prove the main
result of Section 9.

242

Part II

Computable classification

243

Chapter 6

Introduction

Classification theory is a hoary old theme in mathematics and indeed, science. In the second part
of the book, we apply the methods and results developed in Part 1 to investigate the complexity of
the classification problem in various classes of algebraic and topological structures.

In Part 2 of the book, we focus on results that measure the complexity of the
classification problem in common algebraic and topological classes.

Much of the theory revolves around a few basic definitions of what it means for a class to have
an algorithmically useful classification. These definitions will be tested in various natural classes
of mathematical structures, with a strong emphasis on discrete and compact abelian groups and
compact metric spaces. We will always bear in mind our central theme of unifying the countable and
the uncountable. Nonetheless, the second part of the book is generally more focused on countable
structures, and especially discrete abelian groups. Their computable classification theory is much
more developed than its separable counterpart. Another reason is that computability theory appears
to integrate more easily with discrete algebra and combinatorics. Using the effective dualities
established in Part 1, along with some further theorems, these results will find direct applications
to separable structures.

244

6.1 Classification via computation

Generally, in mathematics, we categorise objects into groups we regard as being the same. We
typically have a notion of equivalence ”, and a class C of objects that we compare using ”. The
equivalence classes will form a classification of the objects. In algebra and combinatorics, ” would
typically be isomorphism –. Examples of classifications up to isomorphism include the famous
classifications of the finite abelian groups in terms of cyclic groups, compact 2-surfaces in terms
of connected sums of tori or projective planes, and the celebrated classification of the finite simple
groups. However, other equivalences are useful too. For example, the Turing degrees are a classifi-
cation of the class of sets under ”T , where ”T means “equi-computability”. In metric spaces, we
would often use either isometry or homeomorphism as classifiers, but one could also use bi-Lipschitz
maps, homotopy equivalence, diffeomorphisms, and so on. We typically get quite distinct classifi-
cations with the different equivalence relations: for example, spaces might be homeomorphic but
not isometric.

For a fixed class C, the kinds of questions studied classically are:

1. How do various invariants compare?

2. How do we compare the complexity of different classifications?

3. Can we show there can be no reasonable classification?

Logic is a great tool to tackle such questions. Since this is a book about computable structure
theory, we will concentrate on using computability theory for these tasks.

6.1.1 The three main approaches used in the book

We will examine the following three mutually related approaches:

(i) Classification up to X-computable isomorphism

Since we are interested in the effective content of mathematics, it is natural for us to replace
isomorphism with computable isomorphism. Recall the definition:

Definition 6.1.1 (Mal’cev). A computable structure A is computably categorical if any other
computable B isomorphic to A is computably isomorphic to A.

In Part I of this book, we classified computably categorical linear orderings, Boolean algebras,
Stone spaces, and torsion-free abelian groups. Sometimes computable classification and classifica-
tion coincide, such as in the case of finitely generated structures. But for most classes of structures,
these are quite different. One recurrent theme in this area is to seek to understand how semantic
notions (like computable isomorphism) relate to syntactic notions (such as definability); we will dis-
cuss this in detail in Chapter 10. Sometimes it will be natural to look at more complex classifiers,
such as X-computable isomorphisms.

Definition 6.1.2. Fix n P N, n ą 0. A computable structure A is ∆0
n-categorical if for any

computable B – A, there is a ∆0
n isomorphism between A and B.

The notion has a transfinite analogue, but we won’t really need it. This approach will be useful
in other classification themes, such as piiq below; these applications are mostly technical in their
nature.

245

(ii) Classification via index sets

Index sets (Def. 2.1.11) have been used in computability theory and computable structure theory
for many decades; e.g., [113], but in computable topology and analysis, this approach is relatively
new (e.g., [138]).

Let pMeqePN be a uniform enumeration of all (partial) computable structures in the language of
K; we will never encounter the unnatural situation when such a list does not exist.

Definition 6.1.3 (Goncharov and Knight [213]). For a class K of structures (or spaces), define
the following index sets.

1. IpKq “ te : Me is a member of Ku is called the recognition problem for K, the character-
isation problem for K, or simply the index set of K.

2. EpKq “ txi, jy : i, j P IpKq,Mi – Mju is called the isomorphism problem for K. (Here
“E” stands for “equivalent” under the fixed classifier.)

Note that the isomorphism problem mimics the similar problem in combinatorial group theory
mentioned in Part 1 of the book. The intuition is that these index sets usually accurately reflect the
complexity of the classification problem for a given class K. We will see that, for common classes,
the estimates obtained for the complexity of EpKq tend to always relativise, and thus reflect the
complexity of classification of arbitrary members of K, not just of the computable ones. Because
of Rice’s Theorem 2.1.12, neither EpKq nor IpKq can be computable for any reasonable class. The
next best estimate that we can hope for is that EpKq and IpKq are arithmetical.

Definition 6.1.4. We say that a class K is arithmetical if EpKq and IpKq are arithmetical
sets, i.e., are both Σ0

n for some n P N.

Goncharov and Knight [213] suggested that a class K should be viewed as tractable if both
IpKq and EpKq are hyperarithmetical sets. However, after over 20 years of systematic research, the
following phenomenon has been observed. In algebra, analysis, and topology, obtaining an index
set of transfinite hyperarithmetical complexity seems to require a transfinite definition of the class.
For example, we could fix some computable α ě ω and consider abelian p-groups of Ulm type ď α
or all countable compact spaces of Cantor-Bendixson rank at most α. Nonetheless, examples of
transfinite index sets can be found in model theory. For instance, White [509] and, independently,
Pavloskii [428] showed that the index set of computable homogeneous models is Σ0

ω`2-complete.
On the other hand, if a class is not arithmetical, then either EpKq or IpKq (or both) will

typically be Π1
1- or Σ1

1-complete (or beyond). At this stage, it is enough to say that Σ1
1-completeness

means that the problem is as hard as checking through all possible functions N Ñ N; Π1
1-sets are

the complements of Σ1
1 sets (the formal definitions will be given in Chapter 8). We arrive at the

following dichotomy, which seems to universally hold in algebra, topology, and computable analysis.

246

The index set dichotomy. Let K be a “natural” class of algebraic or topological
structures. Then one of the two alternatives holds:

– K is arithmetical, or

– either EpKq or IpKq is Σ1
1- or Π1

1-complete (or beyond).

Here, “natural” means “not ad hoc”—a standard class that can be found in the literature. Of
course, counterexamples can be easily manufactured, but we have yet to discover a class in the
literature that fails the dichotomy. Thus, it makes sense to agree that a class should be regarded
as (potentially) “tractable” if it is arithmetical, and “difficult” or even “unclassifiable” if the other
alternative holds.

The approach via index sets has its limitations, such as Rice’s Theorem 2.1.12. Also, it is not
applicable to finitely generated structures for which it tends to be too crude. It also depends on
the exact choice of computable presentability that we use; however, as we will discuss in Chapter
7, this never seems to cause any issues.

There are other ways of using computability theory to measure the classification problem in
a class, circumventing some of these obstacles. In the book, we will primarily focus on one more
approach.

(iii) Enumerations with no repetition

Note that if both IpKq and EpKq are arithmetical, i.e., both are computable relative to Hpnq for
some n P N, then we can use Hpnq to remove repetitions from IpKq, so that every computable
structure from the class appears in the new list exactly once. We could argue that we “fully
understand” a class K if we could make a computable listing tAi : i P Nu of all the structures of
K that mentions exactly one structure per isomorphism type. For example, all finitely generated
abelian groups can be listed up to isomorphism without repetition. Similarly, there is a 1-1 list of
all compact 2-surfaces up to homeomorphism. Both lists are algorithmically effective.

Recall that Friedberg [182] proved that there is a uniformly computably enumerable list of all
c.e. sets with no repetition (up to the usual equality of sets); see Theorem 3.1.43. He produced
such a list in spite of the fact that the index set txi, jy : Wi “ Wju is Π0

2-complete. This is known
as a Friedberg enumeration of all c.e. sets. Motivated by this classical theorem, Goncharov and
Knight [213] suggested the following definition.

Definition 6.1.5. Let K be a class of structures. We say that K admits a Friedberg enumeration
(a Friedberg numbering or a Friedberg listing) if there is a uniformly computable listing of all
computably presentable members of K without repetition, up to isomorphism.

In such a list, every member of K is usually represented by its index. For example, it could
be the strong index of the group presentation in the list of all finitely presented abelian groups
up to isomorphism, or the index of a computably compact presentation in the list of all orientable

247

compact surfaces up to homeomorphism. But the surfaces can also be given by the strong indices
of the finite simplicial complexes representing them. It will be always clear from the context which
algorithmic presentations we use to produce a Friedberg list.

This approach is restricted to computable members of the class, but the classifier (the notion of
isomorphism) does not have to be effective. For example, in Friedberg Enumeration Theorem 3.1.43,
we list c.e. sets under equality, which is Π0

2. As usual, results of this sort can be relativised to any
oracle. However, this approach seems more suitable for understanding computable members of K
specifically.

There are several trivial reasons related to index set calculations that prevent many classes from
having a Friedberg enumeration. As a result, there are very few positive results in the literature
when it comes to Friedberg enumerations. Thus, even if the reader thinks that (iii) does not always
accurately reflect the complexity of classifying structures in K, any result showing the existence of
a Friedberg enumeration for a class K should be viewed as a very strong positive classification-type
result about K. Some of these positive results require sophisticated machinery, such as 03-priority
arguments, which we did not need in Part 1 of the book.

6.1.2 Other approaches

Before we discuss the main results of Part 2 of the book, we remark that the approaches above are
not the only methods used to study the classification problem in a class of structures. For example,
in descriptive set theory, one uses Borel reductions to compare classes of structures; see the book
[197]. Another approach is due to Shelah; we cite [465] and [332] for the details. His idea is to
consider the (cardinal) number of non-isomorphic models of a theory. This material is way beyond
the scope of the present book, and we only mention it for interest. Instead, we briefly discuss a few
further computability-theoretic classification themes, some of which will be used in the book as a
technical tool.

Effective reductions between classes

This relatively popular approach (e.g., [170, 283]) effectivises the standard definition from descrip-
tive set theory. Suppose C1 and C2 are classes of countable structures up to isomorphism, where
every structure is identified with its atomic diagram. We say that C1 is effectively reducible to C2,
written C1 ďEFF C2, if there exists a Turing functional Φ such that

M – N if and only if ΦpMq – ΦpNq,

where M,N range over C1, and ΦpMq,ΦpNq are structures in C2. The above definition has several
natural variations (e.g., [170, 283]). We won’t focus too much on this method, but we will use some
known reductions between classes to make conclusions about index sets. More about this approach
can be found in Section 8.2. This approach also has a natural “Type 1” analogue, which requires
the reduction to work on indices of computable structures rather than for arbitrary presentations;
it will also be defined and discussed in Section 8.2.

Effective universality

In Section 8.2, we will also discuss computably universal classes, which is a notion (essentially)
coined in [257]. These are the most complex classes from a computability-theoretic perspective.

248

Such classes can “effectively encode” any other class of countable algebraic structures, preserving
important properties like classical and computable isomorphism types, and more. Like effective
reductions between classes, computably universal classes will serve as a tool. However, we won’t be
developing a detailed theory of the effective universality of structures.

The two themes discussed above can also be extended to classes of separable structures. Natural
examples of such generalised effective transformations are the computable dualities presented in Part
1 of the book; we delay further discussion until Section 8.2. One last theme is as follows.

Classification using infinitary formulae

In computable structure theory, another approach, discussed and tested already in [213], involves
using computable infinitary Lω1ω formulas to explore the algorithmic content of the well-known
fact that every countable structure is fully described by an infinitary sentence up to isomorphism
(Theorem 10.1.2). These formulas allow for computable infinite conjunctions and disjunctions. In
Exercise 10.1.65, we will see that for discrete algebraic structures, this approach is very closely
related to the approach via index sets, though these two frameworks are not equivalent even for
subgroups of pQ,`q (Exercise 10.1.66). In the book, we shall avoid the use of infinitary logic when
possible; we only use it in Chapter 10, and only in passing. Also, there has been very little progress
in this direction in the context of separable structures (e.g., [381]). For more about this topic, we
cite the recent survey [238].

6.2 The main results of Part II

In Chapter 7, we develop a systematic approach to the classification of structures and spaces using
index sets and ∆0

n-categoricity. We will see that the two themes are very closely related technically.
The main result of Chapter 7 is as follows:

Theorem C (Lupini, Melnikov, and Nies [341], based on Downey and Melnikov [136]). Let K
be the class of direct products of solenoid groups.

1. K admits an arithmetical characterisation among all Polish groups.

2. The isomorphism problem for K is arithmetical.

In both 1. and 2., the upper estimate is Σ0
7. Solenoids are exactly the Pontryagin duals of

rank 1 torsion-free abelian groups, and their topology uniquely determines the group operation on
them. Solenoid spaces were introduced by Vietoris in [499]. Solenoids are important in the area
of dynamical systems; e.g., [510]. These objects are also used throughout topology and topological
group theory as a source of examples and counterexamples. The direct products of solenoid spaces
are the Pontryagin duals of completely decomposable groups, introduced and first studied by Baer
[26]. Completely decomposable groups traditionally play an important role in the theory of infinite
abelian groups [195]. Their compact duals are also reasonably well-studied; see, e.g., [340]. Among
other tools, the proof of Theorem C relies on the effective Pontryagin duality from Part 1 of the
book and on our technical result in [137], which states that completely decomposable groups are ∆0

5-
categorical. We will include a detailed proof of the result from [137], as well as some further related

249

results about computable completely decomposable groups. In Exercise 7.2.49, we will see that it is
possible to “computably transform” a linear order in a completely decomposable group and, thus,
into the compact groups in Theorem C. This observation seems to suggest that K cannot possibly be
an arithmetical class. However, as we will discuss at the end of Chapter 7, there is no contradiction
because the “coding” hinted at in Exercise 7.2.49 is ill-behaved. Theorem C illustrates that the
sketch in Exercise 7.2.49 cannot be modified to produce a sufficiently well-behaved transformation.
This is certainly a non-trivial fact, as reflected in the complexity of the proof of Theorem C.

Chapter 8 lays the foundations of the non-classification theory, in the spirit of [213]. In this
section, we are mainly focused on proving that the isomorphism problem in certain classes is Σ1

1-
complete. We develop sufficient machinery to prove:

Theorem D (Melnikov [373], based on Downey and Montalbán [146]). The homeomorphism
problem for connected compact Polish spaces is Σ1

1-complete.

Theorem D was proven in [373], but it was stated for connected compact groups. As noted
in [139, 341], the result holds for spaces too, via the same proof. Just as with Theorem C, this
result is derived from a similar result for discrete structures due to Downey and Montalbán [146],
using effective Pontryagin duality. Chapter 8 is, of course, not limited to the proof of Theorem D.
We will also show that many other classes of structures and spaces have Σ1

1-complete isomorphism
problems, including linear orders, Stone spaces up to homeomorphism, Banach spaces up to linear
isometry, two-step nilpotent groups, and internal domains. To obtain some of these results, we
will use the effective dualities established in Part 1. Other results, such as the Σ1

1-completeness for
integral domains, will follow from the effective completeness of the respective class. The notion of
effective completeness has two versions, Type I (on indices) and Type II (for arbitrary members of
the class). For example, in Theorem 8.3.10 we will establish that the isomorphism of computable
torsion-free abelian groups is complete among all Σ1

1-equivalence relations, and thus, the same is
true for their connected duals too (Theorem 8.3.28). Theorem 8.3.28 implies Theorem D, but is
harder to prove.

Chapter 9 is focused on the approach to classification via Friedberg enumeration. As we will see
in Chapter 7, positive results stating the existence of a Friedberg enumeration in a class are very
rare; the reason for this is often a straightforward index set calculation. Recall also that proving
the original Friedberg Enumeration Theorem 3.1.43 for c.e. sets under equality requires infinite
injury. Note that the index set txi, jy : Wi “ Wju is merely Π0

2-complete. In the main result of
Chapter 9 stated below, the complexity of the isomorphism problem increases monotonically with
the parameter n.

Theorem E (Downey, Melnikov, and Ng [145]). For any fixed n ą 0, there is a Friedberg
enumeration of all pro-p abelian groups of pro-Ulm type ď n.

Here, pro-Ulm type is the Ulm type of the Pontryagin dual of the group; this will be clarified
later. Chapter 9 presents a systematic exposition of computable abelian p-group theory, as it is
necessary to prove Theorem E. Following the general pattern of the book, the main theorem is
established through a sequence of transformations. First, we establish the existence of a Friedberg
enumeration for equivalence structures [143]; this requires an application of the 03-machinery. Then

250

we use methods of Khisamiev and Ash, Knight, and Oates to produce a Friedberg enumeration of
abelian p-groups of Ulm type ď n. To derive Theorem E, in Theorem 9.5.7, we establish another
effective version of Pontryagin duality between torsion discrete and profinite abelian groups.

In Chapter 10, we attempt to classify computable structures up to computable isomorphism.
We will see that the notion of computable categoricity admits several variations, the most popu-
lar being that of relative computable categoricity. Relative computable categoricity is a Type II
analogue of computable categoricity (which itself is Type I), since we will show it is witnessed by
Turing functionals. This Type II version of computable categoricity is well-behaved and admits a
syntactical reformulation. The analogy with the situation in computable analysis is indeed striking,
especially with the material of Section 2.3. For instance, we will prove theorems resembling the
Kreisel-Lacombe-Shoenfield-Markov Theorem 2.3.7 and Specker’s Theorem 2.3.24 from Part I. We
will include several results about separable structures in Chapter 10, but these results work only for
presentations viewed up to isometry. For example, in Theorem 10.2.9, we will give the description
of (isometrically) relatively computably categorical Polish spaces in terms of approximate Scott
families, and in Proposition 10.2.14, we apply approximate Scott families to the Urysohn space.

We will also outline the proof of the well-known theorem of Goncharov, stating that there
is a structure with exactly two computable presentations, up to computable isomorphism (The-
orem 10.3.2). Goncharov’s theorem has consequences for structures in several standard classes,
including metric spaces up to isometry.

We will finish the chapter, and the book, with a detailed proof of the following result:

Theorem F (Melnikov and Ng [376]). The space pCr0, 1s, dsupq has infinitely many isometric,
but not computably isometric, computable Polish presentations.

The main technical step in the proof of Theorem F, Theorem 10.3.20, generalises (and indeed,
implies) another well-known theorem of Goncharov (Theorem 10.3.2) about discrete computable
structures. Using Theorem 10.3.20, Theorem F will be derived from Theorem 2.4.20, which was
the main result of Chapter 2.

251

Chapter 7

Classification theory

This chapter is mostly focused on establishing arithmetical upper bounds for index sets for various
classes. The machinery of ∆0

n-categoricity will be crucial in establishing many index set estimates,
including the main result of the chapter, which is as follows.

Theorem C (Lupini, Nies, and Melnikov [341], based on Downey and Melnikov [136]). Let K
be the class of direct products of solenoid groups.

1. K admits an arithmetical characterisation among all Polish groups.

2. The isomorphism problem for K is arithmetical.

The structure of the chapter is as follows:

1. Section 7.1 contains several basic results about index sets of structures and spaces. These
index set estimates serve as examples, though some are not particularly straightforward and
will be used in Section 7.3. We also briefly discuss Friedberg enumerations, but deeper results
are postponed to Chapter 9.

2. Section 7.2 is devoted to computable completely decomposable groups. The main result of
the section says that this class is arithmetical. We also include a complete classification of
∆0

2-categoricity for homogeneous completely decomposable groups in our discussion.

3. Section 7.3 combines the results of Section 7.1 and Section 7.2 with effective Pontryagin
duality (established in Part 1) to prove Theorem C.

This chapter relies heavily on the results and techniques established in Part 1, particularly on
the content of Chapters 3 and 4.

252

7.1 Calculus of index sets for structures and spaces

This section contains foundational material that will be important for the rest of Part 2 of the
book. The results and examples discussed in the section are technically not difficult; however, some
of them are quite neat.

7.1.1 Discrete countable structures

In this subsection, we go over some well-known examples of index sets. We also simultaneously
establish upper estimates for ∆0

n-categoricity (to be defined) in these classes. The elementary
properties of arithmetical predicates summarised in Exercise 2.1.30 will be rather useful throughout
this section.

Fix a class K of structures in a computable (typically, finite) language. We will be looking at

IpKq “ tMe : Me represents a member of Ku,

where pMeqePN is a uniformly effective list of all partial computable structures in the language of
K.

Proposition 7.1.1 (Folklore). For the following classes, IpKq is Π0
2.

(i) Linear orderings.

(ii) Graphs.

(iii) Groups.

(iv) Abelian groups.

(v) Torsion abelian groups.

(vi) Torsion-free abelian groups.

(vii) Equivalence structures.

(viii) Boolean algebras.

(ix) Vector spaces over a fixed computable field.

(x) Rings.

(xi) Trees.

(xii) Partial orderings.

Proof. They are all basically the same. All these classes are @D-axiomatisable, and some are @-
axiomatisable. For Me, being total is Π0

2.

253

Vector spaces

A computable structure is ∆0
n-categorical if any two computable presentations of the structure are

∆0
n-isomorphic.

Fact 7.1.2. If every structure in a class K is ∆0
n-categorical, and IpKq is arithmetical, then EpKq

is arithmetical too.

Proof. The complexity of saying that A –∆0
n
B is Σ0

n`2.

For example, the isomorphism problem for vectors spaces over a fixed field is arithmetical,
since every vector space is ∆0

2-categorical. This provides us with the upper estimate Σ0
4 for the

isomorphism problem. This upper bound can be improved. The following fact is folklore; e.g.
[213, 72, 146].

Theorem 7.1.3. EpKq is Π0
3-complete for the class of computable vector spaces over Q. Indeed, if

V8 is the Q-vector space of dimension ω, then

ti : Mi – V8u

is Π0
3-complete. The same is true about the additive group of V8.

Proof. Being a computable vector space over Q is Π0
2, by Proposition 7.1.1 (vii). Let U, V be

two computable vector spaces. To express that dim V ď dim U , state that for all n, if there is a
linearly independent n-tuple v̄ P V , then there is a linearly independent n-tuple ū P U . Being a
linearly independent tuple is a Π0

1-property, thus making dim V ď dim U a Π0
3-property. Clearly,

dim V ě dim U is also Π0
3. Of course, V – U iff dim U “ dim V . Therefore EpKq P Π0

3.
To see why the index set of V8 is also Π0

3, observe that

@n Db0, . . . , bn tb0, . . . , bnu is linearly independent

is a Π0
3 property.

In Theorem 2.2.16 we proved that the additive group operation effectively determines the vector
space scalar multiplication in V8. Being divisible, abelian, and torsion-free is Π0

2. As a consequence,
the upper bound for the index set of V8 remains Π0

3 in the signature of additive groups.
We also note that the Π0

3-completeness of the index set of V8 (among spaces) implies the Π0
3-

completeness of EpKq. To obtain the Π0
3-completeness of EpKq, simply consider pairs of the form

pVe, V8q, where V8 is identified with some computable presentation of this space. To this end, we
outline the proof of Π0

3-completeness of the index set of V8.
Fix a Π0

3-complete set X. For each e, we will define a space Ve with

Ve –

#

V8 if e P X,

a finite dimensional space otherwise.
.

Since our construction will be uniform, the index of Ve with respect to the enumeration of all
structures in the language of Q-vector spaces will also be computable:

Ve “Mfpeq,

254

for some total computable f , thus illustrating the desired Π0
3-completeness for V8. Let R be a

computable predicate such that

e P X if and only if @nDă8mRpe, n,mq;

it exists by Exercise 2.1.30. Reserve elements tb, bn,m : m,n P Nu, and keep them linearly indepen-
dent. If the predicate Rpe, n,mq “fires” on m, then use the strategy explained in detail in the proof
of Theorem 2.2.16 to put the following elements in the span of b:

1. bn,k, k ě m;

2. bn1,m1 , n
1 ą n, m1 P N.

It is easy to see that Ve is a non-trivial vector space (i.e., dim Ve ě 1), and furthermore dim Ve is
finite iff for some n, the predicate fires infinitely often.

A similar argument works for any infinite computable field; see Exercise 7.1.13. In the case of
a finite field the upper bound drops down to Π0

2, we leave the proof to Exercise 7.1.14.

Theorem 7.1.4. EpKq is Π0
2 complete for the class of computable vector spaces over a fixed finite

field F .

An equivalence structure is a structure of the form pX,„q, where „ is an equivalence relation
on X. We will need the proposition below in Chapter 9.

Proposition 7.1.5 (Calvert, Cenzer, Harizanov, and Morozov [75]). The isomorphism problem for
computable equivalence structures is Π0

4-complete. Indeed, there is an equivalence structure R so
that

ti : Mi – Ru

is Π0
4-complete.

Proof. The axioms of equivalence structures are Π0
1, and totality of a presentation is Π0

2. Given
Mi and Mj , first check if the presentations are total and represent equivalence structures. To see
whether Mi –Mj , it is sufficient to state that, for each n:

1. If Mi has (at least) n classes of size exactly λ P NYt8u, then Mj also has (at least) n classes
of size exactly λ.

2. The same but with Mj and Mi interchanged.

Effectively in 02 we can calculate the size of each individual class. This gives the upper bound
Π0

4.
To prove Π0

4-completeness, let R be the structure with infinitely many infinite classes and with
infinitely many finite classes of each finite size. Clearly, R has a computable presentation which we
identify with R. Using Exercise 2.1.30, represent a Π0

4 predicate P as follows:

P peq if and only if D8iD8j Upi, j, eq,

where U is a computable predicate and “D8” stands for “there exist infinitely many”. Let also F
be the structure that has no infinite classes but has infinitely many finite classes of each fixed size;
this structure is also clearly computable.

We build an equivalence structure Be to be F \E, where the i-th class of E has a size equal to
1` cardtj : Upi, j, eq holdsu. The construction is uniform, so for some total computable f , we have
that Be “Mfpeq. Also, Be has infinitely many infinite classes iff P peq holds. In this case, Be – R,
and otherwise Be fl R.

255

Ordinals

We fix the enumeration pMeqePN of all partial computable structures in the language of one binary
relation. The theorem below can be extended to transfinite levels, but we omit the transfinite
version and leave it to Exercise 8.1.27.

Theorem 7.1.6 (Folklore after Ash). Fix n P N.

(i) ωpn`1q is (sharply) ∆0
2n`2-categorical.

(ii) The index set te : Me – ωpn`1qu is Π0
2n`3-complete.

Sketch. For n “ 0. Using H1, we can decide the adjacency relation in any computable copy of ω;
this gives the upper bound ∆0

2 in (i). This is sharp because of Exercise 3.2.17. The index set of ω
is Π0

3 since a linear order is ω iff it has the least element 0, and every other element of the order is
in a finite block with 0. The Π0

3-completeness uses the method of Theorem 7.1.3 to produce

Ae “

#

ω if e P S,

k ` ω˚ ` ω if e R S,

where S is a Π0
3-complete set.

The case when n ą 0 follows by induction. The upper bound is routine. Iterate Theorem 3.2.46
(which is uniform for the linear orders that we use) to obtain

Be “

#

ωn if e P S,

ωnpk ` ω˚ ` ωq if e R S,

where S is Π0
2n`3-complete.

The theorem above skips some levels in the arithmetical hierarchy. We can also obtain index sets
of other levels using Theorem 3.2.22 and Watnick’s Theorem 3.2.23; we leave this to Exercise 7.1.11.

Superatomic Boolean algebras

A (computable) Boolean algebra is superatomic if it is the interval algebra of a (computable) ordinal;
see §4.1.4. The theorem below also has a transfinite version, but we leave it to Exercise 8.1.28.

Theorem 7.1.7 (Knight). Fix n P N, Then

(i) Intalgpωn`1q is ∆0
2n`2-categorical but not ∆0

2n`1-categorical.

(ii) The index set te : Me – Intalgpωn`1qu is Π0
2n`3-complete.

Sketch. We have calculated the complexity of some properties needed to establish the upper bounds
in the proof of Feiner’s Theorem 4.1.30. We also note that, in the proof of Theorem 7.1.6, if e R S
(where S P Π0

2n`3), then we construct a linear ordering of Hausdorff rank one higher than ωn`1, and
hence the corresponding Boolean algebra will not be isomorphic to Intalgpωn`1q. This is because,
for example, the Stone space will have a higher Cantor-Bendixson rank. We leave the details to
Exercise 7.1.12.

256

Torsion-free abelian groups of rank 1

We use the materials and notation introduced in §5.1.2, and specifically the classification of sub-
groups of Q by their types (Theorem 5.1.15). Recall that a torsion-free abelian group has rank 1 iff
it is isomorphic to a (non-zero) subgroup of Q. Let K1 be the class of torsion-free abelian groups
having rank ď 1. (We also include the rank-zero trivial group t0u in the class for convenience; this
won’t make any difference.) The following elementary (but neat) proposition is due to Calvert [73],
and in the slightly stronger form given in Corollary 7.1.9, it appeared in [132].

Proposition 7.1.8. 1. The index set of K1 is Π0
2-complete.

2. The isomorphism problem for K1 is Σ0
3-complete.

Proof. Being total and torsion-free abelian is Π0
2. The rank is ą 1 iff there exists a, b P G such that

for all m,n P N,
ma` nb “ 0 Ñ m “ n “ 0,

which is Σ0
2. (The Π0

2-completeness follows vacuously from the Π0
2-completeness of Tot. Alterna-

tively, simply stop building a copy of Z if Π0
2 no longer fires.)

The upper bound is Σ0
3 because any two groups in the class are isomorphic if, and only if, they

are computably isomorphic. The Σ0
3-completeness follows from Theorem 3.1.8(iii) combined with

Theorem 5.1.15, but we outline a direct proof below.
Fix a Σ0

3-predicate P and represent it as DxD8yRpx, y, iq, where R is computable. Produce a
computable group Gi, realised as a c.e. subset of Q that contains 1, with the following properties.

P piq fails ùñ tpGiq Q p1, 1, 1, 1, . . . , 1, 1, . . .q

and

P piq holds ùñ tpGiq S p1, 1, 1, 1, . . . , 1, 1, . . .q,

where the latter is achieved by keeping 1 non-divisible by infinitely many primes. If we succeed,
Theorem 5.1.15 will guarantee Σ0

3-completeness. Indeed, if H is some fixed computable presentation
of the group having the same type as p1, 1, 1, 1, . . . , 1, 1, . . .q, then simply consider pairs pH,Giq.

We now explain the construction of Gi. We begin with 1 P Gi, and initially make progress
in building Gi – Z. Each x in DxD8yRpx, y, iq controls a marker which occupies some prime pi.
Initially, x occupies px. The goal of the marker is to keep 1 non-divisible by the pi that it occupies.

If x “fires”, all markers y ě x move. We move x to the next available pj (currently occupied by
x`1), and we move x`1 also either to the position of x`2 (if it is defined), and so on. The largest
marker defined at the stage is moved to the next available prime larger than all primes occupied
by any markers. We also introduce one more marker and place it on the next prime. We declare
1 divisible by the prime pi (once), where pi was the prime that previously carried x. If P piq fails,
then every marker eventually settles, making 1 non-divisible by infinitely many primes. Otherwise,
some marker will keep moving, making 1 divisible by almost all primes.

Notice that the Σ0
3-completeness is achieved using just one group. This is the group of type

p1, 1, 1, . . . , 1, 1, . . .q.

Corollary 7.1.9 (Downey, Kach, Lempp, and Turetsky [132]). There exists a computably categor-
ical group H such that IpHq “ te : Me – Hu is Σ0

3-complete.

257

We remark that essentially all completeness estimates we’ve seen have had a slightly stronger
feature. For example, in the corollary above, the index set IpHq was Σ0

3-complete within the class of
rank 1 torsion-free abelian groups, meaning that under both Σ0

3- and Π0
3-outcomes, we can produce

a rank 1 torsion-free abelian group. As far as we know, the notion of “completeness within” for
structures was coined by Calvert. Such results are slightly more insightful in the rare cases when
the complexity of the index set of a class is not less complex than the (crude) estimate for the
isomorphism problem in the class. We, however, usually won’t concern ourselves too much with
this minutiae, and will just aim for whatever is easier to prove.

Using other presentations˚

We remark that in all results above we used computable presentations pMeqePN, but we could have
used c.e. presentations instead. Another possibility is to use computable presentations with some
additional properties, e.g., vector spaces or abelian groups with a linear independence algorithm.

However, c.e. presentations and computable presentations are only one Turing jump apart, and
the general intuition is that, at least in common classes, the complexity estimates for index sets
will also be at most one quantifier apart. We cite [47] for many examples comparing index set
complexity of various properties of groups using c.e., computable, and finite presentations; all these
results confirm our intuition. Recall also that we are aiming at establishing arithmetical estimates,
and typically it makes almost no difference which presentations we use. Indeed, we could perhaps
use n-decidable or ∆0

n presentations for some fixed n P N, and we would likely still get arithmetical
estimates. (Of course, decidable presentations do not fall into this pattern.) In this sense, the
index set approach is quite robust. Using computable presentations seems more convenient simply
because it is usually easier to prove completeness results and because typically more is known about
computable members of the class.

But, of course, we know that c.e. presentations differ from computable presentations in general
(e.g., Theorem A in Part 1), so we must be careful. Pathological examples can be rather complex,
and it is perhaps natural to wonder how complex they can be exactly. Among computably presented
structures, the index sets of decidable, 1-decidable, automatic, primitive recursive, and polynomial-
time presentable structures are all Σ1

1-complete [237, 34] (see Exercise 8.1.42). Using a modification
of the main construction in [34], one can show that this index set of computably presentable
structures among all c.e. presented structures is Σ1

1-complete as well (Exercise 8.1.43). We will
discuss Σ1

1-completeness in the next chapter.
In view of Feiner’s Theorem and the effective Stone duality established in Part 1, we are espe-

cially interested in the complexity of this index set restricted to Boolean algebras.

Question 7.1.10. What is the complexity of the index set of computably presentable Boolean alge-
bras among all c.e. presented structures?

The proof of Feiner’s Theorem 4.1.30 can be easily modified to show that the index set in the
question above is not arithmetical (i.e., not Σ0

n for any n); this is left as Exercise 7.1.15. However,
nothing is known beyond this observation.

Exercises

See also Exercises 9.3.59-9.3.61 for the index sets of subclasses of abelian p-groups, and see Exer-
cise 10.1.31 for the index sets of decidably categorical structures.

258

Exercise˝ 7.1.11. Calculate the index sets of the orders of the form Zn`1, pQ ` 2 ` Qqn`1,
pQ` 2`Qqn`1Zm`1, and Zm`1pQ` 2`Qqn`1; m,n P N.

Exercise˝ 7.1.12. Give details for Theorem 7.1.7.

Exercise˝ 7.1.13. Prove Theorem 7.1.3 for vector spaces over any fixed infinite computable field.
(Note that a slight modification to the initialisation strategy is necessary in the case when the
characteristic is finite.)

Exercise˝ 7.1.14. Prove Theorem 7.1.4.

Exercise 7.1.15. Show that the index set of c.e. presented Boolean algebras that admit a com-
putable copy is not arithmetical. Conclude that the index sets of compact right-c.e. Polish spaces
that admit a computable Polish presentation is also not arithmetical. (Hint: Use a uniform modi-
fication of the proof of Feiner’s Theorem 4.1.30.)

Exercise 7.1.16 (Calvert [72]). Show that the isomorphism problem for the class of computable
algebraically closed fields of any fixed characteristic is Π0

3-complete.

Exercise 7.1.17 (Calvert [72]). Show that for the class of Archimedean real closed fields (i.e., those
that have no “infinitely large” elements; equivalently, those embeddable into R), the isomorphism
problem is Π0

3-complete.

Exercise 7.1.18 (Calvert, Harizanov, Knight, and Miller [76]). Define the class d-Σ0
n to consist

of all sets of the form XzY , where X,Y P Σ0
n. Let A be a computable Archimedean real-closed

ordered field (see the previous exercise).

1. If the transcendence degree is 0 (i.e., A is isomorphic to the ordered field of algebraic reals),
then IpAq “ ti : Ai – Au is Π0

2-complete (within the class of Archimedean real-closed ordered
fields).

2. If the transcendence degree is finite but not 0, then IpAq is m-complete in the class d-Σ0
2

(within the class of Archimedean real-closed ordered fields).

3. If the transcendence degree is infinite, then IpAq is Π0
3-complete (within the class of Archimedean

real-closed ordered fields).

Exercise˚ 7.1.19 (White [509]; Pavlovsky [428]). Define the class Σ0
ω`2 to be the collection of sets

that are Σ0
3 relative to Hpωq.

1. Show that the index set of computable prime models is Σ0
ω`2-complete.

2. Show that the index set of computable homogeneous models is Σ0
ω`2-complete.

Exercise˚˚ 7.1.20 (Carson et al. [80], McCoy and Wallbaum [358]). Let Fω denote the free (non-
abelian) group of rank ω. Show that the index set ti : Gi – Fωu is Π0

4-complete.

Exercise˚˚ 7.1.21 (Boone and Rogers [52]). Show that the collection of all finite presentations
having a decidable word problem forms a Σ0

3-complete set1.

1While the proof is not particularly difficult, it relies on techniques that are not covered in the book.

259

7.1.2 Compact spaces and groups

Fix an effective listing pMiqiPN of all (partial) computable Polish spaces. Each such Mi is given by a
dense sequence that can be identified with ω and a (partial) computable metric on it. We could list
all partial computably compact spaces in a similar way; we will discuss this approach a bit later.
The estimates that we would obtain in these two different frameworks would be at most one jump
apart, and it will make little difference to us. However, it is not entirely obvious that in the case
of compact Polish spaces we indeed get this robustness of the index set approach; establishing this
foundation is one of the main goals of this subsection. As the main result of the subsection, we will
prove that the index set of solenoid groups is arithmetical.

The space of isometries

In this subsection, we present sharp arithmetical calculations for the index sets of compact spaces
up to isometry. For that, we need to accumulate enough information about computably isometric
compact spaces.

An isometry is a metric-preserving map. It is clearly continuous and is always injective. If
an isometry is surjective, then we say that it is an isometric isomorphism. Using a brute-force
search, we can easily show that the inverse of a computable isometric isomorphism is always a
computable map even if the spaces are not computably compact. In particular, we do not need to
refer to Theorem 4.2.57 to compute the inverse of an isometric isomorphism. Further, to compute
an isometry f between two computable Polish spaces X and Y , it is sufficient to uniformly compute
the isometry on the special points of X. Indeed, if pxiqiPN is a fast Cauchy name of a point x in
X, then pfpxiqqiPN is also fast Cauchy in Y . We can use the computation of fpxiq to find a special
yi P Y so that dpyi, fpxiqq ă 2´i and conclude that pyiqiPN converges to fpxq quickly. We write
X –iso Y to mean that X and Y are isometrically isomorphic.

Theorem 7.1.22. For computably compact metric spaces X,Y , X –iso Y is a Π0
1-property (of

the indices of X and Y).

Proof. We modify the proof of an unpublished result of Nies and Melnikov stated in [381] (see
Section 4.2 in [139] for a slightly different proof).

Proposition 7.1.23. There is an informally effective procedure which, given two computably com-
pact spaces X and Y , outputs a computably compact space F pX,Y q and an index of an effectively
closed subset IpX,Y q Ď F pX,Y q whose members are exactly the (codes for) isometries X Ñ Y .

Indeed, the computable compactness of X can be dropped. Also, F pX,Y q is just a convenient
computably compact presentation of 2ω which, in view of Theorem 4.2.84 (which is uniform in the
case of 2ω), can be identified with 2ω.

Proof of Proposition 7.1.23. Suppose the special points of Y are given by the sequence priqiPN, and
let ppiqiPN be the dense computable sequence in X. Using the computable compactness of Y , for
each n, fix a finite 2´n-cover of the space. Define the space Fn of all finite partial maps which

260

assign each of the first n special points in X to one of the centres of the finitely many 2´n-balls
covering Y . It is computably compact under the discrete metric dpa, bq “ 1 iff a ‰ b. Define

F pX,Y q “
ź

nPN
Fn,

which is also computably compact (Proposition 4.2.17). Each element of F pX,Y q is a string of
finite tuples

pσ1, σ2, . . .q,

where σn “ xrj0 , rj1 , . . . , rjn´1y is a tuple of special points in Y . These points are the images of the
first n special points p0, . . . , pn´1 P X, respectively, under the partial map coded by σn. To isolate
the elements that code isometries, consider the following conditions:

1. |dY prji , rjkq ´ dXppi, pkq| ď 2´n`1 for each i ă k ă n,

2. dY pσn, σn`1 ænq ď 2´n,

where the distance between strings of equal length is the supremum of the distances of the respective
coordinates. These conditions are Π0

1 and define an effectively closed subset IpX,Y q of F pX,Y q.
Clearly, every point in IpX,Y q codes an isometry. Further, π is an isometry iff the sequence pπnqnPN
lies in IpX,Y q, and this correspondence is computably uniform.

We note that π P IsopX,Y q can have more than one “name” in IpX,Y q. (It is Π0
1 to tell whether

two members of IpX,Y q code the same isometry.)

Claim 7.1.24. Suppose X is computably compact. For an isometry f : X Ñ Y , “being onto” is Π0
1

relative to f .

Proof. We have that fpXq is compact and thus closed; therefore, f is not onto iff

Di dinf pri, fpXqq “ inf
yPfpXq

dpri, yq ą 0,

where the space fpXq is computably compact relative to f by Lemma 4.2.55. In particular, the
inf-distance to fpXq is f -computable, by Exercise 4.2.70 (also relativised). This makes “f being
not onto” Σ0

1 relative to f .

We return to the proof of Theorem 7.1.22. If a counter-example is found for π P IpX,Y q
witnessing that (f represented by) π is not onto, then the non-surjectivity is witnessed by an
“initial segment” of π, i.e., by some clopen set in F pX,Y q containing π. By restricting IpX,Y q to
the effectively closed set I˚pX,Y q of surjective isometries, we see that X –iso Y iff I˚pX,Y q ‰ H.
Since F pX,Y q is computably compact, if I˚pX,Y q “ H, then it will be effectively recognised at a
finite stage: just wait for the complement of I˚pX,Y q to cover F pX,Y q. It follows that X –iso Y
is Π0

1 in the indices of X and Y . Theorem 7.1.22 is proved.

In the proof of the theorem above, we established that IsopX,Y q can be represented as a Π0
1-

class. Even though this representation does not have to be 1-1, we can now appeal to facts about
Π0

1 classes and effectively closed sets. By The Low Basis Theorem 4.2.47, we obtain:

261

Corollary 7.1.25. For a computably compact space X, if Y –iso X, then there is a low isometric
isomorphism witnessing this2.

Of course, self-isometries of a compact Polish space form a topological group which (as we have
essentially established above) is compact. In contrast with Stone spaces, a compact topological
group cannot have isolated points unless it is discrete and, thus, finite; this is because translations
by elements are self-homeomorphisms of the group. If the identity is isolated, then all points are
isolated too, and if one point is not, then all points are not. In particular, a compact space has
either finitely many or uncountably many self-isometries.

Corollary 7.1.26 (Iljazović [268]). Suppose a computably compact X has only finitely many self-
isometries. If for some computable Polish Y we have Y –iso X, then there is a computable isometric
isomorphism witnessing this.

Proof. We use the notation from the proof of Theorem 7.1.22 throughout. We know that IsopX,Y q
must contain an isolated point Θ. It can be tempting to refer to Fact 4.2.45 to establish the
corollary. However, if F : I˚pX,Y q Ñ IsopX,Y q is the computable functional associating members
of I˚pX,Y q with isometries, then F´1pΘq does not have to be a singleton. (We remark that
I˚pX,Xq “ IpX,Xq since every self-isometry of a compact space is surjective.)

Since every isometry is clearly continuous, we can view every isometry as an element of CpX,Y q
under the supremum metric

dsuppf, gq “ sup
xPX

dpfpxq, gpxqq.

Take any U Ď CpX,Y q that contains a unique member Θ P IsopX,Y q.
Fix an n so that 2´n is smaller than the diameter of U . Fix a sufficiently long σ P F pX,Y q

that:

1. σ is extendible to an infinite path in I˚pX,Y q, and

2. the F -images of all its extensions in I˚pX,Y q lie in U .

Note that for any such extension π P I˚pX,Y q, we must have F pπq “ Θ.
Given m ą n, wait for a late enough stage s so that all extensions of σ that have not yet been

declared out of I˚pX,Y q have their potential F -images at a distance of at most 2´m from each
other, in the sense of (2) of the proof of Theorem 7.1.22.

Since Θ is isolated in U and I˚pX,Y q is a Π0
1 class, it follows that such a stage must exist.

Choose any (finite initial segment of) such ρm extending σ that has not yet been declared out of
I˚pX,Y q. It determines a finite partial map that can be used to calculate Θ to precision 2´m`1.
It follows that Θ is computable.

For example, geometric simplices are isometrically computably categorical with respect to com-
putably compact presentations.

We are now ready to apply these techniques to calculate the complexity of the classification
problem for compact spaces, up to isometry. Recall that pMiqiPN is the uniform enumeration of all
(partial) computable Polish spaces. We identify Mi with its completion, and we write Mi –iso Mj

to mean that (the completions of) Mi and Mj are isometrically isomorphic.

2We do not assume that Y is computably compact, because this is guaranteed by Exercise 4.2.69. The same
comment applies to the next corollary too.

262

Corollary 7.1.27 (Melnikov and Nies [381]). 1. The recognition problem for compact spaces

Icomp “ ti : Mi is compactu

is Π0
3-complete.

2. The isometric isomorphism problem for compact spaces

Eiso “ txi, jy : Mi –iso Mj & Mi,Mj are compactu

is Π0
3-complete3.

Proof. For (1), say that the metric is total, is indeed a metric, and for every n there is a 2´n-cover
of the space by closed basic balls D0, . . . , Dk. The latter is the same as to say that for every special
point x, x P D0 Y . . .YDk; this is because the complement of D0 Y . . .YDk is open. Since x P Di

is a Π0
1-property, the overall complexity of

@n Dk @x special x P D0 Y . . .YDk

is Π0
3. The Π0

3-completeness can be witnessed by closed c.e. subspaces of the standard computable
copy of ωω; see Exercise 7.1.42.

For (2), recall that every compact computable Polish space is computably compact relative to
01, by Fact 4.2.11. Thus, by Theorem 7.1.22, given i, j P Icomp, it is Π0

2 in i, j to tell that Mi and
Mj are isometrically isomorphic. The Π0

3-completeness of Eiso follows from the Π0
3-completeness

of Icomp vacuously; simply consider pairs pCi, CiqiPN for the sequence pCiqiPN witnessing the Π0
3-

completeness of Icomp. (To see that the upper estimate Π0
2 is optimal provided that Mi,Mj are

both compact, fix some infinite compact C. Produce a finite subspace of C in the Σ0
2-outcome, and

C in the Π0
2-outcome.)

Compact Polish groups

In this subsection, we measure the complexity of the index sets of profinite and compact connected
groups. The first step is to measure the complexity of being a compact group.

Fix an effective listing G0, G1, . . . of (partially) computable Polish spaces in which every (per-
haps, partial) computable Polish space Gi is additionally equipped with a pair of c.e. sets that are
interpreted as names of (partial, potential) group operations on Gi. We usually identify Gi with
its completion Gi. Recall Definition 4.2.8:

Definition 7.1.28. A function f : G Ñ M is effectively continuous if there is a c.e. family F of
pairs pD,Eq of (indices of) basic open balls such that:

(C1) for every pD,Eq P F , we have fpDq Ď E;

(C2) for every x P G and every basic open E Q fpxq, there exists a basic open D with pD,Eq P F
and x P D.

For technical convenience, we will use the following uniform variation of Definition 7.1.28. If B
is a basic open ball, let Bc denote the basic closed ball having the same radius rpBq and centre
cpBq as B.

3Indeed, it is Π0
2-complete within the Π0

3-complete set Icomp, meaning that its Π0
2-completeness can be witnessed

using only indices from Icomp for both the Π0
2 and the Σ0

2-outcomes.

263

Definition 7.1.29. Let f be a continuous function between Polish metric spaces M and N . A
˚-name of f is any collection of pairs of basic open balls pB,Cq such that fpBq Ď Cc, and for every
x PM and every ε ą 0, there exists pB,Cq P Ψ such that B Q x and rpCq ă ε.

We can uniformly pass from a ˚-name of f (Definition 7.1.29) to a name of f (Definition 7.1.28)
and back, as follows. Suppose Ψ is a name of f . Since fpBq Ă C implies fpBq Ă Cc, every ˚-name
is a name. Now suppose Ψ is a ˚-name of f . Using ε{2 instead of ε in Definition 7.1.29, fix pB,Cq
with rpCq ă ε{2 such that x P B and fpBq Ă Cc. Replace C with an equicentric C 1 Ą C such that
rpCq ă rpC 1q ă ε. We have fpBq Ă Cc Ď C 1 and rpC 1q ă ε.

The uniform procedure of passing from a name to a ˚-name can be applied to any c.e. set W
which does not even have to be a name of any function. We denote the resulting c.e. set by W˚.
Then W is a name iff W˚ is a ˚-name (of the same function).

Having this uniform correspondence in mind, without loss of generality, we may always assume
that any (partial) computable group is given by the ˚-names of its potential operations. We shall
follow this convention throughout the rest of this subsection.

Proposition 7.1.30. The index set CPGr “ ti : Gi is a compact Polish groupu is Π0
3-complete.

Proof of Proposition 7.1.30. We are given a triple Gi “ pG,W,Uq, where G is a (partial) com-
putable Polish space and W,U are c.e. sets interpreted as potential ˚-names. We need to check
whether G is compact and W and U are names of computable group operations on G. By Corol-
lary 7.1.27(1), it is Π0

3 to tell whether G is compact Polish.

Lemma 7.1.31. Let G and M be computable Polish spaces that are also compact. Then

te : We is a ˚ -name of a computable f : GÑMu

is Π0
3, uniformly in G and M .

Proof. Fix a c.e. set Ψ and interpret it as a set of pairs of basic open balls with rational radii:

Ψ “ tpC,Bq : C,B basic open in G,M respectivelyu.

To ensure that Ψ is a ˚-name of a computable operation, we require that Ψ additionally satisfies:

1. For every pB0, C0q, . . . , pBn, Cnq P Ψ,
Ş

iBi ‰ H implies
Ş

i Ci ‰ H.

2. For each rational ε ą 0, there exists a finite cover B0, . . . , Bk of G and pB0, C0q, . . . , pBk, Ckq P
Ψ such that rpCiq ă ε for i “ 1, . . . , k.

We first check that (1) and (2) are (at most) Π0
3, and then we prove that they capture the

property of being a ˚-name.

Claim 7.1.32. The properties (1) and (2) are Π0
3.

Proof of Claim. Since Ψ is c.e. and the intersection of open sets must be witnessed by special points
from the respective computable structures, it is clear that (1) is Π0

2. To see why (2) is Π0
3, recall

that every compact Polish space is 01-computably compact. Thus, ”being a finite cover” is Σ0
2.

Therefore, (2) is Π0
3.

Clearly, if Ψ is a ˚-name of a computable operation f : G Ñ M , then Ψ satisfies (1) and (2)
(recall G is compact).

264

Claim 7.1.33. If Ψ satisfies (1) and (2), then it is a ˚-name of a computable operation.

Proof. We define a map ψ as follows. For every x P G, choose pB,Cq P Ψ such that x P B and
declare Cc a (closed) Ψ-neighbourhood of ψpxq. (Note that if x is a computable point, then this
process is effective.) Set ψpxq to be equal to any point in the intersection

č

tC : C is a Ψ-neighbourhood of ψpxqu.

Property (1) implies that any two Ψ-neighbourhoods of ψpxq have a non-empty intersection. Let
Cn be the intersection of the first n Ψ-neighbourhoods of ψpxq in any (not necessarily effective) list
of such neighbourhoods. Then pCnq is a nested sequence of non-empty compact sets, thus it has a
non-empty intersection. Property (2) guarantees that for every ε there exists a Ψ-neighbourhood of
ψpxq of size ε. Therefore, the intersection is a singleton. We conclude that ψ is a (total) function.

We claim that Ψ is a ˚-name for ψ. Property (2) implies that for every ε ą 0 there exists
pB,Cq P Ψ such that B Q x and rpCq ă ε. It remains to show that for each pB,Cq P Ψ we have
ψpBq Ď Cc. Fix x P B. Then

tψpxqu “
č

tC : C is a Ψ-neighbourhood of ψpxqu.

Since C is a Ψ-neighbourhood of ψpxq, it follows that ψpxq P Cc.

To finish the proof of the lemma, observe that our analysis was fully uniform in G and M .

We return to the proof of Proposition 7.1.30. The product space G ˆ G is compact. There is
a uniform procedure that, given a computable Polish space G, outputs a computable presentation
of G ˆ G. It follows from Lemma 7.1.31 that the index set of Polish spaces equipped with two
well-defined computable operations is Π0

3. To finish the proof of Proposition 7.1.30, recall that the
group axioms are closed properties and thus can be checked only for special points (set e “ x ¨ x´1

for the first found x). The Π0
3-completeness is Exercise 7.1.44.

Theorem 7.1.34 (Melnikov [373]). (1) For a computable Polish compact group, being con-
nected is Π0

2.

(2) The index set of profinite Polish groups is Π0
3-complete.

Proof. Part (1) follows from Lemma 4.2.77 with Z “ H1 because every compact computable Polish
space is H1-computably compact. This upper bound is optimal; see Exercise 7.1.45.

We prove (2). We establish that the index set is Π0
3; the Π0

3-completeness is Exercise 7.1.45. It is
well-known that a compact Polish group is profinite iff its neutral element 1G has a basis consisting
of normal clopen subgroups. Recall that a closed subgroup of a profinite group is itself profinite.

Consider the following procedure. Let D0 “ G. At stage s ą 0, let Ds be the first found clopen
normal subgroup such that the diameter of Ds is at most 2´s and Ds Ď Ds´1 (if such Ds exists
at all). To find a clopen subgroup, we use H1 to find a clopen split that works (Lemma 4.2.77).
For that, search for finitely many closed balls witnessing that the group is disconnected, where the
union of the first k of them together forms a normal subgroup. Since all involved sets are clopen,

265

it suffices to check the inclusion, the diameter, normality, and the group operations only for special
points. (Compare this to the proof of Theorem 4.2.107.)

It follows thatH1 is capable of uniformly finding such aDs (if it exists), and thus @spDs is definedq
is a Π0

3-statement equivalent to profiniteness for a compact group G.

Remark 7.1.35. The proof of 1. above of course also gives that being a connected compact space
is arithmetical (Π0

2).

Switching to computably compact presentations

In Part 1 of the book, we saw that computably compact presentations are more suited for com-
pact Polish spaces than other effective presentations. Recall also that one of the many equivalent
formulations of computable compactness involved covers by basic closed balls (Exercise 4.2.18).

Definition 7.1.36. A computably compact presentation is given by:

1. A computable Polish presentation M .

2. A (closed) modulus of compactness which, given n, outputs a finite tuple of closed basic balls
of radii ď 2´n that cover the space.

Every computable Polish space that is also compact is H1-compact. Also, being compact for
a computable Polish space is arithmetical by Corollary 7.1.27. In view of the results established
so far in this section (e.g., Proposition 7.1.30), if we only aim for arithmetical estimates and are
only interested in compact objects, it makes sense to use computably compact presentations. It is
immediate that some complexity estimates become one level lower if we use computably compact
presentations; e.g., compare Corollaries 7.1.22 and 7.1.27.

It seems that switching between computable Polish and computably compact presentations usu-
ally does not make any difference, unless we worry about sharp estimates. But we also recognise that
pathologies can be rather complex in general. The following question seems to be of considerable
technical interest.

Question 7.1.37. What is the complexity of the index set of computable Polish (compact) spaces
that admit a computably compact presentation?

Index sets of computably compact groups

Fix the enumeration of all (partial) computably compact groups pGiqiPN, where each computable
Polish domain additionally comes with a (potential) computable modulus of continuity. In exchange,
by Corollary 4.2.46, we can drop the (name for the potential) inverse operation and keep only the
product.

Proposition 7.1.38. With respect to computably compact presentations, the index set of compact
groups is Π0

2.

Proof. This is a routine modification of Proposition 7.1.30. We only need to check the totality
of the operation; compactness is automatic provided the Π0

1 condition 2. of Definition 7.1.36 is
satisfied. (We of course get Π0

2-completeness since Tot can be easily coded into the index set.)

The estimates for connectedness and being profinite in Theorem 7.1.34 become Π0
1 and Π0

2,
respectively.

266

Proposition 7.1.39.
1. For a computably compact Polish group, being connected is Π0

1.
2. The index set of profinite Polish groups with respect to computably compact presentations is

Π0
2-complete.

We leave the proof of Propositions 7.1.38 and 7.1.39 to Exercise 7.1.46. We illustrate the use of
compact presentations on the index set of solenoid groups.

Solenoid groups

Recall that a class is arithmetical if both the recognition and the isomorphism problems are arith-
metical for the class. Also, a solenoid group is the Pontryagin dual of a subgroup of pQ,`q.

Remark 7.1.40. Why are such groups called “solenoids”? Every H ő Q can be represented as
the direct limit of a sequence

ZÑm0
ZÑm1

ZÑm2
ZÑm3

. . . ,

where ZÑmi Z maps Z isomorphically onto miZ ő Z. Under Pontryagin duality, pH is isomorphic
to

TÐm0
TÐm1

TÐm2
TÐm3

. . . ,

where each T Ðmi T is just mix Ð x. (These further properties of Pontryagin duality will be
discussed in Section 9.5.1; in this informal explanation we take them for granted.) This map
T Ðmi T can be visualised as T being “wrapped around” T exactly mi times. As we zoom in, we
see more and more copies of the unit circle wrapped around the first copy. This perhaps explains
the name.

The theorem below was not stated explicitly in [341], but it follows easily from the methods
developed in this paper (cf. [341, Corollary 1.4(3)]).

Theorem 7.1.41. Solenoid groups form an arithmetical class.

Proof. We use computably compact presentations. We will prove that, with respect to computably
compact presentations, the recognition problem is Π0

2-complete and the (topological) isomorphism
problem is Σ0

3-complete.
Propositions 7.1.38 and 7.1.39 guarantee that being a connected compact group is an arithmeti-

cal property (Π0
2), and being abelian is Π0

1 and can be checked only for special points. It is also Σ0
1

to tell whether the group is non-zero. (If it is zero, we are done.) Given G that is already known
to be non-zero and connected compact abelian, apply Theorem 5.2.21 (and Theorem 5.2.24) and
produce a c.e. presentation of its discrete Pontryagin dual. Since G is non-zero, we can uniformly
pass to its computable presentation using Khisamiev’s Theorem 5.1.41. Let H be the resulting
computable presentation of the dual. By Proposition 7.1.8, it is Π0

2 to tell whether H has rank 1.
This makes the index set of solenoid groups Π0

2; and indeed, it is evidently Π0
2-complete.

Given two groups, use the procedure described above to pass to their duals. (The case when at
least one of them is the zero-group is trivial and can be considered separately.) By Proposition 7.1.8,

267

expressing that the duals are isomorphic is Σ0
3. Further, the Σ0

3-completeness for discrete groups
established in Proposition 7.1.8 is witnessed by rank 1 groups, which of course come with a basis
(being the element 1 P Q, for example). Proposition 5.2.2 is uniform provided the discrete torsion-
free groups are equipped with computable bases, as explained in Remark 5.2.8. This gives the
Σ0

3-completeness for their solenoid duals.

Note that using computable Polish presentations would give estimates with one extra quantifier,
but the estimates will of course remain arithmetical, and the result would still hold. The respective
index sets must also be complete at their respective levels, but this we won’t verify.

Exercises

Exercise˝ 7.1.42. Let P be a Π0
3-predicate and identify ωω with its standard computable pre-

sentation by strings under the usual ultra-metric. Build a uniform sequence pCiqiPN of c.e. closed
subsets of ωω such that Ci is compact iff P piq holds.

Exercise˝ 7.1.43 (J. Miller (unpublished); see [139]). Let A,B Ď N be disjoint c.e. sets. There
are isometric computably compact computable metric spaces L,R such that any representation of
an isometry computes a set S such that A Ď S and B X S “ H.

Exercise˝ 7.1.44. Prove that the index set of compact Polish groups is Π0
3-complete.

Exercise˝ 7.1.45. (1) Let P be a Π0
2-predicate. Prove that there is a uniformly computable

sequence of compact Polish groups pHiqiPN so that

P piq if and only if Hi is connected.

In other words, being connected is Π0
2-complete within compact groups.

(2) Iterate the strategy from (1) above to prove that the index set of profinite groups is Π0
3-

complete within compact groups.

Exercise˝ 7.1.46. Prove Propositions 7.1.38 and 7.1.39.

Exercise 7.1.47 (Cenzer and Remmel [87]). Show that the index set of the computably bounded
Π0

1 classes in ωω is Σ0
3-complete, and the index set of the computably bounded Π0

1 classes which
have infinitely many computable members is Π0

4-complete.

Exercise 7.1.48 (Cenzer and Remmel [88]). Prove the following results about (Type II) com-
putable functions r0, 1s Ñ r0, 1s:

1. The index set of functions having a computable derivative is Σ0
3-complete.

2. The index set of functions having a continuous derivative is Π0
3-complete4.

3˚. The index set of functions having a continuous derivative but no computable derivative is
Π0

3-complete.

Exercise˚ 7.1.49 (Qian [437]). Show that the index set of computable Banach spaces with com-
putable Schauder bases (Exercise 2.4.41) is Σ0

3-complete.

4We remark that Westrick [508] extended this result to establish sharp index set estimates for functions at arbitrary
(computable) transfinite levels of the Kechris-Woodin differentiability hierarchy of functions.

268

Exercise˚ 7.1.50 (Xie [511]). Let X be a Banach space and pxiqiPN be a Schauder basis of X
(Exercise 2.4.41), with tSiuiPN its associated sequence of projections. The basis constant of pxiq,
denoted bcppxiqq, is the value supi }Si}. The basis constant of the space X, denoted bcpXq, is the
infimum of basis constants across all of its bases. A Banach space X is said to have the local basis
structure (LBS) if there is some constant K P R such that for any finite-dimensional subspace
B Ď X, there exists a finite-dimensional space L Ď X such that B Ď L and bcpLq ď K. Show that
the index-set of computable Banach spaces with the local basis structure is Σ0

3-complete.

Exercise˚˚ 7.1.51 (Becher and Slaman [45]). Show that the set of indices for computable real
numbers which are normal to at least one base is Σ0

4-complete5.

Exercise˚˚ 7.1.52 (Harrison-Trainor and Melnikov [241]). 1. Show that every compact 2-surface
is ∆0

26-categorical (with respect to computable Polish presentations) up to homeomorphism6.

2. Use the classification of all compact 2-surfaces to conclude that the index set and the home-
omorphism problem of closed surfaces are arithmetical.

7.1.3 Index sets and Friedberg enumerations

Before we move on to more technical results, we also mention one elementary application of index
sets to Friedberg enumerations. Recall that a Friedberg enumeration of a class K is a computable
listing tVe : e P Nu of all computable structures in K where every isomorphism type occurs precisely
once. Whilst we treat this concept in more detail in Chapter 9, we are in a position to show that
certain classes do not have Friedberg enumerations based on index sets.

The following observation is (essentially) due to Goncharov and Knight [213], but in this partic-
ular form was first stated in [330]. In the fact below, K can be either a class of algebraic structures
or of topological objects.

Fact 7.1.53. Fix a class K and a positive n P N. Suppose IpKq is ∆0
n and IpKq is Σ0

n-complete.
Then K does not admit a Friedberg enumeration.

Proof. Assume pUiqiPN is a Friedberg enumeration of isomorphism types in K. Let pMeqePN be the
uniform enumeration of all structures in the language of K given by the universal Turing machine.
There is a computable f such that Ui “Mfpiq. For every m,n P IpKq, Mm flMn iff

Di ‰ j pn, fpiqq P EpKq ^ pm, fpjqq P EpKq,

which is Σ0
n. This makes EpKq ∆0

n, contrary to the hypothesis.

Of course, Σ0
n-completeness in the fact above can be replaced with “Σ0

n and not ∆0
n”. The

following is a consequence of Proposition 7.1.8 and Fact 7.1.53.

Corollary 7.1.54 (Lange, Miller, Steiner [330]). There is no Friedberg enumeration of all additive
subgroups of Q up to isomorphism.

The index set calculations in the proof of Theorem 7.1.41 imply:

5A real number is said to be normal to base b if, for every positive integer n, all possible strings of digits in base
b of length n have asymptotic density b´n. That is, all strings of digits occur with equal likelihood in the expansion
of the real number to base b. We omit the formal definitions since they are irrelevant to the content of the book.

6It is perhaps not surprising that we do not know at present whether 26 is optimal.

269

Corollary 7.1.55. There is no Friedberg enumeration of computably compact solenoid groups, up
to topological group isomorphism.

But of course, the sufficient uniformity in Effective Pontryagin Duality makes the corollaries above
equivalent. Thus, using the proof of Theorem 7.1.41 was not really necessary.

Exercises

Exercise˝ 7.1.56. Prove that there is no Friedberg enumeration of all computably compact spaces
up to isometry. (Give a direct diagonalisation argument.)

Exercise˝ 7.1.57. Prove that there is no Friedberg enumeration of all computably compact spaces
up to computable homeomorphism.

Exercise˝ 7.1.58. A finite presentation (f.p.) of a group is a tuple

xx1, . . . , xm|r1, . . . , rmy

where x1, . . . , xm are generators and r1, . . . , rm are relations upon the generators. A group is finitely
presented (f.p.) if it has a finite presentation. Let pFiqiPN be the uniform enumeration of all finite
presentations given by their strong indices (i.e., as pairs of tuples). The isomorphism problem for
f.p. groups is the collection tpi, jq : Fi – Fju, where Fi – Fj means that the groups represented by
Fi and Fj are isomorphic. Take for granted that isomorphism of two finitely presented groups is an
undecidable problem (Adyan [3, 4] and Rabin [438]).

(i) Show that the isomorphism problem for f.p. groups is Σ0
1.

(ii) Conclude that there is no c.e. list of finite presentations (given by their strong indices) in
which every f.p. group is mentioned exactly once, up to isomorphism.

270

7.2 Completely decomposable groups

In this section, we examine an important illustrative class of torsion-free abelian groups in much
detail. Elements of the theory of computable torsion-free abelian groups were presented in Section
5.1. There, we proved Nurtazin’s Theorem 5.1.43, which classified the computably categorical
torsion-free abelian groups exactly as those having finite rank. In the present section, we will
concentrate on a class of torsion-free abelian groups which are best understood classically beyond
the rank one groups. For an important subclass of homogeneous completely decomposable groups,
we will be able to completely describe the ∆0

n-categorical members of the class, for all n. The
techniques that we will accumulate in this section will be used in the next section to produce
estimates for index sets.

In this section all our groups are discrete and at most countable.

Definition 7.2.1. A torsion-free abelian group is completely decomposable (c.d.) if it is iso-
morphic to

à

iPI

Hi,

where Hi is a subgroup of the rationals Q under addition, for every i P I. If all the elementary
summands Hi are pairwise isomorphic, we say that the group is also homogeneous.

The subgroups Hi in
À

iPI Hi will be referred to as elementary (direct) components and elemen-
tary (direct) summands of the group. Algebraic properties of completely decomposable groups are
quite well studied, especially in the countable case; see Fuchs [195]. Baer [26] was the first to sys-
tematically study this class of groups. He showed that, up to isomorphism, a countable completely
decomposable group

À

iPNHi is fully determined by the isomorphism types of the elementary sum-
mands Hi, and that the complete decomposition is unique up to a permutation of the summands.
Thus, the homogeneous case is completely described by the type (see Theorem 5.1.15) and the rank
of the group. In this section we prove:

Theorem 7.2.2 (Downey and Melnikov [136]). Every computable homogeneous completely
decomposable group is ∆0

3-categorical.

We also completely describe ∆0
2-categoricity in the class (Theorem 7.2.25). With enough ma-

chinery accumulated, we will prove the main result of this section:

Theorem 7.2.3 (Downey and Melnikov [137]). Every computable completely decomposable
group is ∆0

5-categorical.

As we will see, the theorem and its proof will allow us to give arithmetical estimates for the
index set and the isomorphism problem of completely decomposable groups. To understand the

271

effective categoricity of these groups, we will need both new uses of computability theory in the
study of torsion-free abelian groups, and some new algebraic structure theory, as described in the
next subsection.

7.2.1 Background, notation, and conventions

We refer the reader to Section 5.1 for the basic definitions of abelian group theory. We recall some
of these definitions here. Also, we will slightly adjust our notation (e.g., Definition 7.2.5).

Recall that we write k|g in G (or simply k|g if it is clear from the context which group is
considered) and say that k divides g in G if there exists an element h P G for which kh “ g, and
we say that h is a k-root of g. (The latter term is not standard in abelian group theory, but it will
be convenient to us.) Clearly, k|g is simply an abbreviation for the formula

pDhqph` h` . . .` h
loooooooomoooooooon

h repeated k times

“ gq

in the signature of abelian groups. If the group G is torsion-free then every g P G has at most one
k-root, for every k ‰ 0.

Definition 7.2.4. Suppose G is a torsion-free abelian group, g is an element of G, and n|g some
n. If r “ m

n then we denote by rg the (unique) element mh such that nh “ g.

The definition below already appeared in §5.1.1, but we state it again here.

Definition 7.2.5 (Pure subgroups and [X]). A subgroup A of G is called pure if for every a P A
and every n, n|a in G implies n|a in A. For any subset X of G we denote by rXs the least pure
subgroup of G that contains X to avoid conflict of notation (the pure closure of X in G).

The standard notations for the least pure subgroup of G containing X are pXq˚G and pXq˚ (when
G is clear from the context); we used this notation in §5.1.1. However, in this section we will stick
with rXs which resembles the notation for the localisation of an integral domain. The reason we
adjust our notation is to avoid conflict with the following convenient notation.

Notation 7.2.6. Let G be an abelian group and A Ď G. Suppose tra : a P Au is a set of (rational)
indices. If we write

ř

aPA raa then we assume that raa ‰ 0 for at most finitely many a P A, and
every element raa is well-defined in G, according to Definition 7.2.4. We will use this convention
without explicit reference to it. Now suppose R ő Q, and A Ď G. We denote by pAqR the subgroup
of G (if this subgroup exists) generated by A Ď G over R ő Q, i.e.

pAqR “ t
ÿ

aPA

raa : ra P Ru.

Finally, for R ő Q and a P G, we denote by Ra the subgroup ptauqR of G.

Let R ő Q. If a set A ő G is linearly independent then every element of pAqR has the unique
presentation

ř

aPA raa. Therefore, pAqR “
À

aPARa for every linearly independent set A.

272

Computable homogeneous c.d. groups

We fix a computable presentation of the rationals pQ,`,ˆq. This structure is computably categor-
ical, and thus we do not need to be more specific in our description of this copy. Recall Theorem
5.1.16:

Theorem 7.2.7 (Mal’cev [346]). Let G be a torsion-free abelian group of rank 1. Then the following
are equivalent:

(1) The group G has a computable presentation.
(2) The type tpGq is c.e.
(3) The group G is isomorphic to a c.e. additive subgroup R of pQ,`q. Furthermore, we may

assume that 1 P R.

The p1q Ø p2q part of Theorem 7.2.7 can be easily generalised to the class of homogeneous
completely decomposable groups:

Proposition 7.2.8. A homogeneous completely decomposable group G has a computable presenta-
tion iff tpGq is c.e..

Computable modules and categoricity. The definition of GP .

We omit the standard definition of a module over a ring, but we recall that this is essentially a
vector space, except the ”scalars” range over a ring rather than over a field. We say that C is a
computable presentation of a module M over a fixed computable presentation of a ring R if C is a
computable presentation of M as an abelian group and the operation ¨ : RˆC Ñ C is computable.

Fix a set of primes P . Let QpP q be the subgroup of the rationals pQ,`q generated by the set
of fractions t 1

pk
: k P N and p P P u, and let GP “

À

iPN QpP q, i.e., the direct sum of ω copies of

QpP q. Of course, QpP q can also be viewed as a ring. The proof of the following two facts are left as
exercises.

Proposition 7.2.9. The following are equivalent:

1. P is c.e.

2. QpP q is a c.e. subring of a computable presentation of pQ,`,ˆq.

3. GP is computably presentable as an abelian group.

4. GP is computably presentable as a module over QpP q.

Lemma 7.2.10. For a c.e. set of primes P , the following are equivalent:

1. Every computable presentation of the group GP has a Σ0
n basis which generates this presen-

tation as a module over QpP q.

2. The group GP is ∆0
n-categorical.

3. The QpP q-module GP is ∆0
n-categorical.

Thus, from the computability-theoretic point of view, GP may be alternatively considered as
an abelian group or a QpP q-module.

273

Exercises

Exercise˝ 7.2.11. Prove Proposition 7.2.9 and Lemma 7.2.10.

7.2.2 S-independence and excellent S-bases

The notion of p-independence (for a single prime p) is a fundamental concept in abelian group
theory (see [194], Chapter VI). We introduce a certain generalisation of p-independence to sets of
primes. The notion of S-independence below can also be viewed as a restriction of the notion of
independence used in Pontryagin’s freeness criterion (it can be found in [192]). It states that a
countable abelian group is free if, and only if, it is the union of a countable chain of pure free
groups of finite rank. To obtain Pontryagin’s notion, just let S in Definition 7.2.12 below be the
set of all primes.

Definition 7.2.12 (S-independence and excellent bases). Let S be a set of primes, and let
G be a torsion-free abelian group. If S ‰ H, then we say that elements b1, . . . , bk of G are
S-independent in G if

p |
ÿ

iPt1,...,ku

mibi

in G implies
ľ

iPt1,...,ku

p|mi,

for all integers m1, . . . ,mk and any p P S. If S “ H, then we say that elements are S-
independent if they are simply linearly independent. Every maximal S-independent subset of
G is said to be an S-basis of G. We say that an S-basis is excellent if it is a maximal linearly
independent subset of G.

It is easy to check that S-independence in general implies linear independence. However, an
S-basis does not have to be excellent; we leave this to Exercise 7.2.24.

Since “p-independence” and “P -independence” sound exactly the same, and since P can be
confused with the set of all primes (rather than interpreted as some set of primes), we chose to use
S instead of P in the definition above. Another reason is given in Notation 7.2.13 below.

Notation 7.2.13. In this section P stands for a set of primes (which is not necessarily the set of
all prims) and P̃ for the complement of P within the set of all primes:

P̃ “ tp : p is prime and p R P u.

The set P̃ will typically serve as the set S in “S-independence” throughout the rest of the chapter.
We also will often consider the group

GP –
à

iPI

QpP q,

where P̃ -independence will play a special role.

274

Lemma 7.2.14. Fix B Ď GP –
À

iPI QpP q. Then B is an excellent P̃ -basis of GP iff G “
À

bPB QpP qb.

Before we prove the lemma, we discuss the extreme cases. Let P be the set of all primes.
Then P̃ “ H. Recall that H-independence is simply linear independence, and GP –

À

iPN Q. It
is well-known that every maximal linearly independent set generates the vector space over Q. If
P “ H then GH –

À

iPN Z is the free abelian group of the rank ω. As a consequence of the lemma,
every excellent P-basis of GH generates it as a free abelian group; this is a reformulation of the
Pontryagin’s criterion that we mentioned above.

Proof. pñq. We assume that P ‰ H throughout, and we write G for GP . Let B be an excellent
P̃ -basis of G “ GP . Suppose g P G. By our assumption, B is a basis of G. Therefore, there exist
integers m and mb, b P B, such that mg “

ř

bmbb. Suppose m “ pm1 for some p P P̃ . By Definition
7.2.12, p|mb for all b P B. Therefore, without loss of generality, we can assume that pm, pq “ 1, for
every p P P̃ . By the definition of G, we have:

g “
ÿ

b

mb

m
b P pBqQpP q ő G.

The set B is linearly independent, therefore pBqQpP q “
À

bPB QpP qb (see the discussion after Nota-
tion 7.2.6). We have g P pBqQpP q ő G for every g P G. Thus, G “ pBqQpP q .

pðq. Let G “
À

bPB QpP qb for B Ď G, and ph “
ř

bPBmbb, where mb is integer for every b P B,

and p P P̃ . We have h P GP and thus h “
ř

bPB hb, where hb P QpP qb for each b P B (recall that
hb “ 0 for a.e. b).

Therefore ph “ p
ř

bPB hb “
ř

bPB phb “
ř

bmbb, and phb “ mbb for every b (by the uniqueness
of the decomposition of an element). Each elementary direct component of G in the considered
decomposition has the form QpP qb. In other words, the element b plays the role of 1 in the cor-
responding QpP q-component of this decomposition. Now recall that p R P . Thus, mb ‰ 0 implies
p|mb for every b, by the definition of QpP q.

In later proofs we will have to approximate an excellent basis stage-by-stage, using a certain
oracle. Recall that not every maximal P̃ -independent set is an excellent basis of GP . Therefore, we
need to show that, for a given finite P̃ -independent subset B of GP and an element g P GP , there
exists a finite extension B‹ of B such that B‹ is P̃ -independent and the element g is contained in
the QpP q-span of B‹.

Proposition 7.2.15. Suppose B Ď GP is a finite P̃ -independent subset of GP . For every g P GP
there exists a finite P̃ -independent set B‹ Ď GP such that B Ď B‹ and g P pB‹qQpP q .

Proof. Pick tei : i P Nu Ď GP such that GP “
À

iPN QpP qei. Let te0, e1, . . . , enu be such that both
B “ tb0, . . . , bku and g are contained in pte0, e1, . . . , enuqQpP q . We may assume k ă n. We will need
the following well-known generalisation of Rado’s Lemma 5.1.4.

Lemma 7.2.16. Suppose B “ tb0, . . . , bku Ď
À

iPt0,...,nuQpP qei, is a linearly independent set.

There exists a set C “ tc0, . . . , cnu Ď
À

iPt0,...,nuQpP qei, and coefficients r0, . . . , rk P QpP q such that

(1)
À

iPt0,...,nuQpP qei,“
À

iPt0,...,nuQpP qci, and

(2) ptr0c0, . . . , rkckuqQpP q “ pBqQpP q .

275

Proof. It is a special case of a well-known fact ([329], Theorem 7.8) which holds in general for
every finitely generated module over a principal ideal domain (note that QpP q is a principal ideal
domain).

We show that if B is P̃ -independent (and not merely linearly independent) then we can set
B‹ “ tb0, . . . , bku Y tck`1, . . . , cnu, where C “ tc0, . . . , cnu is the set from Lemma 7.2.16. Suppose

p|
ÿ

0ďiďk

nibi `
ÿ

k`1ďiďn

nici

for a prime p P P̃ . We have

à

iPt0,...,nu

QpP qei “
à

1ďiďk

QpP qci ‘
à

k`1ďiďn

QpP qci,

and
ř

1ďiďk nibi P
À

1ďiďk QpP qci. By the purity of direct components, we have

p|
ř

1ďiďk nibi within
À

1ďiďk QpP qci

and
p|
ř

k`1ďiďn nici within
À

k`1ďiďnQpP qci.

But the former implies p|ni for all 1 ď i ď k by our assumption, and the latter implies p|ni for all
k ` 1 ď i ď n by the choice of C and Lemma 7.2.14.

The set B‹ is actually an excellent P̃ -basis of
À

iPt0,...,nuQpP qei, since the cardinality of B‹ is

n` 1, which is exactly the rank of
À

iPt0,...,nuQpP qei. Therefore, the set

B‹ “ tb0, . . . , bku Y tck`1, . . . , cnu

is a P̃ -independent set with the needed properties.

Suppose G is a torsion-free abelian group, and a, b P G. Recall that χpaq ď χpbq iff hipaq ď hipbq
for all i. In other words, pk|a implies pk|b , for all k P N and every prime p.

Definition 7.2.17. Let G be a torsion-free abelian group. For a given characteristic α, let Grαs “
tg P G : α ď χpgqu.

We have hipaq “ hip´aq and infphipaq, hipbqq ď hipa` bq, for all i. Furthermore, χp0q ě α, for
every characteristic α. Therefore, Grαs is a subgroup of G.

Notation 7.2.18. Let α “ pα0, α2, . . .q. The subgroup of pQ,`q generated by elements of the form
1{pxk where x ď αk, will be denoted Qpαq.

Recall that the type is an equivalence class of characteristics. Thus, the type of H ő Q is simply
the type of any nonzero element of H. We are ready to state and prove the main result of this
subsection. Recall Notation 7.2.13.

Theorem 7.2.19. Let G “
À

iPNH, where H ő Q, tpHq “ f and α “ pα0, α1, . . .q is of type f .

Then Grαs – GP , where P “ tpi : hi “ 8 in αu. Furthermore, if B is an excellent P̃ -basis of Grαs,
then G is generated by B over Qpαq.

276

Proof. We prove that Grαs – GP .

Let gi be the element of the i-th presentation of H in the decomposition G “
À

iPNH such that
χpgiq “ α. The collection tgi : i P Nu is a basis of G. Therefore, tgi : i P Nu is a basis of Grαs.
By the definition of P , ptgi : i P NuqQpP q is a subgroup of Grαs. Furthermore, since tgi : i P Nu is
linearly independent,

ptgi : i P NuqQpP q –
à

iPN
QpP qgi.

Thus, we have
à

iPN
QpP qgi Ď Grαs.

We are going to show that every element g P Grαs is generated by tgi : i P Nu over QpP q. This
will imply Grαs – GP .

Pick any nonzero g P Grαs. The set tgi : i P Nu is a basis of Grαs, therefore ng “
ř

iPNmigi for
some integers n and mi, i P N. Since direct components are pure, n|

ř

iPI migi implies n|migi for

every i P N, and g “
ř

iPI
mi
n gi. After reductions we have g “

ř

iPI
m1i
ni
gi, where

m1i
ni

is irreducible.

It suffices to show that
m1i
ni
P QpP q.

Assume there is i such that
m1i
ni
R QpP q. Equivalently, for some pk P P̃ , we have m1i ‰ 0 and

ni “ pkn
1
i, where n1i is an integer (recall that

m1i
ni

is irreducible).

We have hkp
m1i
ni
giq “ hkp

m1i
n1i

gi
pk
q ď hkp

gi
pk
q, since m1i is not divisible by pk. But hkp

gi
pk
q ă

hkpgiq (recall that hkpgiq is finite). It is straightforward from the definitions of hk that hkpgq “

minthkp
m1i
ni
giq : i P I,mi ‰ 0u, since each gi belongs to a separate direct component of G. Therefore

hkpgq ď hkp
m1i
ni
giq ă hkpgiq. But χpgiq “ α. Thus, χpgq ğ α and g R Grαs, and this contradicts our

choice of g. Therefore, Grαs – GP .

We show that if B is an excellent P̃ -basis of Grαs, then G “ pBqQpαq (recall Notation 7.2.6).

For every b P B consider the minimal pure subgroup rbs which contains b (recall Definition
7.2.5). Consider

HpBq “
ÿ

bPB

rbs ő G.

In fact, HpBq “
À

bPBrbs, because B is linearly independent within Grαs and, therefore, within G
as well.

By our choice, b P Grαs. Thus, χpbq ě α within G. We show that in fact χpbq “ α. Assume
χpbq ą α. We have b “ pa for some a P Grαs and p P P̃ . But B is P̃ -independent. This contradicts
the fact that p|1 ¨ b and 1 is evidently not divisible by p. Therefore, we have

rbs “ Qpαqb,

and thus HpBq “ pBqQpαq. It remains to prove that G Ď HpBq.
Pick any nonzero g P G. There exist integers m and n such that pm,nq “ 1 and χpmn gq “ α. To

see this we use the fact that χpgq P f . It is enough to make only finitely many changes to χpgq to
make it equivalent to α.

277

Equivalently, m
n g P Grαs. Applying Lemma 7.2.14, we obtain

m

n
g “

ÿ

bPB,rbPQpP q
rbb.

By our assumption, χpbq “ χpmn gq “ α, for every b P B. Obviously, m|mn g in G. Therefore, by the
definition of α and B, we have m|b in Qpαqb. Thus, there exist xb P rbs “ Qpαqb such that mxb “ b.
We can set

g “
ÿ

bPB

nrbxb,

where nrbxb P rbs. This shows G “ pBqQpαq.

7.2.3 ∆0
3-categoricity and the proof of Theorem 7.2.2

Recall that the main result of this section, Theorem 7.2.2, states that every computably presentable
homogeneous completely decomposable group is ∆0

3-categorical. The proof of the Theorem 7.2.2 is
based on the lemma below.

Lemma 7.2.20. Let G “
À

iPNH, where H ő Q, the type tpHq is f , and α “ pα0, α1, . . .q is a
characteristic of type f . Let G1 and G2 be computable presentations of G. Suppose that both G1rαs
and G2rαs have Σ0

n excellent P̃ -bases. Then there exists an ∆0
n isomorphism from G1 onto G2.

We first prove Theorem 7.2.2, and then prove Lemma 7.2.20. We need to show that a given
homogeneous completely decomposable group satisfies the hypothesis of Lemma 7.2.20 with n “ 3.

Proof of Theorem 7.2.2. Let G be a computable presentation of G –
À

iPNH, where H ď Q. Let
α be a characteristic of type tpHq and

P “ tpk : αk “ 8 in αu.

By Theorem 7.2.19 and Lemma 7.2.20, it suffices to construct a excellent P̃ -basis of Grαs which is
Σ0

3.
We are building C “

Ť

n Cn. Assume that we are given Cn´1. At step n of the procedure, we
do the following:

1. Pick the n-th element gn of Grαs.
2. Find an extension Cn of Cn´1 in Grαs such that:
(a) Cn is a finite P̃ -independent set, and
(b) Cn Y tgnu is linearly dependent.

Let G “
À

iPI Rei, where χpeiq “ α and R – H. Observe that at stage n of the procedure we
have

gn Y Cn´1 Ă pte0, . . . , ekuqQpP q ,

for some k. By Proposition 7.2.15, the needed extension denoted by Cn can be found. It suffices to
check that the construction is effective relative to 02.

By Theorem 7.2.19, we have Grαs – GP , where P “ tp : p8|hu is a Π0
2 set of primes.

Claim 7.2.21. Grαs is a Π0
2-subgroup of G.

278

Proof. Pick any h P G with χphq “ α. By its definition, for every g P G, the property χpgq ě α is
equivalent to

@p prime @k P N ppDxqpkx “ hÑ pDyqpky “ gq.

Therefore, the group Grαs is a Π0
2-subgroup of G.

Claim 7.2.22. There is a 02-computable procedure which decides if a given finite set B Ď Grαs is
P̃ -independent, uniformly in the index of B.

Proof. Note that in general P P Π0
2. By Claim 7.2.21, the group Grαs is a Π0

2-subgroup of G. Thus,
the condition “B is a P̃ -independent set in Grαs” seems to be merely Π0

3:

@m P Ză8 @p prime

˜«

p R P ^ pDxq

˜

x P Grαs ^ px “
ÿ

bPB

mbb

¸ff

Ñ
ľ

b

p | mb

¸

.

The idea is to substitute the Σ0
3 condition pDxqpx P Grαs^ px “

ř

bPBmbbq by an equivalent Σ0
2

one, using a non-uniform parameter c P G such that χpcq “ α. We are going to show that for every
pv R P , the property

pDxq

˜

x P Grαs ^ pvx “
ÿ

bPB

mbb

¸

is equivalent to

pDkqpDy P Gq

˜

αv ă k ^ pkvy “
ÿ

bPB

mbb

¸

,

where αv is the v-th component of α corresponding to pv and

αv ă k ô pαv ě kq ô pDξqppkvξ “ cq.

Suppose there is x P Grαs such that pvx “
ř

bPBmbb. Since hvpxq ě αv, we have pαvv y “ x and
pαv`1
v y “ pvx, for some y P G, so we can set k “ αv ` 1. For the converse, suppose there exist

such k and y. Then pvx “ pkvy for x “ pk´1
v y. We have k ą αv, and therefore pk ´ 1q ě αv. But

hvpxq ě pk´ 1q because x “ pk´1
v y is divisible by k´ 1, and thus hvpxq ě αv. The characteristic of

x differs from the characteristic of y only at the position for the prime pv. Thus, for every w ‰ v,

hwpxq “ hwpp
k
vyq “ hw

˜

ÿ

bPB

mbb

¸

ě αw,

since
ř

bPBmbb P Grαs. Therefore, χpxq ě α and x P Grαs.

By Claim 7.2.21 and Claim 7.2.22, the procedure is computable relative to 02.

Proof of Lemma 7.2.20. Recall that G1 and G2 are computable presentations of G such that both
G1rαs and G2rαs have Σ0

n excellent P̃ -bases. We need to show that there exists an ∆0
n isomorphism

from G1 onto G2. Let B1 and B2 be excellent P̃ -bases of G1rαs and G2rαs, respectively.
Observe that the group Qpαq is isomorphic to a c.e. additive subgroup R of pQ,`,ˆq. Further-

more, we may assume that 1 P R. (Pick h with χphq “ α non-uniformly, and consider rhs.) By
Theorem 7.2.19, we have

G1 “
à

bPB1

Rb – G2 “
à

b1PB2

Rb1.

279

To build a ∆0
n isomorphism from G1 to G2 first define the map from B1 onto B2 using a standard

back-and-forth argument. Then extend it to the whole G1 using the fact that r ¨ b can be found
effectively and uniformly, for every r P R and b P B1.

Exercises

Exercise˚ 7.2.23 (Bazhenov, Goncharov, and Melnikov [33]). Let H be a decidable homogeneous
completely decomposable group that is not a divisible group. Show that H admits a computable
maximal linearly independent set.

Exercise˝ 7.2.24. Show that, for S ‰ H, a maximal S-independent set does not have to be
maximal linearly independent. (Hint: For example, Lemma 35.1 in [194] implies that the free
abelian group of rank ω contains a tpu-basis which is not excellent.)

7.2.4 Semi-low sets, and ∆0
2-categoricity

In this subsection we give a complete and detailed proof of Theorem 7.2.25 that describes ∆0
2-

categoricity of homogeneous c.d. groups in terms of semi-low sets. This result will not be used
in the sequel. However, this is the only satisfactory description of ∆0

2-categoricity in a non-trivial
natural class that we are aware of. Even ∆0

2-categorical equivalence structures do not seem to
possess such a description, as we will briefly discuss in Chapter 9. Thus, the result presented in
this section is rather unusual and surprising.

A set A is semi-low if the set

HA “ te : We XA ‰ Hu “ te : We Ę Au

is computable relative to H1. We have already met semi-low sets in Exercises 3.1.23, 3.1.24,
and 3.1.25, and in §3.1.5 we saw that semilowness can be used to imitate lowness in some con-
structions.

This notion arose in the understanding of the automorphisms of the lattice of c.e. sets [477]. It
is quite remarkable that this notion captures ∆0

2-categoricity of a homogeneous c.d. group, as we
show next. As before, GP stands for the direct sum of infinitely many copies of the localisation of
the integers by a set of primes P .

Theorem 7.2.25 (Downey and Melnikov [136]). A computable homogeneous completely de-
composable group A of rank ω is ∆0

2-categorical iff A is isomorphic to

GP –
à

iPI

QpP q,

where P is a c.e. set of primes such that

P̃ “ tp : p prime and p R P u

is semi-low.

280

Before we prove the theorem, we discuss its corollaries. Combined with Lemma 7.2.10, the
theorem above gives:

Corollary 7.2.26. For a c.e. set P , the following are equivalent:

1. GP has a Σ0
2 excellent P̃ -basis;

2. GP has a Σ0
2-basis as a free QpP q-module7;

3. GP is ∆0
2-categorical;

4. P̃ is semi-low.

In particular, since every low set is semi-low (Exercise 3.1.23), we have:

Corollary 7.2.27. If a c.e. set of primes P is low then GP is ∆0
2-categorical.

In particular, the free abelian group of rank ω is ∆0
2-categorical. It is known that every non-low

c.e. degree contains a c.e. set whose complement is not semi-low; see Exercise 3.1.25. Thus, we
conclude that the upper bound n “ 3 for ∆0

n-categorcity of homogeneous c.d. groups established in
Theorem 7.2.2 cannot be improved in general.

Corollary 7.2.28. There exists a c.e. set of primes P so that the homogeneous c.d. group GP
is not ∆0

2-categorical. Indeed, any non-low c.e. degree contains a c.e. set of primes P with this
property.

In Chapter 10 we will study a “Type II” version of ∆0
2-categoricity, relative ∆0

2-categoricity. A
computable structure H is relatively ∆0

2-categorical if every X-computable copy of H is isomorphic
to H via an X 1-computable isomorphism. For the class of homogeneous completely decomposable
groups, this notion corresponds exactly to GP having a computable sets of primes P ; this is Exer-
cise 10.1.94. It follows from Theorem 3.1.1 that relative and “plain” ∆0

2-categoricity differ for the
class of homogeneous completely decomposable groups.

Proof of Theorem 7.2.25 and computable settling time˚

The proof of the theorem is not particularly difficult; however, it is relatively long. The proof
can be either skipped or skimmed through. However, the reader should note that the notion of a
computable settling time strongly resembles the notion of a limitwise monotonic function that will
be of central importance in Chapter 9.

Proof of Theorem 7.2.25. The proof is split into several parts. Each part corresponds to a differ-
ent hypothesis on the isomorphism type of G. Different cases will need different techniques and
strategies.

We need the following technical notion:

Definition 7.2.29 (Computable settling time). Let α “ phiqiPN be a sequence where hi P ωYt8u
for each i (in other words, let α be a characteristic). Also, suppose that there is a non-decreasing
uniform computable approximation hi,s such that hi “ sups hi,s, for every i (in other words, the
characteristic is c.e.).

7That is, te0, e1, . . .u so that GP “
À

iPN QpP qei.

281

We say that α has a computable settling time if there is a (total) computable function ψ : ω Ñ ω
such that

hi “

#

hi,ψpiq, if hi is finite,

8, otherwise,

for every i. We also say that ψ is a computable settling time for phi,sqi,sPN.

This is the same as saying that, given i, there exists an effective (and uniform) way to compute
a stage s after which the approximation of hi either does not increase, or increases and tends
to infinity. Note that this is the property of a characteristic, not the property of some specific
computable approximation. Indeed, given an approximation of α having a computable settling
time, we can define a computable settling time for any other computable approximation of α.
Furthermore, as can be easily seen, this is a type-invariant property. Thus, we can also speak of
types having computable settling times.

If a homogeneous completely decomposable group G of type f is computable, then f is c.e. (see
Proposition 7.2.8). Suppose that G is a computable homogeneous completely decomposable group
of type f , and let α “ phiqiPN be a characteristic of type f . We consider the cases:

1. The type f of G has no computable settling time. In this case G is not ∆0
2-categorical by

Proposition 7.2.32. Observe that if f has no computable settling time then the set Finpαq “
ti : 0 ă hi ă 8u has to be infinite (see, e.g., Proposition 7.2.9). Thus, G can not be isomorphic
to GP , for a set of primes P .

2. The type f of G has a computable settling time, Finpαq “ ti : 0 ă hi ă 8u is empty (finite),
and the set ti : hi “ 0u is semi-low. In other words, the group G is isomorphic to GP with P̃
semi-low. In this case G is ∆0

2-categorical, by Proposition 7.2.30 below.

3. The type f of G has a computable settling time, the set Finpαq “ ti : 0 ă hi ă 8u is empty
(finite), and the set ti : hi “ 0u is not semi-low. Here G is again isomorphic to GP , but in
this case G is not ∆0

2-categorical, by Proposition 7.2.33 below.

4. The type f of G has a computable settling time, and the set Finpαq “ ti : 0 ă hi ă 8u is
infinite and not semi-low. As in the above case8,G is not ∆0

2-categorical, by Proposition 7.2.33.

5. The type f of G has a computable settling time, and the set Finpαq “ ti : 0 ă hi ă 8u is
infinite and semi-low. The group is not ∆0

2-categorical, by Proposition 7.2.34 below.

We first discuss why case (3) and case (4) above can be collapsed into one case. First, define
Infpαq “ ti : hi “ 8u and V “ ti : 0 ă hi,ψpiq ă 8u, where ψ is a computable settling time for

α. Note that V is c.e.. Evidently, Infpαq “ Finpαq Y ti : hi “ 0u and Finpαq “ Infpαq X V . We
claim that “Finpαq is not semi-low” implies “Infpαq is not semi-low”. We assume that Infpαq is
semi-low and observe that

te : We X Finpαq ‰ Hu “ te : We X V X Infpαq ‰ Hu “ te : Wspeq X Infpαq ‰ Hu

for a computable function s. Therefore, HFinpαq ďm H
Infpαq

ďT H
1, as required.

8We distinguish these two cases only because these cases correspond to (algebraically) different types of groups.
We discuss a bit later why these cases are essentially not different.

282

Therefore, cases (3) and (4) can be combined into

p31q If f has a computable settling time and Infpαq is not semi-low, then G is not ∆0
2-categorical.

Now we state and prove the propositions which cover all the cases above.

Recall that, by Proposition 7.2.9, the group GP has a computable presentation as a group
(module) iff P is c.e..

Proposition 7.2.30. If P̃ is semi-low (and co-c.e.) then GP is ∆0
2-categorical.

Proof. The proof may be viewed as a simpler version of the proof of Theorem 7.2.2. Let G “ tg0 “

0, g1, . . .u be a computable copy of GP . By Lemma 7.2.10, it is enough to build a Σ0
2 excellent

P̃ -basis of G.

