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Preface

It is striking that Turing’s fundamental paper [487], which proposed the modern model of compu-
tation, focused on processes involving real numbers. That is, this seminal paper did not concern
itself only with discrete problems coded by integers. Rather, it had continuous problems (such as
the calculation of integrals by better and better approximations) hand in hand with the Entschei-
dungsproblem, which is the problem of algorithmic decidability for first-order logic. Thus, at the
dawn of the theory of computation, there was no real distinction between the continuous and the
discrete.

However, subsequent events saw a divergence in the study of computational processes in these
two domains; the discrete and the analytic were somehow treated as being quite different. They
had their own communities with computability and complexity theorists in the case of the discrete,
and people concerned with computable analysis and effective topology in the analytic settings.

In recent years, it has become noticeable that the ideas in the two areas are re-converging.
Analytic structures, particularly those coded by dense sequences, share much in common with
countable computable discrete structures.

In this book, we present a unified theory of computably presented structures com-
bining both countable and separable uncountable structures.

Our main objects of study are computable algebraic and topological structures such as linear
orderings, graphs, Boolean algebras, groups, separable Banach and Polish spaces. The theories of
these computable algebraic structures and computably presented spaces are now well-established
and wide ranging. It is our belief that the theories of computable separable spaces and computable
discrete algebraic structures are very tightly connected, and no firm line can be drawn between
them. In the book, we present results and techniques that establish direct links between these
theories.

It is essentially impossible to cover all major topics of the theory in one book, so we will have
to be selective. The basic themes we address include the following:

(a) What does it mean for an infinite structure to be computable?
(b) How can we compare different (computable) presentations of a structure?

(¢) Can we classify computably presentable structures in a given class?

As we will see, such questions are directly related to the problems that lie in the foundations of
mathematics:

vi



(i) Is it possible to show that a given problem is undecidable?
(ii) How do we measure the complexity of a problem?

(i) Can we classify structures in a given class?

Note that Question (iii) does not seem to be related to computability at all. Nevertheless,
computable structures can sometimes provide insights into problems of this nature, as will be
explained in the second part of the book. Roughly speaking, the first half of the book addresses
Questions (a)-(c), and the second half is mainly devoted to (i) - (iii).

In the light of our unifying theme, we will be introducing techniques in context. So, for example,
when we introduce the finite injury priority method, we will more or less immediately show how it
works in the context of computable structure theory. Similarly when a technique is introduced in
either a discrete setting or an uncountable one, we will endeavour to also show how it resonates in
the other setting.

The text provides a unified introduction to computability theory, computable algebra, and
computable Polish space theory. Some topics, particularly those in computable abelian group
theory and effective topological group theory, are presented in detail for the first time.

We had to limit the scope of the book to keep its length reasonable. Nevertheless, we believe
that we have captured the major themes of development for the last few decades, at least from our
biased point of view. We have also given references for further reading when we felt that including
the material would have upset the cost/benefit ratio. In this spirit, throughout the book we have
starred material. If a section is labelled with a star, this means that it can be safely ignored, as
it is not essential to the rest of the book. Some further material will be included in the form of
exercises, some of which will be given with hints.

Notes on exercises: The exercises in this book range from material we believe is suitable for
self-guided students to material that is either not essential to the rest of the book, relies on topics
not covered in the book, or is genuinely difficult—often at the level of a significant research paper.
Sometimes we have added hints, but for many exercises, we have simply provided a reference,
especially if the result is readily accessible in a paper available online. Exercises we consider
particularly suitable for students are marked with o, those that are either not essential or rely on
external material are marked with #, and genuinely difficult ones are marked with =:x.

Acknowledgements: We are grateful to our colleagues Keng Meng Ng, Denis Hirschfeldt, Steffen
Lempp, Mars Yamaleev, D. Reed Solomon, Daniel Turetsky, Noam Greenberg, Mathieu Hoyrup,
Nikolay Bazhenov, Paul Shafer, Luca San Mauro, Maxim Zubkov, Ruslan Kornev, as well as to
our students Xavier Enright, Alibek Iskakov, and Sapir Ben-Shahar, who suggested many useful
corrections. Thanks to Matthew Askes and Brendan Harding who helped with the diagrams.
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Part 1

Computable presentability and
effective duality



Chapter 1

Introduction

In the first part of the book, we investigate the problem of computable presentability for spaces and
algebraic structures. Much of the theory revolves around a few basic definitions of computability
that are tested and compared in various natural classes of mathematical structures. In the next
few sections we will meet the main players in this book, and also give some of the main motivating
themes. We will always bear in mind our central theme of unifying the countable and uncountable.

In Part 1 of the book, we focus on results that establish a direct connection be-
tween algorithmic procedures in countable algebra and topology through effective
dualities.

These effective dualities include the recently established computable Stone duality and com-
putable Pontryagin duality. In the first part of the book we use these effective dualities to transfer
several classical results from effective countable algebra (to appear as Theorem A) to the topological
setting. These effective topological results, to be stated in Theorem B, appear to be fundamental.
In the second part we will use these dualities to transfer classification-type results about countable
algebraic structures to the uncountable setting.

The plan of this introductory chapter is as follows:

1. Section 1.1 motivates the considerations of the first half of the book.

2. Section 1.2 contains the main definitions of the book, the statements of Theorems A and B,
and also states the effective dualities mentioned above.

3. In Section 1.3 we review conflicting terminology as presented in the literature.



1.1 A motivating example: fields

To motivate the considerations of our book, and especially the first half of it, we consider several
more specific questions and sample results that naturally arise in the class of countable fields. As
we also see, effective processes in uncountable structures also arise naturally and perhaps even
inevitably.

We adopt the Turing-Church Thesis that says that a process is algorithmically computable if
and only if under some appropriate coding it becomes computable by a Turing machine. If the
reader is not familiar with these concepts, they should rely on their intuition and wait until Section
2.1 where we give the precise definitions.

We first consider the questions analysed in a classic paper of Metakides and Nerode [384] who
studied the “effective content of field theory.” The following examples are drawn from this paper.
Matakides and Nerode analysed the extent to which the following classical results were effective
or algorithmic: Consider the well-known algebraic results for countable structures given below,
ignoring the * symbols.

I (Steinitz) Every * field has a * algebraic closure.
IT (Steinitz) Every * algebraically closed field has a * transcendence base.
IIT (Steinitz) Any two * algebraic closures of a * field F' differ by an * F-automorphism.

IV (Artin-Schreier) Any * formally real field can be * ordered.

v
v
VI (Krull) Any * proper Galois extension F’ of a * field F has a * F-automorphism other than

(
(Artin-Schreier) Any two * real closures of a * ordered field F differ by a * F-automorphism.
(
the identity.

If the * symbols are removed, then these are classical results [15, 483, 319]. The question is:

To what extent are these theorems algorithmic? What is their effective, or algorithmic
content?

If we restrict ourselves to finite dimensional fields, then all of them are algorithmically true by
Kronecker [318] in the sense that from the finite input data, we can build the relevant object, for
example the transcendence basis in Steinitz (II). But what if we wish to consider arbitrary countably
infinite fields? For instance, in the result of Steinitz (I), can we construct an algebraic closure for
any countably infinite field? What do we even mean by this?

The point here is that classical computability theory was developed to answer questions like the
Entscheidungsproblem! where algorithms take finite descriptions of instances to finite descriptions
of their solutions. For instance, for the Entscheidungsproblem, a positive solution would need to be
an algorithm A which takes as input a description (or a code) for a formula of predicate logic. This
formula will commonly be given by its (Godel) number n € N, although any coding of the formula
into a number would suffice. The algorithm A on input n will say 1 or 0 as to whether or not the
corresponding formula is true.

However, for question such as whether we can construct an algebraic closure of a countably
infinite field, the input itself is infinite. To give this question meaning, we surely demand that the

IThe decision problem for first order logic.



input data, here being an infinite field or an infinite group, be given algorithmically. Then we would
ask that from the algorithm giving the input data we produce an algorithm for the solution. In
particular, it would be natural to guess that the # symbols in (I) - (VI) above can be replaced with
“computable” or “computably presented”. So now the effective version of Steinitz (I) might read:

Every computable field has a computable algebraic closure.

A computable field is a tuple (F,-,+,=,71,0,1) with F being a computable set, upon which
the field operations are computable functions with input and output in N. That is, we present
the data via algorithms and then seek solutions we can obtain from this data. Using this formal
notion of computable presentability, we can formally illustrate that for (I) the answer is “yes”, as
proven by Rabin [440] (see §2.2.2). Moreover, as we will see, this effectivisation can be obtained as
part of a general basic result in computable structure theory: a computable version of the Henkin
construction for predicate logic.

However sometimes the answer to the effective version is “no”, such as for (IV), as proven by
Ershov [157]: There is a computable real closed field with no computable ordering. Only (I) and
(V) hold computably: (I) by Rabin [440], and (V) by effectivising Artin’s proof in [15]. The others
are also false for computable fields: the effective version of (III) was proven to be false by Frolich
and Shepherdson [185], and the rest can be found in Metakides and Nerode [384].

In the case of a “no” answer, we are then led to further questions such as:

Given that there is a computable formally real field with no computable ordering, and
the classical theorem says that there is some ordering, how complicated must such an
ordering be? For instance, does it always have some relatively simple ordering? Can we
effectively describe the collection of all compatible orderings?

Metakides and Nerode [384] showed that for a computable formally real field, the space of
orderings can be computably described as a I1{ class (Exercise 4.2.62). Such a class can be thought
of as the collection of infinite paths through a computable binary tree; a Stone space. Then we can
appeal to the general theory of ITY classes (see Subection 2.1.6) to conclude, for example, that for
each computable real closed field, there must be an ordering L of low Turing degree. The ordering
L being low means that although L is not necessarily computable, we have L' =r ¢J’. This means
that the halting problem for Turing machines with oracle L is not computationally harder than the
halting problem for machines without an oracle. These notions will be later explained in detail in
Section 2.1.6.

We could also address very similar questions in other classes of structures, such as groups. For
the class of abelian groups, the natural analogy of (IV) is:

IV* (Mal'cev, after Levi) Any * torsion-free abelian group can be * ordered.

Again we interpret * as “computable”. Can every computable torsion-free abelian group be com-
putably ordered? In its simplest form the answer to this question is “no”, as shown by Downey
and Kurtz [135]. This negative answer to this question can be easily derived as a consequence of
the general results and methods developed in Section 5.1 for the class of torsion-free abelian groups
(see Exercise 5.1.49).

The reader will note that such questions can also have other interpretations. Classically, we
regard objects as being the same if they are isomorphic, but for computable structures, an isomor-
phism type might have many computable presentations (computable copies) of the same structure.



If a certain construction or property is not algorithmic for an effective version of a field or a group,
is there another computable copy where the construction or property becomes algorithmic? We
arrive at the following variation:

IV** Any orderable * group is (classically) isomorphic to an * ordered group.

In other words, taking * to be the property of being computable, if G is a computable group which is
orderable (but not necessarily computably orderable), is G (classically, not computably) isomorphic
to a computable group with a computable ordering?

Darbinyan [107] has used an elaborate construction to show that the answer is “no” in general.
But in contrast with (IV*), the answer to (IV**) is “yes” if G is abelian (Exercise 5.1.55). The
abelian case follows easily from a seemingly unrelated Dobrica’s Theorem 5.1.37 about computable
torsion-free abelian groups with computable bases. Quite interestingly, perhaps the best way to
apply the result of Dobrica to (IV**) is to use the natural order in the uncountable field of real
numbers.

The reader might note that we have only considered countable structures in our treatment of
(I)-(VI) above. However, uncountable objects (such as I classes and the field of reals) naturally
occur when we study effective presentations of countable structures. Also, Galois correspondence
characterises effective algebraic field extensions in terms of “recursive” profinite groups which will be
discussed in §4.2.6. Thus even if we are only interested in countable algebra, we also invariably have
to deal with algorithmic processes in uncountable spaces. Additionally we might also be interested
in studying uncountable structures on their own. For example, can we ask similar questions about,
e.g., separable Banach spaces and Polish groups? Natural questions of this type arise in analysis.
For example, given a “computable” continuous function on [0, 1] which is bounded below, can we
compute a minimum point? Can we compute its Riemann integral? As with [0, 1], for a wide class
of topological spaces there are natural countable descriptions of them given by a computable dense
subset. Generally speaking, most (but not all) natural separable spaces coming from the classical
literature have computable presentations in this sense.

Most of the connections made between the algorithmic questions in the countable and uncount-
able realms that we discussed earlier were primarily technical in nature. Uncountable objects may
appear as technical tools inside effective algebraic proofs, e.g., I classes help to effectively linearly
order a countable formally real field. Conversely, there is also a large body of literature that ap-
plies the ideas and methods in computable countable algebra to uncountable spaces. For sample
results see [369, 360, 268]. These results should also be viewed as technical generalisations from the
countable to the separable uncountable case.

As we have stated earlier, in the first part of the book we develop a unified theory that es-
tablishes a direct connection between algorithmic procedures in countable algebra and topology
through effective dualities. These connections usually follow the principle: a countable structure
in a certain class is algorithmically presented if and only if its uncountable “dual” is effectively
presented. Furthermore, we will see that statements similar to the examples presented above some-
times remain true for weaker notions of algorithmic presentability, such as c.e. presentability and
even computability relative to the halting problem (which is the canonical example of an undecid-
able problem). Examples of such properties include the effective versions of Stone and Pontryagin
dualities established in the first part of the book.

Precisely calibrating the level of algorithmic effectiveness required for a classical fact to work
computably often necessitates the development of relatively sophisticated machinery, which may not



be directly related to the classical result at hand. Further, questions that arise in such studies may
have no direct analogues in the respective fields of topology or algebra. In the second part of the
book, we will see that such investigations lead to methods for addressing classical (non-algorithmic)
mathematical questions using algorithmic means. However, in the first part of the book, we will
focus on a thorough examination of the computable presentability of structures and spaces, as
well as the associated machinery. We will defer the applications of these methods to classification
problems until Part 2.

1.2 Computable structures and spaces

In this section we give several formal definitions that will be used throughout the book, and then
we state Theorem A and Theorem B that are central to Part 1.

1.2.1 Computable countable structures

We assume that the reader is familiar with the notion of an algebraic structure. We adopt the
Turing-Church Thesis, which states that a process is algorithmically computable if and only if,
under some appropriate coding, it becomes computable by a Turing machine. Our algorithms are
abstract in the sense that we do not impose any time or resource bounds on them. In other words,
if a procedure is intuitively computable, then it can be taken to be formally computable.

A set X of natural numbers is computably enumerable (c.e.) if its elements can be listed by an
algorithm, but the order in which its elements appear could be unpredictable or unnatural. A set
is computable if we can algorithmically decide membership z € X. It is clear that any finite set
is computable, and any computable set is c.e., but the converse fails in general. For example, the
halting problem is the standard example of a c.e. set that is not computable (Proposition 2.1.5). The
halting problem encodes the set of all programs (for the universal Turing machine) that eventually
halt their computation. (All these notions will be formally introduced and clarified in Section 2.1.)
No further background in computability theory is assumed in this section.

Computable and c.e. presentations

Rabin [440] and, independently, Mal’cev [345, 346] proposed the following notion of computability
for a countable algebraic structure. For simplicity, we restrict ourselves to structures with only
finitely many operations and relations.

Definition 1.2.1 (Rabin, Mal’cev). An algebraic structure A is computably presentable (or
constructivisable) if there exists an algebraic structure B isomorphic to A whose elements form
a computable set of natural numbers, and the operations and relations on B are computable
(as functions and relations on the natural numbers).

Such an isomorphic copy B upon natural numbers is usually called a computable presentation, a
computable (isomorphic) copy, or a constructivisation of A. The notion above is now widely accepted
as the standard “base” notion of computable presentability for countable algebraic structures. There



are notions stronger than the definition given above, e.g., primitive recursive, decidable, polynomial-
time, punctual, and automatic presentations. However, in many situations an algebraic structure
satisfies the following weaker condition.

Definition 1.2.2. An algebraic structure A is computably enumerably (c.e.) presented (39-
presented, positively presented) if it is isomorphic to the factor of a computable structure by a
c.e. congruence.

A congruence is an equivalence relation that “respects” the operations of the structure. This
means that for any operation f, whenever x; >~ y; we have that f(xo,...,2,) = f(yo,...,yn). For
now, assume our structure is an algebra with no relations on it. We postpone the case of relations
until §3.2.1. A standard example of a c.e. presented structure is the factor of a computable group G
by a computably enumerable normal subgroup H. Such presentations are quite common in group
theory, where they are (somewhat confusingly) called “recursive” in the literature; more about this
in Section 1.3.

Example 1.2.3. Let G be a group. A finite presentation of G is a tuple {x1,...,Zn | Y1,-- -, Ym)
such that

G={x1,...,Tn)/{Y1s- s Ym),

where (z1,...,z,) is the free group F generated by x1,...,2,, and {y1,...,ym) is the normal
subgroup of F' generated by the “relations”

y1>~~~,ym€<$1,~~~7$n>

upon the “generators” zi,...,x,. A finite presentation is evidently also a c.e. presentation of
the group. Famously, the “word problem” (i.e., the congruence modulo {(yi,..., ¥y, ) might be
undecidable in a finitely presented group ([51, 416]). It is not hard to see that such a G with
undecidable word problem cannot have a computable presentation; for a detailed explanation see
§2.2.1 (this is Theorem 2.2.10).

Thus, the two main notions of effective presentability defined above (being c.e. presented and
having a computable presentation) already differ up to isomorphism for finitely presented groups.
However, in some broad classes, every c.e. presented structure admits a computable presentation,
but this typically requires a non-trivial proof. There has been considerable research in this direction
for finitely generated groups; for instance, refer to the somewhat dated but excellent survey [390].

The book is dedicated to the study of structures that are not finitely generated and are often not
even countable. Examples of computably and c.e. presented structures will be given in Section 2.2.

Relativisation and low presentations

Suppose that we have a structure that has no computable presentation, such as a c.e. presented
structure. It still makes sense to try to understand what is the best way to present such structures,
possibly through effective approximations or perhaps using additional computational power. In
§3.1.1, we will show that these two ideas typically lead to equivalent definitions.



A common approach to this is through relativisation. Using oracle Turing machines, we can
relativise Definition 1.2.1 to an oracle X, where X is a non-computable set written on the extra
oracle tape of the machine computing a presentation of the structure. For example, since every
c.e. set is computable relative to the aforementioned halting problem, a c.e. presented structure is
computably presentable relative to the halting problem.

Perhaps the most interesting case is when X is, in some sense, close to being computable. We
define X to be low if the halting problem for machines with oracle X is computationally no harder
than the halting problem for machines without an oracle (see Section 2.1.6 for details). It is well
known that there are low sets that are not computable. Nevertheless, low sets are usually viewed
as being close to computable. Thus, when X is low, the definition below can be viewed as being
somewhat effective.

Definition 1.2.4. An algebraic structure A is X-computable if the domain, the operations,
and the relations on A are X-computable, i.e., computable by a Turing machine with oracle X.

Richter [451] was perhaps the first to systematically investigate X-computable structures. We
will look at some of Richter’s results in §3.2.3. In some instances, having a low presentation implies
that a structure also has a computable presentation. In other circumstances, such as graphs or
abelian groups, this fails to be true. Results asserting that low presentability implies computable
presentability are very rare. We mention that recently, Marker and Miller [349] showed that every
low differentially closed field has a computable presentation. Another well-known result will soon
be stated.

Separating the notions: Theorem A

Linear orderings, Boolean algebras, and abelian groups are important players in this book. Not
only are they excellent vehicles for displaying techniques, but understanding them also yields im-
portant results about Polish spaces. To illustrate the interplay of lowness, c.e. presentability, and
computability, we will give detailed proofs of the following.

Theorem A.

1. There is a c.e. presented Boolean algebra not isomorphic to any computable Boolean
algebra.

2. Every low Boolean algebra has a computable presentation.

3. Every c.e. presented torsion-free abelian group is isomorphic to a computable group.

We will define all terms used in Theorem A in due course. The first fact is due to Feiner [162, 161],
the second to Downey and Jockusch [129], and the third result was established by Khisamiev [288].
It takes one more observation on top of Theorem A to fully separate low, c.e. and computable
presentability; this will be explained in Section 2.2.1.



Of course, our exposition of the theory of computable structures will not be limited to these
well-known results, but the three facts stated above should be viewed as being central to the first
few chapters of the book, which are naturally restricted to countable structures. However, these
fundamental results about Boolean algebras and torsion-free abelian groups will find applications
in later chapters when we prove analogous results about Polish spaces.

1.2.2 Computable separable spaces

What happens when a structure is not countable? In his famous papers [487, 488], Turing introduced
the concept of a step-by-step computation for real numbers. Paraphrasing Turing, we have the
following notion.

Definition 1.2.5. A real ¢ is:
- right-c.e. if {r € Q : £ < r} is computably enumerable (c.e.);
- left-ce. if {reQ:&>r}isce;
- computable if it is both left-c.e. and right-c.e.

Equivalently, a real £ is computable if there is a computable procedure that, on input n, outputs
a rational number r (represented as a fraction) such that |£ —r| < 27™. This notion of effectiveness
essentially relies on the density of the rationals in R. In other words, R is “computable” in the sense
that it is the completion of a computable countable set, the rationals. Various authors extended
this idea beyond the reals to cover classical separable Banach spaces and, more generally, complete
separable metric spaces (also called Polish spaces). For instance, one of the fundamental notions
in the theory of computable structures considered in this book is the following definition. This
definition was essentially due to Ceitin [82] and independently to Moschovakis [405].

Definition 1.2.6. A presentation of a Polish space M is given by a sequence (;);e,, and a
complete metric d such that (z;)ie. is dense in (M, d). A presentation (z;)iew is:

- right-c.e. if {r € Q : d(x;,x;) < r} are c.e. uniformly in ¢, j;
- left-c.e. if {r e Q: d(z;,z;) > r} are c.e. uniformly in i, j;
- computable if it is both left-c.e. and right-c.e.

The points x; are usually called special, rational, or ideal points.

In the definition above, “uniformly in 7, 57 means that there is an algorithm that, when given
1,j as inputs, produces a listing of the corresponding set of rationals represented as fractions. In
the present book, we are mostly focused on compact spaces and the metric spaces associated with
Banach spaces, so the metric d is always assumed to be complete. However, Definition 1.2.6 depends
on the notion of isomorphism that we use. For instance:

o If we view spaces up to isometry, then the metric d in Definition 1.2.6 is fized.



e If we view spaces up to homeomorphism, then the metric d in Definition 1.2.6 is merely
compatible with the topology of the space.

We could also view spaces up to quasi-isometry, homotopy, linear isometry for Banach spaces,
topological isomorphism for Polish groups, and so on. We say that a Polish space is computable
(left-c.e., right-c.e.) if it has a computable (respectively left-c.e., right-c.e.) presentation, and we
usually emphasise whether we use homeomorphism or isometry as the notion of equivalence. When
spaces are viewed up to isometry, we may refer to computable Polish presentations of the space as
“computable structures” or “computability structures” on the space. This terminology, coined by
Pour-El and Richards [435], will be convenient in the last chapter of the book.

Natural examples of computable Polish spaces come from functional analysis and topological
algebra: see Section 2.4 for many examples. Similar to the situation in computable countable
algebra, in Polish groups and separable Banach spaces we usually additionally require the standard
operations to be computable in some sense. The difficulty is that the input of such an operation
is an infinite sequence rather than a single natural number. There are several possible ways to
address this issue; some approaches turn out to be equivalent, but some are not. We will give a
more in-depth analysis of the assorted approaches to defining computable continuous real-valued
functions in §2.3, and will provide a general definition for Polish spaces in §2.4.1. For the purpose
of the present section, we restrict ourselves to Polish spaces with no additional operators.

Computable compactness

In the first half of the book, we will be mainly concerned with compact Polish spaces and groups.
Compactness plays a central role in classical analysis and topology. In the words of Hewitt [249],

“A great many propositions of analysis are:

- trivial for finite sets;
- true and reasonably simple for infinite compact sets;
- either false or extremely difficult to prove for noncompact sets.”
Since we are concerned with algorithmic problems on effective structures, it is often desirable to

use an algorithmic form of compactness. The following notion was first explicitly defined by Mori,
Tsujii, and Yasugi [403], to the best of our knowledge.

Definition 1.2.7. A computable Polish space M is called computably compact if there exists
a computable function that, given n, outputs a finite cover of M by open balls of radii < 27"
that cover M.

The definition and the many equivalent forms of it will be further elaborated in the relevant
section. Of course, the definition is naturally restricted to compact Polish spaces. The notion can be
extended to locally compact spaces and to spaces that are not necessarily computable Polish, but we
will not include this in our discussion. Computably compact presentations are very common in the
modern literature; we cite the two recent surveys [270, 139]. The notion is furthermore exceptionally
robust; we will prove the equivalence of the definition above to several other definitions.
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Separating the notions: Theorem B

The reader undoubtedly recognises that Definitions 1.2.6 and 1.2.7, along with their relativisations,
give rise to various notions of effective presentability for Polish spaces—some appearing more nat-
ural, while others seemingly more artificial. For example: right-c.e. effectively compact spaces, low
Polish spaces, and so on. It seems to us that the three most natural and commonly occurring
presentations of (compact) Polish spaces are:

computably compact
l
computable Polish

l
right-c.e. Polish

with the obvious implications denoted by the arrows above. In computable algebra, theorems
separating and comparing the various notions of presentability such as c.e. presentable, computably
presentable, and low structures are at least half a century old. Results of this kind are typically
viewed as fundamental results of the theory. Thus, the following question arises naturally:

Can we separate by counter-examples the three notions of computable presentability for compact
Polish spaces defined above?

If we view spaces up to isometry, the question above is easy; see Exercise 2.4.30 for a hint.
However, if we view spaces up to homeomorphism, the situation becomes much more complex,
especially if we want our examples to come from a reasonably natural class of compact spaces. This
is where computable algebraic techniques and results (and specifically Theorem A) will become
very useful. Indeed, every item of Theorem A will be used to prove some item in the second main
result of the first part of the book that separates the three main notions for spaces:

Theorem B.

1. There exists a right-c.e. Stone space not homeomorphic to any computable Polish space.

2. Every computable Stone space is homeomorphic to a computably compact space.

3. There exists a connected compact computable Polish space not homeomorphic to any
computably compact space.

In contrast with Theorem A, Theorem B is very recent: 1. has been proven in [35], 2. in [245], and
3. in [341]. A variety of techniques are necessary to give a complete and detailed proof of Theorem
B. The central tools will be several effective dualities, which we state in the next subsection.

1.2.3 Effective dualities

Theorem B will be derived from Theorem A using several dualities that we state below, but we
delay the definitions until the relevant sections.
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1. A Boolean algebra B has a computable presentation iff its Stone space B has a computable
Polish presentation (Theorems 4.2.79 and 4.2.80).

2. Same as above, but for computable B and computably compact B (Theorems 4.2.78 and 4.2.80).

3. A Boolean algebra B has a c.e. presentation iff Bhasa right-c.e. Polish presentation (Theo-
rem 4.2.81).

4. A torsion-free abelian group G has a computable presentation iff the connected compact
domain of its Pontryagin dual G has a computably compact presentation (Theorem 5.2.1).

5. A torsion-free abelian ¢-divisible group G has a AJ-presentation iff G has a computable Polish
presentation (Theorem 5.2.25).

In some sense, these results are perhaps more interesting (or “useful”) than Theorem B itself. These
dualities provide a direct link between computable algebra and computable topology. The effective
dualities will be employed in the second part of the book to investigate classification problems in
natural classes of structures and spaces.

To establish these (and a few additional) effective dualities, we need first to build the foun-
dational machinery. This spans several classical topics, including priority techniques, methods of
computable linear orders and computable Boolean algebras, the calculus of computably compact
spaces, basics of computable abelian group theory, and even elements of algebraic topology. While
we will not delve too deeply into these topics, we will provide references to the relevant literature.

Additionally, we will incorporate a number of classical results that, although not directly con-
nected to Theorems A and B, fit well within the broader narrative of the book.

Part I consists of four chapters (excluding the introduction). The algebraic complexity of the
chapters increases “monotonically in their index”. We begin Part I with a discussion of computably
enumerable sets which can be viewed as structures in the empty signature, and we end Part I with
theorems about topological groups.

1.3 Conflicting terminology*

Recall that throughout the book, sections and subsections marked with * can be safely skipped.

There are several traditions in computable mathematics, to name a few: the Turing-Markov style
of computable analysis [1], Mal’cev’s school in Russia and Kazakhstan [159], the Weihrauch style
of computable analysis in Germany [505], the Ash-Knight tradition in computable algebra in the
USA and Australia [20, 401, 402], and computable Banach space theory in the style of Pour-El and
Richards [435]. We also mention the closely related topics of effective descriptive set theory [406],
classical combinatorial group theory [343, 390]. Because of the Cold War, some of these traditions
had been largely isolated from each other for many decades. As a result, each of these traditions
developed quite distinctive terminology and notation. In this short section, we will discuss some of
the related terminology from the literature.

The versions of the fundamental definitions developed by different traditions are either equivalent
or very closely related. On the other hand, the exact same term can also correspond to two (or
more) non-equivalent notions, and this can be highly confusing.
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For example, “recursively presented groups” in combinatorial group theory are called “c.e. pre-
sented groups” in this book?. A “recursively presented group with solvable word problem” is just
a “computable group” in our terms. Unfortunately, “recursive” and “computable” are often used
synonymously in the literature, so the term “recursive group” could potentially mean two different
things. To make matters worse, the term “recursive group” can mean something entirely different in
the context of profinite groups; e.g., [473]. In view of all these, we shall avoid the use of “recursive”
throughout the book whenever possible.

Frohlich and Shepherdson [185] used the term “explicit presentation,” which can be traced back
to van der Waerden. Rabin [440] abandoned this old-fashioned terminology and coined the notion of
a computable algebraic structure, which we adopt. Some sources also refer to computable structures
as computable (or recursive) models, typically in the context of the effective content of model theory
(e.g., [229, 388]). In this approach, operations on the structure are often replaced with relations
coding their graphs. It is then required that the atomic diagram (the collection of quantifier-free
formulae with parameters from the computable domain of the structure) forms a computable set.
This definition is, of course, equivalent to our definition of a computable structure, up to a change
of notation.

There has been a longstanding tradition in the former USSR to use explicit numberings of
computable structures. This approach was suggested by Mal’cev [345]. For example, a construc-
tiisation v of a countable group (G, -) is a surjective map (a “numbering”) v : w — G such that
{(m,n) : v(m) = v(n)} is a computable set and v(m) - v(n) = vf(m,n) for some computable
f:w? — w. If we require that {(m,n) : v(m) = v(n)} is merely computably enumerable, then we
have a “positive” numbering of G. It is not hard to see that a group is constructivisable if and
only if it is computably presentable. Similarly, it admits a positive numbering if and only if it is
c.e. presented. The term “constructivisation” is quite illustrative and appealing, but for the sake
of standardising terminology, we shall also avoid this term in the book.

Similarly, the German school of computable analysis [505] also makes codings explicit, calling
them representations. These are partial functions from Baire space to the objects being represented.
In our case, we will be dealing with separable spaces, and hence such representations will simply
be (fast) Cauchy sequences. Adding such explicit representations would only obfuscate matters for
the issues we are interested in.

In contrast with the above two frameworks, the modern Ash-Knight style computable algebra
uses a much more simplified notation. There, elements of a computable presentation (Defini-
tion 1.2.1) are natural numbers rather than names of elements in some “ideal” structure. A similar
approach, but in the context of separable metric spaces, is usually taken in effective descriptive set
theory (see e.g., p. 96 of [406]). There, a recursive presentation of a Polish space is a dense subset
(24)iew of the space so that the relations

P(i,j,m,n) if and only if d(z;,z;) < %;
m
n+1

are computable relations. Our definition of a computable Polish space is equivalent to saying that P
and —(@ are merely computably enumerable relations. It is easy to construct a discrete computable

3

Q(imja m, n) if and only if d(x,“ xj) <

2 Authors working in combinatorial group theory referred to these as recursive groups because they had a pre-
sentation of the form {zi,...,Zn,...|T1,...,7"m,...». They noted that by using a padding trick, the c.e. sets of
relations {r; | i € N} could be replaced by a computable set of relations. For example, replace r; with x *z§ry, if r;
is enumerated at a stage s.
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Polish space (in the sense of Definition 1.2.6) that is not isometric to any recursive Polish space; see
Exercise 2.4.31. In this book, we will be mainly looking at spaces up to homeomorphism, and it is
not hard to show that every computable Polish space is computably homeomorphic to a recursive
one; this is Exercise 2.4.33. As we noted above, we shall avoid the use of “recursive” throughout
the book, justified by Exercise 2.4.33.
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Chapter 2

Foundations

In this chapter we lay the theoretical foundation of the theory and support it with a number of
examples and counter-examples. All results in this chapter are related to the fundamental problem
of computable presentability of a structure, a function, or a space. Most results discussed in this
chapter are historic and are not directly related to Theorems A and B (or to their proofs). The
main result of the chapter is as follows:

Theorem (Melnikov [369]). There is a computable presentation of the space (C[0, 1], dsyp) in
which the norm is computable, but the operation + is not.

The theorem will re-appear as Theorem 2.4.20. The theorem and its consequences will be used in
the final Chapter 10 of the book. The plan for this chapter is as follows:

1. Section 2.1 contains the background in computability theory sufficient for understanding all
proofs later in this chapter.

2. Section 2.2 contains classical examples of computable and c.e. presented structures and his-
torical “naive” computable constructions in algebra and model theory.

3. Section 2.3 compares various classical definitions of computability for functions R — R. The
old theorems and notions discussed in Section 2.3 lie in the foundations of computable Polish
and Banach space theory, even though in this section we restrict ourselves to the real line.

4. In Section 2.4 we introduce the notions of a computable Banach space and a computable
Polish group, and we observe that these notions are equivalent for real Banach spaces. We
also compare the notion(s) to the definition of a computable Polish space, and give several
relatively non-trivial examples and counter-examples, including Theorem 2.4.20.

Deeper results will require more advanced techniques which will be developed in later chapters.
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2.1 Elementary computability theory

We use N and w interchangeably to denote the set of non-negative integers. Notations such as 2“
for Cantor space, the collection of all infinite binary sequences, are standard in the literature.

2.1.1 Codings and computable functions

Our initial concern is with functions of the form A — B where A, B < N; i.e. partial functions on
N. If A = N then the function is called total. Looking only at N may seem rather restrictive. Later
we will be concerned with functions which take subsets of the rationals or subsets of 2“ as their
domains. From the point of view of classical computability theory, where resources and efficiency
don’t matter, the definitions naturally extend to such objects by coding. For example, if we consider
the rationals Q, these can be considered as coded in N as follows:

Let 7 € Q —{0}; write r = (—1)° (%) with p, ¢ € N in lowest terms and § = 0 or 1. Then
define the Gédel number of 7, #(r), as 2°3P59, with the Gédel number of 7 = 0 to be 0.

Then by the fundamental theorem of arithmetic, # describes an injection from Q into N and
furthermore given n € N we can decide exactly which r € Q, if any, has #(r) = n. Similarly if o is
a finite binary string, say o = aq, as, ... a,, then we can define

#(o) = gai+lgaz+1 (pn)an-H,

where p,, denotes the n-th prime. There are a myriad of other codings possible. One could code the
string ¢ by representing it as the number 1o so that the string 01001 would correspond to 101001.
The above procedures are called “effective coding” since they give an algorithm for the relevant
injection. The actual coding and the way we represent objects does not matter too much until we
look at structures arising from computable analysis, where more care is needed.

Another common coding we will use is to code pairs of natural numbers via a pairing function,
which is any computable injection from N? — N with computable range. The standard pairing
function is the function (n,m) = 3(n+m)(n+m+ 1) + m. This extends naturally to finite tuples
of natural numbers: {(n,m,py = {{(n,m), py, and so on.

Convention 2.1.1. Henceforth, unless otherwise indicated, we will always regard the objects under
discussion as being effectively coded in some fixed way.

As we have already stated earlier, we adopt:

Church-Turing Thesis. The collection of algorithmic partial functions on the positive inte-
gers are exactly those that can be simulated by Turing machines.

An excellent discussion of the subtleties of the Church-Turing thesis can be found in Odifreddi
[421]. A typical use of the Church-Turing thesis might be as follows. Suppose we can explain,
in sufficient detail, a certain algorithmic process and convince ourselves that our procedure is
intuitively mechanical. Then the thesis implies that with sufficient effort (perhaps also with enough
motivation) one could design a set of instructions for a Turing machine that would be able to
compute the process. This is similar to designing a pseudo-code in computer science, or even just
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explaining how one could design such a pseudo-code, and then claiming that it can actually be
implemented in the required programming language if necessary. Even though this thesis might
seem a bit too relaxed, it will allow us to compress most proofs tenfold if not more, thus allowing
the proof to focus on the mathematical ideas.

The following fundamental property of partial computable functions will be essential throughout
this book.

Property 2.1.2 (Enumeration Theorem: Existence of the Universal Turing Machine). There
is an algorithmic way of enumerating all the partial computable functions. That is, there is a
partial computable function f(e,x) of two variables such that

f(e,a;) = 995(1")

where () denotes the e-th partial computable function on input x.

The point of Property 2.1.2 is that we can pretend that we have all the machines @1, s ... in
front of us; to compute 10 steps in the computation of the 3rd machine on input 20, we can pretend
to walk to the 3rd machine, put 20 on the tape and run it for 10 steps; we write this as 3 10(20).

Notation 2.1.3. Let ¢, be the e-th partial computable function. The standard notations for the
result of s steps in the computation of ¢, on input z are @, ¢(x) and @.(x)[s].

We write @e s(z) | or pe(z)[s] | to indicate that the computation halts in at most s steps;
otherwise, we write @, s(z) T or we(x)[s] 1. The exact choice of notation will depend on the
context; however, we will usually avoid placing the stage as a superscript. More generally, we adopt
the following standard

Notation 2.1.4. If A is an object that we compute, effectively enumerate, or computably approx-
imate, then the result of s steps in this computation is typically denoted either Ag or A[s].

Given any partial computable function f, there are infinitely many different algorithms to
compute it. If ¢, is one such algorithm for computing f, we say that e is an indezx for f. We
also write f(x) | to denote that x is in the domain of f, and therefore the computation of any
algorithm computing f halts on input z.

In many ways, Property 2.1.2 is the platform that makes undecidability proofs work since it
allows us to carry out diagonalisation arguments within the class of partial computable functions.
For instance we remind the reader of the following basic result.

Proposition 2.1.5 (Unsolvability of the halting problem). There is no algorithm which given e,
decides if pe(x) |. That is, there is no algorithm that returns 1 if the e-th machine on input x halts,
and returns O otherwise.

The following result, called the s-m-n Theorem, is due to Kleene.

Theorem 2.1.6 (The s-m-n Theorem). Suppose that g(x,y) is a partial computable function of
two variables. Then there is a total computable s(x) such that for all x,y,

Ps(x) (y) = g(z, y)
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We omit the proof. The above also holds if z and y are tuples xq, ...,z and yo,...,Yn, and
there is also a version of the theorem that works for indices of Turing functionals (to be defined).

A basic notion in computability theory is m-reducibility. We say that a set A is many-one
reducible, or simply m-reducible to another set B, written as A <,, B, if there is a computable
function f such that for every z, x € A iff f(x) € B. We write A =, B iff A <,, B and B <,,, A.
The relation <,, is a pre-ordering and the equivalence classes are called m-degrees. The idea is
that an instance of asking whether “z € A” can be effectively transformed into a instance of the
question “f(z) € B”, so B is at least as computationally complicated as A.

We let Ko = {{e,z) : pc(z) |} denote the set representing the halting problem. A different,
diagonal version of the set is K = {z : @, (z) |}. These two sets are the same up to m-degree as we
now show.

Fact 2.1.7. K =, K.

Proof. Clearly K <,,, Ky since x € K iff (x,z) € Ky. To see Ky <,,, K, define a partial computable
function g such that for all p, z,

1 ifpu(y) | and p = {z,y),
9(p.2) = { 1 otherwise.

Via the s-m-n Theorem, there is a total computable s(p) such that for all p, z,

(Ps(p)(z) = g(pa Z)
Then {(z,y) € Ky iff s({z,y)) € K. O

2.1.2 Computable and computably enumerable sets

For the next definition which already appeared in the introduction, recall that the characteristic
function x4 of a set A € w is the total function so that xa(z) = 1 if z € A, and xa(z) = 0
otherwise.

Definition 2.1.8. A set A < w is called
(1) computably enumerable (c.e) if A = dom ¢, for some e, and

(ii) computable if the characteristic function of A is computable.

We will let W, denote the e-th computably enumerable set. That is, we let W, = dom ¢, and
let We s = {z < s|@es(x) |} constitute s steps in the enumeration of W,. The name computably
enumerable comes from the notion of being ‘effectively countable’ via the following characterisation.
The proof is a straightforward exercise.

Proposition 2.1.9. An infinite set A is computably enumerable iff there is a (total) computable
injective function f with f(N) = A.
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Thus we can think of a computably enumerable set as an infinite listing of its elements that can
be produced by an effective procedure. Notice that the listing of a c.e. set is not required to be in
increasing order. Proposition 2.1.5 tells us that K =,,, K are c.e. sets which are not computable.
Another classical result is:

Theorem 2.1.10 (Post [431]). A set A is computable iff both A and its complement are computably
enumerable.

Proof. To decide whether a given number z € A, simultaneously list both A and its complement
and wait to see where x appears first. Clearly,  must be listed in A or its complement after finitely
many steps. Here we appeal to the Church-Turing thesis to see that this decision procedure can
be computed by a Turing machine and A is therefore computable. Without it the proof would be
unnecessarily tedious. O

For instance, it follows that the complement of the halting problem, K, is not c.e..

Suppose we are interested in some property of partial functions, such as being total, which is
independent of their implementation. The collection of indices of all partial functions having this
property forms an indez set, as defined below.

Definition 2.1.11. An index set is a set A < N such that if z € A and ¢, = ¢,, then y € A.

For example, the collection of all indices of total computable functions
Tot = {e : ¢ is total}

is an index set, whereas the halting problem K = {e : v.(e) |} is not, as we demonstrate in the
next subsection. The s-m-n Theorem 2.1.6 can be used to prove the following classical result.

Theorem 2.1.12 (Rice’s Theorem [448]). An inder set A is computable iff A = N or A = (.
Furthermore if A # N and A # & then either K <,, A or K <,,, A.

Proof. The proof of Rice’s Theorem is very similar to the proof that Ko < K. Let A # N, ¢ be an
index set and without loss of generality, assume that e € A where dom ¢, = J. (If e € A instead,
we swap the roles of A and A).

Since A # ¢, fix some z € A. Then for some ¢, ¢.(q) |. By the s-m-n Theorem, there is a
computable s(z) such that, for all y € N,

_ ) oeey) ifpa(a) ]
e = T 0

Then ¢, (z)] implies ;) = ¢. and so s(x) € A, and ¢, ()1 implies Y ;) = Y and so s(x) ¢ A.
Thus K <, A. O

Of course many decision problems are not coded by index sets and so can have decidable solu-
tions. Rice’s Theorem says that any nontrivial problem which is given purely in terms of machine
descriptions cannot be decidable. Index sets will play a central role in the second half of the book.
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2.1.3 Kleene’s Recursion Theorem

A fundamental result in classical computability is the Recursion Theorem. Its proof uses the s-m-n
Theorem 2.1.6 and allows us to use the index of the set we are building in a construction, as part
of the construction of that very same set. This apparent circularity is what causes the Recursion
Theorem to appear counter-intuitive, but does not actually cause a problem because our functions
can be partial (computable) in general.

Theorem 2.1.13 (Recursion Theorem; Kleene [298]). Suppose that f is a computable function.
Then we can compute (from an index of f) a number n (called a fixed point of f) such that

On = Prn) and hence, Wy, = Wy(,).

Proof. First define d via the s-m-n Theorem 2.1.6 as @g,)(2) equals @, () (2) if @u(u) | and
®d(u)(2) is otherwise undefined. By the s-m-n Theorem, d is total. Given an index for f, find an
index v such that

(PU:de,

noting that ¢, is total as well. Now letting n = d(v), the following calculation

Pn = Pdv) = Pe,(v) = Pfdv) = Pf(n)
shows that n is a fixed point for f. O

There are many variations on the Recursion Theorem. For example, if f(z,y) is computable,
then there is a computable function n(y) such that, for all y,

Pr(y) = Pr(n(y),y)-

This result is usually called the Recursion Theorem with Parameters (Exercise 2.1.16). We now
give a very simple application of the Recursion Theorem.

Example 2.1.14. We show that K = {e : ¢.(e) |} is not an index set. (This fact also follows
from Rice’s Theorem 2.1.12.) By the s-m-n Theorem 2.1.6, let f be a computable function such
that @,y (n) | and @y, (2)1 for all z # n. Suppose that K is an index set. By the Recursion
Theorem 2.1.13, let n be a fixed point for f, so that ¢, = ¢¢(,). Choose m # n, another index for
¢©n- Then ¢, (n) | and hence n € K, and yet ¢,,(m) 1 and m ¢ K, a contradiction. Note that this
example also shows that there is a partial computable function ¢, that halts only upon its own
index.

Exercises

Exercise® 2.1.15. Show that if g is a computable function there exists an index m such that
W, ={0,...,9(n)}.
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Exercise® 2.1.16 (Recursion Theorem with Parameters; Kleene [298]). Suppose f(z,y) is a com-
putable function, then there is a computable function n(y) such that, for all y,

Pn(y) = Pf(n(y)y)-

Exercise 2.1.17 (Double Recursion Theorem; Muchnik [410], Smullyan [475]). If f and g are
computable functions of two variables, there exist a, b such that ¢, = @4 and vy = ©y(a,p)-

2.1.4 Oracle computability and Turing degrees

As we have seen, the key idea used in the proof of Rice’s Theorem 2.1.12 is that of reducibility.
Recall that the reduction used in Rice’s Theorem 2.1.12 is called an m-reduction, which is the
simplest reduction. More specifically, A <,, B if there is a computable function f such that x € A
iff f(x)e B. If f is 1-1, then we might emphasise the special nature of the m-reduction by writing
A <4 B. This is called a 1-reduction. Of course, there is no reason why we should restrict ourselves
and ask the “oracle” B only one question in order to decide if x € A. What about finitely many
queries, perhaps bounded in some computable way dependent on the input x? This idea of more
a general oracle access was introduced in another classic paper of Turing [490]. In other words, we
can regard one problem B as being at least as hard as another problem A, by attaching to our
computer an infinite read-only memory tape that contains B. Following Turing [490], we formalise
this idea as follows.

We can extend the notion of a Turing machine to one with an extra read-only tape with infinitely
many cells. We call such Turing machines oracle Turing machines. We can regard a normal machine
as an oracle machine which never reads the extra oracle tape. The extra oracle tape can contain
an infinite sequence; this sequence can be identified with (the characteristic function of) a set B.
That is, B can be viewed as a function with range {0,1}, and B(z) = 1 iff x € B. Of course, each
such function can also be viewed as an infinite string of 0-s and 1-s, with the n-th position being 1
iff B(n) = 1. In the same way that we could enumerate all partial computable functions, we also
get:

Proposition 2.1.18 (Turing [490]). There is a uniformly computable enumeration of all oracle
Turing machines {®. : e € N}.

We may identify @9 with ..

Notation 2.1.19. We write ®Z(n) or ®.(B;n) to denote the computation of the machine ¥,
with B stored in the oracle tape and performed with input n.

Then 2 (n) or ®.  (B;n) denote the result of this computation after s steps (if there is any).
The other standard, related, but not always equivalent notations in the literature are ®.(B;n)[s]
and ®Z(n)[s], but these notations we will usually avoid. For example, if B is computably enu-
merable and B is the part of B listed by stage s, then ®.(B;n)[s] should likely be interpreted as
®. s(Bs;n) rather than @, ((B;n), unless otherwise specified.

Since we identify a set A with its characteristic function, an oracle machine ®. can be viewed
as a functional that maps (partial) characteristic functions to (partial) characteristic functions:

B &5,
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where both sides are viewed as functions. Having this interpretation in mind, we write ®.(B) to
mean (®Z(n))nen. We will use this notation even when @, is partial, in which case it maps partial
functions to partial functions. We thus refer to oracle machines as Turing operators or Turing
functionals to emphasise that we are interested in the fact that the operators act on sets (as opposed
to acting on numbers).

Definition 2.1.20 (Turing Reduction [490]). We say that A is Turing reducible to B, written
A <r B, if A = ®B for some e € N. That is, we can compute A using an oracle Turing machine
with an oracle for B.

We stress that there is no limit on the number of queries that can be used in a computation,
only that it is finite. Thus, <, is a simple variation of Turing reduction as only one question is
asked by an m-reduction on each input . We also adopt:

The Relativised Church-Turing Thesis: The partial functions that are algorithmically
computable relative to B are exactly those that are computable by a Turing machine that has
B stored in its oracle tape.

We write A =1 B to mean that A <r B and B <pr A. This gives rise to an equivalence
relation, and the equivalence classes under =7 are of the form deg(A)= {B : B =r A}. The
equivalence classes encode the notion of “equicomputability” and are called Turing degrees, degrees
of unsolvability, or simply degrees throughout the rest of this chapter and the majority of the book
(unless specifically stated otherwise).

We always use boldface letters for degrees. We let 0 denote the degree of the computable sets.
If a degree contains a computably enumerable set, we will call it a computably enumerable degree.
Note that not every set in a c.e. degree is computably enumerable; for instance we have K = K
but K is not c.e.. Additionally, we will often mix notation by writing, for example, A <r a, for a
set A and a degree a.

The use principle

Suppose ®(A4; x) |. Let u(®(A4; x)) denote the use of this computation. Formally, u(®(A4; x)) at
stage s is equal to

1+ mazy<s{A(y) is used by s stages of the computation ®(A4; z)},

if this maximum exists, and 0 otherwise. The extra 1 is only to make the notation A | u(®(A4; x))
mean “the longest initial segment of A used in the computation of ®(A4; x)”, where A | n =
An{0,1,...,n—1}. If our notation gets a bit mixed up, this intended interpretation of the use
should be prioritised over the formal details. Also, note that no parameter of the computation
at stage s can be larger than s, so maz,<s can be safely replaced with maz, in the definition of
u(®(A4; x)). Also, there is a slight ambiguity in the interpretation of “s stages of the computation”,
ie, of ®(A4; x)[s]. If A = UsAs is ce. and is being listed, this will typically be interpreted as
O (Ag; x). If A is written on the oracle tape all at once in advance, then s in Ay should be
dropped. The intended interpretation will always be clear from the context. We identify sets with
their characteristic functions, and we further identify characteristic functions with strings of 0-s
and 1-s. For a finite string 7, ®(7;n) | usually (implicitly) assumes that the use of the computation
does not exceed the length of 7.
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Lemma 2.1.21 (Use principle). Suppose ®(A; z) | and let u = uw(P(A4; x)). Let B be any set such
that B} w= A ! u. Then ®(A4; z) = ®(B; z).

Proof. Both A and B give the same answers to the oracle membership questions in the computa-
tions, hence the result must be the same. O

The use principle implies that Turing operators are continuous maps 2* — 2¢. We will use this
observation extensively throughout the book.

The jump operator

Many notions we have seen so far can be relativised to an oracle. In particular, if A <7 B we say
A is computable relative to B, or B-computable. A B-computably enumerable set is defined to be
the domain of a partial B-computable function, and so on. Many notions and results can also be
relativised to any set B by replacing “computable” with “B-computable” throughout. For instance,
the following is the relativised version of the halting problem.

Definition 2.1.22 (Jump Operator). For any set A we define K to be the halting problem for
machines with oracle A:
KA = {e: 02(e) L},

The set K4 is also denoted A’ and is called the jump of A.

Since we can identify ®2 with ., we may assume that ¢J’ = K. Notice that K4 is c.e. relative
to A. If the degree of A is a then we write a’ for deg(A’). Note that a’ makes sense since A =1 B
implies A’ = B’. In fact, A = B implies A’ =; B’; this is Exercise 2.1.26.

Notation 2.1.23. Noting the above equivalences, we will frequently identify K("~1 with &™),
for any n > 1.

By relativising Proposition 2.1.5, we have B <p B’ for all B. Consequently we can define a
hierarchy of degrees
0,0,0",...,00" . ..

This hierarchy is does not collapse and is closely related to the arithmetic hierarchy that we discuss
next. It can also be continued beyond w iterations of the jump to form a transfinite hierarchy; we
will discuss it in later chapters.

Note that it does not follow from the definition that 0 < a implies 0’ < a’ (though of course
0 < a does imply 0’ < a’). The following notion was already mentioned earlier; e.g., see Theorem

A.
Definition 2.1.24. A degree a is low if a’ = 0, and a set is low if its degree is low.

In the next chapter we will show that there exist low non-computable c.e. sets (Theorem 3.1.1).
Low degrees are usually thought of as being somewhat close to 0; this can be made formal using
the low,, hierarchy that we shall not define here.

Exercises
Exercise® 2.1.25. Prove that B is c.e. relative to A iff B <; A'.
Exercise® 2.1.26. Prove that if A <7 B then A’ <; B'.
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2.1.5 The arithmetic hierarchy

In this chapter we need only the definition and a few basic facts about the arithmetical hierarchy.
More about the hierarchy will be explained later. An n-ary relation is a set of tuples in N*.  We
define the classes X0, T19, and A% as follows. A set B is X0 if there is a computable relation

R(zy, ..., Zpn, x) with z € B iff

Jz1 Voo 3...Qnx,  R(x1, ..., Tn, x) holds,

~
n—1 alternations of quantifiers

where @Q,, is either V or 3 depending on whether n is odd or even.

A set B is IV iff B is 0. This means that a I1% set has a similar syntactical representation
as above except we now have the leading quantifier V followed by n — 1 alternations of quantifiers.
Note that we can always collapse two quantifiers of the form 3z, Jx5 into a single dz3 quantifier
using the pairing function, which is why it makes sense to count only the number of alternations of
quantifiers. Finally we say a set R is A9 if it is both ¥ and TI9.

Theorem 2.1.27 (Kleene [299]). A set A is computably enumerable iff A is X5.

Proof. Suppose A is computably enumerable. Then A = dom ¢, for some z, and y € A iff
(3s)(¥i(y) |), noting that the predicate “p3(y) |” is computable given x,y,s. Conversely, if A
is X9 then for some computable R we have y € A iff (32)(R(z,y)). Define a partial computable
function g by setting g(y) = 0 if we can find some number z such that R(z,y) holds, and g(y) 1
otherwise. Then A = dom g. O

By Theorem 2.1.10, A = 39 A T1{ consists of exactly the computable sets. It also follows from
the undecidability of K that K € X{\A{ and its complement K € II9\AY. We get the arithmetical
hierarchy of Kleene:

AQ/H?\AQ/HQ\AO/. y
NNV

Here lines mean inclusion (rightward along the page). In Section 3.1.1, we establish all the
inclusions and show that they are all proper. For instance, we will show that 0™ € YO\AL,
However we will not need these facts in this chapter.

2.1.6 TIY classes

We write 2<% to denote the set of all finite strings (tuples) of zeros and ones. It can be identified
with the complete binary tree. Note that each infinite path through 2<% is a (characteristic function
of a) set. Every such infinite path is naturally an element of 2¢.

A computable subtree of 2<% is a computable collection S of strings of zeros and ones closed
under initial segments. Then P € 2“ is a path through S if for all of its finite initial segments o
(written o < P) we have o € S. We denote by [S] the collection of paths through S.
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Definition 2.1.28 (TIY class). A (binary) I19 class C' < 2¥ is a collection of infinite paths through
a computable subtree of 2<%,

An equivalent formulation is that C is a II{ class iff there is a computable relation R on finite
strings such that
C={ae2”:VnR(a | n)}.

We remark that a more general definition of a computably bounded IIY class replaces 2¢ with
a finitely and computably branching tree, meaning that at level n there are f(n) many nodes for
a computable function f. It is not difficult to show that for such a tree T and II{ class C defined
on T, there is a I class C defined on 2 such that the members of C are in computable 1-1
correspondence with those of C , and have the same many-one degrees. (See Excercise 2.1.31.)

If there in no computable bound on the level n branching then the theory of such II9 classes
is quite different. For example, every path might code §', whereas later we will show that a
computably bounded 19 class always has a member of low Turing degree. We will usually say
“TI9-class” when we actually mean computably bounded T1Y class, unless otherwise specified.

In this chapter we will only need the following well-known result. (More results will be presented
in §4.2.3.) In some sense, the class constructed below is as far from being decidable as possible.

Theorem 2.1.29. There exists a non-empty 119 class with no computable paths.

Proof. Let A and B be disjoint c.e. sets. The the collection of separating sets P = {X : X 2
A and X nB = } is a non-empty I1Y class. Such a class of sets separating disjoint c.e. sets is called
a separating class. A pair of c.e. sets A and B is effectively inseparable if there is no computable set
C, such that C 2 A and C 2 B. To prove the theorem it is sufficient to come up with an effectively
inseparable pair of c.e. sets. For example, by the proof of the incompleteness theorem, for Peano
Arithmetic (PA), the c.e. sets of (Godel codes for) provable formulae A = {#1 : PA - ¢} and
B = {#1: PA+ —4} form an effectively inseparable pair. (For a more straightforward example,
consider A = {e: ¢.(0) =0} and B = {e: ¢.(0) = 1}.) O

Exercises

Exercise® 2.1.30 (Folklore).

1. Show that, for every II9 predicate Va3yR(z,y, z) where R is computable, we can uniformly
replace R with a computable predicate P so that for all z,

VzIyR(z,y, 2) if and only if 3I°wP(w, 2),

where 3% stands for “there exists infinitely many”.
2. Same as above, but now uniformly replace P with an R.

3. In the notation above, prove that "3 wP(w, z) if and only if 3~ wP(w, z), where 3<% stands
for “there exists at most finitely many”. (Note the negation is not applied to P.)
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4. Tterate (1) and (3) to uniformly derive a general form of any I1%-predicate in terms of only
d*-quantifiers and at most one V-quantifier over a computable predicate.

5. Show that the naive analogue of (4) in terms of 3 and 3<% fails for ¥?-predicates when n > 4.

6. Show that, for every I19 predicate Va3dyR(x,y,z) where R is computable, we can uniformly
replace R with a computable predicate P so that for every x there exists at most one y with
so that P(z,y, z).

Exercise® 2.1.31. Suppose that f is a computable function and we make a computable tree T
such that for all v € T, v has at most f(n) many extensions. Show that elements in [T'] are in
computable 1-1 correspondence to [T where T' € 2<%,

Exercise® 2.1.32. Suppose C = [T], T < 2<%, is a IIY.
1. Suppose C' has only finitely many members (equivalently, there are only finitely many infinite
paths through 7'). Show that in this case all these members are computable.

2. Suppose £ € C is isolated, meaning that there is a ¢ € T so that £ is the only infinite path
through T that extends o. Show that & is computable.

3. Suppose we are given an index e for T < 2¥ and n € N so that C' = [T] has exactly n
members (n > 0). Show that we can compute these members uniformly in e and n. (See also
Fact 4.2.45.)

Exercise® 2.1.33. Show that if P is a non-empty II{ class S 2%, then there exists a € P, such
that « has c.e degree. (Hint: Think about the rightmost or leftmost path in the computable tree
where P = [T1].)
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2.2 Early effective algebra

This section contains examples of computable, low, and c.e. presented structures. For instance,
we give examples of low and c.e. presented groups that have no computable presentation. We
often give only extended sketches of these results, skipping most of the details not related to
computability. Many of these examples will not be used in the rest of the book; they serve mainly
as (historical) examples. The results here are mainly motivational, and hence the reader could
skip the proofs of some of them without affecting their understanding of the details of the later
results. However, at least skimming through the proofs is advised. An exception to this rule is
Mal’cev’s Theorem 2.2.16, as its proof contains fundamental ideas that will reappear frequently
throughout the book. Familiarity with the elementary basics of group theory and field theory is
assumed throughout this section.

2.2.1 Examples of computable and non-computable groups

According to Definition 1.2.1, a computable group (G, -) is one where the domain is a computable
set and - is computable. Using brute-force search through all elements of G, we can compute !
for any given x € G in a computable group G.

Elementary example of computable groups

Clearly, every finite group is computable.
Example 2.2.1. The following groups are easily seen to be computable:
1. Finitely generated abelian groups.

2. The free group F}; of rank k < w. (When k = w, we can additionally make the free generating
set computable.)

The free abelian group of rank xk < w.
The invertible n x n-matrices over Q.
The n x n-matrices over Z having determinant 1.

The additive group of any vector space of dimension < w over Q.

A

The additive group of any vector space of dimension < w over any computable field (see
Exercises 2.2.22 and 2.2.22 for examples of computable fields).

8. Any group isomorphic to F,,/N, where F,, is the computable presentation of the rank w free
group with a computable set of generators, and N is normal subgroup of F, that is computable
(as a subset).

9. The subgroup of (Q, +) generated by {pi : 1 € S}, where p; range over a computably enumer-
able set of primes S.

10. The subgroup Gg of (Q, +) generated by {1, 1% : {i,ny € S}, where S is a c.e. set.

We leave the verification of 1.-10. to Exercise 2.2.21.
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Further examples are provided by the following, perhaps unexpected, result.

Theorem 2.2.2 (Rabin [440]). Every finitely generated group of matrices over any field has a
computable presentation. (Note that computability of the field is not assumed.)

Proof. Suppose the group is generated by Aq,..., Ax, and let U be the field. Consider the finitely
many elements of the field that are mentioned in Ay,..., Ax. If P is the prime field of the same
characteristic as U, then all entries of any matrix from the group lie in a field of the form

U= P(xg,. .., Tk, @0,---,Qn),

where the x; are algebraically independent over P, and the «; are algebraic over P(zo,...,Zx).
(This is because we have only finitely many entries, so simply adjoin them to the prime field if
they are not already there.) By Exercises 2.2.22 and 2.2.23, the field U is computably presented.
Using the computable presentation of U, we can begin with A;,..., Ax and apply the (matrix)
product and the (matrix) inverse operations iteratively to generate a computable presentation of
the group. O

We cite [339] for an alternative proof of Theorem 2.2.2.

Remark 2.2.3. Rabin [440] points out that Theorem 2.2.2 has the consequence that every finitely
generated group that is not computably presentable cannot have a faithful representation by ma-
trices over a field (we omit the standard definition). In particular, not every finitely generated
or even finitely presented group has a faithful presentation; e.g., Example 1.2.3 or Theorem 2.2.6
below. This consequence had been obtained before Rabin in 1940 by Fuchs-Rabinowitsch [196]
using purely algebraic methods.

A low group with no computable presentation

We give the first elementary example of a low group with no computable presentation. The result
is folklore.

Theorem 2.2.4. There exists a low subgroup of (Q,+) that has no computable presentation.

Proof. To establish the theorem, we give the first early example of a characterisation of com-
putable presentability which, in its slightly stronger form (to appear as Theorem 5.1.16), is usually
attributed to Mal’cev [346]. In the notation of Example 2.2.1(10), assume additionally that S is a
set of pairs {i,n) such that (i,n)y € S implies (i, k) € S for all k < n.

Proposition 2.2.5. Gg is computably presentable iff S is computably enumerable.

Proof. One implication is given by Example 2.2.1(10). For the other implication, let A = Gg € Q
be a computable group. Fix the isomorphic image g of 1 € Gg in A. To enumerate S, list all z € A
and all positive integers m such that mx =z +z+2z+...+2 = g. If plaz = g for some = € A,

x occurs m times

then put {i,n) in S. This process is clearly effective. O

For example, if we take the complement K of the halting problem, and consider the set S(K) =
{¢i,1) i € K}, we see that GS(F) has no computable presentation, by Post’s Theorem 2.1.10.
Theorem 3.1.1 (to be proven later) states that there is a low non-computable c.e. set X. Let
S(X) = {¢i,1) : i € X}. By Proposition 2.2.5, the group Gs(x) is computable relative to X and
thus is low. However, it has no computable presentation, again by Post’s Theorem 2.1.10. O
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A c.e. presented group with no computable presentation

In the context of groups, the definition of a c.e. presented structure (Definition 1.2.2) is equivalent
to saying that
G;(a”n—:ieN},

where a; form a computable set of free generators of F,,, and r; € F,, is a c.e. set of relations that
generate a normal subgroup that is c.e. as a subset of (this presentation of) F,,; we leave this to
Exercise 2.2.21. If the sets of a; and r; are both finite, we say that the group is finitely presented.
Evidently, every computably presented group is c.e. presented. In [440], Rabin gives the following
example which he attributes to Boone.

Theorem 2.2.6. There exists a finitely generated, c.e. presented group without a computable pre-
sentation.

Proof. Fix a set of natural numbers W and define
Gw = (x,y,u,t|ulzu™" = tiyt™" ie W).
Claim 2.2.7. In Gy, u'zu™" = tiyt~" holds iff ie W.
Proof of claim. Omitted. O

If W is c.e. then Gyy is clearly c.e. presented. Let W = K, the halting problem.

Claim 2.2.8. Gk is not isomorphic to any computable group.

Proof of claim. Assume there is a computable copy of Gk, denote it A. Let f : Gx — A be an
isomorphism. Fix elements f(x), f(y), f(u), f(t). There are only finitely many such parameters, and
we non-uniformly fix them; for more explanation see Remark 2.2.9 below. Then ulzu=" = tiyt—* iff

F@)' fl@)f(w)™ = F@&) f)f@&)
and the latter has to be decidable in A, a contradiction. O
We conclude that G has the desired property. O

Remark 2.2.9. In the sketch above, we non-uniformly fixed a finite tuple of parameters. That is,
we designed a computable procedure P that works when the parameters are correctly chosen. This
can be viewed as follows: List all possible quadruples Zg, Z1,...,Z;,... and consider all possible
procedures of the form P(Zg), P(Z1),.... We know that one of these procedures does the job, but
we do not necessarily know which one. We also used a non-uniform argument in the proof of
Theorem 2.2.2 when we fixed z; and «;, and in the proof of Proposition 2.2.5 when we fixed the
isomorphic image g of 1.

The proof of Theorem 2.2.6 can be pushed to a characterisation similar to Proposition 2.2.5.
Such characterisations exist among finitely presented groups too; we cite [95, 49, 50]. Combined with
the existence of non-computable low c.e. sets (Theorem 3.1.1), these results imply the existence of
c.e. presented groups that are also low, yet not computably presented. Using completely different
methods, in Corollary 9.3.23 we will give such examples among (non-finitely generated) abelian
groups. Thus, we limit ourselves to a brief discussion below of the finitely presented case, sufficient
to clarify Example 1.2.3 from the introduction.
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Non-computable finitely presented groups

We outline the proof of the following fundamental result that appeared earlier as Example 1.2.3.
Theorem 2.2.10. There exists a finitely presented group not isomorphic to any computable group.

Proof sketch. The theorem can be derived from Theorem 2.2.11 and the two classical theorems that
we state below.

Theorem 2.2.11 (Higman Embedding Theorem [250]). Suppose that G is a finitely generated
group. Then G can be isomorphically embedded into a finitely presented group iff G has a c.e.
presentation.

We omit the proof, but we note that it is much simpler than the original early proofs of the
following classical:

Theorem 2.2.12 (Novikov [416], Boone [51]). There is a finitely presented group with undecidable
word problem!.

Proof of Theorem 2.2.12 using Theorem 2.2.11. Fix the finitely generated group Gg witnessing
Theorem 2.2.6 and embed it into a finitely presented group H. Let f : Gx — H be the em-
bedding. Arguing as in the second half of the proof of Theorem 2.2.6, we can deduce that

K = {i: f(u)' f(2)f ()™ = FOF () ()7 0

We now explain why Theorem 2.2.10 follows from Theorem 2.2.12. Observe that f in the proof
of Theorem 2.2.11 (and 2.2.6) was necessarily computable, but again non-uniformly (as explained
in Remark 2.2.9). Of course, the same argument works for any finitely generated c.e. presented
structure.

Proposition 2.2.13. Suppose A is a finitely generated structure (in a language with no relational
symbols). Then any two c.e. presented copies of A are computably isomorphic.

Proof. Let X and Y be two c.e. copies of A. Non-uniformly fix any finite tuple of generators T
in X and their isomorphic images ¢ in Y. There is a unique extension of the map Z — 7 to an
isomorphism between X and Y: just map Z-terms to the respective y-terms. This extension is
evidently computable. O

Corollary 2.2.14. Suppose a finitely generated structure has a computable presentation A. Then
in any c.e. presentation B/. of A, the c.e. equivalence relation ~ is computable. In other words,
every c.e. presentation of A is computable (up to notation change).

Indeed, to decide = ~ y in B, simply compute their isomorphic images in A and see whether
the images are equal. As we noted earlier, any finitely presented group is evidently c.e. presented.
Thus, to establish Theorem 2.2.10, it remains to combine the Novikov-Boone Theorem 2.2.12 with
the corollary above. O

IThat is, the equality modulo the relations is undecidable.
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Groups with non-equivalent presentations

Mal’cev [345] was perhaps the first to propose that computable (presentations of) algebraic struc-
tures should be studied up to computable isomorphism. The inverse of a computable isomorphism
is also computable (via a brute-force search argument). Thus, computably isomorphic structures
exhibit identical computability-theoretic properties. We arrive at the important class of structures,
ones where computable isomorphism type and isomorphism type coincide.

Definition 2.2.15 (Mal’cev). An algebraic structure is computably categorical or autostable if
it has a unique computable presentation, up to computable isomorphism.

For example, finitely generated structures always possess computably unique presentations
(Proposition 2.2.13). Thus, computable categoricity can be viewed as a generalisation of being
finitely generated. But of course, there are many elementary examples that are not even close to
being finitely generated. For example, it is also well-known and easy to see that the Rado graph
(the random graph) is computably categorical, and so is the dense linear order (Q, <) (Ex. 2.2.20).
But all these basic examples are relational structures. When a structure has operations, the analogy
with being finitely generated sometimes becomes more direct. For instance, the following historical
example is usually attributed to Mal’cev. Let Q. denote the additive group of the Q-vector space
of dimension a € N U {w} (Qo = spang & = {0}). These groups are computably presented; this is
Example 2.2.1(6).

Theorem 2.2.16 (Mal’cev). Q, is computably categorical iff « is finite.

The strategy used in this proof below will be extended in later chapters to prove Khisamiev’s
Theorem 5.1.41, which is (3) of Theorem A. Khisamiev’s Theorem is not elementary, but it shares
some key ideas with the proof below.

Proof. We would like to use scalar multiplication, however, we cannot use it directly since it is not
in the language of groups. For an element x of an additive group and n a positive integer, write nx
to denote

r+r+r+...+x.

"
x occurs n times

Also define 0g = 0, and when n is a negative integer, set nz = (—n)(—z). Clearly, the operation
(n,x) — nx

is computable in any computable presentation of Q. Further, given m > 0 and an element a,
there exists a unique element y with the property my = a, and we can just brute-force search for
y. Thus, more generally, the operation of scalar multiplication

(r,a) — ra,
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m
where r = — € Q, is also computable in any computable presentation of Q.. It follows that the

n

additive group structure on Q. uniquely and effectively determines the Q-vector space structure on
it. For instance, it makes sense to say that two elements of the group are linearly independent. We
are now ready to prove the theorem.

Assume a = n € N. The case when n = 0 is trivial; assume n > 0. Given any two com-
putable copies A and B of the group, non-uniformly (recall Remark 2.2.9) fix some finite bases
4= ag,---,0p—1 and b = by, ...,b,_1 in A and B, respectively. Define f : A — B as follows. For

a € A, find integers m, mg, ..., my,_1 so that m > 0 and
ma = Z m;a;.
i<n

In B, search of an element b so that

<<n
and define f(a) = b. This map would be an isomorphism of the respective vector spaces over Q (it
is linear), so it is evidently an additive group isomorphism between A and B. By the choice of n, a
and b, for any a € A such coefficients m, mq, ..., m,_1 and an element b € B exist. Thus, they will
eventually be found. It follows that f is computable.

Now assume o = w. We prove that the additive group Q,, admits two computable presentations
that are not computably isomorphic. Let A be the “natural” computable presentation A of Q,,
which is the collection of formal sums

Z TriQs,

ieN
where almost all coefficients r; are zero. (Alternatively, we can view each individual element as a
finite tuple of rational numbers.) Given any two elements of this presentation, we can easily decide
whether they are linearly independent as vectors over Q.

We claim that it is sufficient to build a computable presentation B of QQ,, in which there is no
algorithm such that, given a pair of elements of B, decides whether they are linearly independent.
Indeed, suppose such a B has been constructed, and assume f : B — A was a computable isomor-
phism. To decide whether z,y € B are linearly independent, calculate f(z) and f(y) and decide
this property in A. (This is essentially an m-reduction.)

To this end, we construct a computable presentation B = | J, B of Q,, in which linear indepen-
dence for pairs of elements is undecidable. The idea is as follows. We reserve a sequence of elements
(a;)ien that we initially keep linearly independent. Initially, we may think of these a; as being the
elements of the standard basis of the natural presentation of Q,. However, we will change this
interpretation later for some (but not all) such a;. If i enters the enumeration of the halting set K
at stage t, declare as; 11 = maso;, where m is a very large integer. Thus, we “discover” that as;i1
is indeed dependent on as;, but the coefficient m witnessing this is so large that we have not seen
it earlier. However, recall that we need to make sure that the group is computable, and if we are
not being careful enough we may end up with a c.e. presentation. In other words, if we declare two
elements unequal, we cannot possibly undo this at a later stage. The main subtlety is that we also
need to preserve inequalities declared in B; when we define Bsy ;. This is why we need m to be
very large.

Construction.
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At stage 0, set By = {0} and k(0) = 0.

At the end of stage s, we have B, that consists of all sums of the form

Z (Tgiagi + r/2i+1a2i+1) + Z 7“;-/(12]‘, (21)
K JjeK

where 7,j < k(s) and the coefficients r;, r., r range over the (reduced) fractions with numerators
and denominators bounded by k(s) in their absolute value. The operation + is declared on these
formal linear combinations naturally (i.e., > ria; + >, qia; = >,,(75 + ¢i)a;), provided that the
result stays in Bs. Otherwise, + is declared undefined yet.

At stage s + 1, consider two cases.

Case 1. No new number enters K at stage s + 1. Set k(s + 1) = k(s) + 1 and define Bs;1 to
consist of all sums of a similar form as we described above in (2.1), but with s replaced by s + 1
throughout. Declare 4+ on these elements naturally as well, as above. Clearly By © Bgsy1. Let
gs+1 : Bs = Bsy1 be the subset embedding.

Case 2. Suppose jg is enumerated into K at stage s+ 1. Every element b € B can be expressed
as

! ! "
b = 1roj,azjo + Thj1102j011 T D, (T2iG2i + Thy1a2i1) + Y, 1as;. (2.2)
i$Ks+1 jEKs
Declare
azjo+1 = k(s)lag;,
and define

gar1(b) = (rajo + rhyo 1 k(s))azj, + . (raiaa; + 19 1a2i01) + Y. Tas;.
K41 JeK,

Set k(s +1) = (k(s) + 1)! and define B4 just as we did in the first case. Note however that in
this case gs11 : Bs — Bsy1 is not the natural subset embedding.

Verification.
Claim 2.2.17. For every s, gs is injective.

Proof. The map is clearly injective in the first case. In the second case, assume gs11(b') = gs11(b),
where b is as in (2.2), and

V = G2jotnjo + Ghjos102j01 + Y, (G2i02i + Ghiy102i41) + Y qfaz;. (2.3)
iEK g1 JEKs

Then we immediately get that go; = ro; for any i ¢ K,y 1, and that q;-' . 7’9’ for each j € K, and
Tajo + Toj011k(8)! = ajo + ojo11K(s)!
Since k(s)! is larger than both goj, and ryj,, by considering this equality modulo k(s)! we conclude

that r9j, = q2j, and, thus, r5; 1 = ¢5;, ;- (In fact, we should first turn this equality into an integer
equality and then consider it modulo k(s)!; we leave the elementary details to the reader.) O
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We now verify that gs,1 preserves the operation.

Claim 2.2.18. Assume b,b’ € By are so that b+ V' € By was defined at stage s. Then gs1+1(b+1b') €
Bsy1 and gs+1(b+ V') = gs+1(b) + gs+1 (V).

Proof. The first case in the description of stage s + 1 is obvious, we focus on the second case. In
the notation of (2.2) and (2.3) above, we clearly have

9st1 (b + ') = [(r25, + q255) + k()1 (795011 + @ojo+1)]a2j0 41+

D ((rai+ qoi)asi + (Fhigy + ghiv1)azi) + 3, (rf + ¢} )az; =
i¢Ks+1 jeKs

Gsr1(b) + ges1 (V). (2.4)
Additionally,
(r2jo + G2jo) + k() (rajo1 + Gjor )| < K(s) + k(s)lk(s) < k(s){(k(s) + 1) = k(s + 1),
and therefore gs1(b+ b') € Bsy1. O

We have defined a uniformly effective sequence of partial groups and partial embeddings
BO _)91 B1 —>92 B2 —>93 Bg _>g4 ceen

As further explained in Remark 2.2.19 below, the claims guarantee that as the limit of this process,
we get a computable structure; denote it B.

Remark 2.2.19. From the two preceding claims, we deduce that we can safely take the union of
the nested sequence of B;, identifying each element of B, with its gs+i-image in Bsy;. In fancier
terms, we can take the “direct limit” of this effective sequence. In the sequel, we will often identify
elements of computable structures with their indices in w; that is, the domain will often be thought
of as either w or its initial segment. If an element b € By receives an index ¢ € N, then we declare
that gs+1(b) also has index i, and so on. Another way to describe it is to say that i € N “changes
its interpretation” at stage s+ 1 to be gs11(b). The claims above guarantee that this interpretation
change also preserves the operation, whenever it is defined. Also, the finite part of the open diagram
(i.e., the quantifier-free atomic facts about the elements) defined at stage s is preserved at stage
s + 1. This, in particular, includes both equality and inequality of elements (by the infectivity of
gs+1). In particular, in the limit we get a computable structure B in the language of one binary
operation +, not just a c.e. presented structure.

We now argue that B is isomorphic to Q.

Since for each individual i, ¢ can enter K at most once, we have that the sequence (gs(azi+1))sen
eventually stabilises at either ag;y1 or mag; for some integer m that depends on i. Also, gs(ag;) =
as;, for every s and 4, whenever it is defined. Every element b that ever enters B, for some s
can be expressed as a linear combination of finitely many elements a;. It follows that the sequence
(gs()) sen stabilises for every such b, and its final value is an element in the Q -vector space spanned
by linearly independent elements

{agi,a2541:1€ N, j ¢ K}
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using coefficients in Q. Conversely, any such linear combination will eventually be added into B,
because k(s) is monotonically increasing. Thus, B =~ Q,,.

Observe that in the resulting additive group B, ag; and ag;y1 are dependent iff i € K. As we
explained earlier, this implies that A is not computably isomorphic to B. O

Can we describe computably categorical abelian groups? What about other structures? We will
return to computable categoricity later when we have enough tools.

Exercises
Exercise® 2.2.20. Show that the dense linear order of the rationals is computably categorical.
Exercise® 2.2.21 (Folklore after Rabin and Mal’cev).

1. Show that a (countable, discrete) group G is c.e. presented iff it is isomorphic to a factor
of a computable free group F' (w.l.o.g. upon a computable generating set) by a c.e. normal
subgroup N.

2. Prove that G is computably presented iff N can be chosen to be computable.
The two exercises below are essentially due to Kronecker [318]; see also [185].

Exercise® 2.2.22. Let F' be a computable field, and suppose « is algebraic over F'. Show that
F(«) has a computable presentation. (Hint: Consider F[x]/{p(z)), where p € F[x] is irreducible
and p(a) = 0.)

Exercise® 2.2.23. Let F' be a computable field, and suppose x is transcendental over F'. Show that
the fraction field F'(z) has a computable presentation. (Hint: Use long division and the generalised
Euclidean algorithm to produce an effective list of irreducible polynomial fractions over F'.)

Exercise® 2.2.24 (Metakides and Nerode [384]). Show that for a computable formally real field,
the space of orderings can be computably described as a I1{ class.

Exercise® 2.2.25 (Folklore after Hatzikiriakou and Simpson [246]). Fix a computable presentation
of a torsion-free abelian group. Show that the space of compatible linear orders on G can be
(effectively) identified with elements of a certain I1{-class C < 2%.

2.2.2 The Henkin construction is computable

We assume that the reader is familiar with the Henkin construction from elementary model theory.
If the reader is not familiar with this material, they can skip this subsection, since we won’t need
elementary model theory in the sequel, with the exception of several exercises. We will, however,
occasionally encounter the following notion that we already mentioned at the beginning of the
chapter.

Definition 2.2.26 (Decidable structure). We call a structure A decidable if we can decide
all first order statements about tuples of elements in A. (That is, the full diagram of A is
computable.)
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It is easy to find an example of a computable algebraic structure with no decidable presentation;
e.g., Exercise 2.2.33. Examples of groups with this property will be encountered later (e.g., The-
orem 5.1.18). In later chapters we will also see that such examples can be found among Boolean
algebras and linear orders as well. Here, we present a general method of producing decidable
structures using decidable theories.

A decidable theory has a decidable model

All our theories are first-order.

Definition 2.2.27. A theory T (in a computable language) is said to be decidable if there is an
algorithm that, given any sentence ¢ in the language of T', determines whether T .

The following theorem is folklore and can be found in, e.g., [156].

Theorem 2.2.28. A complete decidable theory T' has a decidable model.

Proof. We simply observe that the Henkin construction is computable. Let T" be a decidable theory,
and let {¢; : ¢ € N} be an enumeration of a computable set of new constants. Let {o; : i € N} list
all sentences in the language L(T) of T together with {¢; : i € N}. We construct a model A and its
complete decidable theory T4 expanding T in stages. We construct the theory T4 as {7, : n € N}.
As usual in a Henkin construction, at stage 2e + 1, if 7. is of the form Jz6(x), we add a Henkin
witness ¢; not occurring in

P2e =def Ni<2eTi-

At stage 2e + 2, we force the completeness of the diagram as follows. Let T be the first sequence of
variables of the same length as ¢ obtained from step 2e+ 1, which does not occur in A;<2e4+17; — Oe.
Using the decidability of 7', check if

T = VZ(AieTi — 0c)[T/c].

If this holds, let d¢42 = 0c. Otherwise, let doeio = —0e.

Define ¢; ~ c¢; if and only if ¢; = ¢; € T4. To define the model, consider the collection of all
equivalence classes modulo ~, and declare that ¢ € T4 holds on a tuple a of equivalence classes if
it holds for some (equivalently, all) representatives of these classes. It is routine to verify that the
resulting extension T4 of T is complete and computable, and that the structure A/ ~ is computable
and is a model of T'; this is Exercise 2.2.34. ]

Deeper results in computable model theory require significantly more intricate techniques, but
we will not cover these results in the book; see, e.g., [229] for a gentle introduction. We will only
give a few elementary applications of the Henkin construction to algebra; see below.

An application to algebraic and real closures

The language of algebraically closed fields is L = {+,-,—,0, 1}, and the theory ACF has the field
axioms together with, for each n € w,

On =V1, . 203y (1 + 22y + -+ 2Ry" = 0).
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Recall that a theory admits elimination of quantifiers if, for every ¢ € L(T), there is a quantifier-
free (x1,...,2,) € L(T) such that T + Vai1,...,2,(¢ < ¥). We say that T admits effective
elimination of quantifiers if we can compute ¥ from ¢ uniformly. The following result is classical.

Theorem 2.2.29 (Tarski). ACF admits effective elimination of quantifiers.
Note that if T is a computable theory and is complete, then it is decidable.

Theorem 2.2.30 (Rabin [440]). Every field can be computably embedded into its computable alge-
braic closure.

Rabin’s original proof constructed the algebraic closure using a quotient of a polynomial ring
with infinitely many variables. We construct the algebraic closure by an effective Henkin-style
construction. See, for example, [183, Theorem 2.5] where this construction is carried out in reverse
mathematics.

Proof. Suppose F' is a computable field. We first construct a computable algebraically closed field
K and a computable embedding a: F' — K. Let L be the language of fields with constant symbols
for the elements of F', and let T" be the theory of algebraically closed fields together with the atomic
diagram of F. Since F' has an algebraic closure, the theory is consistent.

By Theorem 2.2.29, it is possible to effectively replace every formula ¢(a) in T' (with parameters
a € F) by a quantifier-free formula (@) such that

ACF + ¢(a) < ¥(a).

By our assumption, F is a computable field. Thus, we can effectively check whether F' |=1)(a) and
conclude that T is decidable. Using the computability of Henkin’s construction (Theorem 2.2.28),
we obtain a computable (indeed, decidable) K in which F' is naturally listed as a computably
enumerable subset named by the constants.

Computably list all elements of K that are algebraic over F'. They form a computably enumer-
able subfield alg(F) of K that is isomorphic to the algebraic closure F' of F. To obtain a computable
presentation of F', re-enumerate the domain of alg(F) by setting the first element that appears in
its enumeration equal to index 0, the second to 1, and so on. (More generally, any computably
enumerable substructure B of a computable structure A has a computable copy.) It is not difficult
to organise this enumeration so that it gives a natural computable embedding from F' to this new
computable copy of F; we leave the details to Exercise 2.2.35. The range of this embedding does
not have to be computable, but it will of course be computably enumerable. O

Rabin proved that computability of the image of F' in its closure is equivalent to F' having
a splitting algorithm. A field has a splitting algorithm if, given any polynomial in F[z], we can
decide whether it splits over the field. The reason why this might be necessary can be seen in,
e.g., Exercise 2.2.22. One can easily construct a field without a splitting algorithm by a direct
diagonalisation; for an explicit example, consider Q(/p; : ¢ € K). This computable field will have
non-computably isomorphic algebraic closures; see [185, 384].

Recall that an ordered field is real closed if every positive number has a square root, and all

polynomials of odd degree have at least one root. Let RC'F denote the first-order theory of real
closed fields; it is well-known that RCF = Th(R, +, -, <).

37



Theorem 2.2.31 (Tarski). RCF admits effective quantifier elimination.
The next theorem and its proof are very similar to what we had for algebraically closed fields.

Theorem 2.2.32 (Ershov [154], Madison [344]). Every computable ordered field can be computably
embedded into its computable real closure.

Proof. This is the same as the proof for algebraic closure, but using quantifier elimination in RC'F
(instead of ACF). O

For related results about differential and difference fields that require more advanced methods,
see [231, 242]. Analogous results are also known for abelian groups and their divisible hulls [474],
as well as torsion-free locally nilpotent groups [159]. We will not develop this topic any further;
[159] remains the standard reference for such constructions.

Exercises

Exercise® 2.2.33. An equivalence structure is an algebraic structure of the form (X, ~), where
~ is an equivalence relation. Prove that there is a computable equivalence structure that has no
decidable presentation.

Exercise® 2.2.34. Complete the proof of Theorem 2.2.28.
Exercise® 2.2.35. Complete the proof of Theorem 2.2.30.

Exercise® 2.2.36 (Folklore). Let V be a computable non-principal type in a complete decidable
theory T'. Show that T has a decidable model that omits V.

2.2.3 Computable vs. constructive ordinals

Historically, the ordinals (the well-orders) were the first broad class of relational structures to be
studied thoroughly from the perspective of computable presentability. We assume that the reader
is familiar with the notation and the elementary properties of ordinals. For instance, recall that for
ordinals, 3 € a (both viewed as sets) means that § is an initial segment of « (viewed as an order).
Our definition of a computable structure, restricted to linear orders, gives the following notion of
computability for ordinals.

Definition 2.2.37 (Computable ordinal). A computable ordinal is the order type of some com-
putable well-ordering, that is (A, <a) where A is a computable set and <4 is a computable well-
ordering on the set.

It is clear that if L is a computable well-order and R = {¢ € L : £ < z} is its initial segment,
then R is computable as well. The first non-computable ordinal is called “omega-one CK”, written
WK where CK stands for “Church-Kleene”.

Now we discuss “constructive” ordinals due to Kleene [300, 301]. The idea is to associate
each ordinal with an algorithmically effective notation which carries information about immediate
successors, predecessors, and limit points. For example, this information is necessary to design
definitions by transfinite recursion. A computable presentation of a well-order does not have to
have this additional information about its points.

38



Kleene’s O. Recall that ¢, stands for the partial recursive function with index e. Define a system
of notations by specifying a set O, a function |- |, and a (strict) ordering <o on O. Here |a|o = «
means that a € O is a notation for «. This is done as follows:

e 1 is the notation for 0.
e If ¢ is the notation for o then 2¢ is the notation for av + 1.

e We now define b < 2% if either b <p a or b = a.

For limit ordinals o we give notations 3 - 5¢, where

@e(o) <o LPe(l) <o <)06(2) <o
and « is the least upper bound for |p.(n)|o. (In particular, ¢, is total.)
e Define b < 3 - 5° if there exists an n with b <@ p.(n).

Kleene’s O can be visualised as an infinitely branching, tree-like structure. It begins with
1,2,22,922

which are the notations for 0,1,2,3..., but then it becomes infinitely branching at every limit
level. The branching occurs because there are, of course, infinitely many ways to list a sequence
converging to a limit ordinal «. Thus, at level w, the “tree” splits into infinitely many infinite
chains of the form e

3.50,2%5° 927

where e ranges over the total functions such that (p.(n))nen is a strictly increasing sequence (of
notations) below w. Elements from two different “chains” corresponding to distinct indices are
incomparable under <.

Definition 2.2.38 (Constructive ordinal). The ordinals having notations in Kleene’s O are called
the constructive ordinals.

Note that there is a conflict of terminology with the post-Soviet tradition in computable math-
ematics. In that tradition, “constructive” was used as a synonym for “computable”. Fortunately,
these two notions of effective presentability for ordinals are actually equivalent.

Theorem 2.2.39 (Spector [481]). A countable well-order (ordinal) is constructive iff it has a
computable presentation.

We outline the proof suppressing some details and emphasising the important steps and ideas.
We refer the reader to Rogers [454] for a more detailed proof. The technique used in this proof will
not be particularly useful in the sequel; perhaps the only exception is the proof of Theorem 2.3.7,
which can also be skipped if necessary.

Proof *. We show that every constructive ordinal has a computable presentation.
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Lemma 2.2.40. Suppose |a|lo = a, a € O. Then each 3 € a receives ezactly one notation b <o a.
All such unique notations below a can be computably listed, and <o restricted to these notations is
computable.

Proof. The first assertion of the lemma follows from the definition of O. Essentially, this is because
O is a (set-theoretic) tree. It is usually said that

pla) ={b:be O and b <p a}

is a “path” through O (below a). Notations that lie on the same path are comparable under <¢.
Every ordinal 8 € « receives a notation along p(a).

We prove the second assertion of the lemma. Observe that the path below a can be enumerated
(uniformly in a). This is because b <p b’ is equivalent to saying that there exist ag, ..., ar € p(a)
so that ag = b, ap = V', and a; <o a;;1 according to one of the atomic cases in the definition of
<o. (This follows by induction on |a|pn.) We can therefore list both the path p(a) and the order
<o restricted to the path. For b # b along the path, exactly one of the two possibilities b <o V'
or b/ <o b must occur. By Post’s Theorem 2.1.10, we can decide <o for numbers coming from

p(a). O

Given « with a notation a in O, we use the lemma to produce a computable presentation of
«a. The case when « is finite is again trivial. Suppose « is infinite. Fix a computable function
f:w—opla)={b:be Oandb <o a} whose index can be computed uniformly in a. Define
L = (w, <) by the rule
i < j if and only if f(i) <o f(j),

where f(i), f(j) € p(a) and therefore <p will eventually be decided for these values. It follows that
L = (w, <) = « is a computable presentation of a.

Now assume that « is a computable ordinal, and let L be its computable presentation. The
obvious issue is that, in L, the property “z is a successor” can be undecidable. The idea is to turn
L into a computable copy D of v > a where these properties are decidable.

Lemma 2.2.41. There is a computable presentation D of w-(1+«)+1 in which we can additionally
decide whether x € D is a successor or a limit point. In the former case, we can additionally uni-
formly compute the predecessor of x, and in the latter case we can compute a computable monotonic
sequence (y;)ien converging to x from below.

Sketch. Recall that L is a computable presentation of .. Clearly, 1 + L + 1 also has a computable
presentation. Working effectively, we make progress towards replacing each point in 1+ L by longer
and longer initial segments of the w-chain. This way, we end up with a computable D >~ w-(14+«a)+1.

In each w-chain that we build, the first point is always a limit point, and the rest are successor
points. In the latter case, we can always compute the predecessor. In the former case, unless it is
the left-most point coming from the first w-chain in w - (1 + «) + 1, it is a limit point. If z is like
that, then we can evidently list {y € D : y < 2}. We can uniformly choose an increasing, first-found
subsequence of {y € D : y < x} to be the desired monotonic sequence (y;);en converging to = from
below. O
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We now show that the D constructed in the lemma above can be turned into a notation of ~
in O. If we succeed, then Lemma 2.2.40 will imply that o < « also has a notation in O. To turn
D into a notation in @, we would like to define n(z) which, given x € D, outputs a notation for
{ye D:y <z} in O. We will define a function f(e,z) that imitates the behaviour of n(z), and
then we will use the Recursion Theorem 2.1.3 to argue that for some e, f(e,z) = p.(z); ie., f
“knows” its own index. Thus, in the definition below, e should be understood as the (intended)
index of the procedure that we define.

Define a partial computable function f(e,z) by recursion as follows:

1. If x is the least point in D, set
fle,x) = 1.

2. If x is a successor point and y is its immediate predecessor, call f(e,y) (according to these
instructions applied to inputs e, y). If it halts, set

flesa) =2,

3. When z is a limit point, let (s(z,%));en be a uniformly computable sequence converging to x.
The function s(-,-) is a computable function by our assumption about D. Using the s-m-n
Theorem 2.1.6, define ¥ by the rule

Pap(e,x) (Z) = @6(5(z7 Z))7

and then set
fle,z) =3- 5w(e.r)

This completes the definition of f. Even if f is partial, the instructions describing f in terms of e
still make sense. By the s-m-n Theorem 2.1.6, there is a total computable function g such that

(pg(e)(z) = f(ev 17),

for all e and x. By Recursion Theorem 2.1.3, we can assume that e is so that

905(13) = Pg(e) (:L’) = f(evx)v

for every x. By transfinite induction, n(z) = ¢.(x) outputs a notation for {y € D : y <} in O. In
particular, when applied to the greatest element of D it gives a notation for v in O, proving that
«a < 7y is constructive as well. O

Before we proceed, we note that a slight modification of the proof of Lemma 2.2.41 shows that
any c.e. presented well-order is isomorphic to a computable one (Exercise 2.2.44). Thus, ordinals do
not distinguish between computable and c.e. presentations, up to isomorphism. This observation
can be pushed to show that every hyperarithmetical ordinal has a computable copy (Exercise 8.1.25);
the hyperarithmetical hierarchy, which we briefly discuss next, extends the arithmetical hierarchy.
We also note that the Fellner-Watnick Theorem 3.2.23, which is the main result of Section 3.2.6,
can also be viewed as a generalisation of Lemma 2.2.41.
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Extending the arithmetical hierarchy*

It is possible to extend the arithmetical hierarchy beyond w to the computable ordinals. The result-
ing hierarchy is called the hyperarithmetical hierarchy. For instance, we can uniformly effectively
define

P = @uen@™ = {(m,my s m e G},

and then define AY to be the class of all sets computable relative to @@ In the first part of the
book, we shall never actually go beyond w. In Chapter 8 of the book we will see that this process

can be iterated beyond w to (all) computable ordinals o < w{X.

Exercises

Exercise® 2.2.42. Show that if {«; : 7 € N} is a computable collection of computable ordinals then
sup{w; : i € N} is a computable ordinal.

Exercise® 2.2.43. Produce a formal detailed proof of Lemma 2.2.41.

Exercise® 2.2.44. Show that there is a computable procedure which, on input a c.e. presentation
L of a well-order, outputs a computable copy of w - L. Conclude that every c.e. presented ordinal
has a computable copy.

2.2.4 Historical remarks*

Neither of the authors is a historian of mathematics. With some trepidation, we offer some obser-
vations concerning the development of computable algebra.

The history of mathematics, and of algebra in particular, is deeply entwined with computation.
Almost all of pre-20th century mathematics was fundamentally algorithmic. A notable exception
to this is Hilbert’s Basis Theorem. Hilbert’s Basis Theorem [251] proves that every algebraic set
over a field can be described as the set of common roots of finitely many polynomial equations.
Famously, Hilbert’s proof does not actually compute this finite basis, but shows that the basis must
exist. This result was quite controversial at the time. Gordon, the supervisor of Emmy Noether,
was an expert in calculating invariants. He is supposed to have said of Hilbert’s proof:

“This is not mathematics; this is theology.”

Although this is likely a myth (since there is no record of it until 20 or so years after Gordon’s death),
it does reflect the mathematical thinking of the day. But it is also a salutary lesson in computable
mathematics. Suppose that we want to actually calculate the invariants guaranteed by Hilbert’s
Theorem, something which turns out to be quite important in physics. How do we do this? To
calculate a finite basis, we need not just an existence proof, but a computable version of the algebraic
result. In the case of Hilbert’s Basis Theorem, to do this calculation, we are led to the modern
theory of Grobuner bases. (We cite Buchberger [69], who actually invented Grobner bases.) It is
certainly the case that authors such as Kronecker were quite sceptical of non-constructive methods.
Much of the classical algebra of the early 20th century was indeed computable. For example, we
will later give a modern interpretation of the Kronecker-Herrmann [318, 247] results about finite
extensions of fields, which demonstrates this effectiveness. Early editions of van der Waerden’s
seminal books [493] (supposedly based on Emmy Noether’s notes) had algorithmic proofs of various
results on rings and fields. Interestingly, in later editions, many such proofs were replaced by slicker
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but less constructive proofs. Metakides and Nerode [385] gave an overview of the introduction of
non-computable methods in algebra in the 20th century.

As with the case of Grébner bases, answering algorithmic questions often yields a much deeper
understanding of the mathematics where the question arises. One particularly fine example of this
phenomenon comes from Dehn’s work [109] from the early 20th century. Dehn analysed algorithmic
questions about finitely presented groups. Dehn gave geometric algorithms for solving the “word
problem” for certain kinds of finitely presented groups. He showed that certain classes of finitely
presented groups were not only c.e. presented but had the equality relation being computable. In
our terminology, they are computable groups. Dehn noted that the methods were specific to certain
classes of groups and did not apply in general. Based on this observation, he articulated the three
questions which provided a significant impetus to the huge area now called combinatorial group
theory:

1. Is every finitely presented group computable? (The word problem.)

2. Given x and y in a finitely presented group, can we algorithmically decide if x is conjugate to
y? (The conjugacy problem.)

3. Given two finitely presented groups, can we algorithmically decide if they are isomorphic?
(The isomorphism problem.)

Recall that in Example 1.2.3 we already encountered the celebrated theorem of Novikov [416] and
Boone [51] stating that there is a group that is finitely presented in which the word problem is
not algorithmically decidable. In the terminology of this book, there is a finitely presented (thus,
c.e. presented) group with no computable presentation. We cite the book [343] and the survey [390]
for a detailed exposition of the subject. Such investigations are closely related to decidability
problems for simplicial complexes in topology that we will discuss shortly.

In fact, we now know that the answers to all three of Dehn’s problems are negative. The
techniques developed to answer these algorithmic questions, such as small cancellation theory, HNN
extensions, and Higman’s Embedding Theorem 2.2.11, have proven to be enormously influential in
group theory (see, for example, Lyndon and Schupp [343]).

The modern study of computable abstract structure theory begins with the work of Frohlich and
Shepherdson [185], Rabin [440], and Mal’cev [345, 346], particularly focusing on structures that are
either not groups or are not finitely generated. Frohlich and Shepherdson studied computable field
extensions, and Mal’cev and Rabin also laid the foundations of the general theory of computable
structures that applies to arbitrary algebraic structures, not just groups or fields.

In modern terminology, Frohlich and Shepherdson showed that there exist two algebraic closures
of a computable field with no computable isomorphism between the closures. It is worth noting
that Frohlich and Shepherdson’s proof actually recycles a proof from van der Waerden [493]. Tt
is quite clear that although the authors of the early 20th century did not have access to a formal
theory of computation, which awaited the work of Turing and others in the 1930s, they definitely
had a sharp intuitive idea of what an algorithmic procedure was. We will see this demonstrated
again in the work of Borel in analysis.

Metakides and Nerode [384] later extended the Frohlich-Shepherdson result. They showed that
computable algebraic closures are computably unique if and only if the field has a (separable) spli-
iting algorithm. By a splitting algorithm, we mean that there is a uniformly computable procedure
which decides if a polynomial over the field is irreducible. If there is such a splitting algorithm, the
“usual” construction of an algebraic closure becomes computable.
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A hallmark paper was Rabin’s [440], where he proved the influential result that a computable
field has a computable algebraic closure, in spite of the fact that the usual “adjoining roots” method
may not be computable, as there may not be a splitting algorithm. Since a computable field may
lack a computable method of determining whether a given polynomial is irreducible, the classical
construction cannot be performed effectively. The hidden message is that there is some other way
to construct algebraic closures than the one usually taught to students.

Early work on the non-computability of aspects of computable groups, fields, and other alge-
braic structures usually involved coding the halting problem into the question at hand. Since the
1960s, a variety of combinatorial techniques have been developed to understand the classical theory
of computation, such as complex priority arguments (Soare [477]), I1{ classes (Cenzer [84]), effec-
tive measure theory (Downey-Hirschfeldt [125]), along with a strengthened understanding of the
model theory of algebraic structures. As a consequence, over the past 60 years, the study of com-
putable algebraic structures has grown into a technically deep theory. Early books on the subject
include [158, 20, 159]. The theory has many aspects, and it is essentially impossible to cover all
major topics of the theory in one book, so we will have to be selective. We will put much emphasis
on the aspects of the theory that are related to computable analysis and computable topology.
For other aspects of the theory, such as definability, Ash-Knight style forcing, and the true stages
techniques, see the books of Montalbdn [401, 402].
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2.3 Computability for real functions

This section presents several early examples of applications of computability in elementary analysis.
Some of the key notions introduced in this chapter will be important throughout the rest of the
book.

Recall that a real £ is computable if, for every n, we can compute y € Q such that d(&,y) < 27",
where every rational is given as (e.g.) an irreducible fraction. A sequence (y;)en of rational numbers
with the property d(y;, yi+1) < 279! is called a fast Cauchy sequence. If such a sequence converges
to &, then it is called a fast Cauchy name of . Note that d(&,vy;) < 27%. We will sometimes omit
“fast” and say simply “Cauchy name”, and we sometimes omit N in the subscript and write simply
(yi);- Thus, a real is computable iff it has a computable (fast) Cauchy name.

Notation 2.3.1 (R.). Let R. denote the set of all computable reals.

There are several potential notions of computability for a real function f : R — R. Unfortu-
nately, the two most common definitions used in the literature are not equivalent, so in the end we
will have to make a choice.

Exercises

Exercise® 2.3.2. Take for granted that there exists a non-computable c.e. low set A < w (Theo-
rem 3.1.1). Prove that in any non-empty interval of R there exists a left-c.e. real that is low but
not computable, and a right-c.e. real that is low but not computable.

Exercise® 2.3.3 (First stated in Rice [449], but likely known earlier). Show that the collection of
computable real numbers forms a real closed field.

Exercise 2.3.4. Recall that a real z is called left-c.e. if its left cut {ge Q: ¢ < z} is c.e. A real 2z
is called d.c.e. or weakly computable if there exist left-c.e. reals x and y such that z =z — y.

1. Show that a real z is left-c.e. if and only if there is a computable non-decreasing sequence of
rational numbers {g; : i € N} such that lim; 4 ¢; = 2.

2. (Ambos-Spies, Weihrauch, and Zheng [10]). Prove that z is weakly computable if and only if
there exists a computable sequence of rationals {d;} such that d; — z and > |dp+1 — dn| <
0.

3. (Ambos-Spies, Weihrauch, and Zheng [10]). Prove that the d.c.e. reals form a field.
4. (Ng [415], Raichev [442]). Prove that the collection of d.c.e. reals forms a real closed field.

2.3.1 The constructive approach to functions

As usual, let 1, ps,... be a standard enumeration of the partial computable functions. We call
e € N an index of x € R, if e is the index of a function ¢, that lists a (rational, fast) Cauchy name
of z. We now consider two definitions of computability for a real function that refer only to inputs
in R,.
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Definition 2.3.5. A function f : R, — R, is Markov computable if there exists a partial
computable function v : w — w such that, given any index e of z € R, v(e) exists, and is an
index of f(x). We call the function v : w — w the indez function of f.

The uniform (functional) version of this definition is as follows.

Definition 2.3.6. We call a function f : R, — R. Borel computable if there exists an oracle Turing
Machine ® such that, for all « € R., any computable Cauchy name (z;);en of z, and any n € N,

(@) () ) nen
is a fast Cauchy name of f(x).

The definitions above are not due to Markov and Borel (more in §2.3.4); however, we shall use
this terminology because it appears to be standard (e.g., [24, p.22]). Borel computability seems to
be stronger than Markov computability. Nonetheless, these definitions are equivalent, as we now
show.

Theorem 2.3.7 (Kreisel, Lacombe and Shoenfield [317], Markov [353]). A function f is
Markov computable iff it is Borel computable.

Remark 2.3.8. In the literature, Theorem 2.3.7 is sometimes referred to as the Kreisel-Lacombe-
—Shoenfield—Ceitin Theorem. However, in his paper, Ceitin [82] merely extends the much earlier
result of Markov (announced in [350] and published in [353]) to computable Polish spaces. We
leave this more general version (for Polish spaces) to Exercise 2.4.35 since its proof is not really
that different from the proof we present below. Exercise 2.4.35 will find an unexpected application
in Part 2 of the book. In §8.2.4, it will be used to derive a theorem about effective reductions
between classes of countable algebraic structures. See also Exercise 2.4.36 for an analogous notion
for linear operators on computable Banach spaces.

Proof of Theorem 2.3.7. (<) Use the s-m-n Theorem 2.1.6 to compute an index for (®(#)i (n)) ey =
f(z) from the index for (x;);en. For that, replace the oracle Turing machine with a Turing machine
in which the computable oracle becomes a part of its program.

(=) This implication is quite neat. Assume f is Markov computable, and let v be its index
function, so if e is an index of a fast Cauchy name of a computable real z, then the function v(e) is
total and lists a fast Cauchy name of f(z). Our task is to produce a uniform procedure that has to
do something with sequences that are not necessarily computable Cauchy names. Since every finite
partial sequence is extendible to a computable one, we still need to define what the functional does
on them.

The naive idea is to use the first found computable Cauchy name, say an eventually constant
one, that agrees with the input on a long enough initial segment. The obvious danger is that we
may define the functional inconsistently. Indeed, the outputs for different computable fast Cauchy
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names of x must converge to the same f(z). It seems that to achieve this, one needs to be able to
see the future.

The actual idea is to “set a trap” using the Recursion Theorem 2.1.13. (In fact, we shall use
the Recursion Theorem with Parameters presented as Exercise 2.1.16.) Given ¢., we will slow it
down to define ¢y,(.), which tests what v (given by Def. 2.3.5) does on index e. It will attempt to
copy . for a long enough initial segment, and then wait for an extension of this initial segment
that gives a different output under v. If it has the opportunity, it will choose the values that make
the disagreement occur. The paradoxical self-referential nature of the Recursion Theorem will
imply that for computable fast Cauchy sequences, from some point on, the disagreement cannot
possibly happen. This will allow us to conclude that, no matter how we modify ¢, beyond this long
enough initial segment, all possible computable sequences extending this initial segment will yield
the same computation. In the definition of the functional, we will refer to ¢, ) when we choose
our computable approximations to a possibly non-computable oracle. This will resolve the issue
informally discussed earlier.

The exact details are a bit tedious, though certainly not difficult. Unless the reader really wants
to understand the technical details, the clever formal proof below can be skimmed through, as these
techniques won’t really be used anywhere in the sequel.

Formal proof. We will use the following notation:

- For a finite tuple o of natural numbers, let ¢’ be the infinite string with prefix o in which the
last bit of o is repeated infinitely often. We identify ¢’ with a function taking i to the ith
element ¢/(4) of ¢/, and with some index of this function uniformly computable from o.

- We also restrict ourselves to o that are valid partial fast Cauchy, thus in particular making
o' a fast Cauchy for every such o. Note that v must halt on each such o’.

- For a function g, we write g [;1+1 to denote the partial function that is the restriction of g
to inputs {0, ...,t}. We also identify strings with partial functions whose domains are initial
segments of w. For instance, g ;41 is identified with the string {(g(0), g(1), ..., g(¢)), provided
that the values ¢(0),g(1),...,g(t) are defined. Also, for a finite string o, g [++1< 0 means
that g 441 is a prefix of o (and, in particular, that ¢g(0), g(1),...,g(t) are defined).