We are building C “
Ť

n Cn. Assume that we are given Cn´1. At stage n of the construction,
we do the following:

1. Pick the n-th element gn of G.
2. Find an extension Cn of Cn´1 in G such that (a) Cn is a finite P̃ -independent set, and (b)

Cn Y tgnu is linearly dependent.

The algebraic part of the verification is the same as in Theorem 7.2.2 (and is actually simpler).
Thus, it is enough to show that (a) in (2) above can be checked effectively and uniformly in H1.
Given a finite set F of elements of G, define a c.e. set V consisting of primes which could potentially
witness that F is P̃ -dependent:

V “
!

p : Dm P ZcardpF q
”

p|p
ÿ

gPF

mggq ^ p
ł

gPF

p ­ |mgq

ı)

.

The c.e. index of V can be obtained uniformly from the index of F. It can be easily seen from
the definition of P̃ -independence that

V X P̃ “ H iff F is P̃ -independent.

By our assumption on P̃ , this can be decided effectively in H1.

Fix a computable listing tΦepx, yquePN of all partial computable functions of two arguments;
e.g., Φepx, yq “ ϕepxx, yyq, where xx, yy “ 2x3y. We say that lims Φepx, sq exists if Φepx, sq Ó for
every e and s and the sequence pΦepx, sqqsPN stabilises. In the upcoming propositions we will use
the following:

Notation 7.2.31. Fix an effective listing tΨepx, squePN of total computable functions of two argu-
ments satisfying the property:

(lims Φepx, sq exists) ñ (lims Φepx, sq “ lims Ψepx, sq),

for every x and e.

Proposition 7.2.32. Suppose that the type f of a computably presentable G “
À

iPNH has no
computable settling time. Then G is not ∆0

2-categorical.

283

Proof of Proposition 7.2.32. In the construction below we identify elements of A and B and the
corresponding elements of ω. It suffices to build two computable presentations, A and B, of the
group G “

À

iPNH, and meet the requirements:

Re : limt Ψepbe, tq exists ñ limt Ψepx, tq is not an isomorphism from B to A.

The nonzero element be is a witness for the Re strategy below. More specifically, we enumerate
A “

À

nPNHan and B “
À

ePN Cebe in such a way that the sets tan : n P Nu and tbe : e P Nu are
computable. Let phiqiPN be a characteristic of type f . Fix a computable approximation phi,sqi,sPN
of phiqiPN such that (1) hi,s ď hi,s`1, and (2) hi “ lims hi,s, for every i and s.

We make sure χpanq “ phiqiPN, for every n, while the characteristic χpbeq “ pdpeqiqiPω of be will
be merely equivalent to phiqiPω, for each e (thus, Ce – H, for each e).

The construction is injury-free, and we do not need any priority order on the strategies.
For every e, the strategy for Re defines its own computable function ψe which is an attempt to

define a computable settling time for phiqiPω. Since it will be clear from the construction at which
stage ψe is defined (if ever), we omit the extra index t in ψe,t and write simply ψe. We omit the
index t for parameters ke,i,t as well. To define ψe the strategy uses the sequence pke,iqiPN (to be
defined in the construction).

Strategy for Re: If at a stage s of the construction the parameter ke,0 is undefined then:
1. Compute Ψepbe, sq. From this moment on, the strategy is always waiting for t ą s such

that Ψepbe, tq ‰ Ψepbe, sq. As soon as such a t is found, Re initialises by making all its parameters
undefined and also making dpeqj,t “ hj,t for every j we have ever seen so far.

2. Let a P A be such that a “ Ψepbe, sq. Find integers cn and c such that ca “
ř

n cnan. Let
j be a fresh large index such that (1) the prime pj does not occur in the decompositions of the
coefficients c and cn, (2) hj,s ą 0, and (3) dpeqj,s ă hj,s.

3. Once j is found, declare ψepjq “ s. We may assume that at stage s such an index j can
be found, otherwise we speed up the approximation phi,sqi,sPN during the construction. From this
moment on, make sure dpeqj,t “ hj,t´ 1 for every t ě s, unless the strategy initialises. Set ke,0 “ j,
and proceed.

Now assume that the parameters ke,0, . . . ke,y have already been defined by the strategy. We also
assume that ψepiq has already been defined for each i such that ke,0 ď i ď maxtke,x : 0 ď x ď yu.
Assume also that ke,y was first defined at stage u ă s. Then do the following:

I. Wait for a stage t ě s (of the construction) such that either (a) hi,t ą hi,s for some i
such that ke,0 ď i ď maxtke,x : 0 ď x ď yu and i R tke,0, . . . ke,yu, or (b) hi,u ă hi,t for
each i P tke,0, . . . ke,yu. While waiting, make dpeqj,r “ hj,r (r is the current stage of the
construction), where j ď r and j R tke,0, . . . ke,yu.

II. If (a) holds for some i, then set ke,py`1q “ i. If (b) holds, then let i be a fresh large index
such that (1) hi,t ą 0, and (2) dpeqi,t ă hi,t, and set ke,py`1q “ i. In this case also define ψepjq
to be equal to the current stage for every j such that maxtke,x : 0 ď x ď yu ă j ď ke,py`1q.
Then proceed to III.

III. Set dpeqi,t “ hi,t ´ 1 at every later stage t, where i “ ke,py`1q, unless the strategy initialises.

End of strategy.

Construction. At stage 0, start enumerating A and B as free abelian groups over tanunPN and
tbeukPN, respectively. Initialise Re, for all e.

284

At stage s, let strategies Re, e ď s, act according to their instructions. If Re acted at the
previous stage, then return to its instructions at the position it was left at the previous stage.

Make χpanq “ phi,sqiPN in As for every n ď s, and χpbeq “ pdpeqi,sqiPN in Bs for every e ď s, by
making an and be divisible by corresponding powers of primes.

End of construction.

Verification. For each e, the following cases are possible:

1. lims Ψepbe, sq does not exist. In this case the strategy initialises infinitely often. By the way
the strategy is initialised, the characteristic of be is identical to α.

2. lims Ψe,spbe, sq exists and is equal to Ψepbe, lq. The domain of ψe should be co-infinite. For if
it was co-finite, then α would have a computable settling time. Therefore, there is a parameter
ke,y such that the kthe,y position in α is finite. Thus, the strategy ensures lims Φe,spbe, sq is not

an isomorphism since the characteristic of be and α differ at the kthe,y position. Therefore, α
differs from χpbeq in at most finitely many positions, and the differences are finitary.

In both cases χpbeq is equivalent to α. By Theorem 5.1.15, A – B – G.

Recall that cases (3) and (4) were both reduced to:

Proposition 7.2.33. Let G be computable homogeneous completely decomposable abelian group of
type f , and suppose α “ psups hi,sqiPN in f has computable settling time ψ. Furthermore, suppose

Infpαq is not semi-low. Then G is not ∆0
2-categorical.

Proof of Proposition 7.2.33. We build two computable copies of G by stages. Recall that the first
copy A “

À

iHai is a “nice” copy with χpaiq “ α, for every i. The second (“bad”) copy B “
À

ePN
À

nPN Ce,nbe,n is built in such a way that χpbe,nq is equivalent to α, for every e and n.
Recall Notation 7.2.31. It suffices to meet the requirements:

Re : p@nq limt Ψepbe,n, tq exists ñ limt Ψepx, tq is not an isomorphism from B to A.

The strategy for Re initially attempts to define a total Γ such that Γpnq “ 0 iff Wn Ď Infpαq.
If we succeeded, this would imply

H
Infpαq

“ tn : Wn X Infpαq ‰ Hu “ tn : Wn Ę Infpαqu ďT H
1,

contradicting the hypothesis. In the following, we write I in place of Infpαq. We split Re into
substrategies Re,n, n P N:

Substrategy Re,n. Permanently assign the element be,n to Re,n. Suppose that the strategy becomes
active for the first time at stage s of the construction. Then:

1. Start by setting Γspn, sq “ 0 (we may suppose that Γjpn, jq “ 0, for every j ă s). At a later
stage t, we define Γtpn, tq to be equal to Γt´1pn, t ´ 1q, unless we have a specific instruction
not to do so.

2. Wait for a stage t ą s and a number j PWn,tzIt.

285

3. We see p “ pj with j P Wn,tzIt at a later stage t. Find a P At such that a “ Ψepbe, tq (recall
that the enumeration of A is controlled by us). Find integers cn and c such that ca “

ř

n cnan.
Let k be a fresh large natural number such that (i) the prime p “ pj has power at most rk{2s
in the decompositions of the coefficients c and cn, and (ii) hj,ψpjq ă rk{2s, where ψ is the

computable settling time. Note that piq and piiq imply k is so large that pk does not divide
a “ Ψepbe,n, tq within A, unless j P It. Make be,n divisible by pk within B.

Wait for one of the two things to happen:

I. (I changes first). We see j P Iu at a later stage u ą t, and Ψepbe,n, vq “ Ψepbe,n, tq for
each v P pt, us. We return to (2) with u in place of s.

II. (Ψe changes first). We see Ψepbe,n, uq ‰ Ψepbe,n, tq for u ą t, and j P Wn,vzIv for each
v P pt, us. Then set Γupn, uq “ 1 and start waiting for a stage w ą u such that j P Iw.
If such a stage w is found, then we set Γwpn,wq “ 0 and go to (2) with w in place of s
(and we do nothing, otherwise).

End of strategy.

Construction. At stage 0, start enumerating A and B as free abelian groups over taiuiPN and
tbe,nue,nPN.

At stage s, let strategies Re,n, e, n ď s, act according to their instructions. If Re,n acted at the
previous stage, then return to its instruction at the position it was left at the previous stage.

Make χpaiq “ α “ phjqjPN in A for every i. For every e, n P N, make χjpbe,nq “ hj in B for
every j except at most one position, according to the instructions of Re,n. We do so by making ai
and be,n divisible by corresponding powers of primes.

End of construction.

Verification. By Theorem 5.1.15, A – B – G. Assume that lims Ψe,spbe,n, sq exists for every n
(thus, II does not get visited infinitely often). Given n, consider the cases:

• Re,n eventually waits forever at substage (2). Then lims Φpn, sq “ 0 and Wn Ď I. Thus, we
have a correct guess about H

Infpαq
.

• Re,n visits I of (3) from some point on. Then lims Φpn, sq “ 0 and Wn Ď I, and we again
have a correct guess about H

Infpαq
.

• Re,n eventually waits forever at substage (3). Then xe,n witnesses that lims Φe,spxe,n, sq is
not an isomorphism from B to A.

There should be at least one n for which lims Φpn, sq ‰ H
Infpαq

pnq. Therefore, for at least one

n, the strategy Re,n eventually waits forever at substage (3). Thus, Re is met.

Proposition 7.2.34. If the type f of a computable homogeneous completely decomposable group
G has a computable settling time, and Finpαq “ ti : 0 ă hi ă 8u is infinite and semi-low for
α “ pαiqiPN of type f , then G is not ∆0

2-categorical.

Proof of Proposition 7.2.34. Let Γ be a computable function such that

Finpαq XWn “ lim
s

Γpn, sq.

286

As in the proof of Proposition 7.2.32, we are building two computable copies,

A “
à

nPN
Han and B “

à

ePN
Cebe,

of G. We make χpanq “ α and χpbeq “ pdpeqqiPN » α, for every n and e. Recall Notation 7.2.31.
The requirements are:

Re : If limt Ψepbe, tq exists, then limt Ψepx, tq is not an isomorphism from B to A.

For every e, the strategy for Re will enumerate its own sequence of c.e. sets. The indexes for
the sets are listed by a computable function g of two arguments:

tWgpe,squsPN.

Let phi,sqi,sPN be a computable approximation of α such that, for every i, either αi “ hi,0 or
αi “ 8. Also, let np0q, np1q . . . be an effective increasing enumeration of the infinite computable
set N “ ti : hi,0 ‰ 0u.

The strategy for Re: Suppose s “ 0 or Ψepbe, sq ‰ Ψepbe, s´ 1q. Do the following substeps:

1. Make χpbeq “ pdpeqqiPN and α equal at all positions seen so far.

2. Begin enumerating Wgpe,sq by setting Wgpe,sq “ H.

3. Wait for a stage u such that Γpgpe, sq, uq “ 0.

4. Let a P A be such that a “ Ψepbe, sq. If a “ 0 do nothing. If a ‰ 0, find integers cm and
c such that ca “

ř

m cmam. Let npiq P N be a fresh large number such that (1) the prime
pnpiq does not occur in the decompositions of the coefficients c and cm, (2) hnpiq,0 ą 0, and
(3) dpeqk,s “ 0 for every k ě npiq.

5. Enumerate npiq into Wgpe,sq. Keep dpeqnpiq,l “ 0 for l ě s (unless we have a specific instruction
not to do so). Restrain the element be by not allowing the construction to make it divisible
by any prime greater than pnpiq.

6. Wait for one of the following three things to happen:

I. Ψepbe, sq ‰ Ψepbe, tq at a later stage t. Then declare be not restrained and restart the
strategy with t in place of s (go to (1); for instance, make be divisible by the corresponding
power of pnpiq).

II. The number npiq enters the c.e. set Infpαq at a stage s ą t (thus, hnpiq “ 8). Make
be infinitely divisible by pnpiq and return to (5) with npi` 1q in place of npiq keeping be
restrained.

III. Γpgpe, sq, tq “ 1 (thus, we believe Wgpe,sq X Finpαq ‰ H and j P Finpαq). We remove
the restraint from the element be allowing the construction to make be divisible by pi
with i RWgpe,sq if needed. We keep be not divisible by pnpiq.

If at a later stage r the number npiq enters Infpαqr (thus, Wgpe,sq,r Ď Infpαqr), then
make be infinitely divisible by pnpiq. In this case also wait for a stage w ě r such that
Γpgpe, sq, wq “ 0. Then return to p4q with a new fresh and large npjq.

287

End of strategy.

Construction: At stage 0, start enumerating A and B as free abelian groups over tanunPN and
tbeukPN, respectively.

At stage s, let strategies Re, e ď s, act according to their instructions. If Re acted at the
previous stage, then return to its instruction at the position it was left at the previous stage.

Make χpanq “ phi,sqiPN in As for every n ď s, and phi,sqiPN “ pdpeqi,sqiPN in Bs for every e ď s
which is not restrained, unless Re keeps dpeqi,s “ 0.

End of construction.

Verification. If limt Ψepbe, tq does not exist, then we reach I of p6q infinitely often and, therefore,
χpbeq “ α. Assume that limt Ψepbe, tq exists. Let s be a stage such that

Ψepbe, sq “ lim
t

Ψepbe, tq.

Let u ě s be a stage such that limt Γpgpe, sq, tq “ Γpgpe, sq, uq.
The set Wgpe,sq is designed to make limt Γpgpe, sq, tq “ 1. If Γpgpe, sq, uq “ 0 was the case, then

we would add more elements to Wgpe,sq at a stage v ě u and eventually put some npjq P Finpαq
into Wgpe,sq, a contradiction.

By the definition of Γ, if limt Γpgpe, sq, tq “ 1, then there is at least one j P Wgpe,sq X Finpαq.
Furthermore, the strategy guarantees that there is exactly one such a j, namely the last witness
npiq which visits III of the strategy at some stage and stays there from this stage on. For instance,
the element be will eventually be unrestrained (see the construction).

The algebraic strategy guarantees be is not divisible by pnpiq while the image is. Furthermore,
be is declared not restrained as soon as we reach III with npiq, meaning that the characteristic of
be satisfies the property dpeqj “ αj for each j ‰ npiq. It remains to apply Theorem 5.1.15.

We note that in the proposition above the algebraic strategy from Proposition 7.2.33 would not
succeed. Theorem 7.2.25 is proved.

7.2.5 Arbitrary completely decomposable groups

As we mentioned earlier, the isomorphism type of a completely decomposable group is fully de-
termined by the types of its elementary summands (elementary direct components), and each ele-
mentary summand can be described by its type. However, the collection of types of the elementary
components may (in some sense) “encode” a countable linear order (see Exercise 7.2.49), and one
may expect that there is no arithmetical upper bound on the complexity of isomorphisms between
such groups. Nonetheless, in this section we prove Theorem 7.2.3 that states that every computable
completely decomposable group is ∆0

5-categorical.
The proof of Theorem 7.2.3 extends methods from §7.2. Using the algebraic machinery developed

in the proof of Theorem 7.2.3, in the next section we will show that the index set of computable
completely decomposable groups is arithmetical.

Proof of Theorem 7.2.3

We prove that every completely decomposable group is ∆0
5-categorical. The proof of this theorem is

divided into several parts. In the first part we state and prove algebraic facts about decompositions

288

of completely decomposable groups, not all of the facts are well-known. In the second part we
introduce an algebraic notion of a basic pair which is central to the proof, and prove the main
algebraic lemma. In the third part we give the construction which builds an isomorphism between
any two copies of the group, and in the forth part we verify that the construction is computable in
0p4q.

Proof of Theorem 7.2.3. Let G be a completely decomposable group.

Decompositions of completely decomposable groups. Fix any complete decomposition of G
into elementary summands. For a type f, denote by Gpfq the sum of all elementary summands of
G having type f. If the group G has no elementary summands of type f, then we set Gpfq “ 0. We
have:

G “
à

f

Gpfq,

where f ranges over all types. Whenever we are given a completely decomposable group, we usually
fix a complete decomposition of it. Given two types t and s, write t ď s if for some χ P t and ρ P s,
we have χ ď ρ (component-wise).

Definition 7.2.35. For a torsion-free abelian group A and a type f, denote by Af the subgroup
generated by elements of having types ě f, and denote by A‹f the subgroup of A generated by the
elements having types ą f.

Remark 7.2.36. Note that, in general, A‹f may contain elements of type f. For example, consider
a group having elementary components of only two types:

A “ Apsq ‘Aptq,

where infts, tu “ f and both s and t are strictly greater than f. We have A‹f “ A. As can be
easily seen, the group A contains elements of type f. Every element having non-zero projections
onto both summands has this property.

Fact 7.2.37. Let G be a completely decomposable group, and let G “
À

tGptq be its decomposition
in homogeneous completely decomposable summands. For every type f,

Gf “
à

těf

Gptq

and
G‹f “

à

tąf

Gptq.

Proof. Clearly,
À

těfGptq is contained in Gf. For every element g of G, let g “
ř

t gt be its
decomposition into projections onto the homogeneous summands Gptq. Here t ranges over all
types, and gt “ 0 for almost every t. Note that the type of g is the infimum of the types of the
projections. Therefore, only projections onto the components of types ě f may occur if tpgq ě f.
This shows

Gf “
à

těf

Gptq.

The proof for G‹f “
À

tąfGptq is similar.

289

As a consequence of the preceding fact,

Gf{G
‹
f – Gpfq.

We can not expect this group to be definable within G, and we have to deal with the quotient
Gf{G

‹
f isomorphic to Gpfq.

Let α be a characteristic of type f. Define Grαs “ tg P G : α ď χpgqu.

Fact 7.2.38. In the notation introduced above, Grαs “ Hrαs ‘ C, where C ď G‹f and H “ Gpfq
which is the sum of elementary components of G having type f.

Proof. By Fact 7.2.37,
Gf “ Gpfq ‘G

‹
f .

By its definition, Grαs Ď Gf. For every g P Gf, χpgq ě α implies the projection of g onto Gpfq
has characteristic ě α. Also, every element Hrαs can be realised as a projection of a g P Gf with
χpgq ě α. The fact now follows.

Let P be a set of primes which is not the set of all primes. As before, let QpP q be the additive
subgroup of the rationals pQ,`q generated by fractions of the form 1

pm , where p P P and m P N.
Let r be a cardinal number. Define

VP,r “
à

iăr

QpP q.

Let α “ pαiqiPN be a characteristic. Consider the group pGrαs `G‹f q{G
‹
f . By Fact 7.2.38,

pGrαs `G‹f q{G
‹
f – Hrαs,

where H “ Gpfq. The group H is homogeneous completely decomposable of type f. An easy
modification of the first part of Theorem 7.2.19 implies:

Fact 7.2.39. For any characteristic α,

Hrαs – VP,r,

where P “ tpi : αi “ 8u, and r is the rank of H.

Let P be a set of primes corresponding to a type f in the sense as above. Recall that, for a set
of primes P ,

P̃ “ tp : p is prime and p R P u.

The second part of Theorem 7.2.19 gives:

Fact 7.2.40. If a set B is an excellent P̃ -basis of pGrαs `G‹f q{G
‹
f , then Gf{G

‹
f is generated by B

over Qpαq, where Qpαq is the subgroup of pQ,`q containing 1 in which χp1q “ α.

Recall that pGrαs`G‹f q{G
‹
f – Hrαs, where H “ Gpfq, the homogeneous component of G having

type f. For a collection B Ă pGrαs `G‹f q{G
‹
f , we say that C Ă G is a set of representatives of B if

each element from C belongs to a class from B, end each class from B has a unique representative
in C. The definition of S-independence implies:

290

Fact 7.2.41. Let B Ă pGrαs ` G‹f q{G
‹
f be P̃ -independent, and let C be any set of representatives

of B. Then the projection of C onto Gpfq is P̃ -independent in Hrαs, where H “ Gpfq.

We should note that in Fact 7.2.40 “generated” clearly means “generated mod G‹f ”. This is also
one of the main difficulties in proving the theorem: we need to deal with representatives of classes
mod G‹f , not with elements of Hrαs. This difficulty is circumvented by using basic pairs.

Basic pairs. We will need a listing of characteristics representing types of the elementary sum-
mands of G such that this listing does not contain equivalent characteristics:

Notation 7.2.42. Let G be a completely decomposable group. In the following, pfiqiPI stands for
the listing of types of nonzero homogeneous components, and for every i P I, αi “ pαi,jqjPN is a
characteristic of type fi. Define also Pi “ tpj : αi,j “ 8u, where p0, p1 . . . is the standard listing of
primes.

Definition 7.2.43. We say that a pair pσ, vq is basic if the following conditions hold:

1. σ is a finite tuple of elements of G;

2. v : σ Ñ I is a function;

3. i ‰ j implies αi  αj , for every i, j P range v;

4. for every i, if v´1piq ‰ H then v´1piq is a set of representatives of P̃i-independent classes in
pGrαis `G

‹
fi
q{G‹fi .

Notation 7.2.44. Given R Ď Q and X Ď G, denote by rXsR the set of sums

ÿ

xPX

rxx

where rx P R for every x, and rx “ 0 for almost all x. We also assume G contains rxx, for every
x P X.

Given a basic pσ, vq, let Span pσ, vq “
ř

iPNrv
´1piqsQpαiq, where rHsQpαiq “ 0. By the definition

of basic pairs, the sum above is in fact direct:

Span pσ, vq “
à

iPN
rv´1piqsQpαiq,

and, furthermore, every homogeneous summand of this direct decomposition splits into elementary
components, each elementary component being the span of an element of σ over the corresponding
Qpαiq.

Thus, for every basic pσ, vq, the subgroup Span pσ, vq is a completely decomposable group
of rank |σ| with homogeneous components rv´1piqsQpαiq, where v´1piq is an excellent P̃i-basis of
rv´1piqsQpαiq.

The lemma below is central to the proof of the theorem.

Lemma 7.2.45. For every basic pair pσ, vq and every element g P G there is a basic pair pτ, uq
such that σ Ď τ and g P Span pτ, uq.

291

Proof. Note that Span pσ, vq is contained in A ő G which is a finite direct sum of elementary
summands ofG. By the definition of a basic pair, if v´1piq ‰ H then v´1piq is a set of representatives
of P̃i-independent classes in pGrαis `G

‹
fi
q{G‹fi . By Fact 7.2.39,

Hrαis – VPi,k,

where H “ Gpfiq and k is the rank of H. By Fact 7.2.41, the projection of v´1piq onto H “ Gfi

is P̃i-independent within Hrαis. Furthermore, the projection of v´1piq onto H is contained in
Apfiqrαis which is isomorphic to VPi,k, where k P N. By Proposition 7.2.15, the projection of v´1piq

can be extended to an excellent P̃i-basis of Apfiqrαis. Note that, considering the pre-image of this

extension under the projection onto H, we may choose representatives Ci of an excellent P̃i-basis
of pArαis `A

‹
fi
q{A‹fi so that these representatives are contained in A.

Let τ be the union of the Ci, where i ranges over the set J “ ti : Apfiq ‰ 0u, and let u be a
function which maps every element of τ into its characteristic. We prove by induction that

Span pτ, uq “ A.

The group A is of finite rank, and the partial ordering tfi : i P Ju of the types of its elementary
components is finite. We argue by induction on the number of types in this partial ordering, as
follows. By Fact 7.2.40, for every i P J the factor-group Afi{A

‹
fi

is generated over Qpαiq by the
classes corresponding to Ci. (Recall the discussion after Fact 7.2.41.) Let j P J be such that fj is
maximal in tfi : i P Ju. By Fact 7.2.37,

A‹fj “ 0.

Consequently, Cj generates Aj over Qpαiq.
Let ρ “ τ ´ Cj “

Ť

iPJ´tju Ci, and let w be the restriction of u onto ρ. By the induction
hypothesis,

A{Apfjq “ Span pρ, wq{Apfjq.

Therefore, every element of
À

i‰j Apfiq is generated by elements of ρ and elements of Apfjq. This
shows Span pτ, uq “ A and, by the choice of A, we have g P Span pτ, uq

Building an isomorphism. Given a computable completely decomposable group G “ tg0 “

0, g1, . . .u, we define stage-by-stage a sequence of basic pairs

pσ0, v0q, pσ1, v1q, . . .

starting with σ0 “ H such that Span pσj , vjq contains gj , for each j. Without loss of generality, we
may assume G has infinite rank (for otherwise it is computably categorical). By Lemma 7.2.45, we
obtain an infinite sequence:

pσj , vjqjPN.

Consider B “
Ť

jPN σj and U “
Ť

jPN vj . The set B is a basis of G, and, by the definition of a
basic pair,

G “
à

iPI

rU´1piqsQpαiq,

where pfiqiPI is the listing of types of homogeneous components, and for every i P I,

αi “ pαi,jqjPN

292

is a characteristic of type fi. On the other hand,

G “
à

bPB

Rb,

where Rb is the span of b over Qrαjs with j “ Upbq. Thus, if we are given pB,Uq, we can
uniformly construct a “regular” decomposition of G into elementary components with U pointing
the characteristic of a given “regular” element b in this decomposition.

It remains to observe that we may run this process on any other computable copy D of G and
obtain a pair pT, V q, where T is a basis and V is a function mapping elements of T into their
characteristics. Given pB,Uq and pT, V q, we stage-by-stage map b P B to a rational multiple of
c P T having the same characteristic as b, and then extend this map to an isomorphism of G onto
D in the obvious way.

It remains to check which oracle is sufficient to build such a sequence of basic pairs in a given
computable completely decomposable group G.

Calculating the complexity. Let G “ pg0, g1, . . .q be a computable completely decomposable
group, and let G “

À

iPI Gpfiq be its decomposition into homogeneous completely decomposable
components. For every j, let βj “ χpgjq. We need an enumeration of characteristics which corre-
spond to different types.

Fact 7.2.46. There exists a Σ0
4 set J Ď ω such that

(a.) for every i P I there exists j P J such that βj P fi;

(b.) βi  βj, for every i, j P J .

Proof. It is sufficient to show that the relation tpi, jq : βi „ βju is Σ0
3. Note that there is a 1-1

correspondence between βi and the set of pairs

Xi “ tpj, kq : pjk|giu.

The family of sets pXiqiPN has a uniform enumeration. Also, every Xi is associated to the corre-
sponding element gi in an effectively uniform way. It remains to observe that βi „ βj if, and only
if, Xi “

‹ Xj , for every i, j.

Note that pfjqjPJ are not necessarily exactly the types which correspond to non-zero Gpfiq in the
decomposition of G. Using J we establish a 03-computable uniform enumeration of pairwise
non-equivalent c.e. characteristics pαiqiPI covering all types of non-zero component present in the
complete decomposition of G.

Fact 7.2.47. For every j:

(1.) Grαjs is Π0
2 uniformly in j;

(2.) G‹fj is Σ0
4 uniformly in j.

Proof. We have
g P Grαjs ô χpgq ě αj ô p@kqp@nqppnk |gj Ñ pn, kq P αjq

293

which is Π0
2. Also, g P G‹fj iff

pDk P NqpDg1, . . . , gk P GqpDn P Nq

˜

χpgiq  αj ^ χpgiq ě αj ^ ng “
ÿ

1ďiďk

gi

¸

which is Σ0
4, because χpgiq  αj is Π0

3 as we have observed in the proof of Fact 7.2.46, and χpgiq ě αj
is Π0

2.

As a consequence of this fact, pGrαs `G‹fj q{G
‹
fj

has a Σ0
5 set of representatives. We need more:

Fact 7.2.48. Given i and elements g1, . . . , gk P Grαjs, the statement “the classes of g1, . . . , gk are

P̃i-independent in pGrαjs `G
‹
fj
q{G‹fj” is Π0

4 uniformly in the indices of elements and in αj.

Proof. It is sufficient to require that, for every choice of coefficients m1, . . . ,mk and for every prime
p,

«

pDyqpDxq

˜

x P Grαs ^ y P G‹fj ^ p R Pj ^ px` y “
ÿ

sďk

msgs

¸ff

ñ
ľ

sďk

p | ms,

which is Π0
4, by the preceding facts.

Thus, 0p4q can build a sequence of basic pairs generating the whole group G. This finishes the
proof.

Exercises

Exercise 7.2.49. Given two types t and s, write t ď s if for some χ P t and ρ P s, we have
χ ď ρ (component-wise). Let L be a computable linear order. Give an example of a computable
completely decomposable group GpLq in which the order on the types of the elementary summands
is isomorphic to L. (Hint: Given a countable linear order L, associate every point ` P L with a type
tp`q so that

` ď `0 if and only if tp`q ď tp`0q.

Use a dichotomy-like process manipulating with infinite computable disjoint sets of primes. Then
define GpLq “

À

`PLQptp`qq, where Qptp`qq ő Q has type tp`q.)

Exercise 7.2.50 (Melnikov [365, 374]). Using the family from Exercise 3.2.63, show that there
exists a completely decomposable group that has an X-computable presentation iff X 1 ąT H

1, i.e.,
iff X is non-low9. Using the material of Subsection 5.2.3, deduce that there exists a space that
has an X-computably compact presentation iff X in non-low, and that there is a space that has an
X-computable Polish presentation iff X2 ąT H

2, i.e., X is non-low2.

Exercise˚ 7.2.51 (Kach, Lange, and Solomon [276]). A computable completely decomposable
group is effectively completely decomposable if it splits into the direct sum of its uniformly com-
putable subgroups of rank 1. Let H be an effectively completely decomposable group of infinite
rank. Show that there is a computable presentation G of H so that in G, the Turing degrees of
orders compatible with the group operation (i.e., turning the group into an ordered group) are not
closed upwards.

9This exercise is not difficult but requires a new idea.

294

Exercise˚ 7.2.52 (Downey et al. [120]). For a prime p, let Qppq “ rZsp “ xt
1

pn
: n P Nuy ő Q.

Show that
À

pPS Qppq is computably presentable iff S is a Σ0
3 set of primes.

295

7.3 Applications to index sets

This section contains upper estimates for the characterisation problem and the isomorphism problem
of completely decomposable groups and their Pontryagin duals, the products of solenoids.

7.3.1 Completely decomposable groups

Our machinery enables us to prove:

Theorem 7.3.1 (Downey and Melnikov [137]). Completely decomposable groups form an arith-
metical class. Both the recognition and the isomorphism problem for this class have complexity
Σ0

7.

Proof. Recall that every characteristic α “ pαiqiPN can be viewed as a set of pairs tpk, iq : k ď αiu
thst we call the corresponding characteristic sequence. The following fact is easy but helpful.

Fact 7.3.2. There exists a uniform enumeration of all c.e. characteristic sequences.

Proof. Given an enumeration of a c.e. set, effectively and uniformly transform it into an enumeration
of a characteristic sequence by closing every column ts : ps, iq PWeu downwards.

Identifying characteristics and corresponding characteristic sequences, let pβjqjPN be the uniform
enumeration from Fact 7.3.2. The isomorphism type of a completely decomposable group G “
À

fGpfq is uniquely determined by the set

tpf, kq : rank pGpfqq “ ku.

We may replace every type in the set above by a characteristic of that type, and still get a full
invariant describing G up to an isomorphism, modulo the equivalence of the characteristics. The
proof of Theorem 7.2.3 enables us to re-formulate Theorem 7.2.3 as follows:

Fact 7.3.3. For every computable completely decomposable group G, there is a 0p4q enumeration
of a set of the form

tpj, sq : rank pGptpβjqqq ě s ą 0u,

where βi  βj and G “
À

j Gptpβjqq.

On the other hand, every uniformly computable family of characteristic sequences can be realised
as one corresponding to a direct decomposition of a computable completely decomposable group:

Fact 7.3.4. For every set S “ tpj, sq : s ě 1u such that tβj : pj, 1q P Su is a set of pairwise non-
equivalent characteristics in the uniform enumeration of all characteristics pβjqjPN, there exists a

computable completely decomposable group of the form
À

j:pj,1qPS

´

À

k:pj,kqPS Qpβjq
¯

.

Proof. The proof is not difficult and is left as Exercise 7.3.6.

296

Summarising the above, every computable completely decomposable group has a correspond-
ing Σ0

5 family of characteristic sequences, and every such sequence can be associated to a 0p4q-
computable completely decomposable group in a uniform way. Also, Fact 7.3.2 can be relativised
to 0p4q. We obtain:

Fact 7.3.5. There is a Σ0
5 listing pAiqiPN of 0p4q-computable completely decomposable groups con-

taining all isomorphism types of computable completely decomposable groups (possibly with repeti-
tions).

Note that every group Ai from the enumeration provided by Fact 7.3.5 and Fact 7.3.4 has a 0p4q-
computable complete decomposition algorithm: every group Ai is given together with a basis, where
each element of the basis belongs to a separate component. By Fact 7.3.3, we may assume that
characteristics of elements of the complete decomposition basis of Ai are c.e. (whereas the indexes
of these characteristics are merely c.e. in 0p4q). By the third part of the proof of Theorem 7.2.3,
if a computable completely decomposable group G is isomorphic to Ai, then this isomorphism is
in fact ∆0

5: it suffices to build a sequence of basic pairs in G, take their union, and then map each
element from the union to an element of the basis of Ai having an equivalent (c.e.) characteristic,
maybe up to a rational multiple. Notice that we are implicitly using the uniqueness of the complete
decomposition of G.

Thus, a computable structure is a completely decomposable group if, and only if, it is isomorphic
to one of the groups pAiqiPN from Fact 7.3.5 via a 0p4q-computable isomorphism. Given a computable
structure Mj , we ask “Is there i and a 0p4q-isomorphism from Ai onto Mj?” which is uniformly Σ0

7.
It follows that the recognition problem is Σ0

7.
It remains to check that the isomorphism problem is Σ0

7. But this follows from the recognition
problem being Σ0

7 and from Fact 7.1.2.

7.3.2 Products of solenoids. Proof of Theorem C

Recall that Theorem C states that direct products of solenoid groups form an arithmetical class
(under topological isomorphism). Recall that a solenoid group is a group that is dual to some
(non-nil) subgroup of Q. It is well known that, under Pontryagin duality, direct sums become
direct products, and vice versa. Thus, the duals of direct products of solenoid groups are exactly
the completely decomposable groups.

In Theorem 7.3.1 we established that completely decomposable groups form an arithmetical
class. The rest of the proof is very similar to the proof of Theorem 7.1.41. We use computably
compact presentations; computable Polish presentations would give one more extra quantifier for
the complexity.

Propositions 7.1.38 and 7.1.39 guarantee that being a connected compact group is an arithmeti-
cal property (Π0

2), and being abelian is Π0
1 and can be checked only for special points. It is also Σ0

1 to
tell whether the group is non-zero. (If it is zero we are done.) Given G that is already known to be
non-zero and connected compact abelian, apply Theorem 5.2.21 (and Theorem 5.2.24) and produce
a c.e.-presentation of its discrete Pontryagin dual. Since G is non-zero, we can uniformly pass to
its computable presentation using Khisamiev’s Theorem 5.1.41. Let H be the resulting computable
presentation of the dual. By Theorem 7.3.1, it is Σ0

7 to tell whether the resulting abelian group is
completely decomposable. This makes the recognition problem for products of solenoid groups Σ0

7.
Given two groups, use the procedure described above to pass to their duals. (The case when at

least one of them is the zero-group is trivial and can be considered separately.) By Theorem 7.3.1,

297

expressing that the duals are isomorphic is Σ0
7.

This finishes the proof of Theorem C.

Exercises

Exercise˝ 7.3.6. Prove Fact 7.3.4.

Exercise˚ 7.3.7. Prove Theorem 7.3.11.

Exercise˚ 7.3.8. Prove Theorem 7.3.10.

7.3.3 Concluding remarks and further related results˚

We conjecture that the estimate Σ0
7 (for both the completely decomposable groups and their duals)

is not optimal, i.e., the index sets are not Σ0
7-complete. However, obtaining optimal estimates

remains an open problem.

Problem 7.3.9 (Downey and Melnikov [137]). Provide optimal complexity calculations for the
isomorphism problem and the recognition problem for the class of completely decomposable groups
(and for the class of their Pontryagin duals).

In contrast with Theorem 7.3.1 and Theorem C, we do know that n “ 5 in Theorem 7.2.3 is
sharp:

Theorem 7.3.10 (Downey and Melnikov [137]). There is a computable completely decomposable
group which is not ∆0

4-categorical.

For instance, Theorem 7.2.2 fails beyond homogeneous completely decomposable groups. It
could be that every ∆0

4-categorical group was already ∆0
3-categorical, similarly to well-orderings [16].

Theorem 7.3.11 (Downey and Melnikov [137]). There is a computable completely decomposable
group which is ∆0

4-categorical but not ∆0
3-categorical.

It is perhaps worth noting that ∆0
n-categoricity of torsion-free abelian groups that are not

completely decomposable is very poorly understood (for n ą 1). The best we know is the following
technical result that solved an open problem posed by Goncharov.

Theorem 7.3.12 (Melnikov [372]). For every n ą 0 there exists a torsion-free abelian group Gn
which is (relatively) ∆0

2n-categorical, but not ∆0
2n´1-categorical.

The theorem has a transfinite extension to “even” successor computable ordinals; the formal
statement will be given in Exercise 10.1.118. The reader may find it intriguing why the case of
odd levels of the (hyper)arithmetical hierarchy in the theorem above is still open. For a detailed
explanation of the technical difficulties and a further discussion of many related results, see [372].

298

Historical remark

The systematic study of effective properties of completely decomposable groups was initiated by
Khisamiev and Krykpaeva [293] and then further developed by Khisamiev in [292]. The main notion
investigated in these papers was that of an effectively completely decomposable group defined in
Exercise 7.2.51. The earliest results about completely decomposable groups without any extra
restrictions on effectiveness of the decomposition can be found [365, 120]. The main result of [120]
(see Exercise 7.2.52) was further extended in [452]. We also cite [33] and [276] for further results
about computable completely decomposable groups. See also [222] where uncountable free abelian
groups were investigated using methods of higher recursion theory.

The “unsatisfactory” coding

Finally, recall that one can “computably code” an arbitrary countable linear order into the types
of a completely decomposable group; see Exercise 7.2.49. We can further use effective Pontryagin
duality to turn a computable linear order into a computably compact connected group. In the next
chapter, we will see that computable linear orders are unclassifiable, while Theorem C suggests that
the class of Pontryagin duals of completely decomposable groups is generally tame.

But clearly, there is no contradiction. The “transformation” hinted in Exercise 7.2.49 is heavily
dependent on the specific presentation of the input linear order, with two different presentations
very likely giving non-isomorphic groups. To get a contradiction with the results of the present
chapter, one must find an effective transformation that is well-defined on isomorphism types, i.e., so
that L ÞÑ GpLq has the property L – Γ if and only if GpLq – GpΓq. Theorem 7.2.3 and Theorem
C illustrate that no such well-behaved transformation can possibly exist.

7.4 What’s next?

In the next chapter we will develop enough techniques to illustrate that in many natural classes of
structures and spaces, the index sets are Π1

1- and Σ1
1-complete. In the book, we put emphasis on

positive results, and the “nonclassification” chapter that follows next is a bit more brief than this
chapter. However, references to the (vast) relevant literature will be provided.

299

Chapter 8

Nonclassification theory

In this chapter we will prove that in many classes having an arithmetical recognition problem, the
isomorphism problem is Σ1

1-complete. These classes include Boolean algebras, separable Banach
spaces, and integral domains. The main result of this chapter is as follows.

Theorem D (Melnikov [373], based on Downey and Montalbán [146]). The homeomorphism
problem for connected compact Polish spaces is Σ1

1-complete

The structure of this chapter is as follows:

1. Section 8.1 contains the basic definitions and results related to Σ1
1- and Π1

1-complete sets.

2. Section 8.2 gives a brief introduction to the recently emerged theory of effective reducibilities
between classes of structures, with applications to index sets.

3. Section 8.3 presents the proof of the Downey-Montalbán Theorem, which states that the
isomorphism problem for torsion-free abelian groups is Σ1

1-complete. We also present a proof
of a stronger result, Theorem 8.3.10, which establishes the completeness of the class of torsion-
free abelian groups among Σ1

1 equivalence relations. Combined with effective Pontryagin
duality (established in Part 1) and the material of Section 8.1, these theorems will be used to
derive results about separable spaces, including Theorem D.

300

8.1 Foundations

This section contains a brief exposition of definitions and facts concerning Σ1
1- and Π1

1-completeness,
and their immediate applications to the index sets of discrete and separable structures.

8.1.1 Definitions and notation

The classical theorems discussed in this subsection will be utilised as “black boxes” in applica-
tions without further modifications. This is in contrast with priority techniques, which had to
be combined with algebra and combinatorics throughout much of Part 1 of the book. For a de-
tailed exposition of this topic, see [454, Ch.16]. For a more in-depth study of higher recursion
theory, refer to [458]. Additionally, [20] contains a detailed and comprehensive introduction to the
hyperarithmetical and the analytical hierarchies.

We identify a (total) function f : ω Ñ ω with a member of ωω. We say that a relation
Rpf1, . . . , fn;x1, . . . , xmq Ď pω

ωqn ˆ ωm is computable if there is a Turing functional Φe with the
property

Φf1,f2,...,fn
e px1, . . . , xmq “

#

1, if Rpf1, . . . , fn;x1, . . . , xmq “ 1;

0, otherwise.

In Φf1,f2,...,fn
e px1, . . . , xmq, we either use a multi-tape Turing machine of fix some computable coding

of f1, f2, . . . , fn into one function, e.g., f1 ‘ f2 . . . ‘ fnpxi, kyq “ fipkq, 1 ď i ď n. The analytical
relations are the members of the least class that includes computable relations (in the sense above)
and is closed under complements and projections on individual and function variables. In other
words, a relation is analytical if it can be written in the form

Q1ξ1Q2ξ2 . . . QnξnR

where R is a computable relation, Qi P t@, Du, and each ξi either ranges over ω or over ωω. For
example, if R is computable on pωωq3 ˆ ω2, then tph,mq : Df@n@gRpf, g, h;n,mqu Ď pωωq ˆ ω is
analytical.

Theorem 8.1.1 (The Normal Form). Any analytical relation P has a definition of the form

p:q Q1f1Q2f2 . . . , QkfkQk`1z Rpf1, . . . , fk, . . . ; z, . . .q,

where R is a computable relation, the quantifiers Qi alternate between D and @, and all but the last
one ranges over function variables.

Proof. This follows from Exercise 8.1.21 which summarises the rules of manipulating with quanti-
fiers.

Definition 8.1.2. Fix k ą 0. An analytical relation P is:

1. Π1
k if (there is a computable R so that) P satisfies p:q with Q1 “ @;

2. Σ1
k if P satisfies p:q with Q1 “ D.

We also say that P is ∆1
k if it is both Π1

k and Σ1
k.

301

We also use Σ1
k and Π1

k to denote the respective complexity classes. Thus, ∆1
k “ Π1

k X Σ1
k.

Clearly, P P Π1
k if and only if P P Σ1

k, where P is the complement of P in the respective
domain.

We are mainly interested in relations on (subsets of) ω; thus, the reader may safely assume that
all our analytic relations are subsets of ω unless otherwise specified.

Theorem 8.1.3 (Kleene). For every k, there is a set in Σ1
kzΠ

1
k and a set in Π1

kzΣ
1
k.

The proof of this fact can be derived from the existence of the universal Σ1
k- and Π1

k-relations
combined with the usual diagonalisation; see Exercises 8.1.23 and 8.1.24.

8.1.2 Σ1
1- and Π1

1-complete sets

Explicit examples of sets in Σ1
1zΠ

1
1 are the Σ1

1-complete sets.

Definition 8.1.4. A Σ1
1 set P Ď ω is Σ1

1-complete if any other Σ1
1-set Ď ω is m-reducible to P .

The notion of a Π1
1-complete P Ď ω is defined similarly.

We give two examples of a natural Σ1
1-complete and Π1

1-complete index sets. As before, by a
tree we mean a subset of ωăω closed under prefix. An infinite path through a tree T , or sometimes
just a path through T , is p P ωω such that all finite initial segments of p lie in T . A tree with no
path is called well-founded. Otherwise, T is ill-founded.

Interpret every c.e. set We as a collection of indices of finite strings. We can uniformly modify
every c.e. set into a c.e. set W˚

e that closes the listed strings under prefixes, i.e., whenever σ is a
prefix of τ and τ is listed in W˚

e , we also put σ in W˚
e . Denote the resulting tree Ď ωăω listed by

W˚
e by Te. Define the index sets

WF “ te : Te is well-foundedu

and
IF “ te : Te is ill-foundedu “ ωzWF.

Theorem 8.1.5 (Folklore). IF is Σ1
1-complete and, thus, WF is Π1

1-complete.

Proof. It is clear that WF P Π1
1 and IF P Σ1

1. Fix a Σ1
1-set S and a computable relation R such

that x P S if and only if Df@yRpf ; y, xq. Given x, define a c.e. set Vx as follows. Put the code for
a string σ in Vx if for some y, @z ď y Rpσ; z, xq holds, where σ is identified with σ0ω, and also σ is
assumed to be shorter than the use of (the computable functional witnessing the computability of)
R on inputs x, z (z ď y).

Using the s-m-n Theorem, fix a computable function g such that Wgpxq “ Vx, for every x. The
tree Tgpxq has an infinite path if, and only if, x P S. Thus, g witnesses S ďm IF . Indeed, g also
simultaneously witnesses the Π1

1-completeness of WF .

With each tree in Baire space, we associate an ordering.

Definition 8.1.6. The Kleene-Brouwer ordering ăKB on strings of a tree T Ď ωăω is defined as
follows. Declare σ ăKB τ if one of the two conditions hold:

1. σ is a (proper) initial segment of τ , or

302

2. σ and τ agree up to, but not including, position n, and σpnq ă τpnq.

We let σ ďKB τ if σ “ τ or σ ăKB τ .

It is easy to see that ăKB is a linear ordering.

Remark 8.1.7. Kleene used the ordering extensively in his work. However, originally, the ordering
had been defined before Kleene by Lusin and Sierpinski [342], and Brower [66] in the 1920’s. In
keeping with the standard terminology, we will refer to the ordering as we have.

Theorem 8.1.8. T is well-founded iff ăKB is a well-ordering of nodes in T .

Proof. If T is ill-founded and α P rT s, then the finite initial segments of α form an infinite descending
ăKB-chain. Conversely, suppose that σ1, σ2, . . . is an infinite descending ăKB-chain. Then for each
n, the set tk : Dmσmpnq “ ku is bounded from above, and, thus, σ1, σ2, . . . belong to the restriction
of T to a finitely branching subtree of ωăω. It follows that rT s ‰ H (e.g., by König’s lemma).

Further note that the transformation T ÞÑ KBpT q is effectively uniform. Let pLeqePN be a
uniformly effective enumeration of all partial computable structures in the language of linear orders
(one binary relation). We arrive at:

Corollary 8.1.9. The index set te : Le is an ordinalu is Π1
1-complete.

Kleene’s O

Recall that in Section 2.2.3 we defined O to be the collection of all (notations for) constructive ordi-
nals. In Section 2.2.3 we also proved that an ordinal is computable if, and only if, it is constructive,
i.e., has a notation in O. In view of Corollary 8.1.9 the classical theorem below is perhaps not too
surprising. However, its proof is non-trivial and is omitted.

Theorem 8.1.10 (Kleene, Spector). O is Π1
1-complete.

Kleene’s idea was to extend the definition of Hpωq “ ‘nPNH
pnq as follows:

Definition 8.1.11 (Kleene). We define the sets Hpoq for notations o by effective transfinite recur-
sion as follows.

• Hp1q “ H

• Hp2aq “ Hpaq1

• Hp3 ¨ 5eq “ txu, vy : Dnpu ďO ϕepnq ^ v P Hpuqqu.

The operator H is well-behaved under ďT . The result is certainly nontrivial, and was thought
to be quite surprising when first proved; we omit the proof.

Theorem 8.1.12 (Spector [481]). 1. There is a partial computable function f such that for no-
tations a, b P O, if |a|O ă |b|O then fpa, bq is an index for Hpaq as a set computable from
Hpbq.

2. Thus if a and b are notations for an ordinal α, Hpaq ”T Hpbq.

303

Thus, for a P O is a notation for α, then the “α-th Turing jump” can be well-defined up to ”T
via

Hp2bq “ Hpbq1

if a “ 2b and, when a “ 3 ¨ 5e,

Hp3 ¨ 5eq “ txu, vy : u ăO 3 ¨ 5e ^ v P Hpuqu “ txu, vy : Dnpu ďO ϕepnq ^ v P Hpuqqu.

Theorem 8.1.13 (Kleene [301]). A P ∆1
1 iff A ďT Hpaq for some a P O.

For instance, every arithmetical set is ∆1
1, and so is everyHpωq-computable set. For a computable

ordinal α ě ω, define ∆0
α to be the complexity class of all sets computable relative to Hpaq, where

a is any notation for α.
Since Hpaq ”T Hpbq for any other notation b for α, the class is well-defined. (Note that for

a finite α “ n, the ∆0
n`1-sets are those computable in 0pnq, not in 0pn`1q.) It follows from the

theorem above that
∆1

1 “
ď

αăωCK1

∆0
α,

which is a remarkable fact. The classes ∆0
α, α ě ω, form the extension of the arithmetical hierarchy

known as the hyperarithmetical hierarchy. If X Ď ω, then we can define the classes ∆0
αpXq and

∆1
1pXq by iterating X0, X 1, X2, . . . over computable ordinals. It is also not too hard to show that

if X P ∆0
α and Y P ∆0

βpXq, then Y P ∆0
α`β , i.e. “hyperarithmetical relative to a hyperarithmetical

oracle is again hyperarithmetical”; e.g. [20, Proposition 5.21].

The Harrison order

For proofs of the following two facts, we refer to Lemma 2.1.III and Lemma 2.2.III of [458], respec-
tively.

Theorem 8.1.14 (Kleene). There exists a computable linear ordering with an infinite descending
sequence but no hyperarithmetical descending sequence.

Theorem 8.1.15 (Harrison). Any computable linear order with the property as in Theorem 8.1.14
must have order type

ωCK1 p1`Qq ` δ,

where ωCK1 is the least non-computable ordinal, and δ ă ωCK1 is a computable ordinal.

Note that if L satisfies Theorem 8.1.14 then so does L ¨ ω. Thus, there is a computable linear
order of the order-type ωCK1 p1`Qq which has no hyperarithmetical descending sequence.

Definition 8.1.16. The linear order ωCK1 p1 ` Qq will be called the Harrison order and denoted
H.

The linear order H is not computably categorical. However, we shall occasionally stretch our
notation and identify H with some computable copy of H; the exact choice of this copy will usually
be clear from the context.

304

A useful lemma

Given a linear order L indexed by natural numbers, define the tree of descending sequences DSpLq
of L to be the collection of all tuples x`0, . . . `ky P L

ăω “ ωăω such that `0 ąL . . . ąL `k (together
with the empty string). It should be clear that L is a well-order iff DSpT q is well-founded.

It T, S are trees, then define their product U “ T ˚ U “ tpσ, τq : |σ| “ |τ |, σ P T, τ P Uu that
can be viewed as a tree in ωăω ˆ ωăω – ωăω, under the coordinate-wise prefix relation on pairs.
Note that T ˚ U is ill-founded iff both U and T are ill-founded. Further, any infinite path through
T ˚ U computes an infinite path through T and an infinite path through U .

The following lemma will be used in applications to index sets. It can be found in [213]; see the
proof of [213, Theorem 4.4(d)] where it is sketched. A variation of the lemma is [146, Lemma 3.1].

Lemma 8.1.17. There is a computable operator R mapping computable trees to computable trees
with the following properties:

1. RpT q is well-founded iff T is well-founded, and

2. if RpT q is not well-founded, then RpT q – DSpHq,

where H is the Harrison order and DSpLq be the tree of finite descending sequences of a linear
ordering L.

Proof. Identify H with a a computable linear order L – H given by Theorem 8.1.14 (and the remarks
after Theorem 8.1.15)). Given T , define R0pT q “ T ˚DSpHq. If T is not well-founded, then R0pT q
has no hyperarithmetical paths, and thus by Theorem 8.1.15, KBpR0pT qq – ωCK1 p1 ` Qq ` δ.
Define IpT q “ KBpR0pT qq ¨ ω and let RpT q “ DSpIpT qqq. By Theorem 8.1.8 and the properties of
L ÞÑ DSpLq, T is well-founded iff RpT q is. If T is not well-founded, then RpT q – DSpHq.

Remark 8.1.18. Note that in the proof above we also established that IpT q – H iff T is not
well-founded, and otherwise IpT q is a computable ordinal. (This is [92, Lemma 5.2].)

Tree rank

Definition 8.1.19. Let T be a subtree of ωăω. We define the tree rank of x P T , denoted by trpxq,
by induction:

1. trpxq “ 0 if x has no successor;

2. For α ą 0, trpxq “ α if α is the least ordinal greater than trpyq for all successors y of x;

3. trpxq “ 8 if x does not have an ordinal tree rank.

The tree rank of the tree T is defined to be the rank of the top node 0.

The tree rank of the tree S ˚T is the minimum of the tree ranks of S and T . In particular, S ˚T
has an infinite path iff both S and T have infinite paths. We note that if T has no infinite paths,
then its tree rank must be a computable ordinal; the proof is similar to that outlined in the hint to
Exercise 8.1.26. We always have

trppσ, τqq “ minptrpaq, trpτqq,

where σ P S and τ P T .

305

Recall that WF denotes the set of indices of computable well-founded trees on ω. For each
computable ordinal α, let WFα denote the set of indices of computable trees of tree rank less than
α. This fact below a consequence (a reformulation) of the Bounding Principle.

Fact 8.1.20. If f is a hyperarithmetical function from a hyperarithmetical subset of ω into WF ,
there exists a computable α such that the range of f is contained in WFα.

To see why Fact 8.1.20 would hold, first consider the case when f is computable; put the
trees Tfpxq together under the common root. The rank of this well-founded computable tree is
a computable ordinal and bounds the rank of each Tfpxq. Now, if f is hyperarithmetical, then
we can relativise this to f and use that “hyperarithmetical relative to hyperarithmetical is again
hyperarithmetical”. We omit the formal proof and refer the reader to, e.g., [458, Corollary II.3.4].

Exercises

Exercise˝ 8.1.21 (Kleene). Write @0 and D0 for quantifiers ranging over numbers, and D1 and @1

for quantifiers ranging over functions. In the context of analytic relations, prove that the following
prefix transformations are permissible; i.e., in each case, for any predicate form with the given
prefix, an equivalent predicate form with the new prefix can be obtained:

1. . . . D0D0 . . . ÞÑ . . . D0 . . . and the same for @0;

2. . . . D1D1 . . . ÞÑ . . . D1 . . . and the same for @1;

3. . . . D0 . . . ÞÑ . . . D1 . . . and the same for @0 and @1;

4. . . .@0D1 . . . ÞÑ . . . D1@0 . . .;

5. . . . D0@1 . . . ÞÑ . . .@1D0 . . .;

6. . . . ÞÑ . . . Q . . . , where Q is any quantifier (adding “dummy quantifiers”).

[For a detailed proof, see [454, Theorem III, Ch.16]. Also, see [20, pp.75-77] for an extended sketch.]

Exercise˝ 8.1.22. If S,R are Σ1
k-relations on pωωqn ˆ ωm (m` n ą 0), then so are S ^R, S _R.

The same is true for Π1
k-relations.

Exercise˝ 8.1.23 (Kleene). Based on the existence of the uniformly effective enumeration of all
functionals (§2.1.4), prove the following. For each k ě 1 and each tuple of variables x̄ ranging over
pωωqnˆωm (m`n ą 0), there is a Σ1

k-relation Upx̄, eq so that the list tUpx̄, eq : e P Nu includes all
Σ1
k-relations. (The same for Π1

k.)

Exercise˝ 8.1.24. Prove Theorem 8.1.3 assuming the previous exercise.

Exercise 8.1.25 (Spector). Show that any hyperarithmetical well-ordering is isomorphic to a
computable one. (Hint. Let ωX1 denote the first ordinal that is not X-computable. All results
of this section and Section 2.2.3 can be relativised to X. Suppose L is hyperarithmetical, say
X-computable for some hyperarithmetical X. It is sufficient to show that ωX1 “ ωCK1 . Obviously,
ωX1 ě ωCK1 . Assume ωX1 ą ωCK1 , and thus there exists an X-computable presentation U – ωCK1 .
Then for a computable linear order L, being well-founded would be equivalent to saying that L
is isomorphically embeddable into U , which is a Σ1

1-property (because of, e.g., Theorem 8.1.13),
contradicting Theorem 8.1.5. See [458, Cor.7.4.II] for a detailed proof.)

306

Exercise 8.1.26. Prove 1 Ñ 3 of Theorem 4.1.29. [Hint: The Stone space X of such a Boolean
algebra can be viewed as a computable closed subset of 2ω. The operation of taking the Cantor-
Bendixson derivative is a monotone ∆1

1-operator on X, and it is well-known that this implies that
the CB-rank of the space has to be ď ωCK1 ; see, e.g., [458, Theorem 8.9.III]. Since the space is
countable, we obtain that each ξ P X is ranked, and thus by ([458, §8.11.III]), we obtain that the
sequence stabilises at a computable ordinal. It follows that the computable superatomic Boolean
algebras are exactly the algebras of the form Intpωα ¨ kq, where α is a computable ordinal. See
Exercise 10.1.64 for a different version of proof.]

Exercise˚ 8.1.27 (Ash). Prove an extension of Theorem 7.1.6 to ordinals of the form ωα, where
α is a computable ordinal.

Exercise˚ 8.1.28. ([20, Theorem 17.8]) State and prove an extension of Theorem 7.1.7 to Boolean
algebras of the form Intalgpωαq, where α is a computable ordinal.

8.1.3 Index sets of discrete structures

All results in this subsection can be found in [213].

The recognition problem

Recall that in Corollary 8.1.9 we established that the recognition problem for (the index set of)
well-orders is Π1

1 complete. Recall that the superatomic Boolean algebras are exactly the interval
algebras of ordinals; see §4.1.4. We obtain:

Theorem 8.1.29. The recognition problem for superatomic Boolean algebras is Π1
1-complete.

Proof. A Boolean algebra is superatomic iff B – IntalgpLq for a well-ordered L, and indeed, any such
L has to be well-ordered. Since we can uniformly calculate some such L from a given presentation
of a Boolean algebra (Corollary 4.1.15), the result follows from Corollary 8.1.9.

Another elementary consequence is as follows. Recall that an abelian group A is divisible if,
and only if, for every x P A and every integer m ą 0, we have that

Dy P A my “ x.

An abelian group is reduced if it does not have non-trivial divisible subgroups. It is well-known
that the maximal divisible subgroup of an abelian group detaches as its direct summand. Fix an
effective enumeration pAiqiPN of all partial computable structures in the language of groups.

Theorem 8.1.30. The index set

ti : Ai is a reduced abelian p-groupu

is Π1
1-complete.

307

Proof. The foundations of the theory of abelian p-groups will be explained in detail in Section 9.3.1.
There, in Corollary 9.3.4 we will show that for an abelian p-group, being not reduced is equivalent
to the existence of a sequence of non-zero elements pxiqiPN such that for all i, pxi “ xi`1. Thus,
the property of being reduced is Π1

1.
In Chapter 9.3.1 we will also describe a uniform transformation T ÞÑ GpT q that turns trees into

abelian p-groups. The resulting p-group is defined by relations x “ py where y is the successor of
x and x, y range over the nodes of T . The root of T corresponds to the element 0. It follows from
Corollary 9.3.4 that the group GpT q is reduced if, and only if, T is well-founded. (We can uniformly
add at least one non-root node to T to make sure that GpT q is never the trivial group if we define
the trivial group to be divisible.) Being well-founded for T is Π1

1-complete by Theorem 8.1.5.

A single structure can have its index set maximally complicated.

Theorem 8.1.31. The recognition problem for the Harrison order (Definition 8.1.16)

ti : Li – Hu

is Σ1
1-complete. The same is true for the computable tree DSpHq.

Proof. For a fixed computable (countable, discrete) structure, its recognition problem is always Σ1
1.

The Σ1
1-completeness for H follows from Corollary 8.1.9, Remark 8.1.18, and in the case of DSpHq

it is guaranteed by Theorem 8.1.5 and Lemma 8.1.17.

Remark 8.1.32. In the theorem above, the Σ1
1-completeness for H is witnessed by a uniformly

computable sequence pLiqiPN so that Li is not an ordinal iff Li – H. Similarly, in the case of
DSpHq, the Π1

1-outcome is always witnessed by a well-founded tree.

The isomorphism problem

For a class of (countable, discrete) computable structures K with arithmetical recognition problem,
the isomorphism problem

tpi, jq : Mi,Mj P K,Mi –Mju

is always Σ1
1. If it is Σ1

1-complete then we say that the class is analytic complete. In the previ-
ous chapter we observed that the recognition problem for all classes from the theorem below are
arithmetical. Thus, the theorem says that these classes are analytic complete.

Theorem 8.1.33 (Goncharov and Knight [213]). For the following classes, the isomorphism
problem is Σ1

1-complete.

1. Trees.

2. Linear orders.

3. Boolean algebras.

4. Abelian p-groups.

308

Proof. 1. is Lemma 8.1.17, and 2. is Remark 8.1.18. To prove 3., consider the functional that
on input a linear order L outputs IntalgpLq. Let pLiqiPN be a uniformly computable sequence of
computable linear orders such that Li – H iff Li is not an ordinal; see Remark 8.1.32. If Li is
a computable ordinal, then the Stone space of IntalgpLiq vanishes after taking ωCK1 -many CB-
derivatives. Otherwise, it stabilises at the perfect kernel which is non-trivial when Li – H. (Note
that the Boolean algebra IntalgpLiq is superatomic iff Li is an ordinal; see §4.1.4). It follows that
the uniformly computable sequence of pairs

pIntalgpLiq, IntalgpHqqiPN

witnesses the Σ1
1-completeness in 3.

For 4., fix a uniformly computable sequence pTiqiPN witnessing the Σ1
1-completeness of the recog-

nition problem for DSpHq; see Remark 8.1.32. In this sequence, Ti is well-founded iff Ti fl DSpHq.
In the proof of Theorem 8.1.30 we defined a uniformly computable transformation T ÞÑ GpT q with
the property that T is well-founded iff GpT q is a reduced abelian p-group. Thus, the sequence

pGpTiq, GpDSpHqqqiPN

witnesses the Σ1
1-completeness in 4.

8.1.4 Index sets of separable structures

All results of this subsection are either folklore or can be found in [139] or [373].

Upper bounds

It is obvious that the isomorphism problem for discrete countable structures is Σ1
1 provided that

the recognition problem for the class is Σ1
1. For separable structures the situation is more complex;

however, in the two important cases of Banach spaces and compact spaces we also obtain the upper
bound Σ1

1, as we prove next.
Fix a uniformly computable list pMiqiPN of all partial computable Polish spaces. We slightly

abuse our notation and identify Mi with its completion Mi.

Proposition 8.1.34. The homeomorphism problem

txi, jy : Mi –hom Mj &Mi,Mj are compactu

for compact computable Polish spaces is Σ1
1.

Proof. It is arithmetical to say that Mi is a (presentation of a) compact Polish space; see (1) of
Corollary 7.1.27. To say that there is a homeomorphism f : Mi ÑMj , it is sufficient to state that
there exist continuous surjective f1 : Mi ÑMj and f2 : Mj ÑMi such that f1 ˝ f2 “ IdMi

. Every
g : X Ñ Y between compact X and Y can be represented by, e.g., a pair pg̃,mq where g̃ : ω2 Ñ ω
and m : ω Ñ ω, and where the function g̃pn, kq is interpreted as the image of the nth special point
with precision 2´k, and m as the modulus of uniform continuity.

We claim that it is arithmetical to say that pg̃,mq represents a continuous function

lim
k
gp¨, kq : X Ñ Y.

309

Indeed, totality is arithmetical. Also one can express that m is a modulus of continuity that works
for g̃ as a closed property. Thus, as before, if it fails then it must fail for some special points. Since
the continuous image of a compact space is closed, it is arithmetical to say that pg̃,mq represents a
surjective function. (If it does not, then again there is a special point in the complement witnessing
this.)

This allows to state the existence of f1 and f2 in a Σ1
1 way. Finally, to say that f1 ˝ f2 “ IdMi

,
it is sufficient to say that it is true for special points because the property is (again) closed. This
can be expressed arithmetically (in the presentations of) f1 and f2.

Before we proceed, we note that the same result clearly holds if we used computably compact
presentations instead of computable presentations.

Fix a computable list pBiqiPN of all (partial) computable linear spaces over Q with a computable
norm. (We again identify Bi with Bi.)

Proposition 8.1.35. The linear isometric isomorphism problem txi, jy : Bi –iso Bju for com-
putable separable Banach spaces is Σ1

1.

Proof. Exercise 8.1.38.

Finally, fix a uniformly computable list of all (partial) computable Polish groups pGiqiPN. Each
Gi is given by a computable Polish space equipped with operators for the group operations. In
§7.1.2 we proved that the index set of compact Polish groups is arithmetical.

Proposition 8.1.36. The topological group isomorphism problem

txi, jy : Gi – Gj and Gi, Gj are compact groupsu

for compact groups is Σ1
1.

Proof. Exercise 8.1.39.

Similarly to compact spaces, the result will of course also hold true for computably compact
groups. As we noted earlier, in the case of computably compact groups we do not even need to
require the inverse operation to be explicitly included into a presentation; this is Corollary 4.2.46.

Completeness results

All structures in the theorem below are separable.

Theorem 8.1.37. The isomorphism problem is Σ1
1-complete in the following classes:

1. Stone spaces (Downey and Melnikov [139]).

2. Banach spaces (Downey and Melnikov [139]).

3. Profinite abelian groups (Melnikov [373]).

310

Proof. It follows from Propositions 8.1.34,8.1.35 and 8.1.36 that the upper bound in each case is
Σ1

1.
To establish completeness in 1., use the Σ1

1-completeness of the isomorphism problem for Boolean
algebras (Theorem 8.1.33) combined with Effective Stone Duality (Theorem 4.2.80) established in
Part 1. Note that Σ1

1-completeness is witnessed by computably compact spaces for which Effective
Stone Duality is uniform.

To prove 2., use 1. and the Effective Banach-Stone Duality (Theorem 4.2.113). But in fact,
we do not need the full power of this effective duality. If pSi, BiqiPN are the computably compact
Stone spaces witnessing the Σ1

1-completeness in 1., then the sequence of pairs of Banach spaces
pCpSi,Rq, CpBi,Rqq is clearly uniformly computable and witnesses the Σ1

1-completeness in 2.
To establish 3., recall that the isomorphism problem for abelian p-groups is Σ1

1-complete (The-
orem 8.1.33). In Section 9.5 we will establish that Pontyragin duality between computably discrete
torsion and computably compact profinite abelian groups is uniformly computable. Taking this
result for granted, we obtain the Σ1

1-completeness in 3.

Note that 1. and 3. of the theorem above are witnessed by computably compact Stone spaces and
computably compact pro-p abelian groups, respectively. Thus, these completeness results remain
true if we restrict ourselves to computably compact presentations. Notice also that in all three
cases, there is a single structure so that the set of indices of other structures isomorphic to it is
Σ1

1-complete.

Exercises

Exercise˝ 8.1.38. Prove Proposition 8.1.35.

Exercise˝ 8.1.39. Prove Proposition 8.1.36.

Exercise˝ 8.1.40 (Melnikov [368, 366]). Show that the isomorphism problem for computable
ordered abelian groups is Σ1

1-complete. (Hint: Use the strategy from Exercise 5.1.50.)

Exercise 8.1.41 (Calvert [72]). Show that the isomorphism problem for real closed fields, and
thus for formally real fields, is Σ1

1-complete. Deduce that the isomorphism problem for computable
fields of characteristic zero is Σ1

1-complete. (Hint: We remark that the order in a real-closed field
can be reconstructed using (or imitated by) the field operations: for an a ‰ 0, a ą 0 iff Dxx2 “ a.
Fix a linear order L. Consider the theory of real-closed fields together with a collection of new
symbols tc` : ` P Lu and sentences stating that:

1. for all ` P L, 0 ă c`;

2. for each pair ` ă `2 in L, for every polynomial ppc`q in c` with coefficients involving tc`2 :
`2 ă `u, we have ppc`q ă c`1 .

Using the material of §2.2.2, uniformly in L produce a computable formally real field F pLq. The
computable real-closed (or formally real, depending on the signature) field F pLq codes L into the
Archimedean classes of positive elements.)

The next few exercises are here mainly to inform the reader. Their proofs are too complex and
go beyond the material covered in the book.

311

Exercise˚˚ 8.1.42 (Bazhenov, Harrison-Trainor, Kalimullin, and Melnikov [34]). A computable
structure in a finite language (signature) is:

1. polynomial-time if the domain, the operations, and relations on the structure are computable
in polynomial time;

2. primitive recursive if the domain, the operations, and relations on the structure are primitive
recursive;

3. punctual or fully primitive recursive if it is primitive recursive and the domain is ω;

4. automatic if there is a finite automaton computing its open diagram (the definition is sensitive
to the exact choice of formal details, see [34]).

Show that the following index sets are Σ1
1-complete among computable structures:

1. automatically presentable structures;

2. structures that admit a polynomial-time presentation;

3. primitive recursively presentable structures;

4. punctually presentable structures;

5. structures that admit a 1-decidable presentation;

6. structures that admit a decidable presentation (Harrison-Trainor [237]).

Exercise˚ 8.1.43 (Kalimullin (unpublished), based on [34]). Use the main result of [34] to prove
that the index set of computably presented structures among all c.e. presented structures is Σ1

1-
complete. (Hint: First, define a transformation Ψ such that, for the structures witnessing the
main result in [34], A has a computable presentation iff ΦpAq has a ∆0

2 presentation, and A has a
1-decidable presentation iff ΦpAq has a computable presentation. For that, add predicates coding
the D-diagram of the structure. This readily gives that the index set of computably presented
structures among ∆0

2-presented structures is Σ1
1-complete. This is because the outcomes of the

main construction in [34] give either an automatic (thus, decidable) structure or a structure that is
not even 1-decidable. To get the claimed Σ1

1-completeness among c.e. presented structures, restrict
this idea to the diagonalisation modules. Modify the diagonalisation module and use a D-definable
congruence „ on pairs of automorphic points in A, and consider A{ „.)

Exercise˚˚ 8.1.44 (Downey et al. [131]). Show that the index set of computably categorical
structures is Π1

1-complete.

312

8.2 Effective reductions between classes

In this section we discuss effectively universal and effectively complete classes. The notion of an
effectively universal class is not easy to define formally. In this section the simpler notion of effective
completeness and the even weaker notion of FF -completeness will generally suffice.

8.2.1 Effective transformations between structures

All our classes have computable languages (signatures). The following is an effectivisation of the
standard Borel reduction from descriptive set theory that we briefly discussed in §6.1.2.

Definition 8.2.1 (Calvert, Cummins, Knight, and Miller [283]). Fix two classes of computable
structures K1 and K2. Then K1 is effectively reducible to K2,

K1 ďEFF K2,

if there is a Turing functional Φ taking open diagrams of structures in K1 and outputting
diagrams of structures in K2, such that

A – B iff ΦpAq – ΦpBq.

(The most common but somewhat unfortunate notation in the literature is K1 ďtc K2.) The
definition above is usually used only for discrete structures in the literature, however, it can be
useful for separable structures as well. For example, the effective dualities proved in Part 1 the book
induce reductions between classes of discrete and separable structures, and the effective Banach-
Stone duality induces an effective reduction between compact spaces K and the respective Banach
spaces CpK;Rq.

Definition 8.2.2. A class U is effectively complete with respect to discrete structures if for any
class K of discrete countable structures, K ďEFF U .

It is immediate from the results in the preceding sections that every effectively complete class
has its isomorphism problem Σ1

1-hard. Thus, for example, the class of completely decomposable
groups is not effectively complete, and the same can be said about the class of solenoid groups (or
their products).

Preserving spectra and computable dimension

Many natural examples of effective transformations witnessing ďEFF satisfy various further proper-
ties beyond Definition 8.2.1. Perhaps, the two most important properties of effective transformations
that occur throughout the literature are as follows.

Definition 8.2.3. Assume K ďEFF U via Φ. We say that:

313

1. Φ preserves computable dimension if it preserves the number of computable copies of
structures, up to computable isomorphism.

2. Φ preserves degree spectra if A has an X-computable copy iff ΦpAq admits an X-
computable copy.

That is, 1. says that if A has exactly κ P N Y tωu computable presentations up to computable
isomorphism, then so does ΦpAq. In particular, it maps computably categorical structures to
computably categorical structures. (In Chapter 10 we will prove that for every κ P N Y tωu
there exist an algebraic structure having exactly κ computable presentations, up to computable
isomorphism.)

In the literature, in 2. it is often further assumed that the coded structures from K are “auto-
morphically non-trivial”, i.e., they do not become homogeneous after fixing finitely many constants.
This assumption becomes unnecessary according to our definitions. Under the slightly more strict
definition saying that A is a-computable if degT pAq “ a (rather than degT pAq ď a), this assump-
tion is required to exclude the pathological case when the degrees of presentations are not closed
upwards [304].

For the purposes of the book we usually restrict ourselves to the case when K ranges over
discrete countable structures, while U could be a class of spaces. This restriction is of course not
really necessary in general. For example, effective Stone duality between computably compact
Stone spaces and Boolean algebras preserves computable dimension and degree spectra in the right
sense; this easily follows from the proofs of Theorems 4.2.80 and 4.2.84, and from Exercise 10.4.8.
The same can be said about effective Pontryagin duality mapping profinite abelian groups to their
torsion abelian duals; this can be easily extracted from Theorem 9.5.7 that will be presented in
the next chapter. We will usually further restrict our classes to their infinite members, since to
establish Σ1

1- or Π1
1-completeness we do not need to consider finite structures. This assumption

will sometimes be implicit in the proofs and proof sketches contained in the next two subsections.
Nonetheless, most proofs that we present here can be adjusted to work for finite structures as well.
For effective reducibilities between classes of finite structures, see [283].

Definition 8.2.4 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). An effectively complete
class U is complete with respect to computable dimension if for every class of discrete structures
K, there is a transformation Φ witnessing K ďEFF U that preserves computable dimension.

Similarly, we have:

Definition 8.2.5 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). An effectively complete
class U is complete with respect to degree spectra if Φ witnessing K ďEFF U can always be
chosen to preserve degree spectra.

314

Definitions 8.2.4 and 8.2.5 are directly related to the two central problems of effective algebra:
the existence and uniqueness of effective presentations for structures in the class. Since in this
section we mainly look at index sets and their Σ1

1-completeness, the much weaker notion of effective
completeness will usually suffice. However, in this section our proofs of effective completeness will
give transformations that are much stronger than just witnessingďEFF , but we leave the verification
of Definitions 8.2.4 and 8.2.5 for these transfoirmations to the exercises. These additional properties
of the transformations will be useful in the last chapter.

Effectively universal classes˚

Definitions 8.2.4 and 8.2.5 are just two examples of the many properties that natural transfor-
mations between structures can preserve. For a few examples of such additional properties, see
Exercises 8.2.10 and 8.2.11. Seeking to define a transformation between classes that preserves as
many properties as possible yet is not too restricted, we arrive at a “zoo” of definitions. For ex-
ample, we may or may not allow our transformation to use a finite tuple of parameters in the
structures. This approach was taken in Hirschfeldt, Khoussainov, Shore, and Slinko [257].

It is however worth noting that a formal and general definition of a strong effective reduction be-
tween classes exists and can be found in [243]. Essentially all known useful effective transformations
in the literature that satisfy Definitions 8.2.4 and 8.2.5 satisfy this definition from [243].

Furthermore, this definition is robust in the following sense. It was illustrated in [243] that
the notion in terms of functionals has an equivalent formulation using Lcω1ω-definability. Both
definitions are a bit too technical and we won’t need them; thus, we omit them.

The canonical example of an effectively universal class is the class G of directed graphs. We will
see that, for any other class K of countable structures, the transformation Φ witnessing K ďEFF G
satisfies much more than required in Definition 8.2.1 and even more than is stated in Definitions 8.2.4
and 8.2.5 above. Indeed, from the perspective of computable structure theory, the graph ΦpAq is
“essentially” A, up to a change of the signature.

8.2.2 Simple codings

The results contained in this subsection are folklore, and their proofs and proof sketches follow
Hirschfeldt, Khoussainov, Shore, and Slinko [257] closely1. The only exception is Theorem 8.2.9
which is trivial. As an immediate corollary of these results and Theorem 8.1.33, we obtain that in
all of these classes the isomorphism problem is Σ1

1-complete. As we already noted before, the trans-
formations witnessing the effective completeness for these classes preserve computable dimension
and degree spectra, but the verification of these claims will be left as an exercise.

Throughout the rest of this subsection, we usually assume that our structures are infinite and
have domain ω. The case of finite structures is usually not very interesting to us since we seek to
prove non-classification type results. (The case of finite structures was investigated in [283].) But
at least for the simple codings in this section, the coding in the finite case is typically exactly the
same as for the infinite case.

The effective completeness of directed graphs

The result below is folklore.

1We thank Denis Hirschfeldt for allowing us to use the diagrams from [257].

315

Theorem 8.2.6. Directed graphs form an effectively complete class.

Proof. Let A be a countable structure in a computable language with (possibly infinitely many)
constants c0, c1, . . ., function symbols f0, f1, . . ., and relation symbols R0, R1, Let ki be the
arity of fi and let li be the arity of Ri. See Fig. 8.2.2 for the idea behind the transformation. We
remark that there are many different ways to define A ÞÑ GpAq, so the particular transformation
from [257] which we adopt is certainly not canonical.

x
��

�� ��
x0

yy || �� �� ##

@@ JJ x1

{{ �� �� "" %%‚

��

‚

��

//‚ ‚

��

//‚ ‚

��

//‚ ‚

��

//‚ ‚

��

//‚ ‚

��

//‚

‚

ZZ

‚

��

‚

��

‚

��

‚

��

‚

��

‚

��c0 “ 0 ‚

OO

‚

OO

‚

��

‚

��

‚

��

‚

��f0p0q “ 0 f0p1q “ 0 ‚

OO

‚

OO

‚

		

‚

		R0p0, 0q R0p1, 0q ‚

OO

‚

OO

 R0p0, 1q R0p1, 1q

Figure 8.1: A portion of GpAq.

We give the detailed formal definition of A ÞÑ GpAq. The corresponding directed graph G “

GpAq and the set of directed edges E “ EpAq consists of the following:

1. A unique node x with px, xq P E.

2. A node xi for each element i P A, with px, xiq P E.

3. Suppose j “ ci in A. Then there is a cycle2 of length 4i ` 2 with an edge from xj to one of
the elements of this cycle.

2A cycle of length k is a sequence of elements x0, . . . , xk´1 so that there is an edge from xi to xi`1mod k, e.g.,
from xk´1 back to x0.

316

4. For each function fi and each tuple pj0, . . . , jki´1q in A, we put:

(a) a cycle C of length 4i` 3;

(b) a chain of elements y0, . . . , yki , where y0 is an element of C, with an edge from yn to
yn`1 for each n ă ki;

(c) an edge from xjn to yn for each n ă ki;

(d) an edge from yki to xj , where j “ fipj0, . . . , jki´1q in A.

5. For each relation Ri and each tuple pj0, . . . , jli´1q in A such that Ripj0, . . . , jli´1q holds in A:

(a) a cycle C of length 4i` 4;

(b) a chain of elements y0, . . . , yli´1, where y0 is an element of C, with an edge from yn to
yn`1 for each n ă li ´ 1;

(c) and an edge from xjn to yn for each n ă li.

6. For each relation Ri and each tuple pj0, . . . , jli´1q in A such that Ripj0, . . . , jli´1q does not
hold in A:

(a) a cycle C of length 4i` 5;

(b) a chain of elements y0, . . . , yli´1, where y0 is an element of C, with an edge from yn to
yn`1 for each n ă li ´ 1; and

(c) an edge from xjn to yn for each n ă li.

It is immediate that the transformation A ÞÑ GpAq is uniformly effective, and furthermore, there
exist first-order existential formulae defining the relations and their complements of A inside GpAq,
as well as the functions and the constant symbols. The verification of these properties is left as an
exercise. In particular, it follows that A ÞÑ GpAq is injective on isomorphism types.

Undirected Graphs

Recall that an undirected graph is simple if it does not have edges of the form px, xq. Since we view
our graphs as predicate structures, multiple edges are automatically excluded.

Theorem 8.2.7. The class of undirected simple graphs is effectively complete.

Proof. By Theorem 8.2.6, it is sufficient to prove that the class of directed graphs is effectively
reducible to the class of undirected graphs. Let G be a directed graph with edge relation E.
We define the symmetric, irreflexive graph HpGq “ pH,F q. See Fig. 8.2 for the idea behind the
transformation G ÞÑ HpGq. (Fig. 8.2 shows a part of HpGq coding Ep0, 1q, Ep1, 0q, Ep1, 2q, Ep2, 2q,
 Ep0, 0q, Ep0, 2q, Ep1, 1q, Ep2, 0q, and Ep2, 1q.)

The formal definition is as follows.

1. H “ ta, â, bu Y tci, di, ei : i P Gu.

2. F px, yq holds only in the following cases.

317

a â

c0 c1 c2

d0 d1 d2

e0 e1 e2

b

Figure 8.2: A part of HpGq.

(a) F pa, âq and F pâ, aq.

(b) For all i P G,

i. F pa, ciq and F pci, aq,

ii. F pb, eiq and F pei, bq,

iii. F pci, diq and F pdi, ciq,

iv. F pdi, eiq and F pei, diq.

(c) If Epi, jq then F pci, ejq and F pej , ciq.

Obviously, G – G1 implies HpGq – HpG1q. To see why HpGq – HpG1q implies G – G1, we show
that G is definable in HpGq (indeed, it is first-order D-definable). Let

D “ tx P H : x ‰ â^ F pa, xqu “ tci : i P Gu

and
Rpx, yq “ tpx, yq : Dpxq ^Dpyq ^ Dd, epF pb, eq ^ F py, dq ^ F pd, eq ^ F px, eqqu.

The definable predicates D and R essentially imitate G and E. To see that D and R are
invariant, it is enough to notice that x “ a is the only element of HG that satisfies the formula

D8ypF px, yqq ^ DzpF px, zq ^ @wpF pw, zq Ñ w “ xqq,

x “ â is the only element of HG that satisfies

F px, aq ^ @ypF px, yq Ñ y “ aq,

and x “ b is the only element of HG that satisfies

D8ypF px, yqq ^ F pa, xq ^ DzpF pa, zq ^ F px, zqq.

We omit further elementary details.

318

Exercises

Exercise˝ 8.2.8. Prove that the transformations in the proofs of Theorems 8.2.7 and 8.2.6 witness
that the respective classes are effectively complete with respect to computable dimension and degree
spectra.

Discrete metric spaces under isometry

We say that a discrete metric space M is rational-valued if dpx, yq P Q for any x, y P M . Such
spaces can be viewed as algebraic structures in the language pDrqrPQ, where Drpx, yq holds iff
dpx, yq “ r. Further, two discrete metric spaces are isometrically isomorphic iff the respective
algebraic structures are isomorphic. Thus, such as space is not really an honest metric space; it
can be viewed as a countable algebraic structure. The fact below is trivial, but it will be useful in
the last chapter. Recall that, according to Definition 8.2.2, an effectively complete class has to be
ďEFF -above any class of discrete structures in a computable language.

Theorem 8.2.9. Rational-valued discrete Polish spaces (viewed up to isometry) are effectively
complete.

Proof. We use the universality of undirected simple graphs established in Theorem 8.2.7. For a
graph G, define MpGq upon the set of vertices of G under the following metric:

1. x ‰ y and px, yq P E implies dpx, yq “ 1;

2. x ‰ y and px, yq R E implies dpx, yq “ 2;

3. dpx, xq “ 0, for all x.

The triangle inequality dpx, yq ` dpy, zq ě dpx, zq follows from a straightforward case analysis,
and the positivity of d is evident. Also,

px, yq P E if and only if dpx, yq “ 1,

so the graph relation is definable in MpGq.

Of course, every space of the form MpGq is automatically a computable Polish space. On the
other hand, in every computable Polish space isometric to MpGq we can uniformly decide whether
dpx, yq “ 0 or 1 or 2, for every pair of points. It should be clear that the transformation G ÞÑMpGq
preserves computable dimension and degree spectra, and indeed, perhaps any reasonable property
one can possibly think of.

Exercises

Exercise˝ 8.2.10. Let Φ be one of the transformations described in Theorems 8.2.6, 8.2.7, and
8.2.9. Prove that A is X-computably isomorphic to B if, and only if, ΦpAq and ΦpBq are X-
computably isomorphic.

319

Exercise˝ 8.2.11. Let Φ be one of the transformations described in Theorems 8.2.6, 8.2.7, and
8.2.9. Show that there is a uniformly effective transformation X ÞÑ SpXq such that whenever
X – ΦpAq, we have that SpXq – A. Furthermore, and this reverse transformation S has the
property described in the previous exercise, i.e., respects X-computable isomorphisms (whenever it
is defined).

8.2.3 Integral domains and 2-step nilpotent groups˚

Recall that an integral domain is a commutative ring with identity that has no zero divisors, i.e.,
a ¨ b “ 0 implies that either a “ 0 or b “ 0. Every integral domain is contained in its field of
fractions, and every finite integral domain is a field.

Theorem 8.2.12 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). Let p be either 0 or a prime.
The class of integral domains of characteristic p is effectively complete. Furthermore, it is complete
with respect to degree spectra and computable dimension.

Sketch. It is sufficient to effectively transform graphs into integral domains. The graphs constructed
in §8.2.2 have the following property: for every finite set of nodes S there exist nodes x, y R S that
are connected by an edge. Let G be a symmetric, irreflexive, countably infinite graph with edge
relation E, having the property mentioned above. We assume that the domain |G| of G is ω.

The construction is essentially the same for the cases of infinite and finite characteristic p. Thus,
it makes sense to adopt a unified notation. Let Z0 “ Z. We write Ip “ I be the set of invertible
elements of Zp, including the case when p “ 0. (Note that for each p, I is finite.) The integral
domain ApGq is defined to be

Zp rxi : i P Ns
„

y

xixj
: Epi, jq

 „

z

xixj
: Epi, jq

 „

y

xni
: i, n P ω



,

where, fractions are interpreted as elements of the enveloping fraction field of Zprxi, z, ys, and
RrXsrY s is identified with RrX Y Y s under the natural isomorphism.

It is easy to see that when G is computable, ApGq is computable too, and this is uniform. To
reconstruct G from an isomorphic copy A of ApGq, define

D “ tx P A : x R I ^ Drpx2r “ zqu,

Q “ tpx, x1q : Dpxq ^ Da P Ipx1 “ axqu,

and

R “ tpx, x1q : Dpxq ^Dpx1q ^ Qpx, x1q ^ Drprxx1 “ yqu.

Using a relatively involved (but self-contained) combinatorial argument, it is possible to show that
D and R are invariant under any automorphism of the ring. The graph G is isomorphic to pD,Rq
defined on the Q-classes of elements. The definability analysis indeed shows that both R and D
are computable relative to A, thus giving universality with respect to degree spectra.

It takes a bit more effort to prove that the coding also gives completeness with respect to
computable dimension, since any isomorphism between copies of ApGq effectively induces an iso-
morphism between the respective definable copies of G, and vice versa. (We omit the details.)

320

As noted in [257], the proof outlined above also illustrates that the multiplicative semigroup
upon the generators

t˘1u Y txi : i P Nu Y
"

y

xixj
: Epi, jq

*

Y

"

z

xixj
: Epi, jq

*

Y

"

y

xni
: i, n P ω

*

.

also effectively codes the graph G preserving most effective properties of interest, including com-
putable dimension and degree spectra.

Recall that every field is trivially an integral domain. Using algebraic geometry, the following
stronger result was established by Miller, Poonen, Schoutens, and Shlapentokh [397]; we omit the
proof.

Theorem 8.2.13. Theorem 8.2.12 holds for the class of fields (of arbitrary characteristic).

Let G be a group. The center of G is the set tx P |G| : @y P |G| pxy “ yxqu. The commutator
rx, ys of x, y P |G| is the element xyx´1y´1. The group G is 2-step nilpotent if rx, ys is in the center
of G for every pair of elements x, y P |G|.

Theorem 8.2.14 (Harisanov et al. [230], based on [257]). The class of 2-step nilpotent groups
is effectively complete. Furthermore, it is complete with respect to degree spectra and computable
dimension.

Proof idea. This is an effectivisation of an old result that [257] attributes to Mal’cev. By Theo-
rem 8.2.12, it is sufficient to define a transformation R ÞÑ GR from integral domains of any fixed
characteristic to 2-step nilpotent groups. Let R “ p|R| ,`, ¨, 0, 1q be a countably infinite integral
domain of characteristic p ą 2. Define GR to be the group of upper triangular 3 ˆ 3 matrices of
the form

¨

˝

1 b c
0 1 a
0 0 1

˛

‚,

a, b, c P |R|, which is known as the Heisenberg group of R. The verification is omitted, but we
note that [257] uses two non-uniform parameters to reconstruct the integral domain from GR, and
in [230] the use of these two parameters is eliminated. (Indeed, it is illustrated that any pair of
non-commutative elements could be used to reconstruct R.)

In all examples of transformations that we presented above the effective completeness was wit-
nessed by a transformation that preserved lots of computability-theoretic properties of the trans-
formed structures, including computable dimension. However, Definition 8.2.2 in its raw form does
not assume any of these additional properties. If we take Definition 8.2.2 as the base of our theory,
and do not put any additional restrictions we of course can obtain more effective completeness
results, and often via much simpler proofs. For example, it is easy to see that the elementary
embedding of graphs into fields of characteristic zero described in Exercise 8.2.32 is effective, thus
showing that such fields lie on to under ďEFF . In contrast, establishing “effective universality” of
fields (Theorem 8.2.13) requires a lot more effort.

321

8.2.4 A Type I version of effective completeness

Definition 8.2.2 uses a Turing functional Φ, perhaps with parameters, to transform arbitrary count-
able structures from the given class. The “Type I” analogue of this notion works on indices of
computable structures. It is as follows. Note that the isomorphism problem for a class of com-
putable discrete structures is typically Σ1

1, and the same is true for a class of computably compact
Polish spaces. Further, the induced equivalence relation is defined on a (hyper)arithmetical subset
of ω which corresponds to the index set of the class. The definition below is abstract and does not
mention classes of structures at all, and it is not restricted to isomorphism problems on structures.

Definition 8.2.15 (Friedman and Fokina [170]). Let E,R be a Σ1
1-equivalence relations on

(hyper)arithmetical subsets of ω.

1. We write E ďFF R and say that E is FF -reducible to R if there is a (partial) computable
function f such that

xEy if and only if fpxqRfpyq,

where we of course assume f always halts on the support of E and outputs an index in
K1.

2. A Σ1
1 equivalence relation on ω is effectively complete among Σ1

1-equivalence relations, or
simply FF -complete, if it is FF -reducible to any Σ1

1 equivalence relation on ω.

3. We say that a class K of computable structures is FF -complete if the isomorphism prob-
lem for K is FF -complete.

We are mainly interested in the FF -reducibility between classes of structures.

Separating the Type I and Type II effective reducibilities

It is clear that K1 ďEFF K2 implies K1 ďFF K2. Of course, ďFF -reducibility is in general
weaker than the ďEFF -reducibility, as the elementary example below illustrates. A much more
insightful result separating Type II and Type I effective completeness will be given a bit later, in
Theorem 8.2.25.

Example 8.2.16. Fix an abelian group H ő Q that has no computable presentation. For each
n P N, consider the classes Fn of homogeneous c.d. groups of rank ď n; there are groups of the form
Hm, m ď n, including t0u for m “ 0. Then each class has exactly one computable structure, this
being t0u, and thus

Fn ”FF Fm,

for all m,n P N, via the identity function. However, Fn`1 ęEFF Fn, by pigeonhole.

The exaggerated Example 8.2.16 above is rather unsatisfying. It works simply because the
compared classes do not have “enough” computable members. A natural question arises as to
whether the two notions of reducibility, ďEFF and ďFF , can be distinguished using only subclasses
Kc1 and Kc2 composed of the computable members of the compared classes.

322

We now explain why the answer is (essentially) negative, at least for all “natural” classes of
structures that we have encountered in Proposition 7.1.1, and many more. We have already men-
tioned infinitary computable formulae in the introduction, but we delay the more detailed discussion
until Chapter 10 (Definition 10.1.4). Here, we briefly explain the little that is needed to prove the
next theorem.

A Πc
2-class of structures is a class that is described by a single computable infinitary axiom of

the form
ľ

iPW

@x̄ψipx̄q,

where pψipx̄qqiPW is a c.e. sequence of formulae (i.e., W is a c.e. set listing their Gödel numbers), each
ψi being a c.e. disjunction of first-order existential formulae. For example, any class axiomatised by
a computable collection of first-order @D-axioms is a Πc

2-class. Every class from Proposition 7.1.1 is
certainly like that. We do not need to know more about infinitary logic to prove the result below,
which appears to be new.

All our classes have computable signatures, and we assume all structures have domain Ď ω.
Without loss of generality, we can also replace all operations with the relations representing their
graphs. This will not violate the property of being a Πc

2-class, but it will make the notion of
“effective density” easier to define.

Definition 8.2.17. Computable structures are effectively dense in a class K if there is a uniformly
computable collection of structures pXiqiPN in K such that an arbitrarily large finite substructure
of A P K can be extended to some structure from the list.

All classes listed in Proposition 7.1.1 have this property, but this is not true for the ad-hoc
classes described in Exercise 8.2.16.

Theorem 8.2.18. Suppose K1 and K2 are Πc
2-classes of algebraic structures in which further-

more computable structures are effectively dense. Then K1 ďFF K2 implies Kc1 ďEFF Kc2,
i.e., the FF -reduction can be witnessed by a Turing functional that is guaranteed to work on
computable members of the classes.

Proof of Theorem 8.2.18. In Exercise 2.4.34 we saw that K can be associated with CpKq Ď ωω so
that computable structures are in a natural effective 1-1 correspondence with the computable points
of this set. Computable structures are effectively dense in K if there is a uniformly computable
sequence of structures in K so that the corresponding points are dense in CpKq.

Recall that in Exercise 4.2.88 we defined a subset of a computable Polish space to be effectively
Gδ if it is an intersection of uniformly effectively open sets. The reader should convince themselves
that all classes K from Proposition 7.1.1 correspond to effectively Gδ subsets CpKq of ωω. In
Exercise 10.1.67(1) we will see that, for any Πc

2-class K, CpKq Ď ωω is effectively Gδ. This is the
only step when we need infinitary logic.

As we mentioned earlier, computable structures in K are in a uniform 1-1 correspondence with
computable points in CpKq. (More generally, every computable structure in the language of K can
be uniformly effectively associated with its code in ωω.) By Exercise 4.2.88, CpK1q and CpK2q

admit computable complete metrics. Together with the respective dense sequences of computable

323

(codes of) structures, CpK1q and CpK2q are computable Polish. Furthermore, we can uniformly
effectively pass between computable points in the original metric on ωω and the new complete
metric in CpKiq (i “ 1, 2), provided that the points lie in CpKiq.

Recall that in Chapter 2 we proved Kreisel-Lacombe-Shoenfield-Markov Theorem 2.3.7 which
says that every Markov (Type I) computable real function is Borel computable. That is, every
Markov computable function is realised by a Turing functional that is guaranteed to work cor-
rectly when the inputs are computable reals. In Exercise 2.4.35 (Ceitin [82]) we saw that this
result also holds for computable Polish spaces too via a relatively straightforward generalisation of
Theorem 2.3.7.

A reduction K1 ďFF K2 induces a Markov computable function from CpK1q to CpK2q. By
Exercise 2.4.35, there is a computable functional that works on computable members of CpK1q to
CpK2q. This functional can be uniformly turned into a functional witnessing Kc1 ďEFF Kc2.

We remark that the effective density of computable structures in K2 can be dropped. Perhaps,
the result can be extended to cover classes of separable structures as well. Indeed, we suspect that
an even more general result holds, but we shall be satisfied with Theorem 8.2.18 as stated and leave
it at that.

The FF -completeness of trees and torsion abelian groups

Similarly to what we had with EFF -completeness, any FF -complete class will have its isomorphism
problem Σ1

1-hard. However, the FF -completeness of K should not be confused with the usual Σ1
1-

completeness for the isomorphism problem for K. Thus, the theorem below is not an elementary
consequence of Theorem 8.1.5.