Using the Recursion Theorem with Parameters (Exercise 2.1.16), define

1 it u(e) 1;
Pe if v(e) |, p. is fast Cauchy
_ and either v(n(e)) 1 or v(n(e)) |# v(e);
AT i w(e)ls] b= v(nle)ls] L {0, 5}  dom(ge),
02 ¢e 51, and v(o’) # v(e);
e s+1 otherwise,

where s is the first stage at which v(n(e)) halts (if it does). Note also that we set it equal to
e s41 if s is the first bit at which ¢, fails to be fast Cauchy. To see how the Recursion Theorem
with Parameters (Exercise 2.1.16) is used, replace n(e) by z on the right-hand side. We have that
the index of the left-hand side depends uniformly on e, z, and thus the function we define can be
expressed as @y (e,.). There is a computable n such that vp (e n(e)) = Pn(e)-
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If ¢, is indeed a fast Cauchy sequence, then (in particular) v(e) is defined. We cannot have
v(n(e)) divergent or unequal to v(e) because then ¢,y would just copy ¢, thus contradicting the
choice of v. Therefore, v(e) = v(n(e)). In particular, there can be no ¢’ extending the restriction
of p. to {0,...,s} such that v(o’) # v(e). Since for every o’ necessarily v(o’) |, it follows that
v(o’) = v(e) for any o’ that agrees with . on inputs 0,...,s. (Note that we only really used that
v(e) and v(n(e)) were both defined to conclude this.) Since we will wait for a disagreement forever,
Pne) = Pe las1 is partial

Suppose now that we have a fast Cauchy ¢; for which v (i) and v(n(i)) are also defined, and
such that ¢; agrees with . on inputs {0,...,s}. Here s = s(e) is the parameter defined above
corresponding to e and n(e). Then, as before, we have v(i) = v(n(i)). Suppose v(i) # v(e), where
v(i) halts in s’ = s(i) steps, and additionally dom(p;) 2 {0,...,s'}. Without loss of generality,
suppose s’ > s; the case when s > s’ is symmetric. Then, using the same argument as we had for
v(e), we conclude that v(i) = v(7’), where 7 is a long enough finite string that agrees with ¢; up
to s’. Since s’ > s and ¢; agrees with o, on inputs {0,...,s}, 7" will also agree with ¢, on the first
s inputs. But since we assumed that v(i) # v(e) and v (i) = v(7’), this contradicts the third clause
in the definition of ¢, () because 7" could be taken there to play the role of o’.

Define a Turing functional ® as follows. On input (a;);ey and an integer n, perform the following
steps. Keep verifying that |a; — a;1| < 27%F1; if an 4 is found for which it fails, then declare the
functional divergent. Simultaneously, search for an index e such that v(e) is defined, v(n(e)) halts
in s steps, and ¢, (viewed as a sequence) agrees with (a;);en on the first s bits. Output

@(ﬂi)m (t) - pr(j)(t) fOr t <s

where j is an index for ag, a1, ..., as, a5, As, - . ..
We verify that @ is well-defined. Suppose some other €', s, and j’ are found. Because @, and
e share an initial segment of length equal to either s or s’, we have

Pu(j) = Pule) = Pr(e’) = Pu(j’)

by the same argument as we had above.

Now, assume (a;);en is a computable fast Cauchy sequence with index j. Then ¢; will be among
the functions that satisfy the properties listed in the definition of ®, although perhaps j will not
be the first index found that satisfies these conditions. But as we have just seen, this makes no
difference, as the result will still be ;). O

We remark that a lot of classical elementary real analysis can be effectivised using Markov

computability. This is the gist of the book by Aberth [1].

2.3.2 The uniform approach to computability

We now consider several definitions of a computable real-valued function that are not restricted to
computable reals. All these notions turn out to be equivalent.

Kleene’s approach

Recall that a fast Cauchy name of a real x is a sequence (z;);en of rationals such that |z;—z| < 2771,
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Definition 2.3.9. We call a function
f:R->R

Type II (type two) computable if there is a Turing functional that, given a fast Cauchy name
of x, outputs a fast Cauchy name of f(z).

Kleene (e.g., [302]) defined Type II computability for the Baire space w® rather than for the
reals R. In the context of R, the definition (in its equivalent form) is usually attributed to Lacombe
[326, 327] and Grzegorczyk [227]; we will discuss these equivalent definitions shortly in §2.3.2.
This notion of computability is Type II in the sense that it is a functional, i.e., it maps not natural
numbers to natural numbers but sequences to sequences, and sequences can themselves be viewed as
functions. If natural numbers are Type 0 objects and functions are Type I objects, then functionals
are Type II. We remark that Markov computability, at least as stated in Definition 2.3.5, is Type I.

Notice that Definition 2.3.9 is simply an extension of Borel computability to arbitrary (fast)
Cauchy names. Consider also the following definition. We are not sure who was the first to use it,
but a specific uniform version of this notion due to Lacombe and Grzegorczyk will be defined in
the next paragraph.

Definition 2.3.10 (Effective continuity, the e- version). A function f: R — R is effectively
continuous if there is a c.e. family F' of pairs (D, FE) of (indices of) basic open intervals with
rational endpoints such that

(C1) for every (D, E) € F, we have f(D) S FE;

(C2) for every real « and every basic open E 3 f(x), there exists a basic open D with (D, E) € F
and x € D.

In the definition above, every interval is represented by its rational centre and its rational radius;
the Godel number ¢ of this pair is the index of the interval U;. It is easy to see that the definition
above is equivalent to its topological version, as stated below; we leave the verification of this
equivalence as an exercise.

Definition 2.3.11 (Effective continuity). A function f: R — R is effectively continuous if there is
a c.e. set W so that for every open interval U;,

Hoy= " o

(i,5)EW
If there is such a W which is c.e. relative to X, then f is said to be X-effectively continuous.
So we obtain the trivial but important result:

Lemma 2.3.12. A function f: R — R is continuous iff it is X -effectively continuous for some
oracle X.
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We remark that in the definition of Borel computability, we do not have to require the Cauchy
sequences to be computable, though we still need their limits to be computable reals for the operator
to work correctly. It follows that Borel computability corresponds to effective continuity restricted
to R, meaning that we need to replace all basic open F and D with EnR. and D nR, throughout
Definition 2.3.10, and require z (and f(z)) to be in R.. But of course, a Markov computable
function does not have to be continuous (or even defined) on all of [0, 1].

The lemma below is also folklore and is similar to Theorem 2.3.7, but it is much easier to prove.

Lemma 2.3.13. The following are equivalent for a function f: R — R:
1. f is effectively continuous;
2. f is Type II computable.

The proof relies on the use principle and is left to Exercise 2.3.20. A complete proof of the
more general Lemma 4.2.9 will be presented later. The following properties of Type II computable
functions are immediate from the definitions.

Proposition 2.3.14 (Folklore). We write “computable” for “Type II computable”.

1. (Effective Bolzano-Weierstrass) If f : [0,1] — R is computable, then the reals sup,e(o 17 f(2)
and inf,e[0,17 f(x) are computable.

2. If f,g are computable on [0, 1] then so are the functions f+g, f—g, f-g, sup{f, ¢}, inf{f, g},
and ag for any computable real .

Computability via uniform convergence

Working independently, Lacombe [326, 327] and Grzegorczyk [227] gave the following definition of
a computable real-valued function on the unit interval. This notion can be extended to the whole
of R by, for example, considering intervals of the form [—n,n], but for simplicity, we shall restrict
ourselves to [0, 1] throughout this subsection.

Definition 2.3.15. A function f : [0,1] — R is Lacombe-Grzegorczyk computable if:

1. f maps every computable sequence of points into a computable sequence of points, and

2. f is effectively uniformly continuous, i.e., there is a computable function A : w — w such that,
for all z,y and all n, if we have |z — y| < ﬁ then |f(z) — f(y)| < 27™.

Another related notion was coined by Caldwell and Pour-El; e.g., [432].

Definition 2.3.16. A function f : [0, 1] — R is uniformly computable if for every n we can compute
(the coefficients of) a polynomial p(z) € Q such that

sup _|f(z) —p(a)] <27
z€[0,1]

Recall Definition 1.2.6 of a computable Polish space.
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Fact 2.3.17. Let C[0,1] be the set of all real-valued continuous functions f : [0,1] — R under the
metric of uniform convergence

dsup(f,9) = sup lg(z) — f(z)].

z€[0,1]

Then the collection Py of all polynomial functions Q[z] restricted to [0,1] is a computable dense
subset of C[0,1], in the sense that, given (tuples of rationals describing) p,q € Py and n € N,
dgup(p, @) can be uniformly computed to precision 27™.

It follows that f : C[0,1] — R is uniformly computable iff f is a computable point in the
computable Polish space (C[0,1],dsyp, Pp). Further equivalences are contained in the following
theorem.

Theorem 2.3.18. For a function f: C[0,1] — R, the following are equivalent:

1. f is Type II computable;
2. f is Lacombe-Grzegorczyk computable;

8. f is uniformly computable.

The proof is left to Exercise 2.3.21.

Exercises

Exercise® 2.3.19. Show that the functions cosz, sinz, 1/ (for z = 0) and logz are all (Kleene)
computable, but step-functions with rational parameters are not (Kleene) computable relative to
any oracle.

Exercise® 2.3.20. Prove Lemma 2.3.13.
Exercise® 2.3.21. Prove Theorem 2.3.18.

Exercise® 2.3.22. Show that if f : [0,1] — R is (Type II) computable, and f(0) < 0 and f(1) >0
then we can compute a real x € [0, 1] such that f(z) = 0.

Exercise® 2.3.23. Verify Proposition 2.3.14 (2) above: If f:[0,1] — R is (Type II) computable,
then the reals sup (o 1] f(*) and inf,cjo,1) f(z) are computable.

2.3.3 Type I computability vs. Type II computability

A Markov computable function does not necessarily have to be defined on non-computable points,
let alone be continuous over the entire interval [0, 1]. Since every Type II computable function is
necessarily continuous, these two notions of computability are clearly different. It is possible to
build a Markov computable function with no continuous extension; see Exercise 2.3.26. However,
such results are not very satisfying.

Indeed, suppose f : [0,1] — R is Markov computable and additionally continuous. Does it have
to be Type II computable? Following the general pattern of the book, we prove:
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Theorem 2.3.24 (Specker [480]). There is a continuous, Markov computable f : [0,1] - R
that is not Type II computable.

Proof. By Proposition 2.3.14, it is sufficient to construct a continuous Markov computable function
whose supremum is not computable. The proof proceeds through the following steps:

First, interpret 2¢ as the Cantor (middle third) set in [0, 1], such that the set of strings extending
a given finite string o is in a natural 1-1 correspondence with the respective clopen set, which
is the Cantor set. Under this interpretation, which is the standard homeomorphic embedding
g: 2% — [0, 1], computable reals in the Cantor set clearly correspond to computable paths through
2¢,

Using Theorem 2.1.29, fix a IIY class C < 2* without computable members. It follows, for
instance, that the closed set P = g(C) has no computable points. Additionally, we can computably
enumerate a collection of basic open rational intervals such that they together make up [0, 1]\P. For
that, initiate the effective list of the “middle thirds” straight away. If a clopen set X is enumerated
in 2“\C, then also adjoin g(X) to the list.

Now fix a real « that is not computable but is left-c.e., in the sense that the left cut {q : ¢ < a}
is computably enumerable. (See Exercise 2.3.4.) For example, take

o= Z 272,
€K
Let a = limg a5 be an effective approximation of a from below. We can set
oy = Z 2_21,
i<K,

where K is the part of K enumerated by stage s. Although we do not necessarily know how close
;s is to a, we know that as < as11 < a for every s, and that limg as = a.

Define a function f : [0,1] — R by the following construction.

Construction.

At stage s, consider each of the finitely many intervals of the form I = [ 3557 gi’j] that have been
used in the definition of the Cantor set. If such an interval has not yet been declared out of P, then
set fs equal to as on I. At each interval outside the Cantor set, define fs to be linear, using the

values of f, at the endpoints of the interval?. This finishes the description of fs.
Set f(z) = lim;, fs(z) for each x € [0,1].
End of construction.

Verification. It is clear that f is continuous, simply because it is the limit of the continuous f;
with the rate of uniform convergence of the sequence computable relative to K. We argue that the
function f constructed above is Markov computable.

2Note that fs_1 could have already been defined equal to as_1 on I at the previous stage. In this case, the value
of f on I needs to be updated. Otherwise, if such an interval has left P at or before stage s, do not update f on I.
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Let 8 be a computable point. Then it must be that 5 ¢ P, and (as we mentioned above) it must
be inside a rational interval that is either outside the Cantor set or will eventually be declared out
of P. We can eventually see which of the two possibilities occurs.

If we see B ¢ g(2¢), the function is defined to be linear using its values at the endpoints of the
respective interval that contains 8 and is outside g(2¢). If 6 and v are the left-most and right-most
points of the Cantor set relative to 8, then note that both § and ~ are computable. In particular,
they cannot be in P, and therefore there will be a stage when some intervals containing these points
will be declared 'out’. At the stage at which this happens, we use the values of f at these two points
and linearity to calculate f(3).

If 8 € g(2¥), it must be that § ¢ P. At the stage at which § is declared out (with a whole
ternary interval), we use the value of f on this interval according to the construction.

It follows that for every computable point 3, we can uniformly calculate the final value of f(5).
The procedure does not have to halt if 8 is not computable, but this is fine. It follows that f is
Markov computable.

We claim that sup f = «, which is a non-computable left-c.e. real. This follows from the fact
that P is non-empty, so at every stage there will be an interval that is not declared out, and the
definition of f will keep getting updated.

Since « is not computable, f cannot be a Type IT computable function, by Proposition 2.3.14. [

When restricted to continuous functions [0, 1] — R, Markov (Type I) computable functions are
not too different from Type II computable functions, in the following sense.

Proposition 2.3.25. Every Markov computable continuous function f : [0,1] — R can be computed
using the halting problem.

Proof. By Theorem 2.3.18, it is sufficient to use the halting problem to calculate, given e = 27", a
6 = 27™ such that
|z —2| <0 —|f(z) - f(2)| <e

For a fixed 6 = 27" and € = 27", the collection of all x, z for which the above implication holds
forms a closed subset of [0, 1]%. The condition holds for all z and y iff the open complement of this
set is empty. Thus, if it fails, then it must be witnessed by some rational z and z. The careful
choice of non-strict and strict inequalities, along with the Markov computability of f, implies that
the failure of |z — z| < & — |f(x) — f(2)| < € is a c.e. condition. Indeed, the existence of rational
2,y such that

o — 2| < 6 & |f(x) - £(2)] > €

can be discovered at a finite stage by calculating f on more and more rational inputs. It follows
that we can express that 6 = 27" does not work for a fixed e = 27" as an existential statement of
the form

3kR(k,m,n),

where R is a computable relation. This implies that, given n, we can computably enumerate all m
for which it fails. With the help of the halting problem, we can decide whether the procedure of
searching for a counter-example halts. Therefore, given n, we can compute the least m that works
for n. O

Recall that, for algebraic structures, if we had access to the halting problem, we could decide
equality in a c.e. presented structure. In this sense, for continuous functions, Markov computability
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is related to Type II computability similarly to how c.e. presentations are related to computable
presentations in algebra. Likewise, Type II computable functions are more “honestly” computable
in the sense that they are (analytically) uniformly computable. In view of the equivalence of all
uniform definitions we have seen so far (e.g., Theorem 2.3.18), we will adopt the following unified
terminology:

A real function is computable if it is Type II computable.

Throughout the rest of the book, when we say that a continuous function is “computable”, we
mean that it is “Type II computable”.

Exercises

Exercise® 2.3.26 (Specker [480]). Use the method of proof of Theorem 2.3.24 to construct a
Markov computable function f : [0,1] — R with no continuous extension on [0, 1].

Exercise 2.3.27 (Myhill [414]). Show that there exists a computable function [0,1] — R which is
differentiable, but does not have a computable derivative.

Exercise 2.3.28 (Pour-El and Richards [434]). Show that if the second derivative of a computable
function f : [0,1] — R exists and is continuous (but is not necessarily computable), then the
derivative of f is computable.

Exercise* 2.3.29 (Pour-El and Richards [434]). Show that there exists a computable function
f :[0,1] — R such that, for every n, the n'" derivative f(™) exists (and, thus, is computable by the
previous exercise), but f () is not uniformly computable in n.

2.3.4 Historical remarks*

The theory of computable analysis can be traced back quite a long way. Nearly four thousand years
ago, the Babylonians (see [174]) calculated v/2 correctly as

24 51 10
+ — + — + — ~ 1.414213.

60 602 603
There is a long history of mathematicians trying to calculate important real constants such as e
and 7 explicitly, and we can see a direct line of reasoning to the work of Cauchy and other analysts
of the 18th and 19th centuries. In 1912, Borel [53] gave an informal definition of a computable real
number:

“We say that a number « is computable if given a natural number n, we can obtain a
rational number ¢ that differs from « by at most %.”

Borel had no formal definition of a computable procedure, so his definition of “we can obtain” was
vague, although he said that “the operation can be executed in finite time with a safe method that
is unambiguous.”
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In his famous papers [487, 488], Turing initiated the theory of computable real number functions.
Indeed, he mentioned that one of his motivations for the invention of his famous machine model
was to describe real number computation. The term “computable real number” first appeared in
Turing [487]. However, Turing himself did not systematically develop the theory of computable real
number functions, which was taken up by Banach and Mazur [29]. They used the following notion:
A function f : R. — R, is said to be Banach-Mazur computable (sequentially computable) if f maps
any given computable sequence (r;);en of real numbers into a computable sequence of real numbers
(f(r:))ien. A function that is Markov computable must be Banach-Mazur computable, and while
the converse holds in some cases, it is not true in general [248]. Banach-Mazur computability is
perhaps too general for our purposes because it characterises functions as computable even if they
may not be computed in the typical sense, i.e., by a Turing machine. Their investigations were
unfortunately interrupted by the Second World War.

The subject was revived in the mid 1950s by Grzegorczyk and Lacombe (e.g., [226, 227, 225,
326, 327]) who laid out the foundations in detail. Around this time, there was a lot of material that
might best be called “computable calculus”, and in particular functions computable when restricted
to the field of computable real numbers in [0, 1].

The Russian/Soviet school also adopted Turing’s ideas and further developed them (e.g., [351]),
and today Turing’s computable function is more commonly known as Markov computable. Much
of this work was by authors such as Zaslavskii and Ceitin in papers including [514, 515, 81]. We
cite the book of Aberth [1] for a detailed exposition of some of these early results. For many
bibliographic references covering results obtained before 1998, see [63].

The Type II approach to computability is commonly attributed to Kleene (e.g., [302]), although
many equivalent definitions were introduced by others around the same time. This approach to the
computability of continuous functions has become standard in the modern literature [505, 435]. In
this book, we exclusively focus on continuous functions, making this approach perfectly suitable for
our purposes. One can extend this idea to Type III by considering maps between functionals, etc.;
see Kleene [302] and Ershov [155] for a detailed study of computability in higher types.
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2.4 Computable separable structures

In this section, we give the definitions of a computable Polish group and a computable Banach
space, and we provide examples. Following the general pattern of the chapter, we mainly focus on
establishing the foundations, i.e., we analyse and compare the definitions rather than apply them
to prove some effective analytic results.

2.4.1 The basic definitions

Recall the definition of a computable Polish space (Definition 1.2.6). Let (M, d, X) be a computable
Polish space, where X is a dense countable sequence in M that can be identified with w. Elements
of X are called special points.

A point £ € M is computable if, for every n, we can compute = € X such that d(§,z) < 27"
A sequence (z;)sen in X with the property d(z;,z;11) < 2771 is called a fast Cauchy sequence. If
such a sequence converges to &, then it is called a (fast) Cauchy name of £. Note that d(&,x;) < 27°.
A point is computable if it has a computable fast Cauchy name.

It is not hard to check that if (M;,d;, X;), for i = 0,...,k, are computable Polish spaces, then

so is
(n Mia da HXZ> )
i<k i
where, for z = (zo,...,2x) and ¥ = (yo,...,yx), the metric is given by d(z,y) = >, d(xi, y:)-
Similarly, the product of uniformly computable sequences of computable Polish spaces is also a
computable Polish space under the metric >, 27" d(x;, y;)-

Convention 2.4.1. We will often identify a computable Polish space (M, d, X) with its domain M
to simplify notation. However, the reader should keep in mind that M can have many different dense
subsets, and we hope that this relaxed notation will not cause any confusion. We will emphasise
which dense set is used when necessary. Additionally, the metric may or may not be fixed; this will
also be clear from the context.

Definition 2.4.2. Let X and Y be computable Polish spaces. We say that
f:X->Y

is computable if there is a Turing functional which, on input a fast Cauchy name of x in X,
outputs a fast Cauchy name of f(x).

The definition above is a direct generalisation of Definition 2.3.9 of Type II computability
for real functions. Lemma 2.3.13 will be extended to cover arbitrary computable Polish spaces
(Lemma 4.2.9). Thus, every computable f has to be (effectively) continuous.

Fix the standard computable presentation of the reals using Q and the usual metric. Also, fix
the computable presentation of the complex numbers given by Q + ¢Q and the complex norm.

56



Definition 2.4.3. Let M be a computable Polish space. A computable n-ary operation on M is
computable function of the form

FZX1 XXQ... ><)(n—>)(n+17
where each Xj; is either M or R or C.

We also view constants as computable operations that, on any input, produce the same com-
putable point. The definition below is essentially due to Stoltenberg-Hansen and Tucker [484].

Definition 2.4.4. A computable Polish algebra is a computable Polish space M together with
a sequence of (uniformly) computable operations on M.

The definition above should be compared with the definition of a (discrete) computable structure
due to Malcev and Rabin (Def. 1.2.1). In fact, it can be viewed as a generalisation of it in the
following sense. Given a computable algebraic structure M upon N, introduce the trivial discrete
metric by the rule d(x,y) = 1 iff & # y. This metric turns the computable algebraic structure into
a computable Polish algebra.

Perhaps the most important examples of computable Polish algebras are computable Banach
spaces and computable Polish groups, which we discuss next.

2.4.2 Computable Polish groups

A computable Polish group is a computable Polish algebra of the form (G,-,~1) that happens to
be a group. In the computably compact case (Definition 1.2.7), we can drop the computability of
~! from the definition without any loss of generality; this will appear later as Corollary 4.2.46. We
will see shortly that the same can be said about the additive groups of real Banach spaces.

Examples of computable Polish groups
We give a few examples of computable Polish groups that are not associated with Banach spaces.

Lemma 2.4.5. The following Polish groups (with their natural topologies) admit a computable
Polish presentation:

1. The unit circle group R/Z (under +).
The 3D rotation (special orthogonal) group SO(3).

The additive group of p-adic integers.

e e

The infinite symmetric group So of all permutations of N.

Proof. 1. is elementary, and the verification of 2. and 3. is left to Exercise 2.4.12.
We verify 4. This particular presentation was suggested in [220]. The obvious difficulty is that
even if a map f : N — N is injective, we can never be sure if it is surjective, and thus we can never
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decide whether we should keep approximating it. In our presentation, an element of Sy, is given as
a path through a tree that consists of pairs (h,h~!) where h is a permutation of N. This ensures,
via a local condition given by the tree, that the path encodes a permutation.

For strings o;, ¢ = 0,1 with natural number entries, and of the same length N, by o9 @ o1 we
denote the string of length 2N which alternates between oy and o1. That is, (co@01)(2i+b) = op(4)
for i < N, b = 0,1. The domain of our approximation structure for Sy, is the computable tree of
strings

Tree(Se) = {oc@®7: 0,7 are 1-1 A o(7(k)) = k A 7(0(4)) = i whenever defined}.

For functions fo, f1 on N, we define a function fo @ f1 on N by (fo @ f1)(2i +b) = f,(4).

We view S, as the group of objects of the form h @ h~! where h is a permutation of N.
Our concrete presentation of Sy, is the group defined on the paths of Tree(Sy). We view the
paths through the tree as an ultrametric space (i.e., d(z, z) < max{d(z,y),d(y, 2)}), in which the
(ultra)metric is the usual longest common prefix metric?, and the dense set is given by permutations
having finite support. If f = fo® f1 and ¢ = go ® g1 in Sx, we define f~! = f; @ fp and
9f = (g0 © fo) ® (f10g1). It is immediate that these operations are computable. O

Further examples of computable Polish groups are provided by the following elementary lemma
that first appeared in [313].

Lemma 2.4.6. A discrete group admits a computable Polish presentation iff it is computably pre-
sentable (in the sense of Definition 1.2.1).

Proof. If a discrete group is computably presented, then we use the trivial discrete metric
dlz,y)=1iff z #y

to turn it into a computable Polish group.

Suppose the group G is computable Polish with respect to some metric compatible with its
discrete topology and which makes the operations computable. All points in a discrete group are
always special because all points are isolated. In particular, the identity e has to be special.

Consider the free group F' (freely and formally) generated by the special points. Every finite
"word” in the language of the group is a product of special points and their inverses?.

Since the identity e is isolated, there is a rational r» > 0 so that the basic open ball B(e,r)
contains only e,

Ble,r) = {e}.

To see whether y = e, compute the real d(e, y) to precision r/8. If this approximation is < r/4, then
y = e. Otherwise, it must be > r/2; in this case, y # e. Note that these properties are mutually
exclusive and both are computably enumerable (c.e.). Thus, “y = €” is a decidable property for
any computable point y in the group.

It follows from the argument above that we can decide when a word in F' is equal to the identity
in our group G. Then G =~ F'/R, where R is a computable normal subgroup of F' generated by the

3The distance is set equal to 2~ ™, where n is the length of the longest common prefix of two strings.

4In particular, each such word can be viewed as a computable point uniformly in the indices of these special points
used to form the word. For example, x;71x22z17 is a computable point whose fast Cauchy name can be produced
uniformly in the indices 17 and 22. Of course, :c1_71:v22z17 is equal to some special point z;; but for our proof to
work, we do not need to know which z; it is exactly.
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elements (“words”) that are equal to e in G. As we discussed earlier, such groups admit computable
presentations (Exercise 2.2.21). O

It can be shown that computable Polish groups are also closed under finite (or effectively count-
ably infinite) direct products (Exercise 2.4.14). We remark that Lemma 2.4.6 has an analogue for
right-c.e. Polish and c.e. presented Polish groups (Exercise 2.4.28); we leave the somewhat technical
definition of a right-c.e. Polish group to Exercise 2.4.27. Thus, Theorem 2.2.6 implies that there is
a right-c.e. Polish group that is not homeomorphic to any computable Polish group.

Computably compact groups

Recall that a computable Polish space M is called computably compact if there exists a computable
function that, given m, outputs a finite cover of M by open balls centred on special points and
having rational radii < 27" that cover M.

Definition 2.4.7. A computably compact group is a computable Polish group that is addition-
ally computably compact. That is, it is a computably compact space with computable group
operations upon the space.

As we mentioned earlier, the computability of the inverse operation can be derived from the
computability of the product; we delay the verification of this fact until Corollary 4.2.46. It is not
hard to see that the groups from 1. and 3. of Lemma 2.4.5 are indeed computably compact groups
(Exercise 2.4.13), but the verification of the computable compactness of SO(3) is delayed until
Exercise 4.2.64. Further examples can be obtained by noting that computably compact groups are
closed under taking direct products (Exercise 2.4.15). Non-trivial examples of computably compact
connected and profinite groups will be given in Chapters 5 and 9. In this subsection, we only briefly
discuss another interesting related notion due to Turing.

In [489], Turing defines an e-approzimation to a Polish group (G, -) as a finite group (X, *)
which is e-dense in G, i.e.:

1. X, € G and for each g € G, there exists an z € X, with d(g,z) < ¢, and

2. for every z,y € X,
d(x -y, *y) <e.

Note that Turing did not require the operation on X, to be the same as the operation on G.

Definition 2.4.8 (Turing [489]). A Polish group is approximable if for every € > 0, it has an
e-approximation.

Every approximable Polish group is totally bounded and, thus, compact. While Turing did not
define the following notion, his non-effective definition above was arguably motivated by algorithmic
intuition.

Definition 2.4.9 (Essentially Turing [489]). A computable Polish group G is computably approz-
imable if, for every n > 0, we can compute the strong index (i.e., a code of the finite tuple
representing) of a 27 "-approximation (X, *,) to G, where X,, consists of special points.
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It is easy to see that every computably approximable group is computably compact. In Chapter
4, we will see that every computably compact profinite group is also computably approximable
(Corollary 4.2.108), and it follows from the materials of Chapter 5 that every connected computably
compact abelian group is also computably approximable (Exercise 5.2.27). However, to draw these
conclusions, we will have to develop quite a bit of machinery. Here, we only state the following neat
result that should be compared to Theorem 2.2.2.

Theorem 2.4.10 (Essentially Turing [489]). Every approximable Lie group® is computably ap-
proximable and, thus, admits a computably compact presentation. Indeed, such groups are exactly
the compact abelian Lie groups.

Proof sketch. In [489], Turing demonstrated that every approximable Lie group has to be compact
and abelian. It is well-known ([429]) that the compact abelian Lie groups are exactly the groups of
the form

F x TF,

where F' is finite abelian, and T =~ (R, +)/(Z,+) is the unit circle group from Lemma 2.4.5(1).
It is routine to check that such groups are computably compact (Exercises 2.4.14 and 2.4.15) as
witnessed by their e-approximations by finite subgroups. O

In particular, the Lie group SO(3) is computably compact (Exercise 4.2.64) but is not approx-
imable (since it is not abelian). It follows that computable approximability is strictly stronger
than computably compact presentability among compact Lie groups. We note that there is an
approximable computable Polish group that is not isomorphic to any computably approximable
one; see Exercise 9.5.17. We are not aware of any further work in computable analysis that would
systematically study approximability of (compact) Polish groups.

Exercises

Exercise® 2.4.11 (Folklore). Let f: X — Y be a computable surjective isometry between com-
putable Polish spaces X and Y. Show that f~! is also computable.

Exercise® 2.4.12. Finish the proof of Lemma 2.4.5.
Exercise® 2.4.13. Show that the groups in parts 1 and 2 of Lemma 2.4.5 are computably compact.

Exercise® 2.4.14. Show that the direct product G x H of computable Polish groups G and H
is also a computable Polish group. Produce a computable presentation of G x H in which the
projections onto the components are computable maps.

Exercise® 2.4.15. Show that the direct product G x H of computably compact groups is also
computably compact.

5A Lie group is a smooth manifold with a differentiable group operation.
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2.4.3 Computable Banach spaces

We now turn to Banach spaces. We are mainly interested in Banach spaces over R, but of course,
the definition below can be easily extended to cover C-spaces.

Definition 2.4.16. A computable (real) Banach space is a computable Polish algebra of the
form B = (B, +,-,0), where 0 is a constant, the metric on B induces the norm ||z|| = d(0, ),
which, together with + and the scalar product - : R x B — B, makes B a Banach space.

The definition above is a reformulation of the approach taken in, e.g., Pour-El and Richards [435].

Lemma 2.4.17 (Melnikov and Ng [376]). For a real Banach space B upon a fized computable Polish
space induced by the norm, the following are equivalent:

1. (B,+,—) is a computable Polish group;
2. (B,+,+,0) is a computable Banach space.

Furthermore, in 1. computability of + implies computability of the additive inverse —.

Proof. The implication 2 — 1 is trivial because —z = (—1)z. We prove 1 — 2.

To see that 0 is a computable point, fix any special point = from the dense sequence in B and
calculate 0 = « — . This makes the norm ||z|| = d(z,0) computable. Clearly, for every n € N, we
can uniformly compute the point

r+r+r+...+x,

x occurs n times

and similarly when n € —N. This makes the operations x — nz uniformly computable when n € Z.

1
Note that, for an integer m > 0, ||my — z|| < € is equivalent to ||y — —z|| < - Thus, to
m m

1
compute —x to precision 27", we have to find a special point y such that my is m2~"™-close to

z. Here we do not assume that x is a computable point. Instead, we assume that its fast Cauchy
name is given to us (as an oracle). Since this search is uniform in z and m, we conclude that the

operations * — —x are uniformly computable.
m
If a is a real and r is a rational approximation to a, we have
|lrz — az|| = |r — al||2|].
So, to compute ax to precision 27", we need to choose a rational r such that
27n71
r—al € —————
max{] |z[[, 1}

and calculate rz to precision 27" 1. It follows that the uniform computability of scalar multiplica-
tion by rationals implies computability of scalar multiplication by reals. This finishes the proof of
1—-2.

To see why + additionally determines —, search for a point y such that ||z + y|| < 2™, which
is the same as to say that ||y — (—z)|| < 27™, i.e., y is 27 "-close to the point —z. O
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In other words, assuming that we fix the metric associated with the norm on a separable (real)
Banach space B, we have:

B is computable Banach iff its additive group is computable Polish.

This fact simplifies the verification of computable presentability of Banach spaces.

Example 2.4.18. The following separable (real) Banach spaces are computable:
1. Separable Hilbert spaces.

2. The space C[0,1] = C([0,1];R) of continuous functions on the unit interval, under point-
wise operations and the supremum metric. The dense sequence is given by the polynomials
with rational coefficients. Alternatively, we can use piecewise linear functions with rational
parameters. (See also Fact 2.3.17.)

3. The spaces ¢,,, where p is a computable real. Sequences with finite support form a computable
dense set.

4. The spaces L,[0, 1], where p is a computable real, and the dense sequence is given by, e.g.,
step functions with rational parameters.

5. The space C™([0,1];R) of n-times continuously differentiable functions [0,1] — R, under
the norm
sup |£9 ()]
i<n ®€[0,1]
and the point-wise operations. The dense sequence is again given by polynomials with rational
coefficients.

Some commonly encountered Banach spaces are not computably presentable. For example, ¢,
the space of all bounded real sequences with the supremum norm, is not computably presentable
as it is not even separable. In Corollary 4.2.114, we will see that there exists an ¢¥’-computable
Banach space of the form C(K;R), where K is compact, that is not isomorphic to any computable
Banach space. Further, it can be shown that there is a low, right-c.e. presented Banach space not
linearly isometric to any computable Banach space (Exercise 2.4.40).

Reconstructing the group operation from the norm

Mazur and Ulam (see, e.g., [469, 492]) showed that every surjective self-isometry of a Banach space
is affine, and thus, when the norm is fixed, there is only one way to define + to get (the additive
group of) a Banach space. Is this effectively true? In other words, can we strengthen Lemma 2.4.17
by dropping the computability of + as well?

We will answer this question in the affirmative for separable Hilbert spaces, where + can be
effectively recovered from the norm. As the central result of this section, we will prove that there
is a computable dense sequence in C[0, 1] that computes the norm but does not compute +. These
results will later allow us to draw conclusions about the effective uniqueness of computable presen-
tations of these spaces.
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Hilbert spaces

The proposition below states that in Hilbert spaces, the norm effectively determines the group
structure (thus, also the linear space structure by Lemma 2.4.17).

Proposition 2.4.19 (Melnikov [369]). Suppose a Hilbert space H has a computable Polish presen-
tation in which 0 is a computable point. (This makes the norm computable.) Then the operation +
1s also computable with respect to this presentation.

Proof. Fix a dense sequence (a;);en in which the vector 0 is a computable point. Recall that
d(z,y) = ||z — y||. For instance, ||z|| = d(0,x) is computable for every computable point z. It is
well-known that the parallelogram identity

[l + yl[* + [l = ylI* = 2l|z||* + 2l]y|]*

characterises Hilbert spaces within the class of Banach spaces. We show that the operation + is
computable with respect to (w.r.t.) (;)ien.

Recall that points in the fixed dense sequence in a computable Polish or Banach space are called
spectal. Given a positive rational e < 1 and (fast) Cauchy names for points = and y, find a special
point z such that:

L f][2l1? + [lz =yl = 2l|=]1” = 2[lylI*| < o,
2. My =2l = [lzl[| < 6,
3. |l = 2|l = lyll| <4,

where § = ¢/(2]|z]| + 2||y|| + 3). We may assume that ¢ < 1. Applying the parallelogram identity,
we obtain
21 = |z + yl? | < 6.

Using the well-known formula for the inner product, we get
llz +y = 2|* = llz +yl1* + [|2]]* — 2z, 2) — 2y, 2).
Applying this formula again, we obtain
lly = 2[1* = llyll* + 1121 — 2y, 2)

and
lz = 2I1> = ||2* + [|2* — 2¢z, 2).

We combine the three equations above:
llz +y = 2lI* = (lla + yll* = [I211) + (e = 2> = [lyl1*) + (ly = 211 =[]l ).
Taking into account § < 1, observe that

[z = 2> = [lyl? | = [le = 2l = llyll] - (Ul = 21l + [ly])
< o(|[yll + o +1lyll)
<02yl + 1),
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and similarly
[y = 21* = [l2l1* | < 82llzll + 1),

Thus,

lz +y — 21 < [lle+yll? =121+ [z = 21* = [lyl?| + 1 ly = 2> = ||=||
<0+ 02yl + 1)+ 62zl +1)
=6(2|[| + 2[[y|| + 3)

= €.

It follows that we can produce a (fast) Cauchy name for z + y uniformly in (fast) Cauchy names
for x and y. O

The space C[0,1]

We write C[0, 1] to denote the space of continuous real-valued functions on the unit interval; see
Example 2.4.18 for the definition. We fix the supremum metric

d(f,9) = dsup(f,9) = sup |f(x) —g(z)|

z€[0,1]

associated with the supremum norm. We also fix the computable dense sequence (I;);en consisting
of piecewise linear functions with finitely many rational breaking points. The theorem below states
that the supremum norm on C[0, 1] does not effectively determine the operation +. Therefore, the
computability of + cannot be dropped from the definition of a computable Banach space without
consequences. This also means that the aforementioned theorem of Mazur and Ulam does not hold
computably.

Theorem 2.4.20 (Melnikov [369]). There is a computable presentation of the Polish space
(C[0,1], dsup) in which the constant function 0 is a computable point but the operation + is not
computable.

In other words, we shall construct a computable presentation of (C[0,1],dsyp) in which the
norm is computable, but + is not. The computability of 0 will be used later in a corollary.

We remark that, in the proof below, we split the main task into a number of sub-tasks that
are called requirements. We then prove the theorem by satisfying (“meeting”) these requirements
one by one. A special technique, called the priority technique, can sometimes help to meet all the
requirements even if they conflict with each other. However, as we will explain in due course, in the
present proof such conflicts can be completely avoided, and thus the proof is injury-free. Before we
turn to the formal proof, we informally explain the main idea behind a typical injury-free proof.

Requirements and direct diagonalisation. We have already seen several proofs with relatively non-
trivial constructions, e.g., Mal’cev’s Theorem 2.2.16 and Specker’s Theorem 2.3.24. However, the
former proof coded K (the halting problem) into the linear independence relation in a vector
space, and the latter coded K into the supremum of a continuous Markov computable function.
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The present proof is a bit more complex than that, since it will rely on the direct diagonalisation
technique rather than on coding.

Typically, in such arguments, one has some overall goal that one breaks down into smaller
subgoals (“requirements”) for which it is argued that they are all eventually met in the limit. As an
archetype for such proofs, think of Cantor’s proof that the collection of all infinite binary sequences
is uncountable. One can conceive of the proof as follows.

Suppose we could list a collection of binary sequences S = {Sg, S1, ...} with Se = s¢ 0Se,1.... Our
goal is to construct a binary sequence U = uguy... that is not on the list S. This should be thought
of as a game against our opponent who must supply us with S. We shall construct U in stages, at
stage t specifying only ug...us, the initial segment of U of length ¢ + 1.

Our requirements are the decomposition of the overall goal into subgoals of the form

R.:U # S,

one for each e € N. Of course, we know how to satisfy these requirements. At stage e, we simply
make u. # Se. by setting u. = 1 or 0, and making u, = 1 iff s = 0. Hence for all e, U # S¢;
all the requirements are met. This is a contradiction to the fact that S supposedly lists all infinite
binary sequences, as U is a binary sequence.

We now turn to the proof of Theorem 2.4.20. The proof that we present here is different from
the proof in [369]; it can be found in [376].

Proof idea. We build a computable Polish presentation X = (h;);en of (C[0, 1], d) which consists of
points of the form h; = lim, h; 5, where h; 5 is a computable double sequence of rational piecewise
linear functions. We will have that for each fixed ¢, the sequence (h;s)sen eventually stabilises.
Since computability of + implies computability of scalar multiplication (see Lemma 2.4.17), it is
sufficient to ensure that (1/2)- is not a computable operation with respect to (h;);en. We also need
to ensure that the metric is computable, and so is the zero function.

Suppose we are diagonalising against the e!” computable procedure ©, potentially representing
h; — %hz We will use a witness h, which has constant value 16e on some small interval I,
(reserved exclusively for this requirement). The basic strategy will wait for ©.(p) to converge with
high accuracy. We then adjust h, on interval I. by lowering its value h,(z) by 8e for some z € I.
This will ensure that O, is “killed”. To ensure that distances are preserved, we need to adjust h,,
similarly on I, for every h,, that takes on values larger than 8e on I.; see Fig. 2.2. This leaves
functions with norm < 8e untouched after some stage.

The formal requirements. Let L = (I;);en denote the effective sequence of all continuous piecewise
linear functions with finitely many rational breakpoints (written rational p.l. functions) without
repetition; this sequence in dense in the space (Example 2.4.18). We construct X = (h;);en and
meet the following global requirements:

(1) For every i, there is some s; such that h; s, = h;, for every ¢t = s;.
(2) For every 4,j and s, we have d(h; s, h;s) = d(hisi1,hjst1).
(3) For each m, there is exactly one k such that limg by s = L.

These three requirements clearly imply that X = (h;);en is a computable presentation of (C[0, 1], d).
We fix an effective listing (U.)een of all partial computable functions of two arguments that
satisfies the following conditions:
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1. For every e, t,z, we have d(V,(z,t), Ve (z,t+1)) < 2771 if U (z,t) and U, (z,t+1) converge.
2. For every stage s and every e, t,x, we have U, 4(x,t) | only if ¥, ;(x,n) | for each n < t.

To see that (U, )een exists, we start with some universal listing of all partial computable functions
of two variables and limit ourselves to only those which satisfy (1) and (2). For every e and z, set
O.(z) = limy, o Pe(x,n) if the limit exists (where the limit is taken with respect to the metric on
M), and set ©.(x) 1 otherwise.

Notation 2.4.21. At stage s we set O, (z) equal to W, s(z,m) if m is the largest such that
U, s(x,m) |, and we set O, s(z) undefined otherwise. In the former case, we let 0, s(z) = m. Thus,
O, s(x) is our stage s guess about O, (x), and . ;(x) indicates the error between O, ;(z) and O.(z).

We need to satisfy, for every e, the requirements:
N, : O, does not compute x — %ax in X,

where O, stands for the e computable operator as defined in Notation 2.4.21.

In the following, (I.)een stands for some effective listing of disjoint computable closed subinter-
vals of [0,1]. We ensure that for each strategy N, and each h;, N is only allowed to modify h; on
the interval I.. More specifically, when N, requests for the interpretation of h; to be changed at
a stage s, we always ensure that h; s(2) = hj s41(2) for every z ¢ I.. The requirements N, all act
independently and at most once during the construction.

The detailed strategy for N, is as follows. It will have its own witness, a rational p.l. function
we € X. The function we, when first defined at stage 2e, is equal to 16e on the interval I, is equal
to zero at the endpoints of [0,1], and is linear outside 1.

16€ f------mmmmmmmmm e -

We = h;n,Qe

Figure 2.1: Function hy, 2. = we
Let p be such that we = hy, 2.. The strategy N. does nothing until it sees a computation O s(p)
where 0. 4(p) > e (see Notation 2.4.21). If we have
1 —e
sup ihp,s(z) - h®5,5(p),s(z) = sup }h@)e,s(p),s(z) - 86’ > 2 +1»
z€el, z€el,

then the strategy does nothing for the rest of the construction, and we win N, simply because

SuII) ‘hee,s(p)ns'(z) - f(z)’ g d (hge,s(p)7 f) < 2_6’
z€l,
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and thus
1

Shel) = £(2)

1

7hp,s(z) - f(Z)

= sup |5

z€l.

0 (Ghal2). 1)) = sup

2 z€l.

where f = lim;_, he, ,(p)- Thus we assume that at stage s we have

sup |h@e,s(p),s(3) — Se| <2 et (2.5)

z€l,

The strategy N, will then act as follows. Introduce a new interpretation h,; as described below.
(Notice that h, s is equal to hp 2. on the interval I., but not necessarily outside this interval.)
Choose a small sub-interval J of I, satisfying the following: For all current interpretations h; ; and
hj s of X introduced so far, we have:

(1) hss is linear within J, i.e., h; s has no breakpoints residing in J.
(ii) There is no pair z1, z2 € J such that h; ;(z1) = 8e and h; s(22) # 8e.
(iii) If there is some z € J such that h; ¢(2) = hj ¢(2), then h; s | J =h;s | J.

It is clear that J can be found effectively, since the construction has only looked at finitely many
interpretations so far. Hence, each h; s, when restricted to J, is either strictly monotonic and does
not take the value 8e, or else it is constant on J. Furthermore, each pair h; s and h;  is either equal
or non-intersecting in the interval .J.

Now pick z to be the midpoint of J. For every interpretation h; s such that h; s | I, is strictly
above 8¢, we set h; s41(2) = 8¢, hj s41(minJ) = h; s(min J), and h; 541 (max J) = h; s(max J). We
linearly interpolate h; 441 within J and keep h; 11 = h; s unchanged outside J. This is illustrated
by Figure 2.2.

16e

8e

h1000,s

0 J 1
Figure 2.2: The modifications needed to get h; sy1.

Notice that this action only modifies each h; s on the interval I.. It is also straightforward to
check the following:

Lemma 2.4.22. Distances between the approximations are preserved.
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Proof. Fix i,j. We argue that d(h; s, hjs) = d(hisi1,hjs41). Let m = |h; o(min J) — h; s(min J)|
and M = |h; s(max J)—h; s(max J)|. Since there are no breakpoints of h; s and hj s in J, we clearly
have

sup |h; s(v) — hj s(v)| = max{m, M}.

veJ

Therefore, it is sufficient to see that

sup |hi s4+1(v) — hjs41(v)| = max{m, M}.
veJ
If both h; s and h;, are modified, then this last equality follows easily from the fact that for
every minJ < v < z, we have |h; s(v) — hjs(v)] < m, and for every z < v < maxJ, we have
|hi,s(v) — hjs(v)| < M. Suppose, on the other hand, that h; s # h; s4+1 and hj s = hjs41. Then for
every v € J we have
hi75(’l}) = hi,s+1(v) > 8e > hj)s+1(v) = hj,s(?]).

So we also have that sup,c;|hi s+1(v) — hjs11(v)] = max{m, M}. O
Lemma 2.4.23. N, is satisfied.

Proof. If N, never acts, it is clearly satisfied, so we assume it acts at stage s as above. Since no
approximation will ever be changed again within I, after N, acts, we have h,(z) = hy, s11(2) = 8e,
and

he. .(p)(2) = he, ,(p),s+1(2) = min{8e, he, ,(p)s(2)}-

By Equation (2.5) we have hg_  (p),s(2) = 8¢ — 27! and so he, () (2) = 8e — 27! > Te. Now
since 0, s(p) > e we have f(z) > Te — 27¢ > 6e > 1h,(z). Hence f # $hy. O

Construction. We fix an effective ordering of the N-requirements. At stage s of the construction,
we simply let the strategies of the first s requirements act according to their instructions. Next,
if we do not see l,,, among (h;s)i<s at stage s > m, we pick the least n such that h, has no
approximation so far and set h, s = l,,,. This concludes the construction.

Verification. We first show that the global requirements are met. For (1), fix 4, and let ¢t be
the first stage at which h; receives its initial approximation (namely, h; ;). Let D be such that
[hit| = d(0, ;) < 8D. Only the strategies N, where e < D can possibly change the approximation
at a later stage. Furthermore, if ¢ > s is such that h; ¢ # h; s, then |[h; | < |h;is|. Each N-strategy
acts at most once. Thus, there exists a stage after which h; will be set to its final value, and so
(1) is satisfied. By Lemma 2.4.22, (2) is also satisfied. Finally, (3) is satisfied because for each
Im, after a stage where Ny, ..., Np no longer act, where |l,,| < 8D, any fresh assignment of [,,, to
an h; must be stable. Finally, observe that hg , is never modified during the construction, so the
interpretation of 0 is computable.

This finishes the proof of Theorem 2.4.20.
The computable Polish presentation (h;)en of (C[0, 1], dsyp) constructed above has several nice

properties, which will be important later. A computable Polish presentation X of (M, d) is rational-
valued if d(z,y) € Q for every z,y € X, and the distance d is represented by a computable function
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of two arguments mapping each pair of special points (z,y) to the corresponding rational number
d(x,y) (represented as a fraction). We also say that two computable Polish presentations L and L’
of (M,d) are limit equivalent if there is a total computable function g(x,s) : L x N — L’ of two
arguments such that the sequence (g(x, s))sen is eventually stable on every z, and

fz) = Sli_)rgj g(x, s)

is an isometric bijection of L onto L', where the limit is taken with respect to the standard discrete
metric on N.

Recall that L = (I;);en denotes the effective sequence of all continuous piecewise linear functions
in C[0,1] with finitely many rational breakpoints. The proof presented above gives a slightly
stronger version of Theorem 2.4.20.

Theorem 2.4.24 (Melnikov and Ng [376]). There exists a rational-valued computable Polish pre-
sentation X on (C[0,1],d) which is limit equivalent to L, and such that the constant zero function
0 is computable in X but the operation + is not.

In Chapter 10, we will discuss computably categorical Banach spaces, where Theorem 2.4.24
will find an application.

Of course, C[0,1] does have a presentation that computes +, and the same can be said about
all common separable Banach spaces that we are aware of. It is currently not known if there
exists a pathological Banach space that has a computable Polish presentation but does not have a
computable Banach presentation, up to isometry.

Question 2.4.25. [s there a separable Banach space that has a computable Polish presentation
(as a Polish space under d(x,y) = ||z — y||) but is not isometrically isomorphic to any computable
Banach space?

2.4.4 Exercises: Comparing presentations of spaces
Computable topological spaces

In several exercises, we will use the following classical definition found in [316, Def. 3.1] and [224,
Def. 3.1]. (See also Kalantari and Weitkamp [278], Korovina and Kudinov [315], and Spreen [482].)
We shall typically restrict the definition to Polish spaces; however, it makes sense for arbitrary
countably based spaces.

Definition 2.4.26. A computable topological presentation of a topological space M is given by a
sequence (B;);en of non-empty basic open sets of M and a computably enumerable set W such that

Bin B = | J{B : (i,4,k) e W},

for any 7,5 € N.

A computable topological presentation (of a compact space) is effectively compact if there exists
a c.e. enumeration of finite tuples (i1, ...,4x) such that B, ,..., B;, is a cover of the space.

A computable topological presentation is strong if the relation {{i,j) : B; n B; = J} is com-
putable.
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Note that Definition 2.3.11 of an effectively continuous map makes sense for computable topo-
logical spaces if we interpret U; as basic open sets. Whenever we say that a function or a home-
omorphism between computable topological spaces is computable, we always interpret it using
the natural generalisation of Definition 2.3.11. In Lemma 4.2.9, we will see that this approach is
equivalent to the usual definition in the context of computable Polish spaces.

We will see that the notion of a computable topological space is, in general, too weak to be
of any significant use. Surprisingly, any countably based Ty space (effective or not in any sense
whatsoever) admits a computable topological presentation; this will appear as Exercise 4.2.105. On
the other hand, it appears that the most natural extra effectiveness conditions, such as effective
regularity or normality, allow one to produce an effective compatible metric (to appear as Exercises
4.2.24 and 4.2.26), which is, of course, complete in the locally compact case. This includes the case
of an effectively compact presentation (Exercise 4.2.41). For instance, in the effectively compact
case, the notion turns out to be too closely related to the notion of a computably compact space
to be of any significant advantage (Exercise 4.2.41). However, some of the elementary material
related to computable topological spaces is viewed as common knowledge, so we include it here,
and throughout the book, to inform the reader. The more interesting and difficult facts about such
presentations will appear as exercises in later chapters (e.g., Exercises 4.2.24-4.2.26, 4.2.41, 4.2.104,
4.2.105, 4.2.112, 5.2.28 and 9.4.16).

Exercise® 2.4.27 (Folklore). 1. Show that for every right-c.e. Polish space, the collection of
basic open balls

{B(x;,7) : x; spatial and 7 € Q*}, where B(x;,r) = {y e M : d(x;,y) <7},

forms a computable topological space (Def. 2.4.26). [Combined with Exercise 2.4.30, this al-
lows one to define a right-c.e. presentation of a Polish group to be a right-c.e. Polish space to-
gether with effectively continuous operations upon the induced computable topological space.
See also Exercises 2.4.29, 2.4.28, 4.2.112 and 5.2.28 for more about such presentations.]

2. Show that two non-homeomorphic spaces can have identical computable topological presen-
tations. [Hint: Take any computable Polish space and consider its dense subset.]

3. Show that the product of computable topological spaces is again computable topological.

4. Let f: X - Y and g : Y — Z be computable (i.e., effectively continuous) maps between
computable topological spaces. Show that their composition is also computable.

5. Say that a map f : X — Y between computable topological spaces is effectively open if,
given a listing of an open set U € X (given by some basic open sets making up U), we can
uniformly produce a listing of f(U). Prove that the composition of effectively open maps is
again effectively open.

Exercise 2.4.28 (Koh, Melnikov, and Ng [313]). Show that for a discrete countable group G, the
following are equivalent:

1. G is c.e. presentable.

2. G admits a right-c.e. Polish presentation under the discrete topology (in the sense of Exer-
cise 2.4.27(1)).

Conclude that there exists a right-c.e. Polish group with no computable Polish presentation.
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Exercise 2.4.29 (Koh, Melnikov, and Ng [313]). A computable topological group is a computable
topological space (Def. 2.4.26) with group operations - and ~! that are effectively continuous. Show
that the operations are also effectively open, i.e., given enumerations of open sets U, V', we can list
U -V and U~1; see also Exercise 2.4.27(5). (Hint: For the inverse, note that (U‘l)_1 = U. This
also makes the map (z,y) — 21y effectively continuous. Enumerate all basic open B for which
there is some basic open A satisfying

AnU# Fand AL-Bc V.

The union of all such B is actually equal to U - V. If B is enumerated by the procedure above,
let ae AnU. Foreachbe B, we have b=a-a"beU-A'-B<cU-V,andso B< U V.
Conversely, let a e U and be V. Since a™' -ab = b e V, let A, B be basic open sets containing a
and ab respectively, such that A=! - B € V. Thus, B will be enumerated by the procedure above
and ab € B.)

Computable and recursive Polish spaces

For the next two exercises, recall the definition of a “recursive” Polish space from Section 1.3: A
recursive presentation of a Polish space is a dense subset (z;);en of the space so that the relations

m

P(i,j,m,n) if and only if d(z;,z;) < m;

m
n+1

Q(i, 7, m,n) if and only if d(z;,z;) <

are computable relations on w?.

Exercise® 2.4.30 (Folklore). Show that the three notions of computable presentability of a Polish
space introduced in Section 1.2.2 differ up to isometry. (Hint: Note that there is a left-c.e. real that
is not right-c.e., and a right-c.e. real that is not left-c.e. Consider the arc space [0,a] € R under
the usual metric. Show that [0, «] is isometric to a computable Polish space iff « is left-c.e., and
[0, ] is isometric to a computably compact space iff « is computable.)

Exercise® 2.4.31 (Gregoriades, Kispéter, and Pauly [223]). Show that there exists a discrete
computable Polish space not isometrically isomorphic to any “recursive” Polish space. (Hint: In
a recursive space, we can decide whether the distance between a pair of points is equal to a given
n € N. Build a discrete space. To diagonalise against the n-th potential recursive presentation,
introduce a pair of points x,, and y,, so that d(z,,y,) = n + €,, where €, is small and is controlled
by us. To make sure it works up to isometry, make the pair 2"-far from the points x,,, ym, m < n.)

Exercise® 2.4.32 (Folklore; e.g., [223, 373]). Recall that in our definition of a computable Polish
space we did not require that x; # x; when 7 # j in the dense sequence (x;);en. Show that every
computable Polish space is computably isometric (via the identity map) to a computable Polish
space in which there are no repetitions in the dense sequence. (Hint: Do not put z; into your new
refined sequence unless it looks sufficiently separated from the points you have already put in your
sequence. If this never happens, then z; must be in the completion.)

Exercise® 2.4.33 (Gregoriades, Kispéter, and Pauly [223]). Show that every computable Polish
space is homeomorphic to a “recursive” space. (Hint: Assume the dense (z;);en sequence has no
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repetitions and is infinite; see Ex. 2.4.32. It is sufficient to replace d with a new metric ad, where
« is a positive computable real such that ad(z;,x;) # r for every rational 7. Build « using a

Cantor-style direct diagonalisation so that o # ——.)

d(z;, ;)

Exercise® 2.4.34 (Folklore; e.g., [197]). Let K be a class of at most countable structures in a
computable language (signature). Assume the domains of all structures are either w or its initial
segment. Fix a computable Polish presentation of w* given by the finite strings in w=% and the
longest common prefix ultrametric (cf. proof of Lemma 2.4.5). Show that IC can be associated with
a subset C(K) of “codes” in w* in a way that the computable elements (paths) of C(K) are in a
uniformly effective 1-1 correspondence with the computable structures in K. (Hint: Use specifically
reserved levels of w=* to code the values of the operations and relations on various inputs.)

Exercise 2.4.35 (Ceitin [82]). Extend Kreisel-Lacombe-Shoenfield-Markov Theorem 2.3.7 to com-
putable Polish spaces.

Computable Banach spaces

Exercise 2.4.36 (Pour-El and Richards [435], Chapters 4 and 5 therein®). Fix a computable
Banach space B. Say that a linear operator T : B — B is effectively determined if there exists a
uniformly computable sequence of points (e;);en such that the sequence (e;, T'(e;)) is dense in the
graph of T' (viewed as a subset of B x B).

1. Show that every (Type II) computable linear operator is effectively determined.

2. Show that every effectively determined operator that is furthermore bounded (equivalently,
continuous) is computable.

3. Prove that there is an effectively determined linear operator on a computable Hilbert space
(of infinite dimension) that is not bounded”.

4. Show that for every self-adjoint effectively determined linear operator T" on a computable
Hilbert space, the eigenvalues of T are computable reals.

5. Show that there exists a (Type II) computable self-adjoint linear operator on a computable

Hilbert space whose eigenvalues do not form a uniformly computable sequence®.

Exercise* 2.4.37 (Pour-El and Richards [435], Chapter 4). Show that there exists a computable
(indeed, compact) self-adjoint operator T : H — H on computable Hilbert space H with the
following properties.

1. The number A = 0 is an eigenvalue of T' of multiplicity one (i.e., the space of eigenvectors
corresponding to A = 0 is one-dimensional).

6While certain parts of this exercise are undoubtedly non-elementary, reworking these results based on [435] is
appropriate for a student.

7"We remind the reader that exercises marked with a # are either challenging or require some material not covered
in the book. Those marked with two stars are especially difficult and are included primarily to inform the reader.

8We remark that all these results do not actually depend on the choice of the computable presentation of the
infinite-dimensional Hilbert space H, since it is effectively unique up to computable linear isometry [435] (cf. Theo-
rem 10.2.2). (The same can be said about any finite dimension too.) Further, any sequence (e;, T(e;)) witnessing
that T is effectively determined gives a computable dense sequence (e;);en in the space. Thus, at least in the case
of H, the choice of the sequence does not really affect the definition, and thus we are dealing with a very natural
analogue of Type I (Markov) computability for operators on H.
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2. None of the eigenvectors corresponding to A = 0 is computable.

Exercise 2.4.38 (Brattka [58]). 1. Show thatif T : X — Y is a computable bijective (bounded)
linear mapping between computable Banach spaces, then T~! is computable.

2. Show that this is not uniform in general.

3. Prove that, indeed, the inversion mapping 7' — T ~! is not computable in the case X =Y = £,
where p > 1 is a computable real number.

Exercise* 2.4.39. Fix a Lebesgue space U whose dimension is at least 2 and whose exponent is
p. Prove the following:

(1) Show that if p is a computable real, then the space has a computable Banach presentation.
(Hint: Use the classification of separable LP-spaces that can be found in, e.g., [83].)

(2) Assume U has a computable Banach presentation (i.e., U is linearly isometric to some com-
putable Banach space). Show™® that the exponent p is right-c.e. if it is smaller than 2, and
otherwise it is left-c.e. (Brown, McNicholl, and Melnikov [68]).

(3) Extend** (2) to show that when p > 2 or when the space is finite-dimensional, then p has to
be a computable real (McNicholl [361]).

Exercise 2.4.40. Prove that there exists a right-c.e. presented Banach space B (i.e., so that
the norm is right-c.e.) which is additionally low, but so that B is not linearly isometric to any
computable Banach space. (Hint: Recall that ¢, c ¢; when 1 < p < ¢, and this is true because the
norms satisfy ||z||, < ||z|l4. Fix a right-c.e. low real p > 2 given by Exercise 2.3.2 and consider £,,.
It is given by the dense linear space of vector with rational coordinates and having finite support;
this is a right-c.e. presentation which is indeed also low. By Exercise 2.4.39(3), ¢, is not linearly
isometric to any computable Banach space. Note the same argument would work for a left-c.e. p
as well.)

Exercise* 2.4.41 (Bosserhoff [54]). Let X be a Banach space. A sequence (z;)ien € XV is a
Schauder basis of X if, for all z € X, there exists a unique sequence of coefficients (a;);en € RN such
that Z;il a;z; = x. In his famous book [28], Banach asked if every separable Banach space has a
Schauder basis. Banach’s question was solved by Per Enflo [153], who proved that there exists a
separable Banach space with no Schauder basis.

1. Show that Enflo’s construction is, in fact, computable.

2. Prove that there exists a computable Banach space with a Schauder basis, but without a
computable Schauder basis.

Exercise 2.4.42 (Qian [437]). Let B be a computable Banach space with a computable Schauder
basis (b;)ien (Exercise 2.4.41). Show that the projection functions P; : >, A\;b; — A; are computable,
uniformly in ¢. [Hint: Take for granted the following classical theorem of Banach [28]: Let B be
a Banach space and (b;);ey € B a sequence of nonzero elements. Then (z;);ey is a basis of B iff:
(1) there exists a constant K € R such that for all n,m € N with m < n, and for all sequences
of scalars (a;)en, we have |Y1" | a;b;|| < K |37, a;b;|, and (2) the finite linear span of (z;);en is
dense in B. Now suppose M > K, an upper bound on the basis constant of (b;);en. Fix some x € B.
Search for some (Bf+1)i<m € Q<% such that Hx - BisﬂeiH < €441 Where £, 1 is a value such
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that 541 < 47°71/M and 2M (4=°7'/M + £,41) < 27°"!. Noting that | P < 2M, and assuming
a finite sequence (37); for s has already been found, we obtain that

DB = Bibs P (2 Bt — Zﬁf@)

< max
- k -
7 3

< max | P (4_3/M + €s+1) <277 L

o0

In particular, we have that for each fixed 7, (5]);en is a fast Cauchy sequence converging to P;(x).
See also Exercise 2.4.44 below.]

Exercise 2.4.43 (Downey, Greenberg and Qian [122]). Show that if B is a computable infinite
dimensional Banach space, then there is a computable infinite dimensional subspace B of B with a
computable Schauder basis (Exercise 2.4.41).

Exercise* 2.4.44 (Pour-El and Richards [435]). Let X,Y be computable Banach spaces, and
let (e;)ien be a computable sequence in X whose linear span is dense. Let 7' : X — Y be a
linear operator with closed graph whose domain contains {e; : ¢ € N} and such that the sequence
(T'(e;))ien is computable in Y. Then T maps every computable element of its domain onto a
computable element of Y iff 7" is bounded.

2.4.5 Historical remarks*

It was reasonably natural to extend early work on computable analysis (which was mostly com-
putable calculus) to computable metric spaces, and Ceitin [82] is one early example. It is fair to say
that the spaces with the most developed theory are computable compact spaces and computable
Banach spaces [435, 56]. The study of computable separable spaces, especially Banach spaces, has
attracted considerable interest, eventually culminating in books such as [1, 505, 435]. The system-
atic theory of computably compact spaces is a much more recent development, but it has been
increasingly popular in recent years, recently culminating in the two large surveys [270, 139], which
contain numerous results, proofs, and proof sketches. As assayed in Metakides and Nerode [385],
many of these foundational results recycle some of the earlier theorems in constructive analysis
presented in, e.g., Bishop [48]. However, more advanced results require more sophisticated tech-
niques, including the priority method. The theory of computable Polish groups is a very recent
development [375, 373], and this book is the first to present it comprehensively.

A historical curiosity is that for many decades, computable analysis had essentially been devel-
oping independently of the theory of countable computable structures. Only in the last decade,
beginning with [369, 268], has there been a line of systematic investigations aiming to unite com-
putable algebra and the theory of separable spaces; work in this direction is still ongoing. (See
[94, 68] and the survey [138].) The main motivation of such investigations is that many aspects of
these two theories are not really that different. As a result (as we will see in the present book),
methods and results of one can be applied to the other and vice versa.

Later in the book, we will also use the classical notion of a simplicial complex. The algorithmic
content of the topology of simplicial complexes is a classical field of study that is closely related to
group theory. For instance, Adyan [3, 4] and Rabin [438] showed that it is undecidable to determine
if two given finitely presented groups are isomorphic. Soon after, Markov [352] used these results
to show that it is undecidable whether two compact manifolds of dimension n > 4, given as finite
simplicial complexes, are homeomorphic. Markov computably transformed a finite presentation of
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a group (X|R) into a simplex M x|z, homeomorphic to an n-manifold with fundamental group
(X|R), so that
X|R)=(Y|S) <= Mx|r)y Zhom Miy|s)-

This reduces the isomorphism problem for group presentations to the homeomorphism problem
for simplices representing n-manifolds, showing that the latter problem is also undecidable. For
n < 3, the homeomorphism problem for manifolds, presented as finite simplicial complexes, is
decidable because of classification theorems; for n = 3, this uses the work of Perelman on Thurston’s
geometrisation conjecture (see [322]). For more results, see [430].

One of our goals in the book is to partially extend these ideas of Markov and others to Polish
spaces that do not admit a triangulation, or perhaps are not even compact. To do so, we will use
methods of algebraic topology, more specifically, Cech cohomology, in one of our proofs. This idea
of using Cech cohomology first appeared in [341] and was then simplified and clarified in [139].
It is worth noting that much of classical algebraic topology is intrinsically computable. This is
made explicit in [412] for simplicial (co)homology and in [31] for integral (co)homology of finitely
generated groups. However, applications of algebraic topology in computable analysis are still rare.
It was pioneered by Miller in [391] for the special case of the n-sphere. The effective content of
algebraic topology and homological algebra has not yet been systematically explored.

2.5 What’s next?

To proceed, we must develop additional methods, especially priority techniques. In the next chapter,
we temporarily abandon computable analysis and the “actual” algebra (groups, fields, etc.) and
develop a sufficient technical apparatus in the purely combinatorial context of Turing degrees and
countable linear orders. We will return to separable spaces later, when we discuss Boolean algebras,
where these techniques and results established for linear orders will find applications to Boolean
algebras and their Stone spaces.
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Chapter 3

Priority constructions and
computable linear orders

The main goal of this chapter is to establish the following result, which will be used to prove Feiner’s
Theorem A (1) in the next chapter.

Theorem (Fellner [164], Watnick [502]). There is a uniform procedure which, given a A$-
presentation of an infinite linear order L, outputs a computable copy of Z - L.

All definitions will be clarified in due course. A detailed proof of the Fellner-Watnick Theorem
will be given in §3.2.6, where it will also be put into context. (Indeed, the original motivation
behind proving the theorem was essentially unrelated to Feiner’s Theorem A (1).)

We will need a lot more background in pure computability theory than was sufficient in the
previous chapter. The chapter is divided into two sections:

1. Section 3.1 provides a brief introduction to the priority method. It includes the proofs of
classical results in degree theory that are traditionally used to explain and demonstrate the
priority techniques.

2. Section 3.2 applies the techniques explained in Section 3.1 to computably and c.e. presented
linear orders. It culminates with two substantially different detailed proofs of the Fellner-
Watnick Theorem.

The results presented in this chapter are many decades old and have been included in many
excellent books and surveys. Thus, we often choose to give a friendly extended sketch (where
appropriate) instead of giving a stage-by-stage construction and its verification in gory detail. We
expect that the reader should be able to fill out the missing formal details if needed. But, of course,
we shall give a complete and detailed proof of the main result of the chapter stated above.
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3.1 Priority techniques

Computably enumerable sets lie at the core of classical computability theory. The original impetus
for computability theory was the study of effective processes in mathematics, seeking tools to show
that, for instance, no algorithm can solve Hilbert’s Entscheidungsproblem [252] (the problem of
algorithmic decidability for first-order logic), nor is there one to solve Dehn’s fundamental group
theory problems, including the word, conjugacy, and isomorphism problems [109]. The original
undecidability proofs tended to encode Turing machines into the problem at hand. Authors did
not study properties of computability by abstracting away from a specific context. Nonetheless, it
is evident that the use of effectively generated undecidable sets, such as the halting problem, was
implicit in all the early foundational papers. Post’s highly influential paper [431] pioneered the idea
that computability could be studied separately by removing the context and examining the sets, as
well as the processes generating those sets, themselves. In the words of Soare [477, p.ix]:

“Post [431] stripped away the formalism associated with the development of recursive
functions in the 1930’s and revealed in a clear informal style the essential properties of
r.e. sets and their role in Godel’s incompleteness theorems.”

This idea of abstracting essential properties from applied contexts is not new and permeates math-
ematics; consider group theory, ideal theory, linear algebra, etc. As we can see, this idea is also
essential to our book. We will take some time to develop the basic tools and machinery related to
computably enumerable sets and degrees in isolation from algebra, analysis, or topology.

The main goal of this section is to accumulate enough techniques to prove two classical results
that we will state shortly. For the first result below, recall that a set A < @& is called low if
A <r &

Theorem 3.1.1. There exists a c.e. non-computable low set.

The theorem is considered folklore; see [477, Theorem VII.1.1]. The proof of Theorem 3.1.1 is based
on the methods used in the proof of Friedberg-Muchnik Theorem 3.1.21, which we also include.
In Section 2.2, we already discussed one application of Theorem 3.1.1 to effective presentations of
groups. Recall that Proposition 2.2.5 and Theorem 2.2.6 were established by “coding” a c.e. set W
into a group Gy . This allowed us to separate the construction of the set from the definition of the
respective group.

Unfortunately, it is often essentially impossible to separate the computability-theoretic combi-
natorics of sets and degrees from algebra using a coding technique. As a result, even in the context
of linear orders, the use of more advanced priority techniques applied directly to the structure often
seems inevitable. While certainly not always unavoidable, the infinite injury method is often the
first line of attack, and the brute-force proofs using this method tend to be more flexible (i.e., easier
to modify) than the “clever” proofs that avoid infinite injury.

It will be instructive to see the technique applied in the pure setting of sets, without any
irrelevant combinatorics specific to the class of linear orders. Perhaps the most transparent and
clear application of the infinite injury machinery known to us is the modern proof of the following
result due to Lachlan [325] and Yates [513].
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Theorem 3.1.2. There exists a minimal pair of non-computable c.e. sets.

(Non-computable c.e. sets A and B form a minimal pair if for all sets C, if C <r A, B, then C is
computable.)

We shall also present several classical results, such as Sacks’ Splitting Theorem 3.1.34, that fit
well into the story and will also help the reader to understand the priority technique. The finite
injury of unbounded type used in the proof of Sacks’ Splitting Theorem will be implemented in
the description of computably categorical linear orders. Another classical result, the Friedberg
Enumeration Theorem 3.1.43, which requires a “degenerate” infinite injury, will be important in
Chapter 9 of the book.

3.1.1 The Limit Lemma and injury-free approximation

We use the notions and notation introduced in Section 2.1. For instance, we shall use the notation
0, F Ky, <, <7, 82, A% T2, ®(A; 2) | without further clarification. We use ®(A;x) and
®4 () interchangeably. In this section we write ®(A) to mean (®(n)),en, in which case we usually
(implicitly) assume ®4(n) € {0, 1} whenever defined. We also write A | m for {0,1,...,m —1} N A.

The Limit Lemma

We identify sets with their characteristic functions; for instance, A(x) = 1 is the same as saying
that z € A. Also, if ¢ is a total function in two arguments and [{s : g(z,s) # g(z,s + 1)}| < oo,
then we say that limg g(x, s) exists and is equal to the value z such that z = g(z,s) for infinitely
many s. Recall the use principle (Lemma 2.1.21).

Lemma 3.1.3 (Shoenfield’s Limit Lemma [466]). A <r K iff there is a computable function
g(-,-) such that, for all x,

1. limg g(x, s) exists;

2. lim, g(z, s) = A(z).

Proof. (=) Suppose A <7 K so that for some procedure ®., we have ®.(K) = A. Define g(x,s) = 0
if &, (Ky; ) 1 or @ s(Kg; ) |# 1and g(z, s) = 1 otherwise, where K = U, K is some computable
enumeration of K. Given z, let u = u(®.(K; z)). Let s = s(x) be any stage where K; | u=K | u.
Let t = s be the least stage such that ®.+(K; z) |. As K; | u= K | vw= K | u, we have, by the
use principle, . ((K; ) = Pe 1 (Ky; ) = e o(Ky;2) = P (K; x) for all ¢ = ¢. Then for all ¢ > ¢,
g(x,t) = g(x,q) = A(z) by definition.

(<) Suppose such a function g exists. Without loss of generality, we can assume that g(z,0) = 0
for all z. We construct a computably enumerable set B and a reduction I" so that I'(B) = A. Then
A <7 K since B is c.e. (see Section 2.1). Put {(z,n) into B iff

[{s: g(a,s) # gla.s + 1} = n.
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The reduction T is then defined as follows: on input z, compute the least n such that {z,n) ¢ B.
Then x € A iff n is odd (since g(z,0) = 0, by assumption). O

Intuitively, in the (<) part of the above proof, K was used to decide whether

(Is)(g(x, s) # g(z,s + 1))

and hence, computably in K, calculate the limit of g(x,s). Such arguments can be made formal
using the s-m-n Theorem 2.1.6. We will see a similar use of 0’ very shortly in the proof of Theorem
3.1.14, where the use of the s-m-n Theorem will be clarified. In the literature, similar details are
often completely omitted, and we shall typically omit these details as well.

As we have seen, we can relativise results, definitions, and proofs in computability theory. For
instance, the Limit Lemma above relativises to show that A <; KB iff there is a B-computable
function f(z,s) such that A(z) = lim, f(z, s) for all z. Combining this with induction, we get the
following generalisation of the Limit Lemma 3.1.3.

Corollary 3.1.4. Suppose that n = 1. Then, A < @™ iff there is a computable function g of
n + 1 variables such that for all z,

A(z) = limlim...lim g(x, 1, S2, ..., Sn).
S1 S2 Sn

We also have the following useful fact characterising the arithmetical degrees.
Theorem 3.1.5 (Folklore). Suppose that n > 0.
(i) B is X0, iff B is c.e. in some X set if and only if B is c.e. in some 119 set.
(ii) &™) is 0 -complete, in the sense that () s X0 and for all X0 sets B, B <, 2108
(iii) B is X0, iff B is c.e. in g™,
() B is A%, iff B<r g™.
Proof. (i) This is essentially Theorem 2.1.27. If B is c.e. relative to some I1Y set D, then for some e,

re Biff 3s3o = D (x e W/)).

Now since z € W¢ is a computable property, the result follows since the property o < D is A9 1
and hence XY, as it is a combination of ¥! statements (asserting that certain things are in D)
and IT¥ statements (asserting things outside of D).

(ii) This follows by induction (exercise).

(iii) By (i) and (ii).

(iv) Note that B is A%, if and only if B and B are both X%, and hence c.e. in @™ by
(ii). If a set and its complement are both c.e. in X, then they are computable in X, and hence
B <y g™, O

The result above can be relativised to any oracle X. For that, define classes ¥:X and ILX (also
denoted X9 (X) and TI? (X) or sometimes %% and I1%%X) using X-computable relations in place
of computable relations as the base. The jump operator correlates very nicely with levels of the
relativised hierarchy. For instance, it follows from the theorem above that A,?(m) =AY, and

n+m
™ <0 o (m)
¥ =30 . and similarly for 12"

79



Remark 3.1.6. This correspondence between classes is also uniform, in the sense that given an
index of a set in En@(m), we can uniformly and effectively produce its index (its description) as a

o +m» and vice versa. (Similarly for H?(m )
For instance, if S = dom ®('; e, x), then

member of 30

x € S if and only if 3aVb R(f(e), a, b, z),

where R is a computable predicate and f is a total computable (indeed, primitive recursive) function.
Informally, the primitive recursive function f simply turns a description of ® into a description of
R, but it does not actually need to have access to the oracle. The proof uses a careful analysis of
the iterated Limit Lemma; we omit it and refer the reader to Rogers [454].

Movable markers and m-completeness

Note that in Theorem 3.1.5(ii), we can replace X9 and @™ with TI% and @), and the result
would still hold. We can further extend Theorem 3.1.5(ii). To do so, we shall define the notion of

»9_ and M%-completeness for an arbitrary set, not just & (respectively, &3(m)).

Definition 3.1.7. If C is a class of sets, we say that B is C-complete if B is in C and, for any A
in C, we have that A <,,, B. If we do not require that B is in C, then we say that B is C-hard.

It is usually assumed that the reduction used to witness completeness (or hardness) is the m-
reduction, but occasionally other reductions are used as well; for instance, one may wish to use
<witt, as defined in Exercise 3.1.9.

The theorem below is folklore. The standard mowvable markers technique used in its proof will be
quite useful in applications to structures (e.g., Theorem 3.2.11 in the next section). This technique
will be useful in later chapters too, especially in Chapter 5. The movable markers technique is a
precursor to the finite injury technique, and indeed, some of the simplest finite injury proofs are
perhaps best viewed as dynamic approximation proofs using movable markers.

Theorem 3.1.8. (i) Fin = {x : domy, is finite} is ¥.9-complete.
i) Tot = {x : @, is total} and Inf = {x : dom, is infinite} are both I13-complete.
2
(iii) Cof = {x : domp, is cofinite} is ¥J-complete.

Proof. We prove (i). We know that K’ is 39-complete. By the s-m-n Theorem 2.1.6, we have a
computable function f such that

Proy(s) | iff 3t = s @Ni(2) 1,
where ® behaves exactly like @, except that it automatically 1 for at least one step if the use on

argument x changes from stage t —1 to t. Then f(z) is in Fin iff x € K’. The proof of (ii) is similar
and is omitted.
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We outline a proof of (iii) that uses the movable markers technique. Suppose that S € X9.
Thus, there is a computable relation R(z,y, s,t) such that for all z,

x € S if and only if FyVsItR(z,y, s,t).

Using Exercise 2.1.30, replace this computable relation with another computable relation P such
that
z € S if and only if JyI*2P(z,y, 2).

Given z, we shall (uniformly in z) build a computable function f, such that
dom f, is cofinite if and only if IyI*2P(z,y, 2).

Our construction will be effective in x, and we will appeal to the s-m-n Theorem 2.1.6 to conclude
that, for some total computable g,

fo = ©g(a)s

and this g will be the function witnessing the ¥9-completeness of Cof.
At stage s, we will have N = Uyenly s, where each I,  is an interval of the form

Iys = [my—1,5,my,s],

so that m_; , = 0 for all s, and my o = y for all y. At stage s, the values of my 41 will be
determined in the construction using P and the previous values m, ;. These values will be the
“movable markers” mentioned earlier. For every s, we shall additionally have

my,erl = my,sa

3 3

so the “markers” can only be “moved” to a larger value.

We shall move m,, ¢ only if one more z is discovered for y (at stage s) such that P(x,y, z) holds;
if this happens, we say that P “fires” for y via z (at stage s). In this case, we shall “move” all the
“markers” m, s (v = y) by setting

My,s+1 = My+1,s

for all v > y. We shall also declare f; s+1(my,s) |= 1, but we shall keep fy s41(mq,s41) T for all
Mg s+1, @ € N. Note that, by induction,

(My—1,54+1, My,s11) S dom fy 11,

for every y and s.

If, for some y, the predicate “fires” infinitely often, i.e. Jy3®zP(x,y, z), then assume y is the
least such. In this case, we see that for all v < y, limsm,, s = m, < o0 exists, while for all w > y,
lim, m, s = 00. In particular, I, will be cofinite, making domf, also cofinite.

Otherwise, if Yy3<®2P(z,y, z), we will have that lims m,, s = m, < oo for all v € N. In this case,
we shall end up with infinitely many finite intervals I,;, one for each y. The function will remain
undefined on all the boundary points m,, making the complement of its domain infinite. O
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Exercises

Exercise® 3.1.9. We say that A <, B (where wtt stands for “weak truth table”) if there is a
Turing functional ® and a computable f such that ®7 = A and for each z, the use p?(z) < f(x).
Show that A <, ¢ iff there are computable functions h and f, such that, for all z, A(z) =
limg h(z,s) and [{s: h(z,s+ 1) # h(x,s)}| < f(x).

Exercise® 3.1.10. Prove that the index set K; = {e: W, # ¢} is ¥-complete.
Exercise® 3.1.11. Prove that the index set Disjoint = {(e,i): W, n W; = &} is I%-complete.

Exercise® 3.1.12 (Rogers). Prove that the index set Comp = {e : W, is computable } is £I-
complete.

Exercise® 3.1.13. A property P is called computably invariant if, given any computable bijection
fiw—>w, Acwhas Piff f(A) has P. For example, being c.e. is computably invariant. Show
that being an index set is not computably invariant.

3.1.2 The finite extension method

The finite extension method is a somewhat blunt tool, but it is a good place to start. One can
view this method as the purely set-theoretic version of the injury-free diagonalisation that we have
already encountered in the proof of Theorem 2.4.20. The idea is that we build our set step by step,
as a sequence of its initial segments, satisfying a list of requirements. The construction does not
actually have to be computable, and thus the resulting set will also typically be non-computable.

Recall that Rice’s Theorem 2.1.12 showed that all index sets are of degree > 0’. In 1944,
Post [431] observed that all then known computably enumerable problems had the property that
they were either of Turing degree 0 or 0’. He posed

Post’s Problem. Does there exist a c.e. degree a with 0 < a < 0'?

As we see in the next section, Post’s Problem was finally solved by Friedberg [181] and Much-
nik [409] using a new and ingenious method called the priority method; this is Theorem 3.1.21. The
method used to solve this question was an “effectivisation” of an earlier finite extension method
discovered by Kleene and Post, the priority method.! Kleene and Post proved the following.

Theorem 3.1.14 (Kleene and Post [303]). There exist degrees a and b both below 0’ and such that
alb. (That is, they are incomparable.)

Proof of Theorem 8.1.14. We construct A = limg A; and B = lim,; By in stages, and meet the
requirements below for all e € N:

R, : (I)E(A) # B, Roey1: (I)e(B) # A.

Note that if A <p B, then there must be some procedure ® with ®(B) = A. Hence, if we meet
all the R,,, then A €7 B since we meet all the Ry.1 requirements. Similarly, B €7 A since we
meet all the Ry, requirements. Thus, A and B will have incomparable T-degrees. The fact that
A, B <7 &' will come from the construction and will be observed at the end.

Tt is possible to solve Post’s problem without a priority argument; see Downey and Hirschfeldt [125]. The
methods used there are more difficult than the priority method.
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The argument is a finite extension one in the sense that at each stage s we specify a finite
portion of A, namely Ay, and a finite portion Bs of B. Both A; and B, will be specified as strings
of length < ts for some parameter ¢ inductively defined in the construction. The key invariant is
that for all stages u > s, A; < A, and By < B,,, where X <Y means that (the finite binary string
coding the characteristic function of) X is an initial segment of Y.

Thus, in a finite extension argument, after stage s we can only extend the portion of A (or B)
we have specified so far. Or, to put it another way, at a later stage, we cannot change the sets on
anything we have so far specified.

Construction.
Stage 0. Set Ag = By = A (the empty string). Set to = 0.

Stage 2e+ 1. (Attend Rg..) We will have specified A, Bae, and to. at stage 2e. Pick some number
x, called a witness, with x > to., and see if there is a string 7 extending As. such that

D (r;2) | .

If such a 7 exists, choose the first such 7 and set As..1 = 7. For all ¢ with ¢ < x, set

Bse(q), if ¢ < max{z: z € Ba.},
Bet1(q) = {1 = ®c(7;2), if g =,
0, otherwise.

Set toet+1 = max{x,|r|}. If no such 7 exists, then set Agey1 = Age, Baet1 = Bae, and toe11 = @
(which is = to. + 1).

Stage 2e + 2. (Attend Rg.11.) Proceed as we did in stage 2e + 1, except with the roles of A and B
reversed.

End of Construction.

Verification. To verify the construction, we prove that we meet R; for all j, and in fact, we meet
R; at stage j + 1. This is proven by induction on j. First, note that for all n, t,41 > t,. We
suppose that we have met R; for all j < n by stage n, and the parameter ¢, is so large that it
will protect all the computations for j < n. Without loss of generality, n = 2e. Now, at stage
n + 1, there are two cases to consider. If there is a 7 extending A, with ®.(7,z) |, our action
is to adopt T as our next A,;; and cause ®.(A,+1;2) # Bpy1(x). We will then set t,41 to be
large enough that for all n’ > n, for all z with z € w(®.(Ant1;2)), An(2) = An(z), and hence
O (A;z) = Pe(Apt1;2) # Bryi(x) = B(x). The other case is that no such 7 exists. Then, since A
is an extension of A, it can only be that ®.(A;x) 1, and hence in either case, we meet R,,.

Finally, we argue that A, B <7 @’. Notice that the construction is in fact fully computable
except for the decision as to which case we are in at stage n. There, we must decide if there is some
T with a convergent computation. For instance, at stage 2e + 1, we must decide

E|T, S[AQe <TA (be,s(’r;x) l]

83



This is a XY question uniformly in z, and hence can be decided by ’. Specifically, use the s-m-n
Theorem 2.1.6 to construct a computable function @y, 2y) such that for all z, s(f,0.20)(2) =1
if 37, s[c <7 A @y (7;7) 1] and ©g(f,0,0%)(2) T otherwise. Then

r,slo <7 APy o(152) 1]
if and only if s({f,0,z)) € &'. O

We again remark that the reasoning at the end of the above proof is quite common: &' can
answer any AJ = £  I13-question and hence any ¥9- and T19-question. We also note that neither
A nor B constructed above can possibly be finite, even though we did not explicitly ensure that
they were infinite. (But of course, we could always extend the sets at the stages when no 7 exists
arbitrarily.)

A slightly more subtle application of the finite extension argument is the following. We say that
a pair of degrees a,b # 0 form a minimal pair if ¢ < a,b implies ¢ = 0. That is, the infimum
anb=0.

Theorem 3.1.15 (Kleene and Post [303]). Given a # 0, there exists b # 0, such that a and b
form a minimal pair.

Ezxtended sketch. We will be given A of degree a. We need to meet the requirements
Rei: <I>‘e4 = ®B = f total, implies f computable.

We construct B using the finite extension method. Suppose that we have constructed B, and dealt
with Res i for {¢/,i") < s, and s = (e, iy. We ask,
"Do there exist ¢, 2, and o with o extending B, and ®2,(z) |# ®7,(z) |?”

If so, we let Bsy1 = 0. If not, Bsy1 = Bs. If we can find such parameters, we force <I>~f34 # ©B.
If we cannot and &4 = @5 is total, then it must be computable, since for any z, we simply start
computing @Zt(x) for all o of length < ¢ and t > s and B; < 0. We know one will halt by totality
and it must be the correct answer. This is a computable method of evaluating ®7 () = ®4(x). O

The reader should note that in the proof above, B <1 A’.

Exercises
Exercise® 3.1.16. A set is called immune if it is infinite and has no infinite c.e. subsets.

1. Use the finite extension method to construct an immune set A <7 .

2. Suppose that A is an immune set and a € A. Show that there is no computable permutation
p of w with p(A) = A\{a}.

3. A set B is called bi-immaune if both B and B are immune. Construct a set B <7 ¢’ which
is bi-immune.

Exercise® 3.1.17. A set A is called low if A’ =r @’. Use the finite extension method to construct
A <7 &' such that A is non-computable and low.
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Exercise® 3.1.18. A set A is called autoreducible if there is a Turing functional ® such that for
all x,
A(z) = 2N (2) = A(x).

That is, for each z, A can determine if x € A, without using = in any query to itself. For example, a
complete theory T has this property since, for each (code of) a sentence z, v € T iff —z ¢ T. Using
the finite extension method construct a set A <7 &’ which is not autoreducible.

Exercise 3.1.19 (Friedberg Completeness Criterion and low,, sets; Friedberg [180]).
1. Suppose X =7 ¥'. Show that there exists a set A such that A’ =r X =y A® ¢¥'.

2. Use the first part to construct a set B which is lowy and not low. That is, B” =7 ", and
B’ >r @I.

Exercise 3.1.20 (Jockusch and Shore [272]). Using the techniques of the previous question, show
that for any e € N and any X >7 ¢, there is a set A such that A® WeA =r A® ¢’ =r X. (Note
that the previous question is the special case with WA = A’.)

3.1.3 Post’s problem and the finite injury method

A more subtle generalisation of the finite extension method is the priority method. We begin by
looking at the simplest incarnation of this elegant technique, the finite injury priority method. This
method is somewhat like the finite extension method but with backtracking.

The idea behind this method is the following. As an illustration, let’s reconsider Post’s Problem
that asks for incomplete c.e. degrees. In the result below, we will construct c.e. sets A and B with
incomparable Turing degrees. We need to satisfy the requirements

RQB : @G(A) #* B,
Rocy1: @e(B) # A,

but this time we are not allowed to use an oracle in the construction.
Each requirement picks a follower x which it intends to use for diagonalisation and initially
keeps it out of the respective set (say, B). It seems that we need to know the answer to

“Does T with ®7(z) | exist or not?”

to decide which strategy to pursue. But the idea is that we first guess that no such 7 exists for our
witness . This means that nothing is really done for the sake of Ry, save keeping x ¢ Bj, unless
we see a stage where some 7 < A, exists. If such a stage occurs, then we will try to make A extend
7 and win as before by putting z into B if necessary. So whatever case occurs, we will win.

However, this change can potentially affect the computation of some other Rs.y1. The require-
ment Ro.r1 may have already found its computation, put y into A, and wants to preserve the
computation of ®.r on Bs. However, it is possible that < u(® (Bs;y)). If Re enumerates x into
B, it will “injure” Rae 41, in the standard terminology.

To make sure that every requirement is eventually met, we put a “priority ordering” on them
and will allow R; to injure R; if R; has higher priority than R;. In our case, if j < i. If R; is
injured at stage s, then we will “initialise” the requirement R;; i.e., we will restart its strategy by
picking a new large follower.

We now turn to the formal proof of the Friedberg-Muchnik Theorem.
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Theorem 3.1.21 (Friedberg [181], Muchnik [409]). There exist c.e. sets A and B such that A
and B have incomparable Turing degrees.

Proof. We build c.e. sets A = UsA; and B = ugB, and satisfy the requirements below.
RQe . @e(A) 7’5 B,

R28+1 : q)e(B) # A

The strategy for a single R;. We begin by looking at the strategy for a single R;. Without loss of
generality let j = 2e.

(i) Initially, we will pick a new fresh number z = z(j) to follow R;. This number is targeted for
B, and of course, we have x ¢ B;.

(ii) We wait for a stage t > s to occur with ®. ;(A;;z) |= 0 = By(x). If stage t does not occur
then we must have ®.(A;x) # B(x).

(iii) Should stage ¢ occur, set A; 11 = A;, and put = into Byy1 — By, causing
Q. i11(Aip1;2) =0# 1 = Byyq(z) = B(z).
In the construction, we will protect this computation with priority j = 2e.

Note that when we take action (iii), we might injure Rae 41 if # < u(®e ¢(By;2’)), which is the
use of the computation @,/ ((By;z').

Definition 3.1.22. We say that R; requires attention at stage s if j is least such that one of the
following pertains:

(1) R, has no follower at stage s.

(2) R; has a follower x(j, s) at stage s and furthermore, supposing that j = 2e,
q)e,s(As§x(ja5)) l: 0= Bs(x(.]vs))

(If j = 2e + 1, then we reverse the roles of A and B.)
Construction.
Stage 0. Set Ag = By = .

Stage s > 0. Find the least j with R; requiring attention. We suppose that j = 2e without loss of
generality. Adopt the appropriate case below.

(1) Pertains. Find a number z larger than any number seen so far in the construction and
appoint z(j, s) = . Initialise all R;» with j' > j. That is, cancel all followers associated with
Rj.
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(2) Pertains. Initialise all R;s for j' > j. Set Ay = As_1 but set B, = B,_1 U {z(j, 5)}.
End of construction.

Verification. We prove by induction on j that

(a) each R; receives attention only finitely often,
(b) limg x(7,s) = x(j) exists,
(c) Rj is met.

For an induction, assume (a), (b), and (c) hold for all j' < j. Let s be a stage good for j: that
is, for all s > sg and all j/ < j,

(a)" Rj: does not require attention at stage s, and
(0)" x(j",s) = (4’ 50)-

Choose sp to be minimal such. (Indeed, it would be enough to fix sy so that Ry (j’ < j) will
not require attention after sg.) It can only be that R; receives attention via (i) at stage so + 1, and
is appointed a large fresh follower x = z(j, sp + 1). By the choice of sy, x is never cancelled: the
only requirements that could cancel x are Rj for j' < j. There are two possibilities.

The first is that (2) never pertains (with x). In this case, there is no stage ¢t > so + 1 with
O, +(As; ) |= 0 = By(x). This means that either ®.(A;z) 1 or ®.(A;z) # 0 = B(z). In either case,
we win.

The second case is that (2) pertains to R; at some stage s > so + 1. In this latter case, we act
to cause a disagreement at stage s, namely

P, o(As;z) =0 # 1 = By(x).

Now since we initialise all Ry for k > j, and new followers are always appointed large and fresh, it
follows that this stage s disagreement is permanent.

In either case, R; only receives attention at most twice more after stage so, and is met. Fur-
thermore, x(j, so + 1) = x(j,t) = z(j) for all t > so. This concludes the induction and, hence, the
proof of the Friedberg-Muchnik Theorem. O

We remark that the above proof is an instance of the simplest of all finite injury arguments,
as it is an example of what is called “bounded injury” in the sense that we can put a computable
upper bound in advance on the number of injuries that R; can possibly have. In this case, the
bound is 27 — 1.

3.1.4 Low c.e. sets

We have accumulated enough techniques to prove the main result of this subsection. Recall that
aset Aislow if A’ <p ¢’ (Since A <r A’, then necessarily A <r ¢’.) We are ready to prove
Theorem 3.1.1 that says that there exist c.e. non-computable low sets. We give two proofs. As far
as we know, the first, indirect proof was first suggested by Soare [476].
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Indirect proof of Theorem 8.1.1. We show that the two sets constructed in the proof of the Friedberg-
Muchnik Theorem 3.1.21 are low. For that, using (the functional version of) the s-m-n Theo-
rem 2.1.6, we define a computable h such that

0 if d.(A5e) |;
1 otherwise.

(I)h(e) (Ayy) = {

If A and x(2e,s) are as in the proof of Theorem 3.1.21, then we define

1 ifd Ag;x(2e, = 0;
9(678) — 1 h(e).,s( 'T( € 8)) l
0 otherwise.

We argue that g(e) = lim; g(e, s) is well-defined; this is essentially because Ry, can be injured only
finitely many times. Indeed, if 3%*s g(e, s) = 1, then actually lim, g(e, s) exists and is equal to 1. This
situation corresponds to the existence of infinitely many s such that @, ;(As; z(2e¢,5)) = 0. How-
ever, if s is large enough so that Ry, is never injured again, then the computation @) ,(As; (2e, s))
and the value x(2e, s) are final. It follows that g is the characteristic function of A’. Hence, by the
Limit Lemma 3.1.3, we have A’ = {e : lim, g(e, s) = 1} <7 K. O

The proof above is clever, however, it is not really any easier than the direct construction that
we outline below.

Sketch of a direct proof of Theorem 3.1.1. We construct a c.e. set A in stages. To make A non-
computable, we need to meet the requirements

P :A+W.,.
To make A low, we meet the requirements
Ne:3%s @, ((Ag;x) | = P(Asx) | .

If we define g(z,s) = 1 iff @, s(As;x) | and g(x,s) = 0 otherwise, then, provided that the con-
struction is stage-by-stage computable, g(z, s) will be computable. Moreover, if we meet every N,
then limg g(e, s) = g(e) exists for each e, because A is c.e., and ®(A;z) | implies that for some s,
D(A;x) = P, s(As;x). As in the previous proof, this will guarantee that A’ = {e : lim, g(e, s) =
1} <r K.

The strategy to meet N, is as follows. If @, ;(As; x) |, then try to ensure that A; | u(®P. s(As;x)) =
A | u(®.s(As;x)) by initialising all lower-priority requirements. This forces the lower-priority
strategies to choose new large numbers as followers. The new followers will be too large to injure
the computation ®. ;(As;x) after stage s.

The strategy for P, is as follows. While A; n W, s = J, P, picks a follower = larger than any
number seen so far. Then, if we see x € W, 5, put x into Asy;.

We arrange the requirements in priority order according to their index:

Nog>PFPy> Ny >P; >Ny > ....

In the construction that we omit, the priority method sorts the actions out. Note that since P.
picks fresh numbers, P, does not injure any N; for j < e. It is easy to see that any N, can be
injured at most e times, and P, is met as it is initialised at most 2¢ times. 0
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Exercises

Exercise® 3.1.23 (Soare [477]). A set X is called semi-low if Hx = {e: W.n X # J} <r &'.
Let A be a c.e. set. Prove that the following are equivalent:

(a) A is semi-low;
(b) There is an enumeration A = UgenAs of A such that for all e, (3%s) (W5 — As # I —
W, —A# .

(¢) There exists a computable function f such that for all e:

(1) Wen A=Wy nA, and
(2) Wen A= — Wy, is finite.

Exercise® 3.1.24 (Soare [477]). Show that every low set is semi-low. Let C' be a c.e. set. Show
that there is a c.e. set A with A =7 C' and A is semi-low.

Exercise® 3.1.25 (Soare [477]). Let Dg, D1, ... be the standard enumeration of finite sets, where
(say) a set is represented by a finite tuple in 2<“ with index n. Show that for every (infinite) c.e. set
A, the c.e. set X = {n: D, n A # J} has the property {e: W, n X # ¢} = A’. (In particular,
every non-low c.e. degree contains a c.e. set X whose complement is not semi-low.)

Exercise® 3.1.26 (Ladner [328]). 1. Use the finite injury method to construct a c.e. set which
is not autoreducible (see Exercise 3.1.18).

2. Show that a c.e. set A is autoreducible iff there exist c.e. sets A1 L Ay = A with A =7 A =7
As. (Such sets are called mitotic.)

Exercise® 3.1.27 (Friedberg’s Splitting Theorem [182]). Show that if A is any non-computable
c.e. set, then there exist two disjoint c.e. sets Ay, A such that A; 1 Ay = A, and both A; and A,
are non-computable.

Exercise® 3.1.28. A c.e. set A is called simple if A is coinfinite and A is immune (Ex. 3.1.16). A
strong array is a computable collection of finite sets D = {Dy(,) : n € N} with f computable. We
say that a set X is hyperimmune if X is infinite and for every infinite strong array D there is some
n with D¢,y & X. We say that A is hypersimple if A is infinite and hyperimmune. Construct a
c.e. set A which is simple but not hypersimple.

Exercise® 3.1.29. A set X is called effectively immune if it is infinite and there is a computable
function g such that W, < X implies that [Wy)| < g(e). Prove that if A is c.e. and A is effectively
immune, then A =7 &',

3.1.5 Using (semi-)lowness*

In this subsection, we will examine how lowness can be used in constructions, particularly in the
context of c.e. sets. This idea can be extended to handle semi-low sets (defined in Exercise 3.1.23),
which will be used in Section 7.2 of Chapter 7 to describe AY-categoricity of a broad class of groups.
We will not need this technique until Chapter 7, and the impatient reader may skip this section
and return to it later.

Whilst it is not easy to pinpoint the very first use of lowness, one early example was due to
Robinson [453] (see Exercise 3.1.33). Lowness allows for a kind of “verification” of configurations of
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a low c.e. set, building on the theme that low sets resemble computable sets. We can use lowness to
test whether some computation involving the low set X should be trusted, as follows. For example,
suppose X = u,X; is c.e. and low, and for some s, we have

®F:(n) 1=0

with use u(e,n,s) = u(P. s(Xs;n)). For the sake of some diagonalisation, perhaps we wish to
enumerate n into some other set Y if this is a correct computation. However, at a later stage
t, some y < u(e,n,s) might enter X,\X,, and then the computation ®X:(n) |= 0 might later
change to @fg (n) |= 1 (if the computation converges at all). Note that this can only happen if
X, | u(e,n,s) # X | u(e,n,s). The following is an example of a lemma which can be used to test
whether X, | u(e,n,s) = X | u(e,n,s). In the lemma, the finite set D,), is our way to approximate
X, | u(e,n, s); this will be further explained after we prove the lemma.

Lemma 3.1.30. Suppose that X is low. Then
Y=Y;,={j|ImeW;(D,,c X)} <r &',
where D,, is the m'™ canonical finite set.

Proof. By the definition of Y, we have Y € X:*. By Theorem 3.1.5, relativised to X, this implies
Y <7 X'. Since X is low, X' =¢ ¢, and thus Y <7 ¢&¥'. O

The way that this is used is as follows. Consider the situation described above, where we wish
to test

“Is (I)gf;‘ (n) |=0 final?”

at every stage s. This will be associated with some requirement R, that monitors ®.. For the sake
of R, we will build a c.e. set Wy ., whose index is given by the Recursion Theorem 2.1.13. Initially,
Wyey = . We know that Y = Yy <r &'. By the Limit Lemma 3.1.3, there is a computable
function h with the property Y (i) = limg h(4, s) for all 4.

Now, assume that h(g(e),s) = 0 and ®X3(n) |= 0 with use u(e, n, s). The idea is to put m into
W

9(e),s» Where Dy, = X, | u(e,n,s), and use it as a “test”. One of two things can happen:

e h(g(e),t) changes to 1 for some ¢t > s+ 1, or
e some y < u(e,n, s) enters X; — X for some t > s.

Note that, knowing that one of the two must happen, we can pause the construction to wait and
see which occurs. In the former case, we will believe that @5{; (n) = 0 is correct, and we then act
accordingly in the construction. In the latter case, we will know that the computation at stage s
is mot correct and will act accordingly. Note that if we believe the former case, it is possible that
some y < u(e,n,s) might enter X, — X, at some v > s. However, note that D,, &€ X and, hence,
m ¢ Y. Therefore, at some stage ¢ > ¢, we will have h(g(e),t’) = 0. We can then repeat the action.
However, since we know that limg h(g(e), s) exists, from some point onwards, we must eventually
get the correct answer.

More generally, we might have the opportunity to use the Recursion Theorem 2.1.13 and the
Limit Lemma 3.1.3 if some query to X is (uniformly) AJ. If we can somehow argue that either
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the oracle must change or our guess about the monitored computation must change, then we can
imitate the method described above by (uniformly) retrying until our guess is finally correct.

This idea might work under an assumption weaker than lowness. For instance, in Exercise
3.1.23, we defined a set Z to be semi-low if

{e:WenZ+ 3} <r &

In Exercises 3.1.24 and 3.1.25, we observed that semi-lowness is not a degree-invariant property,
and that it is generally weaker than lowness. However, the condition {e : W, n Z # O} <r &’
might be sufficient to implement the general methodology described above in specific cases. We
illustrate this technique with a simple application that only requires the (complement of a) set to
be semi-low.

Theorem 3.1.31 (Downey and Jockusch [128]). Show that if C is a low c.e. set, then there eists
a c.e. set A <p C, such that A £,, C. Indeed, assuming that C is semi-low is enough.

Sketch. We give a sketch that emphasises the use of (semi-)lowness and omits the combinatorics
related to the finite injury technique.
We construct a c.e. set A <p C and meet the requirements

R.: AL, C via @e.

Let C' = usCy be an enumeration of C' so that at most one element enters Cs1 — C at every stage
s.

To ensure A <p C, we will allow z to enter As;;1 — A only if some y < x enters Csy1 — Cs;
this is called simple permitting.

For the sake of R, we will build an auxiliary c.e. set Ve = W) whose index is given by the
Recursion Theorem 2.1.13. As C' is (semi)low,

S={j|W;nC#3}<r .

By the Limit Lemma 3.1.3, we have a computable function h with S(j) = limgh(j, s) for all j.
Initially, we have Wy = & and (without loss of generality) h(g(e),s) = 0. If y € Cy;1\Cs, then
look for the least e such that R, seems unsatisfied by diagonalisation, and there is some = ¢ A, such
that e s(x) | and y < z. If @, s(z) € Cs41, then keep = out of A; at stages t > s. If p, () ¢ Cs41,
then we can enumerate @, () into Wy ;. Now we can delay our decision as to whether to put
x € A by waiting to see whether h(g(e),t) = 1 for some ¢t > s, or @, s(x) enters Cy. As above,
one of the two events must occur. In the latter case, we win again. In the former case, we have a
certification that ¢ s(x) ¢ C. Then we put x into A,+1 and believe we have won. Notice that this
second case can only occur finitely many times as limg h(g(e), s) exists. The argument then works
by finite injury. U

Exercises

Exercise® 3.1.32. (Downey and Jockusch [128]) We say that A <;; B if there is a Turing functional
® such that ®¥ is total for all X and ®” = A. Show that if C is a low c.c. set, then there exists a
c.e. set A <r C, such that A €4 C.

Exercise 3.1.33. (Robinson [453]) Let b and e be c.e. degrees such that ¢ < b, and c is low.
Then there exist incomparable low c.e. degrees ag and a; such that b = ag U a; and a; > c¢ for
i=0,1.
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3.1.6 Finite injury arguments of unbounded type

There are examples where the number of injuries is finite, but not bounded by any computable
function. One such classical example is Sacks’ Splitting Theorem below. We write X u Y for the
disjoint union of X and Y.

Theorem 3.1.34 (Sacks [457]). Let B,C be c.e. sets, and assume C is non-computable. Then
there exist disjoint c.e. sets Ag, Ay such that B = Ay u Ay and C €1 A;, fori=0,1.

Corollary 3.1.35. If B is a non-computable c.e. set, then there is a c.e. set A such that & <t
A <r B.

Proof of Corollary 3.1.85. Note that if B = Ay u Ay, then B =r Ag ® A; (Exercise 3.1.36). By
setting C' = B in the theorem, we see that the only possibility is that Ag = A;, and that Ay and
Ay are both incomplete and below B. O

Proof sketch of Theorem 3.1.84. Let C' = u,Cs and B = ugzBg be computable enumerations of C
and B, respectively. Without loss of generality, we will assume that we are given an enumeration
of B such that exactly one number enters Bsy1 — B, at stage s + 1. We build A; = UA; 5 in stages

and meet the requirements
Ne,i . (I)S(AZ) 75 C,

for every e € N and i € {0,1}. Also, for every s, we put the unique bs; € Bs11 — By into exactly one
of Ags+1 — Ao,s or A1 s41 — A1s. This causes B = Ag 1 A;.
To meet N, ;, we define the length of agreement function

li(e,s) = max{z : Yy < 2[®c s(Ai;y) = Cs()]}
and the maxzimum length of agreement function,
m'(e,s) = max{l(e,t) : t < s}.
We also define the restraint function
(e, s) = max{u(®. s(A; ;7)) : x < m'(e, s)},

where u is the use of the respective computation. Note that we used < in the definition of ¢ and
< in the definition of ¢, which reflects that we will try to preserve at least one disagreement in the
®.-computation by restraining elements to enter the respective A; below 7¢(e, s). This is sometimes
called Sacks’ preservation strategy.

In the construction, if x € Bsy1 — Bs, see if there is a (e, i) < s least such that x < ri(e,i). If
yes, then choose (e, i) least such and put = in A;_; ;41 — A1 s. If no such (e, i) exists, then put
zin Ags+1 — Ao,s-

We now sketch the verification. Suppose Ny is not met, i.e., ®9(A4p) = C. By induction, we
see that the definition of r¥ ensures that the ®p-computation with use below 7°(0, s) is final. This is
because all numbers that appear in B below r°(0, s) will be put into A;, for every s. But this would
imply that Ay has to be computable, and thus so would be C, contradicting the choice of C'. It thus
follows that ®g(Ag) # C. Let x be the least such that either ®o(Ap)(xz) 1T or ®o(Ap)(z) |# C(x).
In the former case, it must be that we never see a divergent ®¢(x)-computation, for otherwise we’d
preserve it. (This is where it is important that we preserve at least one disagreement.) In the
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latter case, the definition of 7 ensured that we preserve the ®((Ay)(z)-computation as soon as it is
discovered at some stage s. In either case 7°(0, ) cannot possibly increase after some stage. Thus,
limg 7°(0, s) exists.

By induction on (e, i), we argue that (for every i and e) lim, (e, s) exists, and that every N,
is met. For that, repeat the argument above for N, ; assuming the stage is large enough so that, for
all (¢’,i"), the values % (¢/,-) have reached their limits. Further, assume the stage is so large that
all elements of B below max e iy <(e.iy ri'(e’, -) have been listed in B by that stage. Using this stage
and the initial segment of B as a non-uniform parameter, repeat the analysis above to conclude
that limg ri(e, s) exists and N ; is met.

In contrast with the previous two theorems, the number of times (e, s) can increase, and thus
the number of times V. ; can be “injured”, cannot be computably bounded. O

Exercises

While none of the exercises below are marked with a star, some of them are not straightforward.
The reader might want to look at the cited papers for the details. (The same is true about the
exercises after the next subsection.)

Exercise® 3.1.36. Show that if Ay, A; are c.e. sets and B = Ay u Ay, then B=1r Ag® A;.

Exercise® 3.1.37 (Ambos-Spies [9]). Use a movable marker construction to show that there is a
Turing-complete computably enumerable set A such that if A; 1 Ay = A is a c.e. splitting of A,
then one of Ay or A, is low.

Exercise® 3.1.38. A set Y is called high,, if Y =p gf®*D_ If n = 1, we say that Y is high.
Use Exercise 4.2.59 to construct a set A < ¢’ which is high. (Hint: Theorem 3.1.1 constructs a
c.e. set W such that for each D, D <7 WP =¢ D’.)

Exercise® 3.1.39 (Jockusch and Soare [272]). Prove the Pseudo-Jump Theorem:
(i) For each e such that X <7 X@®WZX for all X, construct a c.e. set A such that AQWA = &'
(See Ex. 3.1.20.)
(ii) Use part (i) to construct a high c.e. set A < &’. (Hint: Consider WX to be the construction
of a non-computable set c.e. relative to X and low relative to X.)
(iii) Use part (ii) to construct a lows c.e. set.
(iv) Show that there are c.e. sets A;, B; for i € N, such that A,, is properly low,, and B,, is properly

high,, (i.e., not low,_; and not high, 1, respectively).