Theorem 8.2.19 (Fokina et al. [171]). The class of computable trees is FF -complete.

Before we prove the theorem, we briefly review some definitions introduced earlier in §8.1.2.
Our trees are isomorphic to subtrees of ωăω. Let S, T Ď ωăω be trees. Recall that we define the
tree S ˚ T to consist of ordered pairs pa, τq, where a P S and τ P T . The successors of pσ, τq are the
pairs pσ1, τ 1q, where σ1 is a successor of σ in S, and τ 1 is a successor of τ in T . We also write trpxq
for the tree rank of a node x in T , and trpT q for the tree rank of the root of T .

Proof of Theorem 8.2.19. We follow [171] closely. We will need a technical notion first introduced
in [171].

Definition 8.2.20. A computable subtree T of ωăω is rank-saturated provided that for all x in T :

1. If trpxq is an ordinal α, then for all β ă α, x has infinitely many successors z such that
trpzq “ β;

2. If trpxq “ 8, then for all computable β, x has infinitely many successors z such that trpzq “ β
and x has infinitely many successors z with trpzq “ 8.

The lemma below resembles Lemma 8.1.17.

Lemma 8.2.21. There is a computable rank-saturated tree T8 such that trpT8q “ 8.

324

Proof. In §8.1.2 we saw that there exists a computable linear order of order type ωCK1 p1`ηq, the Har-
rison order H. We let T8 be the set of finite sequences ppα0, k0q, . . . , pαn, knqq, where α0 ą ¨ ¨ ¨ ą αn
in H and k0, . . . , kn P N. If αi corresponds to an ordinal α in ωCK1 , then trppα0, k0q, . . . , pαi, kiqq “ α,
and if αi lies in the non-well-ordered part of H, then trppα0, k0q, . . . , pαi, kiqq “ 8.

Proposition 8.2.22. If T is a computable tree, then T ˚ T8 is a computable rank-saturated tree
and trpT q “ trpT ˚ T8q.

Proof. The tree rank of T ˚ T8 is clearly the same as the tree rank of T . For x P T ˚ T8 of rank α
and β ă α, we show that x has infinitely many successors of rank β. Say x “ pσ, τq. Since trpτq ě α
and because T8 is rank-saturated, τ has infinitely many successors τ 1 of rank β. Also, trpσq ě α,
so σ has a successor σ1 of rank at least β. Then for all such pairs pσ1, τ 1q, trpσ1, τ 1q “ β.

We remark that, if E is a Σ1
1-equivalence relation on a hyperarithmetical domain X, then we

can always consider a new Σ1
1 equivalence relation E1 in which all elements in ωzX are declared to

be in one new equivalence class. If we can FF -reduce E to some other relation K, then the same
reduction will work for E as well, by restriction.

We return to the proof of Theorem 8.2.19. Let E be a Σ1
1 equivalence relation on ω. To prove

that E is FF-reducible to the isomorphism relation on computable trees, we will build a computable
sequence of computable trees pTnqnPN such that for every m,n P N,

mE n if and only if Tm – Tn.

The lemma below will in fact be more useful in the sequel than the theorem itself.

Lemma 8.2.23. There is a computable sequence of trees pT˚m,nqn,mPN with the following properties:

1. if mE n, then T˚m,n – T8, where T8 is the rank-saturated tree with an infinite path;

2. if mE n, then T˚m,n – Tα, where Tα is the rank-saturated tree of tree-rank α for a computable
ordinal α such that for all m1 P rmsE and n1 P rnsE, the relation m1E n1 is witnessed by α.

Proof. By Proposition 8.2.22, there exists a uniformly computable sequence of trees tTm,num,nPN
such that mE n iff Tm,n is well-founded. We say that mE n is witnessed by α iff Tm,n has
tree-rank less than α. For every m,n P N, construct a new tree T 1m,n in the following way. Let
σ0, σ1, . . . be an enumeration of all finite sequences of natural numbers. Suppose σs “ pσ0, . . . , σkq.
Then, under the s-th node on level 1 (i.e., under the element of the form psq, s P N) of T 1m,n, we
put the tree Ps “ Tm,σ0

˚ Tσ0,σ1
˚ ¨ ¨ ¨ ˚ Tσk,n, identifying the top node of Ps with s. Then

trpT 1m,nq “ supttrpPsq ` 1 | s P Nu.

If mE n, then Tm,n has an infinite path, i.e., trpTm,nq “ 8. Thus, trpT 1m,nq “ 8. If mE n,
then for every σ “ pσ0, . . . , σkq, trpTm,σ0

˚ ¨ ¨ ¨ ˚ Tσk,nq is a computable ordinal. Indeed, fix m,n P N
such that mE n. For every finite sequence σ, consider the corresponding tree Ps “ Tm,σ0 ˚

Tσ0,σ1 ˚ ¨ ¨ ¨ ˚Tσk,n. Consider the function f from the set of finite sequences into WF (the indices of
well-founded trees) such that fpsq is the index of Ps. The function f is hyperarithmetical, and its
domain is computable. By Fact 8.1.20, there is a computable bound on the range of f . Therefore,
T 1m,n has rank α for some computable α. Note that for all m1 P rmsE and n1 P rnsE , we get the
same bound α. Let T˚m,n “ T 1m,n ˚ T

8. By Proposition 8.2.22, the tree T˚m,n is a computable
rank-saturated tree, trpT˚m,nq “ trpT 1m,nq; this is also uniform.

325

Now we build the desired sequence pTnqnPN. Take the tree T consisting exactly of the sequences
pm,m, . . . ,mq of length i ď m for m P N. Now fix n and for every m, attach T˚m,n to the m-th leaf
of T . The resulting tree is Tn. The sequence pTnqnPN witnesses the reducibility: mE n iff Tm – Tn.

Indeed, suppose mE n. For every k P rmsE “ rnsE ,

trpT 1k,mq “ trpT 1k,nq “ 8,

thus
T˚m,k – T˚n,k – T8.

For every k R rmsE ,
trpT˚k,mq “ trpT˚k,nq “ α,

and therefore
T˚m,k – T˚n,k – Tα.

We conclude that Tm – Tn.
Suppose now that mE n. Then T˚m,m – T8, while T˚n,n – Tα for some computable α. Thus,

Tm fl Tn.

The proof of Theorem 8.2.19 implies the following:

Corollary 8.2.24 (Fokina et al. [171]). The class of computable torsion abelian groups if FF -
complete.

The proof uses the technique of p-basic trees that will be explained in the next chapter; see
Exercise 9.3.62 for an extended hint.

Friedman and Stanley [184] showed that there is no Borel embedding of the class of countable
undirected graphs into the class of torsion abelian groups. (We cite [197] for a thorough explana-
tion.) If there existed a Turing computable embedding taking graphs to torsion abelian groups,
then this would be a Borel embedding. Combined with Corollary 8.2.24, this gives the following,
somewhat unexpected:

Theorem 8.2.25 ([171, 169]). The class of torsion abelian groups is FF -complete but not
effectively complete.

The theorem above contrasts with Exercise 8.2.31 and the theorems establishing effective com-
pleteness contained in §8.2.2 and §8.2.3. Also, it appears that the proof in [79] can be effectivised
to illustrate the effective completeness (thus, FF -completeness) of Boolean algebras. In Theo-
rem 8.3.10 we will prove that the class of computable torsion-free abelian groups is FF -complete.
However, the proof contained in [426] appears to be effective, thus giving the EFF -completeness
of this class as well.

326

Exercises

Exercise˝ 8.2.26 (Folklore; e.g., [166]). Show that structures with two unary function symbols
are effectively complete with respect to degree spectra and computable dimension.

Exercise˝ 8.2.27 (Folklore; e.g., [123]). Show that structures in the language of one function with
two arguments are effectively complete with respect to degree spectra and computable dimension.

Exercise˝ 8.2.28. Based on the material of [257], complete the proofs of Theorems 8.2.12 and
8.2.14.

Exercise 8.2.29 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). Prove that partial orderings
are effectively complete, and indeed are complete with respect to degree spectra and effective
dimension.

Exercise˚ 8.2.30 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). Same as above, but for
lattices.

Exercise˚ 8.2.31 (Fokina et al. [171], based on Friedman and Stanley [184]). Show that linear
orders form an effectively complete (EFF -complete) class.

Exercise˚ 8.2.32 (Essentially Friedman and Stanley [184]). Show that fields of characteristic zero
form an effectively complete class. (Hint: Let F# be the algebraic closure of Qpvi : i P Nq, where
all vi are algebraically independent. Given an undirected, irreflexive graph G upon vertices vi, let
F pGq be the smallest subfield of F# that contains the algebraic closures of Qpviq for all i P N and
the elements

?
vi ` vj for each pvi, vjq P EpGq. Use the transformation G ÞÑ F pGq.)

Exercise˚˚ 8.2.33 (Kogabaev [309]). Show that the class of (pappian) projective planes are effec-
tively complete with respect to degree spectra and computable dimension. (We omit the definitions.)

327

8.3 Torsion-free abelian groups and their connected duals

In this section we prove Theorem D that states that the homeomorphism problem for connected
compact spaces is Σ1

1-complete. Following the main pattern of the book, this is achieved by reducing
the problem to a similar problem about discrete groups.

8.3.1 The isomorphism problem for torsion-free abelian groups

Whilst the class of completely decomposable torsion-free abelian groups is relatively well-behaved,
the class of all torsion-free abelian groups is unclassifiable.

Theorem 8.3.1 (Downey and Montalbán [146]). The isomorphism problem for computable
torsion-free abelian groups is Σ1

1-complete.

Proof of Theorem 8.3.1. We follow [146] closely. By Theorem 8.1.31 and Remark 8.1.32, it is suffi-
cient to prove the following

Proposition 8.3.2 (Downey and Montalbán [146]). There is a computable operator G, that assigns
to each tree T a torsion-free abelian group GpT q, in a way that

1. if T0 – T1, then GpT0q – GpT1q,

2. if T0 is well-founded and T1 is not, then GpT0q fl GpT1q.

We start by defining the operator G. Let T be a tree. Let QT the group whose elements are
formal sums

ÿ

σPV

qσσ,

where V is a finite subset of T , qσ P Q and addition is computed componentwise. Note that if T
is infinite, then QT is isomorphic to

À

iPN Q. GpT q will be a subgroup of QT . We think of T as a
subset of QT . Let P “ tp0, p1, ...u be the set of prime numbers, listed in increasing order. GpT q is
defined so that σ P T can be divided by all the powers of p2|σ|, and if |σ| ą 0, then σ´ ` σ can be
divided by all the powers p2|σ|´1, where σ´ is σ with its last element removed, i.e. σ´ “ σ æ |σ|´1,
where σ æ n denotes the restriction of σ to its prefix of length n. In other words, GpT q is the
subgroup of QT generated under addition by

t
1

pk2|σ|
σ : σ P T, k P Nu Y t

1

pk2|σ|´1

pσ´ ` σq : σ P T, |σ| ą 0, k P Nu.

Remark 8.3.3. For the reader familiar with Hjorth [261], we note that GpT q is the group eplag
corresponding to the prime labeled graph pV,E, fq, where V “ T , E “ tpσ´, σq : σ P T u, fpσq “
p2|σ|, and fppσ´, σqq “ p2|σ|´1.

Note that the isomorphism type of GpT q only depends on the isomorphism type of the tree T .
This gives part (1) of Proposition 8.3.2. The second part follows immediately from the following
lemma.

328

Lemma 8.3.4. A tree T is non-well-founded iff in the group GpT q there exists an infinite sequence
g0, g1, ... of elements such that for each i, gi is divisible by all the powers of p2i and gi ` gi`1 is
divisible by all the powers of p2i`1.

Before we prove this lemma, we need to prove some basic properties of GpT q. As before, for a
set of prime numbers P , we use QpP q to denote the set of rational numbers whose denominators
are products of powers of primes in P . For a finite set of primes tpi0 , . . . , piku, we write Qppi0 ,...,pik q
instead of Qptpi0 ,...,pik uq. Note that QpHq “ Z. If P and R are sets of prime numbers then

QpP q XQpRq “ QpPXRq and QpP q `QpRq “ QpPYRq.

Lemma 8.3.5. Let h “
ř

σPV rσσ P GpT q where V Ď T and each rσ ‰ 0. If h is divisible by all
the powers of p2n, then |σ| “ n for every σ P V .

Proof. Multiply h by some integer and divide it by some power of p2n, and obtain g “
ř

σPV qσσ P

GpT q so that all the coefficients qσ are of the form
mσ

piσ2n
for mσ P Z, iσ P Z`, and p2n ­ |mσ. In other

words, all the coefficients of g P GpT q are in Qpp2nqzZ. By the definition of GpT q, every element of
GpT q can be written as follows:

g “
ÿ

τPW

aττ `
ÿ

pτ´,τqPU

bτ pτ
´ ` τq,

where W Ď T , U Ď tpτ´, τq : τ P T ztHuu, aτ P Qpp2|τ|q, and bτ P Qpp2|τ|´1q. Consider now σ P V ;
we want to show that |σ| “ n. We have that qσ is equal to the coefficient of σ in the sum above.
This coefficient is

aσ `

¨

˝

ÿ

pσ,τqPU

bτ

˛

‚` bσ,

where aσ and bσ might be 0. On the one hand we have that qσ P Qpp2nqzZ. On the other
hand, the coefficient above belongs to Qpp2|σ|´1,p2|σ|,p2|σ|`1q. If p2n ‰ p2|σ|, then pQpp2nqzZq X
Qpp2|σ|´1,p2|σ|,p2|σ|`1q “ H. Therefore p2n “ p2|σ| and |σ| “ n as wanted.

Lemma 8.3.6. Let h “
ř

σPV rσσ P GpT q where V Ď T and each rσ ‰ 0. If h is divisible by all
the powers p2n`1, then, for every σ P V with |σ| “ n, there exists τ P V with σ “ τ´

Proof. As in the proof of the previous lemma, multiplying h by the right scalar, we obtain g “
ř

σPV qσσ P GpT q all of whose coefficients are in Qpp2n`1qzZ. Again, since g P GpT q, we get that

g “
ÿ

τPW

aττ `
ÿ

pτ´,τqPU

bτ pτ
´ ` τq,

where W Ď T , U Ă tpτ´, τq : τ P T ztHuu, aτ P Qpp2|τ|q, and bτ P Qpp2|τ|´1q. Consider now σ P V
with |σ| “ n. We have that qσ is equal to the coefficient of σ in the sum above. This coefficient is

aσ `

¨

˝

ÿ

pσ,τqPU

bτ

˛

‚` bσ,

329

where aσ and bσ might be 0. So, we have that qσ P Qpp2n`1qzZ and that the coefficient above
belongs to Qpp2n´1,p2n,p2n`1q. Therefore, the middle term,

ř

pσ,τqPU bτ has to be in Qpp2n`1qzZ:

Because otherwise the coefficient above would belong to Qpp2n´1,p2nq, which has empty intersection
with Qpp2n`1qzZ. So, there exists some τ P T with pσ, τq P U and bτ P Qpp2n`1qzZ. Pick one such τ .
Note that σ “ τ´. We claim that τ P V . Let us look at the coefficient of τ in g (which we want to
show is not 0):

aτ `
ÿ

pτ,δqPU

bδ ` bτ .

The first two terms in this sum are in Qpp2n`2,p2n`3q, and the third one is in Qpp2n`1qzZ. Therefore
this coefficient is not 0, and τ P V .

Proof of Lemma 8.3.4. If T is not well-founded and X is an infinite path through T , then tgi “
X æ i : i P Nu Ď T Ď GpT q is a sequence in GpT q as wanted.

Suppose now that tgi : i P ωu is a sequence as in Lemma 8.3.4. Since gi is divisible by all the
powers of p2i, by Lemma 8.3.5, we get that gi “

ř

σPVi
qσσ, where Vi is a finite subset of T Xωi, and

qσ ‰ 0. Since gi ` gi`1 “
ř

σPViXVi`1
qσσ is divisible by all the powers of p2i`1, then, by Lemma

8.3.6 we get that for every σ P Vi, there exists τ P Vi`1 extending σ. Therefore, by induction we
can choose a sequence σi P Vi, for i P N, such that σi Ă σi`1. Hence T is not well-founded.

The proof of Theorem 8.3.1 is complete.

The proof above shows that there is a computable group such that the set of indices of com-
putable groups which are isomorphic to it is Σ1

1-complete. We state one more corollary. Let
T0 “ t0

n : n P Nu where 0n is the string with n many zeros x0, 0, ..., 0y. Let G0 “ GpT0q. From the
proof above we, we see that a tree T has an infinite path in and only if G0 embeds in GpT q. Thus,
we obtain

Corollary 8.3.7. The index set

ti : Gi is torsion-free abelian and G0 embeds in Giu

is Σ1
1 complete.

8.3.2 Comparing integral homology and Čech cohomology

We remark that the Downey-Montalbán Theorem has applications to finitely presented groups.
Baumslag, Dyer and Miller [31] proved that the c.e. presented groups are exactly the groups that
appear in integral homology sequences of finitely presented groups. (We omit the complex defi-
nition.) Moreover, they proved that given any sequence A1, A2, . . . , of uniformly c.e. presented
torsion-free abelian groups, where the first two are finitely generated, there exists a finitely pre-
sented group G whose integral homology is the given sequence. They also proved a similar result
when the groups A1, A2, . . . are all computably presented. Baumslag, Dyer and Miller [31] left
open whether c.e. presented torsion-free abelian groups always admit a computable presentation;
this was settled by Khisamiev, see Theorem 5.1.41 which also appeared as Theorem A(3) in Part 1.

Observing that the construction in [31] of G from the sequence A1, A2, . . . , is effective, at least
in the case when all Ai are 0 except for one, we get the following corollaries of Theorem 8.3.1.

330

Corollary 8.3.8 ([146],[184]). Deciding whether two finitely presented groups have the same ho-
mology sequence is Σ1

1-complete in general. Indeed, this is already true for the 3rd homology group
in the sequence.

There are many other results in the literature saying that some properties about finitely pre-
sented groups cannot be decided computably. For example, Lempp [334] showed that, for a finitely
presented group, being torsion-free is Π0

2-complete. See Miller [390] for a survey on decision prob-
lems for finitely presented groups. However, as far as we know, the only such property in the
literature that would not be arithmetical is presented in Corollary 8.3.8 above. Note that decid-
ing whether two finitely generated groups are isomorphic is merely Σ0

3. The stark contrast with
Σ1

1-completeness in Corollary 8.3.8 perhaps partially explains why homological methods are not
particularly easy to apply to finitely presented groups.

Recall that the isomorphism problem for computably compact spaces is Σ1
1, and we have just

showed it is Σ1
1-complete.

Corollary 8.3.9. Deciding whether the first Čech cohomology groups of given computably compact
spaces are isomorphic is Σ1

1-complete in general.

Proof. The Čech cohomology groups are uniformly c.e. presented by Theorem 5.2.21 that. Thus, the
upper bound is indeed Σ1

1. To establish the Σ1
1-completeness, use Theorem 5.2.1 to turn the groups

witnessing Theorem 8.3.1 into connected compact spaces whose first Čech cohomology groups are
isomorphic to the respective discrete groups in the sequence, by Theorem 5.2.24.

While the Čech cohomology groups are certainly not the most straightforward invariants of a
space, they are still quite useful in some situations. The corollary above might partially explain
why this invariant is a balanced combination of complexity and utility.

8.3.3 The FF -completeness of torsion-free abelian groups

In this subsection, we prove the following stronger result, which implies Theorem 8.3.1 but is harder
to prove. Recall Definition 8.2.15 which gives the natural Type I analogue of effective completeness.

Theorem 8.3.10 (Fokina et al. [171]). The class of computable torsion-free abelian groups is
FF -complete among Σ1

1-equivalence relations.

Theorem 8.3.10 predates (but of course does not imply) the recent result establishing the Borel
completeness of this class of groups [426]. We remark that the proof contained in [426] appears to
give the EFF -completeness of the class, thus implying Theorem 8.3.10 below. However, the class
of torsion-free abelian groups is not effectively complete with respect to computable dimension;
this follows from Corollary 10.3.25 and Theorem 10.3.3. It is not known whether it is effectively
complete with respect to degree spectra.

331

Proof of Theorem 8.3.10

We shall need a class of trees slightly more general than the class of rank-saturated trees (Defini-
tion 8.2.20).

Definition 8.3.11 (Calvert, Knight, and Millar [78]). A tree T Ď ωăω is rank-homogeneous pro-
vided that for all x at level n,

1. if trpxq is an ordinal, then for all y at level n ` 1 such that trpyq ă trpxq, x has infinitely
many successors z such that trpzq “ trpyq,

2. if trpxq “ 8, then for all y at level n ` 1, x has infinitely many successors z such that
trpzq “ trpyq.

It is not hard to see that every rank-saturated tree is rank-homogeneous. For a rank-homogeneous
tree T , let RpT q be the set of pairs pn, αq such that there is an element at level n of tree rank α
(where α is an ordinal, not 8). Note that the top node in T has rank 8 just in case RpT q has no
pair of the form p0, αq. Also note if T has a node of rank 8, then the top node must have rank 8,
and if the top node has rank 8, then there are nodes of rank 8 at all levels. Thus, from the set of
pairs RpT q in which the second components are ordinals, we can deduce all of the information that
would be given if we included pairs with second component 8.

Proposition 8.3.12. Suppose T, T 1 are rank-homogeneous trees. Then T – T 1 iff RpT q “ RpT 1q.

Proof. Clearly, if T – T 1, then RpT q “ RpT 1q. Suppose RpT q “ RpT 1q. To see that there is an
isomorphism, we show that the set of finite partial rank-preserving isomorphisms between subtrees
of T and T 1 has the back-and-forth property. The subtrees must be closed under predecessor in
the large trees, and the finite partial isomorphisms must preserve all ranks, both ordinals and 8.
Given a finite subtree of one of the large trees, we can reach any further node by a finite sequence of
steps in which the node being added is a successor of one already included. Therefore, it is enough
to prove the following.

Claim: Let p be a rank-preserving isomorphism from the finite subtree τ of T onto the finite
subtree τ 1 of T 1, and let a P T ´ τ be a successor of b P τ . Suppose b1 “ ppbq. Then there exists a1,
a successor of b1 in T 1, not already in ranppq, such that a1 and a have the same rank.

The rank of ppbq is the same as that of b. If a has rank 8, then b and b1 also have rank 8, and
b1 has infinitely many successors of rank 8. If a has ordinal rank α, then b and b1 have rank either
8 or some β ą α. In either case, b1 has infinitely many successors of rank α. We choose a1 to be a
successor of b1, of the proper rank, not already in ranppq.

Let T ÞÑ GpT q be the transformation defined in Proposition 8.3.2. In view of Theorem 8.2.19,
we claim that to establish Theorem 8.3.10 it is sufficient to prove the following:

Theorem 8.3.13 (Fokina et al. [169]). For every two rank-homogeneous trees T and T 1, the groups
GpT q and GpT 1q are isomorphic if, and only if, T – T 1.

We first explain how to derive Theorem 8.3.10 from Theorem 8.3.13, and then we prove Theo-
rem 8.3.13. Given a Σ1

1 equivalence relation E for every n P N, take the sequence of rank-saturated

332

trees pT˚m,nqm,nPN as in Lemma 8.2.23. We explain how to pass effectively from the sequence to a
group Gn such that Gn – Gn1 iff for all m, T˚m,n – T˚m,n1 .

Let ppm,kqkPN be uniformly computable lists of distinct primes. For each m, consider Gm,n “
GpTm,nq, but in the transformation we will be using the list of primes ppm,kqkPN (instead of just
ppkqkPN as defined in Proposition 8.3.2). By Theorem 8.3.13, we will haveGm,n – Gm1,n1 if and only if T˚m,n –
T˚m1,n1 . Let

Gn “
à

m

Gm,n.

Since the sequences of primes are disjoint, we have Gn – Gn1 iff for all m, Gm,n – Gm,n1 .

Proof of Theorem 8.3.13. We adopt the version of the proof that can be found in [367], with only
minor further adjustments. Fix a tree T and the group GpT q. We do not distinguish between
elements of the tree T and the corresponding elements of GpT q, which we call vertex elements. We
also identify the empty set H with the empty string λ, which is the root of T .

The following is taken from Hjorth [261] (Propositions 2.2 and 2.5).

Proposition 8.3.14. Let ϕ be a homomorphism from GpT q to Q such that ϕpvq “ 1 for v P Tn
and ϕpvq “ ´1 for v P Tn`1. Let h “

ř

vPV cvv `
ř

uPU auu, where V Ď Tn and U Ď Tn`1. If
pp2n`1q

8|h, then ϕphq “ 0. Moreover, for each v P V , if hv “ cvv `
ř

uPUv
auu, then pp2n`1q

8|hv,
and ϕphvq “ 0 (here Uv Ď U contains all successors of v in U).

Using Proposition 8.3.14, we obtain:

Lemma 8.3.15.

1. Suppose h “ aHH`
ř

uPU auu, where U Ď T1. If pp1q
8|h, then

aH “
ř

uPU au.

2. Suppose h “
ř

vPV avv`
ř

uPU buu, where U Ď Tn`1, and V is the set of predecessors of these
elements. For v P V , let Uv be the set of successors of v. If pp2n`1q

8|h, then for each v P V ,
av “

ř

uPUv
bu.

Proof. For 1, we consider a homomorphism ϕ taking H to 1 and taking elements at level 1 to ´1.
We have ϕphq “ 0 “ aH ´

ř

uPU au. By Proposition 8.3.14, aH “
ř

uPU au. For 2, we consider a
homomorphism ϕ taking all elements of V to 1 and all elements of U to ´1. By Proposition 8.3.14,
for each v P V , ϕpavv `

ř

uPUv
buq “ 0 “ av ´

ř

uPUv
bu. Therefore, av “

ř

uPUv
bu.

Note that in Lemma 8.3.15, in Case 1, we may have aH “ 0 and
ř

uPU au “ 0, and in Case 2,
we may have av “ 0, and

ř

uPUv
bu “ 0. We need a refinement of Lemma 8.3.5.

Lemma 8.3.16. Suppose pp2nq
8|h.

1. If n ą 0, then h can be expressed in the form
ř

vPV rvv, where V Ď Tn and rv is in
Qptp2n,p2n´1uq.

2. If n “ 0, then h has the form rH, where r P Qptp0uq.

333

Proof. We consider the two cases separately.

Case 1: Suppose n ą 0. By Lemma 8.3.5, h can be expressed in the form
ř

vPV rvv, where V Ď Tn,
and rv P Q. Just because h P GpT q, we have h “

ř

uPU auu `
ř

uPW bupu ` u´q, where if u P Tk,
then au P Qptp2kuq, and bu P Qptp2k´1uq. For u at level k ­“ n, the coefficient of u in the expression
for h must be 0. This coefficient has the form au ` p

ř

w´“u bwq ` bu.

Claim: For all k ą n, for u at level k (appearing in our decomposition), au and bu are integers.

Proof of Claim. We work our way back from the largest k ą n with some u at level k that appears.
For the greatest k, if u is at level k, and u appears, then no successor of u appears. We have
0 “ au ` bu, where au P Qptp2kuq and bu P Qptp2k´1uq. Then both au and bu must be integers.
Supposing that the claim holds for k1 ą k, where k ą n, let u be an element at level k that appears.
We have 0 “ au ` p

ř

w´“u bwq ` bu, where au P Qptp2k´1uq, bu P Qptp2k´1uq, and
ř

w´“u bw P Z.
Again au and bu must be integers.

Using the Claim, we can complete the proof for Case 1. For v at level n, the coefficient is
rv “ av ` p

ř

w´“v bwq ` bv, where
ř

w´“v bw P Z, av P Qptp2nuq and bv P Qptp2n´1uq. Therefore,
rv P Qptp2n,p2n´1uq.

Case 2: Suppose n “ 0. Then the only possible v is H, so h “ rH. Since there is no H´, we have
r “ aH`

ř

w´“H bw. By the argument above,
ř

w´“H bw P Z. Since aH is in Qptp0uq, r is also.

A node in Tn has the feature that there is a successor chain of length n leading from H to it.
We try to describe this in the group GpT q. We define first the pseudo-vertex-like elements at level
n, and then the vertex-like elements at level n. We start with the definition of pseudo-successor:

Definition 8.3.17 (pseudo-successor). Suppose nonzero h and g are so that p82n|g and p82n`2|h, for
some n ě 0. We say that h is a pseudo-successor of g if pp2n`1q

8|pg ` hq.

Lemma 8.3.18. There is an algebraic property Θpxq such that for all T P RHT with T1 ­“ H,
Θpxq is satisfied just by H and ´H. (Indeed, Θpxq a computable infinitary formula in the language
of additive groups; computable infinitary formulae will to be defined in Chapter 10.)

Proof. We let Θpxq say the following:

1. pp0q
8|x,

2. for primes q ­“ p0, q ­ |x,

3. x has a pseudo-successor,

4.
1

p0
x has no pseudo-successor.

It is not difficult to see that H and ´H satisfy Θpxq. We must show that other elements do
not. If x satisfies Condition 1, we can apply Part 2 of Lemma 8.3.16, to see that x has the form

rH, where r P Qptp0uq. Then r has the form
z

pp0q
m

, where z P Z. Condition 2 implies that z is

not divisible by any primes other than p0. Therefore, x has the form ˘pkH. Condition 3 says
that x has a successor. Using this, we show that k ě 0. Take y such that pp2q

8|y. By Part 1

334

of Lemma 8.3.16, y “
ř

vPV svv, where V Ď T1 and sv P Qptp2,p1uq. If pp1q
8|px ` yq, then by

Lemma 8.3.15, ˘pp0q
k “

ř

vPV sv. This implies that the right-hand side is an integer, and then
the left-hand side is as well. Therefore, x “ ˘pk0 , where k ě 0. Finally, we show that if x satisfies

Condition 4, then k cannot be positive. If k ą 0, then
1

p0
x “ pk´1

0 H. This satisfies Conditions 1

and 2. Moreover, if v P T1, then pk´1
0 v is a successor of 1

p0
x, contradicting Condition 4. Therefore,

x must have the form ˘H.

Definition 8.3.19 (pseudo-vertex-like). An element h P GpT q is pseudo-vertex-like, or p.v.l., at
level n, if one of the following holds:

1. n “ 0 and Θpxq holds, or

2. n ą 0 and

(a) p82n|h,

(b) there exists a sequence g0, g1, . . . , gn “ h, such that g0 satisfies condition Θpxq from
Lemma 8.3.18, and for all i ă n, we have p82i|gi and p82i`1|pgi ` gi`1q.

It is easy to see that all vertex elements are pseudo-vertex-like.

We define rank for p.v.l. elements by analogy with tree rank. We write rkphq for the rank of h
in the group GpT q, and trpvq for the tree rank of v in the tree T .

Definition 8.3.20 (rank). Let h be p.v.l. at level n.

1. rkphq “ 0 if h has no pseudo-successors,

2. for α ą 0, rkphq “ α if all pseudo-successors of h have ordinal rank, and α is the least ordinal
greater than these ranks,

3. rkphq “ 8 if h does not have ordinal rank.

We note that rkphq “ 8 iff there is an infinite sequence pgiqiPω such that each gi is p.v.l., g0 “ h
and gi`1 is a pseudo-successor of gi.

Lemma 8.3.21. Suppose h is p.v.l at level n, expressed in the form
ř

vPV rvv, where V is a finite
subset of Tn and rv ­“ 0. Then for all v, trpvq ě rkphq.

Proof. We show by induction on α that if rkphq ą α, then for all v P V , trpvq ­“ α. (We allow
the possibility that rkphq “ 8.) Let rkphq ą 0. Let g be a p.v.l. pseudo-successor for h. Then
pp2n`1q

8|ph` gq. Say g “
ř

uPU suu, where U is a set of vertex elements at level n` 1 and su ­“ 0.
By Lemma 8.3.6, for each v P V , there is some u P U such that u is a successor of v. Therefore,
trpvq ­“ 0.

Consider α ą 0, where the statement holds for β ă α. Suppose rkphq ą α. Let g be a p.v.l.
pseudo-successor of h such that rkpgq ě α. Say g “

ř

uPU suu, where U is a set of vertex elements
at level n` 1 and su ­“ 0. By the Induction Hypothesis, trpuq ­“ β for any β ă α, so trpuq ě α. By
Lemma 8.3.6, some u P U is a successor of v. Then trpvq ­“ α. Finally, we show that if rkphq “ 8,
then for all v P V , trpvq “ 8. There must be an infinite sequence of p.v.l. elements pgkqkPN such
that g0 “ h and gk`1 is a pseudo-successor of gk. We have gk “

ř

uPUk
suu, where Uk is a set of

335

vertex elements at level n ` k, and su ­“ 0. For each element of Uk, there is a successor in Uk`1.
We obtain a chain of successors, starting with v “ v0 P U0, and choosing vk`1 a successor of vk in
Uk`1. Therefore, trpvq “ 8.

It is again helpful to consider an example.

Example: Let v P T1 and let u and u1 be successors of v in T2. Suppose that both u and u1

have successors in T3. Let g “
1

p4
u `

p4 ´ 1

p4
u1. Since p84 |u, u

1, we have p84 |g. Since p4pv ` gq “

pv` uq ` pp4 ´ 1qpv` u1q, we see that p83 |pv` gq. Therefore, g is p.v.l. and it is a pseudo-successor
of v. We can show that g has no pseudo-successor, even though we have expressed it in terms of
u and u1, both of which have successors in T3. Suppose that h is its a pseudo-successor at level 3.
Then h “

ř

wPW rww, where W Ď T3 and rw P Q. By Lemma 8.3.16, we must have rw P Qpp6,p5q.
We must have p85 |pg ` hq. By Lemma 8.3.15, if Wu,Wu1 are, respectively, the sets of successors of

u, u1 in W , then
ř

wPWu
rw “

1

p4
, and

ř

wPWu1
rw “

p4 ´ 1

p4
. This is a contradiction.

We strengthen the definition of p.v.l. element in order to rule out examples like the one above,
in which g has no successor, but it has a decomposition in terms of elements all having successors.

Definition 8.3.22 (vertex-like). Let g P GpT q. We say that g is vertex-like, or v.l., if

1. g is p.v.l. at some level n, and

2. either

(a) rkpgq ą 0, or

(b) rkpgq “ 0 and for any decomposition g “
ř

j rjgj such that all gj are p.v.l. at level n,
there exists j such that rkpgjq “ 0.

Lemma 8.3.23. If v is a vertex element, then it is vertex-like.

Proof. We already noted that a vertex element is p.v.l. Suppose v is at level n, and rkpvq “ 0.
Then v has no successors. We must show that if v “

ř

j rjgj , where each gj is p.v.l. at level n,
then for some j, rkpgiq “ 0. Suppose that for all j, rkpgjq ­“ 0. Say hj is a p.v.l. pseudo-successor
of gj at level n ` 1. By Lemma 8.3.5, each gj has a decomposition in terms of tree elements at
level n. Since v “

ř

j rjgj , v must appear with non-zero coefficient in the decomposition of some
gj . Then by Lemma 8.3.15, the corresponding hj has a decomposition that involves successors of v
with non-zero coefficients. This is a contradiction.

We would like to show that if g is v.l. at level n, expressed in the form
ř

vPV rvv, where V Ď Tn
and rv ­“ 0, then rkpgq is the minimum of trpvq, for v P V .

Lemma 8.3.24. Suppose g is v.l. at level n. Say g “
ř

vPV rvv, where V Ď Tn. Then rkpgq “ 0
iff there exists v P V such that trpvq “ 0.

Proof. First, suppose there exists v P V such that trpvq “ 0. By Lemma 8.3.21, trpvq ě rkpgq, so
rkpgq “ 0. Next, suppose rkpgq “ 0. The elements of V are p.v.l. and one of the decompositions of
g is

ř

vPV rvv. By the definition of vertex-like, there is some v such that rkpvq “ 0. Then v has no
pseudo-successors, so v has no successors in T . Therefore, trpvq “ 0.

336

Lemma 8.3.25. If g is v.l. at level n and rkpgq ą 0, then g has a decomposition
ř

vPV mvv where
all coefficients mv are integers.

Proof. By Lemma 8.3.16, g can be expressed in the form
ř

vPV rvv, where V Ď Tn and rv P
Qptp2n,p2n´1uq. Since rkpgq ą 0, we have a p.v.l. pseudo-successor g1, expressed in the form

ř

uPU suu,
where U Ď Tn`1 and su P Qptp2n`2,p2n`1uq. Consider h “ g ` g1. Since pp2n`1q

8|h, we can apply
Lemma 8.3.15. For each v P V , let Uv be the set of successors of v in U . We have rv “

ř

uPUv
su.

It follows that
ř

uPUv
su and rv are integers.

Suppose g is a v.l. element at level n. Recall that the definition of v.l. has two condidions, with
the second split into two cases. If Condition 2 (a) holds for g, then Lemma 8.3.24 says that g can
be expressed as a sum of vertex elements on level n with integer coefficients. If rkpgq “ 0, then the
decomposition of g involves some terminal vertex element.

Lemma 8.3.26. Let g be v.l. at level n, with a decomposition
ř

vPV rvv, where V Ď Tn and all
coefficients rv are non-zero. Then rkpgq “ minvPV trpvq.

Proof. By Lemma 8.3.21, trpvq ě rkpgq for all v P V . We show by induction on α that if trpvq ě α
for all v P V , then rkpgq ě α. For α “ 0, the statement is trivially true. Suppose α ą 0, where
the statement holds for all β ă α. If g satisfies Condition 2 (b) from the definition of v.l., then by
Lemma 8.3.25, there is some v P V such that trpvq “ 0. Suppose rkpgq “ β, where 0 ă β ă α. For
all v P V , trpvq ą β, so v has a successor uv with trpuvq ě β. By Lemma 8.3.25, we may suppose
that all rv are integers. We have a successor h of g, of the form

ř

vPV rvuv. This h is vertex-like at
level n` 1, and by the Induction Hypothesis, rkphq ě β. Then rkpgq cannot be β after all. Finally,
suppose trpvq “ 8 for all v P V . For each v, there is an infinite successor chain, and we can use
these to form an infinite chain of successors of g, so rkpgq “ 8.

We are ready to finish the proof of the theorem. Recall that for a tree T , RpT q is the set of
pairs pn, αq such that there is some v P T at level n with trpvq “ α. Proposition 8.3.12 says that
for rank-homogeneous trees T, T 1, T – T 1 iff RpT q “ RpT 1q.

Let T, T 1 be rank-homogeneous trees. We show that T – T 1 iff GpT q – GpT 1q. We let RpGpT qq
be the set of pairs pn, αq such that there is a v.l. g P GpT q at level n with rkpgq “ α. We can
show that RpT q “ RpGpT qq. If pn, αq P RpT q, then there is a v P T and a corresponding vertex
element v in GpT q witnessing the rank. By Lemma 8.3.26, the group rank of v is equal to the tree
rank of v. Therefore, pn, αq P RpGpT qq. On the other hand, if pn, αq P RpGpT qq, witnessed by
g “

ř

vPV rvv, then by Lemma 8.3.26, there is some vertex element v P Vn such that trpvq “ α.
Therefore, pn, αq P RpT q. This completes the proof that G : T Ñ GpT q is 1 ´ 1 on isomorphism
types.

As explained earlier, this completes the proof of Theorem 8.3.10.

Exercises

See Exercise 10.1.68-10.1.70 for the Pullback Theorem (which relies on computable infinitary logic)
and its consequences.

Exercise˚ 8.3.27 (Fokina et al. [169]). Show that there is a 1-1 effective transformation taking
rank-homogeneous trees to Boolean algebras. (Hint: The idea is to attempt to code which sequences
σ lie in T and which do not. While the coding won’t be injective, it will preserve enough information

337

about the tree ranks. Let Γn be any computable tree representing Intalgpωn`1 ` η ` 1q. For an
input tree T , let ΓpT q consist of finite strings of the form m0a1m1 . . . anmnσ, where

• xa1, . . . , any P T ,

• mi P N, and

• σ P Γn.

Set BT equal to the Boolean algebra generated by the resulting tree ΓpT q.)

8.3.4 Compact spaces. Proof of Theorem D

Recall that Theorem D states that the homeomorphism problem for connected compact Polish
spaces is Σ1

1-complete.

Proof of Theorem D. Being a connected compact space is arithmetical (Remark 7.1.35), and by
Proposition 8.1.34 the homeomorphism problem for compact spaces is Σ1

1. Theorem 8.3.1 produces
a uniformly computable sequence of pairs of computable torsion-free abelian groups; without loss
of generality, all these groups can be assumed to be non-trivial.

As we explained in Remark 5.2.8, Effective Pontryagin Duality (Theorem 5.2.1) is uniform when
passing from computable torsion-free abelian groups to their computably compact connected duals,
provided that these groups are non-zero. (In fact, Theorem 8.3.1 produces a sequence of groups
with computable bases which are given by the vertex-elements, so we can avoid the use of Dobrica’s
Theorem in this particular application of Theorem 5.2.1.) Since non-isomorphic torsion-free abelian
groups correspond to non-homeomorphic connected compact spaces under the duality, this gives
to the Σ1

1-completeness of the homeomorphism problem for connected compact spaces. Indeed,
it follows that there is a computably compact connected space so that its recognition problem is
Σ1

1-complete.

The proof of Theorem D is finished.

As a consequence of Theorem 8.3.10, Theorem 5.2.1, and Propositions 8.1.34, we actually obtain
a stronger result:

Theorem 8.3.28. The class of computably compact connected spaces is FF -complete among
Σ1

1-equivalence relations.

Another interesting corollary is as follows.

Corollary 8.3.29. The class of computable Banach spaces is FF -complete among Σ1
1-equivalence

relations.

Proof. The upper bound is given by Proposition 8.1.35. The transformation K ÞÑ CpK;Rq in
Theorem 4.2.113 is uniform, injective on isomorphism types, and does not assume that K is totally
disconnected. It remains to apply Theorem 8.3.28.

338

We also note that, combined with Theorem 9.5.7, which will be established in the next chapter,
Corollary 8.2.24 gives FF -completeness for computably compact profinite abelian groups. (The
upper bound is given by Proposition 8.1.36.)

8.3.5 Exercises about degree spectra

The study of degree spectra of structures (Def. 8.3.30) is more related to the material of Part 1 of
the book; e.g., see §3.2.3 and §4.1.7. However, there are tight technical connections between this
topic and the machinery covered in Part 2 of the book so far. We compromise by stating some of
these results as exercises here to inform the reader. For earlier exercises about degree spectra of
structures, and of linear orders in particular, see Exercises 3.2.58-3.2.64.

We slightly adjust the approach taken in Richter [451] and define the degree spectrum of a
countable algebraic structure A as follows.

Definition 8.3.30. The degree spectrum of a countable algebraic structure A is the set of Turing
degrees that compute a presentation of the structure:

DSppAq “ ta : a computes B – Au,

where – stands for algebraic isomorphism.

We shall need another standard definition.

Definition 8.3.31 (Jockusch). If A is a countable structure, α is a computable ordinal, and a ě
0pαq is a Turing degree, then A has αth jump degree a if the set

tdpαq : d P DSppAqu

has a as its least element. In this case, the structure A is said to have αth jump degree. If α “ 0
then we simply say that a is the degree of A. A structure A has proper αth jump degree a if A
has αth jump degree a but not βth jump degree for any β ă α.

Degree spectra of torsion-free abelian groups and their connected duals

The exercises below are not related to the statements of the results established in Section 8.3, but
they are closely technically related to the material of the present section (specifically, to the proofs
of Theorem D and Theorem 8.3.28). Another technically related Exercise 10.1.118 will be presented
later.

Exercise˝ 8.3.32. Formulate the analogs of Definition 8.3.30 and Definition 8.3.31 for Polish
spaces with respect to X-computable Polish presentations, and then with respect to X-computably
compact presentations.

Exercise˝ 8.3.33 (Coles, Downey, and Slaman [97] for n “ 1, Melnikov [365] and independently
Calvert, Harizanov, and Shlapentokh [77] for n ą 1). Every torsion-free abelian group of finite rank
n has first jump degree. Deduce consequences about their connected duals.

Exercise˚˚ 8.3.34 (Andersen, Kach, Melnikov, and Solomon [12], Melnikov [365] for α “ 2, 3,
folklore after Mal’cev for α “ 1). Prove that for every computable ordinal α ě 1 and degree
a ą 0pαq, there is a torsion-free abelian group having proper αth jump degree a.

339

Exercise˚˚ 8.3.35 (Melnikov [371]). Show that for every computable ordinal β of the form δ `
2n` 1 ą 1, where δ is either zero or is a limit ordinal and n P N, there exists a torsion-free abelian
group having an X-computable copy iff X is non-lowβ . (The case when β “ 1 is witnessed by a
completely decomposable group; see Exercise 7.2.50.)

Exercise˝ 8.3.36 (Melnikov [374]). Use the two versions of Effective Pontryagin Duality estab-
lished in §5.2.3 to transform the results stated in the three exercises above into results about Polish
and compact Polish presentations of connected spaces (in the sense of Exercise 8.3.32).

Degree spectra in other standard classes˚

Various exercises about limitiwise monotonic spectra, that have direct consequences about abelian
p-groups and linear orders, can be found in the next chapter; see Exercises 9.1.27 – 9.1.36. See also
Exercise 9.5.13 for degree spectra of profinite groups.

Exercise˚ 8.3.37 (Downey and Knight [134], Ash, Jockusch and Knight [19], Jockusch and
Soare [273], Knight [304]). Prove the following:

1. If a linear order has a degree, it must be 0. If a linear order has first jump degree, it must
be 01 (Richter [450, 451]; this appeared earlier as Exercise 3.2.58).

2. For each computable ordinal α ě 2 and every Turing degree a ě 0pαq, there exists a linear
order having proper αth jump degree a (Def. 8.3.31).

Exercise˚˚ 8.3.38 (Miller [393]). A Turing degree is is hyperimmune if it computes a function
not dominated by any computable function. Show that there is a linear ordering which has a
presentation of every nonzero ∆0

2-degree, yet has no computable copy. Extend this argument to
show that indeed the order has a copy in every hyperimmune degree.

Exercise 8.3.39 (Frolov, Harizanov, Kudinov, Kalimullin, Miller [186]). Show that for every n ą 1
there is a linear ordering having an x-computable copy iff x is non-lown.

Exercise 8.3.40 (Melnikov [368]). Prove that for every n ą 2, there is an ordered abelian group
an x-computable copy iff x is non-lown.

Exercise˚ 8.3.41 (Jockusch and Soare [274]). Prove the following classical result. For n P N, if a
Boolean algebra has nth jump degree, then it is 0pnq. In contrast, for each a ě 0pωq, there exists a
Boolean algebra with proper ωth jump degree a. (By Theorem 4.2.80, the same can be said about
Stone spaces under homeomorphism.)

Exercise˚ 8.3.42 (Oates [419]). Show that for every computable α, there is a torsion abelian group
having a proper αth jump degree. (Hint: The proof exploits the rather well-understood algebra of
countable abelian p-groups that will be presented in Chapter 9; see Section 9.3.).

Exercise˚ 8.3.43 (Kalimullin, Khoussainov, and Melnikov [281]). Show that there is a torsion
abelian group computable in all hyperimmune degrees (Exercise 8.3.38) but which has no com-
putable presentation.

Exercise 8.3.44 (Frolov, Kalimullin and Miller [187]). Show that every algebraic extension of a
prime field (i.e., every algebraic field) has a jump degree, and that every upper cone of Turing
degrees is a degree spectrum of an algebraic field.

340

Exercise˚ 8.3.45 (Marker and Miller [349]). We omit the definition of a deferentially closed filed
and refer the reader to [349].

1. Show that every low differentially closed field has a computable presentation.

2. Let G be a countable symmetric irreflexive graph. Show that there exists a countable differ-
entially closed field KpGq of characteristic 0 such that

DSppKpGqq “ td : d1 P DSppGqu.

In particular, there exists a differentially closed field that has an x-computable copy iff x is
non-low.

Exercise˚ 8.3.46 (Bazhenov, Frolov, Kalimullin, and Melnikov [44]). Show that there exists a
distributive lattice with degree spectrum exactly the non-computable Turing degrees (cf. Exer-
cise 3.2.64).

Exercise 8.3.47 (Dabkowska, Dabkowski, Harizanov, and Sikora [106]). Show that there exist
centerless groups having and not having a Turing degree.

Degree spectra in general˚

Beginning with the results of Slaman and Wehner (Exercise 3.2.64), there has been a line of investi-
gation seeking to find various unexpected and complex degree spectra of structures (in general). Of
course, all these results will also hold for any class that is complete with respect to degree spectra,
including fields, 2-step nilpotent groups, lattices, and (discrete) metric spaces under isometry. We
will not motivate these results and leave the judgement of their importance and significance to the
reader. For more results of this sort, we cite the somewhat dated surveys [186, 167] and also the
more recent papers [14, 160].

Exercise 8.3.48 (Knight (unpublished)). Show that thee non-trivial union of at most countably
many pě 2q incomparable upper cones of Turing degrees cannot be realised as the degree spectrum
of any structure. (For a proof that uses methods of computable topology, see [375].)

Exercise 8.3.49 (Goncharov et al. [212]). Prove that for every computable successor ordinal α
there is a structure containing exactly non-lowα degrees. (The case when α “ 0 is Exercise 3.2.64.)

Exercise˚ 8.3.50 (Faizrahmanov and Kalimullin [160]). Show that there is a structure whose
degree spectrum is the set of all non-lowω degrees.

Exercise˚ 8.3.51 (Csima and Kalimullin [102]). Show that the collection of all hyperimmune
degrees (Exercise 8.3.38) is a degree spectrum of a structure.

Exercise˚ 8.3.52 (Greenberg, Montalbán, and Slaman [221]). Prove that there exists a structure
(indeed, a linear ordering) whose degree spectrum is the set of all non-hyperarithmetic degrees.

Exercise˚ 8.3.53 (Kalimullin [279]). Prove that the following collections of degrees can be realised
as a degree spectrum of some structure.

1. For any low Turing degree d , the set tx | x ęT du.

2. For any Turing degrees c and d with c1, d1 ďT H
1, the set tx | x ęT cu Y tx | x ęT du.

Exercise˚˚ 8.3.54 (Kalimullin [280]). Show that there is a Turing degree b ď 02 such that
tx : x ę bu is not a degree spectrum of any structure.

341

8.3.6 Further related results

There are a few more transformations that we did not mention in this chapter; see [257, 38, 294, 310].
When it comes to effective completeness, for more transformations see the cited earlier [171] and
[307]. One recent notable result can be found in [239], where it is shown that the class of finitely
generated groups is effectively universal among all finitely generated structures.

In the next chapter we will describe a transformation G Ø EG between Ulm type 1 abelian
p-groups and equivalence structures. It is (algebraically) quite elementary; however, it has sur-
prisingly subtle computability-theoretic properties. For example, in Corollary 9.3.35 we will see
that this transformation preserves degree spectra and computable dimension, but it does not pre-
serve ∆0

2-categoricity. In particular, the correspondence GØ EG is not witnessed by “computable
functors”, i.e., it does not transform isomorphisms to isomorphisms in a sufficiently nice uniform
manner. Nonetheless, this effectively uniform correspondence will be immensely useful throughout
the technically challenging Chapter 9.

There are some recent unexpected results in primitive recursive algebra that can be found in
[123, 121]. In these papers, it was shown that for any reasonable definition of primitive recursive
(PR-) universality, the class of graphs is not PR-universal. The same can be said about structures
with two unary functions [121], which are also known to be computably universal.

When it comes to torsion-free abelian groups, several further results technically related to the
Downey-Montalbán Theorem 8.3.1 can be found in [12, 371, 372]. As explained in [374], some
of these results can be transformed into results about compact spaces using Effective Pontryagin
Duality (Theorem 5.2.1).

A lot less is known about non-classification-type results for Polish spaces up to homeomorphism.
Even less is known about compact spaces, with Theorem D and Corollary 8.3.9 being perhaps the
strongest known results of this sort to date. We cite [139, 138] for some further results and references.
We also cite [463, 108] for some closely related results concerning spaces that are not necessarily
Polish.

8.4 What’s next?

In the next chapter we will study Friedberg enumerations in more depth. We will use a 03-
argument to produce such an enumeration for equivalence structures. We will then develop an
effective algebraic apparatus sufficient to turn this computability-theoretic result into a Friedberg
enumeration of abelian p-groups of finite Ulm type. Finally, another effective version of Pontryagin
duality, this time between torsion discrete and profinite groups, will allow us to transfer this result
to the topological setting.

342

Chapter 9

Enumerating structures without
repetition
Recall that a Friedberg enumeration of a class is a uniformly computable list pPiqiPN in which every
member of the class is mentioned exactly once, up to isomorphism. The main goal of this chapter
is to prove the following theorem.

Theorem E (Downey, Melnikov, and Ng [145]). For any fixed n ą 0, there is a Friedberg
enumeration of all computably compact pro-p abelian groups of pro-Ulm type ď n.

For our proof, the usual infinite injury technique will no longer suffice. In this chapter we will
see the first use of the 03-machinery which seems unavoidable in any proof of Theorem E. The
chapter is organised as follows:

1. Section 9.1 presents the basics of computable equivalence structures and l.m. sets.

2. Section 9.2 contains a 03-construction that produces a Friedberg enumeration of all com-
putable equivalence structures.

3. Section 9.3 presents a systematic exposition of computable abelian p-group theory sufficient
to prove Theorem E.

4. Section 9.4 combines the main result of Section 9.2 with techniques of Section 9.3 to produce
a Friedberg enumeration of all computable abelian p-groups of Ulm type ď n (for any fixed
n ą 0).

5. Section 9.5 contains another effective version of Pontryagin duality, this time between torsion
discrete and profinite abelian groups. It is used to derive Theorem E from the result of
Section 9.4.

This chapter is sufficiently independent from the rest of the material and can be read separately.

343

9.1 Equivalence structures and limitwise monotonic sets

The goal of this section is to accumulate sufficient computability-theoretic techniques to derive our
group-theoretic results. The seemingly elementary class of computable equivalence relations will be
quite unexpectedly useful in such applications. It seems that almost every result about computable
equivalence structures falls into one of two categories:

– an elementary exercise;

– a significant combinatorial challenge.

All results in this section are in the first category, but the main result of Section 9.2 falls into the
second category.

9.1.1 Computable equivalence relations

Equivalence structures

For an equivalence relation „ on a set A, we will let rxs„ “ ty : x „ yu denote the „-equivalence
class of x. We will drop the subscript „ where the meaning is clear. We will often identify an
equivalence relation „ on A Ď ω with the respective equivalence structure pA,„q. An equivalence
structure is an algebraic structure of the form pA,„q, where „ is an equivalence relation on A, and
there are no further operations or relations on A.

In this chapter, all our equivalence structures will be at most countable.

Clearly, countable equivalence structures are fully described by the number of equivalence classes
of each fixed size that occur in E, including the number of infinite classes.

Definition 9.1.1. Let E “ pA,„q be an equivalence structure.

1. The character of E is the set

χE “ txn, ky : E has at least k equivalence classes of size exactly nu,

where k, n P N.

2. The characteristic set of E is

#E “ tn : xn, 1y P χEu.

We say that E is unbounded if #E is infinite (i.e., E contains arbitrarily large finite
classes); otherwise, E is bounded.

3. We write RpEq to denote the equivalence structure obtained from E after removing all
of its infinite classes. An equivalence structure is reduced if RpEq “ E (i.e., E has no
infinite classes).

4. We let DpEq “ E´RpEq to be the restriction to E to its substructure that contains only
infinite classes, and we write rk DpEq to denote the number of (infinite) classes in DpEq
(and, thus, in E).

344

Observe that for every E, χRpEq “ χE and #RpEq “ #E. Combined with the number of
infinite classes rk DpEq, the χE describes E up to isomorphism.

Proposition 9.1.2. Let E and K be two equivalence structures. Then E – K iff χE “ χK and
rk DpEq “ rk DpKq.

Our choice of notation and terminology may initially seem somewhat unnatural, but the reader
will understand the rationale behind it when we discuss abelian p-groups in the next chapter.

Computable equivalence structures

An equivalence structure pA,„q is computable if both the domain A and the relation „ are com-
putable. The arithmetical hierarchy cannot capture the computable presentability of reduced un-
bounded equivalence structures.

Definition 9.1.3 (Khisamiev [290]). A (total, ∆0
2) function g : ω Ñ ω is limitwise monotonic

(l.m.) if there is a computable approximation function fp¨, ¨q such that, for all x,

(i) gpxq “ lims fpx, sq, and

(ii) for all s, fpx, sq ď fpx, s` 1q.

A set S is l.m. if it is the range of a l.m. function.

According to their definition, limitiwise monotonic sets are Σ0
2. Clearly, every finite set is

limitwise monotonic, and so is every c.e. and co-c.e. set. However, in Lemma 9.1.20 we will show
that not every Σ0

2-set is limitwise monotonic. The theorem below is folklore; it can be found in [75].

Theorem 9.1.4. Let E be an equivalence structure.

1. If E has infinitely many infinite classes, then E is computably presented iff χE is Σ0
2.

2. If E has finitely many infinite classes (rk DpEq ă 8), then E has a computable presen-
tation iff χE is Σ0

2 and #E is limitwise monotonic.

Proof. We use the notation and terminology from Definition 9.1.1 throughout. We begin by dis-
posing of the easy cases:

Fact 9.1.5. If E is a computable equivalence structure, then χE is a Σ0
2 set.

Fact 9.1.6. Let E be an equivalence structure that either has the sizes of all its finite classes bounded
by some fixed k P N or has infinitely many infinite classes. Then E is computably presentable iff
χE is a Σ0

2 set.

345

Fact 9.1.7. If E is an equivalence structure that has only finitely many infinite classes, then E is
computably presentable iff RpEq is computably presentable.

The verification of these facts is left to Exercise 9.1.15. The only remaining case is when
the structure is reduced and unbounded, i.e., #E is infinite and has no infinite classes (that is,
DpEq “ H).

Proposition 9.1.8. Let E be a reduced and unbounded equivalence structure. Then E has a
computable presentation if, and only if, χE is Σ0

2 and #E “ tn : xn, 1y P χEu is l.m..

Proof. First, suppose E is computable. By Fact 9.1.5, we only need to argue that #E is l.m.. We
may assume the domain of E is ω, and let Es be E restricted to t0, . . . , s´ 1u. Define fpi, sq to be
the size of ris in Es.

Conversely, suppose χE is Σ0
2 and #E is l.m., and let g “ lims fp¨, sq be such that #E “ rngpgq.

The set #E is infinite by assumption. Without loss of generality, we may assume g is injective; the
proof of this fact is delayed until §9.1.3 (see Lemma 9.1.23).

Consider E1 obtained from E by removing exactly one class of size k for every k P #E. We have
that xn, ky P χE1 iff xn, k ` 1y P χE , and thus χE1 is Σ0

2. Clearly, E splits into the disjoint union

E “ E1 \ E2,

where E2 has exactly one class of size k for each k P #E. If rxs needs to be modified due to a
change in the Σ0

2-approximation of χE1 , search for i and s such that fpi, sq is larger than any number
mentioned so far. At later stages t, keep the size of rxs equal to fpi, tq. Also, simultaneously build
the E2-part of E, choosing fpj, sq for the sizes of classes among those j ď s which have not yet
been used for initialisation.

This completes the proof of Theorem 9.1.4.

Limitwise monotonicity captures the difference between c.e. and computably presented equiva-
lence structures. In a c.e. presented structure, two points can become equal (not just equivalent)
at a later stage.

Lemma 9.1.9. E is c.e. presented iff χE is Σ0
2.

We leave the proof of the lemma to Exercise 9.1.17. Since there are Σ0
2-sets that are not limitwise

monotonic (delayed until Lemma 9.1.20), we arrive at the following corollary that resembles many
similar results from Part 1 of the book.

Corollary 9.1.10 (Folklore). There exists a c.e. presented equivalence structure that has no com-
putable presentation.

Computably categorical equivalence structures

Recall that an equivalence structure is bounded if all of its finite classes are uniformly bounded in
size from above. A bounded equivalence structure can have infinite classes.

346

Theorem 9.1.11 (Calvert, Cenzer, Harizanov, and Morozov [75]). An equivalence structure A
is computably categorical iff almost all (i.e., all but finitely many) classes of A have the same
size. (Note this includes the case when there are only finitely many classes in total.)

Extended sketch. The easy implication is left to Exercise 9.1.18.
For the more difficult direction, assume that A is computably categorical but fails the algebraic

property from the theorem. The proof is split into three cases which cover all possible isomorphism
types of the structure.

Case 1. Assume that A has infinitely many classes of size k0 and infinitely many classes of size k1,
where k0 ă k1, allowing the possibility k1 “ ω. Consider the structure E which is isomorphic to
the substructure of A which contains all classes of A except for the classes of size k0 and k1. Since
a limitwise monotonic (l.m.) set remains l.m. after removing finitely many elements, Theorem 9.1.4
guarantees that E has a computable presentation (which could be empty). Let also E0 and E1 be
equivalence structures having infinitely many classes of the same size, with E0 having all classes of
size k0 and E1 having all its classes of size k1. We will use E to build two computable presentations,
B and C, of A that satisfy:

Re : pB –ϕe Cq,

for every e.
Let C be the computable presentation of A which is computably split into three disjoint com-

putable substructures:
C “ E \ E0 \ E1.

We define B “ E \ U \ E1, where U – E0 \ E1 will be built in stages. (Note this guarantees
B – C – A.)

The strategy is as follows. Initially, define every class in U to have size k0. Use the 2e-th class
rues of U in B to diagonalise against ϕe, as follows:

1. Wait for ϕepueq to converge.

2. If ϕepueq P E0 Ă C, then grow the class rues to have size k1 ą k0.

It is clear that all requirements are met.

Case 2. Now assume that A has infinitely many infinite classes and infinitely many finite classes.
The idea is similar to what we had in Case 1; however, we cannot always guarantee that the
restriction of A to its finite classes, RpAq, has a computable presentation (see Theorem 9.1.4 and
Lemma 9.1.20).

The idea is as follows. Each Re will have a witness, ue. As in Case 1, it is sufficient to make
sure that the size of ϕepueq is different from the size of rues (if ϕepueq Ó). The easiest way to achieve
this is to declare rϕepueqs to be infinite. However, we do not know whether the size of rues is finite,
and therefore we may have to repeat the strategy for another u1e, and then another one, and so on.

This time we build C, and we let B “ A. In C, we will attempt to copy A, but sometimes some
class rxs in C will be declared infinite, and a new class will be introduced to C; this class will now
copy the class of A that rxs used to copy before it was declared infinite. (More formally, we define
a partial embedding ψ : A Ñ C in stages, so that all classes in CzψpAq are infinite. We initially

347

define ψprzsq “ rxs, and later we may have to redefine ψprzsq “ rx1s for some x1 with a fresh index
that we put in C, together with all elements in its class rx1s, specifically for this purpose. We will
then argue that ψ is ∆0

2. If we succeed, this will immediately imply that C – B.)
The strategy for Re seeks the smallest index equivalence class in B that has appeared unchanged

for sufficiently many stages.

Remark 9.1.12. Formally, let gpeq be the ∆0
2-function that outputs the smallest index finite class

that has not yet been used by strategies of smaller indices. Using the Limit Lemma 3.1.3, fix a
computable g̃ so that gpeq “ lims g̃pe, sq. To avoid interference between different strategies, we
can assume g̃pi, sq ď g̃pe, tq whenever i ă e. By the Recursion Theorem, we can assume we know
the index of g̃. We omit all these formal details and focus on the key ideas instead. The idea
is that searching for the next available finite class is clearly H1-effective, and after finitely many
unsuccessful attempts, it will be located.

Let rues be this class. The strategy proceeds as follows:

1. Wait for ϕepueq to converge.

2. If the size of rϕepueqs is currently equal to the size of rues, then grow the class rϕepueqs to be
infinite.

3. Reintroduce the class that has been grown to be infinite, as explained earlier, by giving its
new version a fresh large index in C.

If rues ever increases in size, then search for another available smallest index equivalence class in
B, say ru1es, and repeat the strategy above with u1e. If both rues and ru1es ever increase in size, then
define u2e, and so on. Eventually, a class of finite size will be found in B, and the diagonalisation
will be achieved.

In the presence of several Re, there is a potential conflict that needs to be resolved. Indeed,
some class in C can be grown to be infinite and then reintroduced infinitely many times, thus
potentially some finite class of A will never be copied into C. In other words, ψ may never achieve
a stable value for some inputs.

To circumvent this difficulty, we simply do not allow Rj to grow classes in C that have already
been shifted by some Re for e ă j. If ϕj converges to one such element “restrained” (in this
sense) by a higher priority strategy, then we make Rj search for the next available witness. Since
eventually each Re is either forever inactive or is met, there will be only finitely many iterations
until Rj finds a witness that can be used for diagonalisation. We leave the details to the reader.

The remaining case is as follows.

Case 3. The structure is unbounded but has at most finitely many infinite classes. By Theo-
rem 9.1.4, in this case the set of finite sizes of classes that occur in the structure is a l.m. set. Let
gpxq “ lims lpx, sq be the l.m. function that witnesses this fact. In Lemma 9.1.23 we will show that
g can be assumed to be injective.

We can non-uniformly fix representatives from the infinite classes (if there are any). Thus, in
contrast with the previous case, just one witness is enough to diagonalise because we may assume
our witnesses always come from finite classes. We keep the same notation as in the previous case.
Let ue be the witness assigned to Re.

348

1. Wait for ϕepueq to converge.

2. If ϕepueq belongs to one of the finitely many infinite classes in C, do nothing.

3. Otherwise, if the current size m of rϕepueqs is equal to the current size of rues, then search for
x and s so that lpx, sq is larger than any number used so far in the construction (including
m), and grow the class rϕepueqs to have size lpx, sq. (Unless a new x will be picked for e,
eventually grow rϕepueqs to have size gpxq.)

4. Introduce a fresh class in C (to replace rϕepueqs) having size m.

5. If at some later stage the size of rues becomes equal to that of rϕepueqs, repeat steps 3 and 4
using new large parameters.

To make sure that the right finite sizes are realised among the classes in C, follow the same
strategy as in the proof of Proposition 9.1.8. Split C into two substructures, E1 and E2, so that in
E2, for every x there is exactly one class of size gpxq. We follow the proof of Proposition 9.1.8 with
essentially only one modification. Specifically, at substage 3 of the strategy Re, we place rϕepueqs
in E2 and reintroduce a new class to replace the old version of rϕepueqs. We use the injectivity of
g to carefully choose sizes of classes to be placed into E2 to avoid repetition.

9.1.2 Beyond computable categoricity˚

In spite of attacks by several authors, the following problem raised in [75] remains stubbornly open:

Problem 9.1.13. Classify ∆0
2-categorical (computable) equivalence structures.

We have already seen that ∆0
2-categorical homogeneous c.d. groups can be described in terms

of semi-low sets. Also, the class of computable equivalence structures appears to be so incredibly
tame that one might expect that ∆0

2-categoricity in this class is much easier to capture. However,
this intuition is misleading.

The only non-trivial case is when the structure is unbounded and has infinitely many infinite
classes. It seems that 01 is unable to detect how many classes of a fixed size are present in the
structure. Thus, one might expect that repetitions of classes could be used to diagonalise against
∆0

2-isomorphisms.
Using an unexpectedly complex argument, it was shown in [141] that ∆0

2-categoricity of an
equivalence structure is stable under removing repetitions from the sizes of finite classes. (In other
words, if we keep only one class of each fixed finite size that is present in E, we obtain that the
resulting structure is ∆0

2-categorical iff the original structure was.) This means that the problem
raised in [75] can be reduced to a problem about Σ0

2-sets, as follows. For a Σ0
2 set X, let EpXq be

the equivalence structure having infinitely many infinite classes, exactly one class of size n for each
n P X, and no other finite classes. Fact 9.1.6 guarantees that computable presentability of EpXq is
equivalent to X being Σ0

2.

Question 9.1.14. For which Σ0
2 sets X is EpXq ∆0

2-categorical?

It seems that no known property of a Σ0
2 set captures ∆0

2-categoricity of the respective equiva-
lence structure; for more details, see [141].

349

Exercises

Exercise˝ 9.1.15. Prove Facts 9.1.5, 9.1.6 and 9.1.7.

Exercise˝ 9.1.16 (Folklore). Show that a computable equivalence structure has either 1 or ω-many
computable presentations, up to computable isomorphism.

Exercise˝ 9.1.17. Prove Lemma 9.1.9.

Exercise˝ 9.1.18 (Calvert, Cenzer, Harizanov, and Morozov [75]). Prove that if an equivalence
structure has almost all classes equal in size then it is computably categorical.

Exercise˝ 9.1.19. Give a complete formal proof of Theorem 9.1.11.

9.1.3 Calculus of limitwise monotonic sets and functions

The standard references for the material contained in this section are [133, 281].

Every c.e. set is clearly l.m., and so is every Π0
1 set. However, not every ∆0

2-set of the form BzC,
where B and C are c.e., is l.m., as the proof of the lemma below shows. (Differences of c.e. sets are
called d-c.e. sets.)

Lemma 9.1.20 (Khisamiev [287]). There is a d-c.e. set A which is not a l.m. set.

Remark 9.1.21. Lemma 9.1.20 is usually attributed to Khisamiev [287], who applied it to charac-
terise computably presented abelian p-groups of Ulm type 1 (to be discussed). It was independently
(and slightly later) proven by Ash, Knight, and Oates (unpublished). Some 15 years later, it was
rediscovered by Khoussainov, Nies, and Shore [295] in the context of computable model theory, and
then shortly after also used to study computable linear orders [96] (see Exercise 9.1.32). It was
recently re-rediscovered by Bosserhoff and Hertling [55] in the context of computable topology. See
Exercise 9.1.36 for another recent application of l.m. sets in computable topology. The lemma is
elementary; however, its history clearly indicates its importance.

Proof. We construct a set A satisfying the requirements:

Re : The function ϕep¨, ¨q does not witness that A is a l.m. set.

Initially, subdivide ω into subsequent disjoint intervals Je such that each Je has 2e`1-many
elements.

Towards meeting R0, we pick a witness n0 P J0, put n0 in A and keep m ă n0 out of A. Wait
for a stage s so that for some x,

ϕ0px, sq “ n0.

If such an x is ever found, extract n0 from A, and put n0 ´ 1 in A. Declare this x “ x0 active.
The basic strategy for R1 is the same, mutatis mutandis, but the choice of the witness n1

depends on the value of ϕ0px0, sq, as follows.

The strategy for R1 when it will become active will pick its witness n1 to be equal to the largest
element of J1. However, if at some stage t, ϕ0px0, tq “ n1, then the strategy will be initialised by
picking a fresh witness equal to the largest element in the lower half of J1.

More generally, the strategy for Re (when it becomes active at stage s) will pick a witness me

so that me ‰ ϕipxi, sq for all i ă e (if these parameters are defined). For that, we divide Je into

350

two halves to avoid ϕipx0, tq, and then further subdivide each half further to avoid ϕ1px1, tq, and
so on. In the construction, we let the strategies act according to their instructions.

By induction, eventually (exactly) one element will be put in each interval Je. Suppose ϕep¨, ¨q
indeed represents a l.m. set. If xe is never defined, it means that no approximation ever enters Je,
and Re is met. If xe is defined, then the action of the strategy guarantee that no element of Jk for
k ě e can possibly be equal to limt ϕepxe, tq.

Some of the statements that we presented in the previous subsection can be simplified using the
combinatorial lemma below; we omit its proof.

Lemma 9.1.22 (Folklore; see, e.g., [133]). An infinite Σ0
2–set is l.m. iff it contains an infinite

l.m. subset.

The lemma below can often be convenient; we have already used it in the preceding subsection.

Lemma 9.1.23 (Harris [234]). Suppose S is infinite and l.m.. Then there is an injective l.m. g
with range S.

Proof. Let hpyq “ limx fpy, xq be a l.m. with range S. We have that the computable function fpy, xq
is non-decreasing in x for every y P N, so limx fpy, xq “ maxx fpy, xq. Set gpy, xq “ 0 if x ď y. To
define gpy, xq for x ą y, suppose that for every y1 ă y and x1 ă x the values of gpy1, xq and gpy, x1q
have already been defined. Choose xy0, x0y least such that x0 ą x, fpy0, x0q ě maxx1ăx gpy, x

1q and
fpy0, x0q R tgpy

1, xq | y1 ă yu. Set gpy, xq “ fpy0, x0q.
It is not hard to check that maxx gpy, xq is total and injective. It is also evident that rngy maxx gpy, xq Ď

S, for every n P N. To see that
S Ď rngy max

x
gpy, xq,

we use an inductive argument. The definition of g may be viewed as a construction, where at
each stage we compute the value of g for exactly one new pair of arguments, and the value of f
for a new pair of arguments as well. We denote our current guess about maxx gpy, xq at stage
s by rmaxx gpy, xqss, and similarly for f . Suppose there are y and n such that maxx fpy, xq R
rngy maxx gpy, xq, and y is least with this property.

Then there should be a stage s such that for every stage t ě s and every y1 ă y, rmaxx fpy
1, xqss “

rmaxx fpy
1, xqst P rngy maxx gpy, xq. We may further assume that s satisfies rmaxx fpy, xqss “

maxx fpy, xq. By the definition of g, there should be a stage t0 ě s and an argument y0 such that
rmaxx1ăx gpy0, x

1qst0 “ maxx fpy, xq, since we always start with gpy, xq “ 0 for x ď y. If there is
no stage t1 ě t0 and y1 ă y0 such that rmaxx gpy1, xqst1 “ rmaxx gpy0, xqst0 then maxx gpy0, xq “
maxx fpy, xq. Therefore there should exist y1 and a stage t1 such that rmaxx gpy1, xqst1 “ rmaxx gpy0, xqst0 .
We can use the same argument to find y2 and t2 which play the same role for y1 and t1 as the latter
arguments do for y and t. Since y “ y0 ą y1 ą . . . we will find the least yi in this sequence. But
then maxx gpyi, xq “ maxx fpy, xq, contrary to the hypothesis.

We leave the following corollary of the lemma above as an exercise.

Corollary 9.1.24. Suppose that S is infinite and l.m.. Then there exists a strictly increasing
l.m. function g so that rng g Ď S. Indeed, we may assume that x ă gpxq, for all x.

351

Exercises

Exercise˝ 9.1.25. Prove Lemma 9.1.22.

Exercise˝ 9.1.26. Prove Corollary 9.1.24.

Exercise˝ 9.1.27 (Hirschfeldt, Miller and Podzorov [260]). There is a low ∆0
2 set A which is not

l.m..

Exercise˝ 9.1.28 (Downey, Kach, Turetsky [133], Wallbaum [500]). Show that for every nonzero
Turing degree a, there is a set S which is limitwise monotonic in a but is not limitwise monotonic.

Exercise˚ 9.1.29 (Kalimullin, Khoussainov, and Melnikov [281]). Prove that there is a Σ0
2 set S

such that S is limitwise monotonic in every nonzero ∆0
2-degree, but is not limitwise monotonic.

Exercise˚ 9.1.30 (Harris [234]). An η-representation of a set is a computable linear ordering
of order-type η ` a0 ` η ` a1 ` η ` a2 ` η ` ¨ ¨ ¨ where η is the order-type of the rationals, and
A “ tai : i P Nu (note we allow repetitions, and the sizes of the blocks ai do not have to be non-
decreasing in i). Show that A has an η-representation iff A is H1-l.m., i.e., is limitwise monotonic
relative to H1.

Exercise 9.1.31 (Kach [275]). Recall that in the proof of Lemma 3.2.12 we defined the shuffle sum
Ţ

i Li of orders Li to be the order obtained by placing Li together densely. For a set S Ď ω ` 1,
define σpSq to be

Ţ

κPS κ, where each κ is identified with its order-type. Show that for a set
S Ď ω ` 1, the following are equivalent:

(1) The shuffle sum σpSq is computable.

(2) The set S is a limit infimum set, i.e., there is a total computable function fpx, sq such that
the function F pxq “ lim infs fpx, sq enumerates S.

(3) The set S is a limitwise monotonic set relative to 01 (allowing the limit of the monotonic
approximation to be infinite).

Exercise˚ 9.1.32 (Coles, Downey, and Khoussainov [96]). Let η be the order-type of the rationals.
A linear order is η-like if it is obtained from η by replacing every point by a finite block. The block
set of a linear order L is the collection of the sizes of the finite blocks that occur in L.

(i) Show that the block set of a computably η-like linear order is H1-l.m..

(ii) Show that for any set S, S P Σ0
3 iff there is a computable linear order L “ A` B with A an

η-like ordering such that the blocks of A have exactly the sizes of elements of S, and B has
order type ω˚.

(iii) Deduce that there is a computable linear ordering with a Π0
2 initial segment not isomorphic

to a computable linear ordering.

Exercise˚ 9.1.33 (Hirschfeldt [255]). Using the concept of a limitiwise monotonic function, show
that there is a complete theory of linear orderings with a computable model whose prime model
does not have a computable presentation.

352

Exercise˚ 9.1.34 (Csima, Hirschfeldt, Knight and Soare [101]). A countable complete theory T is
atomic if, for each formula φpx̄q consistent with T , there is a principal type containing φpx̄q. Prove
that for a set X ďT H

1, the following are equivalent:

1. X is not low2, i.e., X2 ąT H
2;

2. every (infinite) ∆0
2 set is limitiwise monotonic relative to X;

3. every complete atomic decidable theory has an X-decidable prime model.

Exercise˚ 9.1.35 (Khoussainov, Nies, and Shore [295]). A model M of a theory T is minimal if
there is no formula φpxq such that the sets tm |M |ù φpmqu and tm |M |ù φpmqu are infinite. A
theory T is strongly minimal if all models of T are minimal. A theory is algebraically trivial if the
algebraic closure of every set X in every model of the theory equals to the union of the algebraic
closures of elements of X.

Prove that for every given set S there exists an ℵ1-categorical but not ℵ0-categorical theory TS
with the following properties:

1. The theory TS is strongly minimal and algebraically trivial,

2. Every (countable) non-prime model of TS has a computable copy iff S P Σ0
2,

3. The prime model of TS has a computable copy iff S is limitwise monotonic.

Exercise˚ 9.1.36 (Koh, Melnikov, and Ng [311]). A k-star is a topological space homeomorphic
to k copies of the interval r0, 1s all joined at one end in a single point (the wedge sum of k copies
of r0, 1s via 0). A 0-star is an isolated point. A star-space is the 1-point compactification of the
disjoint union of stars. Prove the following:

1. Let M be a computably compact presentation of a star-space. Then the set StpMq “ tn ą
1 |M has an n-star componentu is 01-limitwise monotonic.

2. For any Σ0
3 set S, there is a star-space M c.e. closed in r0, 1s2 with StpMq “ S.

3. Conclude that there is a c.e. subspace of K “ r0, 1s2 not homeomorphic to any computably
compact space. Consider CpK;Rq and note that it has a computable Banach presentation,
thus witnessing that computable Banach–Stone duality (cf. Theorem 4.2.113) fails in general.

353

9.2 Enumerating equivalence structures

Recall that the Friedberg Enumeration Theorem 3.1.43 states that there exists a uniform enumer-
ation of all c.e. sets in which every c.e. set is mentioned exactly once, up to equality. A Friedberg
enumeration of a class K as a uniformly computable list pFiqiPN that, up to isomorphism, contains
exactly one instance of any computably presented structure in K. The main goal of this section is
to prove the following theorem established in [143]:

Theorem 9.2.1. There is a Friedberg enumeration of all computable equivalence structures.

The theorem solved a problem that was stated in [213]. It remained open for 15 years until it was
partially solved in [330] and then completely settled in [143]. The reader should prepare themselves
for a combinatorially involved proof. It may appear surprising that the most combinatorially
challenging proof that we’ve seen so far in the book is about equivalence structures. However,
recall that the isomorphism problem for equivalence structures in Π0

4-complete (Proposition 7.1.5).
Thus, eliminating repetitions will require a careful analysis of Π0

4- and Σ0
4-outcomes. The proof

that we present here is a further polished and slightly reworked version of the proof from [143].

9.2.1 Preliminary analysis

Fix an effective listing pEnqnPN of all computable equivalence structures, allowing repetitions. Let

En “
à

k

r
card W rks

n

z
,

where Wn is the n-th c.e. set, and rrαss is an equivalence class of size α. Our goal is to produce,
using this sequence, another sequence pUnqnPN in which isomorphism types are not repeated.

Notation 9.2.2. If E is a computable equivalence structure, then ej will denote its j-th equivalence
class. Equivalently, it is the j-th column under the enumeration above.

Since we are interested in isomorphism types, only the sizes of the ej will matter.

Some elementary simplifications. Recall that in the proof of the Friedberg Enumeration Theo-
rem 3.1.43, we adjoined ω to the list after the construction was finished. Also, the finite sets played
the role of a “junk collector” in the proof of Theorem 3.1.43. We will use a similar technique for
equivalence structures too, but there will be many more exceptional cases. Additionally, in the
present proof, there will be two junk collectors: one composed of finite structures and the other of
infinite structures of a special kind.

We assume that in our list all finite structures are non-empty. We will divide equivalence
structures into five types:

(I) Finite equivalence structures.

(II) Finitely many finite classes and finitely many (with at least one) infinite classes.

(III) Finitely many finite classes and infinitely many infinite classes.

354

(IV) Infinitely many finite classes which are uniformly bounded in size, and any number of infinite
classes.

(V) Infinitely many finite classes with arbitrarily large finite sizes, and any number of infinite
classes. From now on, we will refer to a structure of type (V) as unbounded.

Our construction will produce a Friedberg enumeration of the isomorphism types in (I), (III),
and (V). We will obtain the desired Friedberg enumeration by adjoining the missing isomorphism
types (II) and (IV) to the list.

9.2.2 The setup

Recall pEnqnPN is the effective listing of all computable equivalence structures induced by the
standard enumeration of c.e. sets.

Requirements and preliminary remarks. In the construction, each computable equivalence
structure Ei will have infinitely many strategies τ associated with it. The task of each τ is to
produce a computable isomorphic copy Uτ – Ei unless Ei is bounded (not of type (V)) or Ei is
isomorphic to some Ej with j ă i. Thus, each such τ (associated with Ei and building Uτ) works
towards meeting the requirement:

ľ

jăi

Ei fl Ej and Ei unbounded ùñ Uτ – Ei.

There will be infinitely many strategies τ associated with Ei. Recall that for every i it is Π0
4 to

tell if Ei – Ej for some j ă i (Proposition 7.1.5). Let this predicate be @kP pi, kq, where P pi, kq is
Σ0

3. For each k we will have a separate strategy τ guessing whether P pi, kq holds. It is crucial that
τ has to produce an isomorphic copy of Ei only if P pi, kq fails.

We will see that the different τ ’s will collectively be able to take care of the global requirement,
saying that the enumeration must be Friedberg, in particular, that @τ, σ rτ ‰ σ ÞÑ Uτ fl Uσs. We
will also see that, depending on its true outcome, τ may produce a copy of the associated Ei, as well
as several (perhaps, infinitely many) distinct finite structures, or a single structure of type (III); in
the latter two cases, the structures will be placed into the junk collector, which will be operating
outside the tree of strategies.

The junk collector will be further subdivided into a finite junk collector and an infinite junk
collector, with infinite junk potentially transformable into finite junk.

Priority Tree. As we noted above, for every i, it is Π0
4 to tell if Ei – Ej for some j ă i. Recall

P pi, kq is the Σ0
3-predicate such that @kP pi, kq holds iff Ei – Ej for some j ă i. Each node on the

tree will be assigned the task of guessing P pi, kq for some i and k, where i stands for the computable
equivalence structure Ei. This is assigned in the usual way; a node τ is assigned P pi, kq, where
|τ | “ xi, ky. For convenience, we write Eτ for the equivalence structure associated with a strategy
τ , and we write kτ for the respective integer k.

The priority tree is a 1` ω ` 2-branching tree. The outcomes, ordered from left to right, are:

init ă pi20 ă pi21 ă ¨ ¨ ¨ ă pi3 ă wait.

The leftmost outcome init is a Π0
2 outcome, the pi2m are the Π0

2 outcomes that collectively form
the Σ0

3 counterpart of pi3 (which is the Π0
3 outcome). The waiting outcome wait is Σ0

2. We will
describe the role of each outcome later.

355

9.2.3 A single node in isolation

Fix τ on the construction tree. We now describe the actions and outcomes of τ , when considered in
isolation. Assume τ is working for Ei and there are exactly kτ ´ 1 nodes σ Ă τ such that σ works
for Ei and σ ˚ pi2j Ď τ for some j. If ρ ˚ o Ď τ for some ρ that works for the same Ei and some
other outcome o, we will simply assume τ is always inactive and does nothing when visited. The
strategy τ will build a structure Uτ (we suppress τ and write U when the context is clear), which
will be permanently abandoned when τ is initialised.

Initialisation. The strategy τ will be initialised if outcome init of τ is played. In isolation, this
case corresponds to the scenario when Eτ has no finite classes (note that this can be detected in a
Π0

2 way), or if we move to the left of τ , unless we are moving from a σ ˚ pi3 to a σ ˚ pi2k outcome
for some σ Ă τ . In this case, the strategy abandons its current Uτ . If Uτ is abandoned, then it
joins the finite junk collector.

We then restart with a new Uτ . After each initialisation, all parameters of the strategy are set
to undefined. When τ is active again (if ever), it will set its Uτ equal to a structure with a single
“large” finite class of size larger than any number seen so far in the construction.

The parameter fin. The node τ will also monitor the parameter finpτ, jq. When the context is
clear, we write finpjq instead. This parameter will be used to copy Eτ into Uτ and guess whether
Eτ is of the unbounded isomorphism type. Given the node τ and a stage s, define the sequence
f1 ă f2 ă ¨ ¨ ¨ ă ft of length at most s inductively by the following. Suppose fk´1 has been defined
(for k “ 1, take fk´1 “ 0). Take fk to be the least such that fk ą fk´1 and the class eτ,fk of Eτ
currently has size larger than k and is furthermore the oldest class in Eτ with index larger than
fk´1 and with size larger than k. The age of a class is the number of stages it has not increased
in size; so the oldest class is the one which has not increased in size for the longest time. If every
class with index larger than fk´1 has size at most k, then fk is not defined at stage s.

The parameter finpjqrss is defined to be equal to the sequence f1 ă f2 ă ¨ ¨ ¨ ă fxτ,jy, if
all the terms exist at stage s. Otherwise, we say that finpjqrss Ò. Note that at every stage of
the construction, finpjq is a substring of finpj ` 1q (if they are both defined), and finpjq being
undefined implies that finpj`1q is also undefined. We abuse our terminology and define the range
of fin at stage s to be the string f1 ă f2 ă ¨ ¨ ¨ ă fxτ,jy for j, the largest such that finpjqrss is
defined.

We explain the use of fin. It is not hard to see that the property of being unbounded is Π0
3.

In fact, the parameter fin is meant to guess whether Eτ is unbounded: the property of Eτ being
unbounded is equivalent to the Π0

3 property that finpjq holds a stable value for each j. This can
be naturally incorporated into the outcomes of τ . The Π0

2 outcome pi2j stands for the fact that j
is the least such that finpjq does not have a limit, while the outcome pi3 stands for the fact that
finpjq is stable for every j.

The reason for using xτ, jy instead of xτy or j is to keep the “infinite junk” structures (of type
(III)) produced by the different outcomes of different nodes non-isomorphic. To achieve this, we
use the following modification of the pairing function throughout the rest of the proof:

We replace the standard pairing function xτ, jy with 3xτ,jy.

As a consequence, the true outcome τ ˚pi2j will produce an infinite junk structure (of type (III))
with somewhere between xτ, jy and 2xτ, jy many finite classes, thus keeping structures produced by
different outcomes (of various strategies) non-isomorphic.

356

The isomorphism `. Let eτ,i and uτ,i be the ith classes in Eτ and Uτ , respectively. To assist us in
organising the copying strategy, we will define a (potential) ∆0

2 isomorphism `τ : Uτ ÞÑ Eτ , which
will be total only if τ ˚ pi3 is the true outcome of τ . (Note that the totality of a ∆0

2 function is also
Π0

3.) Strictly speaking, ` will be a function mapping indices to indices, and we identify ui with e`piq.
Initially, we set `piq Ò for all i. For convenience, whenever we wish to change the approximation to
`piq, we will first set `piq Ò before re-defining `piq at a later stage. The final limiting value of `piq is
assigned the obvious meaning.

Action of τ . During the construction, whenever the node τ is visited, it will first check if there is
a least (in the index) unmapped class eτ,j less than or equal to the largest element in the range of
fin (unless we are waiting in step (i)), and if it exists, introduce a new class uτ,i to match it. This
means that we will grow a new uτ,i to be equal in size to eτ,j and define `τ piq “ j. If (and only if)
a new class is introduced in Uτ , we will also grow all classes uτ,i for which `τ piq is defined, to have
size equal to eτ,`piq. Next, τ will process the following:

(i) For each nonempty class uτ,i such that `τ piq Ò, we search for a corresponding eτ,j not yet
mapped via `τ and with size larger than or equal to the size of uτ,i.

– If `τ piq Ó for every class uτ,i in Uτ , go to step (ii).

– If `τ piq Ò for some class uτ,i in Uτ , and a large enough unmapped class in Eτ does not
yet exist, play outcome wait and go to the next stage.

– Otherwise, every class uτ,i with `τ piq Ò is able to find some image. We take the following
actions, for each i. Define `τ piq “ j (for the corresponding j). Play outcome wait and
go to the next stage.

(ii) If we are here, it means that every nonempty class uτ,i has been mapped (i.e. `τ piq Ó).
Wait for dompfinq to increase beyond the previous maximum. If this is the first stage where
dompfinq is longer than at any previous stage since the last τ -initialisation, we take outcome
pi3 for this stage and go to (iii). Otherwise, play outcome wait at this stage.

(iii) Check if there is some i ă dompfinq such that finpiq has changed, or the Π0
2-predicate

Qpτ, kτ , iq, such that P pτ, kτ q “ DiQpτ, kτ , iq, has “fired”. (Recall that a Π0
2-predicate fires

means that the Π0
2 predicate appears true for one more stage in some computable approx-

imation of the predicate; a Π0
2-predicate holds iff it fires infinitely often). Without loss of

generality, we assume that Qpτ, kτ , 0q never fires. Take i to be the least such, if it exists. Take
the appropriate action below and go back to step (i).

– If no such i ă dompfinq exists, do nothing.

– If i “ 0, play outcome init and initialise τ .

– If i ą 0, play outcome pi2pi ´ 1q. Preserve each class uτ,k for all k ă i as well as each
class uτ,k such that `τ pkq is in the tuple finpi ´ 1q or `τ pkq ă i. All other non-empty
classes uτ,m we grow to size s (or some suitably large number, determined by the junk
collector) and set `τ pmq Ò.

The strategy we describe here for τ assumes it acts in isolation. During the formal construction
(§9.2.6), we will follow a slightly modified form of the strategy described here due to various technical
reasons.

Analysis of the outcomes of τ . The true outcome of τ could be:

357

• True outcome wait: Since we only play outcomes to the left of wait finitely often, it is easy
to see that in this case we must get stuck waiting forever in (i) or (ii). In either case, we will
eventually stop adding new classes to U and stop growing existing classes of U . Thus, we end
up producing a finite structure U .

• True outcome init: By convention, Qpτ, kτ , 0q never fires, so if init is the true outcome,
then finp0q fails to hold a stable definition. In this case, we initialise τ infinitely often, and
consequently, the strategy produces infinitely many finite structures. We will ensure that
these structures are all pairwise non-isomorphic.

• True outcome pi2i: In this case, either Qpτ, kτ , i`1q fires infinitely often, or finpi`1q fails to
hold a stable definition. In the former case, as P pτ, kτ q holds, we have more evidence that Eτ
is isomorphic to some E of higher priority, so we should not allow τ to copy Eτ into our list.
In this case, Uτ will be an infinite junk structure with between xτ, iy and 2i` xτ, iy ă 2xτ, iy
many finite classes.

• True outcome pi3: This means that all other outcomes to the left of pi3 are each visited
only finitely often. Since outcome pi3 is played infinitely often, Eτ is not isomorphic to any
higher-priority E, and Eτ is unbounded. We will argue in the verification that `τ is eventually
total, stable at every input, and onto, and consequently witnesses that Uτ – Eτ .

9.2.4 Coordination between different τ

As the outcomes of the requirements are of order-type 1` ω ` 2, the true path of the construction
will be H3-computable. Since it is now possible to visit left of the true path infinitely often, we
need to describe the effect each node has on the strategies on its right. If τ plays outcome init,
then all nodes extending τ ˚ o for an outcome o ‰ init are initialised. If τ plays outcome pi3, then
all nodes extending τ ˚ wait are initialised.

Now suppose τ plays outcome τ ˚ pi2i. We will initialise every node extending τ ˚ wait or
τ ˚ pi2j for j ą i. However, we clearly do not wish to initialise a node σ Ě τ ˚ pi3, since σ could be
on the true path. We ensure that the next time we visit σ again, we will force σ to play outcome
pi2i (and take the corresponding actions) at least once, even though the basic strategy for σ does
not require it to do so. This ensures that if τ ˚ pi2i is on the true path, then every σ Ě τ ˚ pi3
produces an infinite junk structure, unless σ is initialised infinitely often due to other reasons, and
therefore does not copy any E into our list. On the other hand, if σ is on the true path, then for
each i, σ is forced to play the outcome pi2i in this way only finitely often, and the true outcome of
σ will still correctly reflect the outcomes of its basic strategy.

9.2.5 Coordination with junk collectors

We call finite structures that are produced by some node τ (or the INFJUNK strategy) finite
junk. Structures of type (III), which are built by some node τ , are called infinite junk.

In this subsection, we also explain several important modifications to the basic strategy of τ ;
these modifications are necessary for understanding the rest of the proof. The finite junk collector
FJUNK and the infinite junk collector INFJUNK are strategies that act outside of the priority
tree and will get to act at the end of every stage. Since the nodes on the construction tree will
produce finite and infinite junk structures, the FJUNK and INFJUNK strategies are there to
ensure that all isomorphism types of type (I) and (III) are listed. They will do so by adding to

358

our list the missing structures of types (I) and (III) that are not produced as junk by nodes on the
priority tree.

We split these actions into infinitely many substrategies, FJUNKpF q and INFJUNKpF q,
indexed by the isomorphism type F of a finite equivalence structure. These substrategies will seek
to place a structure of isomorphism type F or F ‘ I, respectively, where I is the structure having
infinitely many infinite classes.

Description of FJUNKpF q. Initially, when FJUNKpF q is active for the first time, it checks
whether there already exists a finite structure of isomorphism type F in the construction that is
either permanently abandoned due to initialisation by some strategy on the tree, or corresponds to
the outcome wait of some strategy and thus may (or may not) be truly abandoned. If none of the
above possibilities occur, it introduces a new finite structure of type F . We say that this structure
is the witness of FJUNKpF q. FJUNKpF q has to ensure that exactly one copy of type F appears
in our list. Thus, if FJUNKpF q is already holding a witness structure, we need to ensure that no
node on the construction tree can produce a structure of type F . There are three ways in which
this may happen. We explain all three problematic situations and the modifications necessary to
resolve the conflicts.

First, a finite structure being built by τ may be abandoned and permanently thrown into the
finite junk pool after FJUNKpF q had already chosen its witness. To avoid this conflict, we adopt
the following modification to the basic strategy of τ :

Modification 1. If τ permanently abandons its structure due to an initialisation, we grow this
abandoned structure F into a very large finite structure F 1. Formally, given a finite structure F , we
enlarge F by adding sufficiently many extra classes of size 1 to F to produce a structure F 1 that is
different from any finite equivalence structure considered so far by the construction. Now, add the
enlarged abandoned structure to the junk pool by assigning it as a witness for FJUNKpF 1q. Note
that FJUNKpF 1q has no current witness and has in fact never acted before in the construction.

Second, a strategy τ on the priority tree may be playing wait and might wait forever at con-
struction steps (i) or (ii). Again, the isomorphism type of the structure being built by τ can be the
same as F for some FJUNKpF q that already has a witness.

Modification 2. When playing the wait outcome, τ will first enlarge its structure Uτ and wait with
this enlarged finite structure. Since τ cares about copying Eτ only if it is unbounded, it does no
harm to enlarge Uτ this way. Now, the strategy FJUNKpUτ q (which has never acted before) is
temporarily suspended, since τ is currently holding on to a structure of the same isomorphism type.

If later on τ finishes its wait, then Uτ will grow and FJUNKpUτ q will then start a new structure
as its witness. Since structures are always enlarged by adding a fresh number of new classes,
FJUNKpUτ q will be blocked in this way at most once.

Third, as we will see from the INFJUNK strategy below, there might be a finite structure
used as a witness by an INFJUNK strategy which is permanently abandoned by the INFJUNK
strategy and added to the finite junk pool. In this case, we also make sure that the abandoned
structure F is first enlarged and then added to FJUNKpF 1q as a witness for the appropriate
F 1. Note that once a FJUNKpF q strategy picks its follower, either on its own or is assigned its
follower when a node τ or an INFJUNK strategy abandons its current structure, this follower is
permanently tied to FJUNKpF q and no other strategy in the construction will produce a structure

359

of the same type.

Description of INFJUNKpF q. We ensure that each strategy INFJUNKpF q will produce in
the limit a structure of the form F ‘I, but at every finite stage, INFJUNKpF q has a finite part of
its intended structure. As in the case of FJUNKpF q, each INFJUNKpF q will eventually choose
its witness and will start growing it to a structure of isomorphism type F ‘ I.

The obvious conflict is that a node τ on the priority tree will also produce an infinite junk
structure at the end if τ ˚pi2i is its true outcome. Hence, we need to ensure that the corresponding
INFJUNK strategy does not duplicate this structure in our list.