Exercise® 3.1.40. Use the Recursion Theorem to show that the proof of Sacks’ Splitting Theorem
shows that if A is a c.e. non-computable set and ¢ €r C, then we can find a c.e. splitting
Ao u Ay = A, such that C €7 A; for i € {0,1} and also that Ag and A; are low.

Exercise 3.1.41 (Downey and Stob [149]). Show that if A is c.e. and A = ¢, then there is a
c.e. splitting Ag 1 A; = A such that & <p Ag <r A;. (Hint: Use the Recursion Theorem 2.1.13
to force two elements into A.)

Exercise 3.1.42 (Downey and Stob [149]). We say that a coinfinite c.e. set A is promptly simple
if there is a computable function f such that, for all e, if |W,| = oo, then 3®s3z((x € We 541 —
We,s) A € Ags41)). Show that the splitting theorem in the previous exercise holds if we assume
that A is promptly simple.
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3.1.7 Constructions involving infinite injury

We now give two examples of priority methods involving infinite injury to the requirements.

Enumerating of all c.e. sets without repetition

Recall that there is a uniform enumeration (W,).en of all c.e. sets; however, this uniformly c.e.
list contains many repetitions. The theorem below states that the standard enumeration can be
replaced with another one, (V;);en, in which every W, will appear as some V;, and furthermore,
i # j implies V; # Vj.

Theorem 3.1.43 (Friedberg Enumeration Theorem [180]). There exists a uniformly c.e. col-
lection {V; : i € N} of c.e. sets that mentions each c.e. set exactly once.

We call the enumeration {V; : i € N} a Friedberg enumeration of the c.e. sets. We will return to
1-1 enumerations in Chapter 7, where a good understanding of the proof below will be very helpful.

Proof. We have that {W, : e € N} lists all c.e. sets. An obvious strategy is to choose minimal
indices, SMIN= {eg, €1, ...} meaning that e;; is the first j > e; such that W; ¢ {W. : e < e;}.
The problem is that this is a complicated set, which is certainly not computable (Exercise 3.1.53).
However, the idea of the proof below is to try to guess such minimal indices and send wrong guesses
to the garbage.

For the construction, we will first construct a sequence {V; : i € N} listing all c.e. sets which are
not w exactly once. Then we can add w as V_1. We let V[, = ¢J. In the construction, at each stage
s we will have a list {V; : i < p(s)}, for some p(s) = s. These are designated as either active or
garbage. If V; is active, it will be simulating exactly one W,;. If it is declared as garbage at some
stage s, we will make it equal to {0,...,n;} where n; is some large fresh number, hitherto unseen
in the construction.

At stage s + 1 of the construction, each active V; has an associated test t(i). Perform the
following steps.

(i) For each active V;, see if there is some €’ < e(i) such that W | (i) = Wy I t(i)[s + 1],
which means that this equality holds at stage s (i.e., Wer si1 | £(i) = We() 541 | t(é), and
t(i) = ts11(4) is the test for V; at stage s + 1). If so, then we declare that V; is garbage and
find a (least unused) fresh number ', declare that Vj/ is active, and e(i") = e(i) and ¢(i’) to be
large and fresh.

(ii) For each active V;, see if there is some garbage V; with j < ¢, and V; | ¢(i) = V; | ¢(i)[s + 1].
If so, then we declare that V; is garbage and find a fresh number 4’, declare that Vj is active,
and e(i’) = e(4) and #(i’) to be large and fresh.

(iii) If We # J[s + 1] and it is least with no V; simulating W,, then for the least unused j, let V;
simulate W, define j(e) = e, and ¢(j) to be large and fresh.

(iv) Finally, for all active V;, make V; = We(;)[s + 1].
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We argue that this construction works. It is evident that if V; is garbage, then V; = {0, ..., n;}
and n; is unique to 7. This means that all the garbage V; are distinct. We say that V; is permanently
active if it is never made into garbage. Suppose that W, # w is given and e is its minimal index.
Then we claim that there is some permanently active V; with e(i) = e. If W, = ¢, then there is
nothing to prove as Vyp = . If W, # (&, then by step (iii) of the construction, we will associate
some V; with e at some stage s. Now, if this is not permanent, then V; must get turned into garbage
either by (i) or (ii). We have that (i) pertains only if some We, | t(i) = W, | ¢(¢)[s]. If this happens,
then we will reset V; to a new Vi, but with a larger #(i’). Call this new V;; and others generated
by its transitive closure under (i) or (ii) heirs of V;. There can only be finitely many heirs to V;
generated by (i), since e is a minimal index, so W, # W; for all j < e. There can also only be
finitely many heirs by (ii). Each time (ii) is invoked, W, | t(i) 2 {0,...,n;} for some n; — oo,
meaning that W, = w, a contradiction. Thus for each e there is an i with W, = V. If e is not a
minimal index, and e’ is some other index for W,, then each V; with e(i) = ¢’ will be turned into
garbage by clause (i) and W,. If W, = w, this is also true by clause (ii). Thus each W, # w has a
unique V; simulating it. O

The above construction can be viewed as having a sort of “infinite injury”. If we think of the
requirements being

R, : If e is a minimal index, then there is some 7 such that V; = W,

then the requirement Ry can be “injured” by the requirement R, at some stage s if e < k and W,
agrees with Wy up to some large testing threshold ¢(i) at stage s. If, in fact, k is not a minimal
index, then Ry will be “injured” infinitely often by a higher priority R.. Of course, in this case, Ry
is also satisfied since k is not a minimal index.

A minimal pair of c.e. sets

In the next theorem, we give another example of an infinite injury construction, where more coor-
dination is required between the different requirements. In that construction, we shall introduce
the notion of a priority tree to help organise the process. Other terminology introduced there, such
as expansionary stages, is now standard in the modern literature.

Theorem 3.1.44 (Lachlan [325], Yates [513]). There exist non-computable c.e. sets A and B
such that for all sets C, if C <p A, B then C is computable.

As we have seen earlier, the degrees of such sets are called a minimal pair. In Theorem 3.1.15,
we constructed a minimal pair by finite extension and forcing a disagreement where we could. That
method is not possible for c.e. degrees, and something new is needed.

Proof. We construct A = UgA, and B = u,B; in stages to satisfy the requirements below for e € N:

R, : E # We;
Qe: B#W
Ni;j: ®;(A)=®;(B) =f and f is total — f is computable.
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We meet the R, and the Q. by a Friedberg-Muchnik type strategy. That is, we shall pick a (fresh)
follower x, targeted for A in the case of R., and wait until x enters W, ;. Of course, should = never
enter W, s for any s, then = ¢ (W, u A) and hence A # W,. Should x enter W, , for some stage s,
then we can win forever by putting x into A; at some t > s.

The tricky requirements are the IV; ;. We will first discuss how to meet a single V; ; in isolation
and then look at the coherence problems between the various requirements and the solution to these
provided by the use of a tree of strategies.

One N -requirement in isolation. For a single IN; ;, we will need the auxiliary functions
0(i, j, 8) = max{z : Vy < 2(P; s(As;y) 1= @;5(Bsiy) 1)}

and
ml(i,j,s) = max{£(i,j,t) : t < s}.

We call £(i, j, s) the length of agreement function and call mé(i, j, s) the mazimum length of agree-
ment function. As with the Sacks Splitting Theorem 3.1.34, note that the maximum length of
agreement function is a sort of “high water mark” for lengths of agreement seen so far. We shall
call a stage (i, j)-expansionary if the current length of agreement exceeds the previous high water
mark. That is, s will be called (i, j)-expansionary if ¢(i,j,s) > ml(i,j,s). Also, we let mu(i, j, s)
denote the maximum element used in any computation below £(i, j, s).

The key idea for a single N; ; is the following. We allow some element x to enter A below the use
of ®;, but nothing to enter B below the respective use of ®; that (used to) make the computations
equal below £(i, 7, s). We do not allow any further elements < mu(i, j, s) to enter B until the next
(i, jy-expansionary stage u. It can only be that B,(z) = Bs(z) for all 2 < mu(i, j,s), and hence,
by the use principle,

q)j,s(Bs; y) = (I)j,u(Bu; y);

for any y < £(i, 4, s). But since u is expansionary, this means that
(I)i,u(Au§ y) = (bj,u(Bu; y) = ‘bj,(s(Bs;y) = (I)i,s(As§y)-

That is, even though the ®; ,(A,; y)-computations might have changed because = entered A, the
result of the computation on y below the previous length of agreement remains the same. This,
in particular, implies that N; ; will be met, since to compute f we just need to know the result
of this computation. Finally, we remark that if no expansionary stage u > s is ever found then
®,(A) # ®,(B). Figure 3.1 might be helpful here.

Coherence. Consider two N-requirements N and N’. Now suppose that N has higher priority than
N’. Now N requests us to only put numbers into A or B during its expansionary stages {s1, sa, .. .}.
Similarly, N/ might request us to only put numbers in during stages {t1,%s,...}. The problem is
that these sets of stages might be disjoint. Then N blocks us from putting numbers into A or B at
stages t;, and N’ blocks us from putting numbers in during stages s;. Hence, the pair might block
us from ever putting numbers into A or B.

This problem can be fixed as follows. We will have two versions of N’, one believing that N
has infinitely many expansionary stages, and the other will think that N has only finitely many
expansionary stages. The latter will be initialised every time a new N-expansionary stage is found;
it will respect the restraints imposed by N but will ignore N otherwise. The other version of N’
will believe that N has infinitely many expansionary stages. This version will become active only
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at these expansionary stages. It will slow down its computation by making moves only at the
stages s1, So,... and will define its expansionary stages to be a subset of the expansionary stages
of N. It will also coordinate its restraint with N, making sure that the A-side and the B-side are
never simultaneously blocked. This version of N’ strategy will remain dormant between s1, s3, . . .,
and indeed, it may be forever abandoned in case N has only finitely many expansionary stages.
However, the restraint (on A or B) imposed by this version of N’ will have to be respected by
weaker priority strategies, including the other version of N’. Indeed, there is no way to know which
version of N’ has the right guess about N, so we must keep all possibilities open.

Now, if we also had to consider N”, it would need four clones, two for each version of N’. Note
that this case analysis starts to resemble the full binary tree. The standard, modern way to organise
such constructions is to make this idea explicit by introducing the tree of strategies. This tree helps
to manage the case of multiple N-strategies, not just the two or three we considered above. Every
strategy will have multiple versions, each associated with a node in a tree of “guesses” that aids in
predicting the behaviour of other (clones of) strategies in the construction.

‘We now turn to the formal details.

The Priority Tree. We use the tree T = {0, f}*, i.e., the full binary tree consisting of finite strings
of -5 and f-s, including the empty string A\. We assign N ; to o in T iff |o| = (i, j), where |o|
denotes the length of 0. Also, if |o| = 2e then we also assign R, to o and if || = 2e + 1 we assign
Q. to o. For a requirement M, we will write M, for the version of M at o.

We use lexicographical ordering <y, on finite strings in 7 induced by oo < f. We will say that
M, has higher (or stronger) priority than M, if o <y 7. As before, we also write o < 7 if ¢ is an
initial segment of 7; we slightly abuse notation and also include the case when 7 is infinite. We
write 0" a to denote the string 7 which is the extension of ¢ using symbol a adjoined to the end of
.

Definition 3.1.45. (a) We define the notions o-stage, mf(o,s), and c-expansionary stage by
induction on |o|.

(i) Every stage s is a A-stage.

(i) Suppose that s is a 7-stage with |7| = {4, j). Let £(7,s) = (i, j, s). Define

ml(r,s) = max{l(r,t) : t is a T-stage < s}.

We say that s is T-expansionary if ¢(7,s) > mé(r,s) and declare s to be a 7 co-stage. If
£(7,8) < ml(t,s), we declare that s is a 7~ f-stage. We define T Ps to be the unique o of length s
with s a o-stage.

Definition 3.1.46. (a) We say that R, requires attention at stage s if W, s n A; = & (where
2e = |o]), s is a o-stage and one of the following holds.

(i) Ry currently has no follower.

(ii) R, has a follower x € W, 5.

We define @, to require attention similarly.
Construction.

Step 1. Compute T P;. Initialise all versions of requirements at guesses 7 £, T P;.
Step 2. Find the R, or @, of highest priority that requires attention at stage s. Without loss
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of generality, we will suppose this to be R,. Initialise all requirements at guesses 7 with 7 £, o.
Adopt the appropriate case below.

- Definition 3.1.46 (i) holds. Appoint x(o, s) = s to follow R,. (Remember, s is larger than all
computations seen so far by convention.)

- Definition 3.1.46 (ii) holds. Enumerate x into Agy.

End of Construction.

Verification. Let TP be the leftmost path visited infinitely often: That is, A < TP and for all 7, if
T < TP, then 770 < TP iff 3%s(770 < TF;). Otherwise, 7" f < TP.

Lemma 3.1.47. All the R. and Q. have versions that are met, and for all 7 < TP, R, (or Q)
acts only finitely often.

Proof. This lemma is proven by induction on e. We counsider R.. Let 0 < TP with |o| = 2e. Fix a
stage sg such that for all 7 <7, o and s > sg:

(i) if 7 X 0, s is not a T-stage;

(ii) if M is a @ or R requirement assigned to 7, then M will not act at stage s.

Assuming s to be least and a o-stage, we can assume that either W, ;n A, # J (in which case
we are done), or R, receives attention via Case (i) getting a follower z at stage so. This follower is
immortal by the choice of sy and the induction hypothesis. It will succeed in meeting R, as in the
basic module since it has priority at each o-stage. O

Lemma 3.1.48. All the N;; have versions that are met.

Proof. Again, we prove this by induction. Let o < TP with |o| = {(i,7). Choose sy as in Lemma
3.1.47, so that no higher priority action can cause grief to N,. Now, if 0~ f < TP, we are done
since liminf ¢(7, j, s) < oo and hence ®,(A) # ®,(B).

So we suppose that ¢7o0 < TP. To compute ®;(A;x), find the least 0 oo-stage s = s(x) > s
such that ¢(c,s) > x. Note that this can be computed from the parameters sy and 0. We claim
that ®;(A4;x) = ®; s(4;x). To see this, note that by Step 1 of the construction we will initialise all
T €, TP; at stage s. In particular, at stage s by choice of sy and since we appoint new followers to
be large, and we are never above or left of 0”0 after stage sg, the only numbers which are below s
and can enter A or B after stage s are followers associated with v > ¢~ 00. Such followers can enter
their target sets only at o~ o0 stages s > so. That is, they can only enter at o-expansionary stages.
In particular, as with the basic module, we can argue that for any o~ oco-stage t > s, at most one of
A or B can change below mu(c,t) before the next o”oco-stage t' > t.

Thus, exactly as in the basic module, we have that

(I)iys(As;LC) = (I)iyt(At;SIJ) = CI)]"S(BS;if) = (I>j’t(Bt;x) = (I)Z(A,{E) = ij(B;(E)7
for all 0" co-stages t > s.

The minimal pair theorem is proved.
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3.1.8 Further reading*

A more extended introduction to priority techniques can be found in [125]. For finite injury tech-
niques, the old-fashioned but thorough book by Rogers [454] is a good reference. The reader
interested in c.e. sets and degrees is referred to Soare [477] for many further results and a large
number of exercises. We remark that [477, Chapter VIII| presents alternative methods for handling
combinatorics in infinite injury proofs, such as the Window and Thickness Lemmas, and also the
Pinball Machine Model. The former approach is now typically considered old-fashioned and will
not be used in this book, while the latter is also unnecessary for our purposes. For historical notes,
see [478, part V.

Exercises

Since all the exercises below seem to require infinite injury, none of them is particularly easy.
However, most of these results are old classics, and their proofs can be easily found in the literature.

Exercise® 3.1.49 (Downey and Welch [150], Ambos-Spies [9]). Construct a non-computable c.e.
set A such that if A = A; U As is a c.e. splitting of A, then the degrees of A; and As form a minimal
pair. (Hint: Modify the tree from the minimal pair argument. Use requirements P, : A # W,, and
Ny : Wi W = A A <I>,€W"' = CI)ZVj = f total — f computable.)

Exercise® 3.1.50. A set A is called piecewise computable if Ale) =4 ¢ {(e,z) : (e, ) € A}, the e-th
slice (column) of A is computable for every e.

1. Construct a c.e. set B such that, for each e, B¢l is an initial segment of wl¢), and B¢l is finite
iff ¢, is not total. We will say that B codes &f".

2. Show that if B codes ", then B’ =y ¢#”. That is, B is high.

Exercise 3.1.51. In the notation and terminology of the previous exercise, A € B is called a thick
subset if for every e, Alel =* Blel meaning that |Bl¢l\ Al¢]| < co. Show that if A is a thick subset
of a set B coding ¢&”, then A is also high.

Exercise 3.1.52 (Thickness Lemma — Shoenfield [467]). This is a weak form of the full Thickness
Lemma. We refer the reader to Chapter VII of Soare [477] for more details. Thick subsets were
defined in the previous exercise. Use the infinite injury method to prove that if ¢ <7 C'is c.e. and
B is a c.e. set coding 3", then there is a thick subset A € B with C' {1 A. This shows that there
is an incomplete high c.e. degree.

Exercise® 3.1.53 (Meyer [387]). Let MIN = {e : Vj < ep; # @}, and SMIN = {e : Vj <
e W, # W,}. Show that for any acceptable enumeration of the partial computable functions, MIN
=7 SMIN =7 @”.
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3.2 Computable linear orderings

In this section, we use the computability-theoretic techniques described in the previous section to
prove several classical results about computable linear orders. We begin with the main definitions
restricted to the class of linear orders. A detailed proof of the Fellner-Watnick Theorem, which
is the main result of the present chapter, will be given in Section 3.2.6. Similarly to the previous
section, we organise the results according to their combinatorial complexity. The most notable
results include:

Theorem 3.2.1 (Feiner [161]). There is a c.e. presented linear order not isomorphic to any
computable one.

Theorem 3.2.2 (Goncharov and Dzgoev [211], Remmel [446]). A computable linear ordering
A is computably categorical (Definition 2.2.15) iff A has only a finite number of adjacencies.

In fact, Dzgoev announced Theorem 3.2.2 in 1978, but it was published only locally as a report?.

3.2.1 The basic definitions, revisited

Recall that a linear order is just a partial order in which every two elements are comparable under
<.

Definition 3.2.3. A computable linear ordering (or more precisely, a computable presentation of
its order type) is a linear ordering (A, <) where A is a computable set, and the ordering relation <
is a computable relation.

We typically assume that our order is countably infinite, as there is not much to say about the
finite ones. Standard linear orderings such as w, Z, and Q are computably presentable.

Definition 3.2.4. We say that a linear ordering (L, <) is c.e. presented if L is a computable set,
and <y, is a c.e. relation.

The way to think about a c.e. presentation is that we will discover if x <y y, but may not know
whether x < y since we can later discover x =y y. Thus, a c.e. presented linear ordering is
(A, <4)/ =, where = is a c.e. equivalence relation®.

2The report is available at the library of the Sobolev Institute of Mathematics. According to Goncharov’s Math-
SciNet review of [446], the reference is: Dzgoev “On constructivizations of some structures” (Russian), Akad. Nauk
SSSR, Sibirsk. Otdel., Novosibirsk, 1978 (manuscript deposited at VINITI on July 26, 1978, Deposition No. 1606-79).

3Note that each =-class has to be convex in the sense that if a <4 b <4 c and a = ¢, then a = b = ¢. Conversely,
every convex equivalence relation on A can be used to define a quotient linear order.
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3.2.2 Injury-free approximation. Feiner’s Theorem

In this subsection we construct a c.e. presented order with no computable isomorphic copy; this is
Feiner’s Theorem 3.2.1 (for linear orders). The rest of the subsection is devoted to accumulating
enough lemmas and propositions to prove the theorem.

Recall that a structure is computably categorical if any two computable copies (presentations)
of the structure are computably isomorphic. For example, the usual back-and forth method shows
that (Q, <) is computably categorical. Therefore, from the perspective of computable mathematics,
all computable presentations of (Q, <) are essentially the same. Thus, there is no ambiguity in the
statement of the following lemma.

Lemma 3.2.5. (A, <) is a computably presentable iff there is a computable subset of (Q,<) iso-
morphic to (A, <).

Sketch. Suppose (A, <) is a computably presented linear order. Use the ”forth” step in the usual
back-and-forth proof of categoricity for (Q, <), but apply it to elements of (A, <). Of course, even
if A is itself dense, we do not have to make f onto. In fact, by the density of QQ, we can additionally
ensure that f(A) is actually a computable subset of Q, not merely a c.e. subset. To achieve this,
note that at any stage s, it is safe to declare finitely many rationals currently outside the range
of fs to be permanently outside of f(A). By the density of Q, we always have enough points to
further extend the embedding.

The other implication in the statement of the lemma is obvious. O

Evidently, the lemma can be relativised to any oracle. Suppose L is AY. Relativise Lemma 3.2.5
to 0'. This gives a AJ subset of Q so that the induced order is computable. Thus, we can think of
L as being a A set L = lim, L, with a uniformly computable order on each L,. Additionally, we
can further exploit the density of Q to make sure that, once x is declared out of L, it never comes
back:

Lemma 3.2.6. If L is a AY ordering then L = L for some 119 subset of Q.

Sketch. Suppose L € Ag. So L = limg; L. When z € Lg11 — L, use the density of Q to choose a
point & € Q with G6del number bigger than any number seen so far in the construction and map
fs 1 * — & consistently with f;_;. We will continue with this map unless x leaves L; at some least
t > s, which means that the order has been redefined on x. If x € L; — L;1, then we throw Z out
of the range of f forever. We let f = limg fs. If z € L then from some point onwards, x € L;. If
x ¢ L, then from some point onwards, x ¢ L;. Thus f: L =~ L where L is the ordering formed by &
which are added to L and never leave. O

We will need the following folklore lemma that, in particular, implies that every AY-presented
linear order admits a c.e. presentation.

Lemma 3.2.7. Every 11§ subset of Q is isomorphic (as an order) to a c.e. presented linear order.

Proof. We can of course assume that LcQis non-empty, say T € L. (Without loss of generality
and up to a notation change, we could assume x = 0.) We build a c.e. presentation L of L where
the latter is of course viewed as a sub-order of the rationals, and the former consists of computably
ordered natural numbers N modulo a c.e. equivalence relation =. At a stage s we will have defined
only finitely many equivalence classes in L, each class currently consisting of finitely many numbers:

[60]’ [61]’ SRR [ec(s)]
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The classes are linearly ordered, and one of these classes contains x. At a later stage some of these
classes may be declared equal, i.e., united into a bigger class. We also construct a map ¢ : Q - N
such that its restriction to L induces an isomorphism from L onto L = (N, <)/ =. At a stage s we
will have defined a finite partial map ¢, that induces an order-isomorphism between finitely many
points in Ly N [0,...,s] and finitely many classes in L.

When an element r is enumerated into @\ﬁ we say that r leaves L. Assume that at every stage
at most one element leaves L.

The idea is that, when r > x leaves L at stage (s + 1), we want to declare it equal to the
right-most point ¢ < r of the order that is still there. Similarly, when r < z, we declare it equal
to the left-most point ¢ > r that has not yet left the order. Of course, we cannot quite do it in
Q itself; indeed, think about the points in-between r and ¢q. However, we can do this in L which
currently has no classes between [¢s(r)] and [¢s(q)]-

More formally, if > x leaves L at stage (s + 1), search for the right-most point ¢ < r in L,
(which must exist) and declare ¢4(q) = ¢5(r). (Define =,,1 by modifying the current approximation
=, of = in the obvious way so that =, is an equivalence relation; we omit the details.) The case
when r < x is symmetric. Then extend ¢ to a map ¢s41 defined on ﬁsH N[0, ..., s+ 1] naturally.

The map ¢ = |J, s is onto by the construction, and = is also approximated via =,, which
results in a c.e. congruence inducing a c.e. presentation L of some linear order. If x,y € L then
[6(z)] < [¥(y)] in Liff z <y in L. O

Corollary 3.2.8. Every AY presentable linear order is isomorphic to a c.e. presentable one.

Remark 3.2.9. In the proof of the lemma above, we in fact showed that a I19-subordering L
of Q is computably isomorphic to a c.e. presented linear order, in the following sense. There is a
computable f : Q — N so that its restriction to L induces an isomorphism between Land L = N/ =.
Conversely, it can be shown that a c.e. presented linear ordering L is computably isomorphic (in
the same sense) to a I19 subset L of Q. To see why, assume we have already defined f(z) and f(y),
but now we have discovered f(x) = f(y). Since one of the two elements (z or y) are now out of the
I19 set, the definition of f does not have to be adjusted. Thus, usually, c.e. presented orders can be
computably identified with T subsets of the rationals without any loss of generality.

In a linear ordering L = (L, <), an n-block (or a complete block of size n) is a set 1 < 3 <
-+« < x, such that (x;,z;41) is an adjacency for all i < n, x; is a left limit point or the first point
of the ordering, and x,, is a right limit point, or the last point of the ordering.

Definition 3.2.10. If L = (L, <) is a linear ordering, then B(L) = {n : L contains an n-block}.

Note that B(L) is a classical invariant. We have the techniques to show that it is also an effective
invariant, in the following sense. If L is a computable ordering then B(L) is 9.

Theorem 3.2.11 (Lerman [336]). If S € X9, then there is a computable L with B(L) = S.

Proof. The proof resembles that of Theorem 3.1.8 (iii). Let S be ¥ and hence we have computable
R such that
n e S iff IxVsItR(n,x, s,t).

The construction begins with the sum of infinitely many computable copies of Z

Z+Z+7Z+....
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Between the (n,z)-th copy and {n,z) + 1-st copies we will use a construction to add some new
points in stages. At each stage s, between copy (n,z) and copy {(n,z)+ 1 we will have constructed
a finite ordering A, consisting of three suborderings Ay, = Cy + D + E5. We will have a counter
s(n,z) to count the firings of (n,x). Initially, s(n,z) = 0. At stage 1 we set D to have exactly n
elements, and Cp, F; to be empty. At each stage s+ 1 for s > 1, we always add one element to the
left end of Cs, and to the right end of E,. If n,z has fired for s(n,z) we set s(n,z) = s(n,z) + 1.
In this firing case we will also add some new points, one to the right end of Cs and one to the left
end of E,. No such points are added if no firings for s(n, z) happen.

Now the observation is that if (n,z) fires for all of its s(n,z) (that is, n € S is witnessed by x)
then C' and E both grow into copies of Z, so that C + D+ E = Z+n + Z. Then n € B(L). If
only finitely many firings, then the second part of the construction for {n, x) is invoked only finitely
often, and hence C' + D + FE = Z, for every x. That is, n ¢ B(L). That isne€ S if n € B(L). O

Theorem 3.2.11 combined with the lemmas proved earlier allows us to construct a c.e. presented
linear order not isomorphic to any computable one; this appeared as Theorem 3.2.1 earlier.

Proof of Feiner’s Theorem 3.2.1. Applying Theorem 3.2.11 in relativised form, given any set S
which is 3, there is a X-computable linear ordering L with B(L) = S. Letting X = K = ¢/,
and choosing S = 0 that is in £9 \X3, (by Post’s Theorem), we obtain a AJ such order. By
Lemma 3.2.6, the order is isomorphic to a ITY subset of Q. By Lemma 3.2.7, it has a c.e. presentation.

If L so constructed was isomorphic to a computable L, then B(I:) e X9 (as L is computable), but
this contradicts B(L) = B(L) = S ¢ . O

Finally, we remark that in a decidable linear order L the block invariant B(L) becomes com-
putable. Consequently, Theorem 3.2.11 implies that there is a computable linear order with no
decidable presentation.

3.2.3 Finite extension method. Richter’s Theorem and the Frolov-Montalban
Theorem

Recall that in Section 2.2 we presented a way to “encode” a c.e. set into a presentation of a group.
In Theorem 3.2.11, which was the key step in the proof of Theorem 3.2.1, a X9 set was “coded”
into the block relation of an order. However, this coding depended on the fixed ¥9-approximation
of the given set:

n e S iff IxVsIt R(n, x, s,t),

where R was computable. The same set can have many different ¥.9-approximations, i.e., many dif-
ferent potential such R. Thus, this transformation from Theorem 3.2.11 was not really well-behaved
from the algebraic standpoint. Although this weak, notation-dependent coding was sufficient for
our purposes, it has its limitations. For a set S to be an actual “X-invariant” of the respective
order, Theorem 3.2.11 has to be slightly modified, as follows.

Lemma 3.2.12 (Folklore). Given a set S, we can produce a linear order L(S) such that S is Y5
iff L(S) has an X-computable presentation.

Sketch. Use the shuffle sum of order-types Z and Z +n +Z. The shuffle sum |4, L; of order-types
(L;)ien is obtained by replacing any point in Q with a copy of L; for some i, so that each L; gets
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densely distributed in the resulting order?. Note that any permutation p of w results in the same

order-type:

L—{-J Li = t}—J Lp(z)

€N €N

It is not difficult to see that, given a computable sequence (L;);en of uniformly computable linear

orders, we can computably turn it into their shuffle sum (4}, L;. In the proof of Theorem 3.2.11,
we essentially produced a computable sequence of orders (L;);en such that the order-type Z +n + Z
appeared among the L; iff n € S. Clearly, different X3-approximations of S will give different such
L;. Define L = 4, Li and note that the resulting order-type depends only on S, and not on its
Y9-approximation. O

The transformation described above is much better behaved. For example, if we replace S with
the join of S with its complement (denoted S@®.S), then L(S@®S) has an X-computable presentation
iff S@®S is X iff S is AL iff S <7 X”. In modern terminology, a linear order can have an arbitrary
“second jump degree”.

Can we do better than that? What about a X9-coding of a set into a linear order? That is, can
we find a construction of L(S) such that L(S) is computably presented if and only if S is 39, and
so that this could also be relativised?

We shall not attempt to define exactly what a X{-coding of a set into a structure is, since
issues such as uniformity will lead to a multitude of definitions. However, we should expect from
any such “coding” that, given any set A, we can produce a structure M (A) so that M(A) has an
X-computable copy if and only if X > A, via an argument similar to the one we had above for the
“¥9-coding” given by Lemma 3.2.12.

We now use the finite extensions technique to illustrate that no such sufficiently well-behaved
¥9-coding is possible in the setting of linear orderings.

Richter’s Theorem
In the theorem below, a and b stand for Turing degrees.

Theorem 3.2.13 (Richter [450]). Suppose a # 0 and (A, <) is an a-computable presentation of
a linear ordering. Then there is another b # 0 and a presentation (B, <) which is b-presentable,
such that a,b form a minimal pair.

Proof. We modify the technique of Theorem 3.1.15. In view of Lemma 3.2.5, we might as well
regard A as a subset of Q. We need to build another subset B of QQ to meet the same requirements:
Re; : oA = ®B = f total, implies f computable. The only extra condition is that A ~ B as
orderings. The only problem is the following. In the proof of Theorem 3.1.15, we could consider
any o with By < o as a potential oracle for an z-computation. Now, our idea of making A =~ B
is that at stage s of the construction, we will have fixed a finite part of A, A, = {a1,..., 0,05}
(a; <g aj) and Bs = {b1,...,by(s)} With a; — b; as our partial isomorphism. Now, it might be
that [a;, a;+1] is an adjacency of (A, <), so that a ¢ which includes a rational between b; and b; 11
cannot be used in a potential computation, as the stage s partial isomorphism cannot be extended
to one including an element between b; and b;.1. Thus, we need to distinguish between finite
subintervals of Ag and infinite ones. By adding enough points between elements, we can assume
that rational s is in the domain of A, and that if [a;, a;+1] is finite, it is an adjacency. This means

4That is, between any pair of blocks of the form L; and L;, and for any k, there is a block of the form Ly.

105



that we can correspondingly break B, into a finite number of blocks which are infinite, for example
[00, b1], [b4, b5], [s, b7], say would correspond to the fact that A has infinitely many elements left of
a1, between a4 and as, and between ag and a7. Note that [b;,b;41] N Q is a computable set. Then
we call o an acceptable string if o(n) = 1 implies that n = b; for some 4, or n € (b;, b;+1) for some
[bi, biv1] where A N [a;,a;4+1] is infinite. The proof is more or less identical to that of Theorem
3.1.15, and we ask for x, t and an acceptable o with ®2}(x) |# ®7(z) |, and if so, let By,1 = o,
and extend the partial isomorphism by adding enough elements of A to make Az, 1 — 0. O

Actually, Richter proved a more general model-theoretical result generalising Theorem 3.2.13;
see Exercises 3.2.58-3.2.62 at the end of the chapter. What about a ¥-coding for other choices of
n? We shall return to this question in §3.2.6.

The Frolov-Montalban Theorem

Let adj denote the adjacency relation, that is, adj(z,y) if x < y and there is no z so that x < z < y.
The following neat result was independently proven by Montalban [399] and Frolov [190].

Theorem 3.2.14. For a linear order L, the following are equivalent:
1. L has a low presentation;

2. L has a AY-presentation in which the adjacency relation is also AY.

Proof. For 1 — 2, recall that A <y A’ =r ¢, and that the X-computability of L implies adj <7
X'

The proof of the harder implication, 2 — 1, combines ideas from the proof of Theorem 3.2.13
with Exercise 3.1.17. We will build a copy B of (L, <) with domain {bg, b1,...}. Indeed, we will
build a bijection f : {bo,b1,...} — L = {lo,¢1,...} and then define the order on B by “pulling
back” the order on L along f. To clarify what this means, we need to introduce a notation.

For each o € 2™, let ¥, (xo, . . ., ;) be the formula in the language of linear orders that completely
describes the order on zg, ..., z,, depending on the values of o. That is,

AN AN
i:o(1)=1 i:0(1)=0

where each 1; is a conjunction of atomic facts of the form x; < x, and x; > x, for k < n. Let
D(B) € 2¥ be the diagram of B; that is, we have that

B = ,(bg,...,b,) if and only if 0 € D(B).

At each stage s we define a finite one-to-one partial map ps : B — L with domain {by,..., by},
and then we will let f = (J,ps. Given a finite one-to-one partial map p that maps bo,..., by,
to Lo,...,0n, let D(p) be the o € 2™ such that ¥, (¢y,...,¢,) holds in L. Then we will have

D(B) = U, D(pn).
Construction:

e Let pg map by to £p.
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o At stage s + 1 = 2¢, extend ps to psy1 in any way so that b, is in the domain of psy1 and £,
is in the image.

o At stage s + 1 = 2e + 1, we want to use J’ to decide the jump of D(B). Suppose ps maps
boy ... bn, to Lo, ..., L, . We will argue that, using ¢f’, we can decide whether

3q 2 ps such that {e}P@(e) |;

for now, take this property for granted. If the answer is positive, ¢’ can search for witnesses
o and 7 and use them to define p,, 1, adding 7 to the range of p,. In this case, @’ knows that
e € D(B)'. Otherwise, we let ps41 = ps, and then ¢’ knows that e ¢ D(B)’.

We have built B. To check that D(B)’ <7 @', it remains to verify that ¢’ can decide whether
there exists an extension ¢ 2 ps such that {e}P@(e) |, where ps maps bg,...,bn, to Lo,..., 0.
This is where we use that bot < and adj are A9 in L. Indeed, since ¢J' computes adj in L, it knows
whether

do 2ps {e}?(e) | & L E3gds(lo,.- ln,, 7).

To see why, use ' to see which of the ¢; are in the same block, and which are not. Then see if
there is a o that obeys these restrictions and o 2 p, {e}?(e) |. Using &', list the order on L and
see if o corresponds to a sub-order. It could be that ¢ claims the existence of 5 points between
(e.g.) £1 and ¢5. Using that adj is computable in ¥, we can see whether there are enough points
between ¢1 and f5. Indeed, either a pair /1 < x < y < {5 is an adjacency or not. In the latter case
we can @f'-computably search for a point between x and y. It could be that we discover that £; and
£ are in one block which is too small. In this case we try again, and search for a ¢’ that obeys this
new restriction. It remains to note that there are only finitely many intervals between £g, ..., ¢,,.
Thus, eventually, we either find some extension or conclude that no such extension exists. O

It is natural to ask whether every low linear order is isomorphic to a computable order. While
for Boolean algebras the answer to the analogous question is positive (to appear as Theorem 4.1.25),
we will see that for linear orders, the answer is negative (Theorem 3.2.45).

3.2.4 Finite injury. Tennenbaum’s Theorem

There are many illustrations of the finite injury method in the theory of computable linear orderings.
One where the conflicts between the requirements are quite apparent is the following theorem. We
write L* to denote the linear order anti-isomorphic to L, i.e., the order in which < is reversed to
>. For example, w* is the order of negative integers.

Theorem 3.2.15 (Tennenbaum). There is a computable copy of w+w* with no infinite computable
ascending or descending suborderings.

Extended Sketch. We will build the ordering (A,<4) in stages. The domain of A will be N, so
suborderings correspond to subsets of N. Recall that W, denotes the e-th c.e. set. We meet the
requirements:

Rs. : [W,| = o0 — W, is not an ascending subordering of A,

Roet1 @ |[We| = 00 — W, is not a descending subordering of A.
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Additionally, we must ensure that the order type of (A, <4) is w + w*. To this end, we will
build A as B + C, where we will refer to the members of B as blue and those in C' as red.
At each stage s, we will let:

Bs = bO,s <Aa bl,s <A <A bn,sa

and similarly,

Cs = Cm,s <A Cm—1,s <A ' <A Cp,s-

Thus, we need to ensure that for all ¢, lim; ¢; s = ¢; exists, and similarly lim, b; ; = b; exists.
(We could explicitly add this as a new requirement, but it is unnecessary, as we will see.)

Now, the blue part is, of course, the w part, and the red part is the w* part of A. At any stage
541, a red element can become blue and vice versa. If b; ; becomes red, then every element x € B;
with & >4 b; s will also become red. If b; ; is the <4-least element that becomes red and k elements
become red, then at stage s + 1, the blue elements are now by ,...,b;—1,, and the red ones are
Cmtk,s: Cmtk—1,81-+-5C0,s- LThat is, bj e41 = bj s for j <4 —1, and ¢ 411 are the same for j < m,
while for j > m, they are defined as the erstwhile blue elements.

We wish to ensure that W, is not an ascending (blue) w sequence. If W, contains a blue element,
then it cannot be such a sequence. So the obvious strategy for Rs. is to wait until we see some red
bi s € We s and make it red, as indicated. To ensure we don’t do this for all elements, we will only
consider b; s > 2e, so that Ry, has no authority to recolour elements {0,1,...,2e}.

On the other hand, Rag+1 is trying to prevent W, from being an infinite (red) w* sequence, and
similarly, it wants to make red elements blue. If we allowed R34 to undo the work we just did for
Ry by making the erstwhile b; ; blue again, we would undo the work needed to meet Ry.. Thus,
when we act on Ry, we will do so with priority k, making some element the colour demanded by
Ry, unless Ry for k' < k wishes to change its colour.

So, we say Rg. requires attention at stage s if it is not currently declared satisfied, and we see
some b; s € W, s not protected by any Ry for k < 2e and b; s > 2e. Similarly, Roz41 requires
attention if some ¢; s, instead of b; s, satisfies the analogous conditions.

The construction is as follows: if any k requires attention, take the smallest such k, and perform
the re-colouring demanded by Rj. At each stage, we will add one more blue element to the right
of Bs11 and one more red element to the left of Csy;. The remaining details involve letting the
requirements “fight it out” by priorities.

An induction on k£ shows that we meet Ry. Once the higher priority requirements have ceased
activity, if Ry requires attention via some n € Wy, whatever colour R assigns to n will remain
fixed, as Ry has priority. Finally, if W is infinite, such an n will occur. It should be clear that the
resulting order is isomorphic to w* + w. O

Note that Ry, can only be injured at most O(2*) many times.

3.2.5 Unbounded finite injury. Computable categoricity

Recall that a structure is computably categorical if any two computable presentations of the
structure are computably isomorphic. Since computable isomorphisms preserve essentially all
computability-theoretic properties, as a consequence of Theorem 3.2.15, we have:

Corollary 3.2.16. The linear order w + w* is not computably categorical.
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We have already mentioned that (Q, <) is computably categorical. Recall that Theorem 3.2.2
states that this is more or less the only such ordering. More specifically, it says that a computable
linear ordering A is computably categorical if and only if A has only a finite number of adjacencies.

Proof sketch of Theorem 3.2.2. One direction is clear: if we non-uniformly map the adjacencies,
then between them the orderings are dense and we can use Cantor’s argument.

So suppose that (A4, <4) has infinitely many adjacencies. We need to build a computable B =~ A
to meet the following requirements:

R, : @¢ is not an isomorphism from B to A.

To make B =~ A, we will build an isomorphism f : B — A. This will be built as f(x) = lim, fs(x)
with fs a partial map from B, to A;. Thus, for simplicity of notation, we have fs : b;, — a;, for
1< s

At stage s + 1, a new element asy;1 enters A, — Ag, and perhaps a; <4 asy1 <4 aj. Then
we would need to add an element by with b; <p bsy1 <p b;, and fsi1(bs1) = asp1. Clearly,
this will build an isomorphism, but it is merely copying. This will change when we discuss how we
meet the requirements, as we’ll need to “move” the isomorphism.

Because we will later be possibly making f;(b) # fs(b), we will need to make sure that we also
meet the requirements:

Ny : lign fs(b) = f(b) exists,

and, additionally, in the construction, we will make sure that for every a € A there is a b € B such
that f(b) = a. The ordering of the priorities will be:

Ry, No,R1, Ny, .. ..

We discuss how we meet a single requirement R in isolation. Then we observe that we can let
the priority method sort the construction so that all requirements are met.

One Ry in isolation. Clearly, we need to do nothing unless g is total, so we will be monitoring
the behaviour of ¢, waiting for it to halt on more and more inputs. Suppose that we knew that
[ai, a;] was an adjacency in A. We could wait for g 4(b,) | = a;, o.+(bg) | = a; to occur. If [by, b,]
is not a By-adjacency, it never will be; so if we simply preserve the current f; : By — A;. This
will guarantee that ¢ cannot be an isomorphism from B to A, as it takes a non-adjacency to an
adjacency. If [b,, b,] really is an adjacency, our action will be to split it in B;1, manufacturing the
destruction of ¢y as a possible isomorphism.

Since R has the highest priority, we proceed as follows. We know that A is infinite, so new
elements must occur either to the left of f;(b,) or to the right of fi(b,). Suppose the former. Let
bi, <B bi; <p -+ <p b, denote the points of B; left of b,, and suppose that the new element a4
is between f(b;,) and f(b;,,,) (if it occurs to the left of b;, or to the right of b;,, it is easier, but
similar). We add a new point b;41 between b, and by, and redefine f;11(bi+1) = fi(bp), and define
fr+1(bp) = f(bs,), and similarly shift f,1(b;,) left for b;, <p b, <p by, but leave fiy1(b;,) = fi(bs,)
for b;, <p b;,. We call this an Ry-attack on [a;, aj]. Fig. 3.2 and Fig. 3.3 might be helpful to see
what is happening.
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New element enters here

Figure 3.2: Stage s

New element added here

bp bs+1 bq
Bs+1 L] L] ° ° o o ° N
As+1 ° [ ° ° ° ° e
i

—— - ~ _ ~_—

No change Preimage shifted No change

Figure 3.3: Stage s + 1

Clearly, Ry cannot know which pairs in A are adjacencies, so we will Rg-attack the current
adjacency with the smallest Gédel number. Once we have attacked, we regard Ry as satisfied,
unless the adjacency [a;, a;] used in the attack is split in A at a later stage s’. In that case, we will
allow R( to become active again and try to attack the adjacency of Ay having the smallest Godel
number.

Since A has adjacencies, we will eventually meet Ry, after a finite (but unknown in advance)
number of attacks. Note that this will potentially injure each N; for j > 0, as each time we attack,
we do keep a partial isomorphism at stage t + 1, but we shift f; on some elements.

The general case is similar but has some further difficulties. In particular, we clearly need to
use the fact that the order has infinitely many adjacencies, not just one.

An outline of the general case.
We would like to attack R, in a similar way, by splitting the pre-image of some adjacency [a;, a;]
in A;. But now R, must respect N; for j < e. The strategy will attempt to preserve fi(j) = f(j)
(with its respective priority). In particular, R, cannot shift f on these few points.
These few points split B; (and, hence, A;) into finitely many intervals. Let a;, <a ai, <4 @i, <a
- <4 a;,_, list these points in A, and let the corresponding points be labelled as f_l(ai].) =0
Then A is split into

ij'
e—2

{z:2<4ai} v U[aip,aipﬂ) u{z:ai_, <azl}
p=0

and this induces the corresponding partition of B, into sub-intervals (retracting via f;).
The idea is simple: at least one of these sub-intervals has infinitely many adjacencies. Thus R,
pursues its strategy in each of the sub-intervals, noting that shifting can occur in an infinite sub-
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interval without disturbing the endpoints. This allows IN; to be met for j < e while still meeting
R..

The remaining details are a routine application of the finite injury method; this is left as Exer-
cise 3.2.18. O

Exercises

Exercise® 3.2.17. Construct a copy of w such that the adjacency relation has degree 0.
Exercise® 3.2.18. Give a detailed formal proof of Theorem 3.2.2.

Exercise® 3.2.19. A computable partial ordering (P, <) is a computable set P and a partial
ordering < which is a computable relation on P x P. A linear extension of a partial ordering (P, <)
is a linear ordering with the same domain P, (P, <) such that if x < y then z < y. A classical
Szpilrajn extension theorem states that every partial ordering has a linear extension. Prove that a
computable partial ordering has a computable linear extension.

Exercise 3.2.20 (Schwarz [460]). Let L be a computable linear ordering. Prove that the following
are equivalent.

(i) L contains a dense interval.

(ii) Every computable linear ordering L isomorphic to L has a non-identity computable automor-
phism.

Exercise® 3.2.21. The well-known Dushnik-Miller ([151]) theorem states that every infinite linear
ordering has a nontrivial (order-preserving) self-embedding. That is, f : L — L is order-preserving
and for some x € L, f(z) # x. Show that there is a computable copy L of (w, <), such that L has
no nontrivial computable self-embedding.

3.2.6 The Fellner-Watnick Theorem

A slight modification of Lerman’s Theorem 3.2.11, namely Lemma 3.2.12, shows that any X3-set
S can be realised as a computable isomorphism invariant of a linear order L(S), in the sense
that S € %9 iff L(S) is computably presented (and this can be relativised). On the other hand,
Richter’s Theorem 3.2.13 gives very strong evidence that there is no reasonable coding of ¥9-sets
into computable linear orders. In this section, we will prove that, for n > 3, a ¥%-set can also
be realised as an “effective invariant” of a computable linear order. To prove the result, we shall
establish two standard “jump inversion” theorems for linear orders.

Of course, linear orders can have much more complicated invariants than just sets. For instance,
given any linear order A, replace every point of the order by the order-type (Q + 2 4+ Q), which is
the dense order of QQ followed by two points and by another copy of Q. Denote the resulting order
by Q(A) = (Q + 2+ Q)A. It should be clear that A ~ B iff Q(B) =~ Q(A), and thus A can be
viewed as the isomorphism invariant of Q(A). Similarly, we can define ZA by replacing every point
of A by a copy of the order-type of the integers. We begin with the much simpler transformation

A Q(A).

Theorem 3.2.22 (Downey and Knight [134]). A linear ordering A is AY-presentable iff Q(A) =
(Q+ 2+ Q)A is computably presentable.
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The proof is left as an exercise (Exercise 3.2.48), but the idea is clear. We can assume A is I1Y,
so simply build a copy of Q + 2 + Q around a point z € A unless z leaves A, in which case absorb
the “junk” into the other copies of Q. A far more complex theorem is the following;:

Theorem 3.2.23 (Fellner [164], Watnick [502]). A linear order A has an &"-computable
presentation iff ZA is computably presentable.

Before we turn to the proof, we will put it in context. There is a standard operator in the theory
of linear orderings called the condensation operator, defined as follows.

Definition 3.2.24. Let B be a linear order. The (finite) condensation C'r(B) of B is the result of
identifying any two elements of B which are finitely far apart.

A discrete linear ordering is one where every element has an immediate predecessor and imme-
diate successor (save perhaps the first point with no predecessor, and the last with no successor).
If B is discrete and has neither first nor last points, then it is easy to see that it must be of order
type ZA for some ordering A, so that Cr(B) =~ A. In some sense, B = C.*(A). It is not hard to
see that if B is computable, then Cr(B) <7 " since it takes two quantifiers to ask if z and y in B
are finitely far apart. This gives one implication in Theorem 3.2.23. Rosenstein [456] asked if the
reverse implication held. This was answered in the affirmative by Fellner [165] and independently
Watnick [502], and then independently rediscovered by Downey (unpublished).

The first proof of Theorem 3.2.23

The first proof that we present splits the construction of a computable copy of ZL into two lemmas.
As far as we know, Zubkov was the first to note that the proof of Theorem 3.2.23 can be split
into two finite injury proofs, but he never published his new proof. Montalban takes a very similar
approach in his book [401], but using (slightly) different methods.

Let adj denote the adjacency relation, i.e., adj(z,y) holds if < y and there is no z such that
r<z<uy.

Lemma 3.2.25. Let L be a non-empty AY linear order. Then the order ZL has a computable
presentation in which adj is a computable relation. This is uniform.

Proof. The proof does not actually need L to be infinite, it merely requires that L # (. Nonetheless,
suppose the domain of L is (indexed by) N:

|L| = {¢; : i e N},
and <, is AY; the case of an initial segment of w is essentially the same, up to a minor adjustment.

Notation 3.2.26. For a linear order I' and =,y € ', define x « y if for the equivalence classes of
xz and y in Cp(T), [z] and [y], we have [z] < [y] in Cp(T"). This is the same as to say that z <y
and there are infinitely many points between x and y.

We build a computable linear order I' with computable adjacency relation, in which every
block (aka equivalence class in Cp(T)) is isomorphic to Z. Additionally, we construct a AY-map
¥ : L — Cp(T) and for every i # j, we meet the requirements
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Ri,j < fj if and only if ’(/J(EZ) < ’lﬁ(fj)
The map 1 will range over representatives of classes in Cr(I'). At every stage we will have
defined 94(¢;) = m; s. We will then prove that, for every i,

exists, and that the requirements are met, that each m; lies in a Z-block, and that every block has
some m; in it. We will not make 9, explicit in the construction, and will instead work only with
m;,s. Our strategies will work with ¢; (and m;) rather than with the requirements; the requirements
will be met somewhat indirectly, as a result of our actions.

Strategy for £y. In the construction, we will place mg s = mo and will begin building a Z-block [my]
around mg. We will denote the finite portion of [my] at stage s by My s. For every s, we will have
mo,s = mMo-

Strategy for £;, © > 0. The strategy assumes that <j restricted to ¢g,...,¥¢;—1 and approximated
using the Limit Lemma 3.1.3, has not changed since the previous stage. If the approximation to
<, has changed on (o, ..., ¢;_1, then the strategy is instantly initialised (to be clarified). If M; ,
J < i, are the finite portions of Z-blocks around m; s (j < ¢) built so far, and m, , is undefined,
then the strategy:

1. places m; ; between (or to the left or to the right of) the blocks M; s so that
by > mys, k<i

is an isomorphism between the current approximation to <y, on ¢, ...,¥¢; and mg,..., M, s,
and

2. initiates the construction of M; s, which is (an attempt to build) a copy of Z around m; s
disjoint from M, s (j < s).

In m; ; is defined, then make progress in building the Z-block around m; s by placing a few more
points around m; s, let the resulting block be M; 11, and set m; 541 = m; 5.

Initialisation. If a strategy ¢; (i < s) needs to be initialised, then let k be a strategy so that Mj
is adjacent to M, ;. In particular, My s is defined and thus the ¢j-strategy has not been initialised
yet.

1. Set m; s undefined.

2. Incorporate all points of M; s into M}, ; and set M; s undefined.

Construction.

At stage 0, only the strategy for ¢, acts.

At stage s, see if any strategies for ¢; (i < s) need to be initialised. If so, initialise them one by
one, until no strategies that need to be initialised are left. Then let the strategies for ¢; (i < s) act
according to their instructions.
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Verification. By induction, we prove that lim, m, s exists. The case when ¢ = 0 is trivial, since the
strategy working with ¢y is never initialised. The case i > 0 follows by a straightforward induction,
since our approximation to < on {y,...,¥¢;_1 will eventually settle. Recall ¢s(¢;) = m;s. Let
m; = lims m; s and ¥ (¢;) = lim, ¢5(¢;) = m;.

Claim 3.2.27. For every i # j, R;; is met.

Proof. Let s be so large that m; = m;, and m; = m;,. Without loss of generality, assume
£; < ¢;. The instructions of the strategies working with ¢; and ¢; guarantee that m; < m;. Further,
M; = U=y My and M; = | J,~, M;; do not intersect and are isomorphic to Z each. It follows that

P(l:) < P(Ly). L

Note we also showed that for every ¢ there is an s such that M; = Ut;s M; ;. We must also
have that M; =~ Z. It remains to note that for every s,

Fs = |_| Mi,sa

1<s

and that every point = ever placed in I' will eventually find itself in one of the M;-blocks. We
conclude that I' = ZL, as witnessed by 1, the elements m;, and their Z-blocks M;.

Finally, it remains to observe that no points will be put between an adjacent pair z,y € M; ,
for any i, s, even if this block will be later incorporated into some other block, due to initialisation.
Thus, the adjacency relation is computable in I'. O

The second lemma may look a bit less interesting, but it will in fact be more useful in the sequel.
We state it in a slightly more general form than is needed to prove the theorem, because we shall
need the stronger lemma in the next chapter. Also, compare the lemma with Theorem 3.2.14.

Lemma 3.2.28 (Downey and Jockusch [129]). Suppose L is a AY-linear order in which the adja-
cency relation is AY. Then there exists a computable linear order L which 18, up to isomorphism,
L except for an adjacency in L may be replaced by a finite block. If the linear order has infinitely
many adjacencies and has no greatest and no least element, then we can produce L uniformly.

Proof. Without loss of generality, we may assume that L < Q having least and greatest elements
and infinitely many adjacencies. We prove that there is a computable linear ordering L € Q and a
function h : L — L such that the following conditions hold:

(i) h is 1-1 and order preserving and maps the least (greatest) element of L to the least
(resp. greatest) element of L.

(ii) If [a, b] is an adjacency of L, then [h(a), h(b)] N L is finite.

(iii) If c e L— range(h), then

(Ja,b)[a,b e L and adj(a,b) and h(a) < ¢ < h(D)].

By the Limit Lemma, L has a recursive approximation L, (so that for almost all s, a €
L if and only if a € Ly ). We may further assume that

adj(a,b) implies {s: (I¢)(a < ¢ < b & a,b,c € Ly)} is finite.

Using the A9-ness of adj, we can “speed up” any approximation to L to get one with this
property. We may also assume that the least and greatest elements of L are in Lo. We will
construct L = usLs, and h = lim, hy in stages.
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At the initial stage s = 0 we map the least (greatest) element of L to 0 (respectively, 1) with
highest priority and never change h on these arguments. At stage s, we are allowed to add new
elements to L between the current values of h(a) and h(b), (a < b), only if there exists ¢ € Ly with
a < ¢ <b. Thus (ii) will hold.

As before, let go, g1, -+ be an effective enumeration of Q. We require that any element added
to L at stage s be of the form ¢, with m > s. Hence L will be computable.

We have the following requirements:

Rowm ¢ GmeL=>h(gn) | &h(gn) € L;
Rops1 : quel— h(L) = (3i,])
adj (i, q5) & h(qi) < ar < h(g;)-

Assign priorities as usual (the argument is finite injury). The construction is arranged so that
dom(hs) € L for every stage s. When we set hs(¢m) = g, this assignment has the priority of
R,, where p = min{2m,2k + 1}. If ¢,,, € L, for all ¢ > s and no requirement of higher priority
than R, acts after stage s, we will then have hy(gm) = i for all t > s (and hence h(g¢m) = gx)-

Strategy for Rom. If gm € Lsi1 and hs(gnm) is not defined, define hgy1(gm) = ¢ where ¢ is chosen
so that t > m and this definition keeps hs,1 order preserving. Add ¢; to L. If qm leaves L or a
higher priority requirement Rog.1 acts, cancel this value of h and start over. If g, € L, this will
happen only finitely often, and h(g,,) = limg hs(gm,) will exist and be in L.

Strategy for Roki1. Suppose qi € L, — hy (Ls). (This situation arises when ¢ is put into L by
some Ra,,, but its apparent h-preimage seems to leave L or ¢ is cancelled as an h-image by higher
priority action.) Further, assume that there do not exist ¢ and j with h(g;) and h(g;) defined with
stronger priority than that of Rax41 such that adjs (¢i,¢;) and hs(q;) < gr < hs(g;). Cancel all
lower priority values of h. Choose i and j with hs(g;) and hs(g;) defined with stronger priority than
Rop41 such that h(g;) < gi < h(g;) and (h(g;), h(g;)) contains no values of h defined with stronger
priority than that of Rogy1. (Such ¢ and j exist because we initially defined h on the least and
greatest elements of L with highest priority.) By hypothesis, adjs (¢;, ¢;) does not hold. As long as
it continues not to hold, search for ¢ such that ¢: € L and ¢; < ¢; < g; by effective approximation.
Set h(q:) = g (without changing 2) If the candidate for ¢ changes, start over by undefining all
lower priority values of h. Also, if adj (¢;, g;) starts to hold, or ¢; or ¢; appears to leave L, start
over.

These strategies combine by a standard finite injury argument. We omit further details, which
are routine. The construction of L is uniform. Recall however that we assumed that L had the
greatest and the least element. We shall remove the least and the greatest element from L if
necessary. In case when L had no least or greatest element, these extra elements could not be a
part of an adjacency. O

Apply Lemma 3.2.25 relativised to ¢’ to obtain a A-copy of the order ZA in which the adja-
cency relation is also AY. Now apply Lemma 3.2.28 to produce a computable presentation of ZA;
note that replacing an adjacency by a finite block does not change the isomorphism type of ZA.
Note this is all uniform.

The first proof of the Fellner-Watnick Theorem 3.2.23 is complete.
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The second proof of Theorem 3.2.23 using the tree of strategies*

We now present a very detailed proof of Theorem 3.2.23 that uses the techniques from the proof of
the Minimal Pair Theorem 3.1.44. The impatient reader may skip this subsection, as we will not
need to use the tree of strategies until Chapter 9.

As we have seen, infinite injury can be replaced with two finite injury constructions in the specific
case of Theorem 3.2.23. However, it appears that such iterated proofs are not always possible. It
seems that in many situations, using the tree of strategies is a much more flexible approach, even
if it may result in longer arguments.

The following proof was taken from Downey [119].

Infinite injury proof of Theorem 3.2.23. Recall we are given a (J”-computable presentation of a
linear order A, and we must produce a computable presentation of ZA.

We assume A is non-empty, and indeed, we shall assume A is infinite, as the case when A is
finite is elementary. We will also see that the proof is uniform, in the sense that given the index e
for ‘IJ?” ~ A, we can computably produce an index for a computable copy of ZA.

Recall that in Lemma 3.2.6 we established that any AY order is isomorphic to a IT19-subset of the
rationals. Relativising this to @', we obtain that we only need to deal with II3 subsets of (Q, <).
This relativisation does not affect uniformity (see Remark 3.1.6).

The proof involves an infinite injury argument, similar to the construction of a minimal pair, as
detailed in Theorem 3.1.44.

Before presenting the formal construction, we will informally explain how our construction
works.

A nice representation of A. Let A be a I13-copy of the order. We let Q = {zg, 21, T2, ...} be a
computable enumeration of Q.

First, we take a nice representation of A as first suggested by Jockusch, as follows. By
the standard representation of a IS set, we may suppose, without loss of generality, that A =
{f(@) | wy() is total}, where {¢; : i € N} lists the partial computable functions; see Theorem 3.1.8.
We replace this representation with a better one, given by a tree that controls strategies. One nice
property of this better representation is that if ji, ..., j, is any finite subset of A, then ji, ..., jn
all “appear to be in A” together infinitely often. This is done as follows.

Define a stage s to be a o-stage (for o € 2<¥) by induction on the length of o, |o|, as follows:

1. Every stage s is a A-stage () is the empty string).
2. If s is a 7-stage and |7| = j = f(i), then if ©g(;) s(y) | where
y = pz{z ¢ dompy) ¢ tis a 7-stage and ¢ < s},
we say s is a 7~ 0-stage. Otherwise, s is a 7~ 1-stage.

Then A is the ”true path” of the above tree, in the following sense. Let 8 be the leftmost path
visited infinitely often so that A < 8, and if o < 8, we have 670 < 3 iff 3%s (s is a o~ 0-stage);
otherwise, 6”1 < 8. Then

A={j:]o|=jand 670 < §8}.

We say that z; appears to be in A at stage s if s is a o-stage and |o| = j. We define o,
to be the unique string with |os] = s and s is a os-stage. Then we say that A appears to be
{j : 7700, and |T| = j} at stage s, and define A to be this set.
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Remark 3.2.29. Notice that Vs (zg € As) because every stage is a A-stage. This seemingly non-
uniform assumption does not actually make the proof non-uniform. This is because when we realise
an infinite (or indeed, non-empty) AY order A as a I19-subset of Q, we can always assume that z
(or any fixed point) is in the subset. To ensure this, fix the first element in the domain w of A and
immediately map O to xy. This will never be changed.

Recall that w* denotes the order of the negative integers.
A good model for (B, <) = (Cz*(A), <). We must perform three basic tasks:

1. For points x; € A, we must build w*z;w.

2. We must “incorporate” all x; ¢ A, as well as all the auxiliary points from our attempts to
build w*z;w into blocks of the form w*z;w for some z; € A.

3. We must ensure that nothing else is built.

A good model for B is given as follows. At stage s, we have a set of balls with various markings
on them, arranged in a line. We have a supply of new balls we must add to this line, either inserted
or added to the ends. These new balls will be z-balls, y-balls, or x;-balls. The intention is that
z-balls are attempting to be a part of an w*-block, y-balls part of an w-block, and x;-balls part of
A. Later, we may change our mind and convert y to z, or x; to y or z. However, if an x;-ball turns
into a y-ball, it can’t change back.

The line of balls is referred to as the surface. An x;-ball on the surface will be marked with a
guess o € 2<%, If there is a stage s where this guess proves wrong, we turn this x; into a y- or a
z-ball (with no guess).

The z;-balls we must place on the surface at stage s are simply those that appear to be in A
at stage s. Roughly speaking, we must place the y’s and z’s around the x;’s that appear in A at s,
according to our definition of A, above.

The strategies. To satisfy our three aims, we must have a strategy dictating where to place our
new balls at each stage. This strategy must overcome several problems, whose solutions we outline
below.

Incorporations. As a first approximation, let us suppose that we have three points which appear in
A at stage s in the order
Tj <X < Tg.

Now suppose that really x;, v, € A and xz; ¢ A. What we shall know is that x; and x appear
in A together infinitely often, but z; only appears to be in A finitely often. For simplicity, let us
suppose that x; and xj, are successors in A. Thus, Vp (z; < p<zpandpe A — p=x; or p = xyp).
We see that locally B = C’;l(A) should be one copy of w* + w at z; and w* + w at zy, with x;
not there. To achieve this, we shall incorporate z; into the block of z;. (The entire construction is
“left justified”.) We do this as follows. At stage s, when z; appears to be in A, we must add one
z before x; and one y following z;. As it stands, we put z immediately before z;, but put y as far
right as possible to be consistent with our current picture of A at stage s.

That is, to place y for the sake of x;, we go as far right as possible until we see an z, also
appearing in A (or reach the end of A;), and then repeat the process for z,. For example, a typical
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situation might be

ZZZ Xj YZ Ti YZ Tl Xy at stage s — 1
ZZZZXTj Yz Ty Y2 Tl - Tp Yz Tp---  at stage s
no change

At stage s, it appears that z; € A, and z,, is the next member of A,. This strategy works because x;
and z;, appear in A together infinitely often, so we build infinitely many z’s before z;, and similarly
before x. (In this case, p = k.) Additionally, since x; appears in A only finitely often, we build
only finitely many y’s and 2’s between z; and xj, and after that, we almost always incorporate x;
into x;’s w-block whenever x; and xj, appear in A together. Hence, we end up with the following
structure:

w*xjyy...yzz...zxiyy...y...w*xk...
= - -

finite w

Thus, we achieve w*zjww*xy, as required. We refer to this strategy as incorporation, since we
ensure that if z; doesn’t appear in A infinitely often, it gets incorporated into some block.

The problem. So far, we have explained how to place the y- and z-balls. The crucial property
that allows this strategy to succeed is ensuring that between any two successive points of A (e.g.,
(xj, 1)), the wrongly placed “false points” (like x;) can be rearranged into an w-ordering.

Now, suppose that infinitely often, a new x; appears so that z; < x; < x;, appears in A at some
stage s;. It seems reasonable to place x; between x; and x,. However, it is critical to determine
how we should relate such z; to z; (in the previous notation).

Eventually, it will no longer appear that z; € A, so placing anything between z; and x; seems
unnecessary. That is, although in the Q-order we may have x; < z; < x;, if it does not seem that
x; € A when we need to place an x¢-ball, we shall place z; beyond z; in the following order:

Tj <X <X < Tk

Note that xj appears in A at the same time.
Thus, assuming we are working to the right of z(, our guiding principle is to always try to place
new z;’s as far right as possible.

This brings us to a minor point.
We shall assume that xq is the least member of A.

This simplifies the presentation. When a new z; appears, we first determine if x; < x¢ or
xo < x;. If x; < xp, we work similarly, mutatis mutandis, so that everything proceeds to the left.

Summarising so far, our key idea is that we don’t build between any z, and z, if x4 is zp’s
current successor and z, doesn’t appear to be in A at the stage. This approach helps us overcome
the problems induced by our strategy above.

The next situation we must consider is when z, x;, x;, ) above are all in A, but infinitely

often it appears that z; € A, z; ¢ A, and z;, € A, and infinitely often it appears that «; € A, x; ¢ A,
and z; ¢ A.
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Following our strategy above, at stage sg, when z; appeared for the first time, we placed the
balls in the order
Tj T Ty Tk (at stage so)

when their actual order (in A) is x; x4 x; Tk. We did this since it appeared that z; ¢ A at stage so.
But later, we see that 2; € A and also z;, x4, and x, € A at some stage s; > so. We now realise
that our initial guess regarding x;’s position was incorrect and now place

Tj Ty Ty Ty T

Here, #; denotes a group of balls around x;’s old position. We can’t remove these balls but also
don’t wish to build an w* + w block around Z;, so our solution is to relabel the Z;-balls as y- or
z-balls.

This then gives rise to another problem. Later, we again see x; € A, but now x; ¢ A. We can’t
use the x; position between z; and x; since we originally placed it there only because z; and x;
appeared in A. Perhaps in another scenario, z; ¢ A and z; € A, but infinitely many such x; get
inserted between x; and x;. We really should place new x; as far right as possible consistent with
our current picture of A,. If, later, it appears that z; and x; are in A, we again build around
the z; we placed between x; and x; last time and cancel its current position. This leads to the
fundamental idea of the proof.

Labelling. Whenever we place an x; on the surface into a new position for the first time, we give
it the label 0 < o, with |o| = t + 1. Thus, we are indicating where z;’s correct position should
be, assuming o is correct. If we must move x;, we do so because some x; encoded in this guess,
which appeared to be out of A, now appears to be in A, and i < t. (Of course, in oy this will
appear as 7 1 with |7| = 4.) The condition ¢ < t is simply to determine which ball to move.
When we move z;, we give its new position a “better” label. The correct position for z; is a stable
position corresponding to the leftmost label visited infinitely often. The reader should note that, at
any particular time, a; might have several positions labelled on the surface; only (at most) one is
correct. Here we need another notion. Let <r denote the lexicographic ordering on the tree. The
reader should interpret o <, 7 as ¢ = 7 or ¢ is stronger than 7. Note that only those o < 7 will
always have their apparent positions uncancelled. Those 7 <y, ¢ only get visited finitely often and
so only move o finitely often. Hence, we shall argue that o reaches a stable position and so does
x¢. We now give the formal details of the construction, although we hope that the reader can see
them for themselves.

Construction of Cn'(A) = B, stage s + 1.

Step 1 (Cancellation): Compute o,. Cancel all positions marked 7 for 7 €, o5. Regard these now
as y-balls and similarly, any z-balls associated with them become y-balls.

Step 2 (Placing xj-balls): In order of j, for each 7 with |7| = j and 770 € o, proceed as follows:
If there is currently an (uncancelled) position marked 770 on the surface, do nothing. If there
fails to be such a position, establish one by placing an z;-ball marked 770 as far right as possible.
This will be on the right of B,;_1 unless there is an z;-ball marked v~0 < 770 and 2; < x;. In this
case, for the <g-least such z;, we place x; immediately left of x; and put s z-balls immediately
preceding x;, i.e., ;222 - - 2x;.
Step 3 (Placing y, z-balls): Now place y- and z-balls as indicated in the discussion. That is, place
another z-ball before zy. Now go right and find the first z;-ball, if any, marked v"0 € o, for some

119



. If there are no y- or z-balls between x; and its predecessor, add a y-ball followed by a z-ball.
If there are already blocks of y’s and z’s preceding x;, add one further y to the y-block and one
further z to the z-block. Continue until we get to the right end. Here, add one y-ball.

End of construction.

Verification. For the sake of the following lemmata, we shall adopt the following definitions:

Definition 3.2.30. We say a ball n appears to be in an z-ball ¢g’s w*-block at stage s if n is a
z-ball and, if m is any ball with m between n and g, then m is a z-ball.

Definition 3.2.31. We say a ball n appears to be in an x-ball g’s w-block at stage s if g has guess
o for some o < o, (and g is not cancelled at s), g < n, and one of the following conditions is
satisfied:

1. (a) there exists an x-ball g in dom Bs with g < n < § such that § has guess < os; and

(b) there does not exist an x-ball in dom Bs with guess < o5 and g <r < n;
and

(c) there exists a y-ball p in dom By such that n < p < §; or
2. there does not exist an x-ball § in dom B, with g < g.

Remark 3.2.32. The intuition here is that either n occurs beyond the largest apparent member of
A at s (in 2), or n occurs before the z-block of two apparently consecutive (at s) elements of A at
stage s.

We also say that position g (an a-ball) receives attention at stage s if the number of elements in
g’s apparent w*-block at s increases. Let 8 denote the leftmost path. That is, as in the discussion,
B is the leftmost path visited infinitely often.

Lemma 3.2.33 (Stable position lemma). Every z; reaches a stable position. That is, either x; ¢ A,
in which case x; receives attention finitely often (in total), or x; € A, in which case there is a unique
x;-ball that receives attention infinitely often (and is, of course, never cancelled). This ball is marked
070 < B with |o| = i.

Proof. By induction. Suppose for all j < 4, the lemma holds. Let sy be a stage such that
Vso (070 <1 0s). Let s1 > sp be the least 07 0-stage exceeding sg. At stage s1, choosing sg
minimal, we may suppose that we place an x;-ball h, marked ¢~0. We claim that this is x;’s stable
position.

First, this position cannot be cancelled. We only cancel positions when their guess appears
wrong (in step 1 of the construction). By 1 above, this cannot occur. Hence, this position is never
cancelled.

Second, this position receives attention infinitely often since 070 < 3, and so 3%s(c”0 < o5) by
the definition of 5.

Finally, h; is unique. To see this, let g be another z;-ball that receives attention infinitely often.
This ball g must have guess +, for some v with |y| = ¢ + 1. There are three possibilities: either
v < Band v X B, v < B, or <, . In the first case, there are only finitely many ~-stages. We
only add to this x;-ball’s z-block at «-stages (by construction), and so such an z;-ball can receive
attention at most finitely often.
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If v < B, then v = ¢70. There are two possibilities: either g was appointed at a stage ¢ before x;
(i.e., before s1), or g was appointed after h, so at a stage s2 > s1. In the first case, our assumptions
concerning the minimality of s; mean that there is a n-stage ¢ with t < ¢ < so, with 7 <7 v and
7 # ~. Such a stage cancels g. If g is appointed after stage s1, then g was appointed at a o~ 0-stage.
We only appoint new positions if there is not already a o~ 0-position available. There is, of course,
one—namely, the one occupied by h. Thus, we wouldn’t have appointed g after all.

Finally, if 8 <, 7y, then 670 X . By step 1, at each o~ 0-stage, we cancel any z-balls marked +.
Hence, g gets cancelled and so wouldn’t have received attention after all. O

Lemma 3.2.34 (True z-ball lemma). Let z; € A. Let &; denote x;’s stable position (given by
Lemma 38.2.33). Suppose n is an w*-ball of &; at stage s1. Then n is a z-ball of &; at every o”0-
stage where 070 < B and |o| = i. Also, if z(n, s) is the number of balls between n and Z; at stage
s, then for all s = s1, z(n, s) = z(n, s1) (= z(n), say).

Proof. Let n and Z; be as above at stage s1. By the definition of an w*-ball, n is a z-ball, and there
are no balls between n and Z; save for z-balls. The construction (in step 2) specifically ensures that
when we place new z-balls x; < Z;, we do not disrupt any currently placed z-balls. In particular, no
new +; balls can be placed between n and &;. This, of course, means that z(n, s) = z(n, s1) = z(n)
since new z-balls are always placed on the left end of Z;’s apparent w*-block. O

Lemma 3.2.35 (True w*-block lemma). Let x; € A and &; be as in Lemma 3.2.34. Then in B
there appears an w* &;-block.

Proof. By Lemma 3.2.34 and the fact that Z; receives attention infinitely often, we thus add in-
finitely many z-balls before ;. O

Definition 3.2.36. Suppose n is a z-ball of some #;. Then we say n is a stable w*-ball, and we
say n adheres to &; as an w*-ball.

Lemma 3.2.37 (w-adherence lemma). Let m be any ball, and suppose m is not a stable x;-ball or
a stable w*-ball. Then there exists a stable x;-ball T; and a stage s(m) such that:

1. m appears to be an w-ball of x; at each o~ 0-stage > s(m), where 070 < B and |o| = i.

2. Ifd(m, &;, s) denotes the number of balls between m and Z; at stage s, then Vs > s(m) (d(m, &;, s) =
d(m, ;, s(m)) = d(m, &;)).

In this case, we say m adheres to x; as an w-ball.

Proof. This is the main lemma that our machinery—discussed before the construction—is meant
to achieve. Either m is an unstable z-ball, an unstable x;-ball for some j, or a y-ball. All of these
cases are similar and can, roughly speaking, be treated simultaneously. Let s be the stage when m
was placed on the surface. If m was an x;-ball, set ¢(m) = m. If m was a y-ball, find the <-greatest
z-ball z; alive at stage s with z; < m and set (m) = x;. (Note: z; does not need to be apparently
in A at s. Also, x; may later die or z; may be Z;.) Finally, if m was a z-ball, find the <-least
x-ball z; such that m > x;, and set ¢(m) = x;. Note that m appears to be in z;’s z-block at stage
s. Since there are no dormant x-balls between m and ¢(m), as in Lemma 3.2.34, we cannot place
more balls between ¢(m) and m after stage s due to the way we place balls. It therefore suffices to
argue the lemma for z(m) = z; instead of m.
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Without loss of generality, assume z; = ¢(m) is unstable, and either z; is eventually cancelled
or z; is never cancelled but only appears in A finitely often.
Now let &; be the <-greatest stable position < z; in B at stage s.

Claim 3.2.38. After stage s we cannot add a stable position T, with &; < &y < x;.

Suppose not, and #; is such. Let 670 be the guess of x;. The only time we place such a ball
Z; between balls already on the surface is because the guess forces us to. That means there must
be some ball z, with guess 770 (say) and &; < &; < x4 < z; forcing &; < z;. Since this is so, by
priorities of movement it must be that g < t.

For suppose otherwise, and ¢ < q. Now x4, must be already present on the surface at the stage
s when z; enters. Since this is a new position for x; there must be no position marked ¢~0 on the
surface at stage s. Hence it cannot be that the guess 770 of z, extends 0”0, because if this was
so we would already have put down a z-ball g marked 0”0 by the time we put 40 down for z,.
But then this ball g cannot have been cancelled in the intervening stages since if g were cancelled,
so too x4 would have been cancelled. (Note g would be cancelled since 670 € o, but then as
070<~70, ~70< o,). Hence we see ¢ < t.

Since ¢ < t and #, is a stable position, we must have that x, is also a stable position. (Remember,
in this case, 070 <470 and 670 < §. If x,’s position is cancelled, so too is anything, in particular
#;, marked ¢70.) In either case, we see that no such z, (and hence #;) can exist, giving (3.2.38).
Thus, we have Claim 3.2.38 that there are no stable positions between ¢(m) = x; and &;. We now
show that x; adheres to ;.

Let z;,, ..., x;, list those x¢-balls alive at stage s with &; < z;, <--- < x;, = z;. Let s(m)
be the least stage such that for all j with 1 < j < n we have

1. either x;, is cancelled at stage s(m), or
2. Vs >s(m) (v; £ o5 where ; is the guess of z;,).

Such a stage must exist by Claim 3.2.38 and the definition of stability. As the notation suggests,
we claim that this &; (s(m)) is correct, namely that

Claim 3.2.39. 1. z; appears to be an w-ball of &; at each ¢”0-stage > s(m).
2. d(zj, &, s(m)) = d(x;, &, s) for all s > s(m).

By construction, 2 = 1 because of the way we place y-balls and the fact that z; is stable. We
argue that 2 holds in a similar way to our argument that there are no stable z-balls between x;
and Z;. Suppose d(z;, &;, s(m)) < d(zx;, &;, s) for some least s > s(m).

There are two ways we might insert new balls between z; and 2;. Either the new ball n is a y-
or a z-ball placed between Z; and x; because we see that x, appears in A at s for &; < x4 < z;
(notice that x4 < x; and g # i for any 1 < k < n by choice of s(m)), or the ball is a new z-ball z4,
say, placed there because again we see x, whose guess appears correct with ; < z, < z;. Again,
xq # ; or x;, for any 1 < k < n. We claim that in either case, no such z, can exist.

Using the reasoning of Claim 3.2.38, z,, which did not exist at stage s, must have appeared at
a stage where some of the z;, for ¢ < k < n looked correct, since otherwise we would have placed
it beyond z;. Also, using the same reasoning as Claim 3.2.38, it must be that ¢ exceeds those x;,
that forced it in (otherwise, x;, would be cancelled first). Thus, since x,’s guess extends such x;,’s
guess, x,’s guess appears correct at best only when x;,’s does too. But the choice of s(m) means
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that x;,’s guess never again looks correct. Thus, z,’s guess also never again looks correct. Hence
stage s can’t exist after all. This clinches 2 and hence Claim 3.2.39, and the lemma follows. O

Lemma 3.2.40 (Truth of outcome lemma). Let n be any ball. Then either n is a stable x-ball, or
n adheres to a stable x-ball.

Proof. By Lemmas 3.2.35 and 3.2.37. 0
Lemma 3.2.41. Cr(A) = B.

Proof. The desired isomorphism is induced by the injection A — B given by &; — x;. The lemmata
and the addition of y points achieve the rest. O

The second proof of the Fellner-Watnick Theorem 3.2.23 is complete. O

Corollary 3.2.42 (Watnick [502]). For n > 1, a linear ordering L has an &™) -computable
presentation iff Z™L is computably presentable

Recall that in §3.2.3 we discussed the possibility of producing a linear order in which a set
serves as its ¥.0-invariant. The well-known application of the Fellner-Watnick Theorem 3.2.23 and
Theorem 3.2.22 is the following:

Corollary 3.2.43. Fiz anyn € N, n > 2, and let S be an infinite set. There is a linear order L(.S)
such that L(S) has an X -computable presentation if and only if S is X9.

Proof. The case when n = 3 is covered by Lemma 3.2.12; let I:(S ) denote the order corresponding
to the case when n = 3. If n = 2k + 1, where k > 1, then let L(S) = ZEYL(S). If no = 2k + 2,
where k > 1, then consider (7 + 2 + 7)Z*~1L(S). O

Recall also that no nice ¥9-coding of a set into a linear order can possibly exist, as follows from
Richter’s Theorem 3.2.13. What about the case when n = 2? It follows from a result of Knight [304]
that the case when n = 2 is also impossible; we omit the proof of this result.

3.2.7 Low linear orders. The Jockusch-Soare Theorem

An interesting application of the Fellner-Watnick Theorem 3.2.23 is the following result about lows
discrete linear orders. Recall that a set X is low if X’ =r @', and it is low,, if X0 =5 (),
Recall also that a discrete linear ordering is one where every element has an immediate predecessor
and an immediate successor, except perhaps the first point with no predecessor and the last with
no successor, if they exist. The corollary below was first established by Downey and Moses [147]
for discrete low orders, and then Frolov [189] noted that the result clearly holds for lowy discrete
orders as well.

Corollary 3.2.44. FEvery lows discrete linear order has a computable copy.

Proof. We use the machinery accumulated for linear orders in the previous subsections without
explicit reference. Suppose X is lows, and suppose A is X-computable. Relativising to X, we
conclude that D = Cr(A) has to be an X”-computable copy. Since X” =7 5", the copy is also A
(hence, I19). It could be that A starts with w or ends with w*, or both. In each of the four possible
cases, we could remove the greatest or the least point of D (or both) if necessary and produce a A
copy of the resulting D. Using the Fellner-Watnick Theorem 3.2.23, we can produce a computable
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presentation of ZD. To get a computable presentation of A, we may have to adjoin w to the left of
ZD and w* to the right of it. O

For many years, it was not known whether every low linear order had to be isomorphic to a
computable one. The question was resolved by Jockusch and Soare [273], who proved the following:

Theorem 3.2.45 (Jockusch and Soare [273]). There is a low linear order not isomorphic to any
computable linear order.

The original proof of the theorem found in [273] involved infinite injury. We give a fairly
elementary injury-free proof of this theorem, which is inspired by the recent result of Frolov and
Zubkov [188]. The injury will be completely eliminated using Theorem 3.2.14.

Proof. We identify computable linear orders with c.e. subsets of the rationals; we slightly abuse
notation and let (W, )een be the uniform listing of all such subsets. We construct a Ag linear order
L with a AY adjacency relation and meet:

Re: L #W..
Theorem 3.2.14 will guarantee that L has a low presentation. The linear order L will have the form:

Din+ (2,00 + 1) + 0+ Lo+ 1+ (e, 1y + 1) +1,
eeN

where n =~ (Q, <), and each L. will have no blocks of odd length. Each L. will have the form

Yin+Bei+,

i€l

where the sizes of the finite blocks B, ; will be even and increasing monotonically in 4, and I, will
be either w or finite, depending on the outcome of the R.-strategy.

Note that, in Wy, it is TI9(&’) to tell whether a given collection of points constitutes a block
of a given size. Since we will be working relative to @', if W, =~ L, then there will be a stage at
which the blocks (2{e,0) + 1) and (2{e, 1) + 1) are finally located. If L, ¥ W,, then of course we
may have infinitely many unsuccessful I1{ (' )-attempts to locate these blocks. All activities of the
strategy will be restricted to the sub-order of W, which is between the current best candidates for
(2{e,0y + 1) and (2{e, 1) + 1) (if there are any).

The idea is that, in W,, we can use &’ to ask if there are at least m points between a pair of
points x,y, while in L we do not have to declare this immediately. We shall use this as leverage to
diagonalise against W, using L.. There will be no interactions between different strategies.

Strategy for R.. Initially, when it first becomes active, the strategy proceeds as follows:

(1) Create two blocks, Be g and Be 1, in L. and keep |B.o| = 2 and |B. 1| = 4.

(2) Wait for W, to reveal two blocks of size (at least) 2 and 4. Meanwhile, make progress in
building L. = n+ 2 + 7+ 4 + n by placing points between the blocks and declaring them to be
non-adjacent.

(3) Suppose W, responds at stage s by showing blocks of similar size, say C and D. Let m be the
number of points between B, and B in L[s]. Using ¢, check whether there are 2m + 2
points between C' and D.
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(3.a) If there are < 2m + 2 points, then proceed to build L, ~n+ 2+ n+4 + 1.

(3.b) Otherwise, suppose there are more than 2m + 2 points between the blocks. Then adjoin
B. 1 to B. o to create one n-block, where

n=2m+ 2+ |Bg[s]| + |B1i[s]|

is of course even. To achieve this, place one extra point into every non-adjacency empty
interval between By and Bj, and declare all successor pairs to be adjacent. (Place two
points in one such interval to make sure n is even.) Proceed to building L. =~ n + n + 1.

In (1) and (2) we diagonalise trivially. In (3.a), L. has no blocks of size > 4, while the respective
part of W, does. In (3.b), C and D cannot be part of one block of size n, while in L, we will end
up with one block of size n.

Thus, W, must respond by changing its guess about the location of the (2{e,0) + 1)- and
(2{e, 1) + 1)-blocks in W,. In this case, the R-strategy is restarted.

If 7 is the number of times the strategy has been restarted, then the strategy initiates building
two blocks, Be 2; and Be 2,41 in L., located to the right of all other blocks B, ;, j < 2i, which were
created by the previous diagonalisation attempts.

Initially, the size | Be 2;| of B 2; is declared to be a very large even number, and also |Be 2;11| =
2| Be 2i|. Thus, the strategy initially attempts to build

L, >~ (Z N+ Bej +T7> + Be2i + 1+ Beoit1 + 1,

j<2i

where j ranges over all blocks produced by the previous diagonalisation attempts of R..

Then the strategy proceeds to its new diagonalisation attempt (1)-(3), but with B, 2; and Be 2i4+1
playing the roles of By and Bj, respectively. Since the sizes of B, 2; and B 2;+1 are much larger
than all other blocks currently in L., the analysis of (1)-(3) remains the same.

So either R, is met at an i-th iteration of the strategy, or we proceed to build infinitely many
blocks inside L.. Of course, this infinitary outcome is possible only if W, does not have an interval
isolated by blocks (2{e,0) + 1) and (2{e, 1) + 1), and in this case R, is also met. O

3.2.8 Further related results*

Beyond w

Corollary 3.2.42 has a transfinite extension due to Ash, Jockusch and Knight [19] and Ash [18]; we
omit the statement. The proof of this corollary is rather tedious, and goes beyond the material
covered in the book. There are other books written which carefully present these methods. These
methods introduced by Harrington [232, 233] are historically called “worker arguments” and “true
stage” arguments. For detailed presentations, we refer the reader to Ash and Knight [20], and
Montalbdn [401, 402]. For worker arguments in the context of linear orders specifically, see [19].

Analogues of the Fellner-Watnick Theorem

With some modifications, an analogue of the Fellner-Watnick Theorem works for w or w* in place
of Z.
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Theorem 3.2.46 (Ash [18]). Let X be a " -computable linear ordering. Then the following linear
orders are computably presented.

(i) w-X, and
(ii) w* - X.

While the transformations X + w - X and X ~ w* - X in the theorem above are uniform for
some order-types X, it is not uniform in general; see Exercise 3.2.57.

Relative to any non-computable oracle

Structures (that are not linear orders) can have the property that they are X-computably pre-
sentable iff X >r ¢F; this surprising theorem was established by Slaman [471] and, independently,
Wehner [503]; see Exercises 3.2.63 and 3.2.64. It may seem surprising, but the following is a
longstanding open question.

Question 3.2.47 (Downey). Is there a linear ordering L which has presentations of every nonzero
degree, but no computable presentation?

In his PhD Thesis [393], Russel Miller showed that there is a linear ordering which has a
presentation of every nonzero A9-degree, yet has no computable copy. It is also known (though
unpublished) that this can be an ordering with presentations in every hyperimmune degree, where
a is hyperimmune if it computes a function not dominated by any computable function (see also
Exercise 3.1.28); we omit the details. Also, for any n > 2 there exists a linear order that has an
X-computable copy iff X is not low,; see [186].

Further reading

For a more complete introduction to the theory of linear orders, we recommend reading the some-
what dated technical survey [119]. A more recent technical survey is [191], though it covers a more
limited range of topics. For a detailed discussion of various results related to Question 3.2.47 but
not restricted to linear orders, we cite the relatively recent (but rapidly ageing) survey [167], which
contains no proofs but includes over 300 bibliographic references to the relevant literature.

Historical remarks

En passant, effective linear orderings have been studied since the 1940’s and 50’s, both in computable
analysis and in the context of computable ordinals and their use in hierarchies in computability
theory. We have also seen that Kleene [300] used computable well-ordered sets to give meaning to
Turing degrees above 0“). Specker [480], gave the first explicit example of a computable linearly
ordered ascending sequence of rationals whose limit is a (left-c.e.) noncomputable real.

As far as we know, the first studies of the general class of computable linear orderings (and
Boolean algebras) for their own sake began in the late 1960’s with Feiner’s thesis [161]. This
thesis was the first to systematically focus on the subtle distinction between c.e. presentations
and computable presentations in structures that are neither groups nor rings, and are not finitely
generated. Effective linear orderings and Boolean algebras witnessed a lot of study in the 1970’s
and early 1980’s particularly by Remmel, Lerman, LaRoche, Goncharov, and Dzgoev. We refer
the reader to [119] for more on such developments. One significant feature of these results is the
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necessity for tools that enable much more indirect coding than had previously been seen in groups
and fields. Most natural codings in linear orderings seem to use two or three quantifiers, and
methods involve infinite injury arguments. Boolean algebras are even worse necessitating difficult
techniques such as the Feiner’s hierarchy as we will see in the next chapter.

Exercises

Exercise® 3.2.48. Prove Theorem 3.2.22.

Exercise® 3.2.49 (Folklore). Prove that there is a c.e. presentable linear ordering not isomorphic
to a lows-presentable one.

Exercise® 3.2.50. Use Theorem 3.2.22 to show that there is a computable linear order L which is
not isomorphic to any computable linear order with computable adjacency relation.

Exercise® 3.2.51 (Downey and Moses [147]). Show that if L is a semi-low (see Exercise 3.1.23)
discrete linear ordering then it has a computable copy.

Exercise® 3.2.52 (Rosenstein [456]). Show that if X € X9, then there is a computable linear
ordering of order type
n+no+n+ny+n+...

where ng < n; <ng < ... lists X in order. (Recall that this is called a strong n-representation of
X))

Exercise 3.2.53 (Fellner [165]). Show that if Y € I3, then Y has a strong 7n-representation (see
the previous exercise).

Exercise* 3.2.54 (Lerman [336]). Show that if S € X9, then there is a computable linear ordering
L of order type
Z+no+Z+nm+7Z+...

where ng < n; < ... lists S in order of magnitude. This is called a strong Z-representation of S.

Exercise 3.2.55 (Moses [408]). Show that for every n, there exists an n-decidable linear order with
no (n + 1)-decidable presentation. (Recall that a computable structure is n-decidable (n = 1) if
we can uniformly decide first-order statements with n-1 alternations of quantifiers in the structure.
For example, in a 2-decidable structure we can decide V3-statements.)

Exercise* 3.2.56 (Chisholm and Moses [91]). Show that there is a linear order that is n-decidable
for all n € N, but has no decidable presentation.

Exercise® 3.2.57. Show that the procedure in Theorem 3.2.46 cannot possibly be uniform®. (Hint:
Fix a uniform sequence of J”-computable linear orderings (L;);en of the isomorphism types w and
Z, so that L; =~ 7Z iff the I1-predicate holds. Conclude that wL; witnesses the I19-completeness of
“L; has the least element”, which contradicts the natural complexity of this property.)

See also Exercises 9.1.30 and 9.1.32.

5We are thankful to Maxim Zubkov for pointing this non-uniformity to us.
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Exercises about degree spectra

The degree of the isomorphism type of a structure of A to be the least Turing degree a, such that A
has an a-computable copy, if such least degree exists. The exercises below are based on the results
of Richter that can be found in [450, 451].

Exercise® 3.2.58. Show that if a is the degree of an order-type (in the sense defined above), then
a=0.

Exercise® 3.2.59. Suppose (i) and (ii) below hold for a degree a and a theory T over a finite
language L.

(i) There is an infinite computable sequence of finite structures {4; : i € N} such that A4; is not
embeddable into A; for i # j.

(ii) For each S < w, there is a structure Ag such that:

(ila) Ag is a countable structure of T
(iib) Ag <1 S.
(iic) A; is embeddable into Ag iff i € S.
Then there is a structure of L whose isomorphism type has degree a.
Exercise® 3.2.60. Let a be any degree.
(i) There is an abelian group whose isomorphism type has degree a.
(ii) There is a lattice whose isomorphism type has degree a.
(iii) There is a graph whose isomorphism type has degree a.

Exercise 3.2.61. We define the computable embedding condition as follows. Given a structure A,
a finite structure C and an embedding f : C — A, define the class A¢ s to be

{D : D is a finite structure extending C' embeddable into A via a map extending f}.

Then A satisfies the computable extension property iff for all structures C' isomorphic to a finite
substructure of A, and for all functions f embedding C into A, the class Ac s is infinite and
computable. Show that for any a-computable structure A satisfying the computable extension
property, there is Turing degree b and a b-computable presentation of A so that a and b form a
minimal pair. (Hint: Generalise the method used in the proof of Theorem 3.2.13.The key fact is
that the A¢ ;s is a computable collection, and this accords with the notion of acceptable string in
the proof of Theorem 3.2.13.)

Exercise 3.2.62. Derive Theorem 3.2.13 (equivalently, Exercise 3.2.58) as a consequence of the
previous exercise.

Exercise* 3.2.63 (Wehner [503]). A computable enumeration (a numbering) of a family of sets S is
a c.e. set W such that S = {WI™ : n e N}, where W™ = {z : (n,z) € W}. Note we allow repetitions
in the uniform enumeration of S. Show that there exists a family of sets that has an X-computable
enumeration iff X > . (Hint: Consider the family {F @ {n} : F finite € w and F # W,,}. Given
X >7 0, use initial segments of X to extend finite sets in the family while avoiding W,,.)

Exercise® 3.2.64 (Slaman [471], Wehner [503]). Deduce from the previous exercise that there is
a structure that has an X-computable presentation iff X >7 ¢f. (We remark that Slaman gave a
direct proof of this result that did not use Wehner’s family.)
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3.3 What’s next?

In the next chapter, we will use linear orders to study Boolean algebras and their Stone spaces from
the computability-theoretic standpoint. Results and techniques developed for linear orders will be
rather useful, though certainly not unavoidable. Nonetheless, for the sake of exposition, we shall
often choose to give a proof that uses linear orders over a proof that uses other methods.
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Chapter 4

Boolean algebras and computable
compactness

In this chapter we establish (1) and (2) of Theorem A and (1) and (2) of Theorem B; we state these
results as separate theorems below:

Theorem (Feiner [162]). There is a c.e. presented Boolean algebra not isomorphic to any
computable one.

Theorem (Downey and Jockusch [129]). Every low Boolean algebra has a computable presen-
tation.

Theorem (Bazhenov, Harrison-Trainor, Melnikov [35]). There exists a right-c.e. Stone space
not homeomorphic to any computable Polish space.

Theorem (Harrison-Trainor, Ng, Melnikov [245]). Every computable Polish Stone space is
homeomorphic to a computably compact one.

In order to prove these results, we give a brief introduction to the theory of computable Boolean
algebras and then to the theory of computably compact spaces. The chapter is subdivided into two
sections:

1. Section 4.1 contains a brief introduction to the theory of effectively presented Boolean alge-
bras. It includes the proofs of the theorems of Feiner, and Downey and Jockusch.

2. Section 4.2 lays the foundations of the theory of computably compact spaces, which will be
useful throughout the rest of the book. It also provides detailed proofs of the remaining two
results stated above.

We relate these subjects and connect them to the materials from the previous chapter using several
effective versions of Stone duality between Boolean algebras, totally disconnected compact Polish
spaces, and the interval algebras of linear orders. Although we do not restrict ourselves to the
techniques and facts necessary to prove the results stated above, our exposition of these topics is
very far from being complete.
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4.1 Computable Boolean algebras

Boolean algebras were introduced by George Boole in his book, The Mathematical Analysis of
Logic (1847). Boole sought to develop a calculus of logical truths, building on Leibniz’s earlier
ideas. These algebraic structures are particularly important in logic and much less so outside of
it. Consequently, the set-theoretic and model-theoretic aspects of Boolean algebras are very well-
studied. The algorithmic aspects of computable Boolean algebras are also well-understood, with
the field having an extensive theory, numerous results, and powerful techniques. As a consequence,
we will need to be selective. In our book, Boolean algebras will be predominantly used as a tool
to study the algorithmic aspects of totally disconnected compact spaces. Our introduction to the
theory will therefore be rather brief and mostly restricted to the results that we need for proving the
stated above theorems of Feiner and Downey-Jockusch. For a much more detailed introduction, we
refer to Goncharov’s book [207] and Remmel’s survey [447]. Many results concerning computable
Boolean algebras proven before 2000 can be found in [207, 447]. We will provide the reader with
further references in due course.

4.1.1 Countable Boolean algebras
The definition of a Boolean algebra

Fix a set S, the collection of all its subsets P(S), and some U < P(S) closed under union, intersec-
tion, and complement relative to S, i.e., X = S\X. We can view U as an algebraic structure in which
the individual elements are the subsets and the algebraic operations are U, N, and X = =X = S\ X.
This algebraic structure can also be viewed as a partial order under the subset relation <, in which
the greatest element is S and the least is (J; this order is a distributive lattice with “relative com-
plements”; we omit the formal definitions. Note that A <€ Biff An B = Aiff Au B = B, so we
could include the order in our signature if necessary.

Now suppose we are given an algebraic structure B in the language {v, A, 0,1}, where v, A,~
are simply algebraic operations that do not necessarily carry any set-theoretic interpretation. Can
we put down a comprehensive list of axioms that would guarantee that the structure can be realised
as U < P(S) for some S? In other words, can we find a set S and an interpretation that matches
elements of B with elements of P(S) so that v, A,” become U, N, and — under this interpretation?
It is well known that the answer is affirmative, and the theorem asserting this is known as Stone
duality. To make sense of Stone duality formally, we first define the algebraic structures associated
with it that are called Boolean algebras.

Definition 4.1.1. A Boolean algebra is an algebraic structure equipped with two binary op-
erations A and v, a unary operation ~ (also sometimes denoted — or '), and two distinguished
elements 0 and 1 that satisfy the following axioms that hold for all elements a, b, c from the
domain of the structure:
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l.av(ve)=(avd)ve T.av(barc)=(avbd)A(ave)
2.an(bre)=(arnb)rc 8.an(bve)=(arnb)v(anc
3.avb=bva 9.av0=a
4. anb=bnra 10. anl=a
5. av(andb)=a 1l.ava=1
6. an(avd)=a 12. ana=0

Familiar examples include the simplest Boolean algebra 2 = {0, 1} consisting of two elements 0
and 1, and the Boolean algebra consisting of finite and co-finite subsets of the non-negative integers,
under the set-theoretic operations.

We could use the axioms above to establish various expected properties such as 0 = 1 and
1 =0, and that 1 is the unique element satisfying axiom 10, etc. We certainly do not claim that
the axioms above are optimal in any sense. In fact, some of the axioms can be removed from the
list above since they can be derived from the rest of the axioms. Unlike groups or fields, it seems
that there is no fixed collection of axioms that would be accepted as ‘standard’ in the literature.
For instance, in his book [207], Goncharov views Boolean algebras as structures in the language
A, v, (i.e., without 0 and 1) that satisfy the following axioms:

iavb=bva v.ava=a
ii.av(ve=(avbd)ve ) _

vi. (ava)vb=b
iii. av(dac)=(avd)alave)
iv.avb=anab vil. a =a

Then Goncharov derives the existence of the uniquely defined 0 = a A @ and 1 = a v a that
do not depend on the choice of a. (We suggest that the reader verify this claim and also derive
some of the axioms ¢. — vii. from 1. — 12. and vice versa.) Goncharov’s choice of axioms is a bit
more optimal, in the sense that his definition has fewer axioms. It can be shown using automated
reasoning (see [359]) that Boolean algebras can be defined using just one axiom:

(vy)'va)v@v (@ v(zve)))) =z

where 2’ stands for T (writing it down using ~ is a challenge). Even though this is definitely a
peculiar result, it is not practical in the sense that this axiom is neither natural nor convenient.

There are many other ways to define Boolean algebras using alternative operations. For example,
we can view a Boolean algebra as a complemented distributive lattice with greatest and least
elements. Alternatively, it can be viewed as a Boolean ring. The list goes on. In each case, one can
reconstruct the operations A and v from the operations used in these definitions in a nice, finitistic
way. We will not provide any further analysis of the axiomatic approach to Boolean algebras, as it
seems to be irrelevant to our story; for more details, see [207].
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Ideals, filters, and Stone duality

Before we discuss Stone duality in more detail, we should mention two other notions central to
the theory of Boolean algebras. An ideal Z in a Boolean algebra B is a non-empty subset that is
closed under v and also has the property that b A ¢ € Z for any ¢ € Z and b € B. In particular,
it follows that 0 € Z: since T # J, we can take i € Z and conclude that ¢ A ¢ = 0 € Z. Following
the general pattern in commutative algebra, it is usually additionally assumed that 1 ¢ Z. The
reason is that ideals should correspond to kernels of homomorphisms between Boolean algebras,
and in the literature, it is almost uniformly assumed that 1 # 0. For instance, if Z is an ideal in B,
we can define the factor-algebra B/Z following the usual procedure of forming congruence classes
modulo Z. (We can define a = b modZ if z Ay = (z A ) Vv (T Ay)eZ, where A denotes the
operation of “symmetric difference”.) If we allowed 1 € Z, in which case, of course, Z = B, then we
would say that Z is proper if 1 ¢ Z. We assume 1 ¢ 7 for any ideal Z. Under this assumption, an
ideal is mazimal if, well, it is maximal (among all ideals under inclusion). An ideal is prime if for
any element a, either a or a is in the ideal. The following lemma is not hard to show. We include
its proof merely as an illustration of a typical use of the axioms. As we will explain shortly after
the proof of the lemma, we will be able to avoid such formal arguments throughout the rest of the
chapter.

Lemma 4.1.2. In a Boolean algebra, an ideal is mazimal iff it is prime.

Proof. Suppose 7 is prime. Any other ideal J > Z must have a ¢ Z. By the assumption on Z,
ae€Zc J, and thus
l=avaeJ,

showing that Z must be maximal.

Conversely, fix a maximal Z. Suppose a is such that a,a ¢ Z. Extend the sets Z u {a} and
T u {a}, closing them under v and under A with any element of the Boolean algebra. Denote the
resulting ideals J, and J5. It is clear that both J, and Jz properly extend Z and thus must contain
1. The ideal J, consists of elements of the form (z v a) A b, where z € Z and b € B. The description
of J; is similar, mutatis mutandis. In particular, for some z,y € Z and b, c € B, we have

l=(xva)aband 1= (yva)aec

It is not difficult to derive from the axioms that whenever 1 = z A w, it must be that z = w = 1.
So we conclude that
=zxvaandl=yva.

But then we have
zvy=(xvy v0o=(zvy)v(ana),

and applying the distributivity axioms, we obtain
zvy=(xvyvar(lzvyva)=1Avyyrn(lvz)=1al=1€eZ,
and this contradicts Z # B. O

It is also not too difficult to show that if Z is maximal in B, then the factor B/Z is just the
two-element Boolean algebra {0,1}. Additionally, given any non-zero element a € B, there exists a
maximal ideal Z such that a ¢ Z. The construction of such an 7 is fairly standard in commutative
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algebra. It is not hard to show that when we have a # b, for non-zero a and b, there exists a
maximal Z such that either a € Z and b¢ Z, or b € 7 and a ¢ Z. In other words, mazimal ideals
separate points in B.

If we swap A and v in the definition of an ideal, we obtain the dual notion of a filter (closed
under A, stable under v with any element of B). We also usually assume 0 is not in our filter.
(Indeed, if we swap A and v and 1 with 0 in the Boolean algebra, in the resulting Boolean algebra,
ideals will become filters and filters will become ideals.) A maximal filter is called an wltrafilter.
Similarly to the situation with maximal ideals, a filter F is an ultrafilter iff either a € F or a € F,
for any a € B. Indeed, F is an ultrafilter iff Z = B\F is a maximal ideal, and vice versa. Recall
that if Z is maximal, then Z is the kernel of a homomorphism B — {0,1}. Under this map, the
complement of Z is the ultrafilter corresponding to the pre-image of 1 under this homomorphism.
Of course, ultrafilters also separate points in B.

We now return to Stone duality. One version of Stone duality is stated below.

Theorem 4.1.3. Every Boolean algebra is isomorphic to some subalgebra U < P(S), where S is
the set of its ultrafilters (alternatively, the set of its maximal ideals).

We will give a complete proof of a different version of Stone duality later in Theorem 4.1.6.
Since we will never actually use this particular version of the duality, we omit the formal details
that are easy to find in the literature; e.g., [207].

Theorem 4.1.3 proof idea. Using slightly tedious but not difficult arguments (cf. Lemma 4.1.2), we
find that our Boolean algebra B is isomorphic to some subset of P(S) in a certain canonical way:

a € B is associated with {F : a € F},

where F € S ranges over ultrafilters in B. Since ultrafilters separate points, the induced map is an
isomorphic embedding from B into P(S); let U be the range of this embedding. O

Assuming Stone duality, we suggest the following:

Do not memorise the axioms of Boolean algebras. Instead, think of the elements of the
algebra as being (some) subsets of a fixed set S (identified with 1) and of A, v, and Z as being
N, U, and S\z, respectively.

This informal approach is obviously not always satisfactory, but it can be used to guide the
reader’s intuition.
Atoms

Define a < b if a A b = a; this partial order corresponds to the subset relation under the duality.
We say that an element a # 0 splits if there are two non-zero elements z,y such that

a=zxzvyandzxz Ay=0.

This is, in fact, equivalent to saying that there is a non-zero b < a. In this case, we have that a
splits into b and b A a:

a=0bv (bna).
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The element b A a is sometimes called the complement of b relative to a.
Note that the set
a={b:b<a}

of all elements below a can be viewed as a Boolean algebra in which a plays the role of 1. When
a # 1, it is actually not a subalgebra in the usual model-theoretic sense (if we put 1 into the
language). It is a principal ideal in the sense that it is the smallest ideal that contains a # 1. A
finitely generated ideal can be defined similarly: it is the smallest ideal Z that contains some finite
collection of elements ag, ..., ar € Z, which are then called its generators. Of course, the generators
are not unique for such an Z. Indeed, it is easy to see that any finitely generated ideal is principal,;
consider a, where a = ag v a1 v ... v a is the supremum/union of the finitely many generators
agy ..., 0.

More generally, we can take any collection of elements of a Boolean algebra and define the
ideal generated by these elements. This is done by closing the set under finite unions and under
intersections with arbitrary elements of the algebra. One such ideal that we shall refer to later is
the ideal generated by all atoms in the algebra.

Definition 4.1.4. A non-zero element a of a Boolean algebra is called an atom if it does not split,
i.e., there is no b # 0 such that b < a.

The most elementary case of Stone duality is when the Boolean algebra is finite. Indeed, if we
could keep splitting an element, then the algebra would be infinite. It follows that every element of
the algebra has to be the union of finitely many atoms. In this case, we can take the set of atoms
to be S, and the algebra to be P(S). This, in particular, shows that two Boolean algebras having
the same finite cardinality must be isomorphic, and that it has to be of the form P({1,...,m}),
and thus has to have size 2. This gives a complete classification of finite Boolean algebras.

Unfortunately, countably infinite Boolean algebras are much more complicated and are essen-
tially unclassifiable up to isomorphism; we will discuss this in detail in Chapter 7. Researchers in
this area have developed various tools to study broad subclasses of computable Boolean algebras.
For instance, we will soon explore another version of Stone duality that relates Boolean algebras
to linear orders. We will then discuss a version of Stone duality in terms of trees, and finally, in
terms of abstract Stone spaces. This last version of duality will be used to derive corollaries in
computable topology.

Interval representation

Fix a linear order L. Since all our orders will be countable, we can view L as a subset of the
rationals. Consider the new linear order L* = L u {{, 00}, where o is a new element larger than
any element of L, and ¢ is also a new element which is smaller than any element of L. Consider the
set Intalg(L) consisting of finite unions of left-closed right-open intervals of the ordering L*:

Intalg(L) = {[ao,bo) U [a1,b1) U ... U [ak,bk) : a;,b; € LU {¢,00}, ke N},

where
[a,0) ={z:a<xz<b}

for each fixed a,b € L U {¢,00}. We can additionally assume that ag < by < ... < ap < by when
k > 0. When k = 0, we allow the possibility ag = by to ensure that we always have

[a0, ao) = [£,€) = [00,%0) = & € Intalg(L)
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even in the extreme pathological case when L < Q is empty. Note we also always have [¢,00) =
{¢} U L € Intalg(L).

Lemma 4.1.5 (Folklore). Under the set-theoretic operations, Intalg(L) is a Boolean algebra. Fur-
thermore, if L is computable, then so is the Boolean algebra Intalg(L).

Proof. 1t is clear that the process described above is computable, so we only need to check that
Intalg(L) is indeed a Boolean algebra. Observe that Intalg(L) € P({¢} u L) and is closed under
intersection, union, and complementation. Since {¢} U L has a least element, namely ¢, Intalg(L)
also has the greatest element under inclusion, namely

[¢,00) = {£} U L.

Thus, we have that Intalg(L) € P({¢} u L) contains both the greatest and the least element of the
Boolean algebra P(L u {£}). Since Boolean algebras are defined by universal axioms, the lemma
follows. 0

The following result is also folklore.

Theorem 4.1.6 (The Interval Representation Theorem). Every Boolean algebra is isomorphic to
an interval algebra Intalg(L) of a linear ordering L.

Proof. Let B = usB, with By = {0,1}, and Bsy1 — Bs = {bs}. We will define at each stage a
subalgebra ]/3: containing By.

Define L as the ordering with two points labelled 0 and 1; in the notation above, these elements
will play the roles of £ and c0. Thus we have the induced mapping go with 0 — ¢f and 1 — [0, 1).
At stage s+ 1, we will have a set Atomsg = {as,, ..., as, } listing the atoms of the subalgebra of B;,
together with the linear ordering L, = 0,2, ..., 5, = 0, so that gs(as,) = [zs,_,, ;) induces an
isomorphism from the subalgebras E\S to Intalg(Ls).