To avoid repetition, INFJUNKpF q must permanently abandon its current witness D every
time τ is visited and makes more progress in constructing F ‘ I. The structure D will then be
enlarged and placed into the finite junk collector. INFJUNKpF q will then restart again with a
new enlarged witness D1 and start growing D1 towards F ‘ I, until τ is again visited and makes
more progress, if ever. In this way, either τ or INFJUNKpF q will successfully construct F ‘ I in
our list. Note that given any F , there is at most one pair pτ, iq such that τ constructs F ‘ I under
outcome τ ˚ pi2i.

We describe another possible conflict between infinite junk structures produced by the tree and
INFJUNK strategies. Consider the situation when τ is off the true path and is initialised infinitely
often due to actions of other strategies. Then it may attempt to make progress in building F ‘ I
infinitely often, but in fact, it will produce only an infinite collection of finite structures due to
being initialised. However, INFJUNKpF q is also prevented from building F ‘ I since its witness
is also infinitely often reset due to us (wrongly) assuming that τ was making progress. This means
that we will never produce a copy of F ‘ I if we simply follow the instructions as described above.
The difficulty goes away if we adopt the following modification to the basic module of τ :

Modification 3. In the definition of the parameter finpτ, jq, we will search for a longer sequence
of integers f1 ă f2 ă ¨ ¨ ¨ ă fxτ,Iτ ,jy, instead of f1 ă f2 ă ¨ ¨ ¨ ă fxτ,jy as before. Here, Iτ is
the number of times τ has been initialised through the actions of another node. We do not count
self-initialisations, where τ is initialised when playing outcome init. This modification causes τ
to produce an infinite junk structure with between xτ, Iτ , iy and 2i` xτ, Iτ , iy many finite classes,
if τ was initialised exactly Iτ times (by other nodes) and has true outcome τ ˚ pi2i. After this
modification, for each fixed F , the INFJUNKpF q strategy only needs to worry about conflicts
with a unique triple pτ, I, iq.

A final conflict between infinite junk structures produced by the tree and INFJUNK strategies
is more subtle. An INFJUNKpF q strategy might have its witness structure reset infinitely many
times because a strategy τ plays outcome pi2n infinitely often. However, the strategy τ might in
fact have true outcome pi2m for m ă n, and hence end up constructing an infinite junk structure
that is not of type F ‘ I. This means that F ‘ I is neither constructed by INFJUNKpF q nor τ .

This problem can be fixed if we allow the INFJUNKpF q strategy to pick finitely many witness
structures D0, D1, . . . , Dn instead of a single witness, where INFJUNKpF q is conflicted with
outcome pi2n of τ . While INFJUNKpF q detects no conflicts, it will grow Dn towards F ‘ I and
keep D0, . . . , Dn´1 finite. Whenever τ plays outcome pi2n, INFJUNKpF q will abandon Dn and
begin with a new Dn (while keeping D0, . . . , Dn´1). When τ plays outcome pi2m for m ă n, we
will abandon Dm`1, Dm`2, . . . , Dn and restart these with new witness structures, while keeping
D0, . . . , Dm. We also grow Dm for one more step towards making Dm – F ‘ I.

At the end, if τ has true outcome to the right of pi2n, then D0, . . . , Dn´1 will finally stabilise at

360

finite structures. We will have Dn – F ‘ I, but of course Uτ fl F ‘ I. If τ has true outcome pi2n,
then D0, . . . , Dn´1 are stable finite structures, while Dn will be infinitely often abandoned. Here,
Dτ – F ‘ I. Finally, if τ has true outcome pi2m for some m ă n, then D0, . . . , Dm´1 are stable
finite structures, while Dm`1, . . . , Dn are infinitely often abandoned. We finally make Dm – F ‘ I
and in this case, Uτ is an infinite junk structure not of type F ‘ I. Thus, either τ or one of the
INFJUNKpF q witnesses (and exactly one) will succeed in building F ‘ I.

9.2.6 Formal construction.

The basic strategies of τ and the junk collectors have been described above. We put it all together
in this section. We adopt Modification 3 above in the definition of the parameter finpτ, jq. The
construction will, at stage s, define the current approximation δs to the true path, where |δs| “ s.
Suppose τ Ă δs has been defined. We now need to describe the actions of τ and the outcome played
at this stage.

Growing Uτ . The first thing we do is check if τ ˚ pi3 was played at the previous visit to τ , and
if not, we do not grow Uτ and skip to the step “acting for τ” (to be explained after we finish with
“growing Uτ”). Otherwise, suppose that τ ˚ pi3 was played at the previous visit to τ . Let s0 ă s
be the previous stage where Uτ last grew. Take the following actions:

• For each class eτ,j such that no `τ piq maps to it and where j ď the largest element in the
current range of fin, introduce a new class uτ,i in Uτ to have the same size and set `τ piq “ j.

• For every class uτ,i in Uτ such that `τ piq exists, we grow uτ,i to have the same size as eτ,`τ piq.

• Enlarge Uτ by adding sufficiently many new uτ classes of size 1, so that the resulting finite
structure has never been looked at by the construction.

If this is the first visit to τ since an initialisation (so that s0 does not exist), we begin building
a new structure Uτ by taking Uτ to be the enlargement of the empty structure.

Recall that s0 ă s was the stage where we last grew Uτ ; set s0 “ 0 if this does not exist. Check
if one of the following holds:

• There exists a stage t such that s0 ă t ă s, and some node α such that α ˚ pi3 Ď τ and
α ˚ pi2pi´ 1q Ď δt for some i, or

• There is some i ă dompfinqrs0s such that finpiq has changed, or Qpτ, kτ , iq has fired between
s0 and s. (As before, we assume that Qpτ, kτ , 0q never fires.)

Pick the least i for which one of the above applies:

• i “ 0: Play outcome init and initialise τ .

• i ą 0: If the first alternative applies, we say that τ is forced to play outcome τ ˚ pi2pi´ 1q; if
the second alternative applies, we say that τ wants to play outcome τ ˚ pi2pi´ 1q. In either
case, we play outcome τ ˚ pi2pi´ 1q and take the actions described under the basic strategy
for τ in §9.2.3(iii) when outcome pi2pi´ 1q is played.

• No i found : Play outcome wait.

361

In any case, go to Initialising other nodes (below).

Acting for τ . Suppose that we did not manage to grow Uτ . Now take the actions and outcome
described under the basic strategy for τ in §9.2.3(i) or (ii), whichever applies. Proceed to Initialising
other nodes (below).

Initialising other nodes. We have described the actions of τ and the outcome of τ at this
stage. Now initialise all the nodes mentioned in §9.2.4. When a node τ is initialised, we will first
enlarge the finite structure Uτ to U 1 and assign it as a witness to FJUNKpU 1q, reset all parameters
associated with the node (except for the counter Iτ), and increase the value of Iτ by 1, unless this
is due to a self-initialisation.

This ends the description of the actions and the outcomes of τ . Suppose we have finished with
the definition of δs of length s. Before we conclude the construction stage s, we shall act for the junk
collector strategies. First, process the INFJUNK strategies (below), followed by the FJUNK
strategies.

INFJUNK action. For each F with a code number less than s, we act for INFJUNKpF q as
follows. (The actions for different F are independent.) First, let xτ, I, ny be the triple such that
the number of classes of F is between xτ, I, ny and 2xτ, I, ny. This triple, if it exists, is unique. If
this triple is not found, then INFJUNKpF q will have no conflict with any structure built by the
construction tree, and in this case, simply enumerate a witness F ‘ I into our list.

Otherwise, fix this triple xτ, I, ny. If Iτ is currently not equal to I, we will pick a new witness
structure D for INFJUNKpF q and begin growing D towards F ‘ I. If Iτ later becomes equal to
I, we will abandon the previous witness structure and proceed as below. If Iτ increases from I to
I ` 1, then we abandon all witness structures and pick a new D.

Otherwise, suppose that Iτ “ I. We begin by picking new witness structuresD´1, D0, D1, ¨ ¨ ¨ , Dn.
At each stage, we will determine if INFJUNKpF q has any conflicts with τ . If it is not the case
that τ is visited and outcome pi2m for some m ď n or outcome init is taken, then there are no
conflicts; at this stage, INFJUNKpF q simply does nothing with D´1, D0, ¨ ¨ ¨ , Dn´1 and grows
Dn for one more step towards making Dn – F ‘ I.

Suppose that τ is visited and outcome pi2m for m ă n is taken. Then INFJUNKpF q does
nothing withD´1, D0, ¨ ¨ ¨ , Dm´1, and abandons and picks new witness structures forDm`1, ¨ ¨ ¨ , Dn.
It also grows Dm by one more step towards making Dm – F ‘ I.

Suppose that τ is visited and outcome init is taken. Then INFJUNKpF q abandons and
picks new witness structures for D0, ¨ ¨ ¨ , Dn. It also grows D´1 by one more step towards making
D´1 – F ‘ I.

Finally, suppose that τ is visited and outcome pi2n is taken. The action of τ at this stage was
to restrain a set of classes G of Uτ and grow all the remaining ones. If F Ď G and such that every
class of G´F is larger than the largest class in F , and has grown since the last time we considered
this step, then a conflict occurs at this stage. INFJUNKpF q will abandon its current witness and
pick a new witness structure Dn and keep D´1, ¨ ¨ ¨ , Dn´1. Otherwise, if there are no conflicts, then
simply grow Dn.

In the strategy above, we need to ensure several things. First, every time we pick a new witness
structure, we need to take it to be a suitable enlargement of the empty structure. Second, every
time we grow an existing structure, we need to increase the size of one of its classes, as well as take
a suitable enlargement of it. Third, if any witness structure is abandoned, INFJUNKpF q will
first enlarge it to a suitable finite structure D1 and then assign it to FJUNKpD1q as a follower.

362

FJUNK action. For each F with a code number less than s, we act for FJUNKpF q as follows.
If FJUNKpF q has no current witness, and if there is no structure X currently in the list such that
X – F , then FJUNKpF q will introduce a witness structure of isomorphism type F . Otherwise,
do nothing.

This ends the description of the construction.

9.2.7 Verification

We define the true path of the construction inductively, each time selecting the leftmost outcome
which is visited infinitely often. It is easy to check that each node on the true path is initialised by
another node only finitely often. Infinite self-initialisation is still possible.

We will need to argue two things: First, that all structures of type (I), (III), and (V) are
represented in our list, and second, that our list does not contain repetitions.

We begin with an important lemma.

Lemma 9.2.3. Let τ be a node on the construction tree, which is visited infinitely often by the
construction, initialised by other nodes I ă 8 times, and where τ ˚ pi2i is the leftmost outcome of
τ visited infinitely often. Then the final structure Uτ built by τ is an infinite junk structure of type
(III) with between xτ, I, iy and 2xτ, I, iy many finite classes.

Proof. Since pi2i is played only when we grow Uτ , this means that we grow Uτ infinitely often.
This means that τ ˚ pi3 is also played infinitely often, and so dompfinq grows arbitrarily large.
Since τ is visited infinitely often but outcomes to the left of pi2i are each played finitely often, this
means that finpiq will eventually be defined and hold a stable value. After finpiq is stable, for each
class eτ,f of finpiq, we will be able to define `´1

τ pfq and never again redefine `´1
τ pfq (notice that

these cannot be redefined by an outcome to the right of τ ˚ pi2i). Since all classes in finpiq are
finite, this means that there are at least xτ, I, iy many finite classes in Uτ .

Each time we play outcome pi2i we will preserve a fixed set of Uτ classes: these are uτ,j for
j ă i` 1 and uτ,`´1

τ pfq for f P finpiq or f ă i` 1. There are at most 2i` 2` xτ, I, iy ă 2xτ, I, iy
many preserved classes. All other classes are increased in size. Thus Uτ will have at most 2xτ, I, iy
many finite classes.

Finally, each time we grow Uτ we enlarge it, so Uτ must contain infinitely many classes, and
hence infinitely many infinite classes. Hence, Uτ is an infinite junk structure of type (III). Note
that τ does not have to be on the true path in the statement of the lemma.

Lemma 9.2.4. Suppose τ is on the true path, and the true outcome of τ is pi3. Then Eτ – Uτ is
unbounded.

Proof. Since τ ˚ pi3 is played infinitely often, dompfinq must grow arbitrarily large. Furthermore,
τ ˚ pi2i is played finitely often for each i, which means that finpiq must eventually be defined and
stable. Therefore, Eτ must be unbounded. Also, the unboundedness of Eτ implies that whenever
`τ is set undefined for some class ui in Uτ and later seeks a new image in Eτ , it will be able to find
a suitable image (since Eτ contains arbitrarily large classes).

Similarly, since Uτ is grown at infinitely many stages and dompfinq grows arbitrarily large,
whenever `´1

τ pjq is set undefined for some class ej in Eτ , we will always get a chance to redefine
`´1
τ pjq. Furthermore, each `τ piq and `´1

τ pjq will not be made undefined once finpiq or finpjq is

363

stable; notice these cannot be made undefined by an outcome or node to the right of τ ˚ pi2i or
τ ˚ pi2j. Thus, `τ is total, and clearly bijective.

It is also easy to check that at every stage where `τ piq is defined, the current size of ui is at most
the current size of e`piq: This is certainly true at the point when `τ piq receives a new definition,
and after that, we only grow ui to match the size of e`piq (unless under a pi2n outcome where we
also make `piq undefined). Since there are infinitely many stages where we grow Uτ , we have in fact
that the sizes of ui and e`piq are equal. Therefore, Eτ – Uτ , and in fact, Eτ –∆0

2
Uτ .

Lemma 9.2.5. All structures in our list are of type either (I), (III), or (V).

Proof. Every time FJUNKpF q receives or picks a witness structure, it is of type F and no further
changes are made to this witness structure.

If INFJUNKpF q picks a witness structure D, and if D is either later abandoned or is never
grown again, then D ends up being finite. On the other hand, if D is never abandoned and is
grown infinitely often, then we will be able to make it of type F ‘ I; the only issue is that we
always enlarge a structure when growing, however, this action only adds classes of size 1, so it is
compatible with extending it to F ‘ I.

Finally, if a structure U is introduced by a node τ , and is either later abandoned or is grown
finitely often, then U ends up being finite. Otherwise, suppose U is grown infinitely often and never
abandoned. This means that τ is visited infinitely often but initialised only finitely often, and the
leftmost outcome of τ visited infinitely often has to be either pi3 or pi2n for some n. If it is pi2n,
then we apply Lemma 9.2.3. Otherwise, if it is pi3, then we note that τ has to be on the true path
(otherwise, τ will be forced to play a τ ˚pi2n outcome infinitely often for some n), and so we apply
Lemma 9.2.4.

Any activity on a structure X can be classified according to: X is first introduced to the list,
X is grown, or X is abandoned. These are the only three ways in which X can be modified. It is
easy to check the following fact:

Fact 9.2.6. Any activity on a structure X must also be followed by an enlargement of the structure
at the same time. The only exception is when a FJUNK strategy picks a new witness structure.

Lemma 9.2.7. Each isomorphism type in (I), (III), and (V) is represented.

Proof. Consider a finite type F , and let s be the stage where FJUNKpF q is first active. If
FJUNKpF q ever picks a follower structure, it will be stable of type F , so let’s assume it never
gets to pick a follower. This means that at stage s there is at least one structure X currently in
the list such that X – F . (In fact, there is at most one such X at any time, but so far we have
not addressed uniqueness, and this will be done later. By Fact 9.2.6, no activity which occurs after
stage s can produce a structure of type F . Thus, in order for FJUNKpF q to remain blocked at
every stage, it must be that one of these structures X already present at stage s is stable and of
type F . So all structures in type (I) are represented.

Now fix F and consider INFJUNKpF q. If INFJUNKpF q eventually detects no conflicts,
then it will hold a stable witness structure of type F ‘ I. (Again, enlarging the structure while
growing is compatible with making it of type F ‘ I). Otherwise, INFJUNKpF q will infinitely
often detect a conflict. This conflict must each time be with a node τ playing some outcome m ď n
or init, and during the time when Iτ “ I, for a unique triple xτ, I, ny.

Let m be the least where the conflict happens infinitely often. If m ă n, then Dm will hold a
stable witness structure and we will make Dm – F‘I. Same for the case init, where D´1 – F‘I.

364

On the other hand, if m “ n and a conflict is detected infinitely often, then G´F must contain only
infinite classes, and in fact, Uτ must contain only F as its set of finite classes. Hence, Uτ – F ‘ I.
(Note that Uτ is never abandoned unless Iτ is increased or outcome init is played). So all structures
in type (III) are represented.

Now finally we fix an unbounded E of type (V), and argue that it is represented. Let i be the
least such that Ei – E; since i is least, there is some k such that P pi, kq has Π0

3-outcome. Let τ be
along the true path assigned Ei and guessing P pi, kq. We claim that τ must have true outcome pi3.
Since Eτ is unbounded, and τ being on the true path is initialised by another node only finitely
often, this means that Iτ is stable and hence finpτ, nq eventually holds a stable value for each n.
We cannot be stuck waiting under §9.2.3, step (i) for τ , as Eτ is unbounded, and so this means
that outcome pi3 of τ is played infinitely often.

Suppose some outcome to the left of pi3 is played infinitely often. This cannot be init because
finp0q holds a stable value. On the other hand, this cannot be outcome pi2pn ´ 1q; τ cannot be
forced to infinitely often play pi2pn ´ 1q, otherwise the true path is to the left of τ , and τ cannot
want to infinitely often play pi2pn ´ 1q since finpnq is eventually stable and Qpτ, k, nq eventually
stops firing. Hence, τ ˚ pi3 is along the true path. By Lemma 9.2.4 we have Uτ – Ei. Hence, all
structures of type (V) are represented.

Fix two structures X and Y in our list. We now argue that X fl Y . Suppose X and Y are both
finite. Then they each have a final activity before becoming stable; assume that the final activity
for X occurs after the final activity for Y . The following are all the different possibilities:

• Both X and Y are picked by FJUNK strategies: Since each FJUNK strategy picks at most
one witness structure, this means that X fl Y .

• X is not picked by a FJUNK strategy : By Fact 9.2.6, X is enlarged during its final activity,
so X fl Y .

• X is picked by a FJUNK strategy : Since Y is already stable when X is picked, X fl Y .

Now suppose that X and Y are both infinite; in particular, neither of them is ever abandoned.
Again, the following are all the different possibilities:

• Both X and Y are infinitely often grown by INFJUNK strategies: Since each single INFJUNKpF q
strategy produces at most one infinite structure at the end (which is necessarily of the type
F ‘ I), this means that X and Y are witnesses of different INFJUNK strategies; hence,
X fl Y .

• Both X and Y are infinitely often grown by strategies on the priority tree: Then there are
nodes τx and τy responsible for X and Y respectively. Each node works on a single structure
Uτ at any one time, so τx ‰ τy. This means that τx and τy are initialised finitely often,
visited infinitely often, and play a leftmost outcome pi3 or pi2n for some n infinitely often.
If τx plays the leftmost outcome pi2n, then apply Lemma 9.2.3 to see that X is an infinite
junk structure with between xτx, Iτx , ny and 2xτx, Iτx , ny many finite classes. If τx plays the
leftmost outcome pi3, then apply Lemma 9.2.4 to see that X – Eτx is unbounded. The same
applies to τy. Hence, it is clear that X fl Y except in the case where both τx and τy have the
leftmost outcome pi3.

If this is the case, then both τx and τy must lie along the true path. So, assume that
τx ˚ pi3 Ď τy. As τy is not deactivated, it means that ix ‰ iy, where τx is assigned Eix and

365

τy is assigned Eiy . Since both nodes τx and τy have the true outcome pi3, it must be that
Eiy fl Eix (note that it could be that ix ą iy). Hence, X fl Y .

• X is infinitely often grown by τ and Y is infinitely often grown by INFJUNKpF q: As in the
analysis above, in order for τ to produce an infinite junk structure, it must be initialised finitely
often, visited infinitely often, and play a leftmost outcome pi2n for some n infinitely often.
Suppose that X – Y – F ‘ I. The number of finite classes in F must be between xτ, Iτ , ny
and 2xτ, Iτ , ny. Since τ plays the leftmost outcome pi2n, this means that INFJUNKpF q
will have stable finite witness structures D´1, . . . , Dn´1, while Dn gets abandoned infinitely
often. This means that INFJUNKpF q does not in fact produce an infinite structure, a
contradiction.

This ends the proof.

Exercises

(See also Exercises 7.1.56-7.1.58.)

Exercise 9.2.8 (Goncharov, Lempp, and Solomon [214]). Show that there exists a Friedberg list
of the family of all d-c.e. sets under equality, and also for any n ą 2, of the family of all n-c.e.
sets (sets in Σ´1

n) for any n ą 2. (A ∆0
2 set is n-c.e. if it a we allow at most n changes in its

∆0
2-approximation via the Limit Lemma 3.1.3.)

Exercise˚ 9.2.9 (Ospichev [424]). Prove a transfinite extension of the previous exercise to cover
each class Σ´1

α (for any computable α) in the Ershov hierarchy: There is a Friedberg list of the
family of all sets Σ´1

α , for any computable α. (We omit the definitions.)

Exercise 9.2.10 (Ospichev [425]). Prove that there is a Friedberg list of all partial computable
functionals of any given finite type, including, e.g., Type III. (The general definition can be found
in [155]. For example, a functional can take as inputs Type II objects and output Type I objects,
making it a Type xII, Iy object.)

Exercise 9.2.11 (Pour-El and Putnam [433]). A class K of c.e. sets is k-Friedberg if there exists
a uniformly c.e. listing A0, A1, . . . of the class such that, for each A P K, there exist at most k
integers i1, . . . , ik such that A “ Ai1 “ ¨ ¨ ¨ “ Aik . Prove:

1. Given any k ą 2, there is a class K of finite sets which is k-Friedberg but not pk´1q-Friedberg.

2. There exists a class K of finite sets such that:

(a) G is not k-Friedberg for any k,

(b) there exists a uniform c.e. enumeration of the elements of K in which each element is
repeated only finitely often.

3. There exists uniformly c.e. collection K of c.e. sets containing a single infinite set such that
this infinite set is repeated infinitely often in every uniform computable enumeration of K.

Exercise˚˚ 9.2.12 (Wehner [504]). Prove the following surprising and seemingly forgotten result:
The index set uniformly computably enumerable families of c.e. sets with the property “K admits
an enumeration with finite repetitions” (Exercise 9.2.11(2.b)) is Σ0

6-complete.

366

9.3 Computable abelian p-groups

In this section, we present a systematic exposition of the theory of computable abelian p-groups
sufficient to prove Theorem E. The main result of the section is as follows.

Theorem (Khisamiev [290] and [287] for n “ 1). Suppose that A is a countable reduced
abelian p-group of Ulm type n ă ω (n ě 1). Then the following conditions are equivalent:

1. A has a computable copy.

2. A has a computable p-basic tree representing it.

3. (a) For every i ă n, the character χAi is a Σ0
2i`2 set, and

(b) for every i ă n, the set
#Ai :“ tm | pm, 1q P χAiu

is 0p2iq-limitwise monotonic.

(We will clarify the terminology in due course.) Khisamiev did not use the technique of p-basic
trees, so the second item of the theorem was not known to him; it is due to Ash, Knight, and
Oates (unpublished). We will need a modified version of the main technical proposition used in
this theorem to produce a Friedberg enumeration of all abelian p-groups having Ulm type ď n
when n ą 1. This section also contains several other well-known theorems, including an algebraic
characterisation of computably categorical abelian p-groups due to Goncharov and, independently,
Smith.

9.3.1 Abelian p-groups basics

We refer the reader to §5.1.1 for the basic definitions of abelian group theory. We briefly discuss
some further basic well-known algebraic facts directly related to the material of this chapter. The
standard references are [194, 285] where all these facts can be found.

In this section all groups are additive and abelian. For a fixed prime p, a group is a p-group if
for every x there is an n ą 0 such that pnx “ 0. In particular, every p-group is torsion. On the
other hand, given a torsion abelian group A, one can define the maximal p-subgroup

TppAq “ ta P A | orderpaq is a power of pu.

An elementary argument shows that, for a torsion abelian group A,

A “
à

p

TppAq,

where p ranges over all primes. This fact explains why, traditionally, the study of torsion abelian
groups is often completely reduced to the investigation of p-groups. Also, for an abelian group A,
define its socle Arps to be the subgroup of A consisting of 0 and all elements of A having order p.
The socle can be viewed as a vector space over Zp, the cyclic group of order p which also happens
to be a field.

367

Divisible groups

We have already encountered divisible (§5.1.1) and p-divisible (§5.2.1) torsion-free groups. Recall
that a group A is divisible if for every x P A and every integer m ą 0,

Dg P A such that mg “ x.

If we restrict m to powers of a fixed prime p, then we say that the group is p-divisible. That is, for
every x P A and every integer n ą 0,

Dg P A such that png “ x.

Fact 9.3.1. An abelian p-group is divisible iff it is p-divisible.

We leave the proof to Exercise 9.3.13. One important example of a divisible abelian p-group is
as follows.

Example 9.3.2. Fix a prime p. Consider the (abelian) group with generators txi : i P Nu defined
by the relations

px0 “ 0, pxi`1 “ xi, i P N.

It is clearly a p-group which is p-divisible. Thus, it is divisible by Fact 9.3.1. We will denote the
resulting group by Zp8 . It is called the Prüfer p-group, and is sometimes also referred to as the
quasi-cyclic p-group. For every fixed n, the subgroup generated by x0, . . . , xn is isomorphic to the
cyclic group Zpn`1 . The Prüfer p-group is equal to the union (the “direct limit”) of the sequence
of its subgroups

t0u Ď Zp Ď . . . Ď Zpn Ď Zpn`1 Ď . . .

under the natural inclusion.

A group is reduced if it has no divisible subgroups (other than t0u). We omit the proof of the
following well-known theorem.

Theorem 9.3.3. 1. If D is a divisible subgroup of an abelian group A, then there exists a
subgroup B of A such that D ‘B “ A.

2. Every (non-zero) divisible abelian p-group is isomorphic to a direct sum of Prüfer p-groups.

3. Thus, every abelian p-group A splits into

RpAq ‘DpAq,

where RpAq is reduced, DpAq is (maximal) divisible. If DpAq ‰ t0u, then it further splits into
the direct sum of Prüfer p-groups.

While DpAq is uniquely defined (as a subset of A) to be the maximal divisible subgroup of
A, RpAq – A{DpAq is only unique up to isomorphism. The following elementary consequence of
Theorem 9.3.3 was used in the previous chapter to establish that “being reduced” is Π1

1-complete.

Corollary 9.3.4. For an abelian p-group, being not reduced is equivalent to the existence of a
sequence of non-zero elements pxiqiPN such that for all i, pxi “ xi`1.

368

Ulm factors

In a torsion-free group, if Dy my “ x (m ‰ 0) then there exists a unique such y. Thus, in the
torsion-free case it makes sense to view the predicate

m|x if and only if Dy my “ x

as a partial operation

divm : x ÞÑ
x

m
,

if such an element exists in the group (and we set it undefined otherwise). Indeed, the predicate is
always witnessed by at most one such y. Further, in the torsion-free case, if my “ x ‰ 0 for m ą 0
and x is divisible by any n, then so is y. None of that is true for p-groups in general, as the next
example illustrates.

Example 9.3.5. Fix a prime p. Consider the (abelian) group on the generators tx, yi : i P Nu
defined by the relations

px “ 0, piyi “ x, i P N.

It is clearly a p-group. For every i, pi | x. However, it is not difficult to show that the group is
not divisible. Indeed, only finitely many elements z of this group, namely 0, x, . . . , pp ´ 1qx, have
“infinite height”, i.e., satisfy @m ą 0 m | z.

In an abelian p-group, an important property of elements is their p-height, or sometimes simply
height, which is defined below.

Definition 9.3.6. Let A be an abelian p-group, and let a P A. The p-height hppaq of a is defined
as follows:

hppaq “

#

maxtm : pm | au if this maximum exists,

8 otherwise.

Define also
A1 “ ta P A | hppaq “ 8u,

which is easily seen to be a subgroup of A. (It will be always clear from the context that A1 does
not mean the Turing jump of A.) Iterate this process and define Ap0q “ A, then Apα`1q “ pApαqq1,
and if α is a limit ordinal, Apαq “ XβăαA

pβq.

Definition 9.3.7. Define the Ulm factors of A as follows:

Aα “ Apαq{Apα`1q,

where α is an ordinal.

We are primarily interested in the case when A is countable. Since the sequence defined above
is clearly nested under inclusion,

A Ě A1 Ě A2 Ě . . . Ě Apαq Ě . . . ,

for some (finite or countable) α, we must have Apαq “ Apα`1q. The least such α is called the Ulm
type of A. We remark that if A is computable, then α ď ωCK1 (Exercise 10.1.63). It should be clear

369

that, for this α, Apαq is p-divisible and, thus, divisible. We say that A is reduced if Apαq “ t0u,
where α is the Ulm type of A; equivalently, if it has no non-trivial divisible subgroups. For some
reduced R,

A – R‘Apαq,

where Apαq is divisible and α is equal to the Ulm type of A. Further, the Ulm type of R is equal to
α as well. The subgroup R is not unique in general, but it is clearly unique up to isomorphism.

Groups of Ulm type 1

Clearly, for every α, Aα “ Apαq{Apα`1q has no non-zero elements of infinite p-height.

Theorem 9.3.8 (Prüfer [436]). Assume A is a countable abelian p-group that has no elements of
infinite p-height. Then A splits into a direct sum of cyclic groups.

We will also need the following fact that is easily derived from the preceding material, but it is
rarely stated in the literature in the form in which we will need it.

Theorem 9.3.9. Let A be an abelian p-group such that A1 is divisible. Then A splits into a direct
sum of cyclic and quasi-cyclic direct summands. Furthermore, the characteristic of A

χA “ txn, ky : A has at least k direct summands isomorphic to Zpnu,

where n, k P N, together with the number of quasi-cyclic summands, fully describes A up to isomor-
phism.

Proof. Split A into its reduced part and its divisible part using Theorem 9.3.3. Further split it
into the sum of cyclic and quasi-cyclic (Example 9.3.2) groups using Theorems 9.3.3 and 9.3.8.
Uniqueness follows from considering dimensions of subspaces of the socle. In the divisible part,
the number of the quasi-cyclic summands is equal to the dimension of its socle. In the reduced
summand, for any fixed k, consider the dimension of the Zp-space

ta P A : pa “ 0^ hppaq ě ku{ta P A : pa “ 0^ hppaq ą ku,

which is equal to the number of cyclic summands of order Zpk .

Note that χA is exactly the invariant of an equivalence structure EA which has a class of
size κ if and only if A has a cyclic summand of the form Zpκ (κ P N Y t8u). In other words,
Theorem 9.3.9 illustrates that (countable) abelian p-groups of Ulm type 1 and equivalence structures
(Definition 9.1.1) can be described using the same invariants. We will soon see that this fact also
holds effectively.

Groups of Ulm type α ě 1.

The following well-known extension of Prüfer’s Theorem 9.3.8 is due to Ulm. One way to state the
theorem is as follows.

Theorem 9.3.10 (Ulm [491]). Let A be a countable reduced abelian p-group. Then the isomorphism
types of its Ulm factors completely determine the isomorphism type of A.

370

Recall that for every α, Aα “ Apαq{Apα`1q satisfies the premises of Theorem 9.3.8. Thus, Ulm’s
Theorem says that a (countable, reduced) abelian p-group A is fully described by its Ulm invariants,
which is the sequence

tχAα : α ď UT pAqu,

where UT pAq is the Ulm type of A and Aα “ Apαq{Apα`1q are its Ulm factors. If we do not want
to restrict ourselves to reduced groups, then we can also add the number of quasi-cyclic summands
of the divisible part to these invariants, as it was done in Theorem 9.3.9.

Any sequence of the form
tχα : α ď γu,

where perhaps only χγ is bounded, describes a group of bounded exponent, and can be an invariant
of some reduced abelian p-group [285]. We will later prove a rather strong effective version of this
fact, but only for groups of finite Ulm type.

A tree-representation of a group

In both Example 9.3.2 and Example 9.3.5, we used only relations of the form pxi “ xj and pxk “ 0
upon the free (abelian) group generated by the xi. In each of these examples, the respective
representation can be visualised as a tree in which 0 is the root and xi is a successor of xj if
pxi “ xj . So the quasi-cyclic group in Example 9.3.2 is just an infinite isolated path, and the group
in Example 9.3.5 has one immediate successor of 0 that has tree-rank ω. It is known that any
countable abelian p-group can be represented this way, as we will see below. Thus, while groups of
Ulm type 1 are very similar to equivalence structures, groups of higher Ulm type resemble trees.

Definition 9.3.11 (L. Rogers [455]). A p-basic tree is a set X together with a binary operation
pn ¨ x of the sort tpn | 0 ă n ă ωu ˆX Ñ X such that:

1. There is a unique element 0 P X for which p ¨ 0 “ 0,

2. pk ¨ ppm ¨ gq “ pk`m ¨ g, for all g P X and k,m P N, and

3. For every element x P X, there is a natural number n with pn ¨ x “ 0.

If a prime p is fixed, then we think of a p-basic tree as a rooted tree with 0 being the root.
Given a p-basic tree X, one obtains a p-group GpXq as follows. The set Xzt0u is treated as the set
of generators for GpXq, and we add px “ y into the collection of relations if p ¨ x “ y in X. Each
element of the group GpXq can be uniquely expressed as

ř

xPX mxx, where mx P t0, 1, . . . , p ´ 1u
(with almost all mx “ 0). We will usually deal with combinatorial trees which are subsets of ωăω,
and each such tree can be interpreted as a p-basic tree. Note that the root must always be in the
tree, for every group must contain at least the neutral element 0.

Theorem 9.3.12 (L. Rogers [455]). Every countable abelian p-group is generated by some p-basic
tree.

Non-isomorphic trees can produce isomorphic p-groups, as we now explain. Suppose that T is
a p-basic tree viewed as a rooted tree. We call a finite chain of nodes simple if it is isolated, i.e.,
every node along the chain has at most one successor. Consider the following procedure:

“Take a simple chain extending v P T, detach it, and

attach this chain to the root of T.”

371

The procedure is called stripping. If the tree rank of v does not change after stripping, then the
stripped tree T1 and the original tree T give rise to isomorphic p-groups: GpT1q – GpT q. Note that
T1 fl T in general. This process can be iterated. The only restriction is that the tree ranks of nodes
in the tree must be preserved under this transformation. We will take all these properties above
for granted and refer to [455] for a detailed analysis.

Exercises

Exercise˝ 9.3.13. Prove Fact 9.3.1.

Exercise˝ 9.3.14. Describe the Ulm invariants of the group defined in Example 9.3.5. Draw the
diagram of its Ulm tree that is obtained naturally from its definition. Give an example of a non-
isomorphic tree that determines the same group. Produce an isomorphism of groups that witnesses
it.

Exercise˝ 9.3.15. Let χ be the characteristic describing an equivalence structure having infinitely
many classes of each fixed finite size. Produce a p-basic tree of the reduced abelian p-group A of
Ulm type 2 whose Ulm invariants are χA0 “ χA1 “ χ.

9.3.2 Computable abelian p-groups of Ulm type 1

Every (countable) abelian p-group of Ulm type 1 splits into a direct sum of cyclic and quasi-cyclic
(Prüfer) summands Zp8 , by Theorem 9.3.8. Khisamiev [287] was the first to describe computably
presentable abelian p-groups that split into a direct sum of cyclic groups. In this section, instead
of giving a brute-force proof of this result, we reduce the problem of computable presentability of
such a group to the problem of computable presentability of the equivalence structure that strongly
resembles this group. The uniform procedure described in the proof of this result, Theorem 9.3.17,
will be very useful in later subsections.

The transformation G ÞÑ EG

Recall that for an abelian p-group of Ulm type 1, its characteristic is defined to be

χA “ txn, ky : A has at least k direct summands isomorphic to Zpnu.

Also, recall that DpAq denotes the maximal divisible subgroup of A. If DpAq ‰ t0u then DpAq
further splits into a direct sum of Prüfer subgroups Zp8 . The number of the Zp8-summands in
DpAq is equal to the Zp-rank of the socle of DpAq, which is the Zp-vector space DpAqrps generated
by the elements of DpAq whose order is equal to p:

rk DpAq “ rkZpDpAqrps “ rkZpta P DpAq : pa “ 0u.

These invariants are, of course, very similar to the respective invariants of an equivalence struc-
ture; see Definition 9.1.1.

Definition 9.3.16. An abelian p-group G of Ulm type 1, define EG to be the equivalence structure
such that χEG “ χG and rk DpEGq “ rk DpGq. (In EG, each summand of the form Zpκ is replaced
with a class of size κ P NY tωu.)

372

Theorem 9.3.17 (Melnikov and Ng [377]). An abelian p-group G of Ulm type 1 is computably
presentable iff the equivalence structure EG is computably presentable. Furthermore, this cor-
respondence is uniform.

Proof. We first clarify what we mean when we say that the correspondence is uniform. Suppose

G “
à

iPI

Gi,

where for each i the summand Gi is either a cyclic p-group or Zp8 . (We call such a decomposition
full.) The value λ such that Zλ – Gi is either a natural number n or the symbol 8, and it will be
denoted by #Gi.

The definition of G ÞÑ EG. In the notation above, define EG to be the equivalence structure in
which the i-th equivalence class Ei has size exactly #Gi. (We write #Ei to denote the size of Ei.)

By Theorem 9.3.9, the isomorphism type of EG does not depend on the given full decomposition
of G. We can pass from an equivalence structure to a group using the following transformation.

The definition of E ÞÑ GE. Given an equivalence structure E “
ř

iPI Ei (meaning that Ei is the
i-th class of E), define

GE “
à

iPI

Gi,

where Gi is either cyclic or quasi-cyclic and #Gi “ #Ei for each i P I.

It follows that GEA – A and EGU – U for any equivalence structure U and any abelian p-group
A of Ulm type 1.

Clearly, the transformation E ÞÑ GE is uniformly computable, i.e., is witnessed by a computable
functional whose inputs do not have to be computable. However, it is not immediately clear whether
G ÞÑ EG should also be uniformly computable.

Proposition 9.3.18 (Melnikov and Ng [377]). The transformation G ÞÑ EG defined above is
uniformly effective. Furthermore, regardless of the Ulm type of the input abelian p-group G, the
output of the uniform procedure is always an equivalence structure.

Proof. The definition of the Turing functional representing G ÞÑ EG is as follows. We work com-
putably relative to the open diagram of G. Clearly, Zp-independence is decidable in the socle Grps
of G, relative to the diagram. (As before, Grps “ tg P G : pg “ 0u.) First, initiate a uniformly
effective enumeration of any basis x0, x1, x2, . . . of the socle Grps of G. For each i such that xi has
been found, define

si “ sup
m0,...,mi´1PZp

hppxi ´
i´1
ÿ

j“0

mjxjq,

which can be G-effectively approximated from below, allowing the limit to be 8. (If xi has not yet
been found or does not exist, then we can either set si “ ´1 or keep it undefined.) Initiate the

373

enumeration of an equivalence structure U in which #Ui “ si ` 1. Note that we never refer to the
Ulm type of the input group.

We now check that the procedure described above satisfies the desired properties. Clearly,
it is uniformly effective. Furthermore, regardless of the Ulm type of G, the function i ÞÑ si is
monotonic, and thus U is well-defined. We claim that if the Ulm type of G is 1, then U – EG. For
this purpose, we define a full decomposition of G induced by the definition of si and the choice of
the basis x0, x1, . . . of Grps.

Evidently, s0 “ hppx0q. Fix a (maximal) chain of p-divisions below x0 that witnesses hppx0q, and
let C0 be the subgroup of G generated by this chain. Then C0 is either a pure cyclic or a quasi-cyclic
subgroup of G. Since C0 is either pure cyclic or divisible, it detaches as a direct summand of G,

G “ C0 ‘A1.

Fix the projection π1 onto A1. We claim that

hA1
p pπ1px1qq “ hG{C0

p px1q “ sup
m0PZp

hppx1 ´m0x0q “ s1.

Fix a full decomposition of A1, which clearly exists since the Ulm type of A1 is 1. Then

x1 “ n0x0 `
ÿ

niyi,

where the yi come from distinct summands in the induced full decomposition of the socle of A1.

Note that the p-height of x1 in G{C0, h
G{C0
p px1q, is equal to hpp

ř

niyiq. Also, because the sum is
direct,

hppmx0 `
ÿ

niyiq ď hpp
ÿ

niyiq

for any m. Since in the definition of s1 we take the supremum over all such m (including m “ n0),
it follows that hA1

p pπ1px1qq “ s1, as claimed.

Fix a chain of p-divisions in A1 that witnesses hA1
p pπ1px1qq “ s1, and let C1 be the subgroup of

A1 generated by this chain. Similarly to C0, it must be the case that C1 detaches in A1.
Suppose we have defined C0, . . . , Cn and An`1, where the Ci are either cyclic or quasi-cyclic,

and

G “

˜

n
à

i“0

Ci

¸

‘An`1.

As above, we can choose Cn`1 that witnesses

hAn`1
p pπn`1pxn`1qq “ h

G{
ř

i Ci
p pxn`1q “ sup

m0,...,mnPZp
hppxn`1 ´

n
ÿ

j“0

mjxjq “ sn`1,

the proof of which is almost identical to the case n “ 1 (here πn`1 is the projection onto An`1).
As before, we get that Cn`1 detaches within An`1 to form An`2.

This way, we produce a subgroup B of G that satisfies the properties:

i. B “
À

i Ci, where the Ci are cyclic or quasi-cyclic subgroups,

374

ii. the socle of B is equal to the socle of G.

Property i. follows from the definition of C0, C1, To see why ii. holds, recall that x0, x1, . . .
is a basis of Gp, and

SpanZptx0, x1 ´ n0,0x0, x2 ´ n1,0x0 ´ n1,1x1, . . .u “ SpanZptx0, x1, . . .u

for any choice of ni,j P Zp. The generators of the socles of Ci are of the form xi´
ř

jăi ni,jxj , thus
ii. holds.

Recall that by our assumption G is a direct sum of cyclic and quasi-cyclic p-groups. We claim
that i. and ii. together imply that B “ G. Aiming for a contradiction, assume α P GzB. Suppose
also that pnα P B while pn´1α R B. Note such an n exists since Brps “ Grps (by ii. above).
Without loss of generality, we can assume that n “ 1. We arrive at

pα “
ÿ

iďk

di,

where di P Ci for each i “ 0, . . . , k. We may assume that each di ‰ 0, otherwise we re-arrange the
indexing of the Ci. This assumption is used throughout the proof of the claim below.

Claim 9.3.19. In the notation as above, for each i ď k there exists d1i P Ci such that pd1i “ di.

Proof of Claim. Suppose such a d1k does not exist (the case when i “ k). But then the chain that
generates Ck is not maximal in G{p

ř

jăk Cjq as witnessed by the projection of a suitably chosen
Zp-multiple of the coset of α. Thus, dk “ pd1k for some d1k P Ck.

To see why d1k´1 exists, consider ppα ´ d1kq “ pα ´ dk P
À

jăk Cj . As we had with α and
dk above, the Ck´1-projection of the element pα ´ d1kq will witness the failure of maximality (in
G{

ř

jăk´1 Cj) of the chain used to define Ck´1, unless d1k´1 exists. We proceed in this manner to
find d1k´2, . . . , d

1
0.

We conclude that pα “
ř

iďk pd
1
i. Then ppα´

ř

iďk d
1
iq “ 0 and thus

α´
ÿ

iďk

d1i P Grps “ Brps Ď B.

Together with
ř

iďk d
1
i P B this gives α P B, contradicting the choice of α.

Finally, since all full decompositions of G are isomorphic (as decompositions), we have that
U – EG.

The proof of Theorem 9.3.17 is finished.

Consequences of Theorem 9.3.17

Recall that we write RpAq for the reduced part of A consisting only of finite cyclic summands. Let
#A “ #RpAq be the set of k such that A has at least one direct summand of the form Zpk . As an
immediate corollary of Theorem 9.3.17 and Theorem 9.1.4, we obtain:

375

Theorem 9.3.20 (Khisamiev [287]). The following cases give a complete characterisation of
all computably presented abelian p-groups of Ulm type 1:

1. If A has infinitely many quasi-cyclic summands, then A is computably presented iff χA is
Σ0

2.

2. If A has at most finitely many quasi-cyclic summands, then A has a computable presen-
tation if and only if χRpAq is Σ0

2 and #A is limitwise monotonic.

Of course, Khisamiev proved Theorem 9.3.20 more directly, avoiding Proposition 9.1.8; see
Exercise 9.3.39.

A computable abelian p-group of Ulm type 1 does not have to fully computably split into cyclic
and quasi-cyclic summands. However, it follows from Theorem 9.3.17 that we can always uniformly
produce a nice copy which does.

Corollary 9.3.21. Given a computable p-group A of Ulm type 1, we can uniformly pass to a
computable presentation H of A that admits an effective full decomposition into cyclic and quasi-
cyclic subgroups.

The next corollary contrasts greatly with the positive result about torsion-free abelian groups
established in Part 1 (see Theorem A).

Corollary 9.3.22. There exists a c.e. presented reduced abelian p-group that is not isomorphic to
any computable group.

Proof. In Corollary 9.1.10 we established that there is a c.e. presented equivalence structure without
infinite classes that has no computable presentation. The transformation E ÞÑ GE clearly turns
c.e. presented structures having only finitely many classes into c.e. presented groups. To see why,
whenever a class Ei of E decreases in size, declare all elements in the respective cyclic summand of
GE equal to zero, and introduce a new summand that will now copy Ei (in the sense that its order
will be pn, where n is the current size of Ei). See also Exercise 9.3.40. Apply Theorem 9.3.17 to
GE .

Indeed, assuming Exercise 9.1.27 (which says that there are low ∆0
2 sets that are not l.m.), we

obtain:

Corollary 9.3.23. There exists a low abelian p-group not isomorphic to any computable group, but
isomorphic to a c.e. presented group.

Another corollary concerning direct decompositions is as follows.

Corollary 9.3.24. There exists a computable abelian p-group whose reduced part has no computable
presentation.

Proof. This follows from Theorem 9.3.20 and the existence of Σ0
2 sets that are not l.m. (Lemma 9.1.20).

376

Recall that one of the two main results of this chapter is the existence of a Friedberg enumeration
of all abelian p-groups of Ulm type ď n. In Theorem 9.2.1, we proved that such an enumeration
exists for computable equivalence structures. Thus, Theorem 9.2.1 also implies the case when n “ 1
for groups.

Corollary 9.3.25. There is a Friedberg enumeration of all computable abelian p-groups of Ulm
type 1.

It follows from Theorem 9.3.17 and results in [330] and [213] that, in contrast, no such enumera-
tion exists for all computable reduced abelian p-groups of Ulm type 1; we leave this to Exercise 9.3.41.

Computably categorical abelian p-groups‹

It turns out that computably categorical abelian p-groups can be found only among groups of Ulm
type 1, so we include their description here. The description of computably categorical abelian
p-groups does not require any particularly deep methods. The theorem below is due to Goncharov
[203] and Smith [474]. (The result is stated incorrectly in Smith [474].) Since this result will not be
particularly important to us, we provide only an extended sketch that omits some of the standard
details related to the priority method but explains the algebra.

Theorem 9.3.26. A computable abelian p-group A is computably categorical iff A splits into
a direct sum of cyclic and quasi-cyclic groups

A “
à

i

Ai,

where all but finitely many elementary summands Ai are isomorphic to some fixed Zpλ , λ P
NY t8u. (Note the direct sum can be finite.)

Proof. We first check that an abelian p-group of the form A “
À

iAi, where almost all Ai are
isomorphic to some fixed Zpλ , is computably categorical. Unlike the analogous case for equivalence
structures, it requires more effort to verify this claim. We split the verification into four lemmas
that cover all possible cases. One important case is as follows.

Lemma 9.3.27. Every divisible abelian p-group is computably categorical.

Proof. Every divisible p-group splits into a sum of quasi-cyclic summands Zp8 . Consequently, there
exists a “natural” copy of any such group where these summands form computable subgroups. Let
G be such a “natural” copy. Given some other computable copy H, to show that it is computably
isomorphic to G, it is sufficient to find a complete computable direct decomposition of H into
quasi-cyclic summands. Once such a decomposition is obtained, we simply match the generators
of the quasi-cyclic summands in H and G and extend this map to arbitrary elements to obtain a
computable isomorphism.

Initially, pick any non-zero element h0 P H in the socle Hrps (i.e., ph0 “ 0). Initiate the
enumeration of a sequence ph0,iqiPN with the properties:

h0,0 “ h0, ph0,1 “ h0,0, . . . , ph0,i`1 “ h0,i,

377

Such elements must exist and therefore will eventually be found; however, their choice is not unique.
(We always pick the first found ones.) Let

H0 “ xh0,i : i P Ny – Zp8 .

We claim that H0 is a computable subgroup of H. Given any h P H, calculate its order; suppose it
is pk. Then h P H0 iff h P xh0,k`1y.

To define H1, choose any h1 P Hrps having the smallest index so that h1 R H0 (or, equivalently,
such that xh1y XH0rps “ t0u). Define

h1,0 “ h1, ph1,1 “ h1,0, . . . , ph1,i`1 “ h1,i, . . . ,

and set H1 “ xh1,i : i P Ny. We have H1rps “ xh1y and, thus, H1rps XH0rps “ t0u.
We claim that H1 XH2 “ t0u. For suppose h P H1 XH2 is non-zero. Then for some k, pkh “ 0

and pk´1h ‰ 0. But pk´1h P H0rpsXH1rps “ t0u, a contradiction. The subgroup H1 is computable
as well.

Then pick h2 of order p outside H1‘H2 to define H3. As before, we obtain H3XpH1‘H2q “ t0u.
We iterate this to define a subgroup of H of the form

D “
à

iě1

Hi,

where Hi – Zp8 are uniformly computable. (We also include the case when this direct sum is finite,
which corresponds to the case when the socle of H is finite and, thus, for some i we cannot find
hi.) Additionally, Drps “ Hrps. We claim that this implies D “ H.

If there is some d P HzD, then it cannot have order p. For some k ą 0, pkd has order p. Thus,
for some 1 ď m ď k, we must have that pmd P D and pmd ‰ 0; let m be the smallest such. By
divisibility of D, there exists a u P D such that pu “ pmd. Then u´ pm´1d has order p, and thus
u´ pm´1d P D, which implies pm´1d P D, contradicting the minimality of m.

Another important case is covered by the following lemma.

Lemma 9.3.28. Suppose A is a direct sum of countably many copies of the cyclic group Zpk , for
some fixed k. Then A is computably categorical.

Proof. This is the same as the previous lemma, but this time for every i, we define a finite sequence

hi,0 “ hi, phi,1 “ hi,0, . . . , phi,k´1 “ hi,k´2,

where phi “ 0 is taken outside of xhj : j ă iy. The verification is essentially the same as in the
proof of Lemma 9.3.27, including the very final step. There, the existence of u with pu “ pmd
follows from noting that the order of pmd has to be ă pk.

Another case is as follows.

Lemma 9.3.29. Suppose A splits into cyclic and quasi-cyclic p-groups, almost all of which are
quasi-cyclic. (This includes the case when there are only finitely many summands in total.) Then
A is computably categorical.

378

Proof. As before, every such group has a “natural” presentation that computably splits into cyclic
and quasi-cyclic summands. Given some other copy, it is sufficient to split it computably in a way
that the isomorphism types of the summands can be decided.

If A is finite, then there is nothing to prove. If A “ F ‘D, where F is finite and D is divisible,
then fix F non-uniformly. Let m be so large that pmF “ 0. Then repeat the proof of Lemma 9.3.27
by choosing the next element hi to always have p-height at least m.

The remaining case is covered by the next lemma.

Lemma 9.3.30. Suppose A splits into cyclic and quasi-cyclic p-groups, almost all of which are
cyclic and isomorphic to some Zpk , for a fixed k. Then A is computably categorical.

Proof. By the previous lemma, without loss of generality A splits into an infinite sum of cyclic
and quasi-cyclic p-groups, all but finitely many of which are Zpk . We non-uniformly fix the finitely
many cyclic summands of exceptional sizes; let the subgroup generated by these summands be F .

If there are no quasi-cyclic summands, then proceed as in the proof of Lemma 9.3.28 by addi-
tionally requiring that the next hi is outside the socle of F .

If there are several quasi-cyclic summands, then without loss of generality (after fixing the
finitely many exceptional finite summands), assume that any element of order pm (or larger) has
to come from the finitely many exceptional quasi-cyclic summands (if there are any). Fix finitely
many Zp-independent elements d1,0, . . . , dn,0 of the socle of A that have their p-height ě m; where
n ě 1 is the largest such that an n-tuple exists.

These elements must come from different disjoint copies of Zp (repeat the argument at the end
of the proof of Lemma 9.3.27), and they must generate the divisible part of A. We then use these
elements to define infinite chains of generators that together span the divisible part of the group,
and additionally induce a direct decomposition of it into quasi-cyclic summands. For that, also fix
d1,m´1, . . . , dn,m´1 such that pm´1di,m´1 “ di,0, for all 1 ď i ď n.

Repeat the process described in Lemma 9.3.27, but this time initiate the enumeration of pdi,jq
beginning with j “ m ´ 1, for each i. This results in a computable direct decomposition of the
divisible part. Its socle is Zp-independent of the socles of the other cyclic summands that we
define when we proceed as in the proof of Lemma 9.3.28. Thus, we obtain a computable direct
decomposition of the entire group into cyclic and quasi-cyclic summands, in which, additionally, we
know the isomorphism type of each summand.

The lemmas above together give one implication of the theorem. The other implication is also
split into several lemmas.

Lemma 9.3.31. Suppose the orders of the cyclic summands in A are bounded, and suppose that
for some λ ă γ in ω Y tωu, A has infinitely many summands of the form Zpλ and infinitely many
summands of the form Zpγ . Then A is not computably categorical.

Proof. In this case, since the Ulm type is 1, the group splits into cyclic and quasi-cyclic summands,
with the orders of all cyclic summands being uniformly bounded. By Theorem 9.3.17, we can
further assume that it computably splits.

Proceed as in the proof of Theorem 9.1.11 (the case when there are infinitely many classes of
size k0 and infinitely many classes of size k1, where k0 ă k1, allowing the possibility k1 “ ω). The
ways in which this proof differs from the proof for equivalence structures are summarised below.

379

We use elements from the socles of the elementary summands Zpλ as witnesses (not just arbitrary
elements of the summands). Also, a potential isomorphism ϕe can map a witness to a linear
combination of the elements generating the socles of the summands in the other copy:

ϕepwq “
ÿ

iďk

miai, mi P Zp.

If ϕepwq is not of this form, then its order is not p, and thus we do not need to do anything to
diagonalise against ϕe. If the p-height of hppwq is currently declared unequal to miniďk hppaiq, then
we also do not need to act. Otherwise, if the p-heights look equal, we extend the Zpλ -summand
containing w to a Zpγ -summand, thus increasing the p-height of the witness w.

As long as we keep infinitely many Zpλ -summands, we will still end up with an isomorphic
group. Thus, we simply never pick our witnesses from countably many such summands (this is also
similar to the proof of Theorem 9.1.11).

Lemma 9.3.32. Suppose the reduced part of A contains elements of arbitrarily large orders. Then
A is not computably categorical.

Proof. Recall that every pure cyclic subgroup of A detaches as a direct summand in A. Thus, our
assumption about A is equivalent to saying that A has arbitrarily large cyclic summands. Also,
note that

tm | A has a cyclic summand of order pmu

is a Σ0
2-set.

To see why, pick any element a P A of p-height 0. It generates a pure cyclic subgroup which
detaches in A. Conversely, any cyclic summand has an element of p-height 0. Using 01, we can
decide whether the p-height of any element is 0, and thus 01 can list all such elements. Further, for
any given a P A, hppaq can be computably approximated from below.

If A “
Ť

sAs is a computable group, then without loss of generality, we can assume that As is
also given by its complete decomposition into cyclic p-groups (which of course do not have to be
summands of the entire A). Furthermore, if a has p-height 0 in As, then xay detaches in As.

Fact 9.3.33. Let B be any finite subgroup of A. Then for every m ą 0, there exists a cyclic
subgroup C of A of order at least pm such that

A “ C ‘ U,

where B Ď U .

Proof. We use the technique of p-basic trees explained in §9.3.1. Fix an arbitrary p-basic tree of
A. Since A has arbitrarily large cyclic summands, without loss of generality, the root of the tree
has arbitrarily long isolated finite chains attached to it. (To see why, use stripping. If there are no
vertices of rank ω, and thus A1 is divisible, then appeal to Prüfer’s Theorem. Otherwise, if there is
a node or tree rank ω, then strip infinitely many arbitrarily long finite chains below it and reattach
them to the root of the tree.)

Since B is finite, every element is a linear combination of at most finitely many generators which
label the vertices of the p-basic tree. There is a finite isolated chain of length at most m attached
to the root that does not contain any of these generators. This chain generates C, and the rest of
the vertices in the tree generate U ; it is clear that B Ď U , C X U “ t0u, and C ` U “ A.

380

The idea is to use the fact above to imitate the strategy implemented in the harder cases in
Theorem 9.1.11. Indeed, while A may not quite resemble an equivalence structure in the limit, it
certainly resembles it at every stage.

We are given a computable A “
Ť

sAs, and we are building a computable
Ť

sBs “ B – A and
meeting the requirements:

Re : ϕe : AÑ B is not an isomorphism,

for every e. We also construct a ∆0
2 map ψ : B Ñ A so that at every stage s, ψs is an isomorphic

embedding of Bs into A, and for every i P B,

Pi : ψpiq “ lim
s
ψspiq exists,

and for each j P A,

Sj : j P rangepψq.

Most of the time ψ will simply copy A into B, in the following sense. If ψspBsq Ď A is defined
and a P As`1zψspBsq, we introduce a fresh b P Bs`1, set ψs`1pbq “ a, and define the operation of
Bs`1 “ xBs, by by retraction to copy the finite group xψspBsq, ay; we also extend ψ to all elements
of Bs`1 naturally. This definition may have to be changed later due to an Re action, as explained
below. Whatever this potential change might be, to meet Sj , with priority of Sj we do not allow
this change to involve b P B with ψpbq “ j, if such an element exists.

The strategy of meeting Re is as follows. The strategy will have to preserve a finite subgroup
H “ He,s Ď Bs that is controlled by higher priority requirements.

1. Monitor ϕe and preserve (with the priority of Re) more and more of dompϕeq from change
if ϕe looks more like an isomorphism. It is Π0

2 to say that ϕe is total and is a surjective
isomorphism. Thus, preserve one more element if this predicate fires again. In this case, we
say that the stage is e-expansionary.

2. Search for w, v P A and u “ ϕepwq P B with the properties:

(a) hppuq “ hppwq “ 0 in As and Bs, respectively.

(b) For some U Ď H, Bs “ U ‘ xwy.

(c) ψspBsq X xvy “ t0u.

(d) orderpvq ą orderpwq.

Additionally, we require that the index of xu, v, wy is the smallest possible.

3. Redefine ψ on Bs to map xuy to a subgroup of xvy and keep ψ unchanged on U Ě H. Protect
the new definition of ψ with priority Re.

If ϕe insists on being an isomorphism, then such u, v, w and U will eventually be found, by
Fact 9.3.33 applied to B and A. Further, we will eventually find w whose p-height is 0 in A, not
just in As.

381

Remark 9.3.34. Locating such an element w may require a few iterations. Also, as usual in such
arguments, Fact 9.3.33 guarantees that such elements and decompositions must exist. However,
we may find some decomposition and witnesses that work for the finite groups built so far; this
decomposition does not have to extend to a decomposition of the entire group.

In this case, the change of ψ introduced by Re will ensure that ϕe cannot possibly be an
isomorphism, because any isomorphism must preserve p-height, and we made the p-height of the
witness ą 0 by embedding ϕepwq “ u into a larger cyclic group that copies xvy under the new
definition of ψ. We will then protect this definition with priority Re. On the other hand, if no such
triple is eventually found, then ϕe will eventually stop looking like an isomorphism, and thus the
restraint imposed by Re on ψ will be finite. In both cases, this restraint will contribute to what we
denoted by H above, but for the lower priority requirements. Also, the S-requirements of higher
priority will contribute to H, thus preventing ψ from changing even if Re collectively do not have
enough “expansionary stages” (however, introducing the S-requirements was indeed an overkill).

The rest of the proof is a standard finite injury argument of unbounded type (see, e.g., §3.1.6).
Eventually, every restraint is finite, each Re is met, and lims ψs exists and is an isomorphism of B
onto A.

Theorem 9.3.26 follows from the lemmas since they cover all possible cases.

The transformations E ÞÑ GE and G ÞÑ EG viewed as ďEFF -reductions˚

Let P1 be the class of abelian p-groups of Ulm type 1, and E be the class of equivalence structures.
In the notation of Definition 8.2.1, we have that

P1 ”EFF E ,

which is perhaps not too surprising, however, it did require some effort to verify this fact.
It should be clear that degree spectra are preserved (Definition 8.2.3). Furthermore, Theo-

rem 9.3.26 strongly resembles the similar description of computably categorical equivalence rela-
tions given in Theorem 9.1.11. However, the transformations are not as well-behaved as one might
hope for.

Corollary 9.3.35. The transformations E ÞÑ GE and G ÞÑ EG between equivalence structures
and abelian p-groups of Ulm type 1 preserve degree spectra and computable dimension. However,
G ÞÑ EG does not preserve ∆0

2-categoricity.

The proof is left to Exercises 10.1.103. In fact, it follows from Exercise 10.1.102 that G can
have exactly one summand isomorphic to Zp8 and still not be ∆0

2-categorical. In contrast, any
equivalence structure with exactly one infinite class is clearly ∆0

2-categorical. We see that G ÞÑ EG
cannot be modified to additionally transform isomorphisms to isomorphisms.

In Exercise 10.1.102 we will see that a certain Type I analogue of ∆0
2-categoricity, weak uniform

∆0
2-categoricity, is preserved under G Ø EG. Various notions of categoricity will be studied in

detail in the next chapter.

Computably categorical torsion abelian groups˚

According to Nazif Khisamiev, the problem below can be traced back to Mal’cev1.

1Personal communication with A. Melnikov. This problem is often incorrectly attributed to Goncharov; see, e.g.,
Problem 12.17 in the “Kourovka notebook” (Issue 12, year 1992) published by Khukhro and Mazurov [296]. As of

382

Problem 9.3.36. Describe computably categorical torsion abelian groups.

Recall that every torsion abelian group A splits into the direct sum of its maximal p-subgroups
TppAq; this is also clearly effective. It should be clear that in a computably categorical torsion
A, each maximal p-component TppAq is also necessarily computably categorical (Exercise 9.3.43).
However, the converse fails; see Exercise 9.3.44. Using a rather involved combinatorial argument,
Melnikov and Ng proved:

Theorem 9.3.37 (Melnikov and Ng [377]). The index set of computably categorical torsion abelian
groups is Π0

4-complete.

Proof. Omitted. Notably, the proof completely reduces Mal’cev’s question to a technical problem
about equivalence structures.

Of course, whether Theorem 9.3.37 provides a satisfactory classification remains open to de-
bate. (It certainly does not look like one.) However, at the very end of Section 10.1.1 (see Corol-
lary 10.1.20), we shall argue that Theorem 9.3.37 could potentially be the best description of
c.c. torsion abelian groups one can possibly hope for.

Exercises

Exercise˝ 9.3.38. Suppose χ is a characteristic describing an equivalence structure that contains
only finite classes, and so that it contains arbitrarily large classes. Let T be any (p-basic) tree.
Describe a (non-effective) procedure that builds a p-basic tree Γ so that GpΓq0 has characteristic χ
and GpΓq1 – GpT q.

Exercise˝ 9.3.39. Prove Theorem 9.3.20 directly (not using equivalence relations).

Exercise˝ 9.3.40 (Khisamiev [289]; see also [370] for a sketch). Suppose A –
À

kPS Zpk . Then A
is c.e. presentable if, and only if, S is Σ0

2.

Exercise˝ 9.3.41. Prove that there is no Friedberg enumeration of all computable reduced abelian
p-groups of Ulm type 1.

Exercise 9.3.42 (Goncharov [203]). Prove that every computable abelian p-group has either one
or infinitely many computable presentations, up to computable isomorphism.

Exercise˝ 9.3.43. Suppose A is a torsion abelian group whose maximal p-subgroup is not c.c., for
some p. Show that A is not c.c. either.

Exercise˝ 9.3.44 (Folklore; e.g. [377]). Give an example of a computable torsion abelian group that
is not computably categorical, but so that all of its maximal p-subgroups are. (See Exercise 10.1.107
for a hint.)

2024, the “Kourovka notebook” is available online at https://kourovkanotebookorg.files.wordpress.com/2023/

12/20tkt.pdf.

383

https://kourovkanotebookorg.files.wordpress.com/2023/12/20tkt.pdf
https://kourovkanotebookorg.files.wordpress.com/2023/12/20tkt.pdf

9.3.3 Groups of finite Ulm type ą 1

By Theorem 9.3.20, computable abelian p-groups of Ulm type 1 have the same computability-
theoretic and algebraic invariants as computable equivalence structures (Theorem 9.1.4). The case
of arbitrary finite Ulm type is significantly more difficult. In this subsection, we prove Theorem 9.3,
which we re-state below:

Theorem 9.3.45 (Ash, Knight, and Oates (unpublished); Khisamiev [290]). Suppose that A is
a (non-trivial) countable reduced p-group of Ulm type n ă ω, and let A0 “ A{A1, A1, . . . , An´1

be its Ulm factors. Then the following conditions are equivalent:

1. A has a computable copy.

2. A has a computable p-basic tree representing it.

3. (a) For every i ă n, the character χpAiq is a Σ0
2i`2 set, and

(b) for every i ă n, the set
#Ai :“ tm : pm, 1q P χAiu

is 0p2iq-l.m..

Proof. We prove the theorem by induction in the Ulm type n of the group.

Basic case (n “ 1). Any group that computably splits into a direct sum of cyclic and quasi-cyclic
summands can be represented by a computable p-basic tree; we leave this to Exercise 9.3.57. Thus,
the basic case when n “ 1 is given by Theorem 9.3.20 combined with Corollary 9.3.21.

Inductive step. The implication p2q Ñ p1q is obvious. We first prove p1q Ñ p3q. We prove a slightly
more general lemma that implies p1q Ñ p3q; it will be useful later.

Lemma 9.3.46. Suppose A is an abelian p-group of Ulm type ą 1 (which is not necessarily a
reduced group). If A is computable then A1 has a ∆0

3-copy and A{A1 has a computable copy.

Proof. The subgroup A1 consisting of all elements of G having infinite p-height is isolated by a
Π0

2-condition (“being infinitely p-divisible”), and therefore it has a 02- computable presentation; we
leave the details to Exercise 9.3.57.

This is almost the same as in the case when A is reduced. Since the Ulm type of A is at least
2, there must be an element a P A1, a ‰ 0, which is not divisible; equivalently, any p-basic tree
of A1 must have a non-trivial terminal node, for otherwise A1 would be divisible and A1 “ A2,
contradicting the assumption. This means that a has infinite p-height in A, but there is no x with
the property px “ a which also has infinite p-height. Using a, define an l.m. function f , as follows.
List all x1, x2, . . . with the property pxi “ a and define fpiq “ hppxiq ` 1, where hppxiq stands for
the p-height of xi.

We claim that the range of f is infinite and is contained in the collection of all n such that A{A1

has a cyclic summand of order pn. We verify this claim in the paragraph below.
It is clear that the range of f is infinite, for the p-height of a is infinite but it is not divisible.

Since the heights of the xi are unbounded, for each i there will be a j with hppxjq ą hppxiq; this

384

will imply hppxi ´ xjq “ hppxiq, because

hppxiq “ hppxj ` pxi ´ xjqq ě infthppxjq, hppxi ´ xjqu

and
hppxi ´ xjq ě infthppxiq, hppxjqu “ hppxiq.

Note that ppxi´xjq “ 0, and for some c we have phppxi´xjqc “ pxi´xjq. But this makes xcy a pure
cyclic subgroup of A of order hppxi ´ xjq “ hppxiq (that is, for each x in the subgroup its p-height
in A is witnessed within the subgroup), and pure cyclic subgroups detach, so A – B ‘ xcy. Since
pC ‘Dq1 “ pC 1 ‘D1q and xcy1 “ xcy, we have A{A1 – B1 ‘ xcy, thus proving the claim.

Note that, essentially, we have just shown that if A has a cyclic summand of order pn then A{A1

also has a cyclic summand of order pn. In fact, the converse implication is also true. To see why,
suppose xαy of order pn detaches in A{A1. The coset α must contain an element a0 such that pna0

has infinite height, but pma0 has finite height for each m ă n. Also, if the p-height of a0 in A was
not zero then, for some b P A, we would have pb “ a0, which would also hold modulo A1. So for
some β we would have pβ “ α, contradicting the choice of α. The same argument shows that the
p-height of each pma P xa0y, m ă n, is equal to the p-height of its coset in A{A1 and is equal to m.
Since the p-height of x “ pna0 is infinite, there exists some c with the property pnc “ x and with
hppcq ą 0. Consider the element y “ a0 ´ c and the cyclic subgroup xyy of A. Then hppyq “ 0, for
otherwise

hppa0q “ hppy ` cq ě infthppyq, hppcqu ą 1

would contradict hppa0q “ 0. Similarly, for m ă n, hppp
myq “ m; otherwise

hppp
ma0q “ hppp

my ` pmcq ě infthppp
myq, hppp

mcqu ą m

would contradict hAp pp
ma0q “ h

A{A1

p ppmαq “ m. This shows that xa0y is pure in A and thus detaches
as a direct summand of A.

So cyclic direct summands are the same in A and A{A1. This makes the characteristic

χA{A1 “ txn, ky : A{A1 has at least k cyclic summands of order pnu

a Σ0
2-set. Indeed, it is sufficient to search for Zp-independent a1, . . . , am of order p such that, for

each i ď m, hppaiq “ n; the latter can be decided using 01. Use Theorem 9.3.20 to produce a
computable presentation of A{A1.

By induction, Lemma 9.3.46 (combined with Theorem 9.3.20) gives p1q Ñ p3q.

We now prove p3q Ñ p2q. Observe that the proof of Lemma 9.3.46 illustrates that, if the Ulm
type of A is ą 1, then A1 “ A{A1 should satisfy the following property.

Definition 9.3.47. We say that an abelian p-group H is proper if it is reduced and har Ulm type
1 and is unbounded, i.e., contains elements of arbitrary large p-height.

Equivalently, H is proper iff H 1 “ 0 and the sizes of the finite cyclic summands in its full direct
decomposition are unbounded in size. The key technical step in the proof of p3q Ñ p1q is the
following proposition due to Ash, Knight, and Oates (unpublished).

385

Proposition 9.3.48. There is a uniform procedure which, given a computable copy of a proper
abelian p-group H and a Π0

2 p-basic tree F , outputs a computable p-basic tree THpF q with the
properties pTHpF qq

1 “ F and THpF q{pTHpF qq
1 – H.

We first explain how p3q Ñ p2q of Theorem 9.3.45 follows from Proposition 9.3.48, and then
we prove Proposition 9.3.48. By the inductive hypothesis, we have that A1 is ∆0

3-presented via a
∆0

3-computable p-basic tree. Further, using a uniform procedure, we can turn any ∆0
3-tree into a

Π0
2-subtree of ωăω, we leave this to Exercise 9.3.58. By Theorem 9.3.20 H “ A{A1 has a com-

putable presentation, which can be identified with the respective equivalence structure. Applying
Proposition 9.3.48, we can produce a computable p-basic tree THpF q representing A.

Proof of Proposition 9.3.48. We identify F with the group it represents. We also identify a proper
abelian p-group H with the corresponding equivalence structure. Under this correspondence, an
equivalence class of size n will represent a cyclic summand of order pn. Recall that, by Theo-
rem 9.3.18, this correspondence is also uniformly effective. Bearing in mind the uniform correspon-
dence H Ø EH , we will abuse notation and write H for EH . Since H is proper, the respective
equivalence structure EH will have only finite classes, but the sizes of these classes will be un-
bounded.

Fix a computable copy of ωăω viewed as an infinitely branching tree with its root, the empty
string e, located at its top. Identify F with a Π0

2-subtree of ωăω such that each σ P ωăω has
infinitely many successors which do not belong to F ; furthermore, we can assume that this set of
successors of σ outside F has an infinite computable subset of nodes. This subset will be used
to attach external chains whose sizes will be taken from H. These external chains will be called
auxiliary. Each auxiliary chain will be associated with exactly one class/summand in EH Ø H
having size greater than or equal to the length of the auxiliary chain.

We also fix a computable predicate R such that F “ tσ | D8z Rpσ, zqu. Whenever a new
existential witness for z is found in R, we say that R “fires” on σ, or simply that σ “fires”. We
identify finite strings with their computable indices, and we assume that R firing on σ implies that
R has also fired on every predecessor of σ at least once again at some previous stage. Without loss
of generality, assume that at every stage exactly one node of ωăω fires. Also recall that the empty
string e belongs to F .

Construction. Initially, at stage 0, set U “ H and T0 “ THpF qr0s “ teu. At stage s, go through
the four phases described below.

Phase 1: Updating ranks of nodes. Without loss of generality, at every stage exactly one node of
ωăω fires (recall e P F). Suppose σ has fired. By our assumption, each initial segment τ of σ fired
at least once again at some earlier stage. Let U “ tu1, . . . , unpsqu be the set of classes in H which
are currently in the range of h, and let ξ1, ξ2, . . . , ξnpsq be simple auxiliary chains with tpξiq P U
and having indices 1, 2, . . . , npsq, respectively.

Consider the subtree Ts´1 “ THpF qrs´ 1s of ωăω enumerated at the end of the previous stage
s´ 1, and let Ks be the subtree of Ts´1 rooted in σ (which has just fired).

1. Fix an m larger than any number mentioned so far and such that m is equal to the size of
some class of H which is currently outside the range of t; if no such large class is seen in H
at the stage, perform several extra steps in the enumeration of H until such a class is found.

2. Attach a new chain ξs`1 of length m´ |σ| to σ.

386

3. If there is an auxiliary chain of length nj ´ |σ| associated with a size nj P U and attached to
σ, then enlarge this simple auxiliary chain to one of length nj .

4. Suppose there is an auxiliary chain ξ attached to some τ extending σ, which is associated
with some nk P U but whose length is not equal to nk. If there are no such chains, then do
nothing. If |ξ| “ nk ´ |σ| or longer, then again do nothing. Otherwise, suppose |ξ| “ nk ´ d,
where d ă |σ|. In this case, extend this auxiliary chain by adjoining |σ| ´ d extra consequent
nodes to the end of it.

Phase 2: Re-targeting. Suppose i ă s is the least such that tpξiq has grown in H since the previous
stage. For ξi, add as many extra nodes as there are new points in tpξiq. For each j ą i and which
is not attached to the root e, update tpξjq and set it equal to the first found new class in H whose
index is larger than the index of the current tpξjq and which is currently larger than tpξkq for every
k ă j; enumerate H until such a class is found.

Phase 3: Bookkeeping. Let u be the smallest among the classes that occur in H which is currently
outside the range of h. Adjoin a simple auxiliary chain ξ of length k “ cardpuqrss to the root e of
Ts´1, set hpξq “ u, and also enumerate ξ into U .

Verification. It is clear that the nodes which will end up having infinite rank are exactly the nodes
of F ; therefore, T 1 has the correct isomorphism type. Also, T is clearly a computably enumerable
subtree of ωăω; it can be easily transformed into a computable tree. We must argue that T {T 1 „ H.

By induction on a stage and on the index of a simple chain ξ, we can show that hpξq is stable.
Indeed, hpξq has to be changed only if a chain of a smaller index has to be grown. Since all classes
in H are finite and by the inductive hypothesis, there are only finitely many stages at which hpξq
has to be changed. Suppose hpξq settled on some class u in H. Go to the stage at which the size of
u reaches its final value k. After this stage we have |ξ| ď cardpuq “ k, and it may be shorter than
k due to its position in T .

Phase 3 was responsible for making sure that no class of H is left without an auxiliary chain
associated with it. Note that chains attached to the root e cannot be re-targeted again. We are
guaranteed that e will have arbitrarily long finite chains attached to it, and therefore there is no
need to worry about any stripping issues. We explicitly made sure that every class which could
potentially be without an h-preimage will eventually be permanently associated with an auxiliary
chain attached to e. Combined with the inductive argument above, this implies that every class in
H will eventually be permanently associated with an auxiliary chain in T , and this correspondence
is 1-1.

We now verify that the following conditions hold:

(P1) If a node σ P Ts is in F , then all finite auxiliary chains that are attached to σ in Ts, except
for at most one (call it exceptional for σ at s), have their lengths equal to the sizes of classes
that occur in Hs.

(P2) If ξ is an exceptional auxiliary chain for σ in (P1) at stage s, and x P F , then there is a stage
t ą s after which ξ is extended to a chain of length that is mentioned in H; after this stage,
this auxiliary chain will never be exceptional for σ (or any other τ) again.

Condition (P1) is explicitly maintained at every stage. For a given σ, there is at most one
exceptional ξ whose length is lagging behind the size of hpξq according to the instructions in Phase

387

1. To see why (P2) holds, go to the stage at which the length of ξ reaches its final value. Since
σ P F , there is a longer chain which will eventually be attached to the same σ. Thus, according to
the instructions at substage (3) of Phase 1, the length of ξ must be set equal to the size of hpξq.

It remains to consider what happens with nodes that are forever abandoned because they never
fire again. Let σ be such a node, and assume its predecessor is in F . Then there are at most finitely
many auxiliary chains attached to it or its successors. Go to the stage at which all of these chains
reach their final value. The instructions of Phase 1 guarantee that after full stripping, this segment
of the tree becomes a collection of disjoint simple chains having lengths equal to the sizes of the
respective classes in H. Also, recall that Phase 3 guarantees that no classes are left without an
h-preimage. Combined with (P1) and (P2), this shows that T {T 1 „ H.

This finishes the proof of Theorem 9.3.45.

The following properties of the construction from the proof of Proposition 9.3.48 will be quite
important later:

Property 9.3.49. Whenever a simple auxiliary chain obtains a new image in H, the chain grows
in size.

Property 9.3.50. A chain is re-targeted only if some earlier introduced chain has grown.

Property 9.3.51. We re-introduce (the size of a) class in H that has been abandoned due to
re-targeting, as follows. We attach a new simple auxiliary chain of the correct length to the root
and associate it with the class. The new simple chain will never be re-targeted again.

Consequences of Proposition 9.3.48

Proposition 9.3.48 does not assume that F represents a reduced abelian group. This, for instance,
implies:

Theorem 9.3.52. Suppose A is an abelian p-group of Ulm type ą 1 which is not necessarily a
reduced group. Then the following are equivalent:

1. A has a computable copy;

2. A1 has a ∆0
3-copy and A{A1 has a computable copy.

Proof. p2q Ñ p1q. Recall A has Ulm type ą 1, and therefore A{A1 is infinite and furthermore the
sizes of cyclic summands in A{A1 are unbounded, for otherwise every element of infinite height in
A would have to be divisible. We can therefore run the proof of Proposition 9.3.48, which does not
require the p-basic tree for A1 to be well-founded.
p1q Ñ p2q. This is Lemma 9.3.46.

Remark 9.3.53. The transformation witnessing the proof of p2q Ñ p1q is uniform if we guarantee
that A{A1 has only finite summands whose orders are not uniformly bounded.

Theorem 9.3.52 above fails for non-reduced groups of Ulm type 1; see Corollary 9.3.24. But
the theorem also implies the following fact that should be compared with Khisamiev’s Theorem
A(3) about torsion-free abelian groups and with Corollary 9.3.22, which gives a counter-example
for groups of Ulm type 1.

388

Corollary 9.3.54 (Melnikov [370]). Every c.e. presented abelian p-group of Ulm type ą 1 has a
computable presentation.

Sketch. If G is c.e. presented, then

G1 “ th P G | h ‰ 0 & p@kqpDxq pkx “ hu.

Thus, 02 can list representatives of G1. Since the operation on G is computable and “G is 01-
computable, we conclude that G1 has a ∆0

3-presentation. Also, χA{A1 remains a Σ0
2 set. To see why,

use 01 to list all finite pure subgroups of G that must detach in G, and use their decompositions
into cyclic summands to approximate χA{A1 . But additionally, we can also non-uniformly fix a ‰ 0
of infinite p-height so that no x with the property px “ a has infinite p-height. We produce an
l.m. function using the same procedure as described in the proof of Lemma 9.3.46.

Our next task is to understand what happens when H in Proposition 9.3.48 is not necessarily
reduced. This case will be necessary to produce a Friedberg enumeration of all computable abelian
p-groups with Ulm types ď n, where n ą 1.

The modified Ash-Knight-Oates strategy

Suppose H is an equivalence structure. We identify H and the respective GH , which is a direct
sum of cyclic or quasi-cyclic p-groups. Recall that H is proper if it has only finite classes, but the
sizes of the classes are not uniformly bounded. Recall the following definition.

Definition 9.3.55. Call a computable equivalence structure an infinite junk if it has infinitely
many classes, almost all of which are infinite.

We abuse notation and write THpF q for the modified Ash-Knight-Oates jump inversion, which
is described in the lemma below.

Lemma 9.3.56. There is a uniform procedure which, on input a computable copy of an equivalence
structure H and a p-basic tree F represented as a Π0

2-subtree of ωăω with e P F , outputs a computable
p-basic tree THpF q with the following properties:

(1.) If H is proper, then pTHpF qq
1 “ F and THpF q{pTHpF qq

1 – H.

(2.) If H is an infinite junk, then THpF q – H.

(3.) If H is finite, then THpF q is finite, and furthermore, its cardinality can be assumed arbitrarily
large and with all possible uniformity2.

Proof. We adopt the following modification to the original strategy of Ash, Knight, and Oates:

Modification 1. At every stage at which the Ash-Knight-Oates module initiates a new search
through H or makes a change to its p-basic tree, adjoin a very long simple chain never seen so far
to the root of the p-basic tree. Call this extra simple chain subsidiary . If the subsidiary chain has
just been introduced, then it does not have to copy any class in H. We also initiate a search for
a new and large enough class in H that can be matched with the subsidiary chain in the future.

2Note that there are no assumptions on F apart from e P F , which is equivalent to saying that 0 is in the subgroup
generated by the p-basic tree F , and therefore this assumption is satisfied without any loss of generality.

389

The module will not act again until the search is finished (if ever). When the module acts again (if
ever), the chain is handled as a standard auxiliary chain attached to e.

The module will later be associated with a node on the tree of strategies, and in particular,
it may be initialised. We also attach a very long subsidiary chain to the root of the p-basic tree
previously handled by the strategy if the strategy τ gets initialised. Since the old p-basic tree will
be forever abandoned by the strategy, in this case there is no need to search for an image for the
subsidiary chain in H (the image can be larger than the length of the chain).

(1.) Since H is proper, we will eventually succeed in finding a long enough class in H that
can be matched to the subsidiary chain; the class in H may be (currently) larger than the chain.
Once this is done, the chain becomes indistinguishable from the other many simple chains that we
attach to the root 0 according to the non-modified instructions. There are no further interferences
of the modification with the rest of the module. It follows that in the case when H is proper,
the verification of the new module is almost literally the same as the verification contained in the
previous section.

(2.) Here the modification plays no significant role either. However, the analysis of this scenario
is new because the case of a non-reduced H has never been considered in the literature. Recall
that the first few classes of H could be finite, but the rest of the classes are infinite, and there are
infinitely many of them.

First, we claim that almost all auxiliary or subsidiary simple chains that we ever attach become
infinite. Note that a simple chain may never find a stable pre-image among classes in H. However,
at each intermediate step we always succeed in finding a long enough class in H to match with the
chain. Whenever we switch, the chain itself must grow; see Property 9.3.49. Thus, we still grow the
length of the chain to infinity, even though it may never find a stable image in H. Now consider
those simple chains which do find a stable match in H. Almost all of these chains grow infinite by
simply copying the respective stable class in H. The analysis also applies to the subsidiary simple
chains from the modification. In particular, since we are never stuck at any intermediate step,
there are infinitely many such infinite simple chains to be attached to the root. It follows that the
divisible part of THpF q has infinite rank.

There are at most finitely many exceptional chains that correspond to the finite classes in H.
There may also be several finite configurations that become simple chains after stripping the tree.
The latter corresponds to parts of the tree being forever abandoned in a Σ0

2-outcome of the Π0
2-

approximation. Every individual simple chain, as well as each chain involved in an “abandoned”
configuration, must grow whenever its image in H switches (Property 9.3.49). Thus, a chain or a
configuration of chains can be finite only if each auxiliary chain involved in the configuration finds
a stable image in H. There are only finitely many finite classes in H, and thus the reduced part of
THpF q must be finite. Furthermore, we may be forced to switch the image of a given chain only
due to some currently shorter class of a smaller index having grown (Property 9.3.50).

If a finite class in H is skipped in the construction due to re-targeting, then it will be re-
introduced again in the form of a simple chain attached to the root (Property 9.3.51). There are
only finitely many classes having a smaller index than the index of the finite class. Therefore, by
induction, each finite class will eventually find a stable image in the tree, which will be a simple
chain of the correct length. It follows that the reduced part of THpF q is isomorphic to the reduced
part of H (viewed as a p-group).

(3.) This is obvious from the description of the modification because the subsidiary chain can
be taken to be arbitrarily long. It is crucial that the chain does not have to copy any class in H at
the stage when it is first introduced.

390

Exercises

An earlier technically related exercise is Exercise 8.3.42.

Exercise˝ 9.3.57. Let A be a computable abelian group. Show that its first Ulm factor A1 “ A{A1

admits a ∆0
3 presentation.

Exercise˝ 9.3.58. let T Ď ωăω be a ∆0
3 (combinatorial) tree. Show that it is isomorphic to a

Π0
2-subtree of ωăω, and this is uniform in the index of T provided that T is non-empty (thus,

contains the root e of ωăω).

Exercise 9.3.59 (Calvert, Harisanov, Khight, and Miller [76]). Let K be the class of reduced
abelian p-groups of Ulm type at most m ă ω, and let A P K be a computable group. Calculate the
complexity of the index set IpAq “ ti : Ai – Au. (Hint: The answer will depend on the isomorphism
type of the last Ulm factor.)

Exercise 9.3.60 (Calvert [74]). Show that the isomorphism problem for computable reduced
abelian p-groups of Ulm type m ď ω is Π0

2m`1-complete.

Exercise 9.3.61. Show that the isomorphism problem for (non necessarily reduced) computable
abelian p-groups of Ulm type m ď ω is Π0

2m`2-complete.

Exercise 9.3.62. Use the techniques of p-basic trees to prove that computable torsion abelian
groups form an FF -complete class; this appeared earlier as Corollary 8.2.24. (Hint: Fix the sequence
of rank-saturated trees T˚m,n from the proof of Theorem 8.2.19 (see Lemma 8.2.23). Note that the
isomorphism type of T˚m,n is fully determined by the tree rank of T˚m,n; it is either Tα of rank
α or T8 which is ill-founded. We may assume that the root of Tm,n has exactly one immediate
successor, and so the rank of the tree is always a successor ordinal. For each m, fix the mth prime
pm and consider the pm-group Gm,n “ GpmpT

˚
m,nq generated by the pm-basic tree T˚m,n. If T˚m,n is

well-founded, then Gm,n is reducible, and the tree rank of T˚m,n uniquely determines the Ulm type
of Gm,n as well as the isomorphism type of the last Ulm factor of Gm,n. If T˚m,n – T8 then Gm,n
is divisible. Take Gn “ ‘mPNGm,n.)

Exercise˚ 9.3.63 (Smith [474]). We say that an abelian group A admits an effectively unique
divisible closure if any two computable closures with the properties described in Exercise 5.1.36
computably isomorphic over A. Prove that for a computable abelian p-group A, having a unique
divisible closure is equivalent to computability of the relation

p|a if and only if Dx P A px “ a

in A.

Exercise˚ 9.3.64 (Goncharov-Nurtazin [217], Harrington [231]). Whilst this is not about abelian
groups, it is related to the previous exercise and to the material of §2.2.2. Harrington [231] used
this result to show that every computable differential field has a computable differential closure,
and that any decidable ℵ1-categorical theory has a computable presentation.

Recall that a countable model A of a theory T is prime iff every finite tuple of A realises a
principal type of T . Modify the construction of Theorem 2.2.28 to show that the following are
equivalent.

(i) T has a decidable prime model.

391

(ii) T has a prime model and the set of principle types of T is computable.

Exercise 9.3.65. A group is said to be primitive recursive if its domain and the group operations
` and ´ are primitive recursive. A primitive recursive group is fully primitive recursive or punctual
if its domain is ω or an initial segment of ω.

1. Prove that every computable abelian p-group admits a punctual presentation ([282]).

2. Show that there is a computable torsion abelian group that is not isomorphic to any primitive
recursive group ([86]).

392

9.4 Enumerating abelian p-groups

In this section, we prove the following:

Theorem 9.4.1 (Downey, Melnikov, and Ng [145]). For each natural number n ą 0 there is a
Friedberg enumeration of all computable abelian p-groups of Ulm type ď n.

The case when n “ 1 was established earlier in Corollary 9.3.25 and Theorem 9.2.1. It is clear
that the groups in the list for n “ 1 are uniformly represented by computable p-basic trees, which
are inherited from the full decomposition induced by the corresponding equivalence structure.

Therefore, assume n ą 1 throughout the rest of this subsection.

9.4.1 Plan of the proof

We use Theorem 9.3.17 and Proposition 9.3.18 throughout, sometimes with no explicit reference.
In particular, we may occasionally identify E with the respective group GE , and vice versa.

Fix a Friedberg enumeration pEjqjPN of all infinite equivalence structures, and thus of infinite
abelian p-groups of Ulm type 1 (with E identified with GE). Inductively, fix a Friedberg enu-
meration pFiqiPN of all isomorphism types of 02-computable abelian p-groups of Ulm type ď n´ 1.
Furthermore, assume that they are represented by Π0

2 p-basic trees whose indices hp1q, hp2q, hp3q, . . .
are given uniformly.

Remark 9.4.2. The function h is computable and not merely 02-computable. It returns the index
of the computable Ri such that

σ P Fi if and only if D8z Ripσ, zq.

As we noted before in Exercise 9.3.58, it is well-known that there is a uniform procedure that
transforms a non-empty ∆0

3-tree into a Π0
2-subtree of ωăω. Of course, e P Fi since it corresponds

to 0.

Based on the Friedberg enumerations pFiqiPN and pEjqjPN described above, fix the effective
listing pFi, Ejqi,jPN.

Proof idea. In the notation above, suppose Fi is well-founded and Ej has only finite but arbitrarily
large classes; we call such Fi and Ej true and proper, respectively. Under these assumptions, we
can uniformly produce a computable abelian p-group TEj pFiq of Ulm type at most n such that

pTEj pFiqq
1 – Fi and TEj pFiq{pTEj pFiqq

1 – Ej ;

this is Theorem 9.3.52 and Remark 9.3.53. Since pFiqiPN and pEjqjPN are Friedberg, the Ulm
classification theorem implies that unequal pairs correspond to non-isomorphic groups provided that
these pairs consist of true and proper members, respectively. Furthermore, the Ulm classification
theorem and Theorem 9.3.52 imply that each computable group of Ulm type k, 1 ă k ď n, has the
form TEpF q for some true F of type ă n and proper E having the correct complexities (Π0

2 and
computable, respectively).

393

The rough idea is as follows. Given pFi, Ejq, guess trueness and properness, and simultaneously
attempt to enumerate TEj pFiq. If all Fi and Ej in the list were true and proper, respectively, then
TEj pFiq, i, j P N, would be a Friedberg enumeration of all computable abelian p-groups of Ulm type
1 ă k ď n. Merging it with the Friedberg enumeration of all computable abelian p-groups of Ulm
type 1, we would get the desired 1-1 list of all groups of types ď n.

However, if Fi is not true or Ej is not proper, we cannot guarantee that TEj pFiq will have
Ulm type ą 1. This will conflict with the enumeration of all groups of type 1. Nonetheless, by
carefully controlling the group produced in each of these two unpleasant outcomes, it is possible to
incorporate this group of Ulm type 1 into the dynamic procedure of enumerating all type 1 groups
(equivalent structures).

The global architecture of the proof. The construction will consist of three main modules.

The main module. On input Fi and Ej , it performs the following tasks:

• It measures whether Fi is true and Ej is proper. The combined complexity of these two
guessing procedures is Σ0

4 (to be verified), and it will be split into infinitely many Π0
3-instances,

one for each potential D-witness z in Σ0
4 “ pDzqΠ

0
3pzq.

• It attempts to build TEj pFiq. If Fi is true and Ej is proper, then, for exactly one z, exactly
one submodule σ associated with pi, j, zq succeeds in building TEj pFiq of Ulm type ą 1.
This occurs only if the Π0

3-predicate holds, and E is “true”. The submodule σ also has
several outcomes, which depend on the isomorphism type of E and also on how exactly the
Π0

3-predicate fails. Under these outcomes, either finite groups/structures or infinite junk
structures (Definition 9.3.55) of Ulm type 1 are produced. They are placed into the junk
collector; see below.

• The procedure associated with σ uniformly replaces Ej with a certain Hj and works with
THj pFiq instead of TEj pFiq. The equivalence structureHj has several convenient combinatorial
properties (to be explained), and, of course, Hj – Ej if the latter is proper. Thus, THj pFiq –
TEj pFiq in the Π0

3 outcome.

The module enumerating Ulm type 1 groups. This is literally the same as the one we used in the
proof of Theorem 9.2.1, but with equivalence structures uniformly replaced by the respective Ulm
type 1 abelian p-groups. We give a brief overview of this module here. Various sub-strategies
are put together into a tree of strategies T , in which the true path will be 03-computable. The
tree T produces an enumeration of all equivalence structures, which mentions all structures having
arbitrarily large finite classes exactly once; it also enumerates some isomorphism types of infinite
junk and finite structures. The latter two are placed into the junk collector (see (3) below), which
ensures all infinite junk and finite structures are mentioned exactly once up to isomorphism. The
only missing isomorphism types are:

• Equivalence structures having finitely many classes and at least one of these being infinite.

• Equivalence structures which have infinitely many classes and are eventually bounded; that
is, almost all classes are smaller than some fixed bound k specific to the structure.

The uniform Friedberg list of such structures can be easily produced independently and later ad-
joined to the Friedberg enumeration of the rest.

394

The junk collector. It is responsible for enumerating all infinite junk and finite equivalence struc-
tures/groups without repetition. Its actions are global. It handles the infinite junk and finite
equivalence structures/groups produced by the two main modules as described above, and it also
introduces its own to ensure that the enumeration is 1-1 and surjective on isomorphism types of
infinite junk and finite equivalence structures/groups. The junk collector module has two submod-
ules:

• The infinite junk collector. It is responsible for making sure that all computable isomorphism
types of infinite junk structures/groups (Definition 9.3.55) are listed, without repetition. Its
unsuccessful attempts result in abandoning a structure in the process; abandoned structures
are permanently placed into the finite junk collector.

• The finite junk collector. Its task is to ensure all finite equivalence structures/abelian p-groups
are mentioned in the list, and exactly once.

The construction will be described in §9.4.8. Here we give only a brief outline of the construction.
One crucial observation is that, from the perspective of the junk collector, the products of Π0

2- and
Σ0

2-outcomes of submodules of the main module are not really special when compared with similar
outcomes of taken from the proof of Theorem 9.2.1. The construction will be split into three
relatively independent phases.

1. Phase 1 is responsible for enumerating all Ulm type k ą 1 (k ď n) groups, all groups of
Ulm type 1 having arbitrarily large finite cyclic summands, and some finite and infinite junk
groups. At this phase of the construction, the main module and the module enumerating
Ulm type 1 groups act simultaneously and independently according to their instructions. We
ensure that there are no interactions between these two modules.

2. Phase 2 is responsible for expanding the output of Phase 1 so that the new enumeration also
contains all isomorphism types of infinite junk structures. This is done using the infinite junk
collector.

3. Phase 3 transforms the output of Phase 2 into an enumeration which additionally mentions
every isomorphism type of a finite abelian p-group exactly once. This is done using the finite
junk collector.

Finally, to get the desired Friedberg enumeration, we merge the output of Phase 3 with the
Friedberg enumeration of all eventually bounded equivalence structures and all equivalence struc-
tures having finitely many classes, at least one of which is infinite; the latter, of course, are uniformly
replaced with the respective abelian p-groups. This finishes the informal outline of the construction.

9.4.2 The basic strategy

Recall that the Ulm type of each Fi is at most n ´ 1, and that each Fj is a Π0
2 subtree of ωăω

whose index is given uniformly. Each Ej is a computable infinite equivalence structure, which can
be viewed as an abelian p-group of Ulm type 1, in which a complete decomposition is known.

We identify Ei with the corresponding abelian p-group. According to our terminology, Ei is
proper if it consists only of finite classes and the sizes of its classes are unbounded.

395

Definition 9.4.3. Let F be a p-basic tree. If F has a non-zero terminal node, then we say that F
is true. Note that this is equivalent to saying that the reduced part of the corresponding p-group
is non-trivial.

Lemma 9.4.4. Let pEiqiPN and pFiqiPN be uniform enumerations of computable equivalence struc-
tures and Π0

2 trees as defined above.

1. The property “Ei is proper” has complexity Π0
3.

2. The property “Fi is true” has complexity Σ0
4.

Proof. For (1), just state that each class is finite (Π0
3) and that there are arbitrarily large classes

(Π0
2). The statement “Fi is true” can be described by the formula:

pDxq rx P Fi ^ x ‰ e ^ p@yqpy Ą x ÞÑ y R Fiqs

which gives an upper bound of Σ0
4 for (2).