At stage s+ 1, if bs is in ]/3\5, we need do nothing. Otherwise, for each a = ag, such that bs splits
a (i.e., both x A by and x A bg are non-trivial), add a new point y to L1 between Ts,;_, and s; to
split the interval

[xsj—l ’ xsj )
into [zs,_,,y) U [y, 7s;). Map as; A bs to one of them, say, [z, ,,y), and map as, A bs to [y, zs;)-
Note that this generates two new atoms for B/s;

Let c¢1,..., ¢y denote the atoms of B:\H below b,. Clearly, we have ensured that the induced

map
9(bs) = gler) v -+ U glem)

works. The result follows. O

The construction in the proof of Theorem 4.1.6 was restricted to [0,1] N Q. Thus, we will
occasionally denote the extra elements ¢ and oo used to define Intalg(L) by 0 and 1, respectively. It
should be clear from the context when 0 corresponds to an element of the linear order and when it
refers to the least element of a Boolean algebra, and similarly for 1. We remark that non-isomorphic
linear orders can have isomorphic interval Boolean algebras; a sufficient condition will be presented
in Theorem 4.1.12.

136



Sums of interval algebras

If we have a sequence of Boolean algebras A,, = Intalg(L, ), n € N, then we write

> A,

neN

to denote
Intalg(Lo + 1+ L1+ 1+ Lo+ ...).

It is, of course, straightforward to define ), _; A;, where I is some other set of indices. We remark
that we can define }},_; A; to be > ._; Intalg(L;) for any choice of L; such that A; =~ Intalg(L;).
Up to isomorphism, the result will not depend on the choice of L; as long as A; =~ Intalg(L;) for
all 7. In this subsection, a Boolean algebra will always be given as an interval algebra, thus for the
purposes of this section, > ._; A; is merely a notational convenience.

Before we proceed, we should perhaps justify the use of the extra “ones” in the sequence

Lo+1+Li+1+La+....
If we take just two orders, say Lo and Ly, then
[¢,00) =[¢,1) U [L,00),

where ¢ is the extra element that we had to adjoin to the left of Lg, the point oo is an extra point
added to the right of L, and the 1 is the point in-between Ly and L; (which should not be confused
with the greatest element [¢, ) of the Boolean algebra Intalg(Lg+ 1+ L1)). Now it should be clear
that the principal ideal generated by [£, 1) is essentially Intalg(Lg), in which the extra point 1 plays
the role of oo. Similarly, the principal ideal of Intalg(Lo + 1 4+ L;) generated by [1,00) is essentially
Intalg(L1), but this time the extra point 1 plays the role of ¢. Furthermore, [¢,1) = [1,0) in
Intalg(Lo + 1 + Ly). In this sense, we have that

Intalg(Lo + 1 + L) = Intalg(Lg) + Intalg(Lq),

and this sum is direct or disjoint in the sense explained above.

In the case of infinitely many L;, >, ; Intalg(L;) can also be viewed as the infinite “disjoint
sum” of the respective Intalg(L;). (It is not quite the same as the direct sum of infinitely many
vector spaces because the algebras B; = Intalg(L;) sort of “accumulate below c0”. This process
can be described topologically in terms of Alexandroff compactification of the disjoint union of the
dual spaces of B;; more about topology later.)

Cantor-Bendixson derivative

Notice also that in the proof of the Representation Theorem 4.1.6, we get a 1-1 correspondence
between atoms in B and adjacencies in L. This correspondence implies the alignment of the
condensation derivative for linear orderings (where adjacencies are identified) with the Cantor-
Bendixson derivative defined below.

Definition 4.1.7 (Cantor-Bendixson derivative). For a Boolean algebra B and z,y € B, define
x =1 y iff x and y differ by finitely many atoms. Then the a-th Cantor-Bendixson derivative
of B, denoted by D*(B), is defined via D°(B) = B, DP*)(B) = DW/_  and for limit «,
DE)(B) = rsc DV(B).
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For example, the interval algebra of w becomes the two-element Boolean algebra after taking
the derivative. This is because any two elements that differ by finitely many atoms are identified
modulo the ideal generated by the atoms. Similarly,

B = DW (Intalg(w?)) = Intalg(w),

and indeed
B = D™ (Intalg(w™)) = Intalg(w™™™),

whenever m < n. This process can be iterated over ordinals . Let D(® also denote the natural
homomorphism from B to its a-th derivative D(®)(B); we will only need the case when « is finite.

Definition 4.1.8. The Cantor-Bendixson rank of B is defined as the least o such that D(®)(B) =
D(a+1) (B)

That is, the algebra either vanishes after a iterations or becomes atomless. In the case when
B is countable, which is the only case we ultimately care about, « has to be countable. Since all
countable atomless Boolean algebras are isomorphic via the usual back-and-forth argument, if « is
the rank of B and D(®)(B) is non-trivial, then D(®)(B) has to be isomorphic to Intalg(Q).

Definition 4.1.9. If b € B is such that D) (b) is an atom in D (B), then we say that b is an
n-atom.

For example, if the principal ideal generated by b is isomorphic to Intalg(w) (after we declare
b= 1), then b is a l-atom. In fact, this gives a complete description of 1-atoms; we omit the proof.
Similarly, an n-atom is characterised by the respective principal ideal being a copy of Intalg(w™);
the transfinite analogy also works. Also, it should be clear that D(®)(Intalg(Q)) = Intalg(Q) for
any «. This is simply because Intalg(Q) has no atoms at all.

We will be using the Cantor-Bendixson derivative when we look at Feiner’s Theorem. Our proof
of Feiner’s Theorem will use the Fellner-Watnick Theorem 3.2.23, and thus we will be using interval
algebras of the form Intalg(Z™L). Observe also that Intalg(Z) = Intalg(w*) + Intalg(w), where w*
is the order of the negative integers. It is easy to see that Intalg(w*) =~ Intalg(w), so Intalg(Z) is
just the sum of two l-atoms, in the sense that its greatest element 1 splits into two 1-atoms. In
particular, multiplying a discrete order L by Z (from the left) results in replacing every atom in the
respective interval algebra by a pair of 1-atoms. It may not be immediately obvious, but Intalg(Z?)
is the sum of two 2-atoms, and so on. The situation is a bit different in the interval algebra Z - Q;
we have D) (Intalg(Z-Q)) = Intalg(Q). It does not contain any l-atom, but it has plenty of atoms
“all over the place”. For instance, it satisfies the following property for n = 0.

Definition 4.1.10. Fix n > 0. We say that an element x of a Boolean algebra B is atomic (or
0-atomic) if for each non-zero y < x, there is some atom z < y. We say that x is n-atomic (for
n > 0) if D™ (z) is atomic in D™ (B).

The definition has a transfinite extension, but we will not need it.

Definition 4.1.11. Fix n > 0. An element b of an algebra is 0-atomless or simply atomless if the
principal ideal generated by the element is isomorphic to Intalg(Q) (when we declare b = 1). More
generally, b is n-atomless if D™ (b) is atomless in D) (B).
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According to the definition above, the least element 0 is not atomless. Similarly, if an element
is a finite union of atoms, then it is not 1-atomless, and so on.

The two definitions above are related as follows: Since all countably infinite atomless Boolean
algebras are isomorphic, a is atomic iff no (non-zero) b < a is atomless. In particular, a-atoms are
atomic, but any algebra of the form Intalg(L + Q) is not.

The Remmel-Vaught Theorem

We can ask many questions about the relationships between orderings and successivities, algebras
and atoms, and order-types of L and isomorphism types of Intalg(L). To prove the Downey-
Jockusch Theorem about low Boolean algebras, we will need the following important result of this
kind. Vaught [496] proved this result for atomic Boolean algebras, and Remmel [445] extended it
to all countable Boolean algebras.

Theorem 4.1.12 (Remmel-Vaught). (i) Suppose that B is any Boolean algebra having infinitely

many atoms, and let B be the algebra obtained from B splitting each atom of B a finite number
of times. Then B is isomorphic to B.

(ii) (Rephrasing (i) in terms of linear orderings). Suppose that L and L are linear orderings with
infinitely many adjacencies, and g : L — L is an order-preserving embedding such that

(a) if [x,y) is finite in L then [g(z),g(y)) is finite in L, and

(b) if z € L is not in the image of L, then there are z,y in L such that [z, y) is finite and
z € [9(2), 9(y))-

Then Intalg(L) = Intalg(L).

Proof. We use the form (i). Let {Y') denote the subalgebra generated by Y in Intalg(Q). Here

and henceforth, < means <o 1] since we view L and L as suborderings of Q = Q n [0,1]. For a
subalgebra X of Intalg(Q), let I(X) denote the ideal generated by X, and A(X) denote the set of
atoms of X. It is relatively easy to see that B/I(A(B)) =~ B/I(A(B)).

To demonstrate that B is isomorphic to B, let B = {b; : i € N} and B = {c; : i € N}. We build
the isomorphism in stages, at each stage n, specifying a subalgebra B, of B, a subalgebra En of
B, and an isomorphism f, : B, — B. Inductively, we suppose that these parameters satisfy the
following conditions.

(i) a € B, is the union of exactly n atoms of B iff f,,(a) is the union of exactly n atoms of B.
(ii) If a € B,, and a ¢ I(A(B)) then

- fula) ¢ I(A(B)),

- fn(a) = a mod I(A(B)), and

- {be A(B):b<a}| = |{ce A(B) : ¢ < fn(a)}].
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Since 0p = 05 = 0g and 1 = 15 = 1q, at stage 0 the identity map can play the role of fy and
will satisfy (i) and (ii). At stage 1, we do nothing else. Let n > 1.

Stage 2n. Assume that at stage 2n — 1 we have (i) and (ii) and additionally, {{bg,...,b,_1}> S
Bon_1, and {{co, ... ¢n_1}) S Ban_1. Let aq, . .., a list A(B,) so that fan_1(aq), . .-, fan_1(as) list
A(é) If b, € Bop—1, do nothing. Otherwise, let By, = (B, u {b,}). We can renumber the list of
atoms so that the atoms of Bsy,, are

aog N bn,ao — bn7 BN 7 IEAN bn,aj — bn,aj+1,aj+2, ey Qg.
We define fa,, on the atoms of A(Bay,) and then extend it via the naturally induced map. For ¢ with

J+1<i<s, let fan(a;) = fon—1(a;). For the remaining ¢ with 0 < ¢ < j, we define fo,(a; A by)
and fa,(a; — b,) depending on one of the cases below.

Case 1. a; is the union of exactly m atoms of B. Then for some k, a; A by, is the union of k atoms
of B. Now fa,-1(a;) is the union of exactly m atoms of B. Thus we let ¢ be such that ¢ is the
union of exactly k atoms < fo,,—1(a;), and define fo,,(a; A b,) = c and fo,(a; —by,) = fon—1(a;) —c.

Case 2. a; ¢ I(A(B)). By hypothesis, a; = fon,—1(a;) mod I(A(B)). Thus a; A b, = fon—1(a;) A
by, mod I(A(B)) and a; — by, = fon—1(a;) — by, mod I(A(B)). There are now 3 subcases.

Subcase 2a. |{be A(B) : b < a; Aby}| = [{be A(B) : b < a; — b,}| = 0. Then we can let
f2n(ai A bn) = f2n71(ai) A by, f2n(ai - bn) = f2n71(ai) — by,.

Subcase 2b. [{be A(B) :b < a; Aby}| =m < 0, and [{be A(B) : b < a; —by}| = k < o0.
Then there are exactly m = k atoms in B below fa,_1(a;), say, ci,.. Then let d =
[fon—1(a;) A by — /\}"%kcij] A ALici;. Then d has exactly m atoms of B under it, and d =
fon—1 A by mod I(A(B)). Then we let fo,(a; A by,) = d and fo,(a; — by) = fon—1(a;) — d.

.,Cierk.

Subcase 2c. Fzactly one of a; — b, or a; A b, has infinitely many atoms under it. Without
loss of generality, suppose that |{b € A(B) : b < a; A by}| = m < 0. Since a; A by, = fon—1(a;) A
b, mod I(A(B)), it follows that fa,,_1(a;) Aby has only finitely many atoms under it, say ¢, , . .. , ¢, -
By renumbering, let g1, ..., gm denote the first m atoms under fa,_1(a;). Let

d = [fon—1(a;) A by — /\§=1Cij] A /\?zlgj.

Then d has exactly m atoms of B under it and d = fan—1(a;) A b, mod I(A(B)). We can now
define fzn(ai A bn) = d and f2n(ai - bn) = fgn_l(ai) —d.

Finally, we let By, = Hfon(z) : x € A(Bay,)}). At odd stages, we do essentially the same thing

except we use f~! and go from Bs,,; back to By,,1. In this way, one can easily see that U, f,
defines an isomorphism from B to B. O

We remark that the isomorphism constructed in the proof of (i) of the Remmel-Vaught Theorem
above is not computable in general; see Exercise 4.1.18. In his thesis [485], Thurber proved an
extension of the Remmel-Vaught Theorem. Specifically, Thurber replaced “atoms” in the above
with “n-atoms”, which are the atoms of the n-th Cantor-Bendixson derivative of the Boolean
algebra. See also Knight and Stob [308]. We will not need these more general results.
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Exercises

Exercise® 4.1.13. A Boolean algebra is atomic if every non-zero element of it bounds an atom.
Show that if B is an infinite atomic Boolean algebra, and B/{At(B)) = 2, then B =~ Intalg(w). Here
{(X) denotes the ideal generated by X, At(Y) denotes the atoms of Y, and 2 is the two-element
algebra.

Exercise* 4.1.14 (Thurber [485]). Let n > 1. Let B; and B2 be Boolean algebras such that
e B has infinitely many n-atoms, and
e B5 results from B; by splitting its n-atoms a finite number of times.

Show that BQ = Bl.

4.1.2 Effective presentations of Boolean algebras

Recall that a Boolean algebra is computable if its domain and its operations are computable.
The Interval Representation Theorem 4.1.6 is clearly computable. Thus we obtain the following
immediate

Corollary 4.1.15. Fvery computable Boolean algebra is isomorphic to an interval algebra Intalg(L)
of a computable linear ordering L. Furthermore, this is also uniform.

We can use the corollary to apply methods and results developed in Chapter 2 to Boolean
algebras. For instance, the corollary below follows from the corresponding results for linear orderings
from Chapter 3. As far as we know, this was first observed by (cf., Feiner [163, Remarks 1-2]) for
n = 2 and by Odintsov and Selivanov [423] for arbitrary n € N.

Corollary 4.1.16.

(i) Every X0-(resp. AY-, TIV-) presentable Boolean algebra is representable as Intalg(L) with
L 20-(resp. AU-, TI9-) presentable. Furthermore, every Boolean algebra is isomorphic to a
subalgebra of the free Boolean algebra Intalg(Q) of the same degree.

(ii) Consequently, every H2+1—p7"esentable Boolean algebra is isomorphic to a X% -presented one.

Here, X9 -presentability is understood in the sense of a factor Intalg(Q)/I, where I is a X0 ideal,
and similarly for AY-, TI2-presentability. In the case of AY-presentability, this can lead to some con-
fusion since it can stand for X-computable presentability for some X € AY. Fortunately, in the case
of countable Boolean algebras, these notions of A”-presentability are equivalent (Exercise 4.1.20).

Boolean algebras can be constructed directly to satisfy a list of requirements. However, it is
sometimes useful to instead build L in stages,

L=ULS,

and consider
Intalg(L) = | JIntalg(Ls) = | ] Bs,

where we can pass from L, to B, = Intalg(L,) with all possible uniformity.
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To illustrate this technique, we give one important application of the Remmel-Vaught Theo-
rem 4.1.12. Recall that a structure is computably categorical if any two computable presentations
of the structure are computably isomorphic. It is quite easy to see that 8 = Intalg(Q) is computably
categorical. For that, use a straightforward back-and-forth procedure similar to that used for the
dense linear order Q. It follows that, similarly to linear orders, there are no interesting examples of
computably categorical Boolean algebras, and indeed, L is computably categorical iff Intalg(L) is.

Theorem 4.1.17 (Goncharov and Dzgoev [211], LaRoche [331]). A Boolean algebra is com-
putably categorical iff it has only finitely many atoms.

We give only an extended sketch that emphasises the role of the Remmel-Vaught Theorem 4.1.12
and omits some of the standard combinatorics related to priority constructions. A complete formal
proof of the result can be found in [445], where it is derived from more general facts about the
complexity of the set of atoms in a Boolean algebra. (See also Exercise 4.1.23.)

Extended Sketch. Suppose B is a computable Boolean algebra that has only finitely many atoms.
Then it is either finite or is the sum of a finite algebra and the atomless algebra 8 = Intalg(Q).
In each of these cases, one could easily construct a computable isomorphism between any two
computable copies of B.

Now suppose B has infinitely many atoms. The idea is as follows. We build a computable copy
A of B, and we meet:

P.:p.: B — Aisnot an isomorphism,

where (e )een is the effective list of all partial computable functions, as usual. To meet R, we will
search for the next available atom b € B, wait for ¢.(b) |= a € A, and make sure a is not an atom
by splitting it, if necessary. We also have to meet the global requirement

A=~ B.

This is done by making sure that A is obtained from B by splitting some atoms of B into finitely
many atoms. Then we will have A =~ B by the Remmel-Vaught Theorem 4.1.12.

If we choose to use linear orders and interval representations, we could view B = Intalg(L). In
this case, we have A = Intalg(L’), where L’ is obtained from L by putting finitely many points
inside some of the adjacencies in L. We can build A “around” B and essentially assume B < A
and L € L. (Formally, we would have to define a computable isomorphic embedding ¢ : B — A,
but this formalism would only obscure the main idea.) Under an appropriate effective indexing of
the domain, we can view elements of B as natural numbers. We say that an element b € B has its
index smaller than the index of ¢ € B if the number associated with B is smaller than the number
associated with c. The order of indices has order-type w and should not be confused with the linear
order L.

At stage s, we will have a finite algebra B; € B and a finite part A; 2 By of A. We also have
B, € Boy1 and Ay © Agyy for every s. We then set A = |, As and B = J, B,. If it makes things
easier, think of B, = Intalg(Ls) and A, = Intalg(L), where Ly, < L/ are finite linear orders, and
where L = J, Ly and L' = |J, L..
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The strategy to meet P, is as follows.

1. Fix a witness b € B with the smallest index that is an atom in B, and has never been used
before by P, or P; with j <e.

2. Wait for ¢, (b) to converge.

3. Meanwhile, monitor b and see if it splits in B; for some t > s. If it ever happens, initialise
the strategy by picking a new witness.

4. If a = p(b) € A, is not an atom in A, then do nothing unless b later splits in B; in the
latter case, go to 3.

5. If a = pe () | is an atom in A, then consider the subcases:

(a) If a is restrained from splitting (to be clarified shortly in (b)) by some P; with i < e,
then initiate the strategy by picking a new witness.

(b) Otherwise, split a in Ay into ag and a1 and restrain ag and aq from being split by
strategies P;, j > e.

6. From now on, monitor the element ¢ € B naturally identified with a € A (i.e., ¥(¢) = a under
the inclusion map ¢ : B — A). If at some later stage it splits in B into (say) c¢o and c¢;, then:

(a) Associate co with ag and ¢; with a; under the inclusion relation?!.

(b) Remove the restraint from ag and a; that was earlier imposed by P..
Think of P; as having its priority higher than P; if ¢ < j.

Construction. To define A,, we will mainly just copy B, into As unless some extra atoms have to
be adjoined to A \Bs due to the actions of the P.-strategies. At stage s, let strategies P., e < s,
act according to their instructions.

Verification (sketch). Instead of giving a dry formal verification by induction, we shall give a
detailed informal explanation that emphasises the algebraic nature of the strategies.

We first discuss one strategy in isolation. Suppose first that P, is the only requirement, and
that we do not have to worry about any other P; for j # e. We claim that in this case the strategy
described above guarantees that ¢, cannot be an isomorphism from B to A. The strategy will
be initialised only finitely many times. This is because we always search for a follower having the
smallest indexr among the available atoms in B,. Eventually we will find an element that is indeed
an atom in B even though we will never be sure that it actually is an atom. Thus, we can assume
that b never splits, P. is never initialised, and b is the permanent witness for P.. In this case, the
outcomes are:

- pe(b) never converges;

'n other words, we recycle ag and a1 by setting 1 (co) = ag and +¥(c1) = a1. This is done to guarantee that we
will end up with A ~ B by the Remmel-Vaught Theorem 4.1.12.
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- ¢, is not injective or fails to respect the algebraic operations?;

- pe(b) |= a and a is already not an atom in Ay;

- pe(b) |= a is artificially split by the strategy in A;4q.

In each of these cases, ¢, cannot possibly be an isomorphism, because any isomorphism has to be
a total injective homomorphism that maps atoms to atoms.

Now suppose we have only two strategies, say Py and P;. The only case when P, needs to worry
about Py is when P restrained some element, say ag, due to its actions in 5(b), and then later we
discover

901(5) = ao,

where b is the current witness of P;. Since the restraint imposed by Py has not been lifted from ay,
it means that ag still looks like an ‘extra’ atom in A\B. In this case, we cannot possibly afford to
split ag further, because in the presence of infinitely many strategies it may potentially result in ag
bounding infinitely many elements, and this is very bad for the Remmel-Vaught Theorem 4.1.12,
at least in its weakest form. We therefore initialise P; and resume searching for a witness whose
image under ¢ is not restrained by Py. If we fail to find such a witness, then ¢; cannot be onto,
and thus it cannot be an isomorphism.

Now consider Py and its interactions with P;. The strategy for Py completely ignores P;. In
particular, it is allowed to split an element restrained by P;. As a result, we may end up with
(say) ap € A\B restrained by P;, which is further split into ag and a; that are restrained by
Py. Note that the priority of the restraint imposed on atoms in A\B increases as we further split
restrained elements. Consequently, in the presence of all strategies, every element that has ever
been introduced in A\B can be further split only finitely many times.

The construction is a standard finite injury argument in which every strategy can be initialised
only finitely many times. Thus, by induction, P, will never be initialised after some stage ¢. Note
that we cannot possibly have all elements of A permanently restrained by strategies Pj, j < e,
simply because B is infinite. Also, B has infinitely many atoms, and therefore (as was already
explained above) P, will eventually find a stable witness. Finally, as we have already argued above,
some atoms of B will perhaps be split into finitely many atoms in A, and otherwise, A is not really
different from B. By the Remmel-Vaught Theorem 4.1.12, we conclude that A =~ B. O

Exercises

Exercise® 4.1.18 (Folklore). Suppose that computable Boolean algebras B and B satisfy the
assumptions of (i) in the Remmel-Vaught Theorem 4.1.12.

1. Show that B and B do not have to be computably isomorphic.

2. Calculate the optimal upper bound A? on the complexity of isomorphism between such B and

B. In particular, for this n, show that there are such B and B that are not A% _,-isomorphic.

2In other words, it is not even an injective homomorphism. The possibility is often completely omitted in the
literature perhaps because it is viewed as ‘completely obvious’. The same can be said about some other ‘trivial’
outcomes that are often not even mentioned.
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Exercise 4.1.19 (Remmel [443]). Recall that an ideal M of a Boolean algebra B is mawimal if
1 ¢ M and for all b € B, either b or b are in M. Show that if B is a computable Boolean algebra
and [ is a computable proper ideal of B, then there is a computable maximal ideal M of B with
1< M.

Exercise® 4.1.20 (Folklore). 1. Show that a Boolean algebra B is computable (or computably
enumerable) iff B =comp Intalg(Q)/I for some computable (or computably enumerable) ideal
1.

2. Extend this result to 119, 3% and AY presentations and ideals, respectively, for any n € N.

Exercise 4.1.21. 1. (Folklore). Show® that if {P; : i € N} is a computable list of propositional
symbols, then the free Boolean algebra P generated by taking propositional formulae on this
list generates a computable copy of Intalg(Q).

2. (Essentially Martin and Pour-El [354]). Show™* that there is a c.e. copy of Intalg(Q) whose
only c.e. filters are finitely generated.

Exercise® 4.1.22 (Remmel [445]). Recall that a set is immune if it is infinite and has no infinite
computably enumerable subsets. Show that every computable Boolean algebra with infinitely many
atoms is isomorphic to a computable Boolean algebra in which the set of atoms is immune.

Exercise* 4.1.23. Let At(B) denote the set of atoms of a Boolean algebra B.

1. (Remmel [444]). Show that if B is a computable Boolean algebra with infinitely many atoms,
then B has a computable copy C, such that At(C) >r @&’. (Hint: Use the Remmel-Vaught
Theorem 4.1.12.)

2. (Downey [118]). Show that if B is a computable Boolean algebra with infinitely many atoms,
then B has a computable copy C, such that At(C) 2 &'

Exercise™ 4.1.24 (Montalbédn [398]). Suppose that B is a computable Boolean algebra having
infinitely many atoms, and let a be the Turing degree of the set of atoms in B. Show that for every
d so that d” > a” there exists a computable copy of B in which the set of atoms has degree d.

4.1.3 Low Boolean algebras. The proof of Theorem A(2).

Recall that Theorem 3.2.45 states that there is a low c.e. presented linear order not isomorphic to
a computable one. We have seen low groups that are not isomorphic to computable ones too; e.g.,
Proposition 2.2.5. It is natural to ask whether the analogue of Theorem 3.2.45 holds for Boolean
algebras.

Theorem 4.1.25 (Downey and Jockusch [129]). Suppose that B is a low Boolean algebra.
Then B is isomorphic to a computable Boolean algebra. Indeed, if B is &' -presentable and the
atom relation for B is @' -computable, then B has a computable copy.

Theorem 4.1.25 appeared earlier as Theorem A(2), but it states a bit more than was stated
in Theorem A(2). Also, Theorem 4.1.25 should be compared with the Frolov-Montalbdn Theo-
rem 3.2.14.
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Proof. We can view a low Boolean algebra as Intalg(L), the interval subalgebra of a low linear
subordering of the rationals, Q. Without loss of generality, we can suppose L has infinitely many
adjacencies.

In light of Theorem 4.1.12(ii), to establish the desired result, it suffices to show that for any
low linear ordering L < Q having infinitely many adjacencies, there is a computable linear ordering
L < Q which is the same as L except that some adjacencies are replaced with finite blocks. But
since L is low, it satisfies the premises of Lemma 3.2.28; thus such a L indeed exists. Observe
that the argument actually shows that any AJ-presented Boolean algebra with a AJ set of atoms
is isomorphic to a recursive Boolean algebra. O

The following conjecture is longstanding.
Conjecture 4.1.26 (Downey). Every low, Boolean algebra is isomorphic to a computable one.
The most recent progress on this question is the following.

Theorem 4.1.27 (Knight and Stob [308]). Ewvery lowsy Boolean algebra is isomorphic to a com-
putable one.

There is not much further evidence to support this conjecture. Harris and Montalbdn [235]
demonstrated that there is a genuine problem with the case n = 5, so new ideas will be needed.
Another result indicating that the problem might be exceptionally combinatorially hard is [396].

4.1.4 Superatomic Boolean algebras®

We now very briefly discuss one important and well-studied class of Boolean algebras arising from
ordinals. The class has many equivalent definitions (characterisations). We give the definition that
involves the Cantor-Bendixson derivative (Definition 4.1.7).

Definition 4.1.28. The Boolean algebra B is superatomic if X(®) = 2 for some ordinal «, where
2 is the trivial two-element Boolean algebra.

Theorem 4.1.29 (Goncharov [199]). For a Boolean algebra B, the following are equivalent:
1. B is computable and superatomic.
2. B = Intalg(«) for some computable ordinal (well-order) «.
3. B = Intalg(w?® - k), for some computable ordinal B and positive k € N.

The non-effective version of the theorem is folklore; we cite [207, Proposition 1.5.7] and [207,
Corollary 1.6.1]. The proof of the result is omitted, but we note that 3 — 2 and 2 — 1 are essentially
obvious. We refer to p. 57 of [207] and to [199] for the details, and we refer to Exercise 8.1.26 for a
proof sketch of 1 — 3.

In particular, if w{'X denotes the least non-computable ordinal, then Intalg(w$'®) does not have
a computable copy; indeed, it does not even have a (hyper)arithmetical copy (this follows from
Exercise 8.1.25). On the other hand, it is easy to see that a c.e. presented superatomic Boolean
algebra has a computable presentation: combine Exercise 2.2.44 with Corollary 4.1.16. (Indeed,
every hyperarithmetical superatomic Boolean algebra is isomorphic to a computable one, as follows
from Exercise 8.1.25.) Thus, Feiner’s Theorem 4.1.30 that we discuss next cannot be witnessed by
a superatomic Boolean algebra.
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4.1.5 Feiner’s Theorem. The proof of Theorem A(1)

We would like to obtain a result for Boolean algebras analogous to Feiner’s Theorem 3.2.1 for
linear orders. However, we claim that the methods used in Chapter 1—specifically, coding some
arithmetical set such as a $9-set and then relativising, as we did for Theorem 3.2.1 using Lerman’s
Theorem 3.2.11—cannot be directly applied here.

Suppose we attempt to use Intalg(L), where L is constructed as in Theorem 3.2.11. Notice that
Intalg(L) =~ Intalg(L), where L replaces each block of size n in L with one of size 2. (Here, we
are using the Remmel-Vaught Theorem 4.1.12.) It is not difficult to build a computable copy of
Intalg(L).

We could attempt to code a more complicated arithmetical set using n-atoms. However, as
mentioned earlier, Thurber proved an extension of the Remmel-Vaught Theorem 4.1.12 to n-atoms,
leading to similar challenges.

Feiner’s idea was to use n-atoms for all n € N to “code” a uniformly %9 relation S(n) into a
computable (or c.e. presented) Boolean algebra. That is, the membership n € S is uniformly %0. To
achieve this, he defined a new measure of complexity for sets computable from &) = @,y (™):

g = {{xyny:xe @(")},

that reflects the degree of uniformity necessary to compute the set.

Theorem 4.1.30 (Feiner [161, 162]). There exists a c.e. presentable Boolean algebra not iso-
morphic to any computable Boolean algebra.

The result appeared earlier as Theorem A(1). Our proof is similar to the version given by
Thurber in his PhD Thesis [485].

The plan of the proof
For a Boolean algebra B, we will examine
Sp = {n: B satisfies I';,},

where {T';, : n € N} is a family of certain algebraic properties (predicates) that can be uniformly
effectively described. These properties can be viewed as infinitary computable sentences in the
language of Boolean algebras, but to keep things simple, we will avoid using infinitary logic.

Our algebra B will be set equal to the sum of principal ideals of the form

Intalg(Z" ™" + 1 + Q) and Intalg(Z"Q + 1 + Q),

but we will not use the block of the second kind for some of the n. The property I',, will say
that Intalg(Z"Q + 1 + Q) = Intalg(Z"Q) + Intalg(Q) is among the blocks that we used. Here,
Intalg(Q) serves as a “separator” between different coding locations of the form Intalg(Z"1) and
Intalg(Z"Q).

If B is computable, then we will see that the complexity of checking I',, is 9, , 5 uniformly in
n. We will clarify what this means later. It is therefore sufficient to produce a c.e. presented B
in which checking whether I',, holds is not uniformly 9, , ;. This will be done using a variety of
techniques and tools, including the Fellner-Watnick Theorem 3.2.23.
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The property I,

Our plan is to use algebras (actually, principal ideals) of the form
Intalg(Z" ™ + 1 + Q) and Intalg(Z"Q + 1 + Q)

as coding locations.

Recall that an element is atomic if every non-zero element below it bounds an atom, and that
an element is atomless if it generates an infinite atomless principal ideal; in particular, 0 is not
atomless. Recall also that x is n-atomic (for n > 0) if D™ (z) is atomic in D™ (B), and that b is
n-atomless if D™ (b) is atomless in D™ (B).

Definition 4.1.31. For a Boolean algebra B, a € B and a natural number n > 0, define the
following properties:

e 7, (a) holds when:

1. ais (n — 1)-atomic, and

2. a is n-atomless.
e Define I',, to be the property saying that
3z ().

Example 4.1.32. When n = 1 the property says that there is an element a that is atomic (0-
atomic) and that it becomes atomless after taking the derivative once. It is clear that I'y holds
in Intalg(ZQ + 1 + Q) as witnessed by any element coming from the ZQ-part. (For instance, take
x = [£,a), where a is the separating element between ZQ and the extra copy of Q.)

Example 4.1.33. We argue that I'; fails in Intalg(Z? + 1 + Q). Fix x € Intalg(Z% + 1 + Q) and
assume that 1 (x) holds. The element x is a finite union of half-open intervals Iy, ..., Ix. None of
these intervals can come from the dense part of the order, for in this case x would not be atomic.
This means that = comes from the principal ideal isomorphic to Intalg(Z?), which is the sum of
two 2-atoms. If all of the intervals Iy, ..., I; making up = contain only finitely many points, then
it means that D(l)(x) = (0. This is impossible because x has to be 1-atomless and, in particular,
non-zero in D™ (B). On the other hand, if at least one of the intervals, say I;, contains infinitely
many points, then this means it has a copy of a l-atom in it. This is the same as saying that
D (z) bounds an atom, so in this case 2 cannot be l-atomless either. We conclude that T'; fails
in Intalg(Z? + 1 + Q). Of course, there is nothing special about Z? in this example, it could just as
well be Z™ for any m.

Example 4.1.34. We argue that T'y fails in B = Intalg(Z?Q + 1 + Q). For suppose x € B is such
that 1 (z) holds. If Iy,..., I, make up x, then all of these half-open intervals must have empty
intersection with Q. (Otherwise, not every element below x will bound an atom; this is similar to
Example 4.1.33.) If each of these ; is fully contained in some copy of Z?, then either x is the sum of
finitely many atoms or bounds a 1-atom. But this means that in this case z cannot be 1-atomless.
The only case that is left is when at least one of these I; contains infinitely many copies of Z?.
But after taking the derivative, these will turn into infinitely many atoms, and thus = cannot be
1-atomless in this case either.
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In the proposition below, fix any
B=)> B,
ieN
where for each i € N, B; is either Intalg(Z"Q + 1 + Q) or Intalg(Z" ™! + 1 + Q) for some n € N. For
the purposes of the proof, we may assume that n > 0.

Proposition 4.1.35. ThenT',, holds in B iff there is an i such that B; is isomorphic to Intalg(Z™"Q+
1+ Q).

Proof. The proof is essentially a generalisation of the examples above. If some B; is isomorphic to
Intalg(Z"Q + 1 + Q), then take a equal to any subinterval of Z"Q in B; and see that v, (a) holds
because a is (n — 1)-atomic and a is n-atomless.

Now assume none of the B; has the form Intalg(Z"Q+ 1+ Q), but I';, holds on B. So fix a such
that 7, (a) holds. It takes n derivatives to make a atomless, and after taking the derivative (n — 1)
times, a becomes atomic. So in particular, it takes exactly n derivatives to make a atomless, which
means D™ (a) generates Intalg(Q).

As in the examples preceding the proposition, let a = Iy u I; U ... U I}, where the I; are
non-empty half-open intervals in the linear order L of B = Intalg(L). We identify each I; with the
respective element of the algebra. The linear order L looks as follows:

L=Lo+14+4Q+1+L1+1+Q+14+La+...,

where each Lj; is either of the form Z™Q or of the form Z™ for some m. None of the I; can possibly
intersect the Q-components, for in this case, a would not be n-atomic.

Some of the I; can possibly intersect some of the Z™Q or Z™ for m > n. If I; intersects an
interval of this sort, then it intersects only one interval of this sort because of the QQ-separators.
Also, we claim that such an I; has to vanish after taking n derivatives. For if it does not, then it
has to have an atom below it after taking n derivatives, and thus a cannot be n-atomless.

If I, overlaps with some of the Z™ for m < (n — 1), then there is only one such Z™. Then I;
vanishes after taking (n — 1) derivatives. Similarly, if I; intersects some interval of the form Z™Q
for m < n, then it has to vanish already after taking (n — 1) derivatives. This is because if it
becomes dense after taking (n — 1) derivatives, then a cannot be (n — 1)-atomic.

The only case left is when I; intersects Z™ for m = (n— 1). Since it cannot overlap with any of
the Q-parts, I; < Z"~1. Now, it could certainly be (n — 1)-atomic, since Z"~! is the union of two
(n — 1)-atoms. However, it completely vanishes after taking n derivatives.

We conclude that every I; in a = Iy u I; U ... U I} has to vanish after taking n derivatives.
But a was supposed to be n-atomless, so it should generate an ideal isomorphic to Intalg(Q) after
taking n derivatives. This is a contradiction. O

Complexity analysis

Recall that T, states that 3z v, (x), where v, (a) holds when a is (n — 1)-atomic and n-atomless.

Lemma 4.1.36. Suppose B is an infinite computable Boolean algebra. Then the complexity of
checking Ty, in B is 3, . 5 uniformly in n.

A discussion before the proof. Formally, “X9, _ , uniformly in n” means that there is a computable
binary predicate

R(<I07 s ax2n+3>7 Tl)
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such that
B satisfies T, iff JxoVaryIzoVes ... Ixon 3 R((xo, - - ., Tant3) ),

where (. ..) is the computable indexing of all finite tuples, e.g., (xg, x1, x2) is defined to be ((xg, x1), x2)
and so on. Equivalently, we could instead say that there is an oracle (partial) procedure U such
that

B satisfies I, iff Ug(m(n) s

where, on input n, the procedure is allowed to use only the @272 section of
F@ = {e,m):xe g™},

In the proof below, the upper bounds on the complexity are obtained using induction in n.
In the process of establishing these upper bounds, we will also establish the required uniformity.
Recall that the elements of B are natural numbers, and that the operations in B are computable.
(For simplicity and without loss of generality, we can assume that the domain of B is the whole of
N.) This also makes the induced order

a<bifandonlyifarnb=a

computable as well. Since we interpret elements of B as natural numbers, and the operations and
relations on these elements also live within N, the formulae that we shall write in the argument
below can be viewed as first-order formulae in arithmetic augmented by the finitely many symbols
for the operations of B.

The complexity of the subsets of N that these formulae define is derived based on counting
the number of alternating number-quantifiers over a computable property. Only the alternations
of quantifiers matter, since (e.g.) Jx3y... can be replaced with Jw (w = {(z,y)&...). So we put
the formula into its normal form and count the alternations of quantifiers in the quantifier prefix.
Although this is a standard technique, so far in the book we have not yet seen an argument of this
form that would require induction.

Proof. When n = 0, it is II{ to say that an element is an atom; just say that a # 0 and it does not
split. An element a is atomless if every element below it splits, i.e.,

a#0&Ve<alz#0 = Fou,w#0)(vvw=z&vrw=0)],
which is I19. Also, an element a is atomic if
YV non-zero x < a3b < z b is an atom,

which is T1S.
When n = 1, the congruence

x ~1 y if and only if DMz = DM (y)

requires checking whether z =y or z Ay = (x A §) v (T A y) is a finite join of atoms. The latter
is a search for a k and atoms aq,...,ar € B sothat t Ay =ag v a; v ...V ag; thisis Eg. It also
follows that

r<yyifand only if z A y ~1 x,
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which is the analogy of < in D) (B), and is also X9.
An element a is a l-atom if D(l)(a) is an atom in B/ ~1, and ~; is 9. An element a is a
l-atom iff a %1 0 and it does not split, i.e., it is not the case that for some v, w,

v,w A1 0&vvw~ & vaAw~10.

This is a conjunction of I13 and —3I1Y, which is ITJ. This makes ~o 9.

By induction, we obtain that being n-atom is a I3, , ;-property, and that ~, and <,, are X9, -
relations.

Recall that a is n-atomic when D (a) is atomic in D™ (B). This is the same as to say that
a #y 0 and for any x <, a such that x %, 0, there exists an n-atom b <,, x. Since being n-atom is
a 19, , ;-property, we obtain that being n-atomic is 113, 5. Recall that a is n-atomless if D™ (a) is
atomless in D™ (B). This is the same as expressing the property of being atomless but using the
%9, relations ~,, and <, instead of = and <. This analysis gives the upper bound of I3, .

According to its definition, 7, (a) states that a is (n — 1)-atomic (this is 113, ;) and n-atomless
(which is I19,,, ,). We conclude that the upper bound for the complexity of

Iy, if and only if Ja~,(a)

is ZgnJrS'

It remains to discuss the uniformity. Given n, we can computably produce the first-order
sentence (in arithmetic augmented with the operations of B) that “defines” the I',,. We elaborated
this procedure in the inductive proof above; clearly, the proof was effective.

This definition of I',, requires only access to the operations of the Boolean algebra on top of the
usual arithmetic. Since B is computable, these operations are given by (finitely many) computable
functions on N. If we fix the indices of these computable functions (which are now shared among all
of these sentences representing I',,), we can uniformly X9, | ;-effectively verify these sentences. [

Constructing the coding blocks

Recall that our aim is to build a c.e. presented algebra of the form
B=)> B,
€N

where for each i € N, B; is either Intalg(Z"Q + 1 + Q) or Intalg(Z"*! + 1 + Q) for some n € N.
In this algebra, we will have that “B satisfies I',” is not uniformly X9 .. However, to keep B
c.e. presented we need this invariant to be close enough to being uniformly 39, 4+3- We are ready
to state a technical fact that, after a bit of work, implies Feiner’s Theorem.

Proposition 4.1.37. Suppose “n € S7 is uniformly 9, , 5. Then there is a computable Boolean
algebra B of the form
B=)> B,
ieN
where for each i € N, B; is either Intalg(Z"Q+ 1+ Q) or Intalg(Z"*' + 1+ Q) for some n € N, and

so that
S ={n:T, holds in B}.

(By Proposition 4.1.35, we have that S = {n: 3i B; = Intalg(Z"Q + 1+ Q)}.)
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Proof. We begin with constructing the elementary building blocks.

Lemma 4.1.38. There is a uniform procedure which, given a H8n+2-predicate R and i€ N, con-
structs a computable copy of Z"Q if R(i) holds, and a computable copy of Z"*, otherwise.

Proof. Tt is sufficient to prove the case when n = 0 and then apply the Fellner-Watnick Theo-
rem 3.2.23 n times. This is because our proof of the Fellner-Watnick Theorem was uniform assum-
ing the input order was infinite. (Indeed, it was uniform when the input-order is just non-empty.)
The I19-predicate is represented as YadyP(z,vy,i), where P is computable. Start with building a
copy of Z, but every time the predicate “fires” make progress in turning Z into a copy of Q. That
is, if a witness y found for one more z, add a point to every current adjacency of Z. O

Now fix a X9, s-predicate and view it as 3iR(i), where R is II, ,,. The lemma above gives a
uniformly computable sequence of linear orders L;, so that:

1. each L; is either Z"Q + 1+ Q or Z"*! + 1 + Q, and

2. some L; is Z"Q + 1 + Q iff the X9, | ;-predicate holds.

Of course, the (1 + Q)-part can be added uniformly and essentially independently to the more
complicated part of each such L;. Our application of the Fellner-Watnick Theorem is uniform, and
thus the construction of the L; is uniform in i. Indeed, the whole module corresponding to X9, 5
is uniform in n.

Let R stand for the uniformly %9, +g-instance “n € S”. Define the linear orders Uy, ; = L,
where L; are as described above for this specific R, and (n,i)y is just the pairing function. Set
B,,, = Intalg(U,,) for every m € N, and define

B:ZBm.

meN

It follows from Proposition 4.1.35 that B is exactly what we need. O

The final step in the proof

It is not difficult to construct a set S such that the relation n € S is uniformly X9, ., but not
uniformly %9, +3- This fact can be stated in the following, more general terms. Fix a total strictly
increasing computable function f. We write E? £(n) 0 denote the class of all sets X such that the

relation “n € S” is uniformly ng("». In our case, f(n) =2n+ 3.
. . 0 0
Lemma 4.1.39. In the notation above, there is a set S e E<f(n)+1>\2<f(n)>.

Proof. Let S,, be the effective uniform listing of all (uniform partial procedures that could poten-
tially define) Z(}(n)—sets. Declare n e S if n ¢ S,,, and set n ¢ S otherwise. O

It is useful to view %0 -sets and sets %0 relative to (™). Similarly, E(f)(n)ﬂ—sets can be
viewed as E?(n)—sets relative to ¢f'.
In particular, if we fix S € E?2n+4>\222n+3>, we can apply Proposition 4.1.37 and produce a A9

Boolean algebra B in which I';, codes n € S. We can then appeal to Corollary 4.1.16 and conclude
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that B is c.e. presented. But note that in Corollary 4.1.16, A9 stands for the complexity of the
congruence. There are two ways to explain why Corollary 4.1.16 is sufficient.

The first explanation is algebraic. We can always reduce the complexity of any presentation of
a Boolean algebra to the complexity of = in this presentation, as follows. We can start with the
free countable (atomless) Boolean algebra F' generated freely by the elements of B, and then B is
isomorphic to F/I, where I is generated by all elements of F' that are equal to 0 when interpreted
as elements of B. (This is Exercise 4.1.21(1).)

The second explanation is combinatorial. In the proof of Proposition 4.1.37, we will end up
with a AY linear order, and we know from the previous section that it has a c.e. presentation.
It should be clear now that the interval algebra of this order, which is exactly our B, also has a
c.e. presentation.

If the reader is still uncomfortable with these explanations, in the next section we will give
a direct proof of the c.e. presentability of any ¢¥’-computable Boolean algebra; this is Proposi-
tion 4.1.50. This proof will not rely on linear orders and will not refer to any of the previous results
(including the present proof), so there will be no danger of circularity.

We conclude that B is c.e. presented, but it cannot possibly have a computable presentation.
This is because Proposition 4.1.35 and Lemma 4.1.36 would then imply that S € Ean +3y contra-
dicting the choice of S.

The proof of Feiner’s Theorem is complete.

Applications and consequences

As we remarked earlier, Feiner’s technique has found numerous other applications. We refer the
reader to Goncharov’s book [207]. We give one illustration. Recall that an algebraic structure is
decidable if its full first-order diagram is decidable.

Theorem 4.1.40 (Goncharov). There is a computable Boolean algebra B not isomorphic to any
decidable Boolean algebra.

Sketch. In a decidable Boolean algebra, the set of atoms has to be computable. This is because
being an atom is a first-order property in the language of Boolean algebras. It is therefore sufficient
to construct a computable Boolean algebra that is not isomorphic to any computable algebra with
a computable atom relation.

This is done using Feiner’s coding technique. It is not hard to see that the uniformly %9, 43
properties I';, described in the proof of Feiner’s Theorem (see Lemma 4.1.36) become uniformly
39,4 in any computable algebra with a computable set of atoms (exercise). By Lemma 4.1.36 and
Proposition 4.1.35, it is sufficient to fix a set S' € 222n+3>\222n+2> and apply Proposition 4.1.37. O

The proof above does a bit more than claimed in the theorem. It is known (e.g., [207]) that
the computability of the atom relation is equivalent to the computable algebra being 1-decidable,
i.e., that we can decide the 3-diagram of the algebra. (This is because every existential formula
in the language of Boolean algebras can be computably rewritten into an equivalent quantifier-free
statement in the language extended by the atom relation. This is folklore that can be traced back to
Tarski.) An n-decidable presentation is defined similarly. Feiner’s techniques can be used to show
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that there exist (n + 1)-decidable Boolean algebras with no n-decidable presentations; we leave this
to Exercise 4.1.41. For an in-depth study of n-decidable Boolean algebras, we cite Alaev [6].

Exercises

Exercise® 4.1.41 (Goncharov [201, 207]). Prove that, for every non-zero n € N, there is an n-
decidable Boolean algebra that has no (n + 1)-decidable presentation.

Exercise* 4.1.42 (Goncharov [201]). Show that for any natural number n, there exists a com-
putable, n-atomic but not (n + 1)-atomic Boolean algebra, which has no decidable presentation. In
contrast, prove that every computable w-atomic Boolean algebra has a decidable presentation.

Exercise* 4.1.43 (Goncharov [202]). Prove that there exists a Boolean algebra that is n-decidable
for all n € N, yet has no decidable presentation.

4.1.6 Stone spaces and computable trees

We have used interval representations of Boolean algebras, but sometimes it is more convenient
to use tree representations. This approach allows us to convert problems about Boolean algebras
into problems concerning I19-classes, as defined in Section 2.1.6. This technique will also be very
important in proving the two effective topological versions of Stone duality in the next section.

Stone spaces

Recall that one version of Stone duality, Theorem 4.1.3, says that a Boolean algebra is isomorphic
to the set-theoretic sub-algebra of its ultrafilters (equivalently, maximal ideals).

Definition 4.1.44. The Stone space B of a Boolean algebra B is defined to be the set X of all
ultrafilters of B.

Such spaces are also occasionally called profinite spaces. One can equivalently define B to be the
set of all homomorphisms from B to 2. But, of course, ultrafilters in B are in a 1-1 correspondence
with such f : B — 2. Indeed, if f is a homomorphism of B onto 2, then f~1(1) is an ultrafilter in
B, and f~!is a maximal ideal in B. Conversely, given an ultrafilter F, its complement Z = B\F
is a maximal ideal, and it follows that B/Z =~ 2 via f, so that f~1(1) = F.

We could view the set B of all ultrafilters in B as a topological space. The space is topologised
as follows: If b € B, the family of all ultrafilters of B having b as an element is a typical basic clopen
(closed and open) subset of B. (Equivalently, {f : f(a) = 1}.) Going in the other direction, the
clopen subsets of B form a Boolean algebra of sets which is isomorphic to B.

The crucial observation is that when we replace the internally defined notion of an ultrafilter
with the external definition of topology, the duality becomes topological too. Specifically, we have
the following folklore fact:

Theorem 4.1.45 (Topological Stone Duality). For Boolean algebras B and C, B is isomorphic to
C iff B is homeomorphic to C'.

The topological version of Stone duality allows a great deal of flexibility in the way we represent
the Stone space of B. This is because the algebra B is isomorphic to the algebra of the clopen sets
of B. This exact same process would work for any space M provided that M =, B. For example,
we state without proof the following well-known topological characterisation of Stone spaces.
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Lemma 4.1.46 (Folklore). For a Hausdorff space X, the following are equivalent (up to homeo-
morphism):

1. X is a Stone space;
2. X is the inverse (projective) limit of finite discrete spaces;
3. X is compact and totally disconnected.

Since we will not need these characterisations in this section, we will not clarify the standard
terminology used in the lemma above. We will return to the topological characterisations in the
next section. Instead, we now describe some other, fairly explicit ways to represent Stone spaces
using trees.

Tree representations

We want to represent the Stone spaces of c.e. Boolean algebras as II{ classes. Let T' be a subtree
of 2=¢. Topologise [T] by letting the basic open sets be those of the form [{ca : « € 2¥}], where
o €T. Then [T] is a Polish space. The standard metric between &, € [T] is defined to be

dg,m) =27",

where n is the length of the longest common initial segment of £ and 7, but one could also use
Cantor’s middle third construction and the metric inherited from [0,1]. In particular, the space
[T] is compact (being a closed subset of [0, 1]). To see that [T'] is compact directly, use that T' is
finite-branching, i.e., it contains only finitely many strings of any given length.

The basic open sets are in fact clopen, i.e., open and closed. The collection of all clopen sets,
which are exactly the finite unions of basic clopen sets, forms a Boolean algebra. Recall that 2<¢
stands for the tree of finite strings of 0-s and 1-s, including the empty string, up to the prefix
relation.

Lemma 4.1.47. The Stone space of all ultrafilters of any countable Boolean algebra is homeomor-
phic to [T] for some tree T < 2<%.

Proof. Let {b,}ne. be a listing of the universe of a countable Boolean algebra B. For any string
o€ 2<% let b, € Bbedefined as A{by : (n) = 1} A A{bn : (n) = 0}, where by = 15 by convention
(X is the empty string). Let T' = {0 € 2<% : b, # 0g}. If f € [T], let Uy = {b,, : f(n) = 1}. Tt is
easily seen that Uy is an ultrafilter of B and that the mapping f — Uy is a homeomorphism of [T]
onto the Stone space of B. O

We say that a tree T € 2<% represents the Boolean algebra B if [T] is homeomorphic to the
Stone space of B.

Remark 4.1.48. We note that there are at least two possible interpretations of the term “tree
representation of a Boolean algebra” that can be encountered in the literature. In [207], Goncharov
uses a different notion that he calls a “tree basis”. Goncharov’s approach is algebraic rather than
topological. He views elements of the tree as independent generators, and under his approach dead
ends of the tree correspond to atoms. In our approach, however, atoms correspond to isolated
paths. Goncharov’s approach is most convenient in the study of decidable Boolean algebras, while
our approach is best suited for computable and c.e. presented Boolean algebras. These two tree
representations are further compared in [423].
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We see that for a countable Boolean algebra B, its Stone space is compact and separable. The
following proposition gives connections between the computability properties of Boolean algebras
and their representing trees. A string o is called a terminal node of a tree T if 0 € T and no string
T properly extending o is in 7. We write A for the empty string.

Proposition 4.1.49 (Folklore; see [423]). (i) Every computable Boolean algebra is represented
by some computable tree T'< 2<% with no terminal nodes. Conversely, every computable tree
T € 2<% with no terminal nodes represents some computable Boolean algebra.

(i) Every c.e. presented Boolean algebra is represented by some computable tree T < 2<¥. Con-
versely, every computable tree T C 2<% represents some c.e. presented Boolean algebra.

Proof. The first statement of the first part follows immediately by effectivizing the proof above that
every countable Boolean algebra is represented by some tree T' € 2<%. The converse is also easy to
check. For the second part, assume that B is a c.e. Boolean algebra. The above argument produces
a tree T' € 2<% which represent B and is co—c.e., i.e. 2<“ —T is c.e. But then there is a computable
tree U < 2<% such that [U] = [T']. (Let U counsist of all strings o € 2<% such that no string 7 € o
has been enumerated out of T' by stage |o| in a fixed enumeration of 2<“ —T'.) The converse is easy
to check because if T' is a computable tree, {o € T : [T,] # I} is co—c.e. by Konig’s Lemma. O

This new correspondence allows us to give alternative proofs of some results about represen-
tations of Boolean algebras. For example, we can give an alternative proof of the instance of
Corollary 4.1.16 that was necessary in the final step of our proof of Feiner’s Theorem 4.1.30.

Proposition 4.1.50 (Feiner). Each &' —computable Boolean algebra is isomorphic to some c.e. pre-
sented Boolean algebra.

Proof. By Proposition 4.1.49 it suffices to show that for any @'—computable tree T' < 2<“ with no
terminal nodes, there is a computable tree [U] € 2<% such that [U] = [T]. To each string o € T
we assign a string f(o) € U, where f will be a certain (J'-computable partial function. We will
have that, for o,7 € T, that f(o) < f(7) iff ¢ < 7. From this it follows easily (as T has no terminal
nodes) that each string in the range of f is extendible to a path in [U]. Conversely, each string
extendible to a path in [U] will be extendible to a string in the range of f. From this it follows
that f induces a homeomorphism ¢ from [T] to [U], i.e. ¢(g9) = U,, f(0), for g € [T].