It is not difficult to show that the bounds in the lemma above are optimal, and therefore the
complexity of our guessing cannot be simplified.

Guessing trueness and properness. Given pFi, Ejq, we need to test whether Fi is true and
Ej is proper. We suppress the subscripts in Fi and Ej and write pF,Eq throughout the rest of
this subsection. We begin with the simpler Π0

3 guessing of properness for E. We index classes of a
computable equivalence structure by natural numbers according to the order at which they appear
in the enumeration of the equivalence structure. Write risE or simply ris for the i-th class of E.

Definition 9.4.5. An equivalence structure is eventually bounded if there is an n P N such that all
classes with indices greater than n are bounded in size by n.

Note that an eventually bounded structure may have infinite classes or finitely many classes.

Lemma 9.4.6. For an equivalence structure E, eventual boundedness is a Σ0
2-property.

Proof. The property says:

pDnqp@i ą nq

˜

Da1, . . . , an`1 P ris
ľ

i‰j,i,jďn`1

ai ‰ aj

¸

,

where the i-th class ris is not necessarily the class containing the i-th element of E; see the expla-
nation preceding Definition 9.4.5.

Guessing properness of E. The preliminary description of the outcomes of this guessing is:

Π0
2pjq: E is not eventually bounded and the jth class in E is infinite.

Π0
3: E is proper.

Σ0
2: E is eventually bounded.

396

Since an equivalence structure is proper iff it is not eventually bounded and does not contain
infinite classes, it is clear that the outcomes are exclusive and cover all possible cases.

Guessing trueness of F . Slicing Σ0
4 into pΠ0

3pzqqzPN. Recall that the sentence saying that F is
true has complexity Σ0

4. We represent the respective Σ0
4-predicate as DzΠ0

3pzq. As usual, we assume
that the measured predicates satisfy the property of the uniqueness of existential witnesses. In
particular, if DzΠ0

3pzq holds, then there will be exactly one such z.
The outcomes of each Π0

3pzq-guessing are:

Π0
2pj, zq: This is a Π0

2 outcome that says that j witnesses the failure of the Π0
3pzq predicate @jΣ0

2pj, zq.

Π0
3pzq: F is true with a Σ0

4-witness z.

The collection of all Π0
2pj, zq-outcomes can be viewed as the Σ0

3pzq-complement of Π0
3pzq.

The strategy for pF,E, zq. Each triple pF,E, zq is associated with a strategy, in which z is
interpreted as a potential existential witness for DzΠ0

3pzq approximating the trueness of F . The
strategy for one pF,E, zq in isolation relies on the guessing of F and E described above, and it also
has the following two major tasks.

The first task: Building H. The strategy dynamically transforms the computable equivalence
structure E into a computable equivalence structure H with the properties:

i. Assume E is not eventually bounded, and one of the two conditions holds:

(i.1) E has infinite classes, or

(i.2) F looks not true according to Σ0
3pzq (see the previous subsection).

In this case, H has infinitely many classes, with almost every class infinite. Furthermore, the
number of finite classes in H produced by the strategy is specific to the node of the strategy
and to the outcome of the strategy under which it is produced.

ii. If E is proper and F is true, then H – E.

iii. If E is eventually bounded, then H is finite.

Condition i. says that H is an infinite junk structure (Definition 9.3.55). We delay the detailed
description of H and the verification of i-iii until §9.4.5. Also, a further minor adjustment to this
transformation will be introduced in §9.4.6. For now, we take these properties for granted.

The second task: Building THpF q. The second task of the strategy is producing THpF q based
on the dynamic definition of H; here THpF q stands for the modified version of the Ash-Knight-Oates
operator defined in §9.3.3. As usual, we identify an equivalence structure with the direct sum of
cyclic and quasi-cyclic p-groups in which cyclic summands Zpn naturally correspond to equivalence
classes of size n. According to Lemma 9.3.56 and assuming the properties i.-iii. of H stated in the
subsection above, we have the following different scenarios:

a. If H is infinite junk, then THpF q – H.

b. If H is proper, then pTHpF qq
1 “ F and THpF q{pTHpF qq

1 – H.

c. If H is finite, then so is THpF q.

Furthermore, by Lemma 9.3.56, the cardinality of the finite THpF q in c. can be assumed as large
as necessary.

397

9.4.3 Actions of the strategy for pF,E, zq

Whenever the strategy becomes active, it makes one more step in each of the two uniform proce-
dures:

1. Approximate THpF q, where H is the uniformly modified version of E satisfying i-iii (see §9.4.5
for details) and THpF q is the modified Ash-Knight-Oates operator satisfying a-c applied to F
and H.

2. Monitor H and guess whether it has infinitely many classes, all of which are infinite. Since
H is uniformly defined from E, this predicate is uniformly Π0

2 in (the index for) E. If this
predicate fires, then the basic module initialises itself by permanently abandoning its current
THpF q. In this case, it creates a new version of THpF q, which is built from scratch. The new
version will have a new index in the uniform enumeration of all type ď n abelian p-groups.

9.4.4 The outcomes

Assuming that H indeed satisfies the claimed properties i-iii, the strategy associated with pE,F, zq
will have one of the following outcomes:

pi0 : This is a Π0
2 outcome which measures if all classes in H are infinite (and thus there are

infinitely many such classes).

Every time it is played, the strategy is initialised, and its previous version of THpF q is aban-
doned. Recall that the size of the abandoned THpF q can be picked as large as necessary,
according to Modification 1 from Section 9.3.3.

pij : (j ą 0) This is a Π0
2 outcome which says that:

– E is not eventually bounded, i.e., it has arbitrarily large classes of arbitrarily large
indices, and

– either the jth class in E is infinite, or F looks not true as witnessed by Π0
2pj, zq.

By Lemma 9.3.56 and assuming properties i-iii of H, in this case, the strategy produces a
computable THpF q – H which can be identified with GH , composed of at most finitely many
cyclic and infinitely many quasi-cyclic direct summands. Furthermore, we will ensure that
different strategies always produce non-isomorphic THpF q – H under their Π0

2-outcomes,
and also different Π0

2-outcomes of the same strategy give non-isomorphic THpF q – H. This
will be clarified in §9.4.5. With extra care, we will make sure that these infinite junk struc-
tures/groups also differ from any infinite junk structure produced by the tree of strategies T ;
see Section 9.4.6 for the description of T and §9.4.4 for the above-mentioned adjustment.

Π: This is a Π0
3 outcome that says that E is proper and F is true.

In this case, by Lemma 9.3.56 and assuming properties i-iii of E ÞÑ H, the strategy outputs
a computable basic tree THpF q with the properties pTHpF qq

1 “ F and THpF q{pTHpF qq
1 –

H – E (the latter two are identified with the respective groups). Furthermore, since E – H
is proper and F is true of type ă n, the Ulm type of THpF q is at least 2 and at most n.

398

fin: This is a Σ0
2-outcome which says that E is eventually bounded.

In this case, THpF q is finite. Furthermore, its cardinality can be controlled and made arbi-
trarily large, if necessary, according to Modification 1.

To finalise the description of the basic strategy, we must give a detailed description of the
transformation E ÞÑ H and verify its claimed properties.

9.4.5 The description of E ÞÑ H

First, we describe a transformation E ÞÑ H̃ which takes care of most properties i-iii with the
exception of the “furthermore” part of iii. Then, we further adjust H̃ and describe a transformation
H̃ ÞÑ H which also gives property iii in full. This modification is highly convenient in the general
case of many strategies working together.

The definition of H̃.

Given an infinite computable equivalence structure E, the strategy produces a computable equiva-
lence structure H̃ with the properties:

i. If E is not eventually bounded (Definition 9.4.5), and one of the two conditions holds:

(i.1) E has infinite classes, or

(i.2) F looks not true according to Π0
2pj, zq (see Guessing Trueness of F),

then H̃ has infinitely many classes with almost every class infinite.

ii. If E is proper and F is true, then H̃ – E.

iii. If E is eventually bounded, then H̃ is finite.

We write rmsL for a class of an equivalence structure L with index m. Say that a stage s is
expansionary if the parameter maxtcardrisEs , i ď su has increased from the previous expansion-
ary stage s1. The parameter measures whether the structure E has arbitrarily large classes with
arbitrarily large indices. The simple construction below acts only at expansionary stages.

Construction. At every stage, each class in H̃s is matched with a class in Es. Suppose at a stage
rnsH̃ is copying risE . If risE has grown in E or the ith Π0

2 instance of the Σ0
3 predicate “F is not

true (z)” has fired, then perform the following action. Initialise each class rks in H̃ that satisfies:

(1) k ą n, and

(2) rksH̃ has been copying a class rjsE with j ě i.

Each initialised class grows by one extra element and will be assigned to some large enough new
class in E (if it exists). Until such large enough classes are found, the whole strategy (not just this
simple procedure describing H̃) ceases its action. Then, once large enough classes are found, each
currently abandoned class of E is assigned to a new class in H̃. This ends the construction.

399

The verification of i, ii and iii. To see why iii holds, recall that the procedure constructing H̃
acts only at expansionary stages. Since there are only finitely many such stages, H̃ remains finite.
To check i and ii, note that each initialised class must grow. A class can be initialised only due
to some larger index class growing or due to some higher-priority Π0

2 instance of the predicate “F
is not true (z)” firing; furthermore, in the former case, this larger H̃-index class must be copying
a larger E-index class. There are only finitely many such classes. Thus, if all classes in E are
finite and F looks not true according to instance z, then each class can be initialised only finitely
often. Also, a class in E has to change its clone in H̃ only if a class with a smaller E-index grows.
Therefore, ii follows by induction.

To check i, assume that rjs is the left-most class of E – i.e., the one with the smallest index
– that grows to infinity. Since all classes to the left of it are finite, there is a stage after which
the class is stably assigned to a clone in H̃, call this clone rks. There exist at most finitely many
classes of H̃ to the right of rks that are controlled by classes in E having an index less than the
index of rjs. All the rest are initialised infinitely often. Since E has arbitrarily large classes with
arbitrarily big indices, every search for a new appropriate image for an initialised class is successful.
In particular, E has infinitely many classes, and therefore so does H̃. Since each initialised class
must grow, co-finitely many classes of H̃ are infinite.

The transformation from H̃ to H.

Fix a uniformly computable collection of non-intersecting intervals

I0, I1, . . . , In . . .

in ω which form its full partition, where the smallest number of In is equal to the largest number
of In´1 plus 1. We write max In for the largest number of In. (In the construction, we will also
make sure that max Iσi ‰ max Iτk for σ ‰ τ and any strictly positive i, k P N.)

We are given H̃, which is either proper, an infinite junk, or finite (cf. i-iii). Recall that, according
to our convention, every class of H̃ receives an index according to the stage at which it appears
in the enumeration of H̃. The uniform definition of H̃ contained in the subsection above has the
following property: If the size of ris in H̃ is infinite and has infinitely many classes, then so is rks for
each class rks whose index is larger than the index for ris. We must uniformly build a computable
equivalence structure H and a map ψ : H Ñ H̃ by stages.

The idea is rather simple. We construct H so that it copies H̃, but the isomorphism ψ is defined
not class-by-class but block-by-block. If some class in the k-th block of H̃ has grown, then in H we
initialise all ψ-preimages of j-blocks for j ě k. Whenever we initialise a block in H, each class in
the block is increased in size.

We give formal details. At stage s, if a class of H̃ with index j P Ik has grown in size, then:

1. Declare ψ undefined for every class of H̃s with its index in Im for some m ě k.

2. Grow all classes of Hs which currently have no ψ-image to a size greater than any number
mentioned so far.

3. Speed up the enumeration of H̃ and search for new, larger images for the finitely many classes
in Hs for which ψ is currently undefined.

400

4. If (2) is ever finished, introduce new classes in Hs and match them with those classes of H̃
which currently have no ψ-preimages. Go to (1).

Lemma 9.4.7.

1. If H̃ is proper, then H – H̃.

2. If H̃ is finite, then H is finite too.

3. If H̃ is an infinite junk, then so is H. Furthermore, either H has all classes infinite, or the
total number of finite classes in H is equal to max Ik for some k.

Proof. (1). By induction on the index i of a class rksH̃ and the index m of the block Im such that

i P Im, every class rks in H̃ eventually finds a stable ψ-preimage in H. Thus, in this case, ψ is a
∆0

2-isomorphism of equivalence structures witnessing H – H̃.
(2). This is obvious.
(3). Let m be the smallest such that there is an infinite class in H̃ with index j P Im. Then the

only classes which have stable ψ-preimages in H are the classes whose indices are in In for some
n ă m. If a class in H does not have a stable ψ-image, then its size is driven to infinity; indeed,
since H̃ is an infinite junk, the search at (3) of the procedure describing H is always successful, and
according to (2), whenever ψ is redefined, the class must be grown. If m “ 0, then all classes in H
end up infinite; otherwise, let k “ m´ 1.

The lemma above and the properties of E ÞÑ H̃ imply that the uniform transformation E ÞÑ

H̃ ÞÑ H satisfies i-iii from “the first task” (building H), as desired.

9.4.6 The tree of strategies for Ulm type 1 groups

We will slightly adjust the notation from the proof of Theorem 9.2.1 to make it consistent with the
other notation related to p-groups. We use the tree of strategies from Theorem 9.2.1 without any
modification. The tree and various strategies associated with its nodes act independently from the
rest of the construction, and the only interaction with the rest of the construction is via the junk
collector. To successfully incorporate the construction from Theorem 9.2.1 into our proof, we will:

1. interpret equivalence structures as the respective Ulm type 1 groups, and

2. for every strategy associated with some σ along the tree, the infinite junk structures potentially
produced by σ are non-isomorphic to any infinite junk structure produced by a strategy for
pFi, Ej , zq or by any other τ ‰ σ.

The first assertion is just a triviality, and the second is not really a modification either, for the
construction in Theorem 9.2.1 already ensured that different nodes and different outcomes produce
non-isomorphic infinite junk structures, and the precomputed bounds on the number of exceptional
classes can be kept exactly the same as in the proof of Theorem 9.2.1. We will elaborate on this
point at the very end of this subsection, where specifics will be spelled out.

The tree T . Let T be the tree of strategies from the proof of Theorem 9.2.1. The order of the
outcomes was:

init ă pi20 ă pi21 ă ¨ ¨ ¨ ă pi3 ă wait.

401

The tree T is composed according to this order; under the outcome pi3 measuring P pi, zq, there is
no other node working with some z1 ą z in P pi, z1q. If we view the tree of strategies T as one large
module, its cumulative products can be classified as follows:

• Equivalence structures having arbitrarily large finite classes. All such structures are enumer-
ated under the pi3-outcomes along the true path, and without repetition (up to isomorphism).

• Finite structures. These come from true init- and wait-outcomes of various nodes in the
tree, and are also produced due to initialisation. By making them larger than any number
seen so far in the construction (see, e.g., Modification 1), we ensure there is no repetition
among them, but we do not guarantee that all finite structures are produced by the tree.

• Infinite junk structures produced by true pi2-outcomes of various structures. Note that some
strategies off the true path can be forced to play their pi2-outcomes. The number of sizes
of exceptional classes is different for different nodes and below different outcomes of the
same node. At every stage, the isomorphism type of the structure is guessed, with the guess
eventually becoming correct if the outcome is played infinitely often.

More specifically, if m is the number of times the strategy (call it τ) has been initialised,
then the number of finite classes in Uτ produced under the true outcome pi2j of τ should be
between xτ,m, jy and 2xτ,m, jy, where the standard pairing function xi, jy is replaced with
3xi,jy; this was verified in the proof of Theorem 9.2.1.

Separating the junk. Now, since we have explained the role of the intervals rxτ,m, jy, 2xτ,m, jys,
we are ready to introduce the following elementary but important adjustment to the basic strategy
from §9.4.2.

Modification 2. We assume that for every strategy σ working with some pFi, Ej , zq, the parameters
max Iσk “ max Ik described in §9.4.5 are taken from the complement of the set

ď

τPT
rxτ,m, jy, 2xτ,m, jys,

where T is the tree of strategies from Theorem 9.2.1. We furthermore assume that max Iσk ‰ max Iσ
1

j

whenever either σ ‰ σ1 or k ‰ j.

Infinite junk structures produced by various Π0
2-outcomes pi2 of different strategies are non-

isomorphic. Thus, there is no conflict between Π0
2-outcomes of different strategies, regardless of

whether they live on the tree T or work with some triple pFi, Ej , zq. Any two distinct Π0
2-outcomes

of the same strategy (on the tree or working with a triple) produce non-isomorphic infinite junk
structures as well.

9.4.7 The junk collector

The junk collector can be extracted from the proof of Theorem 9.2.1 without any further modifi-
cation; see §9.2.5. We briefly go over the main ideas and discuss why Modification 1 and Modifi-
cation 2 make managing the junk exactly the same as in the proof of Theorem 9.2.1. Recall that
junk structures can be of two different kinds:

402

1. Finite junk. These are finite abelian p-groups/equivalence structures which are either pro-
duced due to initialisation or are built if the Σ0

2-outcome is the true outcome. Because of
Modification 1, the cardinalities of these finite groups may be assumed to be large and unseen
at the stage when they are first introduced; see Lemma 9.3.56(3).

2. Infinite junk (see Definition 9.3.55). These are produced under various Π0
2-outcomes, which

are not their left-most Π0
2-outcomes, of basic strategies either working with pFi, Ej , zq or along

the tree T . According to Modification 2 in §9.4.6, the isomorphism type of the infinite junk
structure produced by σpξ, where ξ is the Π0

2-outcome of σ played infinitely often, will be
uniquely determined by σ and ξ, regardless of the type of the strategy σ. At every stage at
which the outcome is played, we will also have the current best guess on the isomorphism
type of the structure.

The junk collector consists of two submodules working in coordination with each other.

The infinite junk collector. The task of this global strategy is to ensure that each isomorphism
type of infinite junk structure H is represented in the global enumeration, and exactly once. The
input of the infinite junk submodule is a uniform enumeration of abelian p-groups, some of which
can be infinite junk. We write L0, L1, . . . to denote these groups. At every stage, each Li is finite
and is identified with the respective equivalence structure ELi with all possible uniformity. This list
is uniformly produced by sub-strategies of the main strategy and the tree T , all working together,
but the exact nature of this list is not important. We need only the following assumptions about
this list.

(a1): We identify each Li with its index, which is uniformly computable from i; without loss of
generality, we may assume that the complement of the set of all these indices is an infinite
computable set.

(a2): At every stage, at most one such L “ Li can be declared active, which means that, in a
Π0

2-fashion, we have more evidence that L may end up being an infinite junk structure. In
this case, the intended isomorphism type of L is also given in the form of a finite parameter
describing the exceptional finite classes of L. At such a stage, L grows in size to a very large
cardinality. If L is active infinitely often, then this parameter is the only one which appears
as the best current guess infinitely many times.

(a3): Also, if Li ‰ Lj , then their parameters from (a2) above never describe the same isomorphism
type of an infinite junk structure (cf. Modification 2).

Proposition 9.4.8. Given a uniform list pLiqiPN with properties pa1q-pa3q and which is injective
on isomorphism types, the finite junk collector outputs a uniform list pZiqiPN which mentions each
member of pLiqiPN exactly once and mentions each isomorphism type of infinite junk structures
exactly once. In addition to all infinite junk structures and members of pLiqiPN, it may only contain
some isomorphism types of finite structures/groups, and also without repetition.

This list pZiqiPN will serve as the input for the finite junk collector, which is briefly described
below.

The finite junk collector. This global strategy must ensure that every isomorphism type of a
finite abelian p-group is represented in the enumeration. As usual, we can identify such groups with
finite equivalence relations. Recall also Modification 1.

403

The input is a uniform enumeration pZiqiPN of abelian p-groups. At every stage, each finite
Zirss is identified with the respective equivalence structure EZirss, with all possible uniformity. In
the construction, this list is produced collectively by T , sub-modules of the main module, and
the infinite junk collector. We will need only the following dynamic properties of this list. These
properties are immediate consequences of Modification 1 and the analysis contained in §9.4.6.

(b1): At every stage s, there is at most one i for which Zirs` 1s is larger than Zirss. In this case,
we also assume that the cardinality of Zirs ` 1s is larger than any number mentioned so far
in the construction. This applies to the case when Zirs` 1s is newly introduced too.

(b2): At every stage s, the finite list pZirssqiďs contains no repetition up to isomorphism.

The work of the finite junk collector is summarised as follows.

Proposition 9.4.9. On input of a uniform enumeration pZiqiPN which is injective on isomorphism
types and satisfies (b1)-(b2), the finite junk collector produces a uniform enumeration pBiqiPN which
is injective on isomorphism types and mentions each isomorphism type from pZiqiPN and each finite
isomorphism type.

This finishes the description of the finite junk collector.

9.4.8 Construction

We are ready to put all the essential components together. The construction consists of three
phases. The output of the first phase is the input of the second phase, and the output of the second
is the input of the third. Apart from this obvious correlation via the input/output, there is no
further interaction between the three phases.

Phase 1: Fix the effective enumeration pFi, Ej , zqi,j,zPN which was defined at the beginning of
§9.4.1. Also, fix the tree of strategies T defined in §9.4.6 and the strategies associated with its
nodes.

In the first phase, we let all the basic strategies associated with each triple pFi, Ej , zq and the
strategies associated with T act according to their instructions; the instructions can be found in
§§ 9.4.2 and 9.4.6, respectively.

Working together, these strategies produce a uniform enumeration pLiqiPN of computable abelian
groups which, as we shall argue, satisfy conditions pa1q-pa3q from §9.4.7.

Phase 2: On input the enumeration pLiqiPN listed at Phase 1, let the infinite junk collector
act according to its instructions, as described in §9.4.7. Let pZiqiPN be the uniform enumeration
produced as the result of these actions. We will argue that pZiqiPN will satisfy conditions pb1q-pb2q
from §9.4.7.

Phase 3: On input pZiqiPN, let the finite junk collector act according to its instructions and produce
a uniform enumeration pBiqiPN.

Finally, fix some Friedberg enumeration pMiqiPN of all abelian p-groups of Ulm type 1, which
correspond to equivalence structures having finitely many classes, at least one of which is infinite,
and to eventually bounded equivalence structures having infinitely many classes. Merge pBiqiPN
with pMiqiPN to produce an enumeration pCiqiPN. (For i “ 0, 1, . . ., set C2i`1 “ Bi and C2i “Mi.)

We will argue that pCiqiPN is a Friedberg enumeration of all computable abelian groups of Ulm
type ď n.

404

9.4.9 Verification

As usual, we identify equivalence structures and the respective Ulm type 1 groups throughout.

Lemma 9.4.10. The enumeration pLiqiPN produced at Phase 1 has the following properties:

1. It contains no repetition, up to isomorphism.

2. It includes all isomorphism types of computable abelian p-groups of Ulm types m, 1 ă m ă n.

3. It mentions each isomorphism type of computable abelian p-groups having Ulm type 1 in which
there are arbitrarily large finite cyclic summands.

4. It mentions some abelian p-groups of Ulm type 1 corresponding to infinite junk structures. In
each of these cases, the respective group Li in the list comes with an eventually stable sequence
plisqsPN such that the number li “ lims l

i
s describes the sizes of the finitely many exceptional

classes in ELi . (If Li is not infinite junk, then plisqsPN will be divergent.)

5. It includes some finite abelian p-groups.

6. Apart from the isomorphism types described in (2)-(4), no further isomorphism types will be
enumerated.

7. It satisfies (a1)-(a3) from §9.4.7.

Proof. (2): As we argued in §9.4.1, every computable abelian p-group A must have A1 true and A{A1

proper. Theorem 9.3.52 implies that, for some pair pFi, Ejq we will have Fi – A1 and A{A1 – Ej .
The Σ0

4-predicate described in §9.4.2 holds for this pair. In particular, for exactly one z the basic
strategy working with pFi, Ej , zq has a true Π0

3-outcome; see §9.4.4 for the detailed analysis of the
outcomes. Under this outcome, the strategy produces THj pFiq – A.

(3): See §9.4.6 for a detailed analysis of the structures produced by T .
(4): This is explained in §9.4.6.
(5): This is merely an observation based on the descriptions of the strategies.
(6): This follows from the detailed analysis of the outcomes contained in §§ 9.4.4 and 9.4.6.
(7): Condition (a1) is a triviality, (a2) is a reformulation of (4) of this lemma, and (a3) is

Modification 2 in §9.4.6.
(1): We use the same notation as in the proof of (2) of this lemma. Since the enumerations pFiqiPN

and pEjqjPN are Friedberg and since we assumed uniqueness of existential witnesses throughout,
the groups produced under true Π0

3-outcomes corresponding to different pairs pFi, Ejq are non-
isomorphic, and there is at most one true Π0

3-outcome for each such pair. The true Π0
3-outcomes

of strategies along the true path of T witness that the construction produces a complete list of all
computable equivalence structures having arbitrarily large finite classes; see §9.4.6.

Modification 2 and the analysis contained in §9.4.6 imply that infinite junk structures pro-
duced by different strategies cannot be isomorphic. Finally, Modification 1 in the proof of Proposi-
tion 9.3.48 and the analysis contained in §9.4.6 guarantee that finite structures that appear in the
list have no repetition, up to isomorphism; indeed, they all have distinct cardinalities.

Lemma 9.4.11. The enumeration pZiqiPN produced at Phase 2 has the following properties:

1. It contains no repetition, up to isomorphism.

405

2. It includes all isomorphism types which appear in pLiqiPN.

3. It includes all isomorphism types of infinite junk structures.

4. It satisfies pb1q and pb2q from 9.4.7.

Proof. (1), (2), and (3) follow from Proposition 9.4.8, and (4) is an immediate consequence of
Modification 1 and the analysis contained in §9.4.6; see also §9.4.7.

Lemma 9.4.12. The enumeration pBiqiPN produced at Phase 3 has the following properties:

1. It contains no repetition, up to isomorphism.

2. It includes all isomorphism types which appear in pZiqiPN.

3. It includes all isomorphism types of finite groups.

Proof. This is a reformulation of Proposition 9.4.9.

Combining the three lemmas above, we conclude that pBiqiPω is a Friedberg enumeration of
almost all computable Ulm type ď n groups. This enumeration does not include the following
special isomorphism classes of groups, namely:

1. abelian p-groups of Ulm type 1 which correspond to equivalence structures having finitely
many classes, at least one of which is infinite, and

2. abelian p-groups corresponding to eventually bounded equivalence structures having infinitely
many classes.

These two isomorphism classes have a combined uniformly computable Friedberg enumeration
which we denote by pMiqiPN. By merging pMiqiPN with pBiqiPω, we obtain a computable Friedberg
enumeration of all computable Ulm type ď n abelian p-groups, as desired.

The proof of Theorem 9.4.1 is complete.

Exercises

Exercise˝ 9.4.13. Show that there is a Friedberg enumeration of the following classes:

1. vector spaces over a fixed computable field;

2. algebraically closed fields;

3. well orderings of order-type less than a fixed computable ordinal α;

4. finitely generated abelian groups;

5. compact oriented surfaces (represented as finite simplicial complexes);

6. abelian p-groups of bounded order.

Exercise˝ 9.4.14. Show that there is no uniform list of finite presentations (given by their strong
indices, as in Exercise 7.1.58) of f.p. groups in which every group is repeated at most finitely many
times, up to isomorphism. (Hint: A Markov property P of finitely presentable groups is one for
which:

406

1. P is preserved under group isomorphism.

2. There exists a finitely presentable group A` with property P .

3. There exists a finitely presentable group A´ that cannot be embedded as a subgroup in any
finitely presentable group with property P .

The Adian–Rabin Theorem ([2, 439]) states: Let P be a Markov property of finitely presentable
groups. Then there is no algorithm that, given a finite presentation xX | Ry, decides whether or not
the group defined by this presentation has property P . Let P be the property “being the trivial group
T – teu”, and suppose there is a list V “ pViqiPN of finite presentations with the required properties.
Let Vi0 , . . . , Vik be the only presentations of T in this list. To decide whether xX | Ry – T , wait
for xX | Ry – Vi for some i. This is c.e. by Exercise 7.1.58. See if i “ ij for some j ď k.)

Exercise˚ 9.4.15 (Lange, Miller, and Steiner [330]). There is a Friedberg enumeration of the
family of computable algebraic fields.

Exercise˚ 9.4.16 (Hoyrup, Melnikov, and Ng [267]). The notion of a computable topological
presentation was introduced in Definition 2.4.26. Recall that non-homeomorphic (Polish) spaces
can share the same computable topological presentation (Exercise 2.4.27). Further, every Polish
(more generally, countably based T0) space admits a computable topological presentation (Exer-
cise 4.2.105).

Show that there is a uniformly computable sequence of computable topological presentations
pTiqiPN, so that every compact Polish space is represented by exactly one Ti from this sequence.
The uniform sequence is given by parameters describing the cases (1)-(4):

(1) The space is finite.

(2) The space has a perfect kernel and has exactly m ě 0 isolated points, m P N.

(3) Compact Polish spaces with infinitely many isolated points, in which isolated points are dense.

(4) Compact Polish spaces having infinitely many isolated points, but so that the isolated points
are not dense.

For example, in (2) with m “ 0, the presentation can be taken to be the standard computable
topological presentation of 2ω.

407

9.5 Computable profinite abelian groups

Under Pontryagin duality (see Section 5.2), discrete torsion abelian groups correspond to profinite
abelian groups (and vice versa). The goal of this section is to show that this correspondence is
uniformly computable, and furthermore, it preserves computable categoricity. As a consequence of
this duality and the main result of the previous subsection (Theorem 9.4.1), we will obtain:

Theorem 9.5.1 (Downey, Melnikov, and Ng [145], Melnikov [373]). For any fixed n ą 0, there
is a Friedberg enumeration of all computably compact pro-p abelian groups of pro-Ulm type ď n.

This result appeared in the Introduction as Theorem E. In the theorem, the pro-Ulm type of a
pro-p group is the Ulm type of the Pontryagin dual of the group, which is a discrete abelian p-group
(e.g., [297]). We will also derive a complete classification of computably categorical pro-p abelian
groups.

9.5.1 Background

In Theorem 4.2.107 we showed that, for a profinite group P , P has a computably compact presenta-
tion iff it has a “recursive” presentation, in the following sense. There is a computable sequence of
finite groups and surjective homomorphisms 0 Ðf0 A0 Ðf1 A1 Ðf2 . . . so that the group is homeo-
morphic to the projective (inverse) limit of this system. In other words, every element of the group
is a sequence paiqiPN, where fipaiq “ ai´1 and ai P Ai; the operation is defined component-wise.
All finite objects in such a presentation are given by their strong indices, i.e., as finite tuples.

A recursive profinite group can be viewed as the collection of (infinite) paths through a com-
putably branching tree with no dead ends. In such a presentation, every (infinite) path represents
an element of the group, and the operations are represented by computable operators acting on
this totally disconnected topological space. We can define an (ultra)metric on this space, simi-
larly to how it is done for Cantor space. With respect to this metric, the presentation becomes a
computably compact Polish group. In this sense, a recursive profinite group is just a computably
compact presentation of the group with some nice additional properties. Thus, for instance, we can
define what we mean by a computable homeomorphism from a recursive profinite group to some
other computable space or group. Furthermore, the non-trivial implication in Theorem 4.2.107
showed a bit more than was stated in the theorem:

Corollary 9.5.2. Every computably compact profinite group is computably topologically isomorphic
to a recursive profinite group.

Proof. Exercise 9.5.11.

It follows from the corollary above and the discussion before it that computably compact and
recursive presentations of profinite groups are computably indistinguishable. Moreover, one can be
replaced by the other with all possible effective uniformity. In particular, in the profinite case, the
definition below can be restricted to recursive presentations without any loss of generality.

408

Definition 9.5.3. A (compact) Polish group is computably categorical if any two computably
compact presentations of the group are computably topologically isomorphic.

Recall that we write pA for the Pontryagin dual of a compact or discrete abelian group A. To
establish the effective Pontryagin duality between computable profinite and computable discrete
torsion groups, we need several elementary properties of finite abelian groups and their duals.

Fact 9.5.4 (Folklore). 1. If C is cyclic, then pC – C.

2. If A,B are finite abelian, then {A‘B – pA‘ pB.

3. For every finite abelian A, pA – A.

4. If φ : AÑ B is a homomorphism of finite abelian groups, then pφ : pB Ñ pA defined by the rule

pφpχq “ χ ˝ φ

is a homomorphism between their duals.

5. In 4., φ is surjective iff pφ is injective.

Proof. Exercise 9.5.12.

Recall that the direct limit of a sequence of groups

0 Ñ A0 Ñ A1 Ñ . . . ,

where all arrows stand for injective embeddings, is essentially the union of the Ai, in which elements
of Ai are identified with their images in Ai`1 (etc.) throughout. (The embeddings do not have to
be injective; but in this section, they will be such.) The lemma below is immediate.

Lemma 9.5.5. Every (countable, discrete) torsion abelian group A can be viewed as a direct limit
of finite groups and injective maps:

0 Ñ A0 Ñ A1 Ñ

Additionally, a torsion abelian group is computable iff there is a direct system as above in which all
finite groups and maps are given by their strong indices.

The fact below essentially says that {lim
ÝÑ
pAi, φiq – lim

ÐÝ
p pAi, pφiq and {lim

ÐÝ
pAi, φiq – lim

ÝÑ
p pAi, pφiq for

finite abelian groups Ai. It appears to be an old folklore, see the last chapter of [194]; we also cite
[404]. A generalisation of this fact to locally compact Ai is the main result of [284].

Fact 9.5.6. Suppose A is the inverse limit of a sequence

0 Ðf0
A0 Ðf1

A1 Ðf2
. . .

of finite abelian groups and surjective homomorphisms. Then pA is isomorphic to the direct limit of

0 Ñ
xf0

xA0 Ñ
xf1

xA1 Ñ
xf2
. . . ,

where the dual maps are injective.

409

Conversely, suppose A is the direct limit of a sequence

0 Ñf0
A0 Ñf1

A1 Ñf2
. . .

of finite abelian groups under injective embeddings. Then pA is isomorphic to the inverse limit of
the sequence

0 Ð
xf0

xA0 Ð
xf1

xA1 Ð
xf2
. . . ,

where the dual maps are surjective.

Proof. Omitted. (This is essentially iterated Fact 9.5.4. See also the proof of Lemma 9.5.8.)

For example, yZp8 – Jp, where Jp is the additive group of the p-adic integers. This is because
the former is the direct limit of cyclic p-groups Zpk , and the latter is their natural inverse limit.

9.5.2 Effective Pontryagin duality: the profinite case

We prove the following

Theorem 9.5.7 (Melnikov [373]). Let P be a profinite abelian group.

1. P has a computably compact presentation iff pP is a computable presentation.

2. P is computably categorical iff pP is computably categorical.

Proof. In the lemma below, all finite objects are given by their strong indices.

Lemma 9.5.8. There is a computably uniform procedure which, on input finite abelian groups A,B
and a homomorphism φ : AÑ B, outputs pA, pB and the dual homomorphism pφ : pB Ñ pA.

Proof. Using blind search, produce full direct decompositions of A “
À

iAi and B “
À

j Bj into
finitely many cyclic summands. Fix some generators ai of bj for these summands, one from each
summand. Each χ : A Ñ T is fully determined by the value of χpaiq. The possible values of each
fixed ai under homomorphisms to T range over a finite set of rational numbers in T (viewed as
r0, 1s with 0 identified with 1), whose size is effectively and uniformly determined by the order of

ai. This gives a way of computing pA by going through all possibilities. In the resulting computable
presentation of pA, each χ P pA is additionally explicitly represented as a (strong index of the finite)

map from A to TXQ. The same analysis applies to B and pB.
We can use these representations of pA and pB to explicitly calculate pφpχq “ χ˝φ, for each χ P pB

(recall 4. of Fact 9.5.4). We then use a brute-force search to see which element of pA is equal to
pφpχq.

Remark 9.5.9. In the preceding fact, pA can be additionally explicitly represented as a finite set
of maps from A to TXQ (i.e., the rational points in T); the same is true for pB.

410

We now turn to the proof of Theorem 9.5.7. By Theorem 4.2.107 and Lemma 9.5.5, to prove
(1) of Theorem 9.5.7 it is sufficient to prove that, under Pontryagin duality, computable (surjective,
linear) inverse systems of finite groups correspond to computable (injective, linear) direct systems
of finite groups. But this is guaranteed by Lemma 9.5.8.

We prove (2). Unfortunately, we have to rely on some further well-known facts from the literature
(e.g., [404]) which we will just state here without proof. It is well-known that, for a compact or

discrete G, a topological homeomorphism witnessing G –
p

pG can be chosen in the following canonical
way:

g Ñ x¨, gy,

where xχ, gy “ χpgq for any χ P pG. But it follows from the proof of Lemma 9.5.8 (see Remark 9.5.9)

that in the profinite/torsion discrete case, the presentation of pG obtained from G in (1) has the
following property. It is effectively given by finite approximations of characters. In particular, the

canonical isomorphism i : GÑ
p

pG is computable. When G is computable discrete, i´1 is also obvi-
ously computable. When G is computably compact profinite, i´1 is computable by Theorem 4.2.57.

Now let G be either computable discrete torsion or computably compact profinite, and assume
pG is computably categorical. If A and B are effective presentations of G, calculate pA and pB using
(1) of the theorem, and fix a computable isomorphism

φ : pAÑ pB.

It is well-known that 4. and 5. of Fact 9.5.4 can be extended to arbitrary locally compact groups.
In particular, it follows that

pφpχq “ χ ˝ φ,

where χ P
p

pB and χ ˝ φ P
x

xA, is a topological group-isomorphism from
p

pB onto
x

xA. Since φ is

computable, pφ is computable as well. (Exercise 9.5.15.) Let i0 : A Ñ
x

xA and i1 : B Ñ
p

pB be

computable isomorphisms, existence of which was established earlier. Then i´1
0 ˝ pφ ˝ i1 is the

desired computable isomorphism from B onto A.

9.5.3 Enumerating pro-p groups (Theorem E).

Theorem E (Theorem 9.5.1) states that for any fixed n ą 0, there is a Friedberg enumeration of all
computably compact pro-p abelian groups of pro-Ulm type ď n.

Proof of Theorem E. The theorem is an immediate consequence of Theorem 9.4.1 and (1) of The-
orem 9.5.7.

Also, Theorem 9.3.26 combined with (2) of Theorem 9.5.7 gives:

Theorem 9.5.10 (Melnikov [373]). A pro-p abelian group P is computably categorical iff it
is homeomorphic to a (topological) direct product of cyclic p-groups and the group of p-adic
integers Jp, in which all but finitely many factors are isomorphic to some fixed cyclic group or
to Jp.

411

With a bit of extra work, Theorem 9.3.37 implies that the index set of computably categorical
profinite abelian groups is Π0

4-complete ([373]). Since we omitted the proof of Theorem 9.3.37, we
omit the proof of this fact as well. We, however, note that this Π0

4-completeness result is likely
the best possible description of computably categorical profinite abelian groups; see the discussion
after Theorem 9.3.37.

Exercises

Exercise˝ 9.5.11. Prove Corollary 9.5.2.

Exercise˝ 9.5.12. Prove Fact 9.5.4.

Exercise˝ 9.5.13. Verify that the duality between torsion and profinite abelian groups preserves
degree spectra. Use Exercise 8.3.43 and 8.3.42 to derive analogous results about profinite groups.

Exercise˝ 9.5.14 (Brodhead and Cenzer [65]). Prove that there is a Friedberg enumeration of all
Π0

1 classes (up to equality).

Exercise 9.5.15. Let pφpχq “ χ ˝ φ be the map defined in the last paragraph of the proof of
Theorem 9.5.7 (2). Verify that this map is computable in the right sense, in both the profinite and
the discrete cases. (Hint: Use the special properties of computable presentations of the duals that
are produced in the proof of (1) of Theorem 9.5.7; i.e., Remark 9.5.9.)

Exercise 9.5.16 (Koh, Melnikov, and Ng [313]). The notion of an effectively continuous map can
be extended naturally to right-c.e. spaces, as follows. Just repeat the definitions of c.e. names of
open sets and require that f´1pW q is uniformly c.e. open for a c.e. open W . Using this notion,
one can define what it means for a group to be right-c.e. presented. Show that there is a right-
c.e. presented profinite group that is not topologically isomorphic to any computable Polish group.

Exercise 9.5.17 (Essentially [373]). Show that there exists a profinite group that has a com-
putable Polish presentation but has no computably compact presentation. Conclude that there
exists a computable Polish group that is approximable (Definition 2.4.8) but has no computably
approximable presentation (Definition 2.4.9).

Exercise˚ 9.5.18. Prove Theorem 5.2.24 from Part 1 using an analogy of Fact 9.5.6 for torsion-free
groups and their duals. [Note that the 1st cohomology of the unit circle T is Z, and so is its dual.
For a formal proof, see pp. 474–477 of [263].]

9.6 Further related results˚

For a detailed exposition of the theory of computable abelian groups, we cite the surveys [291] and
[370]. For a discussion of result related to (computable) profinite groups and totally disconnected
locally compact groups, see §4.2.7. We remark that the effective Pontryagin duality for profinite
and torsion groups (Theorem 9.5.7) established in this section enjoys many uniformly effective
properties, essentially completely reducing the study of computable profinite groups to the theory
of computably presented torsion abelian groups. As a consequence, most results about computable
(discrete) torsion abelian groups that will appear throughout the rest of the book as exercises can

412

be easily restated for profinite abelian groups as well; for example, see Exercises 10.1.116, 10.1.102,
and 10.1.104. We will, however, usually omit the dual statements in these exercises.

Very little is known about computable abelian p-groups of Ulm type ě ω. We mention that in
[74], Calvert gave sharp estimates for the isomorphism problem of reduced abelian p-groups of Ulm
type ď α, where α is a computable ordinal (this covers all possible Ulm types by Exercise 10.1.63).
The complexity of their index set is calculated in [76]. We omit the statements, but we note that
these hyperarithmetical estimates of course increase monotonically α.

Here, we state only one further result that seems most related to the material of this chapter.
Recall Khisamiev’s characterisation of computably presented reduced abelian p-groups of finite Ulm
type (Theorem 9.3). In this characterisation, χAi is a Σ0

2i`2 set, and #Ai :“ tn : pn, 1q P χAiu has

to be 0p2iq-l.m.. It has been open for several decades whether Theorem 9.3 can be extended in any
meaningful way to cover groups of Ulm type ω (and beyond). The obstacle is the non-uniformity of
all known proofs of Theorem 9.3. If A is computable, then the index of the 0p2iq-l.m. set is 0p2i`3q-
computable; note the extra three jumps required to find the index over the natural complexity of
the function itself. Using the first known example of an iterated 03 argument, Downey, Melnikov,
and Ng [140] proved:

Theorem 9.6.1. The exists a computable reduced abelian p-group G of Ulm type ω such that the
sequence of sets of indices for 0p2iq-l.m. functions corresponding to #Gi is not uniformly ∆0

2i`3.

The theorem seems to suggest that some new idea is required to classify such computable groups,
if a reasonable classification exists at all. Perhaps, no such classification should be anticipated. After
all, the class of abelian p-groups of Ulm type ω is not an arithmetical class.

9.7 What’s next?

In the next chapter, we present the foundations of the abstract theory of computably categorical
structures. Interestingly, some of these results bear a strong resemblance to the results in Chapter
2, where we established the foundations of computable analysis. The connections with computable
analysis in the next chapter go beyond mere analogy, as the main result of the subsequent chapter
(Theorem F) is stated for Polish spaces up to isometry.

413

Chapter 10

Computable categoricity and
computable dimension

In this section, we study computable structures and spaces up to computable isomorphism. The
plan is as follows:

1. In Section 10.1, we establish a sequence of results that relate definability, categoricity, and
decidability of structures. We also separate the notions of “plain” and relative computable
categoricity for discrete algebraic structures.

2. In Section 10.2 we prove Theorem 10.2.9, which provides a syntactic characterisation of relative
computable categoricity for Polish spaces viewed up to isometry. We apply this characterisa-
tion to the Urysohn space.

3. In Section 10.3, we investigate the problem of the number of computable presentations of a
structure. We outline the proof of the well-known theorem of Goncharov, which states that
there is a structure with exactly two computable presentations, up to computable isomor-
phism (Theorem 10.3.2). As far as we are aware, this is the first time Goncharov’s proof is
presented in book format. We also prove a powerful meta-theorem, Theorem 10.3.20, that
generalises another well-known theorem of Goncharov (Theorem 10.3.2) to separable spaces
up to isometry.

We finish the chapter, and the book, with a detailed proof of the following:

Theorem F (Melnikov and Ng [376]). The space pCr0, 1s, dsupq has infinitely many isometric,
but not computably isometric, computable Polish presentations.

Theorem F follows from Theorem 10.3.20 combined with Theorem 2.4.20, which was the main
result of Chapter 2.

414

10.1 Relative computable categoricity for algebraic struc-
tures

In this section, we investigate the Type II version of computable categoricity, known as relative
computable categoricity, focusing on discrete countable algebraic structures. The reader will no-
tice parallels with our treatment of Type 2 computability in Chapter 2, particularly the Kreisel-
Lacombe-Shoenfield-Markov Theorem 2.3.7 and Specker’s Theorem 2.3.24. We will extend this
general methodology to Polish spaces in the following section.

10.1.1 Relative computable categoricity

Many classifications of computably categorical algebraic structures exhibit a certain similarity.
Computably categorical linear orderings are those with only a finite number of adjacencies (Theo-
rem 3.2.2), computably categorical Boolean algebras are those with only a finite number of atoms
(Theorem 4.1.17). In the class of torsion-free abelian groups, computable categoricity is captured
by the finiteness of the rank of the group (Theorem 5.1.43), and the computable categoricity of
abelian p-groups is also characterised by a certain finite parameter (Theorem 9.3.26). All these
structures are not only computably categorical, but also possess the following apparently stronger
property (as verified in Exercise 10.1.24).

Definition 10.1.1. We say that a computable structure A is relatively computably categorical
if, for any isomorphic copy C of A, if C is a-computable, then there exists an a-computable
isomorphism witnessing A – C.

Equivalently, if B1 and B2 are isomorphic copies of A, then we have

B1 –∆0
1pB1‘B2q

B2,

i.e., there is an isomorphism between B1 and B2 computable from the join of the open diagrams
of B1 and B2. Now, it is not entirely clear whether this is a new notion. Perhaps all computably
categorical computable structures are also relatively computably categorical. As we will see in
Corollary 10.1.17, these two notions are indeed different. Whereas “plain” computable categoric-
ity seems a purely computability-theoretic notion concerned with the intricacies of computation,
relative computable categoricity links computability with the classical model-theoretic theme that
relates definability to properties of structures.

The Scott Isomorphism Theorem

Fix a first-order language L, e.g., the language of groups or rings with identity. We have already
mentioned infinitary formulae, but we will remind the reader that Lω1ω is the logic with the usual
first-order connectives and quantifiers, together with infinite countable disjunctions and conjunc-
tions, and countably many variables.

To be more precise, we define Σ0 and Π0 formulae as the finitary (i.e., the usual first-order)
quantifier-free ones. For ω1 ą α ą 0, a Σα formula is one that is a countable disjunction of formulae

415

of the form Duψpx, uq, where each ψ is a Πβ formula for some β ă α. The definition of Πα is dual
and uses a countable infinite conjunction of @uψpx, uq, where ψ is Σβ for some β ă α. One striking
property of infinitary sentences is that they can describe countable structures up to isomorphism.

Theorem 10.1.2 (Scott [461]). Every countable structure has a Scott sentence, i.e., a sentence of
Lω1ω whose only models are ones isomorphic to A.

Proof sketch. Given two tuples ā, b̄ P A of the same length, if they do not satisfy the same infinitary
formulae, then let β be the least ordinal such that there is a Πβ-formula ψpx̄q which is true of ā but
not of b̄, or vice versa. Since there are countably many finite tuples, there exists a countable ordinal
α such that if tuples satisfy the same Πα-formulae, then they satisfy the same Lω1ω-formulae.
Without loss of generality, we can assume α ą 1.

Given a tuple ā P A, let ψāpx̄q be the infinite conjunction of all Πα-formulae true of ā in A.
We claim that the formula ψāpx̄q fully describes the automorphism type of ā in A. This is because
if A |ù ψāpb̄q and c P A, then A |ù Dxψā,cpb̄, xq, since ā and b̄ must satisfy the same infinitary
formulae. Thus, one can use the family ΛA “ tψāuāPAăω to construct an isomorphism between any
two isomorphic copies of A using the usual back-and-forth method (to be detailed in the proof of
Theorem 10.1.6).

The following sentence ensures that one can always pick an extension of ā and find a formula
in ΛA that describes it:

φā “ @x̄pψāpx̄q Ñ
ľ

cPA

Dyψā,cpā, yqq, and also φH “
ľ

cPA

Dyψcpyq.

To guarantee that one can always find a suitable element realising a formula from the family, we
use:

ηā “ @x̄pψāpx̄q Ñ @y
ł

cPA

ψā,cpā, yqq, and also ηH “ @y
ł

cPA

ψcpyq.

The Scott sentence is
ľ

āPAăω

φā ^ ηā,

and it essentially says that ΛA can be used to run a back-and-forth argument between any copies
of A.

Scott Families

The key step in the proof sketch of Theorem 10.1.2 was the use of a family ΛA of infinitary formulae
describing the automorphism orbits of tuples in A.

Definition 10.1.3. A Scott family for a countable structure A is a countable family Λ of Lω1ω

formulae with finitely many (fixed) parameters from A such that

(i) Each tuple a satisfies some ψ P Λ.

(ii) If |a| “ |b| and they satisfy the same ψ P Λ, then there is an automorphism of A taking
a ÞÑ b.

416

These observations suggest the following idea:

Since infinitary formulae can be used to describe the automorphism orbits of tuples in
countable structures, surely we can use computable ones to classify computable auto-
morphism orbits in computable structures.

We will see that, at least in the case of relative computable categoricity, this intuition is correct
and can lead to powerful results. (We also remark that the computable version of the Scott Iso-
morphism Theorem fails. We won’t focus on this negative result and leave the exact statements to
Exercise 10.1.120 and Exercise 10.3.19.)

Computable Scott families

Fix a computable language L. We define the class of computable infinitary formulae, Lcω1ω, as
follows.

Definition 10.1.4 (Computable infinitary formulae). The Σc0 and Πc
0 formulas are the finitary

first-order quantifier-free formulas. For α ą 0, a (notation for) a computable ordinal, a computable
Σα formula is one that is a c.e. disjunction of formulas of the form Duψpx, uq, where each ψ is a
computable Πβ formula for some computable β ă α. The dual class of computable Πα formulae is
defined similarly, but using computable conjunctions instead of disjunctions.

We will use the notation Σcα and Πc
α to emphasise that these are computable infinitary for-

mulae. (Otherwise, we omit “c”.) There are some technicalities regarding normal form (e.g.,
Exercise 10.1.49). Since we won’t be too concerned with this, we leave the calculus of computable
infinitary formulas to exercises (see §10.1.4). Some of the key properties of computable infinitary
logic and results related to Lcω1ω will appear as exercises; see Exercise 10.1.49 onwards. We refer the
reader to Ash and Knight [20] and Montalbán [401, 402] for a thorough exposition of this theory.
Indeed, we will mainly focus on the case when α is finite, and in fact, we will rarely encounter Σcα
formulae with α ą 2.

The effective version of Definition 10.1.3 is as follows:

Definition 10.1.5. Let A be a countable (typically, computable) structure.

1. A Σ0
1 Scott family (or c.e. Scott family) for A is one which is a c.e. set of (Gödel numbers

of) first-order finitary existential formulae.

2. For a computable α ą 1, a Σ0
α Scott family for A is one which is a c.e. set of (indices for)

computable Σcα formulae.

Note that in 1. we could have used computable infinitary Σc1 formulae, but it would give the same
notion. This is because A |ù

Ž

iPN Dx̄φipx̄, āq implies Di A |ù Dx̄φipx̄, āq, so we can just effectively
search for such an i. Further, if two tuples satisfy the same infinite disjunctions, then they must
be automorphic, and thus must satisfy the same disjunct Dx̄φipx̄, āq.

417

Theorem 10.1.6 (Ventsov [498]). Suppose that A is a computable structure. The following
are equivalent.

(i) A is relatively computably categorical.

(ii) A has a c.e. Scott family with a fixed tuple of constants c.

Proof of Theorem 10.1.6. piiq Ñ piq. Let Λ be the c.e. Scott family and suppose that B is a
structure with A – B. Take d with pA, cq – pB, dq. We construct the isomorphism f in stages,
making the construction computable from B. So suppose that we have constructed fs taking a
finite part of As and a finite part of Bs, such that if a ÞÑ b, then there exists ϕpc, xq P Λ, with

A |ù ϕpc, aq ^B |ù ϕpd, bq.

Now at stage s` 1, find the first a P Aztau if s` 1 is even, or symmetrically, the first b R Bztbu
if s` 1 is odd, and in this latter case, find a pre-image of b. Assuming s` 1 is even, find a formula
θpc, a, aq P Λ and an element b P B with

A |ù θpc, a, aq ^B |ù θpd, b, bq.

Define fs`1paq “ b. Then f “ Ysfs is a B-computable isomorphism taking A to B.
piq Ñ piiq. Let A be a computable structure, and suppose it is relatively computably categorical.

We shall replace all functions with their graphs in A and work with the open diagram DpAq of A.
We attempt to build B and an isomorphism f : B Ñ A and diagonalise against all isomorphisms
ΦBe from B to A. For some e, our diagonalisation attempt must fail, and this will allow us to
produce a c.e. Scott family for the structure.

Without loss of generality, the domains of A and B will be ω. Then DpBq will be defined using
f by declaring B |ù φpb̄q if A |ù φpfpb̄qq, for any atomic formula φ. We shall build B using the
finite extension method (§3.1.2).

Notation. We identify a finite string σ P ωăω with the induced partial map. All our strings will be
injective, meaning the respective maps are always assumed to be injective. We denote by Dpσq the
finite part of DpBq restricted to the domain of σ.

We say that a finite partial injective map h extends another partial injective map g if g Ď h.
We also say that h properly extends g if g Ď h, and if the domain of h contains the least n R dompgq
and the range of h contains the least m R rangepgq. We write p ĺ q if p is an initial segment of q.

The definition below reflects that for q extending p, Φe looks a bit more like an extension of a
potential isomorphism from B to A (assuming both p, q approximate f).

Definition 10.1.7. For two finite strings p, q and a functional Φe, we write p Ďe q if p ĺ q and the
following conditions are satisfied:

1. Φ
Dpqq
e is a partial isomorphism from (a subset of) Dpqq Ď B to A.

2. Φ
Dpqq
e extends Φ

Dppq
e .

If in 2., Φ
Dpqq
e extends Φ

Dppq
e properly, then we write p Ăe q.

418

We now describe a diagonalisation attempt that must fail. Clearly, it is sufficient to attempt
diagonalising against all Φe with e ą 0.

Construction. Set p0 “ H.
Suppose pe´1 has been defined, and suppose Φ1, . . . ,Φe´1 have been diagonalised against. To

define pe, check whether:

p@τ ľ pe´1q rpe´1 Ďe τ Ñ pDρq τ Ăe ρs . (10.1)

If for some τ ą pe´1 this property fails, then set pe equal to any such τ . Declare Φe diagonalised.
Otherwise, proceed as follows. For all j ě e, assuming pj´1 has been defined, pick pj Ąe pj´1.

Declare that pe´1 forces Φe to be an isomorphism, written pe´1 , Φe.

Set f “ Yepe and define B using pull-back via f , as explained earlier. This ends the construction
of B.

Verification. We first observe that at every stage e we can pick an extension pe of pe´1. In particular,
if pe , Φe, then this is guaranteed by p10.1q. Thus, f and B are well-defined, and B is isomorphic
to A via f , by construction.

We also claim that if Φe is declared diagonalised at stage e, then Φe is indeed not an isomorphism
from B onto A. If pe´1 Ďe τ fails, then it must be because the Φe-computation along τ does not give
a partial isomorphism to A. In this case, the assertion follows from the use principle. Otherwise,
suppose pe´1 Ďe τ but there is no ρ with τ Ăe ρ. In this case, Φe cannot be extended beyond
f æ e “ pe “ τ .

Since A is relatively computably categorical, for some e ą 0 we must fail to diagonalise against
Φe. This means that for pe´1 : t0, . . . , e´ 1u ÞÑ c̄, we have that pe´1 , Φe. In this case, we argue
that for any choice of p˚j (j ě e) so that

p˚e Ąe pe´1 and p˚j Ąe p
˚
j´1 for j ą e, (10.2)

if we set f˚ “ \jp
˚
j and let B˚ be the resulting structure, then

ΦDpB
˚
q

e : B˚ Ñ A

must be an isomorphism. Indeed, any such sequence of p˚j -s witnesses that Φe is an isomorphism,
according to Definition 10.1.7 (and by induction). This is, of course, also true about B in particular,
but we shall need this stronger property of pe´1 to produce a c.e. Scott family. Note that we can
computably enumerate all finite sequences pp˚j qeďjăk that satisfy p10.2q, because A is a computable
structure, and thus we will eventually see whether conditions required by Definition 10.1.7 will be
satisfied (note Φe has to be total on all such extensions of pe´1). Finally, observe that any such
finite sequence pp˚j qeďjăk that satisfies p10.2q can be extended to an infinite such sequence.

Defining the Scott family Λ. Recall pe´1 : x0, . . . , e´1y ÞÑ c̄. The tuple c̄ will be used as parameters
for the family. To define Λ, proceed as follows.

List all finite sequences pp˚j qeďjăk, k P N, that satisfy p10.2q, as well as all computations Φ
Dpp˚j q
e

that define partial isomorphisms extending

pe´1 : c̄1 “ x0, . . . , e´ 1y ÞÑ c̄.

419

In particular, each tuple ā in A must eventually be in the range of one such Φ
Dpp˚j q
e , say

Φ
Dpp˚j q
e : b̄Ñ ā,

and assume this computation is the first found such. Let ψāpc̄
1, d̄, b̄q be the conjunction of the part

of the (partial) diagram used in this computation. Set

θāpx̄q “ Dȳψāpc̄, ȳ, x̄q.

Define
Λ “ tθāpc̄, x̄q : ā P Aăωu,

which is clearly c.e. and has one θāpc̄, x̄q for each ā P Aăω.
Observe that for any B˚ produced using extensions of p˚j (fixed above for ā), Φe : B˚ Ñ A

isomorphically maps c̄1b̄ to c̄ā. Since c̄1b̄ satisfies θāpc̄
1, b̄q, then so does c̄ā (in A). This gives piq of

Definition 10.1.3 (for Λ).
It remains to verify piiq of Definition 10.1.3 which, after adjusting notation, says that

A |ù θāpc̄, ā
1q ùñ ā is automorphic to ā1 over c̄.

Note that b̄ is just a tuple of natural numbers, and so is c̄1 “ x0, . . . , e´ 1y. Consider B˚˚ that
extends pe´1 as follows. Consider p˚˚j that assigns the exact same indices to the finite piece of the
diagram corresponding to c̄, ā1 (coded by ψā) as p˚j did for c̄, ā. Since pe´1 , Φe and p˚˚j with the
described property still satisfies (10.2), it follows that we can build an isomorphism f˚˚ and define
B˚˚ by running the construction above p˚˚j .

We have that Φe : B˚˚ Ñ A is an isomorphism that maps c̄1b̄ to c̄ā1, and also, for the same Φe
and via the exact same computation, Φe : B˚ Ñ A isomorphically maps c̄1b̄ to c̄ā.

Now, c̄1b̄ are the f˚˚-pre-images of c̄ā1, and thus

Φ´1
e ˝ f˚˚ : AÑ A

is an automorphism of A that fixes c̄ and maps ā to ā1, as required.

Corollary 10.1.8 (Folklore). The index set of relatively computably categorical structures is Σ0
3-

complete.

Proof. Membership of Σ0
3 follows from Theorem 10.1.6; simply state that there is a Σ0

1 Scott family
(see Definition 10.1.3). The completeness follows from the proof of Theorem 7.1.3 and Exercise
10.1.24.

The next corollary justifies our description of relative computable categoricity as being a Type
II analogue of computable categoricity.

Corollary 10.1.9 (Folklore). If a computable structure is relatively computably categorical, then
there is a single Turing functional (perhaps, with finitely many parameters) that witnesses this
property.

Proof. This functional is (essentially) given by the enumeration of the Scott family.

420

When c.c. implies relative c.c.

Recall that a structure is n-decidable (n ě 0) if we can decide the value of any first-order (fini-
tary) Σn-formula about any tuple in the structure. For example, if a structure A is 2-decidable,
we can decide arbitrary D@-statements about tuples in A. A 0-decidable structure is simply a
computable structure. These notions differ for linear orders (Exercises 3.2.55 and 3.2.56) and for
Boolean algebras as well (Exercises 4.1.41 and 4.1.43). Building on an earlier result of Nurtazin
(see Exercise 10.1.26), Goncharov proved:

Theorem 10.1.10 (Goncharov [200]). Suppose that A is a 2-decidable structure. Then the
following are equivalent.

(i) A is computably categorical.

(ii) A is relatively computably categorical.

We remark that, in general, “2-decidable” cannot be replaced with “1-decidable” in the premises
of the theorem; this will appear as Exercise 10.1.30.

Proof of Theorem 10.1.10. We already have (ii) implying (i) in a stronger form since relative com-
putable categoricity implies computable categoricity.

For the converse, Goncharov’s construction works by trying to prove that A is not computably
categorical, and in the end, we argue that the construction must fail, and from this, read off a Σ0

1

Scott family.
We build a structure B and an isomorphism f : AÑ B. We attempt to meet the requirements

Re : ϕe is not an isomorphism witnessing B – A.

The construction is finite injury. At stage s, we will consider finite partial injective functions p and
q Ě p approximating f´1.

Let p : d ÞÑ c be from B to A. The goal is to show that if ϕe is a total and injective function
from A onto B, then for some b, the pre-images of d and b under ϕe and f do not satisfy the same
existential formulae.

At stage s, suppose ϕe Ó taking ĉ, â to d, b. Let δpd, b, b1q be the conjunction of all sentences
(with constants naming elements of B) enumerated into the diagram of B by stage s. Suppose at
stage s we have q with p Ď q taking d, b, b1 to c, a, a1, where p : dÑ c is preserved by higher priority
requirements. Note that q makes A |ù δpc, a, a1q.

Case 1. If A |ù Dyδpĉ, â, yq, then we can use q to satisfy Re.

Case 2. Suppose A |ù Dyδpĉ, â, yq. Then let u, x be the variables corresponding to d, b (and, thus,
to ĉ, â). Amongst the first s existential formulae, see if there is a θpu, xq with

A |ù θpc, aq Ø θpĉ, âq.

Then we can again use q to diagonalise Re.

421

Case 3. Amongst the first s many existential formulae, there is some θ such that some of the tuples
satisfying Dvδpc, x, vq satisfy θpc, xq and some do not. Take n and m with A |ù δpc, n,mq and

A |ù θpc, nq Ø θpĉ, âq.

Then we can satisfy Re by replacing q with q1 Ě p where q1 maps d, b, b̂ to c, n,m.

Case 4. Suppose that ξpd, b, b1q is the first atomic sentence not decided in δ with b1 Ě b1. Let
ψpu, xq denote Dv1pδpu, x, v1q ^ ξpu, x, v1qq. Suppose that some of the tuples satisfying Dv1δpu, x, v1q
satisfy ψpc, xq and some do not. (Or this is true with ξ replacing ξ.) Then again we can use the
same kind of strategy to meet Re.

In any of the cases above, we will be able to meet Re.

In the construction, we will choose the first q Ě p to meet the highest priority Rj for j ď s, if
such a j exists. Once the diagonalisation is achieved via q, we will preserve the finite partial map
q with priority of Rj . We also extend q to include constants from ξpd, b, nq so that q makes the
sentence either true or false in A, and add the appropriate sentence to the diagram of B. We omit
the usual details.

This ends (the description of) the construction.

Fix e so that for all j ă e we meet Rj (say by stage s0), but Re is never met. We claim that
there is a Σ0

1 Scott family. At stage s0, we have a mapping p taking d to c, with ϕe,s having range
d. For each s ą s0, let ϕe,s take ĉ, âs to d, bs. Let δspd, bs, b1sq be the conjunction of all the sentences
in the diagram by stage s.

Claim 10.1.11. For any tuple a satisfying Dvδspc, x, vq and a stage t ą s, there exists a1 such
that a, a1 satisfies Dv1δtpc, x, x1, v1q. (The tuple v̄1 has the same length as b̄1t and x̄x̄1 essentially
corresponds to b̄t.)

We leave the proof of this as an exercise for the reader.

Defining the Scott family Λ. For each tuple b P B, define θpc, xq as follows. Find the first stage
s ą s0 where the range of ϕe,s includes d, b, and q Ě p is defined on them. If q maps d, b, b1 to
c, a, a1 at this stage, then let δpd, b, b1q be the conjunction of all of the formulae enumerated into the
diagram of B by s, and then define

θbpc, xq “ Dvδpc, x, vq.

Put θbpc, xq P Λ. Then Λ is of the correct form for a Σ0
1 Scott family.

It is enough to show that each tuple satisfies some member of Λ, and if two tuples satisfy the
same member, then they satisfy the same existential formulae θpc, xq (Exercise 10.1.23). Since Re
is not met, we know that ϕe maps A bijectively and isomorphically onto B. Suppose that f maps
c, a to d, b. Then a must satisfy θbpc, xq. Note that at the stage when θbpc, xq is determined, we

might have q taking b to something other than a. But it must be that a satisfies θbpc, xq, as when
we change the function we preserve the diagram enumerated so far.

Let θpc, xq be a (finitary) existential formula satisfied by some tuple that also satisfies θbpc, xq.
Suppose that we determined θbpc, xq at stage s and take t ě s, where θpc, xq is considered. Since we

422

cannot use θpc, xq to diagonalise ϕe at stage t, we know that if some tuple satisfies Dv1δtpc, x, x1, v1q
and satisfies θpc, xq, then they all do. By Claim 10.1.11, we see

A |ù @xpθbpc, xq Ñ Dx1Dv1δtpc, x, x1, v1qq.

That is
A |ù @xpθbpc, xq Ñ θpc, xqq.

It now follows from Exercise 10.1.23 that Λ is a Σ0
1 Scott family.

A transfinite extension of Theorem 10.1.6

A computable structure A is relatively ∆0
α categorical if for any X-computable B – A, we have

B –∆0
αpXq

A, where the class ∆0
αpXq stands for the relativisation of the class ∆0

α defined in
Section 8.1.

Theorem 10.1.12 (Ash [17]). Fix a computable ordinal α. The following are equivalent for a
computable structure S:

(i) The structure S is relatively ∆0
α-categorical.

(ii) The structure S has a Σcα Scott family.

(iii) The structure S has a c.e. family Λ of Σcα-formulae over some fixed c P S such that each
a P S satisfies some θ P Λ, and if a, b P S both satisfy the same θ then they satisfy the same
Σcα-formulae. (In other words, the Σcα-types of S are effectively isolated by Σcα-formulae.)

Proof. The implication piiq Ñ piiiq is trivial, and the proof of piiiq Ñ piq is not really different from
the case of a c.e. family given by Exercise 10.1.23 and the proof of piiq Ñ piq of Theorem 10.1.6.
We focus on proving piq Ñ piiq. As sometimes happens, it will be easier to give a much more
general construction, and then derive the theorem from this general machinery. The proof below is
somewhat compressed since we will not really need to use piq Ñ piiq in the sequel.

Building a generic copy of A. We reserve a computable collection of constants (that can be
identified with ω) and, using these constants, we will build a bijection f˚ : B Ñ A using finite
extensions. Our structure B˚ upon the domain B will be defined using the pull-back from A via
f˚.

In B˚, every existential quantifier Dx can be replaced with the infinite computable disjunction
Ž

bPB , and a first-order universal quantifier over elements of B can be replaced by an infinite
computable disjunction over all elements of B. Thus, the following definition covers all computable
sentences:

Definition 10.1.13. Let p : B Ñ A be a finite partial injective map, and φ a computable infinitary
sentence in the language of A augmented with constants from B. Define p , φ (“p forces φ”) as
follows:

1. If φpb̄q is quantifier-free with parameters b̄ in B, then p , φpb̄q if A |ù φpppb̄qq (this assumes b̄
is in domp).

423

2. p ,
Ž

i φi iff Di p , φi.

3. p ,
Ź

i φi iff @i@p ľ q Dρ ľ p such that ρ , φi.

Our formulae will be in normal form, unless otherwise specified. In particular, we identify
 φ with its normal form. By induction on the complexity of formulae, we establish the following
elementary but important lemma:

Lemma 10.1.14. In the following, φ ranges over computable sentences (in the same language as
before) and p, q, r are finite partial injective maps from B to A.

1. If p , φ and q ľ p, then q , φ.

2. For each p, there exists a q ľ p such that

q , φ or q , φ.

3. No p and φ can possibly satisfy
p , φ and p , φ.

The proof is left to Exercise 10.1.53. Notice that the lemma tells us that every sentence is always
“decided” by some extension of every given string. We adopt this self-descriptive terminology and
say that q decides φ if q , φ or q , φ.

Before we proceed, we note that

F “ tp | p : B Ñ A finite partial injective mapu

can be viewed as a subset of ωăω, which is dense in the closed I Ď ωω that consists of injective
maps. More generally, for a set of finite strings X, being dense is equivalent to saying that for each
partial injective q there exists a p P X such that p ľ q; indeed, it is the same as saying that every
basic open set rqs intersects X. Note that, for each computable infinitary φ and each a P A, the
following sets are dense open in I :

Dφ “ tp : p decides φu

and
Da “ tp : rngppq Q au.

This is a countable collection of dense open sets, so their intersection is also dense in I, by the
Baire Category Theorem (see Exercise 4.2.38). Thus, there exists

f˚ “
ď

nPN
pn P I

where pn “hits” the n-th dense open set in the sequence.
Any such f˚ gives rise to a “generic” structure B˚ via pullback from A. Indeed, any such f˚

is clearly injective, and it is surjective because it is inside the set Db“b for every b P B. The next
lemma is perhaps the most useful property of such a generic B˚; it is also proven by induction on
the complexity of φ:

424

Lemma 10.1.15. In the following, φ ranges over computable sentences (in the language of A with
constants from B).

1. B˚ |ù φ if and only if Dn pn , φ.

2. For each φ and b̄ in B, there is a computable formula ψb̄,φ of the same syntactic complexity

as φ such that, for any ā with |ā| “ |b̄|,

A |ù ψb̄,φpāq if and only if b̄ ÞÑ ā , φ.

We leave the proof to Exercise 10.1.54. Note that the B-constants are eliminated from ψ. Also,
the inductive transformations used in the proof are uniformly effective.

The Scott family. We shall write Xpαq for the α-th jump of a set X, which is a (Turing) ∆0
1`αpXq-

complete set. To use α-th jump of the open diagram of B˚, DpB˚qpαq, we shall slightly adjust our
notation and assume that the structure is relatively ∆0

1`α-categorical, and so we need to produce
a c.e. Σc1`α Scott family.

The idea is to use Lemma 10.1.15 to turn the property

ΦDpB
˚
q
pαq

e : AÑ B is an isomorphism

into a sequence of formulae that will be the Scott family for A. The key lemma is as follows:

Lemma 10.1.16. There exist computable sentences (with constants in B) saying that:

1. σ ĺ pDpB˚qqpαq;

2. ΦpDpB
˚
qq
pαq

: AÑ B˚ is total;

3. ΦpDpB
˚
qq
pαq

: AÑ B˚ is an isomorphism.

In the sequel, we will only use the case when α “ 1, i.e., when the structure is relatively ∆0
2-

categorical. We will explain the ∆0
2 case in a bit more detail, but the general case is actually not

too different and can be derived by (effective) transfinite induction (cf. Exercise 10.1.51).

Sketch of p1q, α “ 1. Identify a Turing functional Φe with the c.e. set txn, σ, ky : Φσe pnq Ó“ ku.
Let X be a set. Then ΦXe pnq “ k holds iff

ψe,n,kpXq ”
ł

xn,σ,kyPWe

σ ĺ X

holds. For a finite string σ, we have that σ ĺ X 1 iff the property
ľ

σpeq“1

ψe,e,1pXq &
ľ

σpeq“0

 ψe,e,1pXq

holds. If X is taken to be the open diagram DpB˚q of B˚, then ψe,n,kpXq can be viewed as a
computable Σc1 formula:

ł

xn,σ,kyPWe

Dpσq,

425

where σ is (uniformly effectively in σ) interpreted as the truth values Dpσq of the first few atomic
facts about elements of B˚ coded by σ. This allows one to express

σ ĺ DpB˚q1

as a conjunction of a computable Σc1-sentence and a computable Πc
1-sentence.

Using similar manipulations, we can also demonstrate that there is a Σc1`α-sentence θā,b̄ saying
that

ΦDpB
˚
q
pαq

e : āÑ b̄,

where of course we also require Φ
DpB˚qpαq

e paq Ó, for all a in ā. (Note the elements in ā are just natural
numbers, and they only contribute to the indices for the c.e. sets used to take the disjunctions of
B˚-sentences.)

Now, if B˚ is a generic copy, then for some n, we have that

pn , “ΦDpB
˚
q
pαq

e : AÑ B˚ is an isomorphism”.

Suppose pn is d̄ ÞÑ c̄. For each ā in A, there is a q ľ pn and a tuple ā1 in A such that

q : d̄, b̄ ÞÑ c̄, ā

and q , θā1,b̄. Notice that the choice of pn and e guarantees that ā1 is automorphic to ā over c̄, via
the composition of Φe and f˚, using any generic extension f˚ of q.

We are almost done. To finish the proof, we shall invoke (2) of Lemma 10.1.15. For a tuple ā1

in A, let
γā1pc̄, x̄q ”

ł

b̄,b̄1PB

Dū1ψd̄b̄b̄1θā1,b̄pc̄, x̄, ū1q.

If A |ù γā1pc̄, āq, then for some choice of parameters,

d̄, b̄, b̄1 ÞÑ c̄, ā, ā1 , “ΦDpB
˚
q
pαq

e : ā1 Ñ b̄”,

which also makes any ā1 that satisfies this formula automorphic to ā over c̄ (as we already noted
earlier). On the other hand, since Φe is an isomorphism between B˚ and A, ā1 will satisfy some
disjunct, and thus, A |ù γā1pc̄, ā

1q.
Note that we can produce the formula uniformly in the tuple ā, e, and pn. Since Lemma 10.1.15(2)

preserves the syntactic complexity of formulae, we have that the formulae are Σc1`α, as required.

A c.c. structure that is not relatively c.c.

Theorem 10.1.17 (Goncharov [205, Theorem 4]). There is a computable structure A that is
computably categorical but not relatively computably categorical.

We remark that Goncharov derived his result from the earlier papers concerned with numberings
(effective uniform enumerations) of sets of natural numbers independently obtained by Badaev [25]
and Selivanov [462]. We adopt the modern version of the proof (e.g., [132]) that uses a tree of
strategies similar to the one in the proof of the Minimal Pair Theorem 3.1.44.

426

Proof. Before discussing the formal details, we informally discuss the requisite ideas. The struc-
ture A will be a directed graph consisting of infinitely many finite connected components. Each
component will consist of either two, three, or four cycles sharing only a single vertex v, termed
the root vertex.

In order to prevent A from being relatively computably categorical, we diagonalise against all
pairs pc,Λq, where c is a finite tuple of elements from the universe of A and Λ is a c.e. family of
existential formulas with parameters from c. We create vertices v1 and v2 such that v1 and v2 are
not automorphic, but Λ cannot distinguish them.

In order to ensure A is computably categorical, we construct a partial computable map fj
from A to Bj (the j-th (partial) directed graph). If A and Bj are isomorphic, the map fj will be
an isomorphism.

More formally, we meet the following requirements to prevent relative computable categoricity:

Ri : The i-th pair pci,Λiq is not a Scott family for A.

We meet the following requirements to ensure computable categoricity:

Sj : If A – Bj , then fj : A – B is a computable isomorphism.

Strategy for meeting Ri (in isolation). We take the following actions, being careful to use
elements larger than those found in ci:

1. Fix a large number ` and create two new root vertices v1 and v2.

2. Attach a loop of length 2 and a loop of length 3` to both v1 and v2 and a loop of length 3``1
to v1.

3. For every formula φpx, ciq :“ pDyqrψpx, y, ciqs in Λi, search for a tuple a1 ă s such that
A |ù ψpv1, a1, ciq.

4. If such a formula and tuple are found, attach a loop of length 3``2 to v1 and a loop of length
3`` 1 to v2.

These actions prevent pci,Λiq from witnessing that A is relatively computably categorical: If we
never find a formula φ and tuple a1, then not every singleton satisfies some φ P Λi.

If we find a formula φ and tuple a1, let s be the stage at which these are found. Then by
construction, the component of v1 at stage s embeds into the component of v2 at stage s` 1, and
the component of v2 at stage s embeds into the component of v1 at stage s`1. This can be extended
to an embedding As ãÑ As`1 via the identity off these components, and notably this embedding
maps v1 to v2 and fixes ci elementwise.

Since φ is existential, we have

As |ù φpv1, cq ùñ As`1 |ù φpv2, cq

ùñ A |ù φpv2, cq,

but v1 and v2 are not automorphic.

Strategy for meeting Sj (in isolation). As the construction of A proceeds, we attempt to
define fj so that it maps components in A to components in Bj . Finding the image of a component

427

in A is a two-step process: We identify root vertices in Bj as those vertices having out-degree at
least two (this is the sole purpose of the loops of length two). While identifying root vertices in Bj ,
we also search for cycles emanating from already identified root vertices in Bj . When we find a
component in Bj with the same lengths of cycles emanating from it as a component in A, we map
the root vertex and cycles appropriately.

Conflicts between strategies and their resolution. Unfortunately, our action to defeat relative
computable categoricity conflicts heavily with our action for computable categoricity. Trying to
define a computable isomorphism between A and Bj , the naive approach would be to wait for the
components to appear in A and Bj and to define the isomorphism appropriately. If and when the
components grow in A or Bj , an opponent would have the opportunity to switch v1 and v2, killing
our computable isomorphism fj . As we need infinitely many pairs of components to defeat relative
computable categoricity, an opponent would have sufficiently many opportunities to diagonalise
against all computable functions.

The critical observation is that this opportunity to diagonalise can be prevented by slowing
down the construction: For the finitely many higher-priority Ri-strategies (which build finitely
many finite components), the Sj-strategy defines the computable isomorphism fj nonuniformly.
For the components built by lower-priority Ri-strategies, we use the above-mentioned technique of
pushing on isomorphisms: The Sj-strategy will allow the lower-priority Ri-strategy to extend its
component in Step 4 only gradually as follows:

(4’a) Attach a loop of length 3`` 2 to v1.

(4’b) Wait until this loop appears in Bj for every j ă i for which A – Bj .

(4’c) Attach a loop of length 3`` 1 to v2.

In this way, the problem cannot occur: At any time, we will be able to distinguish v1 and v2 in Bj .
Of course, it will likely be the case that A fl Bj for some j ă i, in particular that some Bj with
j ă i does not have a loop of length 3` ` 2. Hence, we may wait at Step 4’b unnecessarily (since
we cannot effectively know whether A – Bj), causing Step 4’c not to be reached. This would cause
our diagonalisation attempt against Λi to be unsuccessful.

The solution is to have Ri-strategies guess the outcomes of higher priority Sj-strategies via
a priority tree. Each Ri-strategy will have two outcomes: wait, (indicating that the strategy is
still searching for a formula φ and a tuple a1) and act (indicating that the strategy has found the
desired φ and a1). Each Sj-strategy will have an infinite outcome 8 (indicating that Sj believes
A – Bj) and finite outcomes k for all k P N (counting the number of times Sj has taken outcome8).
Full strategy for meeting Ri. We take the following actions, always being careful to use elements
larger than those found in ci:

1. Fix a large number ` and create two new root vertices v1 and v2.

2. Attach a loop of length 2 and a loop of length 3` to both v1 and v2 and a loop of length 3``1
to v1.

3. For every formula φpxq :“ pDyqrψpx, y, ciqs in Λi, search for a tuple a1 ă s such that A |ù

ψpv1, a1, ciq.

4. If such a formula and tuple are found, attach a loop of length 3`` 2 to v1.

428

5. Wait until the next stage at which the strategy is accessible.

6. Attach a loop of length 3`` 1 to v2.

While the strategy is searching at Step 3, it has outcome wait. Once it has found a formula φ
and a tuple a1, it has outcome act.

Full strategy for meeting Sj. Let σ on the priority tree be the Sj-strategy in question. Let s
be the current stage. Let k be the number of stages less than s at which σ had outcome 8.

We consider certain root vertices in A: For each τ ă σ such that τpwait ĺ σ, we consider
the root vertices created by τ ; for each τ ă σ such that τpact ĺ σ and τ has reached Step 6,
we consider the root vertices created by τ ; and for each τ ć σ with τ incomparable with σpk, we
consider the root vertices created by τ .

For each root vertex v in A we are considering, if fjpvq is not yet defined, we search Bj,s for
a root vertex u with a component identical to the component of v and define fjpvq :“ u and then
extend fj to an isomorphism of the components. If fjpvq is defined, and the component of v appears
identical to the component of fjpvq in Bj,s, we extend fj to an isomorphism of the components, if
it is not already.

After this action, if for every vertex v we are considering, fjpvq is defined and fj is an iso-
morphism of the components of v and fjpvq, then σ has outcome 8 at stage s. Otherwise, it has
outcome k.

Construction. For an Sj-strategy, we order the outcomes as 8 ă ¨ ¨ ¨ ă 2 ă 1 ă 0. For an
Ri-strategy, we order the outcomes as act ă wait. We create a priority tree by devoting each level
to one requirement in some effective fashion. At stage s, we let all visited strategies of length at
most s act in order of priority.

Verification. Define the true path through the priority tree in the usual fashion. We note the
important fact that if the current path moves to the left of a node on the priority tree that has
already been visited, that node can never be visited again.

It is immediate from the construction that A is a computable presentation. We verify that it is
both computably categorical and not relatively computably categorical.

Claim 10.1.18. The structure A is computably categorical.

Proof. Fix an index j such that A – Bj , and let σ be the Sj-strategy along the true path. By
assumption, the presentation Bj contains a component isomorphic to every component of A, so σ
will eventually define fjpvq for every vertex it considers. For the components built by τ ă σ,
since σ is on the true path, these components will never grow once σ begins considering them, so fj
is correct on these.

For the components built by strategies τ incomparable with σ, τ can never be visited after σ
begins considering them, and so they can never grow once they are considered. So fj is correct on
these.

For the components built by τ ľ σp8, if τ has final outcome wait, then the components never
grow once σ begins considering them.

If τ adds the loop of length 3``2 to v1, then before τ added this loop, σ defined fjpv1q to be an
element of Bj with a loop of size 3`` 1. After τ adds this loop, σ will never again have outcome 8
unless a loop of length 3` ` 2 appears attached to fjpv1q, and if σ never again has outcome 8,

429

then v1 is the unique vertex with a loop of size 3` ` 1. So the loop of length 3` ` 2 must appear
on fjpv1q.

If τ adds the loop of length 3`` 1 to v2, σ must have outcome 8 at some stage after τ attached
the loop of length 3`` 2 to v1. So fjpv1q has a loop of size 3`` 2 and one of size 3`, and fjpv2q has
a loop of size 3`. Then there are only two loops of size 3` in A, one with a loop of size 3`` 2 and
one without, so by elimination fjpv2q must be the correct image of v2. So the loop of length 3`` 1
must appear on fjpv2q.

For the components built by τ ľ σpk for some k, if σ is considering this component at stage s,
then it has had outcome 8 more than k many times by stage s. So the components can never again
grow once they are considered, so fj is correct on these.

By the above, since fj is correct on every component on which it is defined, and it will be
defined on every component it considers, σ must have true outcome 8. So by construction, every
component is considered, and thus fj is an isomorphism.

Claim 10.1.19. The structure A is not relatively computably categorical.

Proof. Fix an index i and let σ be the Ri-strategy along the true path. Then either σ will wait
forever at Step 3, or it will reach Step 6. In the former case, the element v1 fails to satisfy any
φ P Λi. In the latter case, the nonautomorphic elements v1 and v2 satisfy φ P Λi. In either case,
the family Λi is not a Scott family.

This concludes the proof of Theorem 10.1.17.

Divergence of plain and relative categoricity in non-universal classes

Can we find structures witnessing Theorem 10.1.17 in “natural” algebraic classes? Of course, it
is only expected that any effectively universal class, such as the class of 2-step nilpotent groups
(Theorem 8.2.14), can be used as a source of such examples. On the other hand, in all classes
that are not effectively universal that we’ve studied in the book, “plain” and “relative” computable
categoricity are equivalent for structures in the class (e.g., Exercise 10.1.24).

It is not difficult to see that the class of torsion abelian groups is not effectively universal
(Exercise 10.4.7). Recall that Theorem 9.3.37 states that the index set of c.c. torsion abelian
groups is Π0

4-complete. Theorem 9.3.37 and Corollary 10.1.8 imply:

Corollary 10.1.20 (Melnikov and Ng [377]). There exist computably categorical torsion abelian
groups that are not relatively computably categorical.

A closely related theorem is as follows:

Theorem 10.1.21 (Hirschfeldt, Kramer, Miller, and Shlapentokh [259]). The index set of com-
putably categorical algebraic fields is Π0

4-complete. In particular, there exists an algebraic field that
is computably categorical but not relatively computably categorical.

As far as we know, in all algebraic classes in which computable categoricity is described by
a purely algebraic property, “plain” and “relative” computable categoricity coincide. Thus, one
should not expect an algebraic characterisation of computably categorical torsion abelian groups
similar to that given in Theorem 9.3.26. Similarly, one should not expect to obtain a purely
algebraic characterisation of computably categorical algebraic fields. Therefore, it could well be
that Theorems 9.3.37 and 10.1.21 are the best possible classifications of computable categoricity in
the respective classes.

430

Computable categoricity is unclassifiable in general

We also state without proof the following technically difficult result (it was stated earlier as
Ex. 8.1.44):

Theorem 10.1.22 (Downey et al [131]). The index set of computably categorical structures

tMe : Me is a computably categorical graphu

is Π1
1-complete.

The proof is omitted since it uses methods that were not covered in the book. Because of
Corollary 10.1.8, Theorem 10.1.22 clearly implies Theorem 10.1.17. Also, it tells us that computably
categorical structures are not classifiable in general, and also are not classifiable in any effectively
universal class.

Exercises

Exercise˝ 10.1.23 (Folklore). Let A be a countable structure. Suppose that Λ is a family consisting
of finitary existential formulas with parameters from a fixed finite tuple ā. Suppose that

(a) each ā in A satisfies some formula in Λ, and

(b) if there is some formula ϕ in Λ satisfied by tuples ā and b̄, then the two tuples satisfy exactly
the same existential formulas with parameters ā.

Then Λ is a Scott family for A.

Exercise˝ 10.1.24 (Folklore). Show that in the following classes, relative computable categoricity
is equivalent to (“plain”) computable categoricity:

1. Vector spaces over a fixed computable field.

2. Boolean algebras.

3. Linear orders.

4. Abelian p-groups.

5. Torsion-free abelian groups.

Exercise˝ 10.1.25. Prove the following. If a computable structure M is computably categorical,
then its index set ti : M – Miu is Σ0

3. Show that it can be Σ0
3-complete even for a relatively

c.c. structure.

Exercise 10.1.26 (Nurtazin [418]). We say that a decidable structure A is decidably categorical
if, for all decidable B – A, B –∆0

1
A; i.e., B is computably isomorphic to A. Prove that A is

decidably categorical iff A has a Σ0
1 Scott family.

Exercise˝ 10.1.27. Give a direct proof of Corollary 10.1.20 imitating the proof of Theorem 10.1.17.

Exercise˝ 10.1.28. Give an example of a decidably categorical structure (see Exercise 10.1.26)
which is not computably categorical.

431

Exercise 10.1.29 (Millar [389]). Show that is A is computably categorical and 1-decidable, and
a P A, then pA, aq is also computably categorical1.

Exercise˚ 10.1.30 (Kudinov [320]). There is a 1-decidable structure that is computably categorical
but not relatively computably categorical.

Exercise˚ 10.1.31. A structure is decidably categorical (Exercise 10.1.26) if it has a unique de-
cidable presentation, up to computable isomorphism.

1. Show that the index set of decidably categorical structures in a given computable signature
lies in the class Σ0

ω`2.

2. Show that the index set of decidably categorical structures in each of the following classes is
Σ0
ω`2-complete:

(a) linear orders [209];

(b) Boolean algebras [208].

Exercise 10.1.32 (Goncharov [205]). We say that a computable structure A is computably stable
if, for all computable B – A, every isomorphism f : B Ñ A is computable. For example Q is
a computably categorical ordering which is not computably stable, and ω with successor function
spxq “ x`1 is computably stable. Prove that A is computably stable iff for some tuple of constants
a P A, pA, aq is computably categorical and rigid. (That is, has no nontrivial automorphisms.)

Exercise 10.1.33 (Goncharov [205]). Suppose that A is a 1-decidable (thus, computable) structure.
Show that A is computably stable (see Exercise 10.1.32) iff A has a c.e. defining family. That is a
c.e. family Λ of finitary existential formulae defining all of the elements of A. This means that

(i) every element of A satisfies a formula in Λ.

(ii) no formula in Λ is satisfied by two distinct elements of A.

Exercise 10.1.34 (Ash and Nerode [22]). An m-ary relation U on a computable structure A is
called intrinsically c.e. if for all computable A – B via f : AÑ B, then fpUq is c.e.. Prove that if A
is 2-decidable, then U is intrinsically c.e. iff it formally c.e.; meaning that there are a finite collection
of parameters a1, . . . , ak P A, and a c.e. sequence of existential formulae tψnpx1, . . . , xm, y1, . . . , ykqu,
such that

@x1@x2 . . .@xmUpx1, . . . , xmq iff _nPN ψnpx1, . . . , xm, a1, . . . , akq.

1This is not true if the hypothesis that A is 1-decidable is removed. This was shown by Cholak, Goncharov, Khous-
sainov and Shore [93], and then later Hirschfeldt, Khoussainov and Shore [258] showed that there is a computably
categorical structure A and a constant a P A such that pA, aq has computable dimension 8 (Definition 10.3.1).

432

10.1.2 Uniform computable categoricity

In this subsection, we compare different stronger notions of computable categoricity that naturally
arise in algebraic examples.

Uniform versions of computable categoricity

There are at least two natural ways to define the concept of “uniform computable categoricity”.
In computability theory, uniformity is usually defined in terms of indices. From a model-theoretic
viewpoint, however, it seems more natural to require the existence of an effective procedure for
producing the desired isomorphisms that takes structures, rather than indices for structures, as
input. For example, computable categoricity of the dense linear order pQ,ăq is clearly witnessed
by a Turing functional. These two different approaches are reflected in the following definition.

Definition 10.1.35 (Downey, Hirschfeldt, Khoussainov [126], Ventsov [497, 498]). Let A be
a computable structure and let M0,M1, . . . be a computable list of all partial computable
structures in the language of A.

1. A is weakly uniformly computably categorical (weakly u.c.c.) if there is a total computable
f such that Me – Añ ϕfpeq : Me – A.

2. A is uniformly computably categorical (u.c.c.) if there is a partial computable operator
Ψ such that Me – A ñ ΨpMeq : Me – A (that is, the function x ÞÑ ΨpMe;xq is an
isomorphism from Me to A).

3. A is (weakly) u.c.c. with parameters if there are finitely many elements a0, . . . , an P A
such that pA, a0, . . . , anq is (weakly) u.c.c..

Remark 10.1.36. For each partial computable g there exists a total computable f such that
gpeq Óñ ϕfpeq “ ϕgpeq. Thus for A to be weakly u.c.c. it is enough that there exist a partial
computable g such that Me – Añ gpeqÓ and ϕgpeq : Me Ñ A.

The difference between the two notions defined above can be understood from a programming
perspective. A computable structure A is weakly u.c.c. if there is a computable procedure that,
given a program P outputting a structure B isomorphic to A, produces an isomorphism between B
and A possibly using information about P . On the other hand, A is u.c.c. if there is a computable
procedure that, given a computable structure B isomorphic to A, produces an isomorphism between
B and A without knowledge of the particular program that is outputting B.

Relative vs. uniform categoricity with parameters

In the theorem below, by a Σ0
1 Scott family we mean a c.e. Scott family consisting of first-order

existential formulae.

Theorem 10.1.37 (Ventsov [497, 498]). A computable structure is u.c.c. if and only if it has a
Σ0

1 Scott family without parameters, and is u.c.c. with parameters if and only if it has a Σ0
1 Scott

family with finitely many parameters.

433

Proof. It is enough to prove the first part of the theorem, from which the second part follows
immediately. Let A be a computable structure and let M0,M1, . . . be a computable list of all
partial computable structures in the language of A.

If A is u.c.c. then let Ψ be as in Definition 10.1.35. Given x “ px0, . . . , xkq P A
k`1, let Mepxq be

a finite substructure of A such that, for every i ď k, xi P Mepxq and ΨpMepxq;xiq Ó. Let y0, . . . , yn
be the elements of Mepxq other than x0, . . . , xk and let δpx, y0, . . . , ynq be the conjunction of the
finitely many elements of the atomic diagram of Mepxq. Define θx ” Dy0, . . . , ynpδpx, y0, . . . , ynqq.

We claim that tθx : x P Aăωu is a Scott family. It is enough to show that if A (θxpyq then y
is in the orbit of x. If A (θxpyq then there is an i and a g such that g : A – Mi, gpyq “ x, and
Mepxq is a substructure of Mi. It is easy to check that pΨpAqq´1 ˝ΨpMiq is an automorphism of A
taking y to x.

For the other direction, we can use the standard proof that a structure with a Scott family is
computably categorical, since this proof produces computable isomorphisms uniformly.

Combining the theorem above with Theorem 10.1.6, we obtain:

Corollary 10.1.38 (Downey, Hirschfeldt, Khoussainov [126]). A computable structure is u.c.c.
with parameters if and only if it is relatively computably categorical.

In the second half of the proof of Theorem 10.1.37, there is no need for the input structure
to be computable. This gives another way of proving Corollary 10.1.9 and allows us to conclude
that relativising the notion of uniform computable categoricity does not make it any stronger.
These results and observations should be compared with the Kreisel-Lacombe-Shoenfield-Markov
Theorem 2.3.7 and with Theorem 2.3.18 about computable functions r0, 1s Ñ R.

Type 1 vs Type 2 for uniform categoricity

We now prove a theorem of Kudinov which resembles Specker’s Theorem 2.3.24 from Chapter 2.
This theorem implies that there is a computably categorical structure that is not relatively com-
putably categorical (Theorem 10.1.17). In [126], the theorem below is attributed to Kudinov [321].
The proof below is taken from [126].

Theorem 10.1.39. There is a weakly u.c.c. structure which is not u.c.c. with parameters (equiva-
lently, not relatively c.c., by Theorem 10.1.37).

Proof. For each n P N, let rns be the directed graph consisting of n`3 many nodes x0, x1, . . . , xn`2

with an edge from x0 to itself, an edge from xn`2 to x1, and an edge from xi to xi`1 for each
i ď n` 1. We call x0 the top of rns.

For each S Ă ω, the directed graph rSs consists of one copy of rss for each s P S, with all the
tops identified.

Now let D0, D1, . . . be a standard list of all finite non-empty sets and let Bn0 , B
n
1 , . . . be the nth

uniformly c.e. (u.c.e.) collection of sets in some standard ordering of such collections. We will build
a u.c.e. collection of finite sets A0, A1, . . . with the following properties.

1. There is no c.e. set W such that every Ai contains Dk for some k P W and pk P W ^Dk Ď

Ai, Ajq ñ Ai “ Aj .

2. Let N be the set of all i P N such that Ai is non-empty. There is a partial computable
binary function h with the following property. For each n P N, if there is a 1–1 and onto map
g : ω Ñ N such that, for all i P N, Bni “ Agpiq, then hn ” λiphpn, iqq is such a map.

434

Suppose we have built A0, A1, . . . with these properties and let A be a computable directed
graph consisting of the disjoint union of the graphs rAis, i P N. It is not hard to check that the
first property above implies that A has no Scott family, while the second property implies that A
is weakly u.c.c..

We now proceed with the construction of A0, A1, We assume that if s ă xn, iy then Bni rss “
H. Since we are only interested in collections of sets B0, B1, . . . for which there is a 1–1 and onto
map g : ω Ñ N such that, for all i P N, Bi “ Agpiq, we also assume without loss of generality that
for each n, i, s P N there is a j P N such that Bni rss Ď Ajrss. For each e P N, let kpeq be such that
Dkpeq “ t2eu. We begin with Ai “ H for all i P N. At stage s, we proceed as follows.

1. Enumerate 2s into Axs,0y.

2. Search for the least e ď s (if any) such that kpeq PMe and Axe,0y “ t2eu. If such an e is found
then enumerate 2xe, 0y ` 1 into Axe,0y and enumerate 2e and 2xe, 1y ` 1 into Axe,1y. Say that
e is active at stage s.

3. For each e ď s, check if there exist n, i P N such that xn, iy ď s, e has never caught-up for the
sake of n before (defined below), 2e P Bni rts, where t ď s is a stage at which e is active, and
Bni rss ‰ t2eu. If so then proceed as follows. For each i ď s such that 2e R Axe,iyrss, enumerate
2e into Axe,iy. For each i, j ď s such that 2xe, jy ` 1 R Axe,iyrss, enumerate 2xe, jy ` 1 into
Axe,iy. Enumerate 2e and 2xe, s` 1y ` 1 into Axe,s`1y. We say that e catches-up for the sake
of n at stage s.

This completes the construction. We now check that A0, A1, . . . have the desired properties.
Clearly, A0, A1, . . . are u.c.e.. Each e P N can be active at most once, since e cannot be active
unless Axe,0y is a singleton, and once e is active this is no longer the case. Furthermore, if e is
active at stage s then e can only catch-up at most once for each n such that 2e P Bni rss for some
i P N, which implies that e catches-up only finitely often. Since no numbers are enumerated into
any Axe,iy, i P N, at any stage at which e is neither active nor catches-up, this means that each Ai
is finite.

Fix e P N. If kpeq R Me then e is never active, so Axe,0y “ t2eu, which means that there
is no k P Me such that Dk Ď Axe,0y. On the other hand, if kpeq P Me then either e never
catches-up, in which case both Axe,0y and Axe,1y contain Dkpeq but Axe,0y ‰ Axe,1y, or e catches-
up for the last time at some stage s, in which case, both Axe,0y and Axe,s`1y contain Dkpeq but
Axe,0y ‰ Axe,s`1y. Thus there is no c.e. set W such that every Ai contains Dk for some k PW and
pk PW ^Dk Ď Ai, Ajq ñ Ai “ Aj .

Now define the map h as follows. Given n, i P N, assume that hpn, jq has already been defined
for all j ă i. Wait until a stage s such that Bni rss is non-empty and equal to Akrss for some
k R rangeph æ iq and define hpn, iq “ k. Clearly, h is partial computable.

Fix n P N for which there is a 1–1 and onto map g : ω Ñ N such that, for all i P N, Bni “ Agpiq.
(Note that this implies that each Bni is non-empty.) To complete the proof, we need to show that
hn ” λiphpn, iqq is a 1–1 map from ω onto N such that, for all i P N, Bi “ Ahnpiq.

Clearly, if hn is defined for all i P N then it is 1–1 and onto. (The surjectivity of hn follows from
the fact that, for each e P N, there are only finitely many k P N such that 2e P Ak.) Suppose that,
for all j ă i, hnpjq is defined and Bnj “ Ahnpjq. Then hnpiq must be defined, since otherwise there
could be no 1–1 and onto map g : ω Ñ N such that, for all l P N, Bnl “ Agplq.

So we are left with showing that, for all i P N, Bni “ Ahnpiq. Fix i P N and let k “ hnpiq. First
suppose that s in the definition of hpiq is such that Bni rss “ Akrss is not a singleton. It is easy to

435

check from the construction that if Al and As share two elements then they are equal, so we have
Bni “ Agpiq “ Ak.

Now suppose that s in the definition of hpiq is such that Bni rss “ Akrss is a singleton. Then
it must be the case that, for some e P N, Bni rss “ t2eu and k “ xe, 0y. If e is never active then
Bni “ t2eu “ Ak. Otherwise, every Al that contains 2e has at least two elements, and thus so
does Bni . But this means that, at some stage t ě s, e catches-up for the sake of n. It is easy to
check that this means that Al Ě Bni rts if and only if l “ xe, uy, u ď t. But it is also the case that
Axe,uy “ Axe,vy for all u, v ď t, so in fact Al “ Bni rts if and only if l “ xe, uy, u ď t. In particular,
Bni “ Ak.

We also remark that the results established so far in this section illustrate that the naive analogy
of the Kreisel-Lacombe-Shoenfield-Markov Theorem 2.3.7 fails for structures, since one cannot hope
to obtain a functional that would work only for computable structures.

Separating all notions of computable categoricity˚

Consider the following statements about a computable structure A.

C: A is computably categorical.

W: A is weakly uniformly computably categorical.

WP: A is weakly uniformly computably categorical with parameters.

U: A is uniformly computably categorical.

UP: A is uniformly computably categorical with parameters.

R: A is relatively computably categorical.

The following theorem can be found in [126].

Theorem 10.1.40. The following implications hold, and no other implications except the ones
implied by transitivity hold in general.

(i) U ñ UP ô R.

(ii) U ñW , UP ñWP .

(iii) W ñWP ñ C.

All the implications in this theorem are clear except for the equivalence of UP and R, which
we have already established in Theorem 10.1.37. We have already proven WU œ UP in The-
orem 10.1.39. We omit the verification that no other implications hold and refer the reader to
Exercise 10.1.41 and [126].

436

Exercises

Exercise˝ 10.1.41. Prove that, in Theorem 10.1.40, WP does not imply W , and that UP does
not imply U .

10.1.3 Relative ∆0
2-categoricity˚

The reader might wonder what happens if we weaken the hypothesis that the structure A is 2-
decidable in Theorem 10.1.10; see also Exercise 10.1.30. In this subsection, we show that computable
categoricity implies relative ∆0

2-categoricity amongst 1-decidable structures. The crux of the proof
is Lemma 10.1.43.

Definition 10.1.42. For a structure A and tuples a, p P A, denote by Σn-tpppaq the set

Σn-tpppaq :“ tϕpx, yq P Σn : A |ù ϕpa, pqu

and denote by Σcn-tpppaq the set

Σcn-tpppaq :“ tϕpx, yq P Σcn : A |ù ϕpa, pqu,

where in both cases we consider only finitary (or computable infinitary, respectively) formulas in
the language of the structure.

Lemma 10.1.43. If A is computably categorical and 1-decidable, then there is a tuple p P A
such that distinct Σ1-types over p are incomparable under inclusion, and for any a, a1 P A, if
Σ1-tpppaq “ Σ1-tpppa

1q, then Σc2-tpppaq “ Σc2-tpppa
1q.

Proof of Lemma 10.1.43. We build a computable presentation B isomorphic to A and attempt
to make B not computably isomorphic to A. The amount of B constructed when we consider
the computable function ϕe witnessing A and B being computably isomorphic will determine the
parameter p.

In order to ensure A and B are classically isomorphic, we build an isomorphism F : B Ñ A
in a ∆0

2-manner. We build B by constructing its atomic diagram in stages. At each stage s, we
enumerate the next atomic sentence true about A into the atomic diagram of B as determined by
the isomorphism F (as approximated at stage s).

Let tψiuiPN be a computable enumeration of all Σ1-formulas in the language of A.

Strategy defeating φe. We fix a partial computable function φe : B Ñ A and seek to ensure
that φe is not an isomorphism.

Let s0 be the stage at which this strategy is initialised. This strategy takes no action until
a stage s1 ą s0 when Bs0 Ď domFs1 and As0 Ď rangeFs1 . We then let b0 :“ Bs1 and restrain
the strategy, in the sense that F æ b0 cannot be changed by this strategy. At every stage s after
becoming active, before we enumerate the next sentence into the atomic diagram of B, we look for
an opportunity to change F in such a way that it still extends to an isomorphism, but such that
F ˝ φ´1

e is guaranteed not to be an automorphism of A (ensuring that if F is an isomorphism, as it
will be, then φe is not an isomorphism). We will find such opportunities if the types do not obey
the conclusion of the lemma.

Before describing the strategy, we note the following. For any stage t ą s1, suppose b is a tuple
from the domain of Bt, and let δtpb0, b, fq be the atomic diagram of Bt, where f :“ Btzpb0 Y bq.
Suppose a P A. At a stage s ą s1, we can redefine F to map b to a without changing F æ b0 if

437

and only if A |ù Dx
“

δs´1pFs´1pb0q, a, xq
‰

. Here, we consider δs´1 instead of δs because when this
strategy acts at stage s, we have not yet enumerated the next sentence into the atomic diagram
of B.

At a stage s ą s1, we consider every triple pb, b
1
, dq with b, b

1
P dompφe,sq and d P dompφe,sqzpb0Y

bq. If this is the first stage at which we have considered this triple, we use 1-decidability to determine

if there is a tuple c P A|d| such that

A |ù Dy
”

δs´1pFs´1pb0q, Fs´1pb
1
q, c yq

ı

,

i.e., we ask whether we can redefine F by putting Fspbq :“ Fs´1pb
1
q and Fspdq :“ c while respecting

the restraint. If there is no such c, we never consider this triple again (since we cannot redefine F ,
there is no point in considering it further). If there is such a c, we search for one and assign it to
this triple. When we consider this triple at future stages, this is the c to which we refer.

Then, for every triple pb, b
1
, dq being considered (along with its associated c), we use 1-decidability

to determine if
A |ù

”

ψipFs´1pbq, Fs´1pdqq ðñ ψipFs´1pb
1
q, cq

ı

(10.3)

for some i ă s, i.e., we ask whether redefining F by putting Fspbq :“ Fs´1pb
1
q and Fspdq :“ c might

be useful. If so, fix some triple and some i0 ă s for which (10.3) holds. We use 1-decidability to
determine whether

A |ù
“

ψi0pφepbq, φepdqq ðñ ψi0pFs´1pbq, Fs´1pdqq
‰

, (10.4)

i.e., we determine whether or not it is necessary to perform any action to prevent F ˝ϕ´1
e from being

an automorphism. If (10.4) holds, we put Fspbq :“ Fs´1pb
1
q and Fspdq :“ c, and extend Fs such

that As Ď rangeFs and Bs Ď domFs. If (10.4) fails, we put Fspbq :“ Fs´1pbq and Fspdq :“ Fs´1pdq,
and extend Fs such that As Ď rangeFs and Bs Ď domFs. Regardless of whether (10.4) holds or
fails, we declare the strategy complete.

If (10.3) fails for all triples being considered and all i ă s, we repeat the above process with Dy δs
in place of ψi. That is, for every triple pb, b

1
, dq and associated c being considered, we use 1-decid-

ability to determine if

A |ù Dy
”

δspFs´1pb0q, Fs´1pb
1
q, c yq

ı

, (10.5)

i.e., we ask whether we will lose the ability to redefine F after we enumerate the next atomic sentence
into the diagram of B. If (10.5) fails for every triple, we will not lose the ability to redefine F , so
we leave F alone and take no further action for this strategy at stage s.

If (10.5) holds for some triple, fix a triple for which it holds. We will lose the ability to redefine F ,
so we use 1-decidability to determine if

A |ù Dy
“

δspφepb0q, φepbq, φepdq yq
‰

, (10.6)

i.e., we determine whether or not it is necessary to perform any action to prevent F ˝ϕ´1
e from being

an automorphism. If (10.6) holds, we put Fspbq :“ Fs´1pb
1
q and Fspdq :“ c and extend Fs such

that As Ď rangeFs and Bs Ď domFs. If (10.6) fails, we put Fspbq :“ Fs´1pbq and Fspdq :“ Fs´1pdq,
and extend Fs such that As Ď rangeFs and Bs Ď domFs. Regardless of whether (10.6) holds or
fails, we declare the strategy complete.

The strategy has two outcomes: wait and stop. Of course, these correspond to whether the
strategy has been declared completed.

438

Construction. We put these strategies on a tree, performing a straightforward finite-injury argu-
ment in the usual manner. At each stage, the visited strategies on the tree act in priority order.
After they have acted, if no strategy defined Fs, we define Fs by extending Fs´1 to include As
and Bs in the range and domain, respectively. Then the global strategy building B acts by taking
the next atomic sentence θspaq true about A and enumerating θspFspaqq into the atomic diagram
of B.
Verification. We verify F :“ lims Fs exists and is an isomorphism. Consequently, there will be a
(least) k such that ϕk : B Ñ A is a computable isomorphism. Let σ be the strategy for ϕk along
the true path, and let b0 be the restraint of σ. We show the desired relationships between the types
of tuples of A using p :“ F pb0q.

Claim 10.1.44. The function F :“ lims Fs exists and is an isomorphism.

Proof. The existence of F follows from the fact that, if a strategy redefines F on an element (in
either the domain or the range), then no lower-priority strategy can redefine F on that element.
Thus, by induction, the function F can change only finitely many times on any element (in either
the domain or the range).

By construction, the function F is surjective and respects atomic sentences. Thus, it is injective
(as equality is an atomic sentence) and so an isomorphism.

Claim 10.1.45. If a strategy for defeating φe is along the true path and declared complete, then φe
is not an isomorphism.

Proof. Let pb, b
1
, dq be the triple we act for. Note that F pbq “ Fspbq and F pdq “ Fspdq.

If we act because of some ψi0 , then regardless of whether (10.4) holds, we have

A |ù
“

ψi0pφepbq, φepdqq ðñ ψi0pFspbq, Fspdqq
‰

.

If we act because of δs, then regardless of whether (10.6) holds, we have

A |ù Dy
“

δspφepb0q, φepbq, φepdqyq
‰

ðñ Dy
“

δspFspb0q, Fspbq, Fspdqyq
‰

.

Thus, in either case, we have that F ˝ φ´1
e is not an automorphism.

Claim 10.1.46. The Σ1-types over p are incomparable under inclusion.

Proof. Towards a contradiction, we suppose that there are a, a1 P A with

Σ1-tpppaq Ĺ Σ1-tpppa
1q. (10.7)

Consider any stage s ` 1 at which σ is visited such that Fspbq “ a and Fspb
1
q “ a1 for some

b, b
1
P dompφk,sq. Then at such a stage, it will always be possible for σ to define Fs`1pbq “ a1.

Note that (10.7) is equivalent to Σ1-tppp aq Ĺ Σ1-tppp a1q. Since F ˝ φ´1
k is an automorphism,

we have

Σ1-tppφkpb0qφkpbqq Ĺ Σ1-tppp a1q.

Fix a formula ψi true of p a1 but false of p a. Then at any stage s ą i when the strategy considers

the triple pb0 b, b0 b
1
,Hq, it will redefine F pbq “ a1 to defeat φk, contrary to our choice of k.

439

Claim 10.1.47. For any tuples a, a1 P A, if Σ1-tpppaq “ Σ1-tpppa
1q then Σc2-tpppaq “ Σc2-tpppa

1q.

Proof. Suppose Σ1-tpppaq “ Σ1-tpppa
1q, or equivalently Σ1-tppp aq “ Σ1-tppp a1q. By symmetry, it

suffices to show

Σc2-tppp aq Ď Σc2-tppp a1q.

Fix a formula Dxχpp a, xq P Σc2-tppp aq with χ P Πc
1 and a witness g P A so that A |ù χpp a, gq. We

show Dxχpp a, xq P Σc2-tppp a1q.

Consider a stage s ą s1 when σ is visited, F pbq “ a, F pb
1
q “ a1 and F pdq “ g have converged,

and b0, b, b
1
, d P dompφk,sq. Since

A |ù Dx δspp, a, g xq,

from Σ1-tppp aq “ Σ1-tppp a1q, we have

A |ù Dc Dy δspp, a
1, c yq.

Thus, there will be a c assigned to the triple pb0 b, b0 b
1
, dq. Since σ is never declared complete (by

Claim 10.1.45), there is never a stage t ą s when

A |ù Dy
“

δtpp, a
1, c yq

‰

.

Thus σ will never lose the ability to define F pbq “ a1 and F pdq “ c.
If there were some ψi such that

A |ù ψipp a
1, cq ^ ψipp a, gq,

then at some stage when we consider ψi, the strategy σ would be able to defeat φk, contrary to our
choice of k.

Thus A |ù χpp a1, cq. We conclude Dxχpp a1, xq P Σc2-tppp a1q as desired.

This completes the proof of Lemma 10.1.43.

We say that a computable structure A is relatively ∆0
2-categorical if for any X-computable B,

there is an X 1-computable isomorphism f : AÑ B. We are now ready to prove the main theorem
of this section:

Theorem 10.1.48 (Downey, Kach, Lempp and Turetsky [132]). Any 1-decidable, computably
categorical structure A is relatively ∆0

2-categorical.

Proof. Fix the parameters p from the above lemma. For each a P A, let χapxq be the infinitary
formula

χapxq :“
ľ

ψPΠ1ppq
A|ùψpaq

ψpxq,

440

i.e., the conjunction of all first-order Π1-formulas (with parameters from p) true of a. As a conse-
quence of 1-decidability, this is a Πc

1-formula.
We show that the family of formulas tχapxquaPA constitutes a Scott family. By Theorem 10.1.12,

it suffices to show that they isolate the Σc2-types. We therefore suppose A |ù χapa
1q and show

Σc2-tpppa
1q “ Σc2-tpppaq. If A |ù χapa

1q, then every Π1-fact true of a is true of a1. Hence every
Σ1-fact true of a1 is true of a, i.e.,

Σ1-tpppa
1q Ď Σ1-tpppaq.

By Lemma 10.1.43, it follows that Σ1-tpppa
1q “ Σ1-tpppaq. By Lemma 10.1.43 again, this implies

that Σc2-tpppa
1q “ Σc2-tpppaq.

We conclude that the family of formulas tχapxquaPA constitutes a Scott family and so A is
relatively ∆0

2-categorical.

We note that Exercise 10.1.105 implies that the result established in this subsection is, in some
sense, optimal.

10.1.4 Exercises: Calculus of computable infinitary formulae

The following exercises are concerned with various properties of infinitary computable formulae.
Most of these exercises are based on facts and theorems taken from [20], where the proofs and
proof sketches can be found. We will generally avoid using infinitary logic in the book, with the
only exceptions being Theorem 10.1.12 and Theorem 10.1.48. Nonetheless, the power of Lcω1ω in
abstract computable structure theory should not be underestimated. For a smooth introduction
to this theory, see [20]. Perhaps Exercises 10.1.65 and 10.1.68 are the only notable results in the
sequence of these exercises that are directly related to the material of the book. However, including
their complete and detailed proofs would significantly inflate the size of the already large book.

Unfortunately, it seems that the technique of infinitary computable formulae does not quite
work for separable structures, especially when they are considered up to homeomorphism.

Exercises describing basic properties of infinitary formuale

In all exercises below, the language of structures in a class is always computable.

Exercise˝ 10.1.49. Prove the Normal Form Theorem for computable infinitary formulae.

(a) Given an index for a computable Σcα (or Πc
α) formula φ, we can find an index for a computable

Πc
α (or Σcα, resp.) formula φ that is logically equivalent to the negation of φ.

(b) Given indices for a pair of computable Σcα (or Πc
α) formulas φ and ψ, we can find indices for

computable Σcα (or Πc
α, resp.) formulas logically equivalent to pφ_ ψq and pφ^ ψq.

(c) Given a formula θ that is a finite Boolean combination of computable Σcβ and Πc
β formulas,

for various β ă α, we can find a computable Σcα formula and a computable Πc
α formula, both

logically equivalent to θ.

(d) Given a computable Σcα formula φ, we can find a computable Σcα formula logically equivalent
to Dxϕ, and a computable Πc

α`1 formula logically equivalent to @xϕ. (The case of a Πc
α

formula is dual.)

441

Exercise˝ 10.1.50. Let A be a computable structure, and φ a computable Σcα formula in the
language of A in free variables x̄ P An. Prove that φpAq “ tā P An : A |ù φpāqu is Σ0

α.

Exercise˝ 10.1.51. ([20, Theorem 7.9].) For any hyperarithmetical set S, produce a sequence
pϕnqnPN of computable infinitary formulas, built up just out of J and K, such that ϕn is logically
equivalent to

ϕn ”

#

J if n P S,

K otherwise.

Exercise 10.1.52. ([20, Theorem 7.15]). For any hyperarithmetical set F of computable infinitary
propositional formulas, or computable infinitary predicate formulas with a fixed tuple of variables,
there is a computable infinitary formula φ that is logically equivalent to the disjunction, and there
is a computable infinitary formula ψ that is logically equivalent to the conjunction.

Exercises related to Theorem 10.1.12 and its proof

Exercise˝ 10.1.53. Prove Lemma 10.1.14.

Exercise˝ 10.1.54. Prove Lemma 10.1.15. (Hint: For the case when φ “
Ź

i θi in p2q, use

ľ

b̄1PBăω, iPN

@x̄1

ł

b̄2PBăω

ψb̄,b̄1,b̄2,θipx̄, x̄1, x̄2q,

which essentially says “for all i and all extensions of b̄ that (say) map b̄1 to x̄1, there is a further
extension mapping b̄2 to x̄2 that forces θi”; compare this to Definition 10.1.13(3).)

Exercise˚ 10.1.55 (Ash, Knight, Manasse and Slaman [21], Chisholm [89]). Prove the following:
For a computable structure A with a further relation R, and α a computable ordinal, the following
are equivalent:

p1q R is definable in A by a computable Σcα formula.

p2q In all copies B of A, the image of R is Σ0
α relative to (the open diagram DpBq of) B.

(Hint: For the easier implication, use Ex. 10.1.50 relativised to DpBq. For the harder implication,
use the method described in the proof of Theorem 10.1.12 to build a generic copy of A and consider
p such that p , “R is Σ0

α”.)

Exercise˚ 10.1.56 (Downey, Kach, Lempp, and Turetsky [132]). Let d be a Turing degree. A
computable structure S is relatively computably categorical above d if between any two presentations
A, B ěT d of S, there is an isomorphism computable in degpAqYdegpBq (or ∆0

αpdegpAqYdegpBqq,
respectively).

(i) Prove that for a computable structure S, the following are equivalent:

(a) The structure S is relatively ∆0
α-categorical above d.

(b) Between any two presentations A and B of S, there is an isomorphism computable in
∆0
αpdegpAq Y degpBq Y dq.

(ii) Prove that for any nonzero c.e. degree d, there is a structure S that is relatively computably
categorical above d but not computably categorical.

442

Exercises related to Barwise-Kreisel compactness for Lcω1ω

Exercise˝ 10.1.57. ([20, Theorem 8.2]). Show the following. For any hyperarithmetical set F
of computable infinitary sentences in a fixed computable language, there is a computable tree P
(perhaps infinitely branching) such that F is consistent if and only if rP s ‰ H, i.e., P has an infinite
path. This is also uniform.

Exercise˚ 10.1.58. (Barwise-Kreisel Compactness for Lcω1ω; [20, Theorem 8.3]). Fix a computable
language L. Let F be a Π1

1 set of computable infinitary sentences in Lcω1ω so that every ∆1
1-subset

of F is consistent. Using the previous exercise, show that F is consistent.

Exercise˚ 10.1.59. (Effective Compactness for Lcω1ω; [20, Corollary 8.4]). Prove the computable
version of the Barwise-Kreisel Compactness (Ex. 10.1.58): Let F be a Π1

1 set of sentences in Lcω1ω

so that every ∆1
1-subset of F is has a computable model. Show that F has a computable model.

Exercise 10.1.60. ([20, Theorem 8.6]). Let A be a computable structure. Let F be a Π1
1 set of

sentences involving at least one extra new relation not in the language of A.

(a) If for every Σ1
1 set A Ď F , A can be expanded to a model of A, then A can be expanded to a

model of F .

(b) If for every Σ1
1 set A Ď F , A can be expanded to a computable model of A, then A can be

expanded to a computable model of F .

(Hint: Consider φ which is the conjunction of DpAq (the atomic diagram of A) and the sentence
Ž

aPA Dxx “ a and let F˚ “ F Y tφu. Apply Ex. 10.1.58,10.1.59.)

Exercise 10.1.61. Prove that if two computable structures A and B (having the same computable
language) satisfy the same computable infinitary sentences, then A – B. (Hint: Fix a partial map
p : A Ñ B that preserves satisfaction of computable infinitary formulas, say ā ÞÑ b̄. Note that by
our assumption, we can choose p to be the empty map. Fix any c P A not in the domain of p,
and let Γpb̄, dq be the Π1

1 set of computable infinitary sentences saying of the tuple b̄ in B and a
new constant d that b̄, d satisfies all the computable infinitary formulas that in A are true of ā, d.
By Ex. 10.1.52, any ∆1

1 subset of Γpb̄, dq is equivalent to a single formula γpb̄, dq. Since pDxqγpā, xq
holds in A, pDxqγpb̄, xq holds in B. By Ex. 10.1.60, B can be expanded to a model of all of Γpb̄, dq.
Use this to build an isomorphism between A and B in the usual back-and-forth fashion.)

Exercise 10.1.62. ([20, Corollary 8.7]). Show that if A is a computable structure, then for any
pair of tuples satisfying the same computable infinitary formulas in A there is an automorphism
taking one to the other. (The same is true if A is a hyperarithmetical structure.)

Exercise 10.1.63. ([20, Theorem 8.17]). Let G be a computable abelian p-group. Use Ex. 10.1.60
to show that the Ulm type of G is ď ωCK1 , and furthermore if G is reduced, then the Ulm type of
G is ă ωCK1 .

Exercises related to the classification themes

Exercise 10.1.64. ([20, Proposition 8.16]). Give a proof of Ex. 8.1.26 using Ex. 10.1.62 and
working with the Boolean algebra directly rather than with the Stone space.

443

Exercise 10.1.65 (Goncharov and Knight [213]). Suppose that K is a class of structures, closed
under isomorphism, and let Kc be the collection of its computable members. Then the following
are equivalent:

(1) There is a computable infinitary sentence Ψ such that

Kc “ tA : A |ù Ψu.

(2) The index set (the characterisation problem for K) IpKq “ ti : Ai P K
cu is hyperarithmetical.

(Hint: The implication p1q Ñ p2q is similar to Ex. 10.1.50 and is demonstrated by transfinite
induction. For p2q Ñ p1q, first use Ex. 10.1.59 and Ex. 10.1.62 to show that there is a computable
ordinal α such that for any computable structures A P K and B R K, there is a computable
Πc
α-sentence true in A and not in B. For each A P K, use Ex. 10.1.52 to produce a computable

infinitary sentence separating it from B R K, and then take the disjunction of such sentences over
all A P K.)

Exercise 10.1.66 (Knight and McCoy [305]). Recall that the class d-Σ0
n consists of sets that can

be expressed as AzB, where A,B P Σ0
n. Define the class d-Σcn of computable infinitary formulas to

consist of all formulas of the form Ψ&Θ, where Ψ P Σcn and Θ P Πc
n. Observe that every structure

M with a d-Σcn Scott sentence has a d-Σ0
n index set. Show that, however, there is a computable

group G ő pQ,`q with the following properties:

1. The index set IpGq “ te : Ae – Gu is d-Σ0
2-complete (i.e., m-complete d-Σ0

2).

2. The group G does not have a computable d-Σc2 Scott sentence.

3. However, G has a d-Σ2 (non-computable) Scott sentence. Indeed, the sentence can be low
d-Σ2, in the sense that the infinite conjunctions and disjunctions are computable relative to
a low oracle.

(Hint: Consider the subgroup of pQ,`q generated by fractions t
1

pni
: i P S, n P Nu, where S is a

non-computable low c.e. set given by Theorem 3.1.1.)

Exercise˚ 10.1.67 (Vanden Boom [494]). Suppose K is a class of structures in a computable
language and closed under isomorphism, and let CpKq Ď ωω be the set of codes of structures in K
from Exercise 2.4.34. In Exercise 4.2.88 we defined a set to be effectively Gδ if it is the intersection
of effectively open sets.

1. Prove that the following are equivalent:

(a) K “ tA : A |ù Ψu for some Πc
2 sentence Ψ;

(b) CpKq Ď ωω is effectively Gδ.

2. Extend this result to arbitrary computable α and to arbitrary levels of the effective Borel
hierarchy (we omit the definition). This is an effective version of the well-known theorem of
Vaught [495].

444

Exercise˚ 10.1.68 (Knight, Miller, Vanden Boom [307]). Prove the Pullback Theorem: Suppose
K ďEFF K 1 via Φ (Def. 8.2.1). Then for any computable infinitary sentence φ in the language of
K 1, we can effectively find a computable infinitary sentence φ˚ in the language of K such that for
A P K,

A |ù φ˚ if and only if ΦpAq |ù φ.

Moreover, if φ is computable Σcα, or computable Πc
α, then so is φ˚. (Hint: The basic case is

essentially saying that the operator is effectively open; see the proof of Theorem 10.1.37. For
the general case, generalise the construction from the proof of Theorem 10.1.12 to build a generic
A˚ P K. Using A˚, given a Σcα sentence φ in the language of K 1, produce a Σcα-sentence φ˚ in the
language of K with the meaning “p , ΦpA˚q |ù φ”.)

Exercise˝ 10.1.69 (Knight, Miller, Vanden Boom [307]). Let V S and FLO be the classes of vector
spaces over Q and finite linear orders, respectively. Define FV S to be the subclass of V S consisting
of vector spaces of finite dimension. Let LO be the extension of FLO including infinite as well as
finite linear orderings. Let PF be the class of finite prime fields. Use Ex. 10.1.68 to show that

PF ăEFF FLO ăEFF FV S ăEFF V S ăEFF LO.

Exercise 10.1.70 (Knight, Miller, Vanden Boom [307]). Let V S be the class of Q-vector spaces.
Show that K ďEFF V S if and only if there exists a computable sequence pφnqnPN of computable
Σc2 sentences in the language of K such that

1. for A P K and m ă n, if A |ù φn then A |ù φm, and

2. for A,B P K, if A ı B then there is some n such that φn is true in only one of A, B.

10.1.5 Relativising computable categoricity to an oracle˚

A structure is X-c.c. if any pair of X-computable copies of the structure are X-computably isomor-
phic. Theorem 10.1.17 illustrates that computable categoricity does not imply relative computable
categoricity in general. If we take a c.c. structure A that is not relatively c.c., there must be some
oracle X such that A is not X-c.c.. But what can we say about such X? The reader will note that
the proofs of Theorems 10.1.10 and 10.1.6 relativise.

Proposition 10.1.71. If A is computable and computably categorical relative to some degree d ě
02, then A is c.c. relative to every degree above 02.

Proof. We argue that A has a 02-computable Σ1 Scott family, i.e., one consisting of first-order
existential formulae that can be listed using 02. We know that A is 2-decidable relative to d, so
by Theorem 10.1.10 it has a d-computable Σ1 Scott family. Now knowing that A has a Σ1 Scott
family, we will find a H2-computable such family. Given ā P A and an existential formula ϕpx̄q true
of ā, ask whether for every tuple b̄ P A satisfying ϕpx̄q and every existential formula ψpx̄q, ψpāq if
and only if ψpb̄q. If this is the case, then ϕpx̄q isolates the orbit of ā and we can enumerate it into
our H2-computable Scott family.

Remark 10.1.72. The reader should not confuse relative categoricity with categoricity relative to
a fixed oracle. There exist examples which are c.c. but not relatively ∆0

α-categorical, where α can be
an arbitrary large computable ordinal (follows from Theorem 10.1.22). However, Proposition 10.1.71

445

does not contradict these examples since a c.c. structure does not have to be c.c. relative to d ě 02.
The standard example of a structure which is c.c. but not relatively c.c. given in Theorem 10.1.17
has a 01-c.e. Σ1 Scott family but no Σ0

1 Scott family.

So suppose A is c.c. but not relatively c.c.. Proposition 10.1.71 implies that A perhaps goes from
being c.c. to not c.c. relative to X for some H ăT X ăT H

2 and then at degree 02 the pathology
disappears: either for all d ě 02 we have that A is c.c. relative to d, or for all d ě 02 we have that
A is not c.c. relative to d. It is of course most natural to suspect that this process of switching
from plain categoricity to the existence of a Scott family is monotonic, i.e., once the pathology
disappears at a degree a ą 0, it never occurs again above a. The result below was regarded as
unexpected when it was proven.

Theorem 10.1.73 (Downey, Harrison-Trainor and Melnikov [124]). There is a computable
structure A and c.e. degrees 0 “ Y0 ăT X0 ăT Y1 ăT X1 ăT ¨ ¨ ¨ such that

1. A is computably categorical relative to Yi for each i,

2. A is not computably categorical relative to Xi for each i,

3. A is (relatively) computably categorical relative to 01.

Proof. The structure A will be a directed graph consisting of infinitely many finite connected
components. Each component will consist of either two, three, four, or five cycles sharing a single
vertex, called the root vertex of the component. The root vertices can be identified as the only
vertices of degree greater than two.

We build A stage-by-stage ensuring that it is computable. At the same time, we will build two
sequences of uniformly c.e. sets pXiqiPN and pYiqiPN and Turing reductions Ψk such that Bk “ ΨXk

k

is a Xk-computable copy of A which is not Xk-computably isomorphic to A. By enumerating
elements into Xk, we can give Ψk permission to change Bk.

For every set Z, let pMZ
i qiPN a uniformly Z-computable list of the (possibly partial) Z-computable

structures. To ensure that A is computably categorical relative to each Yk, we meet the require-
ments:

Ski : If MYk
i – A, then MYk

i is Yk-computably isomorphic to A.

Recall that to make A not computably categorical relative to Xk, we build an Xk-computable
structure Bk “ ΨXk

k which is not Xk-computably isomorphic to A. To achieve this we meet the
requirements:

Rki : ΦXki : AÑ Bk “ ΨXk
k is not an isomorphism.

Note that for a fixed k, the R requirements share the same Bk “ ΨXk
k . We will build the Xi and

Yi by setting Y0 “ H, and

Yi`1 “ Xi ‘ Y
˚
i`1 and Xi “ Yi ‘X

˚
i

where X˚i and Y ˚i are c.e. sets to be defined by the construction. Thus we automatically have
H ”T Y0 ďT X0 ďT Y1 ďT X1 ďT ¨ ¨ ¨ .

Strategy for meeting Rki in isolation: Let B “ Bk “ ΨXk
k . We take the following actions:

446

1. Choose a new large number ` and create two new root vertices a1 and a2 in A, and b1 and b2
in B.

2. Attach a loop of length 2 to a1 and a2 in A, and to b1 and b2 in B. Attach a loop of length
5`` 1 to a1 in A and b1 in B; and attach a loop of length 5`` 2 to a2 in A and b2 in B. The
loop of length 2 is simply to identify a1, a2, b1, and b2 as root vertices.

a1 : 2, 5`` 1 a2 : 2, 5`` 2

b1 : 2, 5`` 1 b2 : 2, 5`` 2

3. Wait for a stage s at which we see that ΦXki : A Ñ B maps a1 ÞÑ b1 and a2 ÞÑ b2. Let u be
the use of this computation.

a1 : 2, 5`` 1
Φ
// a2 : 2, 5`` 2

b1 : 2, 5`` 1
Φ
// b2 : 2, 5`` 2

4. Choose a large number v ą u. Attach loops of length 5`` 3 to a1 in A and b1 in B. Attach
loops of length 5`` 4 to a2 in A and b2 in B with use Xkrss æ 2v ` 2 where s is the current
stage. Restrain Xk æ 2v` 2 so that it may not be changed by another requirement of a lower
priority (to be clarified). Enumerate ` into Y ˚k1 for k1 ě k; this will be used to meet the S
requirements.

a1 : 2, 5`` 1, 5`` 3
Φ
// a2 : 2, 5`` 2, 5`` 4

b1 : 2, 5`` 1, 5`` 3
Φ
// b2 : 2, 5`` 2, 5`` 4

5. Attach loops of length 5`` 2 to a1 in A and b1 in B, and attach loops of length 5`` 1 to a2

in A and b2 in B.

a1 : 2, 5`` 1, 5`` 2, 5`` 3
Φ
// a2 : 2, 5`` 1, 5`` 2, 5`` 4

b1 : 2, 5`` 1, 5`` 2, 5`` 3
Φ
// b2 : 2, 5`` 1, 5`` 2, 5`` 4

6. Enumerate v into X˚k (thus removing the loop of length 5` ` 3 attached to b1 and the loop
of length 5`` 4 attached to b2 in B). Attach a loop of length 5`` 4 to b1 in B and a loop of
length 5`` 3 to b2 in B.

a1 : 2, 5`` 1, 5`` 2, 5`` 3
Φ
// a2 : 2, 5`` 1, 5`` 2, 5`` 4

b1 : 2, 5`` 1, 5`` 2, 5`` 4
Φ
// b2 : 2, 5`` 1, 5`` 2, 5`` 3

If ΦXki : AÑ Bk is an isomorphism, it must be defined on a1 and a2 with some use u. In step (3),
it must map a1 ÞÑ b1 and a2 ÞÑ b2 because a1 and b1 are the only elements with a loop of length
5`` 1, and a2 and b2 are the only elements with a loop of length 5`` 2. So at some stage s we see

447

that Φ
Xkrss æu
i maps a1 ÞÑ b1 and a2 ÞÑ b2. In steps (4), (5), and (6) we ensure that the elements

have the following loops:

a1 : 2, 5`` 1, 5`` 2, 5`` 3
Φ
// a2 : 2, 5`` 1, 5`` 2, 5`` 4

b1 : 2, 5`` 1, 5`` 2, 5`` 4
Φ
// b2 : 2, 5`` 1, 5`` 2, 5`` 3

At stage (6), we enumerated v into X˚k , but we still have Xk æ u “ Xkrss æ u. So ΦXki still maps
a1 ÞÑ b1 and a2 ÞÑ b2, and this does not extend to an isomorphism.

Injury and restraint between different requirements Rki : If Rki finds a computation ΦXki in step (3)

with use u, it restrains Xk æ u. Another requirement Rk
1

i1 with k1 ď k might have already chosen an
element v1 ă u in step (4), and want to enumerate v1 into Xk1 in step (6). Since k1 ď k, this would
enumerate an element into Xk as well, and potentially violating the restraint placed on Xk by Rki .

We use the standard priority method; higher priority requirements Rk
1

i1 are allowed to violate the
restraint placed by Rki , in which case we say that Rki is injured ; and when Rki places a restraint,

it injures all lower priority requirements Rk
1

i1 which then have to choose a value v1 greater than the
restraint placed by Rki . When a requirement is injured, it homogenises the elements a1 and a2 it
has been working with, and also the elements b1 and b2:

a1 : 2, 5`` 1, 5`` 2, 5`` 3, 5`` 4 a2 : 2, 5`` 1, 5`` 2, 5`` 3, 5`` 4

b1 : 2, 5`` 1, 5`` 2, 5`` 3, 5`` 4 b2 : 2, 5`` 1, 5`` 2, 5`` 3, 5`` 4

This means that any way of matching up a1 and a2 with b1 and b2 can be extended to an isomor-
phism. It then creates new elements a1, a2, b1, and b2 to work with.

Strategy for meeting Ski : The requirement Ski is responsible for building a Yk-computable isomor-
phism f “ ΓYk between A and MYk

i . To define f , we must look at pairs of root nodes a1, a2 in A

and decide on images for them in M “MYk
i . Given a1, a2, let ` be such that each of a1 and a2 has

a loop of length 5`` 1 or 5`` 2. We can Yk-computably look for a pair of root nodes c1, c2 in M
which also have such loops. Finally, identify the requirement Rk

1

j which was responsible for a1, a2.
We have three cases in each of which we act differently:

• If k1 ď k: In step (4) of meeting the requirement Rk
1

j , we enumerate ` into Y ˚k ; so by checking

whether ` P Y ˚k , we can determine whether Rk
1

j reached step (4) while working with a1 and
a2. If it did not reach step (4), then exactly one of a1, a2 has a loop of length 5`` 1, and the
other has a loop of length 5``2; so we can map whichever of a1, a2 has a loop of length 5``1
to whichever of c1, c2 has a loop of the same size, and this will extend to an isomorphism. If
Rk

1

j did reach step four, then exactly one of a1, a2 has a loop of length 5`` 3, and the other
has a loop of length 5`` 4, and we can again match a1, a2 up with c1, c2.

• If k1 ą k and Rk
1

j is of higher priority than Ski : Ski can non-uniformly know whether or not

Rk
1

j ever reached step (4); the rest is similar to the previous case.

• If k1 ą k and Rk
1

j is of lower priority than Ski : In this case Yk does not know whether Rk
1

j

reached step (4). Without loss of generality, we may assume that a1 and c1 have loops of
length 5`` 1 and a2 and c2 have loops of length 5`` 2.

a1 : 2, 5`` 1 a2 : 2, 5`` 2

c1 : 2, 5`` 1 c2 : 2, 5`` 2.

448

Then have f map a1 ÞÑ c1 and a2 ÞÑ c2. If Rk
1

j never reaches step (4), then this extends to

an isomorphism. The issue might be that Rk
1

j reaches step (4), but that M delays adding the

loops from step (4) until Rk
1

j has reached step (6), so that A looks like

a1 : 2, 5`` 1, 5`` 2, 5`` 3 a2 : 2, 5`` 1, 5`` 2, 5`` 4.

Mj can now add loops so that it looks like:

c1 : 2, 5`` 1, 5`` 2, 5`` 4 c2 : 2, 5`` 1, 5`` 2, 5`` 3

This would defeat the isomorphism f .

The solution is to force Rki to wait for Mj to copy A after step (4) before preceding on to step
(5). After step (4), A looks like

a1 : 2, 5`` 1, 5`` 3 a2 : 2, 5`` 2, 5`` 4

and this forces Mj , if it wants to be isomorphic to A, to add loops so that it looks like

c1 : 2, 5`` 1, 5`` 3 c2 : 2, 5`` 2, 5`` 4.

Thus f remains an isomorphism.

There is a complication in that M is a Yk-computable structure, and we must build A com-
putably. So we work with the stage-by-stage approximation to M given by the stage-by-stage
approximation to Yk, and whenever Rk

1

j sees more loops added to M (according to the current
value of Yk), it places a restraint on Yk. If this restraint is ever violated by a higher priority
requirement, we homogenise a1 and a2, so that the map f still extends to an isomorphism.

Of course, M does not have to copy A, and there will certainly be some j for which M fl A
and Rk

1

j gets stuck after step (4). To solve this we use a standard pressing strategy: the

requirements Rk
1

j must guess at the outcomes of the higher priority requirements. While Rk
1

j

is waiting for M to catch up, it starts a new instance guessing that M is not isomorphic to
A; when M does catch up, this new instance is destroyed (and homogenised).

The action in the second case works even when k1 ď k, it is just that the first case also works as
well. But the action in the third case does not work when k1 ď k, and it might be helpful to the
reader, to aid in understanding the construction, to think about why this is true: In the infinitary
outcome, the requirement Rk

1

j must be able to restrain Yk, while still enumerating an element into
X˚k1 ; if k1 ď k, then enumerating an element into X˚k1 would also enumerate an element into Yk.

Priorities and guesses: We put a priority ordering on the requirements. A requirement Ski knows
the outcome of the higher priority R requirements when it builds its isomorphism between MYk

i

and A, and an R requirement must guess at the outcomes of the higher priority S requirements.
The R requirements are the only requirements that are active during the construction and which
can enumerate elements into the Xk and Yk; the S requirements must be taken into account by the
R requirements (e.g. by enumerating elements into the Yk, or waiting to see loops in a structure
MYK
i), and the isomorphisms they ask for can be defined after the construction is finished.

Full strategy for meeting Rki : For simplicity we write B “ Bk. Let F be a subset of the higher
priority S requirements. For each such F , Rki can have a module which works under the assumption

449

that the requirements in F are exactly the higher priority S requirements that Rki needs to wait
for. We call this module a module of Rki with guess F . At certain stages in the module for working

for F , we will have to wait to see some loops show up in a structure M
Yk1
j for some Sk

1

j P F ; while
waiting, we will start up a module for a set G Ĺ F , which itself might start up another module,
and so on.

When a module for Rki with guess F starts a new module with guess G Ĺ F , we say that the
module with guess F is the parent of the module with guess G, and the module with guess G is the
child of the module with guess F . The module for Rki with F consisting of all of the higher priority
S requirements is called the base module.

The module for Rki with guess F acts as follows:

1. Choose a new large number ` greater than the restraints of all higher priority requirements
and also greater than the restraint of the parent modules of this module, and its parent, and
so on. Create two new root vertices a1 and a2 in A, and b1 and b2 in B.

Attach a loop of length 2 to a1 and a2 in A, and to b1 and b2 in B. Attach a loop of length
5`` 1 to a1 in A and b1 in B; and attach a loop of length 5`` 2 to a2 in A and b2 in B.

2. For each requirement Sk
1

j in F , with k1 ă k, wait until we see a pair of root nodes c1 and c2

in M
Yk1
j such that c1 has a loop of length 2 and of length 5`` 1, and c2 has a loop of length 2

and of length 5`` 2. If we ever see such elements, Rki puts a restraint r greater than the use

of the oracle Yk1 for the computation witnessing this. We say that such an Sk
1

j has caught up.

If at any stage s we ever see any other elements connected to c1 or c2, Rki puts a restraint
r greater than the use of the oracle Yk1 for the computation witnessing this. (Just put this

restraint once per structure M
Yk1
j .) We say that such an Sk

1

j has been killed.

Remark 10.1.74. We note that the strategy only cares about its current component (the
elements a1 and a2 and the adjacent loops it is currently working with). Therefore, if if Sk

1

j

has been declared killed then this status is not global, i.e., it is internal for this particular
version of the Rki -strategy. We could of course make this status global and give the restraint

some global priority (say, the priority of Sk
1

j). However, this is not necessary. This is because
the injury in the construction will be only finite. Thus, if some higher priority requirement
changes the set below the use witnessing that Sk

1

j has been killed, we simply initialise Rki . In

particular, for one fixed component the situation in which Sk
1

j was killed and then resurrected
and then killed again etc. is impossible.

While waiting, let G be the set of higher priority S requirements which have caught up but
which have not been killed. Start a module of Rki with guess G. If we ever find that a new
requirement has caught up, or that one which had caught up has now been killed, then the
module with guess G must be homogenised (as described below), we reset G to be the new,
larger, set of requirements which have caught up but which have not been killed, and start a
module of Rki whose guess is the new G.

If we ever see that every requirement in F has either caught up or been killed, move on to
the next step.

3. Wait for a stage s at which we see that ΦXki : A Ñ B maps a1 ÞÑ b1 and a2 ÞÑ b2. Let u be
the use of this computation. Enumerate ` into Y ˚k , injuring all lower priority requirements.

450

Choose a large number v ą u and set a restraint r “ v`1. Attach loops of length 5``3 to a1

in A and b1 in B. Attach loops of length 5``4 to a2 in A and b2 in B with use Xkrss æ 2v`2
where s is the current stage.

4. For each requirement Sk
1

j in F , with k1 ă k, wait until we see loops of length 5``3 and 5``4

attached to c1 and c2 respectively. Rki puts a restraint r greater than the use of the oracle

Yk1 for the computation witnessing this, and we say that Sk
1

j has caught up.

Again, if at any stage s we ever see any other elements connected to c1 or c2, Rki puts a
restraint r greater than the use of the oracle Yk1 for the computation witnessing this, and we
say that Sk

1

j has been killed.

While waiting, we start new modules of Rki with guesses G Ĺ F as in step (2).

If we ever see that every requirement in F has either caught up or been killed, move on to
the next step.

5. Attach loops of length 5`` 2 to a1 in A and b1 in B, and attach loops of length 5`` 1 to a2

in A and b2 in B.

Enumerate v into X˚k (thus removing the loop of length 5` ` 3 attached to b1 and the loop
of length 5`` 4 attached to b2 in B). Attach a loop of length 5`` 4 to b1 in B and a loop of
length 5`` 3 to b2 in B.

For k1 ‰ k, whenever we do anything in A (e.g. creating the elements a1 and a2 or adding loops to
them) do the same in Bk1 with no use.

Whenever a requirement increases its restraint, or enumerates an element, it injures all lower
priority requirements. Each module of an injured requirement undergoes the homogenisation pro-
cedure described below, and then the requirement restarts with just the base module at the first
step.

When a module is to be homogenised, we do the following: for any loop on a1 for which there
is no corresponding loop on a2, we add a loop of that length to a2, and vice versa. So a1 and a2

have loops of exactly the same lengths attached to them. Do the same for b1 and b2.

Construction

Recall that the S requirements do not take any action during the construction; we define the
required isomorphisms after the construction.

At stage s, the first s R-requirements are allowed to act. For each of these requirements, in
order from highest priority to lowest priority, do the following: First, if the requirement has never
before acted or was injured, start the base module of the requirement with F being the set of all
higher priority S requirements. Then, execute the base module until we end up at a step where we
have to wait for a larger stage s. Then, if there is a child module, execute the child module until it
has to wait, then any child of the child module, and so on.

Verification

Lemma 10.1.75. Each requirement Rki is injured only finitely many times.

451

Proof. We argue on induction that each Rki can injure the lower priority R requirements only finitely
many times. To do this we suppose that a requirement Rki is never injured after some stage, and
show that it injures the lower priority requirements only finitely many times.

An Rki module with guess F injures the lower priority requirements only finitely many times:

• once each time we find that a new requirement has caught up or been killed in step (2);

• once in step (3);

• once each time we find that a new requirement has caught up or been killed in step (4);

• once in step (5).

Now we argue that there are only finitely many Rki modules that ever run. We begin with the base
module, say with guess F0, and it has only one child at a time, with guess F1 Ĺ F0; and its child
module can have one child module, and so on. So at any one time, we have a chain of child modules
with guesses F0 Ľ F1 Ľ F2 Ľ ¨ ¨ ¨ Ľ Fn, and so n ď |F0|. A module can only homogenise its child
module and start a new child module within the same step if a requirement has been found to have
caught up or been killed, each of which can only happen once per requirement. The one exception
to this is if the child module is homogenised in step (2) and the new child is started in step (4), but
this can only happen once per module. So each module can have only finitely many child modules,
each of which can have only finitely many child modules, and so on, and the depth is bounded by
|F0|. Thus there are only ever finitely many Rki modules running during the construction.

Lemma 10.1.76. Suppose that a module for Rki with guess G is never homogenised (which also

means that Rki is never injured). Let Sk
1

j be a higher priority requirement and suppose that M
Yk1
j –

A. Then Sk
1

j P G.

Proof. Suppose to the contrary that Sk
1

j R G. Then, because Sk
1

j is contained in the guess by the

base module, there must be some module with guess F containing Sk
1

j , which has a child module

G not containing Sk
1

j , and neither module is ever homogenised.
So after some point the module with guess F must be stuck waiting at either stage (2) or (4),

with G being exactly the set of higher priority requirements which have caught up but not been

killed. But we will argue that since M
Yk1
j – A, it must eventually catch up, and it can never be

killed. This would cause the module with guess G to be homogenised, contradicting our initial
assumption.

First, suppose that it is killed. Then at some stage s, we see in M
Yk1
j rss that there is a root

vertex such that no root vertex in A has loops of the same lengths; and we put a restraint on the

use so that M
Yk1
j has such a vertex. (The restraint is never violated, or else Rki would be injured.)

Thus we would have ensured that M
Yk1
j fl A, which is not the case.

It must also catch up, because M
Yk1
j – A, and so whenever a vertex shows up in A with certain

loops, it must show up in M
Yk1
j ; and so for some s, it must show up in M

Yk1
j rss.

Lemma 10.1.77. For each k, A is computably categorical relative to Yk.

Proof. We must show that each Yk-computable structure copy of A is Yk-computably isomorphic
to A, i.e. that each requirement Ski is satisfied. Suppose that A – MYk

j . For simplicity, write

452

M “ MYk
j . Let f be the Yk-computable isomorphism defined in the strategy for meeting Skj . We

argue that f is an isomorphism M Ñ A. It suffices to show that whenever we maps elements c1, c2
to a1, a2 respectively (as defined in the strategy for Ski), c1 and a1 have the same lengths of loops
attached to them, and c2 and a2 have the same lengths of loops attached to them.

If the module that built a1, a2 was ever homogenised, then any way of mapping c1, c2 to a1, a2

extends to an isomorphism. So suppose that the module that built a1, a2 was never homogenised.
We have three cases from the definition of f :

1. If k1 ď k: If ` R Y ˚k then the module that built a1, a2 did not reach step (3), then a1 is the
unique root vertex in A (and c1 is the unique root vertex in M) with a loop of length 5`` 1,
and a2 is the unique root vertex in A (and c2 in M) with a loop of length 5`` 2. So mapping
c1, c2 to a1, a2 respectively extends to an isomorphism.

If ` P Y ˚k then the module that built a1, a2 reached step (3), and a1 is the unique root vertex
in A (and c1 is the unique root vertex in M) with a loop of length 5``3, and a2 is the unique
root vertex in A (and c2 in M) with a loop of length 5` ` 4. So mapping c1, c2 to a1, a2

respectively extends to an isomorphism.

2. If k1 ą k and Rk
1

j is of higher priority than Ski : Similar to above.

3. If k1 ą k and Rk
1

j is of lower priority than Ski :

Let F be the guess by the module of Rk
1

j that built a1, a2. By Lemma 10.1.76, since MYk
i – A,

and the module with guess F is not homogenised, we have Ski P F .

First of all, we argue that when we find a stage s and elements c1 and c2, such that in M rss
there is a loop of length 5`` 1 on c1 and of length 5`` 2 on c2, that in M rss there is no loop
of length 5`` 2 on c1 or 5`` 1 on c2. Otherwise, Ski would have been killed. (As in Lemma
10.1.76, if it is killed, then there is a restraint placed on Yk which ensures that M fl A.)

Then if the module with guess F does not make it to step (5), a1 is the unique root vertex of
A with a loop of length 5`` 1, and a2 is the unique root vertex with a loop of length 5`` 2;
so mapping c1 to a1 and c2 to a2 extends to an isomorphism.

Then if the module with guess F does make it to step (5), a1 is the unique root vertex of A
with a loop of length 5`` 3, and a2 is the unique root vertex with a loop of length 5`` 4; we
must argue that c1 gets a loop of length 5`` 3 and c2 gets a loop of length 5`` 4. In step (2)
we wait to see c1 get a loop of length 5` ` 1 and c2 get a loop of length 5` ` 2; and then in
step (4) we wait to see c1 get a loop of length 5`` 3 and c2 a loop of length 5`` 4. We put
a new restraint on Yk every time we see a new loop. Moreover, if c2 got the loop of length
5`` 3, or c1 got the loop of length 5`` 4, then Ski would be killed. So it must be c1 that gets
the loop of length 5`` 3 and c2 that gets the loop of length 5`` 4.

This completes the proof of the claim.

Lemma 10.1.78. For each k, Bk is isomorphic to A.

Proof. The structure A consists entirely of pairs of root nodes a1, a2 produced by a module of an R
requirement, and the elements forming the loops attached to these root nodes. Whenever we add
elements a1, a2 to A for a requirement Rk

1

i , k1 ‰ k, we add the same sort of elements to Bk (i.e.,
Bqk just copies A. When we add elements a1, a2 to A for a requirement Rki , we add elements b1, b2

453

to Bk, and either a1 has the same size loops as b1 (and a2 as b2), or a1 has the same size loops as
b2 (and a2 and b1); which case we are in depends on whether the requirement made it to step (5)
or not.

Lemma 10.1.79. For each k, Bk is not Xk-computably isomorphic to A.

Proof. We must argue that each requirement Rki is satisfied, so that no Xk-computable map ΦXki
is an isomorphism between Bk and A. Fix some requirement Rki which we will show is satisfied.
After some stage, it is no longer injured.

There is some module of Rki , say with guess F , which is never homogenised, and which either
waits forever in step (3) or reaches step (5). (The other options for a particular module are that
it waits forever in step (2) or step (4), and in each of these cases it has a child module; we know
from the arguments in the previous lemma that each module must have some last child module,
and that the depth of child modules is bounded, so that there must be some module with no child
module.)

First suppose that the module waits forever in step (3). The either ΦXki is partial, or it maps
a1 to some element other than b1. If it is is partial then it obviously cannot be an isomorphism. If
it maps a1 to some element other than b1, then it cannot extend to an isomorphism, as a1 and b1
each have a loop of length 5`` 1, and no other elements of A or B do, as no other requirement or
module has the same value of `.

Now suppose that the module waits forever in step (5). Since the module passed through step
(3), we have that ΦXki maps a1 ÞÑ b1 and a2 ÞÑ b2. (The requirement Rki puts a restraint on the use
of the computation found in step (3), which cannot be violated by any higher priority requirement;
and if a lower priority requirement violated the restraint, Rki would have been injured.) But we
ensure in step (5) that a1 has a loop of length 5` ` 3 and that b1 does not, so that ΦXki does not
extend to an isomorphism.

The proof is finished.

10.1.6 Exercises: Beyond computable categoricity

Exercises about degrees of categoricity

All exercises in this paragraph use the following definition:

Definition 10.1.80 (Kalimullin, Fokina, Miller [172]). A Turing degree x is the degree of categoric-
ity for S if x is the least degree such that S is x-computably categorical. A degree of categoricity
x is said to be a strong degree of categoricity if and only if there are particular computable copies
A and B of a structure with degree of categoricity x such that every isomorphism f between A and
B computes x.

For more background (and many more results), we refer the reader to the excellent survey [178].

Exercise 10.1.81 (Kalimullin, Fokina, Miller [172]). Prove that for each degree d satisfying at
least one of the following properties, there exists a computable structure for which d is the degree
of categoricity:

(1) Dm p0pmq ď d ^ d is c.e. in 0pmqq;

(2) d is d.c.e. in 0pmq, for some m P N (i.e., d is the difference of two 0pmq-c.e. sets);

454

(3) d “ 0pωq.

Exercise 10.1.82 (Miller [395]). Show that there exists a computable algebraic field having no
degree of categoricity. Indeed, any computable algebraic field with a computable splitting algorithm
which is not computably categorical has no degree of categoricity. (Use Ex. 4.2.61.)

Exercise 10.1.83 (Bazhenov [40]). Prove that every computable ordinal has a degree of categoric-
ity.

Exercise˚ 10.1.84 (Csima, Franklin, and Shore [100]). Prove the following theorem. If α is a
computable ordinal, then 0pαq is a strong degree of categoricity. If, in addition, α is a successor
ordinal, then every degree that is c.e. or d.c.e. in and above 0pαq is a strong degree of categoricity.

Exercise 10.1.85 (Bazhenov [43]). Let α ě 3 be a computable ordinal, and consider a Turing
degree d which is d.c.e. in and above 0pα`1q. Construct a computable linear order having degree
of categoricity d.

Exercise 10.1.86 (Anderson and Csima [13]). Show that there is a degree below 02 that is not
a degree of categoricity of any computable structure. (In fact, there is a Σ0

2 degree that is not a
degree of categoricity of any computable structure.)

Exercise 10.1.87 (Bazhenov [42]). Construct a ∆0
4-categorical distributive lattice with no degree

of categoricity.

Exercise 10.1.88 (Bazhenov [41]). Prove that every computable superatomic Boolean algebra has
a degree of categoricity. Show that for every computable ordinal α, the α-th jump 0pαq is the degree
of categoricity for some computable Boolean algebra.

Exercise˚ 10.1.89 (Bazhenov [39]). Prove that every ∆0
2-categorical Boolean algebra has degree

of categoricity either 0 or 01.

Exercise˚˚ 10.1.90 (Csima and Ng [103]). Show that every ∆0
2-degree is a strong degree of

categoricity. (This solved a question left open in [172].)

Exercise˚ 10.1.91 (Csima and Rossegger [104]). 1. Show that every degree d with 01 ď d ď
02 is the strong degree of categoricity of a structure.

2. Show that every degree d with 0pαq ď d ď 0pα`1q for α a computable ordinal greater than 2
is the strong degree of categoricity of a rigid structure.

Exercises about relative ∆0
2- and ∆0

3-categoricity

Exercise˝ 10.1.92 (Cenzer, Harizanov, and Remmel [85]). An injection structure is a structure
of the form pX, fq, where f is an injection of the set X into itself. Show that every ∆0

2-categorical
injection structure is relatively ∆0

2-categorical.

Exercise˝ 10.1.93 (Kach and Turetsky [277]). Prove that there is a ∆0
2-categorical (computable)

equivalence structure that is not relatively ∆0
2-categorical.

455

Exercise˚ 10.1.94 (Fokina, Harizanov, and Turetsky [168]). Show that a computable homogeneous
completely decomposable (c.d.) group of rank ω is relatively ∆0

2-categorical iff it is isomorphic
to

À

iPN QpP q for a computable set of primes, where QpP q is the subgroup of Q generated by

t
1

pn
: p P P, n P Nu. Conclude that there is a computable homogeneous c.d. group that is ∆0

2-

categorical but not relatively ∆0
2-categorical.

Exercise 10.1.95 (McCoy [357]). Show that a computable Boolean algebra is relatively ∆0
2-

categorical if and only if it can be expressed as a finite direct sum c1 _ ¨ ¨ ¨ _ cn, where each ci
is either atomless, an atom, or a 1-atom. (Compare this with Exercise 4.1.57.)

Exercise 10.1.96 (Bazhenov [39]). Show relative ∆0
2-categoricity and (“plain”, “Type 1”) ∆0

2

categoricity are equivalent for Boolean algebras.

Exercise 10.1.97 (McCoy [357]). Show that a computable linear order L is relatively ∆0
2-categorical

iff L is a sum of finitely many intervals, each of type m (i.e., finite), ω, ω˚,Z, or n ¨ η, such that
each interval of type n ¨ η has a supremum and an infimum.

Exercise 10.1.98 (Essentially Miller [395]). Show that every (computable) algebraic field is rela-
tively ∆0

3-categorical.

Exercise˚ 10.1.99 (McCoy [356]). Show that a computable Boolean algebra is relatively ∆0
3-

categorical if and only if it can be expressed as a finite direct sum of finitely many algebras which
are atoms, atomless, 1-atoms, rank 1 atomic, or isomorphic to the interval algebra Intalgpω ` ηq.

Exercise 10.1.100 (Moses [407]). We say that a 1-decidable structure is 1-decidably categorical if
any two 1-decidable presentations of the structure are computably isomorphic. Show that a linear
order is 1-decidably categorical iff it is relatively ∆0

2-categorical (as described in Ex. 10.1.97).

Exercise˚ 10.1.101 (Bazhenov, Frolov, Kalimullin, and Melnikov [44]). Show that there exists a
computably categorical (computable) distributive lattice that is not relatively ∆0

2-categorical.

Exercise˚ 10.1.102 (Downey, Melnikov, and Ng [140]). Let G be a computable p-group of finite
Ulm type n, such that:

• Gpnq – ‘jďmZp8 for some m P N, and

• the orders of the cyclic summands in Gn´1 are not bounded.

Prove that G is not ∆0
2n-categorical.

Exercise 10.1.103. Show that the transformation GØ EG between Ulm type 1 abelian p-groups
and the respective equivalence structures has the following properties:

1. It preserves degree spectra and computable dimension;

2. It does not preserve ∆0
2-categoricity.

(Hint: Use Exercises 9.1.16, 9.3.42, and 10.1.102.)

Exercise˚ 10.1.104 (Downey, Melnikov, and Ng [142]). Say that a computable algebraic structure
is weakly uniformly ∆0

2-categorical if there exists an effective procedure which, given indices i, j of
computable copies Mi,Mj of the structure, produces a ∆0

2-index e for a ∆0
2-isomorphism from Mi

onto Mj . Show that for (not necessarily reduced) computable abelian p-groups of Ulm type 1, the
following hold:

456

1. The notion of weak uniform ∆0
2-categoricity lies strictly in-between ∆0

2- and relative ∆0
2-

categoricity. (In particular, all three notions are pairwise non-equivalent!)

2. The correspondence GØ EG between Ulm type 1 abelian p-groups and the respective equiv-
alence structures preserves weak uniform ∆0

2-categoricity.

Exercise 10.1.105 (Downey, Kach, Lempp, and Turetsky [132]). Prove that there is a 1-decidable,
computably categorical structure M having a computable presentation A and a ∆0

2-computable
presentation B such that A and B are not ∆0

2-isomorphic.

Exercise˚ 10.1.106 (Montalbán [400]). A countable structure A is computably categorical on a
cone if there is a Y P 2ω such that A is X-computably categorical for all X ěT Y . Prove that he
following are equivalent:

1. A is computably categorical on a cone.

2. A has a (not necessarily computable, Lω1ω) Σ3 Scott sentence.

Exercise 10.1.107. Show that the most straightforward computable analogue of Exercise 10.1.106
fails. Indeed, there exists a computable torsion abelian group G (viewed in the language t`,´, 0u)
with the properties:

1. G is not computably categorical;

2. G has a (computable) Πc
2 Scott sentence.

(Hint: Build G “
À

ePNGpe , where Gpe is a pe-group. We will have Gpe isomorphic either to
Zp8e ‘Zp8e or Zpnee ‘Zpmee , for some me, ne P N, me ą ne. We can easily build two copies of G and
diagonalise against all potential isomorphisms ϕe between these copies, as follows. Wait for ϕe to
halt on some non-zero xe P Gpe of order pe. If this ever occurs, make sure hpepxq “ ne ‰ me “

hppϕepxeqq. If ϕe never halts, proceed to building Gpe – Zp8e ‘ Zp8e . The Πc
2 Scott sentence of G

says that:

(i) G is a torsion abelian group.

(ii) For all i, G has exactly p2
i elements of order pi (including 0).

(iii) For all i, monitor ϕe. At stage s, if diagonalisation has not yet occurred, let ψi,s be a first-order
D-sentence saying that Zpse ‘ Zpse embeds in G. If the diagonalisation has already occurred
and the parameters ne,me have been already defined, then let ψi,s be a sentence that says:

(a) Zpmee ‘ Zpnee isomorphically embeds in G,

(b) neither Zpmee ‘ Zpne`1
e

nor Zpme`1
e

isomorphically embeds in G,

which is a conjunction of an D- and a @-sentence.

Take the conjunction of piq, piiq, and
ľ

i,sPN
ψi,s,

which were described in piiiq. Appeal to the classification of finitely generated abelian groups and
groups of Ulm type 1 to conclude that this is a Πc

2 Scott sentence for G.)

457

Exercises about (relative) ∆0
α-categoricity for arbitrarily large α

Some of the exercises below will use the following convenient definition:

Definition 10.1.108. Fix a computable ordinal α ą 1. We say that a computable, relatively
∆0
α-categorical structure is optimally relatively ∆0

α-categorical if it is not ∆0
β-categorical for β ă α.

Exercise 10.1.109 (Goncharov et al. [212]). Show that for every computable successor ordinal
α ą 1, there is a ∆0

α-categorical structure that is not relatively ∆0
α-categorical.

Exercise 10.1.110 (Goncharov et al. [90]). Show that for every computable limit ordinal α ě ω,
there is a ∆0

α-categorical structure that is not relatively ∆0
α-categorical.

Exercise˚ 10.1.111 (Downey, Igusa and Melnikov [127]). Show that for every computable limit
ordinal α, there is a structure A “ Aα, such that

(i) For each computable structure B – A, there is a β ă α such that B –∆0
β
A.

(ii) For each δ ă α there is a computable C – A, such that C fl∆0
δ
A.

Exercise˚ 10.1.112 (Downey, Melnikov, and Ng [144]). Produce a computable linear order with
the property described in the previous exercise.

Exercise 10.1.113 (Folklore). Show that for each computable α ą 1 there exists an optimally
relatively ∆0

α-categorical structure (Definition 10.1.108).

Exercise˚ 10.1.114 (Ash [16]). Show that for each computable α ą 1 of the form δ ` 2k (where
δ is either 0 or a limit ordinal, and k P ω) there is an optimally relatively ∆0

α-categorical well-order
(Definition 10.1.108).

Exercise 10.1.115 (Melnikov [368])). Show that for each computable α ą 1 of the form 1` δ`2k
(where δ is either 0 or a limit ordinal, and k P ω) there is an optimally relatively ∆0

α-categorical
ordered abelian group (Definition 10.1.108).

Exercise 10.1.116 (Barker [30]). Prove that for each computable α ą 1, there is an optimally
relatively ∆0

α-categorical abelian p-group (Definition 10.1.108).

Exercise˚ 10.1.117 (Ocasio-Gonzalez [420]). Show that for each computable α ą 1 of the form
1 ` δ ` 2k (where δ is either 0 or a limit ordinal, and k P ω) there is an optimally relatively
∆0
α-categorical real closed field (Definition 10.1.108).

Exercise˚ 10.1.118 (Melnikov [372]). Prove˚˚ that for any computable successor ordinal of the
form α “ δ ` 2k (δ limit and k P N) there exists an optimally relatively ∆0

α-categorical (Defini-
tion 10.1.108) computable torsion-free abelian group. (This solved a problem posed by Goncharov.)

Exercise˚ 10.1.119 (Montalbán [400]). A countable structure A is ∆0
α-categorical on a cone

(where α is a countable ordinal) if there is a Y P 2ω such that A is ∆0
αpXq-computably categorical

for all X ěT Y . (Without loss of generality, we may assume α is computable relative to Y .) Extend
Exercise 10.1.106 to establish that the following are equivalent:

(C1) A is ∆0
α-categorical on a cone.

(C2) A has a Σα`2 Scott sentence.

458

Exercise˚ 10.1.120 (Alvir, Greenberg, Harrison-Trainor, and Turetsky [8]). The Scott complexity
of a countable structure A is the lowest syntactic Lω1ω-complexity so that the structure has a Scott
sentence of that complexity. Prove the following:

1. The Harrison order H has Scott complexity ΠωCK1 `2.

2. There is a computable structure of Scott complexity ΠωCK1
. (Essentially Knight and Millar

[306].)

3. There exists a computable structure of Scott complexity ΠωCK1 `1. (Essentially Harrison-

Trainor, Igusa, and Knight [240].)

4. There exists a computable structure of Scott complexity ΣωCK1 `1.

5. There exists a computable structure of Scott complexity d-ΣωCK1
(meaning that the sentence

is a conjunction of a ΣωCK1
- and a ΠωCK1

-sentence).

(See also Exercise 10.3.19.)

459

10.2 Computably isometric Polish spaces

In this section, we shall extend some of the methods and results accumulated for discrete structures
in the previous section to separable structures. The main result of the subsection is Theorem 10.2.9,
which describes relatively computably categorical spaces (up to isometry) in terms of approximate
Scott families. We will see that even when spaces are viewed up to isometry, the situation becomes
more subtle than in the discrete case. For example, the notion of a finite parameter will have to be
adjusted. To emphasise that our spaces are viewed up to isometry, we will often refer to a computable
Polish presentation of a space as “a computable structure on the space”. This terminology is also
consistent with the literature too, at least when it comes to isometric presentations.

10.2.1 Isometric computable categoricity

Of course, the notion of computable categoricity depends on the choice of the notion of an isomor-
phism. For example, if we view Polish spaces up to isometry, the natural notion is:

Definition 10.2.1 (Melnikov [369], Iljazović [268]). A Polish metric space is isometrically
computably categorical if it has a unique computable Polish presentation up to computable
surjective isometry.

From now on, we shall focus on isometric computable categoricity.

So “computably categorical” means “isometrically computably categorical” throughout the rest
of this subsection.

Examples of isometrically c.c. spaces

Corollary 7.1.26 says that a computably compact metric space with at most finitely many self-
isometries is isometrically computably categorical. The next example of a computably categorical
metric space should be compared with Mal’cev’s Theorem 2.2.16.

Theorem 10.2.2 (Melnikov [369], based on Pour-El and Richards [435]). For any separable Hilbert
space, the underlying Polish metric space is isometrically computably categorical.

Proof. We begin with a lemma.

Lemma 10.2.3 (Pour-El and Richards [435]). Let H be a separable Hilbert space. Then any two
computable Banach presentations of the space are computably linearly isometric.

Sketch. First, observe that the inner product x¨, ¨y can be effectively reconstructed from the norm
in a Hilbert space using the well-known formula

xu, vy “
1

4

`

}u` v}2 ´ }u´ v}2
˘

.

Assume we are given two computable Banach space presentations A and B of the space. In each
of these spaces, we use the inner product to produce a computable complete orthonormal system of

460

vectors using (essentially) the iterated Gram–Schmidt process; see Exercise 10.2.26. We then use
these orthonormal bases in A and B to compute a surjective linear isometry between the spaces,
as follows. We first match the bases and then extend the map uniquely to the whole space using
the projections of points onto the basic vectors. The latter can also be calculated using the inner
product.

Recall that all operations on a Hilbert space (including the inner product) can be effectively
reconstructed from the norm (Theorem 2.4.19). The issue is that ||x|| “ dp0, xq, so it may seem
that we need 0 to be a computable point in the Polish space. But since every affine shift of the
space is a surjective self-isometry, we can take any special point in the underlying Polish metric
space and “declare” it to be zero. We then use Theorem 2.4.19 and Lemma 2.4.17 to define new
(automorphic) operations determined by the choice of zero. These operations turn the Polish
space into an isomorphic (computable Banach) copy of our Hilbert space. Once the operations are
computably defined, we can apply Lemma 10.2.3 to the resulting Hilbert space.

We will also see that the Urysohn space is isometrically computably categorical (Proposi-
tion 10.2.14).

Recall that Theorem 2.4.20 states that there is an isometric computable Polish presentation of
pCr0, 1s, dsupq that computes 0 but dos not compute `. Theorem 2.4.20 implies:

Theorem 10.2.4 (Melnikov [369]). The Polish space pCr0, 1s, dsupq is not isometrically computably
categorical.

Proof. We use Lemma 2.4.17 throughout. To apply Theorem 2.4.20 we need the following elemen-
tary:

Claim 10.2.5. Let B be a Banach space upon the domain B and d be the metric associated with the
norm (i.e., dpx, yq “ ||x ´ y||). Suppose X is a computable presentation of pB, d,`q, and suppose
Y is a computable presentation of pB, d, 0q. If X and Y are computably isometrically isomorphic
(as metric spaces), then ` is computable in Y .

Proof. Let U : Y Ñ X be a surjective computable isometry. Recall that U´1 is also computable.
By the theorem of Mazur and Ulam that we stated and discussed in §2.4.3, there exists a linear
map L : X Ñ Y such that Upxq “ Lpxq ` Up0q, for every x P B. We have that

U´1pUpβq ` Upγq ´ Up0qq “ U´1pLpβ ` γq ` Up0qq “ β ` γ,

and therefore ` is computable in Y .

Now recall that the computable presentation of Cr0, 1s constructed in Theorem 2.4.20 computes
0 but does not compute `. It follows from the claim above that this computable presentation
cannot possibly be computably isometric to the “standard” one given in Example 2.4.18.

10.2.2 Relative isometric computable categoricity

461

Definition 10.2.6 (Greenberg, Knight, Melnikov, and Turetsky [219]). A computable space
pM,d, pαiqiPNq is relatively computably categorical (r.c.c.) if any a-computable Polish space
pβiqiPN (whose completion is) isometric to M is a-computably isometrically isomorphic to
pαiqiPN.

For example, the separable Hilbert spaces of infinite dimension is relatively computably categorical.
In Theorem 10.1.6 we saw that for algebraic structures, this notion was equivalent to the exis-

tence of a c.e. Scott family. However, in their full generality, the theorems required finitely many
parameters in the respective functionals and Scott families. What would this mean for a Polish
space? Recall that in a Polish space, a point is no longer a finite parameter; it is not a Type I
obejct. Further, it is not altogether clear what a “Scott family” would mean for an uncountable
Polish space. We discuss these issues in detail next.

Approximate Scott families

To be able to adjust the methods developed for discrete algebraic structures, we will need our spaces
to resemble algebraic structures. We view separable metric spaces as structures in the first-order
language

L “ tdărp¨, ¨q, dąrp¨, ¨q : r P Qu,

where M |ù dărpx, yq iff dM px, yq ă r, and similarly M |ù dąrpx, yq iff dM px, yq ą r. We do
not allow “ and when we form L-formulae; thus, we restrict ourselves to positive atomic L-
formulae with no equality. If X is a countable metric space, we write D`pXq for the positive open
diagram of X in the language L, which consists of conjunctions and disjunctions of positive atomic
L-formulae. Clearly, pαiqiPN is a computable Polish presentation of (a computable structure on) M
iff D`ppαiqiPNq is a computably enumerable set, under the standard Gödel numbering (we identify
αi with its index i).

An approximate Scott family. As we saw above, in countable structure theory, a Scott family of a
structure A is a collection of formulae S such that:

(1) any finite tuple ā in A satisfies some θ P S, and

(2) if θ P S holds on both ā and b̄ in A, then there exists an automorphism of A taking ā to b̄.

A Σ0
1 Scott family is a c.e. family consisting of first-order existential formulae.

Since perfect Polish metric spaces are uncountable, we cannot hope to just take the same
definition literally. Instead, we allow both (1) and (2) to be true “up to ε”. This can be viewed as a
sequence of families, one family for each positive rational ε. Equivalently, we may assume that the
family is indexed by rational numbers, so that Θε is true with precision ε. The formal definitions
are as follows.

Define a Q-indexing of a family F of L-formulae to be a map µ : F Ñ Q`. If F admits a
Q-indexing µ, and there is no other indexing of F that is of any importance to us, we write Θε for
Θ P F to express that µpΘq “ ε.

In the following, tuples of M -points are viewed as elements of the corresponding direct product
of M with the sup-metric inherited from dM . We let nbhεpx̄q denote the ε-ball centred in x̄ in this
metric.

462

Definition 10.2.7 (Greenberg, Melnikov, Knight, and Turetsky [219]). Let M be a Polish
space. We say that a non-empty collection S of Q-indexed first-order L-formulae is an approx-
imate Scott family if the following two conditions hold:

1. For all tuples x̄ and x̄1 in M , if M |ù Θεpx̄q and M |ù Θεpx̄
1q for some Θ P S and ε P Q`,

then there exists an isometric automorphism of M taking x̄ into nbhεpx̄
1q.

2. For every tuple x̄ in M and ε1 P Q`, there exists a tuple x̄1 P nbhε1 x̄ and a formula Θε2

with ε2 ă ε1 in S such that M |ù Θε2px̄
1q.

An approximate Scott family S is c.e. if there exists an effective listing of the Gödel numbers of
S, and the Q-indexing is given by a (partial) computable function that halts on each member of S.
Without loss of generality, we may assume that S is actually indexed by rationals of the form 2´i.

Parameters

We will allow our formulae an uniform procedures to use finitely many parameters. In a presentation
of the structure, a list of parameters typically corresponds to a finite sequence of elements of ω.
As a finite object, this list is trivially computable relative to the presentation. The situation is
different in Polish metric spaces.

The idea is to allow a whole neighbourhood of a point to be a parameter. That is, any point
from the neighbourhood can be put as a parameter, and this variation will not affect the desired
properties. In this case we say that the parameter c is stable. So, for example, any tuple from
the neighbourhood can be used in the computation of a functional witnessing uniform isometric
categoricity with stable parameters. In the case of a Scott family, this requires a bit more care. We
clarify this below.

Definition 10.2.8. We say that parameters c̄ “ pc1, . . . , cnq of an approximate Scott family S are
stable if there exists an open neighborhood B “ B1ˆ. . .ˆBk of c̄ such that for any c̄1 P B, replacing
c̄ with c̄1 in S gives an approximate Scott family of the space with parameters c̄1 and furthermore:

p1q˚ If M |ù Θεpc̄, x̄q and M |ù Θεpc̄
1, x̄1q, then there exists an automorphism of M taking c̄x̄ into

nbhεpc̄
1x̄1q.

10.2.3 A characterisation of relatively c.c. Polish spaces

Recall that we view our Polish spaces up to isometry. So “computably categorical” means “isomet-
rically computably categorical”.

Theorem 10.2.9 (Greenberg, Knight, Melnikov, and Turetsky [219]). Let M be a computable
Polish space. The following are equivalent:

1. M is relatively computably categorical.

2. M possesses a c.e. approximate Scott family with stable parameters.

463

Of course, the finitely many balls associated with the stable parameters contain special points.
We also note that the result implies Theorem 10.1.6 for discrete structures. (To see why, use
the effective universality of undirected irreflexive graphs and discrete metric spaces established in
Chapter 8.) However, while at least one implication in Theorem 10.1.6 was essentially trivial,
neither implication of Theorem 10.2.9 is particularly easy to establish. (The “easy” implication
in Theorem 10.1.6 is no longer elementary here because an approximate Scott family allows us to
merely approximate an isometry, and some extra care must be taken to ensure that, for example,
the isometry is surjective.)

Proof of Theorem 10.2.9. p1q Ñ p2q Fix a computable dense X in M . Without loss of generality,
assume X has no repetition (Exercise 2.4.32). We identify elements of X with their indices from
ω. We call such an X a structure on M rather than a computably isometric presentation of M .
Consider the collection P of all quadruples pD, p, `q, where

(p1) D is a finite partial positive diagram upon an initial segment 0, . . . , i of ω and in the language
L.

(p2) p : t0, . . . , iu Ñ X is a finite partial embedding, i.e., D is true on the respective p-images of
1, . . . , i.

(p3) ` ă i is such that each of the first `-many elements of X are within 2´i of some element of
rangeppq.

(p4) For each k, j ď i with k ‰ j, there are r, q P Q` with |r ´ q| ă 2´i such that D contains
dărpk, jq and dąqpk, jq.

We write σ, τ, ρ . . . to denote elements of P, we assume σ “ pDσ, pσ, `σq and we write iσ for
sup domppσq. (Recall domppσq is an initial segment of ω.)

If `1, `2 are two finite strings in X (that is, functions from finite initial segments of ω to X),
perhaps of different lengths, then let m be the length of the shortest of the two. Define

dp`1, `2q “ sup
jăm

dp`1pjq, `2pjqq.

We say that τ is a refinement of σ and write τ Ţ σ if:

(e1) domppτ q Ą domppσq and Dτ Ą Dσ;

(e2) `τ ą `σ

(e3) dppσ, pτ q ă 2´iτ .

Define Ť accordingly. The relation Ť is a strict partial order on P. Furthermore, each infinite
Ť-ascending chain pDi, pi, siqiPN corresponds to an isomorphic image N of M under the isometric
surjective map p “ limi pi. The positive diagram of N can be effectively enumerated given only
positive information about YiDi, and without loss of generality we may identify it with YiDi.
Conversely, given any structure Y on M and a finite partial diagram of any finite tuple ȳ of
special elements from Y , we can extend ȳ to a z̄ whose partial diagram σ satisfies pp1q ´ pp4q. We
furthermore can represent Y as a sequence through P extending this σ.

464

Suppose σ P P. For any pair i, j in the domain of pσ, pick r least and q largest such that dărpi, jq
and dąqpi, jq are mentioned in Dσ. Define dσpi, jq “ r and dσpi, jq “ q.

Say that f : σ ÑM is σ-admissible if for all i, j P domppσq

dσpi, jq ă dM pfpiq, fpjqq ă dσpi, jq.

We also say that all extensions of f to maps with larger domains are σ-admissible.
Let Φ be an enumeration operator and D “

Ť

σi
Dσi for some Ť-ascending chain pσiqi. For τ P P

and D, limi ΦDi is τ -admissible iff already for some finite subset Dσi and some i we can see this is the
case (unless ΦD lists sequences that are not fast Cauchy), which is a c.e. event. In this case, we say
simply that ΦDσi is τ -admissible. Similarly, if ΦD defines a collection of fast Cauchy names, then
for every x P X and any m P N, a condition of the form dM plimi ΦDi pmq, xq ă 2´s will be witnessed
by some Dσi unless pΦDk pmqqk is not fast Cauchy. In this case we write dM plimk ΦDσk pmq, xq ă 2´s.

We say that σ forces Φ to be a computable isometry onto X̄ and write σ , Φ if for all τ Ţ σ
there exist ρ Ţ τ with the properties:

1. ΦDρ is τ -admissible;

2. for each k, j ď iτ , we have dM pΦ
Dρ
j pkq,Φ

Dρ
j`1pkqq ă 2´j´1;

3. for each j ď iτ , there exists v P domppρq such that dM plimk Φ
Dρ
k pvq, jq ă 2´iτ .

In (1) and (3) above we require all mentioned computations to halt. Notice that each of (1)-(3)
above are naturally c.e. events.

According to our definitions, if (1) or (2) or (3) fails for a σ, then limi Φi cannot possibly be
a surjective isometry of the completion of any D P rPs extending Dτ , for some τ above σ. If this
is the case for τ , we write τ , Φ. On the other hand, if σ , Φ, then (2) ensures that Φ defines
a sequence of D-computable points for any [infinite] Ť-extension of σ. Also, if σ , Φ, then (1)
implies that limk Φk is an isometric embedding, and (3) witnesses its completion contains X. Thus,
the completion is a surjective isometry onto M .

In the construction, we list all enumeration operators Φ and build a path through P by stages.
We try to ensure σ , Φ (if we can) for each Φ, one-by-one, just as we did in the proof of
Theorem 10.1.6. In particular, some σ must force Φ. Just as in the proof of Theorem 10.1.6, we
shall proceed above σ using the extensions that witness that σ , Φ; at no stage we shall be stuck.

Indeed, we again have that for any extension of the finite partial diagram σ to a (positive)
diagram of a structure on M in the construction, as along as we choose the extensions that witness
σ , Φ, the operator Φ is a surjective computable isometry between the completion of the structure
and X. The desired stable tuple of parameters is the neighbourhood of (the range of) pσ in M ; it is
determined by the precision with which the distances in Dσ are calculated. Recall iσ “ sup dompσ,
and let ī “ x0, . . . , iσy; will use b̄ as the “stable parameters” representing z̄.

To define the approximate Scott family, run the construction above σ (on all extensions wit-
nessing σ , Φ) and see for which tuples the operator halts. Assume ΦDτi halts on a tuple ā and
some τ , has output d̄, and suppose ψp̄i, ā, c̄q is the part of the open positive diagram used in this
computation. Put Dȳψpb̄, x̄, ȳq in S with index 2´i`2; let this formula be θ2´i`1pb̄, x̄q. The intuition
is that it describes d̄ “up to 2´i`2”. For D, the final isometric Φ-image of ā is at distance 2´i from
d̄.

We use the same trick with renaming tuples to produce an extension D˚ above σ as we used
in Theorem 10.1.6. To argue that the operator Φ will isomorphically map any tuple that satisfies

465

Dȳθpb̄, x̄, ȳq into the 2´i`1-nbhd of d̄, produce such a D˚ above σ that uses the same indices for this
tuple as Dτ . This makes any pair of tuples that satisfy θ2´i`1pb̄, x̄q 2´i`2-isometric, as required in
(1) Definition 10.2.7. Condition p2q of Definition 10.2.7 follows from Φ being onto on any such D,
so eventually every tuple will be ε-close to some Φ-output.

p2q Ñ p1q. Let S be an effective approximate Scott family with stable parameters d̄ in B.
We fix a computable structure Y on M , and fix any X dense in M . We may assume that d̄ are
special in Y . In what will follow, elements of Y (and of X) are identified with the respective natural
numbers, and for a set Y Ď N, Y æ i denotes Y X t0, 1, . . . , i´ 1u.

At the beginning of each step i ą 0, we will have a rational εi “ 2´i as a precision parameter,
a finite tuple āi from Y and b̄i from X, and a partial map b̄i ÞÑ āi. We may assume that b̄i is an
initial segment of X, and that b̄i`1 extends b̄i by one extra point.

At the end of step i, we will define εi`1 “ εi{2, choose b̄i`1 extending b̄i, and define āi`1 so
that:

(a.) the initial segment of āi`1 of length the same as āi is within nbhεipāiq;

(b.) nbhεi`1{4pāi`1q contains an isomorphic image of b̄i`1;

(c.) If i is odd, then Y æi is within nbhεi´1
of some substring of āi`1.

In (b.), an isomorphism is any surjective isometry of X̄ onto Ȳ .

It is clear that a successful maintenance of pa.q implies that, for each n, the n-prefixes of āi
form a (uniformly) rapidly converging sequence in Ȳ n. If we are successful in satisfying pb.q, then
the limit of these n-tuples will have the same distance matrix as the first n points of X. Therefore,
we can naturally define an isometric embedding U as the limit of partial maps āi ÞÑ b̄i. Finally, if
pc.q is satisfied at the end of each stage, then each special point of Y is in the closure of the image
UpXq, and thus (the completion of) U is surjective. Indeed, pc.q implies that for each y and for
infinitely many i, there exists an x such that Upxq is within nbhεi´1`2εi`1

pyq. Since the sequence
pεi´1 ` 2εi`1qi converges to 0, we conclude that UpXq is dense in Ȳ .

Step 0: Declare ā0 “ d̄. We may assume that d̄ lie in the centres of the respective balls in B̄. Let
r be the smallest radius among the balls witnessing stability of the parameters. Set the precision
parameter ε0 ă r{16. (This choice of ε0 will imply that the initial segment of the sequence āi
will never leave B̄.) Choose a formula Θε0{16 that holds on d̄, and fix a special X-tuple c̄ in the
ε0{16-nbhd of an isomorphic image of d̄ in the completion of X such that X |ù Θε0{16pc̄q.

Step i alternates between two basic modules:

Extension (i is even).

1. Choose z P X least that is not yet among b̄i.

2. Let x̄ P nbhεi{16pb̄izq be the first found tuple of special points such that x̄ satisfies some Θδ P S
labeled by δ ă εi{16.

3. Pick some ȳ in Y whose prefix is within εi{2 of āi and so that ȳ satisfies Θδ.

4. Set āi`1 “ ȳ and b̄i`1 “ b̄iz, define εi`1 “ εi{2, and proceed to the next step.

466

Onto (i is odd). For every point y among the first i special points of Y , do the following:

1. Pick a first found tuple v in X, a tuple w̄u in Y , and a formula Θδ in S labeled by δ ă εi{16
such that:

- w̄u P nbhεi{4pāiyq;

- X |ù Θδpb̄ivq and Y |ù Θδpw̄uq.

2. Define b̄i`1 “ b̄iv and āi`1 “ w̄u, and set εi`1 “ εi{2.

Verification. Recall that each Θ P S is an existential projection of an open positive formula. The
witnesses of the latter form a (non-empty) open set in the corresponding power of M . From this,
we obtain the following:

Fact 10.2.10. Suppose Θ is a formula in S, and let m̄ be a tuple of points in M such that M |ù

Θpm̄q. Then for each ε ą 0, there exists a tuple of X-special points x̄ P nbhεm̄ such that X |ù Θpx̄q.

As we explained above, it is sufficient to verify that the conditions pa.q ´ pc.q for every i, and
that the substeps use only positive information about DpXq.

Extension. It follows from the definition of an approximate Scott family and Fact 10.2.10 that
there exist Θδ and x̄ with the desired properties. Thus, we will eventually find an atomic fact in
DpXq implying Θδ on such a tuple. By the I.H., there exists an isomorphic image of b̄i within
nbhεi{4pāiq. In particular, the choice of the precision parameter guarantees that the initial segment
of this isomorphic image will be within the nbhd witnessing stability of d̄. Thus, we can apply
property p1q˚ of an approximate Scott family with stable parameters. Consequently, by the choice
of δ, we can find a ȳ P nbhεi{2pāiq such that Θδpȳq holds (this will be the true image of b̄i or
any tuple of special points sufficiently close to it). At some stage we will see a proof of that fact
from DpY q. It follows from the triangle inequality that nbhεi{8pȳq contains an isomorphic image of
b̄i`1 “ b̄iz. Both pa.q and pb.q hold for i` 1.

Onto. The verification of this step is similar. Using the properties of S, Fact 10.2.10, and the I.H.,
we argue that such w̄u and x̄v can always be found. Indeed, nbhεi{4pāiq contains some isomorphic
image of b̄i. Each neighborhood of the latter contains a tuple satisfying some Θδ labeled by a
δ ă εi{16, and whence its isomorphic image satisfies the formula as well. Note the initial segment
of the tuple stays in B̄. It is sufficient for us to wait for DpXq and DpY q to enumerate facts implying
what we need. It is clear that pa.q ´ pc.q hold for i.

The following corollary is analogous to Corollary 10.1.9.

Corollary 10.2.11. A relatively (isometrically) c.c. Polish space M is indeed uniformly relatively
c.c., in the sense that there is a fixed functional Ψ which, given a structure B on M and after fixing
finitely many stable parameters, outputs a surjective isometry between B and M .

Proof. This follows from the existence of the approximate Scott family established in Theorem 10.2.9
and the proof of p2q Ñ p1q of Theorem 10.2.9. Indeed, the procedure described there works for any
isometric structure on the space.

467

10.2.4 Uniform computable categoricity for Polish spaces

Definition 10.2.12 (Greenberg, Knight, Melnikov, and Turetsky [219]). A computable space
pM,d, pαiqiPNq is uniformly computably categorical (u.c.c.) if there exists a uniform procedure
such that, given any computable Polish space pβiqiPN (whose completion is) isometric to M , it
produces a surjective isometry between the completions of pβiqiPN and pαiqiPN.

Our next theorem is analogous to Theorem 10.1.37.

Theorem 10.2.13 (Greenberg, Knight, Melnikov, and Turetsky [219]). Let M be a computable
Polish space. The following are equivalent:

1. M is relatively computably categorical.

2. M is uniformly computably categorical with stable parameters.

Proof. p1q Ñ p2q : This follows from Corollary 10.2.11.
We prove p2q Ñ p1q. Suppose uniform categoricity with stable parameters is witnessed by Φ, a

tuple of balls B̄, and b̄ in B̄. Let Y be a computable structure on M . We define a c.e. approximate
Scott family as follows. We may assume b̄ is special. Given a tuple ȳ and a positive rational

ε “ 2´i ă 1, compute Φ
DpY q,b̄
i`2 pȳq. Suppose the use of the computation is Dȳ,ε, and let z̄ be all

points of Y mentioned in Dȳ,ε unequal to those among ȳ. Take the conjunction φpb̄z̄ȳq of all formulae
in Dȳ,ε, and set Θε,ȳ “ Dz̄φpB̄z̄w̄q, where w̄ are free variables. Define S to be the collection of Θε,ȳ

where ȳ and ε range over finite tuples of Y and rationals of the form 2´i, respectively. Clearly, the
definition of S is effective.

The density of Y in M implies that S satisfies p2q of Definition 10.2.7. We assume (for simplicity)
that there are no parameters and show that S satisfies (1) of Definition 10.2.7. The proof of p1q˚ is
almost literally the same. Suppose x̄1 and x̄2 both satisfy Θ2´i . Since Θ2´i isolates an open set in M ,
there will be tuples ȳ1 and ȳ2 of Y -special points in the 2´i´2-nbhds of x̄1 and x̄2, respectively, that
satisfy Θ2´i . Define new computable structures Y 1 and Y 2 replacing ȳ by ȳ1 and ȳ2, respectively,
and also by re-naming the existential witnesses z̄1 and z̄2 corresponding to Θ2´ipȳ

1q and Θ2´ipȳ
2q

(taken to be Y -special) by the tuple z̄ of Y -special points witnessing the existential quantifier in
Θ2´ipȳq. Note the points stay “where they are” in M , but they get new names.

By the assumption, Φi`2 is a 2i`2-isometry from both Y 1 and Y 2 onto a dense subset of Ȳ ,
and furthermore the computations of Φi`2 are identical on ȳ viewed either as a tuple in Y 1 or in
Y 2 or Y . Suppose this computation outputs a tuple v̄ in Y . It follows that here exist automorphic
images w̄, w̄1 and w̄2 of ȳ, ȳ1 and ȳ2 (all viewed as elements of Y) which are at most 2´i´2-far from
v̄ and thus are at most 2´i´1-far apart. Recall that ȳ1 and ȳ2 were 2´i´2-close to x̄1 and x̄2. Thus,
2´i´2-nbhds of w̄1 and w̄2 must contain some automorphic images ā1 and ā2 of x̄1 and x̄2. It follows
that ā1 and ā2 are at most 2´i-far apart, as desired.

468

An application to the Urysohn space˚

We assume that the reader is familiar with the basic properties of the Urysohn space, see [364] for
a detailed exposition. Otherwise, if the reader is not interested in the Urysohn space, they can skip
this subsection. This subsection will not be used in the rest of the book.

In effective algebra, using c.e. Scott families instead of uniform procedures is usually not par-
ticularly advantageous. In metric space theory, approximate Scott families allow us to separate a
technical approximate back-and-forth construction from the rest of the argument. As an illustration,
we give a significantly simplified proof of the following known fact first established in [369].

Proposition 10.2.14. The Urysohn space is uniformly computably categorical (without parame-
ters).

Proof. We follow [219] very closely. Using the rational Urysohn space UQ, we can produce an
effective approximate Scott family for the Urysohn space U, as follows.

For every tuple of points ū in UQ and a rational ε ą 0, we effectively produce the distance
matrix Dpūq that has rational entries. Using this matrix, for each u1 and u2 in ū and r “ dpu1, u2q,
we take

ψu1,u2px, yq “ dăr`ε{4px, yq& dąr´ε{4px, yq,

and syntactically define the ε{2-nbhd of the tuple

Θū
ε px̄q “

ľ

pu1,u2qĎū

ψu1,u2
px, yq.

Each such formula describes the distance matrix with recision ε{4. We then define S to be the
collection of all such Θū

ε px̄q, where ε ranges over the positive rationals and ū over finite tuples in
UQ.

Since distance in UQ is a computable function of two arguments ranging over positive rationals,
the family and the labeling are effective. Definition 10.2.7(2) for S follows at once from the density
of UQ in U, and Definition 10.2.7(1) is a re-formulation of the approximate extension property [364,
Definition 3.1] that holds in U.

Along these lines, approximate Scott families can be also used to simplify several known brute-
force proofs including computable categoricity of separable Hilbert spaces that we saw earlier in
Theorem 10.2.2, and also of Cantor space (Exercise 10.2.29).

10.2.5 Type II vs. Type I for isometric computable categoricity

The counterexamples established earlier for categoricity of algebraic structures (Theorem 10.1.39
and, more generally, Theorem 10.1.40) can be transferred to discrete Polish spaces (up to isometry)
via Theorem 8.2.9. However, none of these counterexamples are quite satisfactory, as they are
discrete. Restricting our notions to discrete spaces seems completely unnatural. We would like to
have counterexamples that would not be discrete.

We have seen that computable functions between spaces can be viewed as Type II objects.
However, stable parameters are not Type 0 objects, which makes the situation quite different from
algebraic structures, unless the space is discrete. One way to address this is as follows.

Definition 10.2.15. We say that a point of a space is intrinsically computable if it is computable
in all computable structures of the space.

469

Then such a point can be replaced with its index in any computable structure on the space. Then
a function representing a computable isometry can use these indices as parameters, thus turning it
into a Type I object. We arrive at the following version of isometric computable categoricity.

Definition 10.2.16 (Greenberg, Knight, Melnikov, and Turetsky [219]). A Polish space is uni-
formly (isometrically) computably categorical after fixing a finite tuple of intrinsically computable
parameters, we say that the space is weakly uniformly computably categorical (weakly u.c.c.).

We now clarify why the notion above can be viewed as a Type I version of uniform isometric
computable categoricity. An isometry f : M Ñ N is fully determined by the images of the points
in the dense sequence pxiqiPN representing M . Thus, a functional computing an isometry can be
replaced with the function which, on input xi, ny, outputs j so that the special point of N indexed
by j is 2´n-close to fpxiq. Definition 10.2.16 is equivalent to saying that there is a total computable
h such that Me –M ñ ϕhpeq : Me –M , where ϕhpeq is such a function which additionally takes the
indices of intrinsically computable points as (non-uniform) parameters. Thus, Definition 10.2.16 is
analogous to the notion of a weakly u.c.c. structure (with parameters) given in Definition 10.1.35.

It is known that any c.c. closed subspace of Rn is in fact weakly u.c.c. (Exercise 10.2.27).
Interestingly enough, weak uniform categoricity does not imply relative computable categoricity
even for computable compact subspaces of R2.

Theorem 10.2.17 (Greenberg, Knight, Melnikov, and Turetsky [219]). There exists a (com-
putable) weakly u.c.c. compact subspace of R2 that is not relatively c.c..

Proof. Before we proceed to the proof of the theorem, we need to establish a proposition which we
believe has some independent value.

In Theorem 10.2.9 the parameters could be chosen relatively intrinsically computable, in the fol-
lowing sense. We say that a point if relatively intrinsically computable (r.i.c.) if it is computable with
respect to any given (isometric) structure on the space. If a Polish space is relatively (isometrically)
computably categorical with stable parameters, then we can always pick these parameters special.
Since the images of these points will be computable relative to the isometry witnessing relative
computable categoricity of the space, we can replace the stable parameters with r.i.c. parameters
in Theorems 10.2.9 and 10.2.13. We first prove a proposition that gives a gives a slightly different
perspective on why r.i.c. parameters can be replaced by stable parameters in an approximate Scott
family.

Definition 10.2.18. Let c be a a point in a Polish metric space M . A formal name of the point c is
a sequence pΘiqiPN of existential formulae in one free variable such that Ui “ tx PM : M |ù Θipxqu
is an open set of diameter at most 2´i´1 that converges to c; i.e.

Ş

i Ui “ tcu.

Recall that our language allows neither equality nor negation. It follows that tx P M : M |ù

Θpxqu will be an open set for any existential formula Θ. We can relax the definition above and
allow finitely many stable parameters B̄ in the formulae pΘiqiPN. In this case we require that for
any tuple b̄ in B̄ the formulae Θipb̄, xq should determine sets U b̄i of diameter at most 2´i´1 that
converge to c, but different b̄ may correspond to different sequences of open sets.

Proposition 10.2.19. Let M be a computable Polish metric space. Then an (isometric) automorphism-
invariant point a PM is r.i.c. iff it admits a c.e. formal name with stable parameters.

470

Proof sketch. First observe that computability of a point a w.r.t. X is equivalent to having an

enumeration operator Φ such that pΦ
DpXq
i qiPN converges to the point. The first part of the proof is

similar to the proof of p1q Ñ p2q of Theorem 10.2.9 The definition of P is the same. Then take the
first σ that forces some Φ to list open neighbourhoods in all extensions of σ.

Now, on any extension Y of σ that witnesses that σ , Φ, the sequence pΦ
DpY q
i qiPN computes

exactly the same point on M , since the point is stable under automorphisms. For each i, let Di be

the use of the computation Φ
DpY q
i “ m. Quantify over the points mentioned in Di that are not the

stable parameters and not M . A rather straightforward argument (similar to the proof of p1q Ñ p2q
in Theorem 10.2.9) shows that the constructed family of existential formulae is a formal name for
x.

We now prove Theorem 10.2.17. To prove the theorem, it is sufficient to construct a computable
Polish metric space M “ pM,d,Xq and a point a PM that satisfy:

1. M is rigid.

2. a is intrinsically computable but not relatively intrinsically computable.

3. There exists a uniform effective procedure that, given DpY q of a dense Y and a fast Cauchy
name of a w.r.t. Y , produces a surjective isometry Y Ñ X.

The rigidity requirement will ensure that a is automorphism invariant, allowing us to use Propo-
sition 10.2.19. Conditions (2) and (1) together imply that the space is not relatively computably
categorical. Finally, (3) implies that the space is weakly uniformly categorical with parameter a.

A crude description of the space. The space will be a closed subset of the unit square B2 “

r0, 1s ˆ r0, 1s. We describe the space by enumerating a set X of (rational) points in B2, and then
we set M “ X. The set X “

Ť

sXs will be enumerated by stages in the construction that will be
described later. We explain several important features that X will have.

We will initially put p0, 1q into X0. We will then set a “ p0, 0q; a will not be in X, but it will be
an accumulation point of X and thus an element of M . We also fix a sequence of rationals pδnqnPN
that converges to 0 “very fast”:

ÿ

iąn

δi ă
1

100
δn

for every n. We also assume δ0 ă 1{10. At the beginning of every stage s, we will choose a number
ns larger than any number previously mentioned in the construction and put p0, δnsq into Xs, thus
making p0, 0q an accumulation point. In the construction, we will add more points to X. This
will always be done by taking a finite initial segment Xs1 of the currently defined Xs and a (small
enough) rational r and enumerating

Xs1 ` pr, 0q “ tpx, yq ` pr, 0q : px, yq P Xs1u

into Xs`1. We will call this operation the r-shift of Xs1 . We may omit r and Xs1 and say simply
shift if it is clear from the context which r and s1 we use. As we will see, our r’s will be chosen
small enough to ensure X Ď B2. Indeed, if we number the r’s in the order in which they are chosen,
we will have

ÿ

iąn

ri ă
1

100
rn

471

for every n, just as with the δn.

Basic properties of M . Already the crude description above allows us to make several conclusions
about M “ X. All we need to know is that in the construction there will be infinitely many stages
at which new points are introduced to X by shifting .

Claim 10.2.20. M becomes uniformly categorical after fixing a “ p0, 0q.

Proof of Claim. First, note that the pair tp0, 0q, p0, 1qu is an automorphism base of M . Indeed,
every point in M is completely described by its distances to a “ p0, 0q and p0, 1q. An easy exercise
in Euclidean geometry shows that a better approximation of the tp0, 0q, p0, 1qu-coordinates of a
point x gives a better approximation to the point, with all possible effective uniformity.

Furthermore, since δ0 ă 1{10, we see that p0, 1q is the unique point of M that satisfies dpa, xq ą
1{2, and so a computes p0, 1q w.r.t. any structure on M. Therefore, the space M becomes uniformly
computably categorical after adjoining a to its signature. Indeed, an algorithm for an isometry
between pM, a,Xq and any pM, a, Y q can be sketched as follows:

1. Search for the element b P Y with dpa, bq ą 1{2.

2. On input x, compute dpx, aq and dpx, p0, 1qq to a sufficiently high degree of precision.

3. Search for an element y P Y such that dpy, aq and dpy, bq are sufficiently close to dpx, aq and
dpx, p0, 1qq.

4. Output y.

Determining the required levels of precision is an exercise in Euclidean geometry and the triangle
inequality.

Claim 10.2.21. M is rigid.

Proof of Claim. Note that there exists an m ă 1 such that

px, 1q PM ñ x ď m.

Indeed, we have m “
ř

s rs, where the rs range over all q such that q-shifts were ever performed in
the construction. Since the ri are small (in the same sense as δn), we will have m ă 1. Furthermore,
if we define my to be least such that

px, yq PM ñ x ď my,

we see that pmδns
qsPN is non-increasing (recall that p0, δnsq is enumerated at stage s, and so p0, δnsq

will not partake in shifts that occur before stage s). Finally,

px, 0q PM ñ x “ 0.

We conclude that the point a is the unique point satisfying

pDz, wq
´

dpa, zq “
a

1`m2 ^ dpz, wq “ m ^ dpa,wq “ 1
¯

,

and is thus automorphism invariant. As we have already noted above, p0, 1q is the unique point
at distance 1 of p0, 0q. Since tp0, 0q, p0, 1qu is an automorphism base of M , we conclude that M is
rigid.

472

The two claims above together with the analysis preceding the claims imply that it remains
to make a intrinsically computable but not relatively intrinsically computable. Since M will be
rigid, Proposition 10.2.19 implies that making a not r.i.c. is equivalent to diagonalising against all
potential formal names for a. Fix an effective list pYeqePN of all computably enumerable structures in
the language L. Fix also an effective listing of all c.e. sequences of existential L-formulae pΘεpx, c̄qqε
effectively labeled by rationals, where the finitely many parameters c̄ are special points from the
computable structure X. Note that Proposition 10.2.19 ensures that parameters are stable, and
since X is dense in M it will be sufficient to diagonalise against all families with parameters from
X. Thus, we need to satisfy:

DΘ,c̄ : pΘεpx, c̄qqε is not a formal name for a “ p0, 0q,

where Θ ranges over all c.e. families of existential L-formulae effectively labeled by Q and c̄ over X
(equivalently, over ω). Also, for every e P N we need to meet

Ie : If Y e –M then a “ p0, 0q is computable w.r.t. Ye.

Note that seeing that Ye fails to determine a structure on a metric space is a c.e. event: Ye fails to
determine a structure on some metric space if it fails the triangle inequality – that is, if there are
i, j, k P Ye and q1, q2 P Q` with Ye |ù dăq1pi, jq ^ dăq2pj, kq ^ dąpq1`q2qpi, kq.

The basic strategy for DΘ,c̄. At the first stage this strategy is visited, it chooses an n larger than any
number previously mentioned in the construction and defines δ “ δn. Let Θδ{4px, c̄q “ Dz̄ψpx, c̄, z̄q.
The strategy searches for a special point b and a tuple of special points ȳ such that

Xs |ù ψpb, c̄, ȳq and dpa, bq ă δ{4.

Since every positive atomic L-formula isolates an open set in a metric space, we know that if
Dz̄ψpa, c̄, z̄q is satisfied, there are such b and ȳ. If we ever see this happen at stage s, we perform
the δ-shift of Xs by enumerating

Xs ` pδ, 0q “ tpx, yq ` pδ, 0q : px, yq P Xsu

into X. After this is done, we will have b1 “ b ` pδ, 0q also satisfies Θpx, c̄q, since the witnesses ȳ
will also get shifted. But dpa, b1q ě δ contradicts dpa, b1q ă δ{4 which must be the case if pΘεqε is
to be a formal name for a.

The strategy will perform only one shift; once it has enumerated points into X, it never performs
another shift. The strategy has two outcomes, win and wait; it takes outcome wait while searching
for the b and ȳ, and then takes outcome win after performing the δ-shift.

The full strategy for DΘ,c̄. The full strategy is only a small modification of the basic strategy.
Suppose the strategy first sees the desired b and ȳ at some stage s. It does not immediately
perform the δ-shift. Instead, it takes outcome wait for one more stage. Then, at the next stage
t ą s at which the strategy is visited on the priority tree, the strategy performs the δ-shift of Xs.
That is, it enumerates all of Xs ` pδ, 0q into Xt`1. From this stage on, the strategy takes outcome
win.

Note that, assuming the strategy is visited infinitely many times during the construction, this
will suffice to show that the requirement is met.

473

The basic strategy for Ie. This strategy will define a sequence pwkqkPN, which is intended to be a
fast Cauchy name for a w.r.t. Ye. It will also define an auxiliary sequence pvkqkPN.

The basic strategy in isolation is quite simple. Recall that pδnqnPN denotes the sequence con-
verging to 0 “very fast” (see the beginning of the proof). The idea is as follows: for any s, we
know that there is a point p0, δnsq which is precisely distance δns from a (recall ns from the crude
description of the space). We will search for two points in Ye which are approximately distance δns
apart, and when we find such points, we will believe that they are close to a. In the absence of any
r-shifts, we will be correct: one of the points must be δns , and the other must be either a or p0, δntq
for t ą s.

Let k be least such that wk is not yet defined. Let n “ nk and ε “ δn. If k ą 0, let m “ nk´1

and τ “ δm. The strategy searches for a pair of special points w, v in Ye such that

Ye |ù .9 ¨ ε ă dpw, vq ă 1.1 ¨ ε.

If τ is defined, we also require that at least one of w and v is within .1τ of either wk´1 or vk´1.
If such a pair is ever found in Ye, the strategy sets wk “ w and vk “ vk´1 and then repeats the
process.

The outcomes are 8 and waitk for each k P N. It takes outcome waitk while k is least with
wk undefined; when wk is defined, the strategy takes outcome 8 for a single stage and then begins
taking outcome waitk`1.

The full strategy for Ie. We must primarily modify the choice of ε and τ . If s is the first stage at
which σ is visited, σ takes no action at this stage. To simplify the later description, we declare that
σ has outcome 8 at stage s, even though the construction will not allow σp to be visited at this
stage.

If σ is visited at stage s, and this is not the first stage at which σ is visited, let t0 ă s be the
last stage at which σ took outcome 8. Let n “ nt0`1 and ε “ δn (recall nt0`1 from the crude
description of the space). If t0 was also not the first stage at which σ was visited, let t1 ă t0 be
the last stage before t0 at which σ took outcome 8, let m “ nt1`1 and τ “ δm. The strategy now
proceeds as the basic strategy.

Construction. The priority ordering and the tree of strategies are typical for infinite injury, so we
skip the usual definitions.

At stage 0 we set M0 “ tp0, 1qu and do nothing else. At every stage after 0, we begin by choosing
a number ns larger than any number previously mentioned in the construction and enumerating
p0, δnsq into Xs. We then visit the root of the priority tree. We then proceed inductively, visiting
strategies according to the outcome of the previous strategy, until some never before visited strategy
is reached. Once that strategy has acted, we end the stage. This completes the description of the
construction.

Finalising the proof. Much of the verification has already been done above. The infinite injury
technique used in the construction is standard and contains no surprises, so we leave the usual
inductive argument to the reader. It is clear, for instance, that all D-requirements are met by
strategies along the true path. It remains to argue that all I-requirements are met along the true
path.

474

Claim 10.2.22. Suppose σ is an Ie strategy, Ye is a structure on a metric space σ takes outcome
8 infinitely many times (and thus pwkqkPN is fully defined). For any k0 ă k1 ă k2, let t be the stage
at which wk0

is defined, let m “ nt`1, and let δ “ δm. Then Ye |ù dă2δpwk1
, wk2

q ^ dă2δpwk1
, vk2

q.

Proof. Induction on the stage at which wk2
is defined, using the fast convergence of pδnqnPN. Note

that the τ of that stage is no larger than δ.

It follows that the sequence pwkqkPN defined by σ is a (possibly partial) fast Cauchy sequence.

Claim 10.2.23. Suppose σ is an Ie-strategy along the true path, and Ye is a structure on M. Then
dpwk, aq ă 2´k.

Indeed, if ε was the value such that σ was searching for w and v satisfying Ye |ù .9 ¨ε ă dpw, vq ă
1.1 ¨ ε in order to define wk, then one of wk or vk is within .1 ¨ ε of a.

Proof. Let s0 be the stage at which σ defined wk. Let t ă s0 be the last stage at which σ took
outcome 8, and let m “ nt`1. Then p0, δmq was enumerated into X by our construction at the
beginning of stage t` 1, and ε “ δm. Since wk´1 was defined at stage t, or k “ 0, our construction
will choose that nt`1 ą k, and so δm ă 2´k´1.

By construction, no DΘ,c̄-strategy will choose δm, as m was already chosen by the construction
at the beginning of a stage. Thus, since the pδnqnPN tend to 0 quickly, one of wk or vk must
correspond to a point of the form px, 0q or px, δ`q, where x “

ř

nPF δn for some possibly empty
F Ă ω and ` ă m, while the other of wk or vk must correspond to a point of the form px1, δmq,
where x1 “

ř

nPF 1 δn for some possibly empty F 1 Ă ω.
Since Ye |ù dă1.1¨δpwk, vkq and pδnqnPN tends to 0 quickly, it must be that for every n ď m,

n P F if and only if n P F 1. Note that
ř

nąm δn is small compared to δm, so to complete the proof
of the claim, it will suffice to show that there is no n P F with n ď m. We do that now.

By construction, every n P F was chosen by some DΘ,c̄-strategy that performed its shift, so in
particular m R F . Note also that any shift performed at or before stage t will not enumerate a
translate of p0, δmq, and so cannot contribute to F 1. Since the strategy performing this shift has
necessarily chosen an n ă m, it also cannot contribute to F . Indeed, any DΘ,c̄ which sees its desired
b and ȳ at or before stage t will not enumerate a translate of p0, δmq, and thus will not contribute
to F or F 1.

By the assumption that σ is along the true path, it follows that no DΘ,c̄-strategy which is
an ancestor of σ contributes to F . Further, any DΘ,c̄-strategy which contributes to F and is
incomparable with σp must have been first visited after stage t. Thus the n such a strategy
contributes was chosen larger than m.

Thus, it suffices to consider whether n ă m can be contributed by some DΘ,c̄-strategy ρ Ě σp8
which is first visited at or before stage t and which performs its shift at some stage s1 ą t. Therefore
s1 ě s0. Let t1 ă s1 be the last stage before s1 at which ρ was visited, so t1 ě t. Then when ρ acts
at stage s1, it enumerates Xt1 ` pδn, 0q into X. Let m1 “ nt1`1.

Note that if s1 “ s0, then t1 “ t and δm1 “ δm. Since Xt1 contains no pair of points which are
distance δm1

apart, if n P F , it cannot be that s1 “ s0. So s1 ą s0.
Take k1 such that σ defined wk1

at stage s1. Since s1 ą s, k1 ą k. Since σ has outcome 8
at stage s1, .9δm1

ă dpwk1
, vk1

q ă 1.1δm1
. Since Xt1 contains no pair of points which are distance

δm1 apart, if n P F , then no pair of points within δn{2 of wk can satisfy this inequality. Since
δn{2 ą δm, this contradicts Claim 10.2.22.

It follows that if the sequence pwkqkPN is total, it converges to a.

475

Claim 10.2.24. If σ is an Ie-strategy along the true path, and Ye is a structure on M, then σ
infinitely often takes outcome 8, and so pwkqkPN is fully defined.

Proof. Suppose not. Let s0 be the last stage at which σ takes outcome8. Let n “ ns0`1. Eventually
σ will find points w and v in Ye which are arbitrarily close to a and the p0, δnq, respectively. If s0

is also the first stage at which σ is visited, this existence of such w and v contradicts our choice of
s0.

If s0 is not the first stage at which σ is visited, let t ă s0 be the last stage before s0 at which σ
takes outcome 8. Let m “ nt`1 and let k be such that σ defined wk at stage s0. Since one of wk
or vk is strictly within .1δm of a by Claim 10.2.23, we can find w, v as above with w within .1δm of
one of wk, vk, contradicting our choice of s0.

This completes the proof of Theorem 10.2.17.

Corollary 10.2.25. There exists an isometry-rigid computable M Ď R2 and a point a PM which
is intrinsically computable but not relatively intrinsically computable.

Exercises

Exercise˝ 10.2.26 (Pour-El and Richards [435]). Prove that every computable Hilbert space
admits a complete computable orthonormal sequence.

Exercise 10.2.27 (Melnikov [369]). Prove that every isometrically c.c. closed subspace of Rn is
weakly u.c.c..

Exercise˝ 10.2.28. Give a detailed proof of Proposition 10.2.19.

Exercise˝ 10.2.29 (Melnikov [369]). Show that Cantor space is isometrically computably categor-
ical.

476

10.3 Computable dimension

The main definition of this section is as follows.

Definition 10.3.1. The computable dimension (the autodimension) of a computable structure
is the number of its computable presentations, up to computable isomorphism.

Thus, having a computable dimension of 1 is synonymous with being computably categorical.
Similarly, we can define the (isometric) computable dimension of a Polish space to be the number of
its computable Polish presentations, up to computable isometry. Clearly, the computable dimension
of a structure or a space is at most ω, in which case we say that it is infinite.

All algebraic structures from standard classes where computable categoricity has been described
have a computable dimension of either 1 or ω. These classes include Boolean algebras, linear orders,
abelian p-groups, and torsion-free abelian groups. A similar pattern is seen for natural Polish spaces;
a non-trivial example, Theorem F, will be given in this section.

Goncharov [206] proved a powerful general result which often allows the complete separation
of algebra from the combinatorics of computability theory. This theorem, which we refer to as
Goncharov’s ∆0

2-Theorem, is as follows.

Theorem 10.3.2 (Goncharov [206]). Suppose that A and B are computable structures with
A –∆0

2
B, and A fl∆0

1
B. Then the computable dimension of A is infinite.

Consequences of Goncharov’s ∆0
2-Theorem include results about the computable dimension of

structures in many further algebraic classes that are not covered in this book. These classes include
differentially closed fields, difference closed fields, valued fields, and real closed fields; see [244, 236].

We will give a complete and detailed proofs of Theorem 10.3.2 and its generalisation Theo-
rem 10.3.20 to Polish spaces. As we will see, the more general version remains applicable to discrete
algebraic structures as well, as it implies Theorem 10.3.2. Using this generalised version, we will
derive a consequence about the number of computable presentations of the space pCr0, 1s, dsupq that
was studied in Part I of the book; this is Theorem F.

However, before we prove this theorem, we must establish that it is not trivial. Indeed, perhaps
any computable structure that is not computably categorical has computable dimension ω?

10.3.1 An algebraic structure of computable dimension 2

In this subsection, we give a detailed outline of the following well-known result of Goncharov.

Theorem 10.3.3 (Goncharov [205, 204]). There is a computable structure A of computable
dimension 2.

477

x0 x1

x2

x3x4

Figure 10.1: The component r3s.

In the proof below, we will sketch (more or less) Goncharov’s original technique, but using loops
rather than Goncharov’s families of sets. Since we will not actually need the result in the sequel, we
provide only an extended sketch that emphasises the ideas related to the main strategy but omits
most of the unpleasant combinatorics. We will keep our notation more or less consistent with that
in [253], where all these details can be found2.

Extended sketch. Let pMeqePN be the uniformly effective enumeration of all partially computable
structures in the language of graphs.

We will build A0, A1 with A0 – A1, to meet the requirements below:

Rj : ϕe total ñ A0 flϕe A1.

Ne : pMe – A0q ñ pMe –∆0
1
A0q _ pMe –∆0

1
A1q.

The loop-components. At every step, each Ai will consist of directed (tagged) “loops”. Each
such loop, denoted by rns, consists of n` 3 vertices x0, . . . , xn`2, where:

1. xixi`1 is a directed edge for each 0 ď i ă n` 2,

2. xn`2x1 is an edge, and

3. x0x0 is an edge too (see Fig. 10.1 for the case when n “ 3).

The element x0 is called the top of Cn. The n-cycle is the portion x1, . . . , xn`2. The element
xn`2 is called the bottom of the loop and is where we plan to diagonalise. We can join two (or
more) loops at the same top x0 and would denote, for example, r3, 4s as a loop x0, . . . , x5 joined
at x0 with x0, x

1
1, . . . , x

1
6. If Ck is a k-loop and Cd is a d-loop then Ck ¨ Cd is the loop rk, ds thus

formed. In the construction below, the numbers on the labels of such operations will be chosen to
be fresh.

More generally, suppose U is a (finite, non-empty) set of natural numbers. Then rU s will denote
the graph that is obtained after joining rvs for each v P U . (Note that, unless U X V “ H,
rV YU s ‰ rV s\ rU s.) In the construction, each component will be of the form rV s for some (finite,
non-empty) set V Ď ω. We define rV s ¨ rU s “ rV Y U s.

2As of 2024, the Ph.D. thesis is available at https://www.math.uchicago.edu/~drh/Papers/dissertation.html.

478

https://www.math.uchicago.edu/~drh/Papers/dissertation.html

The transformations L and R. There will be infinitely many numbers set aside for new loops.
If at stage s we have components X0, . . . , Xn, and Xi “ rSis for finite Si Ă N, the result of the left
transformation LpX0, X1, . . . , Xnq is the set of components

X0 ¨X1, X1 ¨X2, . . . , Xn ¨X0,

and the right transformation RpX0, X1, . . . , Xnq results in

X0 ¨Xn, X1 ¨X0, . . . , Xn ¨Xn´1.

Note that if G is the structure with components X0, . . . , Xn, then if the structure G1 is obtained
by LpX0, X1, . . . , Xnq, and if G2 is obtained by RpX0, X1, . . . , Xnq, then G1 – G2.

Meeting Re. To satisfy Re in isolation, we will have components Y 0
e , X

0
e , Z

0
e for A0 and similarly

Y 1
e , X

1
e , Z

1
e for A1. (Note that no component will be chosen for more than one Re.)

Let xie be the bottom of Xi
e. We then wait for ϕepx

0
eq Ó“ x1

e. Should this not occur, then ϕe
cannot be an isomorphism. If this stage occurs, then we diagonalise by applying LpX0

e , Y
0
e , Z

0
e q

and RpX1
e , Y

1
e , Z

1
e q to get A0rs` 1s and A1rs` 1s, respectively. Note that Re is satisfied since the

components containing the xie are no longer isomorphic. However, LpX0
e , Y

0
e , Z

0
e q – RpX1

e , Y
1
e , Z

1
e q.

The naive strategy for Nj (in presence of many Re). To meet Nj , the structure Mj will be
associated with a special component which will be denoted Sj . To ensure that Mj – A0 implies
Mj –∆0

1
A0 or Mj –∆0

1
A1, we place a copy Sij of Sj (which is initially a loop of a unique length

assigned to Nj) into each Ai, i “ 0, 1. We wait for Mj to respond by giving its version of Sj . We
shall also incorporate Sj into the strategy for Re, using LpX0

e , Y
0
e , Z

0
e , S

1
j q and RpX1

e , Y
1
e , Z

1
e , S

0
j q

to diagonalise against ϕe.
The idea is as follows. After we finish our action for Re, Mj will have to choose whether its

version of Sj is extended to Sj ¨Xe or to Ze ¨Sj . If Mj never extends its version of Sj , then Mj fl A0.
If Mj responds with Sj ¨Xe, then we say that Mj goes left ; in this case, we have made progress in
demonstrating Mj –∆0

1
A0. Otherwise, if Mj responds by giving Ze ¨Sj , we say that Mj goes right,

and in this case, we can make progress in demonstrating Mj –∆0
1
A1. In either case, the new larger

component containing Sj will be declared the new special component for Mj . (For example, if Mj

goes left and responds by extending Sj “ Sj,s to Sj,s ¨Xe, then we shall set Sj,s`1 “ Sj,s ¨Xe.)
The naive approach would be to repeat this strategy for other Xi

e1 , Y
i
e1 , Z

i
e1 , and then for the

next Xi
e2 , Y

i
e2 , Z

i
e2 , and so on. For each such triple, Mj will have to choose between going either

left or right. If (for example) Mj eventually always goes left, then A0 –∆0
1
Mj . Also, if Mj keeps

switching between going left and right, then A0 will have no infinite component, while the special
component of Mj will grow infinite. In this case, we can certainly conclude that Mj fl A0.

However, there is a problem with this naive approach. For example, suppose Mj always goes
left, so in A0 we have:

S0
j ÞÑ S0

j ¨X
0
e ÞÑ S0

j ¨X
0
e ¨X

0
e1 ÞÑ S0

j ¨X
0
e ¨X

0
e1 ¨X

0
e2 ÞÑ

However, in A1, we will have

S1
j ÞÑ Z1

e ¨ S
1
j and X1

e ÞÑ X1
e ¨ S

1
j – S1

j ¨X
1
e ,

479

which results in the special component being shifted from the original copy of S1
j to the (now

extended) component of X1
e . The action for the requirement Re1 will further shift the special

component in A1, and the same happens for Re2 , and so on. As a result, A1 will have no infinite
components, and this is obviously not desirable since we must keep A0 – A1.

The less naive strategy for Nj. To keep A0 – A1, we must find a way of reusing the old
(abandoned) special components. We describe a brute-force attempt of reusing components and we
explain what goes wrong with it. Then we shall finally get to the actual strategy for Ne that will
finally work.

We modify the basic diagonalisation strategy for Re as follows. Instead of using Ye, Xe, Ze and
Sj , we shall incorporate two additional components, B and C. We will perform the transformation
LpX0

e , Y
0
e , Z

0
e , B

0, S0
j , C

0q in A0 and RpX1
e , Y

1
e , Z

1
e , B

1, S1
j , C

1q in A1, where B0, B1, C0, and C1

will be chosen carefully. The idea is that one of these auxiliary components will be set equal to
the old version of the special component (now abandoned). Of course, only one of A0 or A1 will
currently require this “fix”, depending on whether Mj goes left or right (since the definition of the
special component of Mj depends on this).

It is perhaps best to illustrate this approach with an example. So, for example, suppose Mj

goes left, i.e., it is currently following A0. As discussed earlier, A1 needs to be “fixed”. To simplify
our notation, assume j “ 0. We suppress s in S0,s, and we also replace e in Xe, Ye, and Ze with
0, 1, 2, (The exact value of e does not matter for N0, as long as different indices correspond to
different components.)

Suppose in A1 we initially have:

Y 1
0 X1

0 Z1
0 B1

0 S1
0 C1

0

and after one application of the R-transformation, we obtain:

Y 1
0 ¨ C

1
0 X1

0 ¨ Y
1
0 Z1

0 ¨X
1
0 B1

0 ¨ Z
1
0 S1

0 ¨B
1
0 C1

0 ¨ S
1
0,

where the special component (in A1) has shifted to C1
0 ¨ S

1
0 , as indicated by boldface, because

M “ M0 responded by growing its copy of S0 to C0 ¨ S0. The underlined component S1
0 ¨ B

1
0 has

now been temporarily abandoned but is set to be reused for isomorphism recovery.
To reuse S1

0 ¨B
1
0 , we set:

Y 1
1 X1

1 Z1
1 B1

1 S1
1 “ C1

0 ¨ S
1
0 C1

1 “ S1
0 ¨B

1
0

and after another iteration of the R-transformation, we arrive at:

Y 1
1 ¨ S

1
0 ¨B

1
0 X1

1 ¨ Y
1
1 Z1

1 ¨X
1
1 B1

1 ¨ Z
1
1 C1

0 ¨ S
1
0 ¨B

1
1 C1

0 ¨ S
1
0 ¨��S

1
0 ¨B

1
0 ,

where C1
0 ¨ S

1
0 ¨ S

1
0 ¨B

1
0 “ rC

1
0 Y S

1
0 Y S

1
0 YB

1
0s “ C1

0 ¨ S
1
0 ¨B

1
0 .

In A0, we also apply the L-transformation to turn:

Y 0
1 X0

1 Z0
1 B0

1 S0
1 “ C0

0 ¨ S
0
0 C0

1 “ S0
0 ¨B

0
0

into:
Y 0

1 ¨X
0
1 X0

1 ¨ Z
0
1 Z0

1 ¨B
0
1 B0

1 ¨C
0
0 ¨ S

0
0 C0

0 ¨ S
0
0 ¨��S

0
0 ¨B

0
0 S0

0 ¨B
0
0 ¨ Y

0
1

which is isomorphic to what we had in A1. Of course, we also wait for M to respond, as before.
In this example, we assume that M now chooses to follow A1. In this case, A0 will have to be

480

recovered using a symmetric strategy involving B2 “ S0 ¨C0 ¨B0. The old special component of A1

that needed to be recovered (now turned into Y 1
1 ¨ S

1
0 ¨ B

1
0) will never have to be recovered again.

Indeed, we shall now aim to recover C1
0 ¨S

1
0 ¨B

1
1 , and we will do so using new auxiliary components.

If M switches between going left and going right infinitely many times, then no component of A0

and no component of A1 is infinite, while the special component of M has to be infinite. As before,
if M eventually always follows A0 (or A1), then M –∆0

1
A0 (or M –∆0

1
A1, respectively).

However, there is still a problem with this strategy. Assume that M0 always chooses to follow A0.
While it is true that, in A1, the respective special component will grow infinite due to recycling, it
will unfortunately grow one more infinite component, thus still resulting in A1 fl A0. In the notation
above, if s “ 0 and t “ 1 (etc.), both A1 and A0 will have the (intended) special component:

A0 : S0
0 ÞÑ S0

0 ¨ C
0
0 ÞÑ S0

0 ¨ C
0
0 ¨B

0
0 ÞÑ S0

0 ¨ C
0
0 ¨B

0
0 ¨B

0
1 ÞÑ . . . ;

A1 : C1
0 ÞÑ S1

0 ¨ C
1
0 ÞÑ B1

1 ¨ S
1
0 ¨ C

1
0 ÞÑ B1

0 ¨B
1
1 ¨ S

1
0 ¨ C

1
0 ÞÑ

In this example, both will end up in an infinite component of the form C0 ¨ S0 ¨
Ä

iPNBi, as in
both A0 and A1 each Bi eventually finds its way into this component. However, in A1, we will
additionally have:

A1 : S1
0 ÞÑ B1

0 ¨ S
1
0 ÞÑ C1

0 ¨B
1
0 ¨ S

1
0 ÞÑ B1

2 ¨ C
1
0 ¨B

1
0 ¨ S

1
0 ÞÑ . . . ,

which will also eventually grow into a component isomorphic to C0 ¨ S0 ¨
Ä

iPNBi, by induction.
However, it is problematic, as we must keep A0 – A1.

The actual strategy for Nj. To fix this, we shall not recover A1 (or A0) immediately. Instead,
we shall allow one extra iteration of the L- or R-transformation in the respective structure, using
fresh X1, Y1, Z1, B1, C1, and only then will we re-use the abandoned component as C2 to recover
A1 (we use B2 to recover the A0-side). This elementary variation completely fixes all issues and
does not introduce any new ones. (As before, j “ 0.) For example, in A1, we will have:

Y 1
0 X1

0 Z1
0 B1

0 S1
0 C1

0

C1
0 ¨ Y

1
0 Y 1

0 ¨X
1
0 X1

0 ¨ Z
1
0 Z1

0 ¨B
1
0

B1
0 ¨ S

1
0 S1

0 ¨C
1
0

Y 1
1 X1

1 Z1
1 B1

1 S1
0 ¨C

1
0 C1

1

C1
1 ¨ Y

1
1 Y 1

1 ¨X
1
1 X1

1 ¨ Z
1
1 Z1

1 ¨B
1
1

B1
1 ¨ S

1
0 ¨ C

1
0 S1

0 ¨C
1
0 ¨C

1
1

Y 1
2 X1

2 Z1
2 B1

2 S1
0 ¨C

1
0 ¨C

1
0

B1
0 ¨ S

1
0

B1
0 ¨ S

1
0 ¨ Y

1
2 Y 1

2 ¨X
1
2 X1

2 ¨ Z
1
2 Z1

2 ¨B
1
2

C1
0 ¨ C

1
0 ¨B

1
0 ¨ S

1
0 B1

0 ¨ S
1
0 ¨C

1
0 ¨C

1
1

The components in boldface are the special components at the respective stage. The underlined
component is the one that we “recycle”. The doubly-underlined component will never be extended.
(This analysis assumes that M0 is following A0.) The reader should verify that this choice of
components will guarantee that, in A0, these steps indeed ensure isomorphism recovery. The case
when we recover the A0-side is symmetric, but it uses the B-components instead of C-components.

The outcomes of Nj. The outcomes of Nj are:

8 : This Π0
2 outcome measures whether Mj always eventually responds by revealing its versions

of components.

481

wait : This is played in all other cases.

The Π0
2 outcome can be further split into sub-outcomes: one saying that Mj goes left, another

that Mj goes right, and a third one saying that Mj has switched again. Only under the first two
outcomes do we promise to build an isomorphism from Mj to the respective Ai, and if the last one
is the true outcome, then Mj fl A0. However, placing these sub-outcomes on the tree appears to
be unnecessary, since this analysis can be done after the construction is finished.

Abandoning diagonalisation locations. Of course, Mj does not have to respond quickly, and
this means that the weaker priority strategies may have to act before Mj responds. In this case,
we shall not involve the special component of Mj in the diagonalisation process. If Mj eventually
responds, we can homogenise all these previously used components of the lower-priority Re. (This
can be done, for example, by extending all of them to Xe ¨ Ye ¨ Ze for the respective e.)

Then we shall put the resulting homogenised components in a queue, and we will require Mj

to reveal a few more of such components the next time Mj is declared active. Such initialisa-
tion/homogenisation strategies are very typical in infinite injury arguments in computable structure
theory, and there is certainly more than one way of implementing them.

The clones of the weaker priority strategies that believe Mj will never respond will, of course,
be initialised, as this homogenisation contradicts their basic diagonalisation strategy. But this is
fine, since these requirements will be met along the true path. The homogenisation will help in
proving that the weaker priority strategies do not upset Nj , which is responsible for constructing
a computable isomorphism to either A0 or A1; this is because Nj does not care which of the
homogenised pieces Mj will reveal first, as they are all automorphic.

The general case. In the presence of many N -strategies, the combinatorics becomes heavier and
much less transparent. We outline the key ideas.

In the construction, we can require that all N -nodes at the same level of the tree share the
same strategy and the same special component. (In other words, placing the N -strategies on the
tree appears to be unnecessary.) However, this is perhaps the only pleasant aspect of the general
construction that we can think of.

This is because the L- and R-transformations will have to involve all the special components
that are currently active in the construction. That is, all the components Sj corresponding to the
Nj-strategies whose current outcome is 8 should be involved.

The exact implementation of this is tedious. For example, we define

LpY0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cnq

to be

pY0, . . . , Ynq ¨X, X ¨ pZ0, . . . , Znq ,

Z0 ¨B0, . . . , Zn ¨Bn,

B0 ¨ S0, . . . , Bn ¨ Sn,

S0 ¨ C0, . . . , Sn ¨ Cn,

C0 ¨ Y0, . . . , Cn ¨ Yn,

where pY0, . . . , Ynq ¨X is obtained from Y0, . . . , Yn by creating a copy of X and putting an edge from
the top node of X to the top node of each Yi. The definition of X ¨ pZ0, . . . , Znq is similar, but this

482

time Z0, . . . , Zn are the new copies, while the edge still goes from the top of X to the top nodes of Zi.
(So, in particular, pY0, . . . , Ynq ¨X – X ¨ pY0, . . . , Ynq.) The generalised R-transformation is defined
dually, just as the basic R-transformation was defined to resemble the basic L-transformation; we
omit this.

In the general construction, we shall use these generalised L- and R- transformations to in-
corporate all the special S-components of all currently active N -strategies. This is also true for
the isomorphism recovery too, but we shall leave it at that. Modulo this combinatorics (which we
omit), the rest of the construction is a relatively standard infinite injury argument.

If the reader is keen to see this combinatorics spelled out, we refer them to the cited earlier
Ph.D. thesis [253] which has remained a standard reference for this technique for a couple of
generations of computable structure theorists. There, a slight extension of the original Goncharov
proof is presented in its gory detail.

Consequences and generalisations of Theorem 10.3.3

It is well-known that for every 0 ă n ă ω there is a computable structure of computable dimension
n. The general case easily follows from the case of n “ 2; see Exercise 10.3.8 and Exercise 10.3.9.

We remark that Theorem 10.3.3 is a consequence of the fact that there is a family of sets that has
exactly two Friedberg enumerations, up to a certain natural reducibility (that is usually attributed
to Kolmogorov) resembling m-reducibility [204]. Indeed, in our proof sketch of Theorem 10.3.3 we
really only worked with families of sets that were represented by loops. In [205], Goncharov refers
to [204] to derive Theorem 10.3.3 by turning a family of sets into a structure so that the equivalent
uniform enumerations are in a 1-1 correspondence with computable isomorphisms between the
respective structures. We see that there is an unexpected technical connection between the material
of Chapter 9 and the theory of computable dimension.

As a consequence of results established in §8.2.2 and §8.2.3, we obtain:

Corollary 10.3.4. The following classes contain examples of structures of computable dimension
2:

1. two-step nilpotent groups ([216], also follows from [257]);

2. fields ([397]);

3. Polish spaces under isometry.

Goncharov’s method has been widely used in the literature. For many applications of the
method, see the exercises.

Open questions

In the proof of Theorem 10.3.3 that we outlined above, the isomorphism can be read off the true
path, and hence A0 –∆0

3
A1. For a long time, it was open how complex the isomorphism between A0

and A1 for the two representatives of a computable structure of computable dimension 2 could be.
Using his new technique, Turetsky [486] has shown that it can be as complex as it could possibly be;
not even hyperarithmetic (see Exercise 10.3.19). On the other hand, the use of infinite components
is present in all known constructions of structures of finite computable dimension. The following
question is open and seems difficult.

483

Question 10.3.5 (Hirschfeldt; see, e.g., [256]). Is there a locally finite (directed) graph3 of finite
computable dimension n ą 1?

It follows from the Low Basis Theorem 4.2.47 that any pair of computable copies of a locally finite
graph are isomorphic via an isomorphism that is low relative to (and above) H1, i.e., X2 “T H

2.
Indeed, we do not know whether there exists any structure in which isomorphisms can be represented
via a Π0

1pH
1q-class that would have computable dimension 2.

The following question has been open for several decades:

Question 10.3.6 (Goncharov). Is there an abelian group of finite computable dimension n ą 1?

Despite claims that can be found in the literature, the answer to this question is still unknown.
A detailed discussion of this problem, and of the known cases, can be found in [377].

In Theorem 4.2.84 we established that effective Stone duality preserves computable categoricity,
where computably compact Stone spaces are viewed up to (computable) homeomorphism. The
same can be said about computable dimension as well. However, Boolean algebras cannot have
non-trivial finite computable dimension; see Exercise 10.4.8.

Question 10.3.7. Is there a compact Polish space having exactly two computably compact copies,
up to computable homeomorphism?

In the rest of the section we always view our spaces up to isometry.

Exercises

Exercise˝ 10.3.8 (Goncharov [205]). Prove that there exist structures of computable dimension 3.
(Hint: Use the “symmetric” disjoint union of two copies of a structure having computable dimension
2. For that, consider the equivalence structure with two equivalence classes, one for each of the two
domains.)

Exercise˝ 10.3.9 (Goncharov [205]). Prove that there exist structures of computable dimension
n ą 2. (Hint: Use the “symmetric” disjoint union of n-1-many copies of a structure having
computable dimension 2.)

Exercise˝ 10.3.10 (McCoy [355], after Knight (unpublished)). McCoy attributes the following
definition to Goncharov and Ventsov. A computable structure A has relative computable dimension
m ă ω if:

(i) there exist m copies (with universe ω) B1, . . . , Bm – A with no two of them pairwise
∆0

1pDpB1q, . . . , DpBmqq isomorphic; and

(ii) for any m ` 1 copies (with universe ω) B1, . . . , Bm`1 – A, there are at least two that are
∆0

1pDpB1q, . . . , DpBm`1qq-isomorphic.

Prove that if a computable structure A has finite relative computable dimension, then it is relatively
computably categorical. Thus, in particular, it has (relative) computable dimension 1. (Hint: Use
the method of proof of Theorem 10.1.12 to produce a c.e. Scott family for A.)

Exercise˝ 10.3.11 (Nurtazin [418]). Define the decidable dimension of a structure to be the
number of decidable presentations of the structure, up to decidable isomorphism. Prove that every
(decidable) structure has decidable dimension either 1 or ω.

3A graph is locally finite if each vertex is adjacent to at most finitely many other vertices in the graph.

484

Exercise 10.3.12 (Goncharov [205]). Suppose that A is a 2-decidable computable structure which
is not computably categorical. Show that the computable dimension of A is infinite.

Exercise˚ 10.3.13 (Hirschfeldt [254]). Assume R is a relation on a computable structure M . The
degree spectrum of R is the set of all degrees of the isomorphic images of R in all computable
structures classically isomorphic to M . Prove that for every c.e. degree a ą 0, there exists an
intrinsically c.e. relation R (see Exercise 10.1.34) on the domain of a computable structure so that
the degree spectrum of R is t0, au.

Exercise˚ 10.3.14 (Csima and Stephenson [105]). Prove that there is a computable rigid structure
that has a degree of categoricity, but not a strong degree of categoricity (see Def. 10.1.80). (Hint:
Produce a rigid structure of computable dimension 3 such that if d0, d1, and d2 are the degrees
of isomorphisms between distinct representatives of the three computable equivalence classes, then
each di ă d0 ‘ d1 ‘ d2.)

Exercise˚˚ 10.3.15 (Hirschfeldt, Khoussainov, Shore [258]). Show that there exists a computably
categorical structure whose expansion by a constant has infinite computable dimension.

Exercise˚˚ 10.3.16 (Cholak, Goncharov, Khoussainov, and Shore [93]). Show that for any n P N
there exists a computably categorical structure A so that naming any element of the structure by
a constant c turns A into a structure pA, cq having computable dimension n.

Exercise˚ 10.3.17 (Semukhin [464]). Show that there exists a structure of computable dimension
two which is the prime model of its first-order theory.

Exercise˚˚ 10.3.18. A (countably infinite) structure is punctual or fully primitive recursive if
its domain is ω and the operations and relations are uniformly primitive recursive. A function
f : ω Ñ ω is punctual if both f and f´1 are primitive recursive. The punctual dimension of a
structure is the number of its punctual presentations, up to punctual isomorphism.

1. Prove that there exists a structure of punctual dimension 2 (Melnikov and Ng [379]).

2. Show that the hint given in Exercise 10.3.9 fails for punctual structures (Hammatt [228]).

3. Prove that for any finite n ą 2 there exists a structure of punctual dimension n (Ham-
matt [228]).

Exercise˚˚ 10.3.19 (Turetsky [486]). 1. Show that there is a structure A of computable di-
mension 2, so that the computable copies A0 and A1 witnessing the computable dimension of
A are not hyperarithmetically isomorphic.

2. Show that the Scott complexity (Exercise 10.1.120) of such a structure can be ΠωCK1 `2.

10.3.2 Goncharov’s ∆0
2-Theorem for discrete structures

In this subsection we prove Goncharov’s ∆0
2-Theorem 10.3.2: If a structure has two computable

presentations that are ∆0
2 isomorphic but not computably isomorphic then its computable dimension

is ω. The particular version of the proof that we include below is due to Denis Hirschfeldt. We
thank Denis for allowing us to include this proof in the book.

485

Proof of Theorem 10.3.2. It is enough to show that if M0, . . . ,Mn, n ą 0, are computable structures
such that, for each i ‰ j ď n, Mi and Mj are ∆0

2 isomorphic but not computably isomorphic, then
there is a computable structure Mn`1 that is ∆0

2 isomorphic but not computably isomorphic to
each Mi, i ď n.

So let M0, . . . ,Mn be as above. We need to build a computable structure Mn`1 to satisfy the
requirements

Re,i : Φe is not an isomorphism from Mn`1 to Mi

for each e P ω, i ď n, while at the same building a ∆0
2 isomorphism gi from Mn`1 to Mi for each

i ď n.
The basic idea will be to ensure that if Φe is an isomorphism from Mn`1 to Mi then gj is

computable for some j ‰ i (in the construction below, j will be i ` 1 mod n ` 1), from which it
follows that Mi and Mj are computably isomorphic.

We need some notation to talk about “finite portions” of each Mi, so given a finite set S Ă ω,
let Mi æ S be the finite structure obtained from Mi by restricting the universe to S and restricting
the language L of Mi to a finite language LS by taking the first |S| symbols of L, substituting
all k-ary function symbols by pk ` 1q-ary relation symbols in the obvious way, and dropping any
constants whose interpretation in Mi is not in S. This guarantees that Mi æ S is a structure in
LS , that checking whether M0 æ S – N for a finite structure N in LS is an effective procedure,
and that if g “ lims gs is a ∆0

2 function such that each gs is an isomorphism from Mi æ Ss to some
structure Ns,

Ť

sPω Ss “ ω, and the Ns form a chain with limit N , then g : Mi – N (where we
think of N as a structure in L by converting the relation symbols in

Ť

sPω LSs that correspond to
function symbols in L back to function symbols).

For each i ‰ j ď n, let fi,j be a ∆0
2 isomorphism from Mi to Mj . We assume without loss of

generality that, for each s P ω, the stage s approximation fi,jrss to fi,j is an isomorphism from
Mi æ dompfi,jrssq to Mj æ rngpfi,jrssq and dompfi,jrs` 1sq Ľ

Ť

k‰iďn rngpfk,irssq.
A stage s` 1 is e-expansionary if

dompΦerssq Ľ

0, . . . , sup
`

dompΦertsq
˘(

and
rngpΦerssq Ľ

0, . . . , sup
`

rngpΦertsq
˘(

,

where t` 1 was the last e-expansionary stage before s` 1 (or t “ 0 if there have been none).

stage 0. Let Mn`1r0s “ H. For each i ď n, let gir0s “ H. For each e P ω, i ď n, let re,ir0s “
xe, iy ` 1. (Here xe, iy will be pn` 1qe` i.)

stage s ` 1. For each e P ω, i ď n, if Φerss is not an isomorphism from Mn`1rss æ dompΦerssq to
Mi æ rngpΦerssq then declare Re,i to be satisfied.

Say that Re,i requires attention if it is not satisfied and s ` 1 is an e-expansionary stage.
Proceeding by recursion, define re,irs ` 1s “ maxptmaxpdompΦerssqqu Y tre1,i1rs ` 1s | xe1, i1y ă
xe, iyuq ` 1 if Re,i requires attention and re,irs ` 1s “ maxptre1,i1rs ` 1s | xe1, i1y ă xe, iyuq ` 1
otherwise.

Let m be the largest element of Mn`1rss, and let e0 and i0 be such that re0,i0 is the largest re,i
that is less than m. For convenience of notation, let a´1 “ 0, axe,iy “ re,i for xe, iy ď xe0, i0y, and
axe0,i0y`1 “ m` 1. We define girs` 1s, i ď n, in two steps.

486

1. For each k ď xe0, i0y ` 1 in order, proceed as follows. Let e and i be such that k “ xe, iy and
let j “ i ` 1 mod n ` 1. For each ak´1 ď x ă ak, let gjpxqrs ` 1s “ gjpxqrss and, for each
l ď n, l ‰ j, let glpxqrs` 1s “ pfj,l ˝ gjqpxqrss.

If now glpxqrs` 1s ‰ glpxqrss for some l ď n and ak´1 ď x ă ak then, for all ak ď x ď m, let
gjpxqrs ` 1s “ gjpxqrss and, for each l ď n, l ‰ j, let glpxqrs ` 1s “ pfj,l ˝ gjqpxqrss. In this
case, proceed to step 2.

2. For j “ s mod n` 1, let k be the first element of Mj that is not yet in the range of gjrs` 1s,
define gjpm` 1qrs` 1s “ k and, for each l ď n, l ‰ j, define glpm` 1qrs` 1s “ fj,lpkqrss.

Notice that we have ensured that the images of girs` 1s and gjrs` 1s are isomorphic for each
i, j ď n, so we can define Mn`1rs ` 1s to be the structure induced by g´1

0 rs ` 1s, where we think
of this as a map from M0rss, and we then have that Mn`1rs ` 1s extends Mn`1rss and, for each
i ď n, girs` 1s is an isomorphism from Mn`1rs` 1s to Mirss.

This concludes the construction. Let Mn`1 be the limit of the chain formed by the Mn`1rss.
Clearly, Mn`1 is a computable structure and is isomorphic to each Mi, since each gi “ lims girss
exists and is total and surjective.

To finish the proof, we need to show that each Re,i eventually stops requiring attention. Assume
for a contradiction that this is not the case and let xe, iy be the least pair such that Re,i requires
attention infinitely often. Note that this means that Φe is an isomorphism from Mn`1 to Mi, since
otherwise either there would be only finitely many e-expansionary stages or Re,i would be satisfied
at some point. Let j “ i ` 1 mod n ` 1 and let s be a stage after which no Re1,i1 , xe

1, i1y ă xe, iy,
requires attention.

We claim that we have a computable isomorphism from Mi to Mj . To see this, first note that,
for each t ą s and xe1, i1y ă xe, iy, re1,i1rts “ re1,i1rss. Let r “ maxtre1,i1rss | xe

1, i1y ă xe, iyu. It
follows from the fact that each fk,l is ∆0

2 that there is a stage t ą s such that gkrts æ r “ gk æ r
for each k ď n. For any m ą r, if u ą t and Φepmqrus Ó then re,irvs ą m for all v ě u, so
that gjpmqrv ` 1s “ gjpmqrvs for all v ě u, and thus gjpmq “ gjpmqrus. But this means that gj
is computable, and hence that gj ˝ Φ´1

e is a computable isomorphism from Mi to Mj , which is a
contradiction.

10.3.3 Goncharov’s ∆0
2-Theorem for Polish spaces

In this subsection we extend Goncharov’s ∆0
2-Theorem 10.3.2 to Polish spaces (up to isometry).

Definitions

A computable Polish presentation X of pM,dq is rational-valued if dpx, yq P Q for every x, y P X,
and the distance d is represented by a computable function of two arguments mapping each pair of
special points px, yq to the corresponding rational number dpx, yq.

We also say that two computable Polish presentations L and L1 of pM,dq are limit equivalent if
there is a total computable function gpx, sq : Lˆ N ÞÑ L1 of two arguments such that the sequence
pgpx, sqqsPN is eventually stable on every x, and

fpxq “ lim
sÑ8

gpx, sq

487

is an isometric bijection of L onto L1, where the limit is taken with respect to the standard discrete
metric on N.

Recall that in this chapter we view Polish spaces up to isometry.

Recall also that, to emphasise that our spaces are viewed up to isometry, we often use the term
“computable structure” instead of “isometric computable Polish presentation”. Further, rational-
valued presentations can be viewed as algebraic structures in the language tDr : r P Qu (with
equality), where Drpx, yq “ 1 iff dpx, yq “ r. We view such structures up to isometry between their
completions. (In the previous section we used the language tDăr, Dąr : r P Qu without equality.)

Theorem 10.3.20 (Melnikov and Ng [376]). Suppose L and L1 are two computable rational-
valued structures on a Polish space pM,dq which are not computably isometric. If L and L1 are
limit equivalent, then pM,dq has infinitely many computable structures which are pairwise not
computably isometric.

As we already mentioned above, L and L1 can be viewed as computable structures in the language
tDr : r P Qu that are isomorphic relative to 01 but not computably isomorphic. By Goncherov’s
∆0

2-Theorem 10.3.2 there are infinitely many computable copies of the structure that are pairwise
not computably isomorphic. However, these copies may be computably isometric as computable
Polish spaces, just not by an isometry that takes special points to special points (recall we need
to worry about their completions). Thus, the theorem above is not an elementary consequence of
Goncharov’s ∆0

2-Theorem 10.3.2.

Proof of Theorem 10.3.20. The proof is organised as follows. First, we state the notations and the
requirements. Next, we give an informal description which is followed by the formal construction
and its verification.

Notation and conventions

We fix an effective listing pΨeqePN of all partial computable functions of two arguments, which
includes all computable isometries from L to L1. Here for each S ĎM , S stands for the completion
of S in M . For every x and n such that Ψepx, nqÓ, the number Ψepx, nq will be interpreted as an
element of L1. The listing pΨeqePN satisfies the following conditions:

1. for every e, t, x, we have dpΨepx, tq,Ψepx, t`1qq ă 2´t´1, if Ψepx, tq and Ψepx, t`1q converge,

2. for every stage s and every e, t, x, we have Ψe,spx, tqÓ only if Ψe,spx, nqÓ for each n ď t, and

3. if Θ : L ÞÑ L1 is a computable isometry then there exists some e such that for every x P L we
have Θpxq “ limnÑ8Ψepx, nq.

To see that pΨeqePN exists, we start with some universal listing of all partial computable functions of
two variables, and limit ourselves to only those which satisfy (1) to (3). Since dpΨepx, tq,Ψepx, t`1qq

488

is a computable fast converging sequence of rational numbers (in this case dpΨepx, tq,Ψepx, t` 1qq
is in fact rational), we will always be able to tell whenever dpΨepx, tq,Ψepx, t` 1qq ă 2´t´1.

For every e and x, set Θepxq “ limnÑ8Ψepx, nq if the limit exists (where the limit is taken with
respect to the metric on M), and set ΘepxqÒ otherwise. The range of Θe, of course, does not have
to be included in L1.

At stage s we set Θe,spxq equal to Ψe,spx,mq if m is the largest such that Ψe,spx,mq Ó, and we
set Θe,spxq undefined, otherwise. In the former case we let θe,spxq “ m. Thus, Θe,spxq is our stage
s guess about Θepxq, and θe,spxq indicates the error between Θe,spxq and Θepxq. (This is essentially
Notation 2.4.21.)

Let f “ lims gs be a ∆0
2 permutation of natural numbers witnessing the limit equivalence of L

and L1. As we have mentioned above, L and L1 are essentially countable structures in the language
tDr : r P Qu . Thus we can safely assume that gs is an isometry when restricted to the first s
elements of its domain.

Requirements

We are going to produce a countably infinite family tAm : m P Nu of computable structures
on pM,dq which are pairwise not computably isometric. For every m, the structure Am will be
rational-valued.

We need to satisfy, for every n ą m and e, the following requirements:

Ne,m,n : Θe does not induce an isomorphism from Am onto An,

and
Rm : Am is isometric (in fact, limit equivalent) to L and L1.

To meet Rm we will construct surjective isometries between computable structures. Thus, Am will
be a rational-valued computable structure isomorphic to L and L1 as a relational algebraic structure
in the language tDr : r P Qu.

Informal description

We first describe the strategy for Rm. To meet Rm we construct ∆0
2 surjective isometric maps

ξm : Am ÞÑ L and ηm : Am ÞÑ L1. This is done via the approximations ξm,s and ηm,s where

ξm “ lims ξm,s and ηm “ lims ηm,s. Additionally we ensure that at each stage s, gspξm,sq “ ηm,s

on their domains:

L
gs // L1

Am,s

ξm,s

OO
ηm,s

77

The main strategy of Rm is to copy either L or L1, which is carried out via the surjective
isometric maps ξm and ηm built by the strategy. The use of two maps rather than a single one
will enable us to organise the activity of switching back and forth between copying L and copying
L1 during the construction. Since gpxq may change several times before stabilising on a value, it
may become necessary for us to redefine ξm and ηm during the construction in order to maintain
the equality illustrated above. To be more specific, suppose at stage s we have defined ξm,spyq and

489

ηm,spyq such that gspξm,spyqq “ ηm,spyq. Suppose now that gs`1pxq ‰ gspxq where x “ ξm,spyq.
To keep the equality we have to do one of two things: either maintain ξm,s`1pyq “ ξm,spyq and
redefine ηm,s`1pyq “ gs`1pxq, or maintain ηm,s`1pyq “ ηm,spyq and redefine ξm,s`1pyq “ z where
gs`1pzq “ gspxq (we speed up the approximation for gs until such a z is found). In the former case
we say that Rm corrects via ηm and in the latter case we say that Rm corrects via ξm. Each time
Rm needs to correct, it will choose one of the two sides to preserve; this choice will be made so
that the highest priority N -requirement with a current restraint larger than x is not injured. Since
the approximation to gspxq will eventually stabilise, at the end, ηm and ξm will be witnesses to the
limitwise equivalence of Am and L, and the limitwise equivalence of Am and L1, respectively.

An Ne,m,n-strategy in isolation will define a computable isometry between L and L1 using the
approximation Θe,s : Am Ñ An and the maps ξm and ηn. Recall that Θepxq, if defined, is equal to
the limit of the fast converging sequence pΨepx, nqqnPN of points in L1. Recall also that for every s,
Θe,s is a (partial) function from L to L1, but the range of Θe itself may be outside L1.

If Θe is defined but does not induce an isometry, we will eventually see it because Θe,s will reflect
it at some stage s. (This can only happen if for some x, y P L, we have dpx, yq ‰ dpΘepxq,Θepyqq.)
The slightly more difficult case to handle is if Θe is not total, or Θe induces an isometry which is
not onto. This, however, can be measured in a Π0

2-way, and so to circumvent this difficulty, we use
expansionary stages combined with a continuous version of the original Goncharov’s preservation
strategy, as follows: We call a stage s pe,m, nq-expansionary, if Θe,s “looks like an isometry from
Am to An with a certain precision” on a larger initial segment of its domain, with a better precision
than at the previous expansionary stage, and with a further element of L1 covered by a sufficiently
small neighborhood of the range of Θe,s. (The formal definition of an expansionary stage will be
given later.) We will show that there are infinitely many pe,m, nq-expansionary stages iff Θe induces
an onto isometry from Am to An.

We allow the strategy Ne,m,n to act only at pe,m, nq-expansionary stages. At an pe,m, nq-ex-
pansionary stage s of the construction, Ne,m,n will define the length of agreement between ΘepAmq
and An (this will be formally defined later) and will attempt to preserve ξm,s on the domain of
Θe,s and ηn,s on the range of Θe,t for t ď s. It is crucial that at every finite stage the domain and
the (approximation to) range are both finite sets. If the restraint of this strategy Ne,m,n eventually
covers all of An and Am then we would force both ξm and ηn to be computable functions. This
would allow us to argue that L and L1 are (contrary to the assumption of the theorem) computably
isometric via the composition of ξ´1

m , Θe and ηn.
The preservation strategy of Ne,m,n described above potentially conflicts with the Rm-strategy

when gspξmpxqq changes value for x in the domain of of Θe,s. Similarly, the preservation strategy
of Ne,m,n will potentially conflict with the Rn-strategy when gtpξnpyqq changes value for y in the
range of Θe,t. This is illustrated in the diagram below:

L
gs // L1

Am,s

ξm,s

OO

Θe,s
//

ηm,s

66

An,s

ηn,s

OO

To prevent injuring Ne,m,n, the Rm-strategy would redefine ηm instead of ξm, while the Rn-strat-
egy would redefine ξn instead of ηn. In this way the Rm- and Rn-strategies can maintain their
equalities while not injuring Ne,m,n. Each Ne,m,n eventually has finite restraint, and since the ap-

490

proximation pgsqsPN will eventually settle on each finite subset of L, the overall construction involves
only finite injury.

Definition 10.3.21 (pe,m, nq-Expansionary stages). Recall that the elements of computable struc-
tures are identified with natural numbers. Hence in the following, Θe,s : Am Ñ An is viewed as a
map from N to N. Given any stage s and e,m, n we let s˚ be the largest t ă s such that t is an
pe,m, nq-expansionary stage (set s˚ “ 0 if such a t does not exist).

We say that a stage s is pe,m, nq-expansionary if s “ 0, or

1. the domain of Θe,s contains a longer initial segment of N since s˚, and for each x ď s˚,
θe,spxq ą s˚;

2. for every x, y ď s˚, |dpx, yq ´ dpΘe,spxq,Θe,spyqq| ď 2´s
˚
`1;

3. the 2´s
˚

-neighborhood of the range of Θe,s contains the initial segment of N of length at least
s˚.

Notice that every pe,m, nq-expansionary stage is associated with an initial segment of the domain
of Θe,s (see (1)) and also with an initial segment of its range (see (3)). We denote these initial
segments by σe,m,n,s and τe,m,n,s, respectively. To reduce cumbersome notation we drop e,m, n
from the subscript when the context is clear.

Strategies

We describe the strategies for each requirement.

Strategy for Ne,m,n: If stage s is not pe,m, nq-expansionary then the strategy does nothing. Oth-
erwise it sets the following restraints on the maps ξm and ηn until the next pe,m, nq-expansionary
stage: Preserve the computation of ξmpxq for every x ď σe,m,n,s and the computation of ηnpyq for
every

y P Le,m,n,s “ tΘe,tpzq : z ď |σe,m,n,t|, t ď su,

which is a finite set of points.

Strategy for Rm: At stage s of the construction, we define isometric partial maps ξm,s : Am,s Ñ L
and ηm,s : Am,s Ñ L1. By the choice of L and L1, we can safely assume that gs is an isometry when
restricted to first s elements of its domain. We also assume that for every y mentioned before in
the construction, there is an element x such that gspxq “ y. The Rm-strategy does the following:

1. Correction: For each x such that ξmpxq and ηmpxq are currently defined, but gspξmpxqq ‰
ηmpxq, we correct via either (i) or (ii):

(i) Correction via ηm: Maintain ξmpxq and redefine ηmpxq “ gspξmpxqq.

(ii) Correction via ξm: Maintain ηmpxq and redefine ξmpxq “ z where gspzq “ ηmpxq.

For each x where correction has to be done we pick the highest priority N -requirement such
that ξmpxq or ηmpxq is restrained. We correct via ηm if N wants to restrain ξm, otherwise we
correct via ξm. Initialise all lower priority N -strategies. (If no N -strategy restrains x then we
correct via ηm.)

491

2. Extension: Let k be the least number which is not in the range of ξm. Find an element y in
Am such that ξmpyq can be set equal k and ηmpyq equal to gspkq (i.e., we have to ensure that
ηm, ξm are isometries of finite metric spaces). If such an element does not exist, introduce a
new element y0 to Am and for each y P Am, declare the distances dpy0, yq correspondingly,
i.e., set dpy0, yq “ dpk, ξmpyqq “ dpgspkq, ηmpyqq. The extension substage is finished4.

Construction

We fix an effective priority ordering of the N -strategies. The R-strategies are global strategies and
are not assigned a priority, and will not be injured during the construction.

At stage 0 of the construction, initialise all N -strategies. At stage s, let the first s many
N -strategies act according to their instructions described above. Next let the first s many R-strate-
gies act.

Verification

We first show that each Rm is met, i.e., Am is limitwise equivalent to L via ξm and to L1 via ηm.

Lemma 10.3.22. For every m, the maps ξm “ lims ξm,s and ηm “ lims ηm,s are well-defined,
bijective, and isometric.

Proof. The strategy for Rm cannot be injured. Fix an x, and we argue that lims ξm,spxq and
lims ηm,spxq exists. Let N be the highest priority strategy that at some stage of the construction
wants to preserve the computation of either ξm or ηm. Suppose N wishes to preserve the compu-
tation of ξm, say at some earliest stage s0 (note that in this case N will never want to preserve
the computation of ηm). The extension step in the construction ensures that when x is first enu-
merated in the structure Am, we immediately define ξmpxq and ηmpxq. Since this values are only
redefined but never canceled, we have ξm,s0pxq Ó and ηm,s0pxq Ó. Clearly ξm,s0pxq is never again
redefined after s0, since the correction step for x will always respect requirement N after s0. Since
gspξm,s0pxqq will be eventually stable, this means that ηm,spxq will be eventually stable. If N wishes
to preserve ηm instead we proceed as above, but since g is onto we have that gs

´1pηm,s0pxqq will
be eventually stable.

The correction step ensures that gspξm,spxqq “ ηm,spxq for every x and s. Hence this equality
holds for the stable final values as well. Now it is easy to verify that since gs æ s is an isometry
of finite metric spaces for each s, the construction ensures that ξm,s is an isometry of finite metric
spaces at each step of the construction. Clearly ξm is injective because it is an isometry. Now the
fact that ξm is onto follows easily from the fact that the gspyq approximation is eventually stable,
and by the action in the extension step. Since ηm “ g ˝ ξm it follows that ηm is bijective and an
isometry.

Note that the lemma implies at once that all the sets Am are computable structures on (iso-
morphic images of) M .

4Recall that we assume that gs is an isometry on the first s elements, for every s. Therefore, we can always fix
a k ď s and the corresponding gs-image of k. The distances will agree, and we can safely set dpy0, yq “ dpk, ξmpyqq.
Obviously, since both L and L1 are subsets of M , and in fact one is a permutation of the other, there is no further
tension here. We also note that (due to other strategies acting) Am may already have many elements outside the
domain of ξm, and in this case we will not have to introduce new elements to Am at this particular stage.

492

Lemma 10.3.23. For every e,m, n, there are infinitely many pe,m, nq-expansionary stages iff Θe

induces a computable isometry mapping Am onto An.

Proof. It is straightforward to check that the right to left direction holds. Suppose there are
infinitely many pe,m, nq-expansionary stages. In this case condition (1) of Definition 10.3.21 ensures
that for each x, Θepxq “ limtÑ8Ψepx, tq exists. It suffices to check the following:

(i) For any x, y, we have dpx, yq “ lims dpΘe,spxq,Θe,spyqq, since the latter is the distance
dpΘepxq,Θepyqq in the closure An.

(ii) For any y and any i, there exists some x and s such that θe,spxq ą i and dpΘe,spxq, yq ă 2´i.

(i) above ensures that Θe induces an isometry in the closures, while (ii) ensures that Θe maps onto
An. It is easy to see that (i) and (ii) follow respectively from conditions (2) and (3) of Definition
10.3.21.

Lemma 10.3.24. For every e,m, n, lim supt |σe,m,n,t| ă 8 and Ne,m,n is satisfied.

Proof. We proceed by induction on xe,m, ny. Suppose the lemma holds for all smaller indices.
Hence there is a stage s0 after which N “ Ne,m,n is never initialised, i.e. never injured by a higher
priority requirement. Suppose that limtąs0 |σe,m,n,t| “ 8. Then by Lemma 10.3.23, Am and An
are computably isometric. Since Θe induces an onto map, for each z P N there is a first pe,m, nq-
expansionary stage ŝz ą s0 such that z P Le,m,n,s for every s ě ŝz. This means that for each x, z,
the first definition for ξmpxq received after stage s0 and the first definition for ηnpzq received after
stage ŝz are stable and final. Hence ξm and ηn are computable functions. By Lemma 10.3.22 this
means that L is computably isometric to Am and L1 is computably isometric to An, a contradiction.
Since limt |σe,m,n,t| ă 8, by Lemma 10.3.23, N is satisfied.

The verification is finished, and the theorem is proved.

Consequences of Theorem 10.3.20

First, we explain why Goncharov’s ∆0
2-Theorem 10.3.2 is a consequence of Theorem 10.3.20.

Proof of Theorem 10.3.2. The proofs of Theorems 8.2.7, 8.2.6, and 8.2.9 (combined) give an effec-
tive transformation B ÞÑ MpBq that turns a discrete algebraic structure B into a discrete metric
space where, furthermore, the metric ranges over t0, 1, 2u. (The resulting space is viewed under
isometry.) This combined transformation preserves computable dimension because it is preserved
in Theorems 8.2.7, 8.2.6, and 8.2.9; see Exercise 8.2.8 and the discussion after the proof of Theo-
rem 8.2.9. It is not difficult to see that the property of “being (or not being) ∆0

2-isomorphic” is
also preserved under the sequence of these transformations; see Exercise 8.2.10.

Furthermore, B can be effectively and uniformly reconstructed from MpBq in the following
sense. There is a uniformly effective transformation M ÞÑ SpMq such that whenever M – MpBq,
we have that SpMq – B. Furthermore, this reverse transformation S also respects computable
isomorphism classes; see Exercise 8.2.11.

So suppose A –∆0
2
B are two computable presentations of some (discrete) algebraic structure

that are not computably isomorphic. Let MpAq and MpBq be the discrete, rational-valued spaces
obtained from A and B after applying the transformation described above.

493

We have that MpAq –∆0
2
MpBq and MpAq fl∆0

1
MpBq. The sequence of spaces pAiqiPN produced

in the proof of Theorem 10.3.20 are pairwise computably non-isometric; note also that An “ An
for all n.

Let Bi be the algebraic structure that can be uniformly reconstructed from Ai by reverting the
sequence of the transformations:

Bi “ SpAiq, i P N.
These structures witness the theorem.

One well-known consequence of Goncharov’s ∆0
2-Theorem is the following generalisation of Nur-

tazin’s Theorem 5.1.43.

Corollary 10.3.25 (Goncharov [203]). Every computable torsion-free abelian group has computable
dimension either 1 or ω.

Proof. If the rank of the group is finite then the group is computably categorical. In the case of
infinite rank, the strategy described in the proof of Nurtazin’s Theorem 5.1.43 builds two computable
copies of the group that satisfy the assumptions of Goncharov’s ∆0

2-Theorem 10.3.2.

Similar results hold for many other classes, including ordered abelian groups, difference closed,
real closed, differentially closed fields; see Exercises 10.4.5-10.4.17. (Not all of these results rely on
Goncharov’s ∆0

2-Theorem 10.3.2.)

Corollary 10.3.26 (Downey, Harrison-Trainor and Melnikov [124]). If a computable structure has
finite computable dimension ą 1, then it has computable dimension 8 relative to 01.

Proof. Let A be a computable structure. Relative to 01, it is 1-decidable. By Theorem 10.1.48,
A has a 01-computable Σc2 Scott family. If B is any other computable copy of A which is not
computably isomorphic to A, A and B are 02-computably isomorphic. Thus A has computable
dimension 1 or 8 relative to 01. If it had computable dimension 1 relative to 01, then A and B
would be 01-computably isomorphic, and so by Theorem 10.3.2 A would have computable dimension
8.

10.3.4 Proof of Theorem F

We now present an application of Theorem 10.3.20 to the space Cr0, 1s. It relies on a Theorem 2.4.24
proven at the very beginning of Part I of the book.

Theorem F (Melnikov and Ng [376]). The Polish space pCr0, 1s, dsupq of continuous functions
on the unit interval under the supremum metric dsup has infinitely many isometric computable
presentations that are pairwise not computably isometric.

Proof. We have already done most of the work; it remains to put all the pieces together. In
Chapter 2, we proved Theorem 2.4.24 stating that there exist two limit-equivalent rational-valued
computable structures on pCr0, 1s, dsupq such that both compute the norm, but in one, ` is com-
putable, and in the other, ` is not computable. These two computable Polish presentations are
not computably isometric by Claim 10.2.5. Thus, Theorem F follows from Theorem 10.3.20.

494

10.4 Further related results˚

For a more thorough and detailed study of abstract computable structure theory for discrete struc-
tures, we cite [20], which has aged rather well, and also the recent books [401, 402]. The study
of separable structures up to computable isometry was pioneered by Pour-El and Richards [435],
which remains an excellent textbook.

Isometric and linearly isometric categoricity

The modern investigation of computably isometric spaces was initiated in [369, 268] and continued
in many further works, most notably by McNicholl and his co-authors (e.g., [94, 360, 68]). Most
of these results are concerned with either Banach spaces or compact spaces where the classification
up to isometry seems more natural.

Banach spaces are typically viewed up to surjective linear isometry.

Definition 10.4.1 (Pour-El and Richards [435]). A Banach space is linearly computably categorical
if it has a unique computable Banach (equivalently, Polish group) presentation, up to computable
linear isometry.

The study of linearly computably categorical Banach spaces was pioneered by Pour-El and
Richards [435]. They used different terminology and perhaps did not realise their notion was very
similar to the analogous definition from effective algebra. We saw that Cr0, 1s is not isometrically
computably categorical, and it is known that it is not linearly computably categorical either [376].
For more about computably categorical Polish and Banach spaces, specifically the ones from Ex-
ample 2.4.18, see [94, 376, 369, 268] and the exercises below. We leave open:

Question 10.4.2. Is there a linearly computably categorical Banach space (Definition 10.4.1)
such that the underlying Polish metric space is not isometrically computably categorical (Defini-
tion 10.2.1)?

We do not know whether the restrictions on the computable Polish presentations in Theo-
rem 10.3.20 can be dropped in general. However, in the (locally) compact case, we suspect the
stabilisation of the ∆0

2-process can be achieved for topological reasons.
We expect that Theorem 10.3.20 has a natural extension to the signatures of Banach spaces.

However, it also appears that all known examples of Banach spaces that are not computably cate-
gorical have infinitely many computably non-isometric copies. We leave open:

Question 10.4.3. Is there a Banach space of finite computable dimension n ą 1?

In the question above, we may interpret the dimension as the number of computable Banach
presentations or computable Polish presentations. For Banach presentations, use computable linear
isometry, and for Polish presentations just computable isometry (which, as we have seen, has to be
affine). Both of these sub-questions are open.

Computable homeomorphic categoricity

Not much is known about computable homeomorphic categoricity of computably compact spaces
or groups, with essentially the only known satisfactory results being Theorems 4.2.84 and 9.5.7.
(Neither of the two results is particularly deep.) The topic is wide open.

495

Problem 10.4.4. Extend the results of this chapter to computably compact spaces viewed up to
homeomorphism.

While we hope that Theorem 10.2.9 should not be too hard to extend to spaces viewed up to
homeomorphism, extending deeper results to spaces up to homeomorphism will likely require signif-
icant new insights. Indeed, even up to isometry, the analogues of these deeper results have not yet
been established. As we also stated earlier, it is not even known whether there is a compact Polish
space having exactly two computably compact presentations, up to computable homeomorphism.

Computable group actions

One more related paper is [375], where many standard results of computable structure theory were
proven in the more general setting of a computable Polish group acting on a computable Polish
space. For example, [375] contains an analogue of Goncharov’s ∆0

2-Theorem 10.3.2 for computable
group actions. Interestingly, some of the proofs of these more general results are simpler than their
more specific analogues for structures. The paper has not yet found further applications; however,
this may change in the future.

Exercises

Computable dimension and categoricity of discrete structures

See also Exercises 9.1.16 and 9.3.42

Exercise˝ 10.4.5 (Folklore). Show that in each of the following classes, the computable dimension
of a computable structure is either 1 or ω:

1. Computable vector spaces (over a fixed computable field).

2. Algebraically closed fields.

Exercise 10.4.6 (Goncharov [203]). Prove that every computable abelian p-group has computable
dimension either 1 or ω:

Exercise 10.4.7 (Melnikov and Ng [377]). Show that every torsion abelian group has computable
dimension either 1 or ω.

Exercise˝ 10.4.8 (Dzgoev and Goncharov [210], Remmel [446]).

(i) Show that if A is a computable linear ordering which is not computably categorical, then it
has computable dimension 8.

(ii) Show that if B is a computable Boolean algebra which is not computably categorical then the
computable dimension of B is 8.

Exercise˝ 10.4.9 (Essentially Cenzer, Harizanov, and Remmel [85]). An injection structure is a
structure of the form pA, fq, where f is an injection on A. Prove that every computable injection
structure has computable dimension either 1 or ω.

Exercise 10.4.10 (Levin [338]). Prove that every computable Archimedean ordered field has
computable dimension either 1 or ω. (Archimedean means that there are no “infinitely large”
elements; see the hint to Exercise 8.1.41.)

496

Exercise˚ 10.4.11 (Goncharov, Lempp, Solomon [215]). Show that every computable ordered
abelian group has computable dimension either 1 or ω. (An ordered group is Archimedean if all non-
zero elements of the group lie in one Archimedean class; see the definitions before Exercise 5.1.49.
For a proof in the Archimedean case that relies on Goncharov’s ∆0

2-Theorem, see [244].)

Exercise˚ 10.4.12. We view a tree as a (strict) partial order. Prove the following:

1. Every tree if infinite height has computable dimension ω (Miller [394]).

2. Every tree of finite height has computable dimension either 1 or ω (Lempp, McCoy, Miller,
and Solomon [335]).

Exercise˚ 10.4.13 (Alaev [5]). Show that the computable dimension of any (computable) Boolean
algebra with finitely many distinguished ideals is either 1 or ω.

Exercise˚ 10.4.14 (Harrison-Trainor, Melnikov, and Montalbán [244]). Prove that every com-
putable real closed field of infinite transcendence degree has computable dimension 1 or ω.

Exercise˚ 10.4.15 (Harrison-Trainor, Melnikov, and Montalbán [244]). Prove that every com-
putable differentially closed field of infinite δ-degree (we omit the definitions, see [244]) has com-
putable dimension 1 or ω.

Exercise˚ 10.4.16 (Harrison-Trainor, Melnikov, and Montalbán [244]). Show that every com-
putable difference closed field of infinite transformal degree (we omit the definitions, see [244]) has
computable dimension 1 or ω.

Exercise˚ 10.4.17 (Harrison-Trainor [236]). Prove that every computable algebraically closed
valued field and every p-adically closed valued field of infinite transcendence degree has computable
dimension 1 or ω.

Exercises about computably categorical Banach spaces

Exercise˚ 10.4.18 (McNicholl [360]). Show that (the real or complex) `p is linearly ∆0
2-categorical

(Definition 10.4.1), and it is linearly computably categorical if and only if p “ 2.

Exercise˚ 10.4.19 (McNicholl and Stull [362]). Suppose p is a computable real such that p ě 1.
Define the linear isometry degree of a computable (complex or real) Banach presentation of `p to
be the least powerful Turing degree d by which it is d-computably isometrically isomorphic to the
standard presentation of `p. Show that this degree always exists and that when p ‰ 2, these degrees
are precisely the c.e. degrees.

Exercise˚ 10.4.20 (Clanin, McNicholl, and Stull [94]). Prove the following effective version of the
Carathéodory Theorem: If Ω is a nonzero, nonatomic, and separable measure space, and if p ě 1 is
a computable real, then every computable presentation of LppΩq is computably isomorphic to the
standard computable presentation of Lpr0, 1s.

Exercise˚ 10.4.21 (Brown and McNicholl [67]). We follow the notation and terminology of
Ex. 10.4.19. Fix p ‰ 2 and a computable Banach space LppΩq. Let be the least Turing de-
gree that computes an isometric isomorphism between any two computable copies of LppΩq, if it
exists. Prove that when Ω has only finitely many atoms this degree is 01, and if it has infinitely
many atoms, it is 02.

Exercise˚˚ 10.4.22 (Franklin et al. [179]). Show that the Banach space Cr0, 1s is ∆0
5-linearly

isometrically categorical.

497

Primitive recursive dimension

The systematic study of primitive recursive analogues of computable algebraic results was initiated
in [282]. We will not motivate these investigations here and refer the reader to the survey [32]. We
shall include several results about the punctual dimension of structures here, to inform the reader.
Most of these results are (somewhat unexpectedly) technically challenging.

We have already encountered primitive recursive and punctual structures earlier (e.g., Exer-
cise 10.3.18). We repeat the main definitions here.

Definition 10.4.23. 1. A (countably infinite) structure is punctual or fully primitive recursive
if its domain is ω and the operations and relations are uniformly primitive recursive.

2. A function f : ω Ñ ω is punctual if both f and f´1 are primitive recursive.

3. The punctual dimension of a structure is the number of its punctual presentations, up to
punctual isomorphism.

4. A structure is punctually categorical if it has punctual dimension 1.

5. If A, B are punctual structures, then A is punctually reducible to B, written A ďPR B, if there
is a primitive recursive (but not necessarily punctual) surjective isomorphism f : AÑ B.

6. PRpAq is the punctual degree structure induced by the preorder ďPR on the class of punctual
presentations of A.

We note that both |PRpAq| and the punctual dimension of a structure can be viewed as natural
analogues of the computable dimension of A. While the punctual dimension certainly looks more
familiar to a computable structure theorist, the partial order on PRpAq carries more information
about A. (Note that |PRpAq| “ 8 implies that the punctual dimension of A is also infinite.
Surprisingly, not much is known about the relationship between these two notions of dimension
beyond this observation and Exercise 10.4.30.)

Exercise˝ 10.4.24 (Dorzhieva et al. [116] based on [282]). Prove the following statements:

1. An equivalence structure S is punctually categorical iff it is either of the form F YE, where
F is finite and E has only classes of size 1, or S has finitely many classes at most one of which
is infinite.

2. A linear order is punctually categorical iff it is finite.

3. A Boolean algebra is punctually categorical iff it is finite.

4. An abelian p-group is punctually categorical iff it has the form F ‘ V, where pV “ 0 and F
is finite.

5. A torsion-free abelian group is punctually categorical iff it is the trivial group 0.

In each case, check that if the structure is not punctually categorical, then it has infinite punctual
dimension.

Exercise˚ 10.4.25 (Dorzhieva et al. [115] based on [123]). Let G be an undirected graph. Prove
that the following are equivalent:

1. G is punctually categorical.

498

2. G becomes a clique or an anti-clique (an independent set) after removing finitely many vertices
v̄ “ v0, . . . , vk with each vi being either adjacent to all x P pG ´ v̄q or not adjacent to all
x P pG´ v̄q.

Check that every punctual graph has punctual dimension either 1 or ω.

Exercise˚ 10.4.26 (Dorzhieva et al. [115] based on [121]). A mono-unary structure is a structure
of the form pA, fq, where f is a unary function symbol. Show that every mono-unary structure has
computable dimension 1 or ω. (Note that a mono-unary structure can have computable dimension
2.)

Exercise˚ 10.4.27 (Kalimullin, Melnikov, and Ng [282]). Show that there exists a structure that
is punctually categorical but not computably categorical.

Exercise˚˚ 10.4.28 (Downey et al. [121]). Show that, for every computable α there is a punc-
tually categorical structure that is not ∆0

α-categorical. (Indeed, there is one that is not even
∆1

1-categorical, as follows from the transformation defined in [121] and Exercise 10.3.19.)

Exercise˚ 10.4.29 (Melnikov and Ng [378]). Show that the punctual degrees of the random graph,
the dense linear order, and the universal countable abelian p-group group

À

iPN Zp8 are pairwise
non-isomorphic (as partial orders).

Exercise˚˚ 10.4.30 (Melnikov and Ng [378]). Show that for a graph G, the following are equiva-
lent:

1. |PRpGq| “ 1;

2. G is punctually categorical.

(We remark that it is still unknown where the equivalence holds for arbitrary structures.)

Exercise 10.4.31 (Bazhenov et al. [36]). Let A be an infinite finitely generated structure. Prove:

1. PRpAq has a least element and is dense, i.e., for any punctual copies A0 ăPR A1 there is
another punctual copy B with A0 ăPR B ăPR A1.

2˚. PRpAq can be infinite yet have a greatest element.

Exercise˚ 10.4.32 (Greenberg et al. [218]). Show that there exists a structure A for which the
partial order PRpAq is not dense; that is, it has two punctual presentations A0 ăPR A1 so that the
interval pA0, A1q in PRpAq is empty.

Exercise˚˚ 10.4.33 (Koh, Melnikov and Ng [312]). Show that the punctual degrees of the dense
linear order are not dense.

499

Bibliography

[1] O. Aberth, Computable analysis, McGraw-Hill International Book Company, 1980.

[2] S. Adyan, Algorithmic unsolvability of problems of recognition of certain properties of groups,
Doklady Akademii Nauk SSSR, 103 (1955), pp. 533–535. (in Russian).

[3] , Finitely presented groups and algorithms, Dokl. Akad. Nauk SSSR (N.S.), 117 (1957),
pp. 9–12.

[4] , Unsolvability of some algorithmic problems in the theory of groups, Trudy Moskov.
Mat. Obšč., 6 (1957), pp. 231–298.

[5] P. E. Alaev, Autostable I-algebras, Algebra Logika, 43 (2004), pp. 511–550, 630.

[6] , Strongly constructive Boolean algebras, Algebra Logika, 44 (2005), pp. 3–23, 126.

[7] , Categoricity for primitively recursive and polynomial Boolean algebras, Algebra Logika,
57 (2018), pp. 389–426.

[8] R. Alvir, N. Greenberg, M. Harrison-Trainor, and D. Turetsky, Scott complexity
of countable structures, The Journal of Symbolic Logic, 86 (2021), pp. 1706–1720.

[9] K. Ambos-Spies, Anti-mitotic recursively enumerable sets, MLQ. Mathematical Logic Quar-
terly, 31 (1985), pp. 461–477.

[10] K. Ambos-Spies, K. Weihrauch, and X. Zheng, Weakly computable real numbers, Jour-
nal of Complexity, 16 (2000), pp. 676–690.

[11] D. Amir and M. Hoyrup, Strong computable type, Computability, 12(3) (2023), pp. 227–
269.

[12] B. Andersen, A. Kach, A. Melnikov, and R. Solomon, Jump degrees of torsion-free
abelian groups, J. Symbolic Logic, 77 (2012), pp. 1067–1100.

[13] B. Anderson and B. Csima, Degrees that are not degrees of categoricity, Notre Dame J.
Form. Log., 57 (2016), pp. 389–398.

[14] U. Andrews, M. Cai, I. Kalimullin, S. Lempp, J. S. Miller, and A. Montalbán,
The complements of lower cones of degrees and the degree spectra of structures, J. Symb. Log.,
81 (2016), pp. 997–1006.

500

[15] E. Artin and O. Schreier, Algebraische konstruktion reeller körper, Abh. Math. Sem.
Univ., 5 (1927), pp. 85–89.

[16] C. Ash, Recursive labeling systems and stability of recursive structures in hyperarithmetical
degrees, Trans. Amer. Math. Soc., 298 (1986), pp. 497–514.

[17] , Categoricity in hyperarithmetical degrees, Annals of Pure and Applied Logic, 34 (1987),
pp. 1–14.

[18] , A construction for recursive linear orderings, J. Symbolic Logic, 56 (1991), pp. 673–683.

[19] C. Ash, C. Jockusch, and J. Knight, Jumps of orderings, Trans. Amer. Math. Soc., 319
(1990), pp. 573–599.

[20] C. Ash and J. Knight, Computable structures and the hyperarithmetical hierarchy, vol. 144
of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co.,
Amsterdam, 2000.

[21] C. Ash, J. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures,
Ann. Pure Appl. Logic, 42 (1989), pp. 195–205.

[22] C. Ash and A. Nerode, Intrinsically recursive relations, in Aspects of effective algebra
(Clayton, 1979), J. N. Crossley, ed., Upside Down A Book Co., Yarra Glen, Australia, 1981,
pp. 26–41.

[23] M. Askes and R. Downey, Online, computable and punctual structure theory, Log. J.
IGPL, 31 (2023), pp. 1251–1293.

[24] J. Avigad and V. Brattka, Computability and analysis: the legacy of Alan Turing, in
Turing’s legacy: developments from Turing’s ideas in logic, vol. 42 of Lect. Notes Log., Assoc.
Symbol. Logic, La Jolla, CA, 2014, pp. 1–47.

[25] S. A. Badaev, Computable enumerations of families of general recursive functions, Algebra
i Logika, 16 (1977), pp. 129–148, 249.

[26] R. Baer, Abelian groups without elements of finite order, Duke Math. J., 3 (1937), pp. 68–
122.

[27] R. Bagaviev, I. I. Batyrshin, N. Bazhenov, D. Bushtets, M. Dorzhieva, H. T.
Koh, R. Kornev, A. Melnikov, and K. M. Ng, Computably and punctually universal
spaces, Ann. Pure Appl. Logic, 176 (2025), pp. Paper No. 103491, 31.

[28] S. Banach, Théorie des opérations linéaires, Z subwencji Funduszu kultury narodowej,
Warszawa, 1932.

[29] S. Banach and S. Mazur, Sur les fonctions calculables, Ann. Soc. Pol. de Math, 16 (1937),
p. 402.

[30] E. Barker, Back and forth relations for reduced abelian p-groups, Ann. Pure Appl. Logic,
75 (1995), pp. 223–249.

501

[31] G. Baumslag, E. Dyer, and C. Miller, III, On the integral homology of finitely presented
groups, Topology, 22 (1983), pp. 27–46.

[32] N. Bazhenov, R. Downey, I. Kalimullin, and A. Melnikov, Foundations of online
structure theory, Bull. Symb. Log., 25 (2019), pp. 141–181.

[33] N. Bazhenov, S. Goncharov, and A. Melnikov, Decompositions of decidable abelian
groups, Internat. J. Algebra Comput., 30 (2020), pp. 49–90.

[34] N. Bazhenov, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, and K. M. Ng,
Automatic and polynomial-time algebraic structures, J. Symb. Log., 84 (2019), pp. 1630–1669.

[35] N. Bazhenov, M. Harrison-Trainor, and A. Melnikov, Computable Stone spaces,
Ann. Pure Appl. Logic, 174 (2023), pp. Paper No. 103304, 25.

[36] N. Bazhenov, I. Kalimullin, A. Melnikov, and K. M. Ng, Online presentations of
finitely generated structures, Theoret. Comput. Sci., 844 (2020), pp. 195–216.

[37] N. Bazhenov, A. Melnikov, and K. M. Ng, Every ∆0
2 Polish space is computable topo-

logical, Proc. Amer. Math. Soc., 152 (2024), pp. 3123–3136.

[38] N. Bazhenov and H.-C. Tsai, On the effective universality of mereological theories, MLQ
Math. Log. Q., 68 (2022), pp. 48–66.

[39] N. A. Bazhenov, ∆0
2-categoricity of Boolean algebras, Journal of Mathematical Sciences,

203 (2014), pp. 444–454.

[40] , Degrees of autostability for linear orders and linearly ordered abelian groups, Algebra
and Logic, 55 (2016), pp. 257–273.

[41] , Degrees of autostability relative to strong constructivizations for Boolean algebras, Al-
gebra and Logic, 55 (2016), pp. 87–102.

[42] , Effective categoricity for distributive lattices and Heyting algebras, Lobachevskii Journal
of Mathematics, 38 (2017), pp. 600–614.

[43] , Categoricity spectra of computable structures, Journal of Mathematical Sciences, 256
(2021), pp. 34–50.

[44] N. A. Bazhenov, A. N. Frolov, I. Kalimullin, and A. Melnikov, Computability of
distributive lattices, Sibirsk. Mat. Zh., 58 (2017), pp. 1236–1251.

[45] V. Becher and T. A. Slaman, On the normality of numbers to different bases, J. Lond.
Math. Soc. (2), 90 (2014), pp. 472–494.

[46] I. Ben Yaacov and A. P. Pedersen, A proof of completeness for continuous first-order
logic, J. Symbolic Logic, 75 (2010), pp. 168–190.

[47] I. Bilanovic, J. Chubb, and S. Roven, Detecting properties from descriptions of groups,
Arch. Math. Logic, 59 (2020), pp. 293–312.

[48] E. Bishop, Foundations of constructive analysis, McGraw-Hill Book Co., New York-Toronto,
Ont.-London, 1967.

502

[49] L. A. Bokut, On a property of the Boone groups, Algebra i Logika Sem., 5 (1966), pp. 5–23.

[50] , On a property of the Boone groups. II, Algebra i Logika Sem., 6 (1967), pp. 15–24.

[51] W. Boone, The word problem, Annals of Math, 70 (1959), pp. 207–265.

[52] W. Boone and H. Rogers, On a problem of j. h. c. whitehead and a problem of alonzo
church, Journal of Symbolic Logic, 34 (1969), pp. 506–507.

[53] É. Borel, Le calcul des intégral défines, Journal de Mathématiques Pures and Appliquées,
8 (1912), pp. 159–210.

[54] V. Bosserhoff, On the effective existence of Schauder bases, J.UCS, 15 (2009), pp. 1145–
1161.

[55] V. Bosserhoff and P. Hertling, Effective subsets under homeomorphisms of Rn, Inform.
and Comput., 245 (2015), pp. 197–212.

[56] V. Brattka, Computability of Banach space principles, FernUniversitat in Hagen, 2001.

[57] , Computable versions of Baire’s category theorem, in Mathematical foundations of com-
puter science, 2001 (Mariánské Láznĕ), vol. 2136 of Lecture Notes in Comput. Sci., Springer,
Berlin, 2001, pp. 224–235.

[58] , The inversion problem for computable linear operators, in STACS 2003, vol. 2607 of
Lecture Notes in Comput. Sci., Springer, Berlin, 2003, pp. 391–402.

[59] , Borel complexity and computability of the Hahn-Banach theorem, Arch. Math. Logic,
46 (2008), pp. 547–564.

[60] , Plottable real number functions and the computable graph theorem, SIAM J. Comput.,
38 (2008), pp. 303–328.

[61] V. Brattka, M. de Brecht, and A. Pauly, Closed choice and a uniform low basis
theorem, Ann. Pure Appl. Logic, 163 (2012), pp. 986–1008.

[62] V. Brattka and R. Dillhage, Computability of compact operators on computable banach
spaces with bases, Mathematical Logic Quarterly, 53 (2007), pp. 345–364.

[63] V. Brattka and I. Kalantari, A bibliography of recursive analysis and recursive topology,
in Handbook of recursive mathematics, Vol. 1, vol. 138 of Stud. Logic Found. Math., North-
Holland, Amsterdam, 1998, pp. 583–620.

[64] V. Brattka and G. Presser, Computability on subsets of metric spaces, Theoretical Com-
puter Science, 305 (2003), pp. 43–76.

[65] P. Brodhead and D. Cenzer, Effectively closed sets and enumerations, Arch. Math. Logic,
46 (2008), pp. 565–582.

[66] L. E. J. Brouwer, Beweis, dass jede volle funktion gleichmässig stetig ist, Koninklijke
Nederlandse Akademie van Wetenschappen, Proc. Section of Sciences, 27 (1924), pp. 189–
193.

503

[67] T. Brown and T. McNicholl, Analytic computable structure theory and lp-spaces, part 2,
Archive for Mathematical Logic, 59 (2020), pp. 427–443.

[68] T. Brown, T. McNicholl, and A. Melnikov, On the complexity of classifying Lebesgue
spaces, J. Symb. Log., 85 (2020), pp. 1254–1288.

[69] B. Buchberger, An Algorithm for Finding the Basis Elements of the Residue Class Ring
of a Zero Dimensional Polynomial Ideal, PhD thesis, University of Innsbruck, 1965.

[70] K. Burnik and Z. Iljazovic, Computability of 1-manifolds, Log. Methods Comput. Sci.,
10 (2014), pp. 2:8, 28.

[71] P. Burton, C. J. Eagle, A. Fox, I. Goldbring, M. Harrison-Trainor, T. H. Mc-
Nicholl, A. Melnikov, and T. Thewmorakot, Computable gelfand duality, 2024.

[72] W. Calvert, The isomorphism problem for classes of computable fields, Archive for Mathe-
matical Logic, 43 (2004), pp. 327–336.

[73] , Algebraic structure and computable structure, ProQuest LLC, Ann Arbor, MI, 2005.
Thesis (Ph.D.)–University of Notre Dame.

[74] , The isomorphism problem for computable abelian p-groups of bounded length, J. Sym-
bolic Logic, 70 (2005), pp. 331–345.

[75] W. Calvert, D. Cenzer, V. Harizanov, and A. Morozov, Effective categoricity of
equivalence structures, Ann. Pure Appl. Logic, 141 (2006), pp. 61–78.

[76] W. Calvert, V. Harizanov, J. Knight, and S. Miller, Index sets of computable models,
Algebra Logika, 45 (2006), pp. 538–574, 631–632.

[77] W. Calvert, V. Harizanov, and A. Shlapentokh, Turing degrees of isomorphism types
of algebraic objects, J. Lond. Math. Soc. (2), 75 (2007), pp. 273–286.

[78] W. Calvert, J. Knight, and J. Millar, Computable trees of scott rank ωck
1 , and com-

putable approximation, The Journal of Symbolic Logic, 71 (2006), pp. 283–298.

[79] R. Camerlo and S. Gao, The completeness of the isomorphism relation for countable
Boolean algebras, Transactions of the American Mathematical Society, 353 (2001), pp. 491–
518.

[80] J. Carson, V. Harizanov, J. Knight, K. Lange, C. McCoy, A. Morozov, S. Quinn,
C. Safranski, and J. Wallbaum, Describing free groups, Trans. Amer. Math. Soc., 364
(2012), pp. 5715–5728.

[81] G. S. Ceitin, On the theorem of cauchy in constructive analysis, Uspehi Mat. Nauk., 10
(1955), pp. 207–209.

[82] , Algorithmic operations in construcive complete separable metric spaces, Doklady
Akademii Nauk., 128 (1959), pp. 49–52.

[83] P. Cembranos and J. Mendoza, Banach spaces of vector-valued functions, vol. 1676 of
Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1997.

504

[84] D. Cenzer, Π0
1 classes in computability theory, in Handbook of Computability Theory,

no. 140 in Studies in Logic and the Foundations of Mathematics, North-Holland, Amster-
dam, 1999, pp. 37–85.

[85] D. Cenzer, V. Harizanov, and J. Remmel, Computability-theoretic properties of injection
structures, Algebra Logika, 53 (2014), pp. 60–108, 134–135, 137–138.

[86] D. Cenzer and J. Remmel, Polynomial-time abelian groups, Ann. Pure Appl. Logic, 56
(1992), pp. 313–363.

[87] , Index sets for Π0
1 classes, Annals of Pure and Applied Logic, 93 (1998), pp. 3–61.

Computability Theory.

[88] , Index sets for computable differential equations, MLQ Math. Log. Q., 50 (2004),
pp. 329–344.

[89] J. Chisholm, Effective model theory vs. recursive model theory, J. Symbolic Logic, 55 (1990),
pp. 1168–1191.

[90] J. Chisholm, E. B. Fokina, S. S. Goncharov, V. S. Harizanov, J. Knight, and
S. Quinn, Intrinsic bounds on complexity and definability at limit levels, The Journal of
Symbolic Logic, 74 (2009), pp. 1047–1060.

[91] J. Chisholm and M. Moses, An undecidable linear order that is n-decidable for all n, Notre
Dame J. Formal Logic, 39 (1998), pp. 519–526.

[92] P. Cholak, R. Downey, and L. Harrington, On the orbits of computably enumerable
sets, J. Amer. Math. Soc., 21 (2008), pp. 1105–1135.

[93] P. Cholak, S. Goncharov, B. Khoussainov, and R. Shore, Journal of Symbolic Logic,
64 (1999), pp. 13–37.

[94] J. Clanin, T. McNicholl, and D. Stull, Analytic computable structure theory and Lp

spaces, Fund. Math., 244 (2019), pp. 255–285.

[95] C. R. J. Clapham, Finitely presented groups with word problems of arbitrary degrees of
insolubility, Proc. London Math. Soc. (3), 14 (1964), pp. 633–676.

[96] R. Coles, R. Downey, and B. Khoussainov, On initial segments of computable linear
orders, Order, 14 (1997/98), pp. 107–124.

[97] R. Coles, R. Downey, and T. Slaman, Every set has a least jump enumeration, J. London
Math. Soc. (2), 62 (2000), pp. 641–649.

[98] T. C. Craven, The topological space of orderings of a rational function field, Duke Math.
J., 41 (1974), pp. 339–347.

[99] , The Boolean space of orderings of a field, Trans. Amer. Math. Soc., 209 (1975), pp. 225–
235.

[100] B. Csima, J. N. Y. Franklin, and R. A. Shore, Degrees of categoricity and the hyper-
arithmetic hierarchy, Notre Dame Journal of Formal Logic, 54 (2013), pp. 215–231.

505

[101] B. Csima, D. Hirschfeldt, J. Knight, and R. Soare, Bounding prime models, J. Sym-
bolic Logic, 69 (2004), pp. 1117–1142.

[102] B. Csima and I. Kalimullin, Degree spectra and immunity properties, Mathematical Logic
Quarterly, 56 (2010), pp. 67–77.

[103] B. Csima and K. M. Ng, Every ∆0
2 degree is a strong degree of categoricity, J. Math. Log.,

22 (2022), pp. Paper No. 2250022, 18.

[104] B. Csima and D. Rossegger, Degrees of categoricity and treeable degrees, Journal of Math-
ematical Logic, 0 (2024), p. 2450002.

[105] B. Csima and J. Stephenson, Finite computable dimension and degrees of categoricity,
Annals of Pure and Applied Logic, 170 (2019), pp. 58–94.

[106] M. Dabkowska, M. Dabkowski, V. Harizanov, and A. Sikora, Turing degrees of
nonabelian groups, Proceedings of the American Mathematical Society, 135 (2007), pp. 3383–
3391.

[107] A. Darbinyan, Computability, orders, and solvable groups, Journal of Symbolic Logic, 85
(2020), pp. 1588–1598.

[108] M. de Brecht, T. Kihara, and V. Selivanov, Ideal presentations and numberings of
some classes of effective quasi-polish spaces, Computability, 13 (2024), pp. 1–24.

[109] M. Dehn, Transformation der Kurven auf zweiseitigen Flächen, Math. Ann., 72 (1912),
pp. 413–421.

[110] J. C. E. Dekker, Countable vector spaces with recursive operations. I, J. Symbolic Logic,
34 (1969), pp. 363–387.

[111] , Countable vector spaces with recursive operations. II, J. Symbolic Logic, 36 (1971),
pp. 477–493.

[112] , Two notes on vector spaces with recursive operations, Notre Dame J. Formal Logic, 12
(1971), pp. 329–334.

[113] V. Dobritsa, Complexity of the index set of a constructive model, Algebra i Logika, 22
(1983), pp. 372–381.

[114] , Some constructivizations of abelian groups., (1983). Siberian Journal of Mathematics,
793 vol. 24,167–173 (in Russian).

[115] M. Dorzhieva, R. Downey, E. Hammatt, A. Melnikov, and K. M. Ng, Punctually
presented structures ii: comparing presentations, Archive for Mathematical Logic, (2024).

[116] M. V. Dorzhieva, A. A. Issakhov, B. S. Kalmurzayev, R. A. Kornev, and M. V.
Kotov, Punctual dimension of algebraic structures in certain classes, Lobachevskii J. Math.,
42 (2021), pp. 716–725.

[117] R. Downey, Bases of supermaximal subspaces and Steinitz systems. I, J. Symbolic Logic, 49
(1984), pp. 1146–1159.

506

[118] , Every recursive Boolean algebra is isomorphic to one with incomplete atoms, Annals
of Pure and Applied Logic, 60 (1993), pp. 193–206.

[119] , Computability theory and linear orderings, in Handbook of recursive mathematics, Vol.
2, vol. 139 of Stud. Logic Found. Math., North-Holland, Amsterdam, 1998, pp. 823–976.

[120] R. Downey, S. Goncharov, A. Kach, J. Knight, O. Kudinov, A. Melnikov, and
D. Turetsky, Decidability and computability of certain torsion-free abelian groups, Notre
Dame J. Form. Log., 51 (2010), pp. 85–96.

[121] R. Downey, N. Greenberg, A. Melnikov, K. M. Ng, and D. Turetsky, Punctual
categoricity and universality, The Journal of Symbolic Logic, 85 (2020), pp. 1427–1466.

[122] R. Downey, N. Greenberg, and L. Qian, Some open questions and recent results on
computable Banach spaces, in Twenty years of theoretical and practical synergies, vol. 14773
of Lecture Notes in Comput. Sci., Springer, Cham, [2024] ©2024, pp. 10–26.

[123] R. Downey, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, and D. Turetsky,
Graphs are not universal for online computability, Journal of Computer and System Sciences,
112 (2020), pp. 1–12.

[124] R. Downey, M. Harrison-Trainor, and A. Melnikov, Relativizing computable cate-
goricity, Proceedings of the American Mathematical Society, 149 (2021), pp. 3999–4013.

[125] R. Downey and D. Hirschfeldt, Algorithmic randomness and complexity, Theory and
Applications of Computability, Springer, New York, 2010.

[126] R. Downey, D. Hirschfeldt, and B. Khoussainov, Uniformity in the theory of com-
putable structures, Algebra Logika, 42 (2003), pp. 566–593, 637.

[127] R. Downey, G. Igusa, and A. Melnikov, On a question of Kalimullin, Proc. Amer.
Math. Soc., 146 (2018), pp. 3553–3563.

[128] R. Downey and C. Jockusch, T-degrees, jump classes, and strong reducibilities, Transac-
tions of the American Mathematical Society, 301 (1987), pp. 103–136.

[129] , Every low Boolean algebra is isomorphic to a recursive one, Proceedings of the Amer-
ican Mathematical Society, 122 (1994), pp. 871–880.

[130] , Effective presentability of Boolean algebras of Cantor-Bendixson rank 1, J. Symbolic
Logic, 64 (1999), pp. 45–52.

[131] R. Downey, A. Kach, S. Lempp, A. Lewis, A. Montalbán, and D. Turetsky, The
complexity of computable categoricity, Advances in Mathematics, 268 (2015), pp. 423–466.

[132] R. Downey, A. Kach, S. Lempp, and D. Turetsky, Computable categoricity versus
relative computable categoricity, Fundamentae Mathematica, 221 (2013), pp. 129–159.

[133] R. Downey, A. Kach, and D. Turetsky, Limitwise monotonic functions and applications,
in Proceedings of STACS 2012, 2011, pp. 56–85.

507

[134] R. Downey and J. Knight, Orderings with αth jump degree 0pαq, Proc. Amer. Math. Soc.,
114 (1992), pp. 545–552.

[135] R. Downey and S. Kurtz, Recursion theory and ordered groups, Ann. Pure Appl. Logic,
32 (1986), pp. 137–151.

[136] R. Downey and A. Melnikov, Effectively categorical abelian groups, J. Algebra, 373 (2013),
pp. 223–248.

[137] , Computable completely decomposable groups, Trans. Amer. Math. Soc., 366 (2014),
pp. 4243–4266.

[138] , Computable analysis and classification problems, in Beyond the Horizon of Computabil-
ity - 16th Conference on Computability in Europe, CiE 2020, Fisciano, Italy, June 29 - July
3, 2020, Proceedings, M. Anselmo, G. D. Vedova, F. Manea, and A. Pauly, eds., vol. 12098
of Lecture Notes in Computer Science, Springer, 2020, pp. 100–111.

[139] , Computably compact metric spaces, The Bulletin of Symbolic Logic, 29 (2023), pp. 170–
263.

[140] R. Downey, A. Melnikov, and K. M. Ng, Iterated effective embeddings of abelian p-
groups, Internat. J. Algebra Comput., 24 (2014), pp. 1055–1084.

[141] , On delta-2 categoricity of equivalence relations, Ann. Pure Appl. Logic, 166 (2015),
pp. 851–880.

[142] , Abelian p-groups and the halting problem, Ann. Pure Appl. Logic, 167 (2016), pp. 1123–
1138.

[143] , A Friedberg enumeration of equivalence structures, J. Math. Log., 17 (2017),
pp. 1750008, 28.

[144] , Categorical linearly ordered structures, Ann. Pure Appl. Logic, 170 (2019), pp. 1243–
1255.

[145] , Enumerating abelian p-groups, Journal of Algebra, 560 (2020), pp. 745–790.

[146] R. Downey and A. Montalbán, The isomorphism problem for torsion-free abelian groups
is analytic complete, J. Algebra, 320 (2008), pp. 2291–2300.

[147] R. Downey and M. F. Moses, Recursive linear orders with incomplete successivities, Trans-
actions of the American Mathematical Society, 326 (1991), pp. 653–668.

[148] R. Downey and J. Remmel, Computable algebras and closure systems: coding properties,
in Handbook of recursive mathematics, Vol. 2, vol. 139 of Stud. Logic Found. Math., North-
Holland, Amsterdam, 1998, pp. 977–1039.

[149] R. Downey and M. Stob, Splitting theorems in recursion theory, Ann. Pure Appl. Logic,
65 (1993), p. 106.

[150] R. Downey and L. V. Welch, Splitting properties of r.e. sets and degrees, J. Symbolic
Logic, 51 (1986), pp. 88–109.

508

[151] B. Dushnik and E. Miller, Concerning similarity transformations of linearly ordered sets,
Bull. Amer. Math. Soc., 46 (1940), pp. 322–326.

[152] E. Z. Dyment, Recursive metrizability of enumerated topological spaces and bases of effective
linear topological spaces, Izv. Vyssh. Uchebn. Zaved. Mat., (1984), pp. 59–61.

[153] P. Enflo, A counterexample to the approximation problem in banach spaces, Acta Mathe-
matica, 130 (1973), pp. 309–317.

[154] Y. Ershov, Numbered fields, in Logic, Methodology and Philos. Sci. III (Proc. Third Internat.
Congr., Amsterdam, 1967), North-Holland, Amsterdam, 1968, pp. 31–34.

[155] , Computable functionals of finite types, Algebra i Logika, 11 (1972), pp. 367–437, 496.

[156] , The theory of numberings, Library of the Department of Algebra and Mathematical
Logic of Novosibirsk University, No. 13, Novosibirsk State Univ., Novosibirsk, 1974.

[157] , Theorie der numierungen iii, Z. Math. Logik, 23 (1977), pp. 289–371.

[158] , Problems of solubility and constructive models [in russian], (1980). Nauka, Moscow
(1980).

[159] Y. Ershov and S. Goncharov, Constructive models, Siberian School of Algebra and Logic,
Consultants Bureau, New York, 2000.

[160] M. Faizrahmanov and I. Kalimullin, The enumeration spectrum hierarchy of n-families,
MLQ Math. Log. Q., 62 (2016), pp. 420–426.

[161] L. Feiner, Orderings and Boolean algebras not isomorphic to recursive ones, ProQuest LLC,
Ann Arbor, MI, 1968. Thesis (Ph.D.)–Massachusetts Institute of Technology.

[162] , Hiearchies of Boolean algebras, J. Symbolic Logic, 35 (1970), pp. 365–374.

[163] , Degrees of nonrecursive presentability, Proc. Amer. Math. Soc., 38 (1973), pp. 621–624.

[164] S. Fellner, Recursive and finite axiomatizability of linear orderings, PhD thesis, Rutgers,
New Brundswick, NJ, USA, 1976.

[165] , Recursiveness and finite axiomatizability of linear orderings, ProQuest LLC, Ann Ar-
bor, MI, 1976. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick.

[166] E. Fokina, Algorithmic properties of structures for the languages with two unary functional
symbols, Vestnik NGU, 8 (2008), pp. 90–101. (in Russian).

[167] E. Fokina, V. Harizanov, and A. Melnikov, Computable model theory, in Turing’s
legacy: developments from Turing’s ideas in logic, vol. 42 of Lect. Notes Log., Assoc. Symbol.
Logic, La Jolla, CA, 2014, pp. 124–194.

[168] E. Fokina, V. Harizanov, and D. Turetsky, Computability-theoretic categoricity and
Scott families, Ann. Pure Appl. Logic, 170 (2019), pp. 699–717.

509

[169] E. Fokina, J. Knight, A. Melnikov, S. Quinn, and C. Safranski, Classes of Ulm
type and coding rank-homogeneous trees in other structures, J. Symbolic Logic, 76 (2011),
pp. 846–869.

[170] E. B. Fokina and S.-D. Friedman, Equivalence relations on classes of computable struc-
tures, in Mathematical theory and computational practice, vol. 5635 of Lecture Notes in
Comput. Sci., Springer, Berlin, 2009, pp. 198–207.

[171] E. B. Fokina, S.-D. Friedman, V. Harizanov, J. Knight, C. McCoy, and A. Mon-
talbán, Isomorphism relations on computable structures, The Journal of Symbolic Logic, 77
(2012), pp. 122–132.

[172] E. B. Fokina, I. Kalimullin, and R. Miller, Degrees of categoricity of computable
structures, Archive for Mathematical Logic, 49 (2010), pp. 51–67.

[173] G. B. Folland, A course in abstract harmonic analysis, Textbooks in Mathematics, CRC
Press, Boca Raton, FL, second ed., 2016.

[174] D. Fowler and E. Robson, Square root approximations in old babylonian mathematics:
Ybc 7289 in context, Historia Math, 25 (1998), pp. 366–378.

[175] A. Fox, Computable presentations of C*-algebras, The Journal of Symbolic Logic, (2023),
pp. 1–26.

[176] , Effective Metric Structure Theory of C-Star-Algebras, ProQuest LLC, Ann Arbor, MI,
2023. Thesis (Ph.D.)–University of California, Irvine.

[177] A. Fox, I. Goldbring, and B. Hart, Locally universal C˚-algebras with computable pre-
sentations, J. Funct. Anal., 287 (2024), p. Paper No. 110652.

[178] J. Franklin, Strength and weakness in computable structure theory, in Computability and
complexity, vol. 10010 of Lecture Notes in Comput. Sci., Springer, Cham, 2017, pp. 302–323.

[179] J. Franklin, R. H :olzl, A. Melnikov, K. M. Ng, and D. Turetsky, Computable
classifications of continuous, transducer, and regular functions. Submitted, 2024.

[180] R. Friedberg, A criterion for completeness of degrees of unsolvability, The Journal of Sym-
bolic Logic, 22 (1957), pp. 159–160.

[181] , Two recursively enumerable sets of incomparable degrees of unsolvability, Proceedings
of the National Academy of Sciences of the United States of America, 43 (1957), pp. 236–238.

[182] , Three theorems on recursive enumeration, The Journal of Symbolic Logic, 23 (1958),
pp. 309–316.

[183] H. Friedman, S. Simpson, and R. Smith, Countable algebra and set existence axioms,
Ann. Pure Appl. Logic, 25 (1983), pp. 141–181.

[184] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures,
J. Symbolic Logic, 54 (1989), pp. 894–914.

510

[185] A. Fröhlich and J. Shepherdson, Effective procedures in field theory, Philos. Trans. Roy.
Soc. London. Ser. A., 248 (1956), pp. 407–432.

[186] A. Frolov, I. Kalimullin, V. Harizanov, O. Kudinov, and R. Miller, Spectra of
highn and non-lown degrees, J. Logic Comput., 22 (2012), pp. 755–777.

[187] A. Frolov, I. Kalimullin, and R. Miller, Spectra of algebraic fields and subfields,
vol. 5635, 07 2009, pp. 232–241.

[188] A. Frolov and M. Zubkov, The simplest low linear order with no computable copies, The
Journal of Symbolic Logic, 89 (2024), pp. 97–111.

[189] A. N. Frolov, ∆0
2-copies of linear orderings, Algebra Logika, 45 (2006), pp. 354–370, 376.

[190] , Linear orderings of low degree, Sibirsk. Mat. Zh., 51 (2010), pp. 1147–1162.

[191] , Computable presentability of countable linear orders, in Proceedings of the seminar of
the Kazan University Department of Algebra and Mathematical Logic (Russian), vol. 158 of
Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., Vseross. Inst. Nauchn. i Tekhn.
Inform. (VINITI), Moscow, 2018, pp. 81–115. Translation in J. Math. Sci. 256 (2021), no. 2,
199–233.

[192] L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathe-
matics, Pergamon Press, New York-Oxford-London-Paris, 1960.

[193] , Partially ordered algebraic systems, Pergamon Press, Oxford, 1963.

[194] , Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic
Press, New York, 1970.

[195] , Infinite abelian groups. Vol. II, Academic Press, New York, 1973. Pure and Applied
Mathematics. Vol. 36-II.

[196] D. J. Fuchs-Rabinowitsch, Über eine Gruppe mit endlichvielen Erzeugenden und Relatio-
nen, die keine isomorphe Darstellung durch Matrizen von endlicher Ordnung zulässt, C. R.
(Doklady) Acad. Sci. URSS (N.S.), 27 (1940), pp. 425–426.

[197] S. Gao, Invariant descriptive set theory, vol. 293 of Pure and Applied Mathematics (Boca
Raton), CRC Press, Boca Raton, FL, 2009.

[198] Z. Gao, S. Jain, B. Khoussainov, W. Li, A. Melnikov, K. Seidel, and F. Stephan,
Random subgroups of rationals, in 44th International Symposium on Mathematical Founda-
tions of Computer Science, vol. 138 of LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2019, pp. Art. No. 25, 14.

[199] S. Goncharov, The constructivizability of superatomic Boolean algebras, Algebra i Logika,
12 (1973), pp. 31–40, 120.

[200] , Autostability and computable families of constructivizations, Algebra and Logic, 14
(1975), pp. 392–409.

511

[201] , Certain properties of the constructivization of Boolean algebras, Sibirsk. Mat. Ž., 16
(1975), pp. 264–278, 420. (loose errata).

[202] , Bounded theories of constructive Boolean algebras, Sibirsk. Mat. Z., 17 (1976), pp. 797–
812.

[203] , Autostability of models and abelian groups, Algebra i Logika, 19 (1980), pp. 23–44, 132.

[204] , Computable single-valued numerations, Algebra and Logic, 19 (1980), pp. 325–356.

[205] , The problem of the number of nonautoequivalent constructivizations, Algebra i Logika,
19 (1980), pp. 621–639, 745.

[206] , Limit equivalent constructivizations, in Mathematical logic and the theory of algo-
rithms, vol. 2 of Trudy Inst. Mat., “Nauka” Sibirsk. Otdel., Novosibirsk, 1982, pp. 4–12.

[207] , Countable Boolean algebras and decidability, Siberian School of Algebra and Logic,
Consultants Bureau, New York, 1997.

[208] S. Goncharov, N. A. Bazhenov, and M. I. Marchuk, The index set of Boolean algebras
that are autostable relative to strong constructivizations, Sibirsk. Mat. Zh., 56 (2015), pp. 498–
512.

[209] , Index set of linear orderings that are autostable relative to strong constructivizations,
J. Math. Sci. (N.Y.), 221 (2017), pp. 740–748.

[210] S. Goncharov and V. Dzgoev, On constructivizations of some structures, Akad. Nauk
SSSR, Sibirsk. Otdel., Novosibirsk, 1978, (1978). (manuscript deposited at VINITI on July
26, 1978).

[211] , Autostability of models, Algebra i Logika, 19 (1980), pp. 45–58, 132.

[212] S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, and R. Solomon,
Enumerations in computable structure theory, Annals of Pure and Applied Logic, 136 (2005),
pp. 219–246.

[213] S. Goncharov and J. Knight, Computable structure and antistructure theorems, Algebra
Logika, 41 (2002), pp. 639–681, 757.

[214] S. Goncharov, S. Lempp, and R. Solomon, Friedberg numberings of families of n-
computably enumerable sets, Algebra and Logic, 41 (2002), pp. 81–86.

[215] , The computable dimension of ordered abelian groups, Adv. Math., 175 (2003), pp. 102–
143.

[216] S. Goncharov, A. Molokov, and N. Romanovskii, Nilpotent groups of finite algorithmic
dimension, Siberian Mathematical Journal, 30 (1989), pp. 63–68.

[217] S. Goncharov and A. Nurtazin, Algebra i Logika, 12 (1973), pp. 125–142.

[218] N. Greenberg, M. Harrison-Trainor, A. Melnikov, and D. Turetsky, Non-density
in punctual computability, Ann. Pure Appl. Logic, 172 (2021), pp. Paper No. 102985, 17.

512

[219] N. Greenberg, J. F. Knight, A. Melnikov, and D. Turetsky, Uniform procedures in
uncountable structures, J. Symb. Log., 83 (2018), pp. 529–550.

[220] N. Greenberg, A. Melnikov, A. Nies, and D. Turetsky, Effectively closed subgroups of
the infinite symmetric group, Proceedings of the American Mathematical Society, 146 (2017),
p. 1.

[221] N. Greenberg, A. Montalbán, and T. Slaman, Relative to any non-hyperarithmetic
set, Journal of Mathematical Logic, 13 (2011).

[222] N. Greenberg, D. Turetsky, and L. Westrick, Finding bases of uncountable free
abelian groups is usually difficult, Trans. Amer. Math. Soc., 370 (2018), pp. 4483–4508.

[223] V. Gregoriades, T. Kispéter, and A. Pauly, A comparison of concepts from com-
putable analysis and effective descriptive set theory, Math. Structures Comput. Sci., 27 (2017),
pp. 1414–1436.

[224] T. Grubba and K. Weihrauch, On computable metrization, Electron. Notes Theor. Com-
put. Sci., 167 (2007), pp. 345–364.

[225] A. Grzegorczyk, Computable functionals, Fund. Math., 42 (1955), pp. 168–202.

[226] , On the definition of computable functionals, Fund. Math., 42 (1955), pp. 232–239.

[227] , On the definitions of computable real continuous functions, Fund. Math., 44 (1957),
pp. 61–71.

[228] E. Hammatt, Structures of finite punctual dimension, in Twenty Years of Theoretical and
Practical Synergies. CiE 2024, P. E. G. L. M. F. Levy Patey, L., ed., vol. 14773 of Lecture
Notes in Computer Science, Springer, Cham, 2024.

[229] V. Harizanov, Pure computable model theory, in Handbook of recursive mathematics, Vol.
1, vol. 138 of Stud. Logic Found. Math., North-Holland, Amsterdam, 1998, pp. 3–114.

[230] V. Harizanov, S. Lempp, C. McCoy, A. Morozov, and R. Solomon, On the isomor-
phism problem for some classes of computable algebraic structures, Arch. Math. Logic, 61
(2022), pp. 813–825.

[231] L. Harrington, Recursively presentable prime models, J. Symb. Log., 39 (1974), pp. 305–
309.

[232] , Mclaughlin’s conjecture. Handwritten notes, 1976.

[233] , Building nonstandard models of peano arithmetic. Handwritten notes, 1979.

[234] K. Harris, η-representation of sets and degrees, Journal of Symbolic Logic, 73 (2008),
pp. 1097–1121.

[235] K. Harris and A. Montalbán, Boolean algebra approximations, Trans. Amer. Math. Soc.,
366 (2014), pp. 5223–5256.

[236] M. Harrison-Trainor, Computable valued fields, Arch. Math. Logic, 57 (2018), pp. 473–
495.

513

[237] , There is no classification of the decidably presentable structures, J. Math. Log., 18
(2018), pp. 1850010, 41.

[238] , An introduction to the Scott complexity of countable structures and a survey of recent
results, Bull. Symb. Log., 28 (2022), pp. 71–103.

[239] M. Harrison-Trainor and M.-C. Ho, Finitely generated groups are universal among
finitely generated structures, Annals of Pure and Applied Logic, 172 (2021), p. 102855.

[240] M. Harrison-Trainor, G. Igusa, and J. Knight, Some new computable structures of
high rank, Proceedings of the American Mathematical Society, 146 (2018), pp. 3097–3109.

[241] M. Harrison-Trainor and A. Melnikov, An arithmetic analysis of closed surfaces, Trans.
Amer. Math. Soc., 377 (2024), pp. 1543–1596.

[242] M. Harrison-Trainor, A. Melnikov, and R. Miller, On computable field embeddings
and difference closed fields, Canad. J. Math., 69 (2017), pp. 1338–1363.

[243] M. Harrison-Trainor, A. Melnikov, R. Miller, and A. Montalbán, Computable
functors and effective interpretability, The Journal of Symbolic Logic, 82 (2017), pp. 77–97.

[244] M. Harrison-Trainor, A. Melnikov, and A. Montalbán, Independence in computable
algebra, J. Algebra, 443 (2015), pp. 441–468.

[245] M. Harrison-Trainor, A. Melnikov, and K. M. Ng, Computability of Polish spaces up
to homeomorphism, The Journal of Symbolic Logic, (2020), pp. 1–25.

[246] K. Hatzikiriakou and S. Simpson, WKL0 and orderings of countable abelian groups, in
Logic and computation (Pittsburgh, PA, 1987), vol. 106 of Contemp. Math., Amer. Math.
Soc., Providence, RI, 1990, pp. 177–180.

[247] G. Herrmann, Die frage der endlich vielen schritte in der theorie der polynomideale, Math.
Ann., 95 (1926), pp. 736–788.

[248] P. Hertling, A Banach-Mazur computable but not Markov computable function on the com-
putable real numbers, Ann. Pure Appl. Logic, 132 (2005), pp. 227–246.

[249] E. Hewitt, The role of compactness in analysis, The American Mathematical Monthly, 67
(1960), pp. 499–516.

[250] G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. Ser. A, 262 (1961),
pp. 455–475.

[251] D. Hilbert, Über die theorie der algebraischen formen, Mathematische Annalen, 36 (1890),
pp. 473–534.

[252] , Bulletin of the American Mathematical Society, 8 (1902), pp. 437–479.

[253] D. Hirschfeldt, Degree spectra of relations on computable structures, ProQuest LLC, Ann
Arbor, MI, 1999. Thesis (Ph.D.)–Cornell University.

[254] , Degree spectra of intrinsically c.e. relations, J. Symbolic Logic, 66 (2001), pp. 441–469.

514

[255] , Prime models of theories of computable linear orderings, Proc. Amer. Math. Soc., 129
(2001), pp. 3079–3083 (electronic).

[256] , Some questions in computable mathematics, in Computability and complexity,
vol. 10010 of Lecture Notes in Comput. Sci., Springer, Cham, 2017, pp. 22–55.

[257] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko, Degree spectra and com-
putable dimensions in algebraic structures, Ann. Pure Appl. Logic, 115 (2002), pp. 71–113.

[258] D. Hirschfeldt, B. Khoussainov, and R. A. Shore, A computably categorical structure
whose expansion by a constant has infinite computable dimension, J. Symbolic Logic, 68
(2003), pp. 1199–1241.

[259] D. Hirschfeldt, K. Kramer, R. Miller, and A. Shlapentokh, Categoricity properties
for computable algebraic fields, Trans. Amer. Math. Soc., 367 (2015), pp. 3981–4017.

[260] D. Hirschfeldt, R. Miller, and S. Podzorov, Order-computable sets, Notre Dame J.
Formal Logic, 48 (2007), pp. 317–347.

[261] G. Hjorth, The isomorphism relation on countable torsion free abelian groups, Fund. Math.,
175 (2002), pp. 241–257.

[262] J. G. Hocking and G. S. Young, Topology, Dover Publications, Inc., New York, second ed.,
1988.

[263] K. H. Hofmann and S. A. Morris, The structure of compact groups—a primer for the
student—a handbook for the expert, vol. 25 of De Gruyter Studies in Mathematics, De Gruyter,
Berlin, [2020] ©2020. Fourth edition [of 1646190].

[264] K. H. Hofmann and P. S. Mostert, Cohomology theories for compact abelian groups,
Springer-Verlag, New York-Heidelberg; VEB Deutscher Verlag der Wissenschaften, Berlin,
1973. With an appendix by Eric C. Nummela.

[265] M. Hoyrup, Genericity of weakly computable objects, Theory of Computing Systems, 60
(2017), pp. 396–420.

[266] M. Hoyrup, T. Kihara, and V. Selivanov, Degree spectra of homeomorphism types of
Polish spaces, Preprint., (2020).

[267] M. Hoyrup, A. Melnikov, and K. Ng, Computable topological presentations, (2025). To
appear.

[268] Z. Iljazović, Isometries and computability structures, J.UCS, 16 (2010), pp. 2569–2596.

[269] Z. Iljazović, Compact manifolds with computable boundaries, Log. Methods Comput. Sci.,
9 (2013), pp. 4:19, 22.

[270] Z. Iljazović and T. Kihara, Computability of subsets of metric spaces, in Handbook of
computability and complexity in analysis, Theory Appl. Comput., Springer, Cham, [2021]
©2021, pp. 29–69.

515

[271] C. Jockusch and R. Shore, Π0
1 classes and degrees of theories, Trans. Amer. Math. Soc.,

173 (1972), pp. 33–56.

[272] , Pseudo jump operators. I: The r.e. case, Transactions of the American Mathematical
Society, 275 (1983), pp. 599–609.

[273] , Degrees of orderings not isomorphic to recursive linear orderings, Ann. Pure Appl.
Logic, 52 (1991), pp. 39–64. International Symposium on Mathematical Logic and its Appli-
cations (Nagoya, 1988).

[274] , Boolean algebras, Stone spaces, and the iterated Turing jump, J. Symbolic Logic, 59
(1994), pp. 1121–1138.

[275] A. Kach, Computable shuffle sums of ordinals, Arch. Math. Logic, 47 (2008), pp. 211–219.

[276] A. Kach, K. Lange, and R. Solomon, Degrees of orders on torsion-free Abelian groups,
Ann. Pure Appl. Logic, 164 (2013), pp. 822–836.

[277] A. Kach and D. Turetsky, Limitwise monotonic functions, sets, and degrees on com-
putable domains, J. Symbolic Logic, 75 (2010), pp. 131–154.

[278] I. Kalantari and G. Weitkamp, Effective topological spaces. I. A definability theory, Ann.
Pure Appl. Logic, 29 (1985), pp. 1–27.

[279] I. Kalimullin, Almost computably enumerable families of sets, Mat. Sb., 199 (2008), pp. 33–
40.

[280] , Restrictions on the degree spectra of algebraic structures, Siberian Mathematical Jour-
nal, 49 (2008), pp. 1034–1043.

[281] I. Kalimullin, B. Khoussainov, and A. Melnikov, Limitwise monotonic sequences and
degree spectra of structures, Proc. Amer. Math. Soc., 141 (2013), pp. 3275–3289.

[282] I. Kalimullin, A. Melnikov, and K. M. Ng, Algebraic structures computable without
delay, Theoret. Comput. Sci., 674 (2017), pp. 73–98.

[283] U. Kalvert, D. Kammins, D. F. Năıt, and S. Miller, Comparison of classes of finite
structures, Algebra Logika, 43 (2004), pp. 666–701, 759.

[284] S. Kaplan, Extensions of the Pontrjagin duality. II. Direct and inverse sequences, Duke
Math. J., 17 (1950), pp. 419–435.

[285] I. Kaplansky, Infinite abelian groups, Revised edition, The University of Michigan Press,
Ann Arbor, Mich., 1969.

[286] A. S. Kechris, Classical descriptive set theory, vol. 156 of Graduate Texts in Mathematics,
Springer-Verlag, New York, 1995.

[287] N. Khisamiev, Criterion for constructivizability of a direct sum of cyclic p-groups, Izv. Akad.
Nauk Kazakh. SSR Ser. Fiz.-Mat., (1981), pp. 51–55, 86.

[288] , Hierarchies of torsion-free abelian groups, Algebra i Logika, 25 (1986), pp. 205–226,
244.

516

[289] , The arithmetic hierarchy of abelian groups, Sibirsk. Mat. Zh., 29 (1988), pp. 144–159.

[290] , Constructive abelian p-groups, Siberian Adv. Math., 2 (1992), pp. 68–113.

[291] , Constructive abelian groups, in Handbook of recursive mathematics, Vol. 2, vol. 139 of
Stud. Logic Found. Math., North-Holland, Amsterdam, 1998, pp. 1177–1231.

[292] , On a class of strongly decomposable abelian groups, Algebra Logika, 41 (2002), pp. 493–
509, 511–512.

[293] N. Khisamiev and A. Krykpaeva, Effectively completely decomposable abelian groups,
Sibirsk. Mat. Zh., 38 (1997), pp. 1410–1412, iv.

[294] B. Khoussainov and T. Kowalski, Computable isomorphisms of Boolean algebras with
operators, Studia Logica, 100 (2012), pp. 481–496.

[295] B. Khoussainov, A. Nies, and R. Shore, Computable models of theories with few models,
Notre Dame J. Formal Logic, 38 (1997), pp. 165–178.

[296] E. I. Khukhro and V. D. Mazurov, Unsolved problems in group theory. The Kourovka
Notebook, 2023.

[297] J. A. Kiehlmann, Classifications of countably-based abelian profinite groups, J. Group The-
ory, 16 (2013), pp. 141–157.

[298] S. Kleene, On notation for ordinal numbers, The Journal of Symbolic Logic, 3 (1938),
pp. 150–155.

[299] , Recursive predicates and quantifiers, Transactions of the American Math. Society, 53
(1943), pp. 41–73.

[300] , On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math.,
66 (1944), pp. 41–58.

[301] , On the forms of the predicates in the theory of constructive ordinals. II, Amer. J. Math.,
77 (1955), pp. 405–428.

[302] , Recursive functionals and quantifiers of finite types. I, Trans. Amer. Math. Soc., 91
(1959), pp. 1–52.

[303] S. Kleene and E. Post, The upper semi-lattice of degrees of recursive unsolvability, Annals
of Mathematics. Second Series, 59 (1954), pp. 379–407.

[304] J. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic, 51 (1986), pp. 1034–1042.

[305] J. Knight and C. McCoy, Index sets and Scott sentences, Arch. Math. Logic, 53 (2014),
pp. 519–524.

[306] J. Knight and J. Millar, Computable structures of rank, Journal of Mathematical Logic,
10 (2010), pp. 31–43.

[307] J. Knight, S. Miller, and M. Vanden Boom, Turing computable embeddings, The Jour-
nal of Symbolic Logic, 72 (2007), pp. 901–918.

517

[308] J. Knight and M. Stob, Computable Boolean algebras, J. Symbolic Logic, 65 (2000),
pp. 1605–1623.

[309] N. T. Kogabaev, The theory of projective planes is complete with respect to degree spectra
and effective dimensions, Algebra Logika, 54 (2015), pp. 599–627, 648, 650.

[310] , Freely generated projective planes of finite computable dimension, Algebra Logika, 55
(2016), pp. 704–737.

[311] H. T. Koh, A. Melnikov, and K. M. Ng, Counterexamples in effective topology. To
appear.

[312] , A non-density aspect of the rationals. Submitted.

[313] H. T. Koh, A. Melnikov, and K. M. Ng, Computable topological groups, Journal of
Symbolic Logic, (2023).

[314] A. Kokorin and V. Kopytov, Fully ordered groups, Halsted Press [John Wiley & Sons],
New York-Toronto, Ont., 1974. Translated from the Russian by D. Louvish.

[315] M. Korovina and O. Kudinov, Towards computability over effectively enumerable topo-
logical spaces, in Proceedings of the Fifth International Conference on Computability and
Complexity in Analysis (CCA 2008), vol. 221 of Electron. Notes Theor. Comput. Sci., Else-
vier Sci. B. V., Amsterdam, 2008, pp. 115–125.

[316] , The Rice-Shapiro theorem in computable topology, Log. Methods Comput. Sci., 13
(2017), pp. Paper No. 30, 13.

[317] G. Kreisel, D. Lacombe, and J. R. Shoenfield, Partial recursive functionals and ef-
fective operations, in Constructivity in mathematics: Proceedings of the colloquium held at
Amsterdam, 1957 (edited by A. Heyting), Studies in Logic and the Foundations of Mathe-
matics, North-Holland Publishing Co., Amsterdam, 1957, pp. 290–297.

[318] L. Kronecker, Grundzüge einer arithmetischen theorie der algebraischen grössen, J. f.
Math., 92 (1882), pp. 1–122.

[319] W. Krull, Über polynomzerlegung mit endlich vielen schritten, Math. Z., 59 (1953), pp. 57–
60.

[320] O. V. Kudinov, An autostable 1-decidable model without a computable Scott family of D-
formulas, Algebra and Logic, 35 (1996), pp. 255–260.

[321] , Some properties of autostable models, Algebra i Logika, 35 (1996), pp. 685–698, 752.

[322] G. Kuperberg, Algorithmic homeomorphism of 3-manifolds as a corollary of geometrization,
Pacific J. Math., 301 (2019), pp. 189–241.

[323] A. Kurosh, The theory of groups, Chelsea Publishing Co., New York, 1960. Translated from
the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes.

[324] P. La Roche, Effective Galois theory, J. Symbolic Logic, 46 (1981), pp. 385–392.

518

[325] A. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proceedings of the
London Mathematical Society, 16 (1966), pp. 537–569.

[326] D. Lacombe, Extension de la notion de fonction recursive aux fonctions d’une ou plusieurs
variables reelles. I, C. R. Acad. Sci. Paris, 240 (1955), pp. 2478–2480.

[327] , Extension de la notion de fonction recursive aux fonctions d’une ou plusieurs variables
reelles. II, III, C. R. Acad. Sci. Paris, 241 (1955), pp. 13–14, 151–153.

[328] R. E. Ladner, Mitotic recursively enumerable sets, Journal of Symbolic Logic, 38 (1973),
pp. 199–211.

[329] S. Lang, Algebra, vol. 211 of Graduate Texts in Mathematics, Springer-Verlag, New York,
third ed., 2002.

[330] K. Lange, R. Miller, and R. M. Steiner, Classifications of computable structures, Notre
Dame J. Form. Log., 59 (2018), pp. 35–59.

[331] P. LaRoche, Recursively presented Boolean algebras, Notices AMS, 24 (1977), pp. 552–553.

[332] D. Lascar and B. Poizat, An introduction to forking, The Journal of Symbolic Logic, 44
(1979), pp. 330–350.

[333] S. Le Roux and M. Ziegler, Singular coverings and non-uniform notions of closed set
computability, Mathematical Logic Quarterly, 54 (2008), pp. 545–560.

[334] S. Lempp, The computational complexity of torsion-freeness of finitely presented groups, Bull.
Austral. Math. Soc., 56 (1997), pp. 273–277.

[335] S. Lempp, C. McCoy, R. Miller, and R. Solomon, Computable categoricity of trees of
finite height, J. Symbolic Logic, 70 (2005), pp. 151–215.

[336] M. Lerman, On recursive linear orderings, in Logic Year 1979–80 (Proc. Seminars and Conf.
Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), vol. 859 of Lecture Notes in Math.,
Springer, Berlin, 1981, pp. 132–142.

[337] F. Levi. Habilitationsschrift, Leipzig, Teubner, 1917.

[338] O. Levin, Computable dimension for ordered fields, Arch. Math. Logic, 55 (2016), pp. 519–
534.

[339] R. J. Lipton and Y. Zalcstein, Word problems solvable in logspace, J. Assoc. Comput.
Mach., 24 (1977), pp. 522–526.

[340] P. Loth, Classifications of abelian groups and Pontrjagin duality, vol. 10 of Algebra, Logic
and Applications, Gordon and Breach Science Publishers, Amsterdam, 1998.

[341] M. Lupini, A. Melnikov, and A. Nies, Computable topological abelian groups, J. Algebra,
615 (2023), pp. 278–327.

[342] N. Lusin and W. Sierpinski, Sur un ensemble non measurable b, Journal de Mathámatiques
Pures et Appliquées, 9 (1923), pp. 53–72.

519

[343] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Classics in Mathematics,
Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition.

[344] E. W. Madison, A note on computable real fields, J. Symbolic Logic, 35 (1970), pp. 239–241.

[345] A. Mal’cev, Constructive algebras. I, Uspehi Mat. Nauk, 16 (1961), pp. 3–60.

[346] , On recursive Abelian groups, Dokl. Akad. Nauk SSSR, 146 (1962), pp. 1009–1012.

[347] A. Marcone and M. Valenti, Effective aspects of Hausdorff and Fourier dimension, Com-
putability, 11 (2022), pp. 299–333.

[348] D. Marker, Model theory, vol. 217 of Graduate Texts in Mathematics, Springer-Verlag, New
York, 2002.

[349] D. Marker and R. Miller, Turing degree spectra of differentially closed fields, J. Symb.
Log., 82 (2017), pp. 1–25.

[350] A. Markov, On the continuity of constructive functions, Uspehi Matematicheskih Nauk, 9
(1954), pp. 226–230. (in Russian).

[351] , On the continuity of constructive functions, Uspekhi Matemicheskikh Nauk., 9 (1954),
pp. 602–619.

[352] , The insolubility of the problem of homeomorphy., Dokl. Akad. Nauk SSSR, 121 (1958),
pp. 218–220.

[353] , On constructive functions, Proceedings of the Steklov Institute of Mathematics, LII
(1958), pp. 315–348.

[354] D. Martin and M. Pour-El, Axiomatizable theories with few axiomatizable extensions,
Journal of Symbolic Logic, 35 (1970), pp. 205–209.

[355] C. McCoy, Finite computable dimension does not relativize, Archive for Mathematical Logic,
41 (2002), pp. 309–320.

[356] , On ∆0
3-categoricity for linear orders and Boolean algebras, Algebra Logika, 41 (2002),

pp. 531–552, 633.

[357] , ∆0
2-categoricity in Boolean algebras and linear orderings, Ann. Pure Appl. Logic, 119

(2003), pp. 85–120.

[358] C. McCoy and J. Wallbaum, Describing free groups, Part II: Π0
4 hardness and no Σ0

2

basis, Trans. Amer. Math. Soc., 364 (2012), pp. 5729–5734.

[359] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist, and L. Wos, Short single
axioms for Boolean algebra, J. Automat. Reason., 29 (2002), pp. 1–16.

[360] T. McNicholl, Computable copies of `p, Computability, 6 (2017), pp. 391–408.

[361] , Computing the exponent of a Lebesgue space, Journal of Logic and Analysis, 12 (2020),
pp. Paper No. 7, 28 pp.

520

[362] T. McNicholl and D. M. Stull, The isometry degree of a computable copy of `p1, Com-
putability, 8 (2019), pp. 179–189.

[363] T. H. McNicholl, Evaluative presentations, 2024.

[364] J. Melleray, Some geometric and dynamical properties of the Urysohn space, Topology
Appl., 155 (2008), pp. 1531–1560.

[365] A. Melnikov, Enumerations and completely decomposable torsion-free abelian groups, The-
ory Comput. Syst., 45 (2009), pp. 897–916.

[366] , Computable ordered abelian groups and fields, in Programs, proofs, processes, vol. 6158
of Lecture Notes in Comput. Sci., Springer, Berlin, 2010, pp. 321–330.

[367] , Computability and structure, PhD thesis, The University of Auckland, 2012.

[368] , Effective properties of completely decomposable abelian groups, PhD thesis, Novosibirsk
State University, Russian Federation, Novosibirsk, 2012.

[369] , Computably isometric spaces, J. Symbolic Logic, 78 (2013), pp. 1055–1085.

[370] , Computable abelian groups, The Bulletin of Symbolic Logic, 20 (2014), pp. 315–356.

[371] , New degree spectra of abelian groups, Notre Dame Journal of Formal Logic, 58 (2017).

[372] , Torsion-free abelian groups with optimal Scott families, Journal of Mathematical Logic,
18 (2017).

[373] , Computable topological groups and Pontryagin duality, Trans. Amer. Math. Soc., 370
(2018), pp. 8709–8737.

[374] , New degree spectra of Polish spaces, Sibirsk. Mat. Zh., (2021), p. 1091–1108.

[375] A. Melnikov and A. Montalbán, Computable Polish group actions, J. Symb. Log., 83
(2018), pp. 443–460.

[376] A. Melnikov and K. M. Ng, Computable structures and operations on the space of con-
tinuous functions, Fund. Math., 233 (2016), pp. 101–141.

[377] , Computable torsion abelian groups, Adv. Math., 325 (2018), pp. 864–907.

[378] , The back-and-forth method and computability without delay, Israel J. Math., 234 (2019),
pp. 959–1000.

[379] , A structure of punctual dimension two, Proc. Amer. Math. Soc., 148 (2020), pp. 3113–
3128.

[380] , Separating notions in effective topology, Internat. J. Algebra Comput., 33 (2023),
pp. 1687–1711.

[381] A. Melnikov and A. Nies, The classification problem for compact computable metric spaces,
in The nature of computation, vol. 7921 of Lecture Notes in Comput. Sci., Springer, Heidel-
berg, 2013, pp. 320–328.

521

[382] , Computably locally compact totally disconnected groups. Submitted., 2023.

[383] G. Metakides and A. Nerode, Recursively enumerable vector spaces, Ann. Math. Logic,
11 (1977), pp. 147–171.

[384] , Effective content of field theory, Ann. Math. Logic, 17 (1979), pp. 289–320.

[385] , The introduction of nonrecursive methods into mathematics, in The L. E. J. Brouwer
Centenary Symposium (Noordwijkerhout, 1981), vol. 110 of Stud. Logic Found. Math., North-
Holland, Amsterdam, 1982, pp. 319–335.

[386] G. Metakides, A. Nerode, and R. Shore, Recursive limits on the Hahn-Banach theorem,
in Errett Bishop: reflections on him and his research (San Diego, Calif., 1983), vol. 39 of
Contemp. Math., Amer. Math. Soc., Providence, RI, 1985, pp. 85–91.

[387] A. Meyer, Program size in restricted programming languages, Information and Control, 21
(1972), pp. 382–394.

[388] T. Millar, Foundations of recursive model theory, Ann. Math. Logic, 13 (1978), pp. 45–72.

[389] , Recursive categoricity and persistence, Journal of Symbolic Logic, 51 (1986), pp. 430–
434.

[390] C. Miller, III, Decision problems for groups—survey and reflections, in Algorithms and
classification in combinatorial group theory (Berkeley, CA, 1989), vol. 23 of Math. Sci. Res.
Inst. Publ., Springer, New York, 1992, pp. 1–59.

[391] J. Miller, Effectiveness for embedded spheres and balls, Electron. Notes Theor. Comput.
Sci., 66 (2002), pp. 127–138.

[392] , Degrees of unsolvability of continuous functions, J. Symbolic Logic, 69 (2004), pp. 555–
584.

[393] R. Miller, Computability, definability, categoricity, and automorphisms, ProQuest LLC,
Ann Arbor, MI, 2000. Thesis (Ph.D.)–The University of Chicago.

[394] , The computable dimension of trees of infinite height, J. Symbolic Logic, 70 (2005),
pp. 111–141.

[395] , d-computable categoricity for algebraic fields, Journal of Symbolic Logic, 74 (2009),
pp. 1325–1351.

[396] , Low5 Boolean subalgebras and computable copies, J. Symbolic Logic, 76 (2011),
pp. 1061–1074.

[397] R. Miller, B. Poonen, H. Schoutens, and A. Shlapentokh, A computable functor
from graphs to fields, J. Symb. Log., 83 (2018), pp. 326–348.

[398] A. Montalbán, On the triple jump of the set of atoms of a Boolean algebra, Proc. Amer.
Math. Soc., 136 (2008), pp. 2589–2595.

522

[399] , Notes on the jump of a structure, in Mathematical Theory and Computational Practice,
K. Ambos-Spies, B. Löwe, and W. Merkle, eds., Berlin, Heidelberg, 2009, Springer Berlin
Heidelberg, pp. 372–378.

[400] , A robuster Scott rank, Proc. Amer. Math. Soc., 143 (2015), pp. 5427–5436.

[401] , Computable structure theory—within the arithmetic, Perspectives in Logic, Cambridge
University Press, Cambridge; Association for Symbolic Logic, Ithaca, NY, 2021.

[402] , Computable structure theory – beyond the arithmetic, To appear.

[403] T. Mori, Y. Tsujii, and M. Yasugi, Computability structures on metric spaces, in Combi-
natorics, Complexity, and Logic, D. S. Bridges, C. S. Calude, J. Gibbons, S. Reeves, and I. H.
Witten, eds., vol. 1 of Discrete Mathematics and Theoretical Computer Science, Springer,
Singapore, 1997, pp. 351–362.

[404] S. A. Morris, Pontryagin duality and the structure of locally compact abelian groups, Cam-
bridge University Press, Cambridge-New York-Melbourne, 1977. London Mathematical Soci-
ety Lecture Note Series, No. 29.

[405] Y. Moschovakis, Recursive metric spaces, Fund. Math., 55 (1964), pp. 215–238.

[406] , Descriptive set theory, vol. 155 of Mathematical Surveys and Monographs, American
Mathematical Society, Providence, RI, second ed., 2009.

[407] M. Moses, Recursive linear oderings with recursive successivities, Annals of Pure and Applied
Logic, 27 (1984), pp. 253–264.

[408] , n-recursive linear orders without pn`1q-recursive copies, in Logical methods. In honor
of Anil Nerode’s 60th birthday, Basel: Birkhäuser, 1993, pp. 572–592.

[409] A. A. Muchnik, On the unsolvability of the problem of reducibility in the theory of algorithms,
Doklady Akademii Nauk SSSR (N.S.), 108 (1956), pp. 194–197.

[410] , Solution of Post’s reduction problem and certain other problems in the theory of algo-
rithms, Trud. Mosk. Math. Obsc., 7 (1958), pp. 391–401.

[411] J. R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo
Park, CA, 1984.

[412] , Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition.

[413] , Topology, Prentice Hall, Inc., Upper Saddle River, NJ, second ed., 2000.

[414] J. Myhill, A recursive function, defined on a compact interval and having a continuous
derivative that is not recursive, Michigan Math. J., 18 (1971), pp. 97–98.

[415] K. M. Ng, Some properties of d.c.e. reals and their degrees, 2005. M.Sc. thesis.

[416] P. Novikov, On the algorithmic unsolvability of the word problem in group theory, Trudy
Mat. Inst. Steklov, 44 (1955), pp. 1–143.

523

[417] A. Nurtazin, Computable classes and algebraic criteria of autostability, Summary of Scien-
tific Schools, Math. Inst., SB USSRAS, Novosibirsk, 1974.

[418] , Strong and weak constructivizations, and enumerable families, Algebra i Logika, 13
(1974), pp. 311–323, 364.

[419] S. Oates, Jump Degrees of Groups, PhD thesis, University of Notre Dame, 1989.

[420] V. Ocasio González, Computability in the Class of Real Closed Fields, PhD thesis, Notre
Dame University, 2014.

[421] P. Odifreddi, Classical Recursion Theory. The theory of functions and sets of natural num-
bers, no. 125 in Studies in Logic and the Foundations of Mathematics, North-Holland Pub-
lishing Company, Amsterdam, 1990.

[422] S. P. Odintsov, Generally constructive Boolean algebras, in Handbook of recursive math-
ematics, Vol. 2, vol. 139 of Stud. Logic Found. Math., North-Holland, Amsterdam, 1998,
pp. 1319–1354.

[423] S. P. Odintsov and V. L. Selivanov, The arithmetical hierarchy and ideals of enumerated
Boolean algebras, Sibirsk. Mat. Zh., 30 (1989), pp. 140–149.

[424] S. Ospichev, Friedberg numberings in the Ershov hierarchy, Algebra and Logic, 54 (2015),
pp. 283–295.

[425] , Friedberg numberings of families of partially computable functionals, Sib. Èlektron.
Mat. Izv., 16 (2019), pp. 331–339.

[426] G. Paolini and S. Shelah, Torsion-free abelian groups are Borel complete, Ann. of Math.
(2), 199 (2024), pp. 1077–1124.

[427] A. Pauly, D. Seon, and M. Ziegler, Computing Haar Measures, in 28th EACSL Annual
Conference on Computer Science Logic (CSL 2020), M. Fernández and A. Muscholl, eds.,
vol. 152 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany,
2020, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 34:1–34:17.

[428] E. N. Pavlovskii, An estimate for the algorithmic complexity of classes of computable mod-
els, Sibirsk. Mat. Zh., 49 (2008), pp. 635–649.

[429] L. Pontryagin, Topological groups, Translated from the second Russian edition by Arlen
Brown, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966.

[430] B. Poonen, Undecidable problems: A sampler, in Interpreting Gödel, Cambridge Univ. Press,
Cambridge, 2014, pp. 211–241.

[431] E. Post, Recursively enumerable sets of positive integers and their decision problems, Bulletin
of the American Mathematical Society, 50 (1944), pp. 284–316.

[432] M. Pour-El and J. Caldwell, On a simple definition of computable function of a real
variable—with applications to functions of a complex variable, Z. Math. Logik Grundlagen
Math., 21 (1975), pp. 1–19.

524

[433] M. Pour-El and H. Putnam, Recursively enumerable classes and their application to re-
cursive sequences of formal theories, Archiv für mathematische Logik, 8 (1965), pp. 104–121.

[434] M. Pour-El and I. Richards, Computability and noncomputability in classical analysis,
Trans. Amer. Math. Soc., 275 (1983), pp. 539–560.

[435] , Computability in analysis and physics, Perspectives in Mathematical Logic, Springer-
Verlag, Berlin, 1989.

[436] H. Prüfer, Unendliche Abelsche Gruppen von Elementen endlicher Ordnung, PhD thesis,
Humboldt-Universität zu Berlin, Berlin, Germany, 1921.

[437] L. Qian, Computability-theoretic complexity of effective Banach spaces, M.Sc. thesis, Victoria
University of Wellington, 2021.

[438] M. Rabin, Recursive unsolvability of group theoretic problems, Ann. of Math. (2), 67 (1958),
pp. 172–194.

[439] , Recursive unsolvability of group theoretic problems, Annals of Mathematics (2), 67
(1958), pp. 172–194.

[440] , Computable algebra, general theory and theory of computable fields., Trans. Amer.
Math. Soc., 95 (1960), pp. 341–360.

[441] R. Rado, A proof of the basis theorem for finitely generated Abelian groups, J. London Math.
Soc., 26 (1951), pp. 74–75; erratum, 160.

[442] A. Raichev, Relative randomness and real closed fields, Journal of Symbolic Logic, 70 (2005),
pp. 319–330.

[443] J. Remmel, Recursively enumerable Boolean algebras, Ann. Math. Logic, 14 (1978), pp. 75–
107.

[444] , Recursive Boolean algebras with recursive atoms, J. Symb. Log., 46 (1981), pp. 595–616.

[445] , Recursive isomorphism types of recursive Boolean algebras, J. Symbolic Logic, 46
(1981), pp. 572–594.

[446] , Recursively categorical linear orderings, Proc. Amer. Math. Soc., 83 (1981), pp. 387–
391.

[447] , Recursive Boolean algebras, in Handbook of Boolean algebras, Vol. 3, North-Holland,
Amsterdam, 1989, pp. 1097–1165.

[448] H. Rice, Classes of recursively enumerable sets and their decision problems, Transactions of
the American Mathematical Society, 74 (1953), pp. 358–366.

[449] , Recursive real numbers, Proceedings of the American Mathematical Society, 5 (1954),
pp. 784–791.

[450] L. Richter, Degrees of Unsolvability of Models, PhD thesis, University of Illinois at
Champaign-Urbana, 1977.

525

[451] , Degrees of structures, J. Symbolic Logic, 46 (1981), pp. 723–731.

[452] K. Riggs, Computable Properties of Decomposable and Completely Decomposable Groups,
PhD thesis, Indiana University, Bloomington, Indiana, USA, 2014.

[453] R. W. Robinson, Jump restricted interpolation in the recursively enumerable degrees, Annals
of Mathematics. Second Series, 93 (1971), pp. 586–596.

[454] H. Rogers, Theory of recursive functions and effective computability, MIT Press, Cambridge,
MA, second ed., 1987.

[455] L. Rogers, Ulm’s theorem for partially ordered structures related to simply presented abelian
p-groups, Trans. Amer. Math. Soc., 227 (1977), pp. 333–343.

[456] J. G. Rosenstein, Linear orderings, vol. 98 of Pure and Applied Mathematics, Academic
Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

[457] G. Sacks, On the degrees less than 01, Annals of Mathematics. Second Series, 77 (1963),
pp. 211–231.

[458] , Higher recursion theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin,
1990.

[459] M. Schröder, Effective metrization of regular spaces, Computability and Complexity in
Analysis, Informatik Berichte 235 (1998), pp. 63–80.

[460] S. Schwarz, Recursive automorphisms of recursive linear orderings, Annals of Pure and
Applied Logic, 26 (1984), pp. 69–73.

[461] D. Scott, Logic wit denumerably long formulas and finite strings of quantifiers, in The
Theory of Models, J. Addison, L. Henkin, and A. Tarski, eds., North-Holland, 1965, pp. 329–
341.

[462] V. Selivanov, The numerations of families of general recursive functions, Algebra i Logika,
15 (1976), pp. 205–226, 246.

[463] , Descriptive complexity of qcb0-spaces, Theoretical Computer Science, 945 (2023),
p. 113666.

[464] P. Semukhin, Prime models of finite computable dimension, The Journal of Symbolic Logic,
74 (2009), p. 336–348.

[465] S. Shelah, Classification theory, vol. 98 of Studies in Logic (London), College Publications,
[London], second ed., [2023] ©2023. Mathematical Logic and Foundations.

[466] J. Shoenfield, On degrees of unsolvability, Annals of Mathematics. Second Series, 69 (1959),
pp. 644–653.

[467] , Degrees of Unsolvability, no. 2 in North-Holland Mathematics Studies, North-Holland
Publishing Company, Amsterdam-London, 1971.

[468] R. Shore, Controlling the dependence degree of a recursively enumerable vector space, J.
Symbolic Logic, 43 (1978), pp. 13–22.

526

[469] W. Sierpinski, General topology, Mathematical Expositions, No. 7, University of Toronto
Press, Toronto, 1952. Translated by C. Cecilia Krieger.

[470] S. G. Simpson, Subsystems of second order arithmetic, Perspectives in Mathematical Logic,
Springer-Verlag, Berlin, 1999.

[471] T. Slaman, Relative to any nonrecursive set, Proc. Amer. Math. Soc., 126 (1998), pp. 2117–
2122.

[472] R. Smith, The theory of profinite groups with effective presentations, ProQuest LLC, Ann
Arbor, MI, 1979. Thesis (Ph.D.)–The Pennsylvania State University.

[473] , Effective aspects of profinite groups, J. Symbolic Logic, 46 (1981), pp. 851–863.

[474] , Two theorems on autostability in p-groups, in Logic Year 1979–80 (Proc. Seminars and
Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), vol. 859 of Lecture Notes in
Math., Springer, Berlin, 1981, pp. 302–311.

[475] R. Smullyan, Theory of Formal Systems, Princeton University Press, 1961.

[476] R. Soare, The Friedberg-Muchnik theorem re-examined, Canadian Journal of Mathematics,
24 (1972), p. 1070–1078.

[477] , Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-
Verlag, Berlin, 1987. A study of computable functions and computably generated sets.

[478] , Turing computability, Theory and Applications of Computability, Springer-Verlag,
Berlin, 2016. Theory and applications.

[479] R. Solomon, Π0
1 classes and orderable groups, Ann. Pure Appl. Logic, 115 (2002), pp. 279–

302.

[480] E. Specker, Nicht konstrucktiv beweisbare sätze der analysis, Journal of Symbolic Logic, 14
(1949), pp. 145–158.

[481] C. Spector, Recursive well-orderings, J. Symbolic Logic, 20 (1955), pp. 151–163.

[482] D. Spreen, A characterization of effective topological spaces, in Recursion theory week (Ober-
wolfach, 1989), vol. 1432 of Lecture Notes in Math., Springer, Berlin, 1990, pp. 363–387.

[483] E. Steinitz, Algebraische theorie der körper, J. f. Math., 137 (1910), pp. 167–309.

[484] V. Stoltenberg-Hansen and J. V. Tucker, Computable and continuous partial homo-
morphisms on metric partial algebras, Bull. Symbolic Logic, 9 (2003), pp. 299–334.

[485] J. J. Thurber, Degrees of Boolean algebras, ProQuest LLC, Ann Arbor, MI, 1994. Thesis
(Ph.D.)–University of Notre Dame.

[486] D. Turetsky, Coding in the automorphism group of a computably categorical structure,
Journal of Mathematical Logic, 20 (2020).

[487] A. Turing, On computable numbers, with an application to the Entscheidungsproblem, Pro-
ceedings of the London Mathematical Society, 42 (1936), pp. 230–265.

527

[488] , On Computable Numbers, with an Application to the Entscheidungsproblem. A Correc-
tion, Proceedings of the London Mathematical Society, 43 (1937), pp. 544–546.

[489] , Finite approximations to Lie groups, Annals of Mathematics, 39 (1938), pp. 105–111.

[490] , Systems of logic based on ordinals, Proceedings of the London Math. Society, 45 (1939),
pp. 154–222.

[491] H. Ulm, Zur theorie der abzählbar-unendlichen abelschen gruppen, Math. Ann., 107 (1933),
pp. 774–803.

[492] J. Vaisala, A proof of the Mazur-Ulam theorem, The American Mathematical Monthly, 110
(2003), pp. 633–635.

[493] B. van der Waerden, Moderne Algebra. Parts I and II, G. E. Stechert and Co., New York,
1943.

[494] M. Vanden Boom, The effective Borel hierarchy, Fund. Math., 195 (2007), pp. 269–289.

[495] R. Vaught, Invariant sets in topology and logic, Fund. Math., 82 (1974/75), pp. 269–294.

[496] R. L. Vaught, Topics in the theory of arithmetical classes and Boolean algebras, ProQuest
LLC, Ann Arbor, MI, 1955. Thesis (Ph.D.)–University of California, Berkeley.

[497] Y. G. Ventsov, Effective choice for relations and reducibilities in classes of constructive
and positive models, Algebra and Logic, 31 (1992), pp. 63–73.

[498] , Effective choice operations on constructive and positive models, Algebra and Logic, 32
(1993), pp. 23–28.

[499] L. Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von
zusammenhangstreuen Abbildungen, Math. Ann., 97 (1927), pp. 454–472.

[500] J. D. Wallbaum, Computability of algebraic structures, ProQuest LLC, Ann Arbor, MI,
2010. Thesis (Ph.D.)–University of Notre Dame.

[501] W. C. Waterhouse, Profinite groups are Galois groups, Proc. Amer. Math. Soc., 42 (1974),
pp. 639–640.

[502] R. Watnick, A generalization of Tennenbaum’s theorem on effectively finite recursive linear
orderings, J. Symbolic Logic, 49 (1984), pp. 563–569.

[503] S. Wehner, Enumerations, countable structures and Turing degrees, Proc. Amer. Math.
Soc., 126 (1998), pp. 2131–2139.

[504] , On recursive enumerability with finite repetitions, J. Symbolic Logic, 64 (1999), pp. 927–
945.

[505] K. Weihrauch, Computable analysis, Texts in Theoretical Computer Science. An EATCS
Series, Springer-Verlag, Berlin, 2000. An introduction.

[506] , Computational complexity on computable metric spaces, MLQ Math. Log. Q., 49 (2003),
pp. 3–21.

528

[507] K. Weihrauch and X. Zheng, Effectiveness of the global modulus of continuity on metric
spaces, Theoretical Computer Science, 219 (1999), p. 439 – 450.

[508] L. Westrick, A lightface analysis of the differentiability rank, J. Symb. Log., 79 (2014),
pp. 240–265.

[509] W. M. White, Characterizations for computable structures, ProQuest LLC, Ann Arbor, MI,
2000. Thesis (Ph.D.)–Cornell University.

[510] R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math., (1974), pp. 169–
203.

[511] R. Xie, Computability and Randomness, PhD thesis, Victoria University of Wellington, 2024.

[512] Y. Xu and T. Grubba, On computably locally compact Hausdorff spaces, Mathematical
Structures in Computer Science, 19 (2009), pp. 101 – 117.

[513] C. E. M. Yates, A minimal pair of recursively enumerable degrees, The Journal of Symbolic
Logic, 31 (1966), pp. 159–168.

[514] I. D. Zaslavskii, The refutation of some theorems in classical analysis in constructive anal-
ysis, Uspehi Mat. Nauk., 10 (1955), pp. 209–1210.

[515] , Differentiation and integration of constructive functions, Dolk. Akad. Nauk. SSSR, 156
(1964), pp. 599–601.

529

Index

pAqR, 191
pXq˚A, 138
pXq˚G, 191
ăKB , 212
A æ n, 16
A1, 17
ACF , 26
BpLq, 72
Cr0, 1s, 44, 45, 175
CF pLq, 78
DαpBq, 96
EpKq, 171
Gδ, 130
Hpaq, 213
IpKq, 171
K, 14
K0, 14
Lcω1ω, 294
Lω1ω, 293
RCF , 27
We, 14
rXs, 191
∆0
α-categoricity (relative), 298

∆0
n-categorcial, 190, 208

∆0
n-categorical, 270

∆0
n-categorical structure, 171

∆0
n-categoricity, 196, 246, 308, 321, 323, 350

∆1
1, 212

∆0
n, 17

ΦBe , 16
ΦBe,spnq, 16
Φe, 16
ΦepBq, 16
ΦepB;nq, 15
ΦBe pnq, 15

Φe,spB;nq, 16
Φe,spBs;nq, 16
Π0

1

class, 18
set, 18
subset of a space, 119

Π0
1 class, 18

decidable, 115
with no computable members, 18

Π1
1, 212

Π0
n, 17

Σ0
1, 17

presented structure, 5
set, 18

Σ0
fpnqy, 107

Σ1
1, 212

Σ0
n, 17

a1, 17
01, 17
0pnq, 17
À

iPI Ai, 137
X-decidable system of covers, 117

fully, 118
span, 139
spans, 141
H1, 17
Hpωq, 30
ď1, 15
ďT , 16
ďm, 15
ďEFF , 173, 220
ďFF , 226
Rc, 32
T, 156
Z |ďs, 140

530

Zp8 , 260
IntalgpLq, 95
ωCK1 , 28
ϕe, 12
pG, 156
m-complete, 56
upΦpA; xqq, 16
O, 28, 213

abelian group
Apαq, 261
Aα, 261
DpAq, 260
RpAq, 260
S-basis, 192
S-independence, 192
hppAq, 260
p-basic tree, 262
p-group, 137, 216, 259
p-height, 142, 260
q-divisible, 158, 165, 259
s-independence, 140
Baer type, 142
basis, 137
c.d., 190, 207
classification of finitely generated, 138
completely decomposable, 190, 207
direct sum, 137
divisible, 138, 259
excellent basis, 192
free, 138
homogeneous, 191
homogeneous c.d., 191
linear (Prüfer) independent, 137
linear span, 139
Pontryagin dual, 156
Prüfer p-group, 260
proper, 272
pure closure, 138, 191
pure cyclic subgroup, 138
pure f.g. subgroup, 138
pure subgroup, 138
quasi-cyclic group, 260
rank, 137
reduced, 216, 260
torsion, 137

torsion-free, 137
Ulm factor, 260

Adyan, S., 189
Alaev, P., 111, 349
algebraically closed field, 26
Alvir, R., 324
Ambos-Spies, K., 65, 70
Amir, D., 116
Andersen, B., 239
Anderson, B., 321
arithmetic hierarchy, 17
arithmetical class, 172
Ash, C., 87, 88, 239, 259, 270, 294, 298, 305, 312,

323
autoreducible, 59

Badaev, S., 301
Baer, R., 142, 190
Banach space, 43, 218
Banach, S., 38
Barker, E., 323
Barwise-Kreisel Compactness, 313
Bazhenov, N., 91, 129–131, 134, 219, 240, 321,

322, 351
Becher, V., 188
Boole, G., 92
Boolean algebra, 215

n-atom, 97
n-atomic, 97
n-atomless, 97
atom, 94
Cantor-Bendixson derivative and rank, 96
computable Stone duality, 125
definition of, 92
filter, 93
finite, 95
ideal, 93
rank 1, 110
Stone duality, 93, 95, 108
Stone space, 108
sum, 96
superatomic, 102, 215
tree basis, 109
tree representation, 108

Boone, W., 31, 181
Borel computable, 32

531

Borel, E., 38
Bosserhoff, V., 247
Boumslag, G., 154
bounded

injury, 61
Brattka, V., 51, 124
Broadhead, P., 291
Brower, L., 212
Brown, T., 51, 350
Buchberger, B., 30
Burnik, K., 130

c.e.
basis, 144
closed set, 121
open set, 113
presented structure, 5
set Ď ω, 13

Caldwell, J., 36
Calvert, W., 178, 180, 181, 218, 220, 233, 239,

244, 245, 275
Cantor, G., 46
Cantor-Bendixson

derivative, 96
rank, 97

Carson, J., 181
Cauchy name, 32

fast, 32
Cauchy sequence, 32
Ceitin, G., 7, 33, 39, 51, 227
Cenzer, D., 31, 178, 188, 244, 245, 291, 321, 349
characterisation problem, 171
Chisholm, J., 312
Cholak, P., 304, 342
Church, A., 12, 28
Church-Turing Thesis, 12
Clanin, J., 350
class transformation

2-step nilpotent groups, 226
FF -complete, 226
PR-universal, 241
abelian p-groups of Ulm type 1, 240, 263,

269
connected compact spaces (homeomorphism),

238
directed graphs, 222

discrete spaces (isometry), 224
effectively complete, 220
effectively complete with respect to computable

dimension, 221
effectively complete with respect to degree

spectra, 221
effectively universal, 221
equivalence structures, 240, 263, 269
fields, 225
integral domains, 225
torsion abelian groups, 229
torsion-free abelian groups, 233
trees, 228
undirected graphs, 223

cohomology
Čech, 164, 233
simplicial, 162, 163

Coles, R., 239, 249
completely decomposable, 190
computable

Lacombe-Grzegorczyk (real function), 35
Type II function RÑ R, 35
algebraic structure, 6
Banach space, 43
basis, 144
Boolean algebra, 99
Borel (real function), 32
closed set, 121
function ω Ñ ω, 12
function between spaces, 40, 113
Lacombe-Grzegorczyk (real function), 35
linear order, 71
Markov (real function), 32
ordinal, 28
partial order, 77
Polish algebra, 40
Polish group, 41, 185
Polish space, 7, 40, 112
real function, 38
set Ď ω, 13
settling time, 197

computable categoricity
abelian p-groups, 266
algebraic fields, 303
computably compact groups, 288
decidable, 304

532

isometric, 325
linear isometric, 348, 349
profinite abelian groups, 289, 290
relative, 293
relative isometric, 326
torsion abelian groups, 270, 303
uniform, 306
uniform isometric, 330
weak uniform isometric, 331
weakly uniform, 306

computable dimension
2, 337, 341
Cr0, 1s, 347
n ą 1, 342
p-adically closed valued fields, 349
abelian p-groups, 270
algebraically closed valued fields, 349
Archimedean ordered fields, 349
Boolean algebras, 349
Boolean algebras with distinguished ideals,

349
decidable, 342
definition of, 337
difference closed fields, 349
differentially closed fields, 349
equivalence structures, 247
fields, 341
homeomorphic, 342
injection structures, 349
isometric, 341
linear orders, 349
ordered abelian groups, 349
primitive recursive, 350
punctual, 350
real closed fields, 349
torsion abelian groups, 349
torsion-free abelian groups, 347
trees (as partial orders), 349
two-step nilpotent groups, 341

computable Polish
algebra, 40
group, 41, 185
rational-valued space, 48
space, 7

computably approximable group, 42
computably categorical

Boolean algebra, 99, 111
compact space, 129
equivalence structure, 245
linear order, 76
relatively, 293
Stone space, 129
torsion-free abelian group, 153

computably categorical structure, 22
computably compact

˚˚-, 117
group, 42, 120, 131, 186
maps between such spaces, 123
nerve-decidable, 117
space, 112, 114, 182
spaces, 184
Stone space, 126
strongly, 118
subspace, 122

computably invariant, 57
computably stable, 304
condensation, 78
constructive ordinal, 28
Csima, B., 240, 249, 321, 342
Cummins, D., 220

Dabkowska, M., 240
Dabkowski, M., 240
decidable categoricity, 304
degree

computably enumerable, 16
of categoricity, 321
of linear isometric categoricity, 349
of unsolvability, 16
spectrum, 238
Turing, 16

Dehn, M., 30, 54
direct limit, 147, 289
Dobrica, V., 147, 154
Dorzhieva, M., 350
Downey, R., 31, 57, 63–65, 70, 78, 80, 91, 102,

110, 117–119, 132, 154, 174, 180, 190,
196, 206–208, 210, 218, 231, 239, 242,
248, 277, 288, 303, 306, 311, 312, 315,
322, 323, 347, 351

Dushnik, B., 78
Dyer, E., 154

533

Dyment, E., 116
Dzgoev, V., 71, 99, 349

elimination of quantifiers, 26
equivalence structure

DpEq, 243
RpEq, 243
#E, 243
χE , 243
c.e. presented (the description of), 244
character, 243
computable (the description of), 244
computably categorical, 245
the definition of, 243

Faizrahmanov , M., 240
Feiner, L., 71, 103, 109
Fellner, S., 53
field

algebraic, 124
algebraically closed, 26
real closed, 27

Fokina, E., 226, 229, 233, 321
Fox, A., 134
Fröhlich, A., 31
Franklin, J., 350
Friedberg enumeration, 172, 188
Friedberg list

Σ´1
α -sets, 258

d-c.e. sets, 258
n-c.e. sets, 258
abelian p-groups of bounded order, 286
abelian p-groups of Ulm type ď n, 277
abelian p-groups of Ulm type 1, 266
algebraically closed fields, 286
compact oriented surfaces, 286
computable algebraic fields, 287
computably compact spaces (none), 188
equivalence structures, 250
f.p. groups (none), 189, 287
families allowing a few repetitions, 258
finitely generated abelian groups, 286
operators of arbitrary type, 258
pro-p abelian groups, 288
reduced abelian p-groups, Ulm type 1 (no

list), 270
vector spaces, 286

well orderings ď α, 286
Friedberg listing, 172
Friedberg numbering, 172
Friedberg, R., 62, 66, 172, 250

Friedberg Completeness Criterion, 59
Friedberg enumeration, 66
Friedberg splitting, 62
Friedberg-Muchnik Theorem, 60

Friedman, H., 230, 233
Friedman, S., 226, 233
Frolov, A., 74, 86, 239, 322
Fuchs, L., 190
function

Banach-Mazur computable, 38
Borel computable, 32
computable, 12
effectively continuous, 35, 113
effectively open, 123
Lacombe-Grzegorczyk computable, 35
limitwise monotonic (l.m.), 244
Markov computable, 32
partial, 12
total, 12
Type II computable, 35
uniformly computable (real), 36

Gödel numbering, 12
Gödel, K., 12
Goldbring, I., 134
Goncharov, S., 71, 92, 99, 102, 107, 154, 171,

175, 188, 216, 240, 258, 266, 276, 297,
301, 304, 305, 313, 323, 337, 342, 347,
349

Gordon, P., 30
Greenberg, N., 240, 324, 327, 351
Grzegorczyk, A., 35, 39

halting problem, 13
Hammatt, E., 343
Harizanov, V., 178, 181, 233, 239, 240, 244, 245,

275, 321, 349
Harrington, L., 276
Harris, K., 248
Harrison order, 213, 216
Harrison, J., 213
Harrison-Trainor, M., 91, 129–131, 134, 155, 188,

219, 315, 324, 347, 349

534

Hart, B., 134
Hermann, G., 30
Hertling, P., 247
hierarchy

analytic, 211
arithmetic, 17
hyperarithmetic, 213

Hilbert, D., 30, 54
Hirschfeldt, D., 31, 57, 221, 225, 229, 248, 249,

303, 304, 306, 341, 342
Hoyrup, M., 116, 119, 126, 130, 131
hyperimmune, 62

Igusa, G., 323, 324
Iljazović, Z., 124, 130, 183, 325
ill-founded, 212
index set, 171

ωn, 179
a computably categorical structure, 180
automatic structures, 219
compact Polish groups, 184
compact spaces, 184
completely decomposable groups, 207
computable structures (among c.e.), 219
computably categorical algebraic fields, 303
computably categorical structures, 219, 303
computably categorical torsion abelian groups,

303
connected compact groups, 185
decidable structures, 219
Harrison order, 216
hyperarithmetical, 313
Intalgpωn`1q, 179
polynomial-time structures, 219
profinite groups, 185
punctual structures, 219
reduced abelian p-groups, 216
relatively c.c. structures, 296
solenoid groups, 187, 208
standard examples, 177
subgroups of pQ,`q, 180
superatomic Boolean algebras, 215
well-founded trees, 212
well-orders, 212

IntalgpLq, 95
inverse limit, 289

isometry, 182
isomorphism problem, 171

abelian p-groups, 216
Banach spaces, 218
Banach spaces under linear isometry, 218
Banach spaces under linear isometry, 217
Boolean algebras, 216
compact groups under topological isomor-

phism, 218
compact spaces under homeomorphism, 217
compact spaces under isometry, 184
completely decomposable groups, 207
connected compact spaces under homeomor-

phism, 238
equivalence structures, 178
f.p. groups, 189
fields, 218
linear orders, 216
ordered abelian groups, 218
profinite groups under topological isomor-

phism, 218
real closed fields, 218
solenoid groups, 187, 208
Stone spaces, 218
Stone spaces under homeomorphism, 218
subgroups of pQ,`q, 180
torsion-free abelian groups, 231
trees, 216
vector space, 177

Jockusch, C., 59, 63–65, 80, 86, 91, 102, 110,
120, 123, 239

jump (of a set), 17
jump operator, 17

Kach, A., 180, 206, 239, 248, 311, 312, 321, 322
Kalantari, I., 49
Kalimullin, I., 111, 219, 239, 240, 248, 321, 322,

351
Khisamiev, N., 150, 154, 208, 244, 247, 259, 265,

270
Khoussainov, B., 221, 225, 229, 239, 247–249,

304, 306, 342
Kihara, T., 126
Kleene, S., 13, 14, 28, 35, 58, 59, 88, 213
Kleene-Brouwer ordering, 212

535

Knight, J., 78, 87, 98, 102, 171, 179, 181, 188,
216, 220, 233, 239, 240, 249, 259, 270,
275, 294, 312–314, 324, 327, 342

Kogabaev, N., 230
Koh, H.T., 50, 133, 249, 291, 351
Korovona, M., 49
Kramer, K., 303
Kreisel, G., 33
Kronecker, L., 30
Krykpaeva, A., 208
Kudinov, O., 49, 239, 307
Kurtz, S., 154

l.m. (limitwise monotonic), 244
Lachlan, A., 54, 67
Lacombe, D., 33, 35, 39
Lacombe-Grzegorczyk computable function, 35
Ladner, R., 62
Lange, K., 181, 188, 206, 287
LaRoche, P., 99, 132
Le Roux, S., 130
left-c.e., 32
Lempp, S., 154, 180, 233, 258, 311, 312, 322, 349
Lerman, M., 72, 89
Levi, F., 142
Levin, O., 349
Limit Lemma, 55
limitwise monotonic, 244
linear dependence algorithm, 143
linear extension, 77
linear ordering

computable, 71
low, 17, 54

Boolean algebra, 102
degree, 17
group, 21
linear order, 86
semi-, 62
set, 17

Lupini, M., 156, 174
Lusin, N., 212
Lyndon. R., 31

Mal’cev, A., 5, 22, 31, 142
Marcone, A., 133
Marker, D., 240
Markov computable, 32

Markov, A., 33, 39
Mazur, S., 38
McCoy, C., 181, 233, 240, 313, 322, 342, 349
McNicholl, T., 51, 348–350
Melnikov, A., 45, 50, 51, 91, 111, 117–119, 129–

134, 144, 154–156, 161, 174, 175, 182,
184, 188, 190, 196, 206–208, 210, 218,
219, 239, 242, 248, 249, 263, 274, 277,
288, 289, 291, 292, 303, 315, 322–325,
327, 336, 343, 347, 349, 351

Metakides, G., 30, 31, 123, 124, 155
Millar, J., 233, 324
Millar, T., 304
Miller, C., 154, 233
Miller, E., 78
Miller, J., 52, 117, 130, 187
Miller, R., 88, 124, 188, 239, 240, 248, 287, 303,

321, 322, 349
Miller, S., 181, 220, 275, 314
minimal pair, 58, 67

c.e., 67
Montalbán, A., 74, 87, 102, 155, 210, 231, 233,

240, 322, 324, 349
Mori, T., 8
Morozov, A., 178, 244, 245
Moschovakis, Y., 7
Moses, M., 322

Nerode, A., 30, 31, 123, 124, 155, 305
nerve of a cover, 164
Ng, K.M., 50, 91, 111, 119, 131, 133, 174, 175,

242, 249, 263, 277, 288, 291, 292, 303,
321–323, 343, 347, 349, 351

Nies, A., 156, 174, 182, 184, 247, 249
Noether, E., 30
Novikov, S., 31
Nurtazin, A., 153, 154, 276, 304, 342

Oates, S., 239, 259, 270
Ocasio-Gonzalez, V., 323
Odintsov, S., 99
operator

closure, 140, 155
enumeration, 113
Turing, 16

oracle machines, 15
ordinal

536

computable, 28
constructive, 28

Ospichev, S., 258

Pauly, A., 133
Pavlovsky, E., 181
Podzorov, S., 248
Polish space

basic open ball, 112
c.e. closed subset, 121
c.e. open subset, 113
computable closed subset, 121
effectively closed subset, 119
name of a point, 112
open name, 113

Pontryagin, L., 156
Post, E., 54, 58, 59
Pour-El, M., 36, 51, 258, 325, 336
Prüfer, H., 261
presentation

1-decidable, 107, 111, 219, 304, 308
2-decidable, 297, 342
X-computable, 6
∆0

2, 74, 88, 158, 219
∆0

2 Polish, 128, 167
∆0
n, 99, 141

Π0
n, 99, 141

Σ0
1, 5

Σ0
n, 99, 141

n-decidable, 107
automatic, 219
c.e., 5, 21, 219, 265, 274
c.e. (Boolean algebra), 99
c.e. (abelian group), 145
c.e. (Boolean algebra), 127
c.e. (group), 141
c.e. (linear order), 71
computable, 5, 20
computable Banach, 43, 131, 134, 348, 349
computable Polish, 7
computable Polish (for algebras), 40
computable Polish (for groups), 41, 185
computable topological, 49, 50, 116, 131,

167
computably approximable (for compact groups),

42, 133, 291

computably compact, 8, 50, 186
computably compact (for groups), 42, 120,

131, 186, 288
constructive (for discrete structures), 10
constructive (for ordinals), 28
decidable, 25, 143, 219, 342
effectively normal, 116
effectively predictable, 157
explicit, 9
finite (for groups), 5
fully primitive recursive, 219, 342, 350
left-c.e., 50
left-c.e. Banach, 52
left-c.e. Polish, 7
limit-equivalent Polish, 49, 343
located closed, 124
low, 74, 86, 134, 143, 240, 266
low Banach, 44, 52
low2, 86
lown, 88
nerve-decidable, 117
polynomial-time, 219
primitive recursive, 111, 219, 276, 342, 350
punctual, 111, 219, 276, 342, 350
punctually 1-decidable, 111
rational-valued, 343
rational-valued Polish, 48
recursive (for discrete groups), 9
recursive (for profinite groups), 9, 131, 288
recursive Polish, 10
represented space, 10
right-c.e., 50
right-c.e. Polish (for a group), 42, 50, 133
right-c.e. Banach, 44, 52
right-c.e. Polish, 7, 127
strong η- (of a set), 89
strong Z- (of a set), 89
strongly computably compact, 118
tractable, 144, 157

priority method
bounded injury, 61
finite injury, 59
infinite injury, 65

profinite group, 218
recursive, 9

Putnam, H., 258

537

Rabin, M., 5, 20, 189
real

computable, 7
left-c.e., 7, 32
low, 32
right-c.e., 7, 32

real closed field, 27
recognition problem, 171
reduction

1-, 15
EFF -, 173
FF -, 226
m-, 15
effective between classes, 173, 220
Turing reduction, 16

Remmel, J., 71, 92, 97, 101, 188, 321, 349
requirements, 46
Rice, H., 14, 32

Rice’s Theorem, 14
Richards, I., 51
Richards, J., 325, 336
Richter, L., 74, 89, 238, 239
Robinson, R., 63, 64
Rogers, H., 57, 70, 181
Rogers, L., 262
Rosenstein, J., 89

Sacks, G., 64
Schröder, M., 116
Schupp, P., 31
Schwarz, S., 78
Scott family, 294, 327

Σ0
α, 294

c.e., 294
Scott, D., 293
Selivanov, V., 99, 126, 301
Semukhin, P., 342
Seon, D., 133
set

computable, 13
computably enumerable, 13
effectively closed, 119
effectively immune, 62
high, 65
highn, 65
hyperimmune, 62

hypersimple, 62
immune, 59, 101
limitiwise monotonic (l.m.), 167
limitwise monotonic (l.m.), 244
low, 32, 54, 59, 143, 314
mitotic, 62
promptly simple, 65
semi-low, 62, 196
simple, 62

settling time, 197
Shepherdson, J., 31
Shlapentokh, A., 239, 303
Shoenfield, J., 33, 55, 70

Limit Lemma, 55
Shore, R., 59, 65, 221, 225, 229, 247, 249, 304,

342
Sierpinski, W., 212
Sikora, A., 240
simplex, 162
Slaman, T., 90, 188, 239, 240, 312
Slinko, A., 221, 225, 229
Smith, R., 132, 147, 266, 275
Soare, R., 31, 62, 86, 120, 123, 239, 249
solenoid, 174, 187, 208
Solomon, R., 154, 206, 239, 240, 258, 349
space

computable Polish, 7
computably compact, 8
left-c.e. Polish, 7
recursive Polish, 10
right-c.e. Polish, 7

special points, 7
Specker, E., 36, 88
Spector, C., 28, 213
Spreen, D., 49
stable parameters, 327
Stanley, L., 230, 233
Steiner, R., 188, 287
Stephenson, J., 342
Stob, M., 65, 98, 102
Stone space, 108, 215, 218
strong array, 62
structure

X-computably presented, 6
Σ0

1-presented, 5
c.e. presented, 5, 21

538

computable, 5, 20
contructivisable, 10
decidable, 25
explicitly presented, 9
finitely presented (for groups), 5

Stull, D., 350
Szpilrajn, S., 77

Tarski, A., 27
technique

coding, 73, 110
degenerate infinite injury, 66
direct diagonalisation, 46
finite extension, 57, 295
finite injury, 59
forcing, 298
infinite injury, 67
injury-free approximation, 54
iterated priority, 87
movable markers, 56
Sacks’ preservation, 65
true stage, 87
unbounded finite injury, 64
using (semi-)lowness, 62
workers, 87

Theorem
A, 6, 102, 103, 150
Alexandrov’s, 130
B, 8, 125, 127, 165
Banach-Stone, 134
C, 174, 208
D, 174, 238
Dobrica’s, 147
Downey-Jockusch, 91, 102
Downey-Montalbán, 231
E, 174, 242, 288, 290
Effective Urysohn Lemma, 116
Enumeration, 12
F, 175, 292, 347
Feiner’s (Boolean algebras), 91, 103
Feiner’s (linear orders), 71
Fellner-Watnick, 53, 78
Friedberg Enumeration, 66
Friedberg-Muchnik, 60
Frolov-Montalbán, 73
Goncharov’s ∆0

2, 337, 343

Goncharov-Dzgoev-Remmel, 71
Interval Representation, 95
Jockusch-Soare, 86
Khisamiev’s, 150
Kreisel-Lacombe-Shoenfield-Markov, 33
Kreisel-Lacombe-Shoenfield-Markov Theorem,

227
Limit Lemma, 55
Low Basis, 120
Mal’cev’s, 23
Minimal Pair, 54
Pontryagin Duality, 156
Post’s, 14
Rado’s Lemma, 138
Recursion, 14
Remmel-Vaught, 97
Rice’s, 14
Richter’s, 73
s-m-n, 13
Sacks’ Splitting, 64
Scott Isomorphism, 293
Specker’s, 36
Tennenbaum’s, 75

Thurber, J., 98, 103
tree rank, 214
Tsujii, Y., 8
Turetsky, D., 180, 248, 311, 312, 321, 322, 324,

327, 341, 343
Turing

functional, 16
machine, 12
machine with oracle, 15
operator, 16
reducibility, 16

Turing, A., 12, 16, 38
Type II computable function, 35

Ulm, H., 261
Use Principle, 16

Valenti, M., 133
Vanden Boom, M., 314
Vaught, R., 97, 314
Ventsov, Y., 295, 306

Wallbaum, J., 181, 248
Watnick, R., 53

539

Wehner, S., 90, 258
Weitkamp, G., 49
Welch, L., 70
well-founded, 212
White, W., 181

Yasugi, M., 8
Yates, C., 54, 67

Zavlaskii, I., 39
Ziegler, M., 130, 133
Zubkov, M., 78, 86

540

	Preface
	I Computable presentability and effective duality
	Introduction
	A motivating example: fields
	Computable structures and spaces
	Computable countable structures
	Computable separable spaces
	Effective dualities

	Conflicting terminology*

	Foundations
	Elementary computability theory
	Codings and computable functions
	Computable and computably enumerable sets
	Kleene's Recursion Theorem
	Oracle computability and Turing degrees
	The arithmetic hierarchy
	01 classes

	Early effective algebra
	Examples of computable and non-computable groups
	The Henkin construction is computable
	Computable vs. constructive ordinals
	Historical remarks*

	Computability for real functions
	The constructive approach to functions
	The uniform approach to computability
	Type I computability vs. Type II computability
	Historical remarks*

	Computable separable structures
	The basic definitions
	Computable Polish groups
	Computable Banach spaces
	Exercises: Comparing presentations of spaces
	Historical remarks*

	What's next?

	Priority constructions and computable linear orders
	Priority techniques
	The Limit Lemma and injury-free approximation
	The finite extension method
	Post's problem and the finite injury method
	Low c.e. sets
	Using (semi-)lowness*
	Finite injury arguments of unbounded type
	Constructions involving infinite injury
	Further reading*

	Computable linear orderings
	The basic definitions, revisited
	Injury-free approximation. Feiner's Theorem
	Finite extension method. Richter's Theorem and the Frolov-Montalbán Theorem
	Finite injury. Tennenbaum's Theorem
	Unbounded finite injury. Computable categoricity
	The Fellner-Watnick Theorem
	Low linear orders. The Jockusch-Soare Theorem
	Further related results*

	What's next?

	Boolean algebras and computable compactness
	Computable Boolean algebras
	Countable Boolean algebras
	Effective presentations of Boolean algebras
	Low Boolean algebras. The proof of Theorem A(2).
	Superatomic Boolean algebras*
	Feiner's Theorem. The proof of Theorem A(1)
	Stone spaces and computable trees
	Rank 1 Boolean algebras*
	Further related results*

	Computably compact spaces
	Definitions
	Deciding the intersection
	Calculus of effectively closed sets
	Computable Stone duality. Proofs of Theorem B(1,2)
	Computably categorical Stone spaces
	Recursive profinite groups
	Further related results*

	What's next?

	Computable abelian groups and Pontryagin duality
	Computable torsion-free abelian groups
	Abelian groups
	Effective presentations of torsion-free abelian groups
	Dobrica's Theorem
	Khisamiev's Theorem A(3)
	An application to categoricity*
	Some further remarks*

	Effective Pontryagin duality
	From discrete to compact
	From compact to discrete
	Effective dualities and the proof of Theorem B(3).
	Further related results: comparing notions*

	What's next?

	II Computable classification
	Introduction
	Classification via computation
	The three main approaches used in the book
	Other approaches

	The main results of Part II

	Classification theory
	Calculus of index sets for structures and spaces
	Discrete countable structures
	Compact spaces and groups
	Index sets and Friedberg enumerations

	Completely decomposable groups
	Background, notation, and conventions
	S-independence and excellent S-bases
	03-categoricity and the proof of Theorem 7.2.2
	Semi-low sets, and 02-categoricity
	Arbitrary completely decomposable groups

	Applications to index sets
	Completely decomposable groups
	Products of solenoids. Proof of Theorem C
	Concluding remarks and further related results*

	What's next?

	Nonclassification theory
	Foundations
	Definitions and notation
	11- and 11-complete sets
	Index sets of discrete structures
	Index sets of separable structures

	Effective reductions between classes
	Effective transformations between structures
	Simple codings
	Integral domains and 2-step nilpotent groups*
	A Type I version of effective completeness

	Torsion-free abelian groups and their connected duals
	The isomorphism problem for torsion-free abelian groups
	Comparing integral homology and Čech cohomology
	The FF-completeness of torsion-free abelian groups
	Compact spaces. Proof of Theorem D
	Exercises about degree spectra
	Further related results

	What's next?

	Enumerating structures without repetition
	Equivalence structures and limitwise monotonic sets
	Computable equivalence relations
	Beyond computable categoricity*
	Calculus of limitwise monotonic sets and functions

	Enumerating equivalence structures
	Preliminary analysis
	The setup
	A single node in isolation
	Coordination between different
	Coordination with junk collectors
	Formal construction.
	Verification

	Computable abelian p-groups
	Abelian p-groups basics
	Computable abelian p-groups of Ulm type 1
	Groups of finite Ulm type >1

	Enumerating abelian p-groups
	Plan of the proof
	The basic strategy
	Actions of the strategy for (F, E, z)
	The outcomes
	The description of E H
	The tree of strategies for Ulm type 1 groups
	The junk collector
	Construction
	Verification

	Computable profinite abelian groups
	Background
	Effective Pontryagin duality: the profinite case
	Enumerating pro-p groups (Theorem E).

	Further related results*
	What's next?

	Computable categoricity and computable dimension
	Relative computable categoricity for algebraic structures
	Relative computable categoricity
	Uniform computable categoricity
	Relative 20-categoricity*
	Exercises: Calculus of computable infinitary formulae
	Relativising computable categoricity to an oracle*
	Exercises: Beyond computable categoricity

	Computably isometric Polish spaces
	Isometric computable categoricity
	Relative isometric computable categoricity
	A characterisation of relatively c.c. Polish spaces
	Uniform computable categoricity for Polish spaces
	Type II vs. Type I for isometric computable categoricity

	Computable dimension
	An algebraic structure of computable dimension 2
	Goncharov's 02-Theorem for discrete structures
	Goncharov's 02-Theorem for Polish spaces
	Proof of Theorem F

	Further related results*

	Bibliography
	Index