To construct f and U, we use {Ts}sen, a computable approximation to 7. By modifying this
approximation if necessary, we may assume that for each s, the set T is a nonempty tree with no
terminal nodes. Let sg be the least number s such that for all ¢ > s and all strings o € 2<% with
lo| < 1,0 €T iff 0 € T;. Then f(A) will be a string in U of length sg. Note that we may computably
approximate sg in such a way that our initial approximation is 0, and if our approximation at s+ 1
differs from that at s, then our approximation to sy at stage s + 1 is simply s. Thus our initial
approximation to f(\) is A, and we start the construction of U by letting it agree with T on strings
of length at most 1. (Note that Ty contains A and at least one string of length 1 since it is a
nonempty tree with no terminal nodes.) In building U at stage s + 1, we decide membership in U
for all binary strings of length s + 1, and we assume inductively that U contains at least one string
of length s. If our approximation to sg changes at stage s + 1, then we effectively choose a string 7
of length s in U and let it be our new candidate for f(X). We want the rest of the construction of U
to take place above 7, so we omit from U all strings of length s+ 1 which do not extend 7. Further,
we act in the belief that the approximation T4 to T is correct on binary strings of length 1. Thus,
for i < 1, we put 777 into U iff the string (i) € Tsy1. (This puts at least one string of length s + 1
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into U because Ts41 contains at least one string of length 1.) Obviously, this process must converge
because our approximation to so converges. The inductive step for defining f(0™¢) for ¢ < 1 given
f(o) is similar. We will have f(c™4) > f(o)" 4 and |f(074)| will be the least number s such that
s> |f(o)and forallt = sand all j < 1,07 i jeT iff 07i"j € Ty. O

In the final Boolean algebra subsection below we give a result that puts together all our methods
developed so far, including tree representations, Downey-Jockusch Theorem 4.1.25, and Feiner’s
Theorem 4.1.30. We will not need this result in later chapters.

4.1.7 Rank 1 Boolean algebras*

Jockusch and Soare [274] essentially showed that, much in the spirit of Richter’s Theorem 3.2.13, one
has to use transfinite methods and uniformity to code any non-trivial information into a Boolean
algebra (see Exercise 8.3.41). That is, there is no natural “coding” of X{-sets into computable
Boolean algebras, for any finite n. Also, the use of n-atoms for arbitrarily large n € N seemed
crucial in our proof of Feiner’s Theorem 4.1.30. This leads to the following question.

Question 4.1.51. Is there an arithmetical Boolean algebra of finite Cantor-Bendizson rank not
isomorphic to a computable one?

In this subsection, we use tree representations to answer this question in the affirmative.

If X is any Stone space, the Cantor-Bendixson derivative X’ of X is the set of non—isolated
points of X, with the subspace topology. In terms of trees, isolated points correspond to isolated
paths. If X is a topological space, let I(X) denote the closed set of points in X which are limit
points of the isolated points of X. If X is a Stone space, then so is I(X) (in the relative topology).

The following easy construction shows that every separable Stone space is homeomorphic to
I(X) for some separable Stone space X of Cantor-Bendixson rank < 1.

Definition 4.1.52. Let T' < 2<% be a binary tree. Define a new tree F'(T) € 3<% by starting with
2<% and then attaching an isolated path to each node of T'.

The paths through F(T') are those infinite strings which either consist entirely of 0’s and 1’s
or else consist of a string in T followed by an infinite string of 2’s. The isolated paths in [F(T)]
are clearly those of the latter form, so I([F(T)]) = [T]. It also follows from these remarks that
[F(T)]" = [2=*] which is a perfect space. Hence the Cantor-Bendixson rank of [F(T')] is at most
1.

Theorem 4.1.53 (Downey and Jockusch [130]). There is a c.e. presented Boolean algebra B of
Cantor-Bendizson rank 1 which has no computable presentation.

Proof. Let By be a Boolean algebra which is &5 —c.e. but not isomorphic to any &) —computable
Boolean algebra. Such a Boolean algebra may be obtained by relativizing the proof of Feiner’s
theorem to @®). Let T < 2<¢ be a ) -computable tree which represents By. Such a tree T
exists by Proposition 4.1.49, relativised to @®). Finally, let B be a Boolean algebra represented
by F(T), where F(T) is as defined in Definition 4.1.52. Tt is clear that B has Cantor-Bendixson
rank at most 1. The following lemmas will show that B satisfies the rest of the conclusion of the
theorem.

Lemma 4.1.54. B is not isomorphic to any computable Boolean algebra.
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Proof. Suppose for a contradiction that B is isomorphic to Bj, a computable Boolean algebra.
Let T} be a computable tree without terminal nodes which represents By. Such a tree T} exists
by Proposition 4.1.49, and [T1] = [F(T')] where T is as chosen above. It follows that I([T1]) =
I([F(T)]) = [T]. We now define a 9 tree To < T3 such that [T3] =~ I([T1]). First, let I be
the set of strings o on T) such that any two extensions of o on 77 are compatible. It is easily
seen (using the fact that 77 has no terminal nodes) that I is the set of nodes of 77 which lie on a
unique (necessarily isolated) branch of T;. Let T5 be the set of nodes o € T} such that there exist
incompatible strings 71,7 which are each in I and extend o. It is easy to see that I is ITY, and so
Ty is X9, and that [Ty] = I([T1]). Finally, let T3 be the set of strings o € Ty such that there exists
feTy, with f 2 0, i.e. T3 is the set of extendible nodes of T5. By Konig’s Lemma, T3 is also the
set of nodes o of Ty which have extensions in 75 of each length > |o|, so T3 € 1. Thus T is a
73 —computable tree, and it clearly has no terminal nodes. But [T3] = [T»] = I([T1]) = [T], so
T represents By. Thus by Proposition 4.1.49, By is isomorphic to some &(®)—computable Boolean
algebra, in contradiction to our choice of By. O

Since B is not isomorphic to any computable Boolean algebra, it does not have rank 0, so its rank
is exactly 1. It remains to show that B is isomorphic to some c.e. Boolean algebra. The following
lemma (relativised to @’) is the main step in showing that B is isomorphic to some c.e. Boolean
algebra.

Lemma 4.1.55. Let U < 2<% be a &® —computable tree. There is a computable tree V < 3<%
with no terminal nodes such that [V] = [F(U)].

Proof. By Theorem 4.1.25, it is sufficient to build a @’-computable V' with a ¢J’-computable set of
atoms (isolated paths). Using Proposition 4.1.49 (relativised to @), we can fix a $9-tree U (and
indeed, even a AY-tree) such that [U] = [U].

The proof is therefore reduced to the following situation, which is then relativised to @’. We
are given a c.e. U € 2<%, and we have to construct a computable V' < 3<% with no terminal nodes
such that [V] = [F(U)], and so that V has a computable set of atoms.

This is quite straightforward. Put an atom (an infinite isolated path) of the form 02 whenever
o is enumerated into U < 2. We also declare it an atom (or isolated) immediately. Since the
2“-part does not contain isolated paths, we end up with a computable tree with a computable
set of isolated paths. If o is not on a path in 2, then (by compactness) it bounds only finitely
many nodes, so only finitely many extra atoms will be added below ¢ when compared to U. We
can assume without loss of generality that 7 = o, the predecessor of o, is in U. In particular, 7
already bounds an atom 72¢ in V.

Without loss of generality, our Boolean algebra is infinite, and therefore the procedure described
above will result in a (tree representing) a Boolean algebra having infinitely many atoms. By the
Remmel-Vaught Theorem 4.1.12, we can completely remove the finite collection of atoms (paths)
in V bounded by each such o ¢ U, and end up with a (tree representing) an isomorphic algebra.
This is possible because 7 = ¢~ already bounds an atom, so we can identify this atom with the
finite set of atoms below ¢ and apply the Remmel-Vaught Theorem 4.1.12. We conclude that
[F(U)] = [V]. O

Lemma 4.1.55 (relativised to ') shows that there is a ¥'—computable tree V < 2<“ with no
terminal nodes such that [V] = [F(T')]. Then, by relativising Proposition 4.1.49 to ¢’ it follows
that V represents some @'—computable Boolean algebra Bs, and By =~ B since they are represented
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by V and F(T), respectively. By Proposition 4.1.50, since B; is J'—computable, it is isomorphic
to some c.e. Boolean algebra, and thus so is B. O

Exercises

Exercise® 4.1.56. Prove Feiner’s Theorem 4.1.30 using generating trees instead of interval alge-
bras.

Exercise 4.1.57. A an algebraic structure A is said to be primitive recursive if the domain and
the operations of the structure are (uniformly) primitive recursive. A primitive recursive structure
is fully primitive recourse or punctual if the domain of the structure is w (or an initial segment
of w). A primitive recursive structure is punctually 1-decidable if there is a primitive recursive
procedure that, given an existential sentence with parameters from the structure, outputs —1 if
this sentence fails, and otherwise returns the tuple of elements of the structure witnessing the
existential quantifiers. A bijection f : w — w is punctual if both f and f~! are primitive recursive.

1. Prove® that every punctually 1-decidable structure is punctual.

2. Show that every computable Boolean algebra has a punctual presentation (Kalimullin, Mel-
nikov, and Ng [282]).

3. Show that a Boolean algebra has a punctually 1-decidable presentation iff it has a computable
copy in which the set of atoms is computable. Conclude that every 1-decidable Boolean
algebra has a punctually 1-decidable presentation (Alaev [7], also rediscovered by Downey
and Askes [23]).

4. Prove that a Boolean algebra has a unique 1-decidable presentation up to punctual isomor-
phism iff it is computably categorical (Alaev [7]).

5. Show that for a computable Boolean algebra B with a computable set of atoms, the following
are equivalent (Dorzhieva et al. [115]):
e Every 1-decidable presentation A of B is computably isomorphic to some punctually
1-decidable P =~ B.
e B splits into finitely many Cjy, ..., C such that each C} is either atomless, an atom, or a

1-atom.

(Compare this description with Exercise 10.1.95.)

4.1.8 Further related results*

As mentioned earlier, there are numerous papers and results concerning computable Boolean alge-
bras. The standard references for results proven before 2000 are [207] and [447]. Another reference
is Odintsov’s survey [422], which, however, overlaps significantly with [207]. When it comes to
more recent results, there are few comprehensive surveys available. One notable reference is [43],
although it focuses on specific topics rather than providing a broad overview.
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4.2 Computably compact spaces

In this section, we return to computable separable spaces. We prove that there exists a computable
right-c.e. Stone space that is not homeomorphic to any computable Polish space, and that every
computable Polish Stone space is homeomorphic to a computably compact one. These were stated
as (1) and (2) of Theorem B in the first chapter.

To prove these results, we will establish two more versions of Stone duality, but this time not
restricted to spaces of the form [T'], where T' < 2<%. To handle an arbitrary compatible metric, we
will need to develop the foundations of the theory of computably compact and computable Polish
spaces, which will also be important in the next sections.

This section is based on [139].

4.2.1 Definitions

All of our spaces are Polish (separable and completely metrisable) spaces. Such spaces are also
sometimes called Polishable. All spaces in this section are non-empty and compact, unless stated
otherwise. In all our definitions we fix some metric compatible with the topology of the space. Since
we are mainly interested in compact spaces where any compatible metric is complete, we always
assume that the metric is complete.

Computable Polish spaces
Recall Definition 1.2.5:

Definition 4.2.1. A real £ is
- right-c.e. if {r € Q : £ < r} is computably enumerable (c.e.);
- leftce. if {reQ:¢>r}isce;
- computable if it is both left-c.e. and right-c.e..

A Polish space (M,d) is right-c.e. presented or admits a right-c.e. metric if there exists a
sequence (a;)ieny of M-points which is dense in M and such that for every 4,j € N, the distance
d(ay, o) is aright-c.e. real, uniformly in ¢ and j. The definition of a left-c.e. Polish space is obtained
from the notion of a right-c.e. Polish space using the notion of a left-c.e. real, mutatis mutandis.

In this section we usually consider Polish spaces under homeomorphism, that is, a Polish space
has a right-c.e. (Polish) presentation if it is homeomorphic to the completion of a right-c.e. metrised
space. To emphasise that neither the metric nor the dense sequence is fixed, we may occasionally
use the term “computably metrised” rather than “computable Polish”. Since most of our spaces
are compact, the metric is automatically complete.

Definition 4.2.2. A Polish space is computably presented if there is a (complete, compatible)
metric on the space which is computable, i.e., is both right-c.e. and left-c.e..
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Basic open balls

Fix a Polish space, a dense sequence in the space, and a complete compatible metric d. A basic
open ball is a ball of the form {z : d(x,c) < r}, where c¢ is the “centre” of B that comes from the
fixed dense set, and r € Q is its “radius”. For a basic ball B, we write r(B) for the radius of B,
and we use ¢(B) to denote its (distinguished) centre. For a basic open ball B, write B¢ for the
basic closed ball with the same centre and radius as B. The closure B of B does not have to be
equal to B¢ in general (think of an isolated point in B\B). In this section, B and B¢ should not
be confused with the (set-theoretic) complement of B; if we ever need to consider the complement
of B, we will write M\B. The set-theoretic inclusion of basic open balls is not c.e. in a computable
Polish space in general. The following stronger notion is c.e.; it will be very useful.

Definition 4.2.3. A basic open ball B is said to be formally included in a basic open ball D,
written B Cfopm D, if r(B) + d(c(B), ¢(D)) < r(D).

The definition works for closed (or closures of) basic balls as well. This notion has been around
for many decades; see, e.g., [482], where it is called strong inclusion. Formal inclusion is transitive;
this is because d(z,y) + r2 < 11 and d(y, z) + r3 < ro (together with the triangle inequality) imply
d(x,z) + r3 < rq1. If the centres and the radii are computable (not necessarily special and rational,
respectively), formal inclusion remains c.e.. The same can be said about formal disjointness defined
as follows. Two basic open balls B and D are formally disjoint if r(B) + r(D) < d(c¢(B), c¢(D)).
We note that strong inclusion remains c.e. in the context of right-c.e. metric spaces, while strong
disjointness remains c.e. in left-c.e. metric spaces.

Definition 4.2.4. Let X be a computable Polish space. For a point z € X, its name is the set
N*={ieN: x € B;},
where (B;):en is an effective listing of all basic open balls in X.

Recall that a point € X is computable if there is a computable fast Cauchy sequence (x;)ien
such that d(z;,z) < 27%. Of course, 27 can be replaced with 2717 or even 2= for a sufficiently
nice computable f if necessary, and these will be (computably) equivalent notions. We therefore
allow d(z;,z) < 27! and d(x;,2) < 27%7! for such a sequence when convenient. In fact, this
slightly annoying index can be completely removed from consideration using names of points.

Fact 4.2.5. A point x in a computable Polish space is computable iff N* is computably enumerable.
We leave the proof as an exercise (Exercise 4.2.20).

Definition 4.2.6. An open name of an open set U € X is a set W < w such that
v=]JB.
€W

An open set is c.e. or effectively open if it has a c.e. open name. A closed name of a closed set
C < X is the open name of X\C. A closed set is effectively closed if X\C' is effectively open.

Open names can be used to “topologise” another standard notion that we encountered earlier.
Recall that in Definition 2.4.2 we defined a function f to be computable if there is a Turing functional
which, on input a fast Cauchy name of z in X, outputs a fast Cauchy name of f(x).
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An enumeration operator is a Turing operator (see §2.1.4) that is allowed to use only positive
information about its oracle, i.e., when it asks a question “n € X7” it can only use the positive
answer “yes” in its instructions. It can be made more formal by allowing only instructions of
the form “if n € X then do” and never using instructions of the form “if n ¢ X then do”. The
formal definition is as follows: A c.e. set W can be associated with a map B — A according to
the rule A = {z : (Gu)({x,uy € W A D,, € B)}, where (Dy)yen is a listing of all finite sets (given
as tuples or finite strings). An enumeration operator turns enumerations into enumerations. A
formal treatment of such operators and the induced enumeration reducibility can be found in [454].
Definition 2.4.2 is actually equivalent to the following.

Definition 4.2.7. We say that f : X — Y is computable if there exists an enumeration operator
that, given (any enumeration of) the name N¥ of z € X, outputs (some enumeration of) the name
NS@) of f(x)eY.

To see why Definition 2.4.2 is equivalent to the definition above, note that Fact 4.2.5 was indeed
uniform. Thus, we can computably turn an enumeration of N® into a fast Cauchy name and vice
versa.

Effectively continuous maps

The following definition is a generalisation of Definition 2.3.10.

Definition 4.2.8. Let X and Y be computable Polish spaces. A function f: X — Y is effectively
continuous if there is a c.e. family F' of pairs of (indices of) basic open sets such that:

(C1) for every (U,V) € F, we have f(U) € V;

(C2) for every point z € X and every basic open E in Y such that f(z) € E, there exists a basic
open D in X with (D,E)e F and x € D.

As we now show, this is equivalent to saying that, for some c.e. set F, f~1(B;) = U(i’j)eF B;.
(This follows from the elementary lemma below, which is a generalisation of Lemma 2.3.13.)

Lemma 4.2.9. Let f: X — Y be a function between computable Polish spaces. Then the following
conditions are equivalent:

1. f is effectively continuous.

2. There is an enumeration operator ® that, on input an open name of an open set V in'Y, lists
an open name of the set f=1(V) in X.

8. f is computable, that is, there is an enumeration operator ¥ that, given the name of a point
x € X, enumerates the name of f(x) €Y.

Proof. (1) — (2). Suppose V' = | ;e Bi- Note that (C2) implies that
V)= {De X : (D,E)e F&3ie W (D, B;) € F},
and thus the name of f~1(V) can be listed using only positive information about W, with all

possible uniformity.
(2) — (3). Note that B € N/(®) iff f=1(B) contains a basic open set in N*.
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(3) — (1). Define a collection F of pairs (D, E) of (indices of ) basic open sets in X x Y as follows.
Fix a basic open E in Y. Enumerate all basic open D in X, and for each such D, enumerate all
finite collections D, Ay, ..., Ay of basic open sets (in X) such that D Copm Ni<pAi (meaning that
D is formally contained in each A;). Feed these finite collections to ® and wait for some E to be
enumerated in the output. When E is enumerated (if ever), put (D, E) into F.

We claim that F' defined above satisfies (C1) and (C2). We check (C1). If (D, FE) € F, then
f(D) € E. Indeed, suppose d € D. There exists a sequence D, Ay, ..., Ay such that DAL Ak}
enumerates E. Recall D € ¢or, N A; implies D © n; A;, thus for any d € D the sequence listed by
©N* will contain E, and therefore f(D) C E.

We now check (C2). Fix z € X and a basic open E 3 f(x). We must show that for some basic
open D 3 z, (D,E) € F. By assumption, ©N" enumerates Nf(®) that contains E. Suppose E
is listed with use Aq,..., Ag. Since the A; all contain z, there exists a basic open D 3 x that is
formally included in their intersection. Since the operator uses only positive information about its
oracle, it will list F on input {D, Ay, ..., Ar} as well, and thus (D, E) will be enumerated into F.
(Indeed, in this argument, D does not actually need to be given to ¢.) O

The proof above also works for right-c.e. spaces. It also works for computable topological spaces
with c.e. formal (strong) inclusion that can be defined abstractly without any reference to a metric;
see, e.g., [375, 482].

The definition of computable compactness

Recall that a complete metric space M is compact iff it is totally bounded; that is, for every € > 0,
there exists a finite set F' of points such that every point of the space has distance less than € to at
least one point from F. A straightforward effectivisation of this criterion is the following definition
that already appeared in the first chapter.

Definition 4.2.10. A computable Polish space is called computably compact if there exists a
computable function that, given n, outputs a finite tuple of basic open balls of radii < 27"
that cover M.

When we consider finite covers, we usually say that we can compute a finite cover by basic
open balls if we can compute the index of a finite set that codes the indices of the finitely many
centres and the rational radii of basic open balls in the cover. This should not be confused with
enumerating a finite cover, i.e., listing one ball after another in a c.e. fashion.

Fact 4.2.11. Every compact computable Polish space is AY-compact.

Proof. Let M = (M, d, (p;)ien) be a compact computable metric space. A compactness modulus of
M is any function that bounds

h(n) = min{j: Vidk < jd(pi;,px) <277}

from above. We call h the least modulus of compactness.
Note that if h(n) = j, then the 27" "!-basic open balls centred in py,...,p; cover the space.
Since d(p;,pr) < 27" is a I1Y condition, if it fails, then its failure is witnessed by a special point.
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Since the quantifier 3k < j is bounded, and since the space is compact, h is computable relative to
. O

We note that a compact computable Polish space is computably compact iff it has a computable
modulus of compactness.

The other two standard definitions

Definition 4.2.10 says that for every n we can compute one finite cover of the space by basic 27"-
balls. From the computability-theoretic perspective, this definition does not seem quite as good as
having access to all finite covers.

Definition 4.2.12. We define a computable Polish space to be x-computably compact if the col-
lection of all finite covers of M by basic open balls can be given as a c.e. collection of explicit finite
sets.

As we explain next, Definition 4.2.12 is also equivalent to:

Definition 4.2.13. We say that a computable Polish space is computably countably compact if
there is a partial computable operator that, on input of any potential c.e. open basic cover, halts if
it is a cover and outputs some finite sub-cover.

Interestingly, the two potential definitions suggested above (and a few more) turn out to be
equivalent to Definition 4.2.10.

Theorem 4.2.14 (Folklore). For a computable Polish space M, the following are equivalent:
1. M is computably compact;

2. M 1is %-computably compact;

3. M is computably countably compact.

Proof. The implication (2) — (1) is obvious, and the equivalence of (2) and (3) is also elementary
(Exercise 4.2.22).

Assume (1); we prove (2). Take a finite collection (B;) of basic open sets and assume it is a cover.
We must argue that eventually we will be able to effectively recognise that it is indeed a cover. The
idea is that there exists an € = 27" so small that every e-cover of M is formally contained in this
given cover. (This will be the “Lebesgue number” of the cover, in particular.) This will also be
true for the e-cover that will be given to us according to the definition of computable compactness.
Since formal inclusion is c.e., we will be able to recognise that this formal inclusion has occurred.

It remains to prove that such an € exists. We argue non-computably. Let ¢; be the center of B;,
and r; be its radius. Define for every i a function f;(z) = r; — d(z, ¢;) if z is in the ball B;, and 0
otherwise. Define g(x) = sup, f;(z), which is also continuous. If (B;) indeed was a cover, then the
function g would be strictly positive because each z is inside one of the B;.

Let v be its infimum that is achieved somewhere, by compactness. Take a rational € = 27 less
than v/2. Then for every point y, for some i, we have € < r; — d(y, ¢;); that is,

d(y,ci) +e <y,

equivalently, B(y, €) Cform B;. This inclusion will still hold if we replace e with an even smaller €.
Thus, in particular, every basic open €-ball is formally included in one of the B;. Consequently,
(1) implies (2). O

164



Remark 4.2.15. The proof of (1) — (2) above additionally tells us that, for any given finite basic
cover, there is an € small enough so that any e-cover formally refines the given cover. Also note
that to recognise formal inclusion in a c.e. way, we do not need the radii r; to be rational numbers;
uniformly computable (real) r; will suffice.

In view of Lemma 4.2.14, henceforth we use computable compactness and #-computable com-
pactness interchangeably, and without further comment.

Elementary examples

Examples of computably compact spaces are the unit interval [0, 1], the unit circle that can be
viewed as the set of complex numbers having norm one: {{ € C : ||§]|| = 1}, the Hilbert cube,
Cantor space 2¢, and also geometric realisations (with rational parameters) of finite simplicial
complexes that are central to algebraic topology. Simplicial complexes will be used as a tool later
in the book.

One fundamental example comes from the theory of I classes. Cantor space 2¢ is a computable
Polish space under the longest initial segment metric defined in §4.1.6: the distance between &, 7 €
[T] is defined to be

d(§,n) =27",
where n is the length of the longest common initial segment of £ and 7. Recall that in §2.1.6 we
gave the following definition. A II{ class C' is decidable if the tree T < 2<% such that [T'] = C is
computable and has no dead ends. The fact below is immediate:

Fact 4.2.16. Any non-empty decidable 11 class can be viewed as a computably compact space.

Explanation. Let C € 2* be a decidable IT19-class. The computable dense set is given by the effective
enumeration of all paths through T of the form /,, where o ranges over all finite strings in 7" and
{, is the left-most infinite extension of ¢ along T'. This makes C' computable Polish. Computable
compactness follows from the computable compactness of 2 and the computability of 7. Indeed,
we can list all 27"-covers corresponding to the basic clopen sets centred in o € T at level n of T. [

We shall give much more intricate examples of computably compact spaces in due course.
There are several properties of computably compact spaces that are immediate from the defini-
tions. These, for instance, include those summarised in the following;:

Proposition 4.2.17.

1. Let f : M — R be computable and M be computably compact. Then sup,c; f(x) and
infzenr f(x) are computable real numbers. Furthermore, this is uniform.

2. The class of (non-empty) computably compact spaces is closed under taking (finite or com-
putably infinite) direct products. More specifically, if (M;)ier is a uniformly computable se-
quence of spaces, where I € N U {w}, then the direct product

[

i€l
under (say) the metric

Z 71 xlayl)
1+ d( xz,yl)
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where x; denotes the ith projection of x € | [,.; M;, is a computably compact metric space.

iel
We omit the elementary proof and leave it to Exercise 4.2.23. We remark that in (2), the choice
of a dense computable sequence is not canonical.

Exercises

Some of the exercises below would be marked with at least one * if they did not include extended
hints.

Exercise® 4.2.18. Prove that a (compact) computable Polish space is computably compact if, and
only if, for every n we can computably produce a finite tuple of basic closed balls that cover the
space.

Exercise® 4.2.19 (Folklore). Recall that the Hilbert cube is the space H = [0,1]“. The metric on
the Hilbert cube H is given by Prop. 4.2.17(2). Since the usual metric on [0,1] is bounded by 1,
we can simply use Y., 27%d(z;, z;) for two points (z;)sen, (2i)ien € H. Show that for a computable
Polish (compact) M, the following are equivalent:

1. M is homeomorphic to a computably compact space;

2. M is homeomorphic to a computable closed subset of H.

Exercise® 4.2.20. Prove Fact 4.2.5.

Exercise® 4.2.21. Prove Theorem 4.1.45.

Exercise® 4.2.22. Complete the proof of Theorem 4.2.14.
Exercise® 4.2.23. Prove Proposition 4.2.17.

Exercise 4.2.24 (Dyment [152], Schréder [459]). It is easy to extend the notion of a c.e. (effectively)
open set and an effectively closed set to computable topological spaces (Def. 2.4.26). A computable
topological space X is effectively normal if, given (names of) disjoint effectively closed sets Cy and
Cq, we can effectively produce (names of) disjoint effectively open sets Uy and U; that separate
Cy and (1, i.e., so that Cy € Uy and C; < U;. Prove the Effective Urysohn Lemma: Let X be
an effectively normal computable topological space. Given disjoint effectively closed sets A and B
uniformly produce a computable (i.e., effectively continuous) function fa, 5 : X — [0,1] so that
fap ta=0and fa g [p=1. (Hint: Follow the standard textbook argument (e.g., [413, Thm 33.1])
but with one minor modification. To define the map, instead of the set of all rationals, use the set
of the dyadic rationals.)

Exercise 4.2.25 (Amir and Hoyrup [11]). Show that any effectively compact, strong computable
topological space (Def. 2.4.26) is effectively normal (Ex. 4.2.24).

Exercise* 4.2.26 (Dyment [152], Schroder [459]). Suppose that in an effectively normal (com-
putable topological) space X there exists an effective enumeration (C;, D;);en of all (computable
indices of) disjoint effectively closed subsets in X, perhaps with repetition. Assume that, addi-
tionally, for every x € X and every open U > x there exist disjoint effectively closed C' 3 x and
D o (X\U). Show that there exists a compatible metric on the space that can be realised as a
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computable (Type 2) function X? — R. (Hint: Use Exercise 4.2.24 to produce a uniformly effective
list of functions

fCi7Di X - [Ov 1]
that map the respective C; to 1 and vanish at D;. Define g : X — [0,1]* to be

g(x) = (.fC,;,Dq;)iENv

where the computable metric on [0, 1]* is given by d((z;)ien, (vi)ien) = >; 2~ *|z; —yi|. The function
is computable. Since effectively closed sets separate points, it follows that g is injective, and thus
g is a computable homeomorphic embedding of X into [0,1]“.)

Exercise™* 4.2.27 (Miller [392]). Recall that the name of a point = in a computable Polish space
is
{i:x e B},

where (B;)en is an effective list of all basic open balls of M (Def. 4.2.4). An oracle Y computes
some fast Cauchy name of a point iff Y can enumerate N¥; this is Fact 4.2.5 (relativised). The
degree spectrum of a point x € M is

DSpy(x) = {Y € 2¥ : N® is c.e. relative to Y'}.

1. Prove® that for any computable Polish space M and any x € M, there is some point y € H =
[0,1]« (see Exercise 4.2.19) such that DSpys(z) = DSpr(y).

2. Prove that for any computable Polish space M and any « € M, there is some point f € C[0, 1]
(Example 2.4.18(2)) such that DSpys(z) = DSpcio,11(f)-

3. Show™* that there is an f € C[0, 1] such that DSpco,17(f) contains no least Turing degree.

4.2.2 Deciding the intersection

One standard way of using a (finite) cover of a compact space in dimension theory and algebraic
topology is to use Alexandroff’s notion of a nerve, which we will need (and will properly define) in
the next chapter. The nerve of a cover is a simplicial complex in which the faces are the collections
of basic open sets that have a non-trivial intersection; i.e., each basic open set is a 0-dimensional
simplex (a node), and balls {B, C, D} form a 2-dimensional face if B n C n D # ¢, and so on.

From the computability-theoretic standpoint, the issue with this definition is that, for a fixed
finite open cover, the non-emptiness of each specific intersection is merely X¢, and this cannot be
improved in general. However, if we choose our covers very carefully, we can use special covers
where we can decide intersections. Our next result shows that in a computably compact space we
can find one such nice e-cover for every € € Q. To state the result formally, we push the notion of
computable compactness to its limits.

Definition 4.2.28 (Downey and Melnikov [139]). A set of basic open balls is n-decidable if for
every finite sequence of balls By, ..., B; from the set, we can computably decide whether (), B; = &.

Definition 4.2.29 (Downey and Melnikov [139]). A (compact) computable Polish M is nerve-
decidable, or =#-computably compact, if for every n > 0 we can computably find a finite 27 "-cover
K, (represented as a finite tuple of basic open balls) of M so that K, is n-decidable uniformly in
n. (By Remark 4.2.15, we can additionally assume that K, ; formally refines K,,.)
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Theorem 4.2.30 (Downey and Melnikov [139]). A computable Polish M is nerve-decidable (#x-
computably compact) iff it is computably compact.

Proof. Obviously, #*-computably compactness implies computable compactness. To this end, we
assume computable compactness of M. Recall that, for a basic open B, we write B for the basic
closed ball with the same centre as B, and that the closure B of B does not have to be equal to B¢
in general.

Lemma 4.2.31. Suppose M is computably compact. Then, for basic closed balls Bf and B, the
property Bi n BS = J is c.e. uniformly in i,j. The same is true for any finite collection of basic
closed balls.

Proof. The open set M\BY is c.e.. Indeed, we just list all the basic open balls that are formally
disjoint from BY. Thus, the union of the complements, which is the complement of the intersection
Bf n Bj, is also c.e. open. It covers the space iff the intersection is empty. By computable
compactness of M, this is c.e. The case of finitely many balls is similar. O

If S is a finite cover, then for each subset {Bi,..., B} of S, exactly one of the possibilities is
realised:

(a) ﬂigk Bf = &, or
(0) Ni<k Bi # &, or
(¢) Ni<r B # & but (N, Bi = .

Note that there are only finitely many conditions like that in total. Also, (b) is c.e., and (a) is
c.e. by Lemma 4.2.31. However, (c) is more complex. We argue that there is an e-cover for which
the third possibility (c) is never realised for any finite collection of balls from the cover. If we
succeed in proving that such a cover always exists, we will just search for a cover such that each
finite collection of basic balls in the cover satisfies either (a) or (b).

Fix a finite €/2-cover of the space by basic open balls, and replace each ball in the cover with a
e-ball with the same centre. Let S be this new e-cover. The third alternative (¢) can be witnessed
by at most one choice of radii. If this is the case, shrink the radii of all B € S by a § < ¢/2. Then
(a) and (b) will still hold. O

A stronger condition

It will be convenient to have a computable system of covers (K,) so that not only each K, is n-
decidable but the whole collection Un K, is n-decidable. We are not sure whether such covers can
be uniformly constructed for basic open balls with rational radii (represented as a pair of integers),
but we can contract such a system for balls with centres in special points and uniformly computable
radii that are not necessarily rational. We call such balls basic computable open.

Definition 4.2.32 (Downey and Melnikov [139]). A computable Polish M is strongly computably
compact if for every n > 0 we can computably find a finite 2~ "-cover K,, (represented as a finite
tuple of basic computable open balls) of M so that | J,, K, is n-decidable.

As before, by Remark 4.2.15, we can additionally assume that K, 1 formally refines K.
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Theorem 4.2.33 (Downey and Melnikov [139]). A computable Polish space is computably
compact iff it is strongly computably compact.

Proof. By slightly increasing the radii of all the balls in a cover, we can ensure their radii are
rational. Thus, every strongly computably compact space is computably compact. To this end, we
assume the space is computably compact.

Iterate the proof of the previous Theorem 4.2.30. Suppose we have come up with a n-decidable
K and need to find K; so that Ky u K; is n-decidable. But to find such a cover, we might have
to slightly shrink the radii of the balls that we have already put into Ky. But note Ky must still
satisfy the closed properties ﬂiék Bf = (# and finitely many open properties ﬂigk B; # . The
former is not an issue since the radii will decrease. The latter however needs to be maintained more
carefully. When we first discover the finitely many open relations of the form of finitely many strict
inequalities (when K is first introduced), we also compute a rational parameter dy > 0 such that
the relations will still hold if we decrease the radii of the balls by at most dg. This is possible since
the conditions are just finitely many strict inequalities.

We then define 6y, = 27"=25, and note that Y00, < 0p. We intend to shrink the radii of
each ball in Ky by at most dg s at stage s. This will make the radii in the balls computable while
maintaining the finitely many conditions that Ky needs to satisfy.

We also iterate this. When we define K7, we will have more open conditions to maintain for
Ky u Kq. We compute a 6; > 0 and set 07, = 27"=2§,. We also ensure that 01,n < 0p,p, for every
n. When we define (our first approximation to balls in) K5 at stage ¢, we will allow balls in Kj to
shrink by at most 01 + < dp+ and balls in Ky by at most d; ;. All the finitely many conditions will
still be satisfied.

We iterate this process until, in the end of the construction, we finally get a collection of
computable balls | J,, K. We leave the formal details to Exercises 4.2.37-4.2.39. O

Remark 4.2.34. In the proof of Theorem 4.2.33, instead of using basic open covers, we could use
basic closed covers. We can also come up with any combination of open, closed and closures (e.g.,
decide whether B; N E N Bj, = &) for any computable balls in K constructed in Theorem 4.2.33.
Also, by Remark 4.2.15, we can always assume that K, 1 is formally contained in K,, and this
will still be true if we choose working with closed covers.

Definition 4.2.35. If a computable sequence (K,,) of finite 27 "-covers of computable balls satisfies
the properties described in Theorem 4.2.33 and Remark 4.2.34, then we say that (K,,) is a fully
N-decidable system of covers of the space>.

Lemma 4.2.36. Let K = |, K,, be a fully n-decidable system of covers of a computably compact
M. Then, for every closed ball D¢ in K we can enumerate all basic open B in M such that
BnD®# .

3These K, are represented as a uniformly computable sequence of indices of radii and centres, and we can choose
whether we want to consider open, closed, or closures of open balls that have these parameters. For instance, when
we say “B°(r,q) is in K,,” or “B(r,q) in K;”, or the same for B(r,q), we really mean that parameters (r,q) are
listed in K, (where g is given as an index of a computable real).

169



Proof. Suppose B n D¢ # ¢ and let & be any (not necessarily special) point in the intersection.
Suppose the radius of B is §, and let ¢; be the centre of B, and ry its radius. For some positive 9,
we have d(z,¢1) = r1 — 6. Fix n so that 27" < §/2, and consider the finite set K,,. Since K, is a
(closed or open) cover of the whole space, there must exist some C € K,, such that z € C. Since
x € D¢, it must be that C' n D¢ # ¢J, and (by our assumption) this can be recognised computably.
We claim that for this C', we have that C is formally included into B. Indeed, if cg is the centre of
C' and ry is it radius, then we have that d(z,c2) < ro < 27" < §/2, and therefore

d(c1,c2) +re <d(z,c1) +d(z,02) +6/2<1m1 —0+0/240/2 =14,

which is the same as to say that C' is formally included into B. It follows that B intersects D¢ iff
there is an n > 0 and a ball C € K,, such that C' n D¢ # ¢ and C is formally included into B.
This is a X9-property. O

Exercises
Exercise® 4.2.37. Give a complete formal proof of Theorem 4.2.33.

Exercise® 4.2.38 (Folklore; see [57]). Prove the Effective Baire Category Theorem: Let (U;)ien
be a sequence of uniformly c.e. dense open subsets of a computable Polish M. Then for any basic
open B in M there is a computable £ € B N (), M;.

Exercise® 4.2.39 (Hoyrup?). Derive Theorem 4.2.33 using the Effective Baire Category Theorem
(Exercise 4.2.38).

Exercise* 4.2.40 (Downey and Melnikov [139]). The covering dimension of M is the least n €
N U {0} such that every open cover of M has a refinement of order n + 1, i.e., each point belongs
to at most n + 1 sets. It is well-known that a compact space of covering dimension n can be
homomorphically embedded into R??*!. Use n-decidable covers to prove that any computably

compact Polish space of covering dimension n can be computably homomorphically embedded into
RQn—&-l.

Exercise* 4.2.41 (Hoyrup, Melnikov, and Ng [267]). The notions of computable topological,
strong computable topological, and effectively compact topological presentations were introduced
in Definition 2.4.26. Show that, for a compact Polish space X, the following are equivalent:

1. X has an effectively compact strong topological presentation.

2. X admits a computably compact Polish presentation.

Conclude that every effectively compact topological space admits a A9-Polish presentation.
(Hint: To see why 2 — 1, use a strongly n-decidable system of covers. For the other implication,
check that every X satisfying 1. also has the properties necessary to produce the metric given in
Exercises 4.2.24, 4.2.25 and 4.2.26. Note the resulting metric is necessarily complete. Produce a
computable dense sequence and verify that the presentation is computably compact.)

Exercise* 4.2.42 (Downey and Melnikov [139]). This exercise establishes that the computably
compact spaces are exactly those whose continuous diagram is decidable. While it is not difficult,
it requires some background in continuous logic ([46]). Let (M, d) be a computable Polish compact

4Personal communication.
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space of diameter < 1. Define the (full) continuous diagram of (M,d) as follows. The atomic
formulae are just d(z,y) and the constant functions 0 and 1. We close these formulae under finite

iterations of sup,inf, A, v, 3 and —. We say that M is continuously decidable if its continuous

diagram is uniformly Type II computable. That is, given (the Goédel number of) a continuous
formula ¢(Z) from the full continuous diagram of M, we can uniformly produce an index for a
Turing operator that computes the function

[p(z)] - M™ — [0,1],
where T = x1,...,2z,. Show the following are equivalent:

1. M is continuously decidable;

2. M is computably compact.

4.2.3 Calculus of effectively closed sets

The notion of an effectively closed set is a generalisation of a IIY class (§2.1.6). We have already
seen this notion in Definition 4.2.6, but we state it again here.

Definition 4.2.43. A closed subset C of a computable Polish M is effectively closed (I19-closed,
or simply I19) if M\C is c.e. open.

In this subsection we present some well-known basic results about effectively closed sets that will
be important in the sequel.
Elementary properties of effectively closed sets

It should be clear that effectively closed sets are closed under finite unions and arbitrary computable
intersections (meaning that the effective procedures listing the complements must be uniformly
indexed). The following lemma is also an immediate consequence of the definition:

Lemma 4.2.44 (Folklore). Suppose f : A — B is a computable surjection, and assume C' is
effectively closed in B. Then f~1(C) is effectively closed (in A).

Proof. This is because A\f~1(C) = f~1(B\C) is c.e. open by Lemma 4.2.9. O

Another observation is an easy generalisation of a well-known fact about II{ classes (Exer-
cise 2.1.32).

Fact 4.2.45 (Folklore). Suppose P = {p} is effectively closed singleton in a computably compact
space X. Then the only point p of P is computable, and this is uniform.

Proof. Given n, search for a basic open ball D of radius 2" and basic open By,...,B,, € X\P
such that D, By,..., B, cover X. Then pe€ D. O
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Corollary 4.2.46. Let G be a computably compact space with a computable (multiplicative) group
operation upon the space. Then the operation of taking the inverse is also computable in G.

Proof. To se why the identity element is computable, observe that
fale o =g} = {e},

which is effectively closed. Thus, e is computable by Fact 4.2.45. Given x, to compute ! consider
the closed set

{ylz-y=e}={a7"}

and observe that it is effectively closed relative to x. Thus, the computability of x — z~! follows
from Fact 4.2.45 (relativised). O

Recall that in Theorem 2.1.29 we saw that a non-empty I} class (i.e., an effectively closed subset
of 2¥) may contain no computable points. We now prove a well-known theorem of Jockusch and
Soare [271] that guarantees that every effectively closed subset of a computably compact space has
a low point. This theorem will be used in §7.1.2 and in many exercises throughout the book.

Theorem 4.2.47 (The Low Basis Theorem; Jockusch and Soare [271]). Let X be a computable
compact space and suppose C < X is effectively closed (119-closed) and non-empty. Then C
has a low point (i.e., a point computable relative to a low degree).

The result is often stated for the special important case when X = 2“ in the literature. An even
stronger version can be found in [61], but we won’t need this level of generality.

Proof of Theorem 4.2.47. We need a few observations:
Fact 4.2.48. Let C, D be 119-closed subsets of a computably compact X .

1. The condition C n D = & is 9.
2. If C' has no computable members then either C' n D is infinite or empty.

Proof. C n D = (J is equivalent to saying that their complements cover X, and this is c.e.. C n D
is itself 19, and if it is finite then it has an isolated point. (To apply Fact 4.2.45, consider the
intersection of the class with the basic closed ball of small enough radius that contains the isolated
point.) O

If we identify the dense set in the space with w, a (fast) Cauchy name (z;);eny can be treated as

a function f : w — w. This clarifies the notation <I>£“)*N that we use throughout the rest of the
proof.

Fact 4.2.49. Fiz e. The collection of all points x € X that have a fast Cauchy name (x;)ien such
that e (e) | forms an effectively open set, and this is uniform in e.
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Proof. Any computation PLr)ien (e) | is witnessed by a finite initial segment (z;);<s. Every fast

Cauchy extension of (z;);<s will share the same computation with (z;);en. This gives a basic open
ball of radius 27% centred in z,. Being an initial segment of a fast Cauchy name is % (we use
strict < in d(@;, z;41) < 27771). We can effectively list all such initial segments. This, all such balls
‘forcing’ the halting computation can be effectively listed. O

We use these facts implicitly throughout the rest of the proof.

If C' has a computable point then there is nothing to prove. So suppose C' has no computable
points. For an index e, let H, be the effectively open set of points h such that Plridien (e) | for some
fast Cauchy (z;)ieny of h. Then Hy n C < C is II{ and thus is either empty or it is infinite. If it is
empty then set Dy = C, otherwise let Dy = Hy n C < C. If D, has been defined, let D.,1 be D,
if Hey1 N D, = &, and otherwise let Dey1 = Hey1 n D, (which has to be infinite).

A collection of sets has a finite intersection property if the intersection of any finite sub-collection
of sets in the family is non-empty. One of the equivalent formulations of compactness is that a
space is compact iff any family of closed sets having the finite intersection property has non-empty
intersection.

The resulting family of closed sets has the finite intersection property, and thus they share at
least one common point. Let £ € nyenD;. Let (y;)ien be a fast Cauchy name of £. To see whether
@éyi)ieN halts, use ¥’ to check whether H, intersects D._1 (where D_; = C). If the intersection is

empty, then @i (e) 1. Otherwise, @gyi)ieN(e) . Tt follows that (y;):en is low. O

Computable closed sets

Effectively closed sets, I1{-classes, computable functions, and computably compact spaces are closely
technically related. To make this relationship explicit, we need one more definition. As usual, we
identify basic open balls with their indices.

Definition 4.2.50. A closed subset of a computable Polish M is c.e. if {B : B basic open and B N
C # g} is ce..

Sets that satisfy the definition above are sometimes called computably overt in the literature.

Lemma 4.2.51 (Folklore). A closed subset C' of a computable Polish space M is computably enu-
merable iff C' possesses a uniformly computable (in M) dense sequence of points®.

Proof of Lemma 4.2.51. Suppose C possesses such a computable sequence («;);en. Then the density
of the sequence in C implies that B; n C # & iff 3ja; € B;, which is a uniformly 9 statement.

Now suppose C' is a computably enumerable closed subset of M. Our goal is to construct a
uniformly computable (finite or infinite) sequence of points («;);er that is dense in C. The proof
below does not have to be non-uniform, but for notational convenience we split it into two cases,
namely, when C is finite or infinite.

If C is finite, then it clearly contains only computable points. To see why, assume it is not
empty (in this case there is nothing to prove) and let  be any point in C. Take a ball small enough
so that {z} € B~ C. To get an 2~ "-approximation to x, wait for a basic open B’ of radius < 27"
so that B’ n C # & and additionally B’ is formally contained in B.

50Observe that the dense sequence makes C' a computable Polish space under the induced metric.
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Without loss of generality, we assume C is infinite. We uniformly approximate a computable
sequence by stages. Before we describe stage s, recall that two basic open balls U and W are
formally s-disjoint if 7(U) + r(W) < d(¢(U),¢(W)) and this can be seen after calculating the radii
and the distance with precision 27°. Then U and W are formally disjoint if the are formally
s-disjoint for some s.

At stage 0, search for a basic open ball By o of radius < 1 such that Bypo n C # . If such a
ball is never found then do nothing. If it is every found, go to the next stage.

At stage s > 1 first check whether there exists a basic open ball with index < s which is
formally s-disjoint from By s_1,...,Bs—-1,s—1. If such a basic open B exists, then choose the first
fund B, s Sform B and B; s Sform Bis—1, © < s such that B; s n C # J, the B; ¢ are pairwise
formally disjoint and r(Bjs) < 27°, j = 0,...,s. Otherwise, if no such B exists, fix the first
found pairwise formally disjoint By s, ..., Bs s that intersect C, have radii < 27%, and such that
Bi s S jorm Bis—1 for i < s (note there is no further restriction on Bj ). This ends the construction.

Let «; be the unique point of the Polish space such that {«;} = ﬂj% B, ;. Since the construction
is uniform and the radii of balls are rapidly shrinking, the points «; form a uniformly computable
sequence. Since each of the B, ; (j = 4,7+ 1,...) intersects C' and C is closed, each a; € C. It

remains to check that (;):en is dense in C. Let (o), be the completion of (o )ien.

Suppose ¢ € C. We claim that c € (a;),.y. Assume ¢ ¢ (a;) and there is a ball U centred in

€N
¢ which is outside (c;);.y. There will be a basic open ball B’ 5 ¢ of radius at most 27" and which

is formally contained in U with precision 27":

d(c(U),e(B)) +r(B") <r(U)+27".

Then at every stage s > n+4 the balls B; ;_1,¢ =0,...,s—1 will be formally s-disjoint from B,
as will be readily witnessed by the metric. At some late enough stage s’ we will get a confirmation
that B n C' # (. There exist only finitely many basic balls that have their index smaller than
the index of B. Therefore, eventually B will be used to define By Sform B, contradicting the

assumption that U N (;),;.y = - 0

Definition 4.2.52. A closed subset of a computable Polish M is computable if it is c.e. and
effectively closed.

As we mentioned immediately after the statement of Lemma 4.2.51, a c.e. closed subset of a
computable metric space M can be viewed as a computable Polish space under the induced metric.
The proposition below is also folklore.

Proposition 4.2.53. For a closed subset C' of a computably compact M, the following are equiva-
lent:

1. C is a computably compact subspace of M ;

2. C is computable.

Proof. Assume (1). It is clear that C' is c.e. (by Lemma 4.2.51). To list its complement, fix x € M\C.
Let 0 = inf.cc d(z, ¢). Then any /4 -cover of C must be formally disjoint from any ball centred in
y with d(y,z) < /4. For every n, fix a finite 27"-cover K of C. It follows that M\C is equal to
the union of the (uniformly) effectively open sets U,,, where

{B : B basic open and B is formally disjoint from every ball in K}.
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It follows that (2) holds.

Now assume (2). C' is computable Polish by Lemma 4.2.51; let (y;) be the computable dense
subsequence. Fix e = 27". We need to find an e-cover of C' by basic open balls. Note that y; does
not have to be special in M, and thus basic open balls in C' do not have to be basic open in M.
Nonetheless, an open ball of M centred in a computable point y and having a computable (more
generally, left-c.e.) radius r is effectively open:

B(y,r) = | J{B(x,q) : d(z,y) + ¢ <1},

that is, B(y,r) it is the union of basic open balls formally contained in it. Note effective openness
of B(y,r) is uniform in y and r. Regardless of whether the balls involved are basic or not, as long
as their centres and radii are computable, the relation of formal containment remains c.e.

If a finite collection K of basic open (in C') balls formally contains a cover K’ by basic open (in
M) balls, then clearly K is a cover of C. We claim that this condition is also necessary (for K to
cover C).

From the proof of Lemma 4.2.14 we know that, for a given cover K of C by (basic or not) open
balls there is a small enough € such that every e-cover of C' will be formally contained in at least
one ball of K.

Take § = €/4. Fix a finite d-cover K’ of C by balls that are centred in special points of M, not
C. Every B’ € K’ intersects C' at some point z, and by the choice of 8, d(z, entr(B’)) + 0 < ¢, thus
B(e,z) Dform B’'. By transitivity of formal inclusion, we have that B’ must be formally contained
in some ball in K.

By computable compactness of M and computability of C, we can produce at least one J-cover
K’ of C by basic open balls of M, uniformly in 6. (To see why, replace every basic open ball in the
c.e open name of M\C' by the effective union of balls of radii at most ¢ that are formally contained
in it. This gives a new c.e. enumeration of the complement of C' but with balls of radii at most 4.
Then take the c.e. collection of all basic é-balls that intersect C'. Together these sets of balls cover
M. Initiate the combined enumeration of these two c.e. sets and wait until at some finite stage we
discover that we have a cover of M.) Since formal inclusion is c.e., this gives a procedure of listing
covers of C' by basic balls (in C). O

An immediate consequence of the proposition above is as follows.

Proposition 4.2.54. Suppose K =, K, is a fully n-decidable system of covers of a computable
Polish M. Then each computable closed ball D¢ in K is a computable closed set (thus, is a com-
putably compact subspace of M ), and this is uniform.

Proof. Lemma 4.2.36 says that each such D¢ is c.e. closed. If x € M\ D¢, then z inside an open ball
C that is formally disjoint from D¢, and we claim that such balls can be computably enumerated.
To see why, let ¢ be the centre of D¢ and r its radius, and assume d(c,x) = r + 6. There must be
a special x; such that d(x;,z) < 6/2. Take the basic open ball C' = B(xz;,d/2). Then the distance
between their centres is d(c, ) > r+ 6 —d(x;,x) > r+3J — /2 = r + §/2, which is the sum of their
raddii. So the balls are formally disjoint. Thus, the c.e. union of such open balls formally disjoint
from D¢ makes up the complement of D€. O
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Maps between computably compact spaces

The lemma below is well-known; e.g., [506, Theorem 3.3].

Lemma 4.2.55. Suppose f: X — Y is a computable map, and assume X is computably compact.
Then f(X) is computably closed (in'Y ) and computably compact.

Proof. Let (z;) be a computable dense sequence in X. Then (f(x;)) is dense in f(X). (Every
a = lim; z; for some subsequence (z;) and, by continuity, f(a) = lim; f(z;), so f(X) S cl(f(z;)).
Suppose & € cl(f(x;)), say £ = lim; f(x;). By compactness, (x;) has a convergent subsequence
(xj,.), so let z = limy, z;, € X be its limit. Then f(z) = limy, f(x;,) = lim; f(z;) = &.)

Initiate the enumeration of f~!(C) for each such basic open C; note it could be that some of
these f~1(C) will be undefined. At some stage the preimages must cover the whole X. This gives
a way of producing at least one 27 "-cover of f(X) uniformly in n; now apply Lemma 4.2.14. O

Combining Lemma 4.2.55 with Proposition 4.2.53, we get:

Corollary 4.2.56. Suppose f: X — Y is computable and X is computably compact.
o If f is surjective then Y = f(X) must be computably compact.
o f(X) is a computable closed subset of Y.

In computable algebra, the inverse of a computable bijective map is clearly computable as well.
In contrast, there is no reason why the inverse of a computable bijection between spaces has to
be computable even if its inverse is continuous (we mention here that this is actually true for
isometric maps). The theorem below is elementary and is folklore (e.g., [61, Corollary 6.7]), but it
is rather important because it tells us that effectively continuous maps are the right morphisms in
the category of computably compact spaces.

Theorem 4.2.57. Suppose f : X — Y is a computable bijection between computable Polish
spaces, and assume X is computably compact. Then'Y is also computably compact, and f~! is
computable.

Proof. Computable compactness of Y follows from the corollary above. Given a (not necessarily)
special point y € Y, act computably relative to y. The set Y\{y} is effectively open relative to y.
Since f is computable, f~1(Y\{y}) is effectively open relative to y. Since f is bijective, we have

that
X\ ) = {7 )}
which is a y-effectively closed singleton in X; apply Fact 4.2.45. O

In a computably compact group, the uniformly g-computable translation maps * — x - g and
x — g - have g-computable inverses. For instance, for each computable point g both maps are
effectively open, meaning that they uniformly map names of open sets into names of open sets. The
effective openness of the group operation can be derived in absence of computable compactness (see
[313]), but we won’t need this fact.
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Exercises

Exercise® 4.2.58. Fix a computable linear operator 7' : B — B, where the dimension of the
computable Banach space B is finite. Show that the eigenvalues of T are computable, in the sense
that they must be of the form £ +in, where £, 1 are computable reals. (Compare to Exercise 2.4.37.)
[Hint: Use Fact 4.2.45.]

Exercise* 4.2.59 (Jockusch and Soare [271]). Show that there is an infinite II{ class C (i.e.,
an infinite effectively closed C < 2¥) such that, for all f,g € C, if f # g, then f and g have
incomparable Turing degrees.

Exercise* 4.2.60 (Jockusch and Soare [271]). Prove the following: Given any nonempty I1{ class
C < 2¥ which has no computable members, and any countable sequence of non-computable Turing
degrees {a;}, C has 2% members f;, mutually Turing incomparable, such that the degree of f; is
incomparable with each a;.

Exercise 4.2.61 (Jockusch and Soare [271]). Show that any nonempty 119 class C' < 2% which has
no computable members contains f, g whose greatest lower bound in the Turing degrees in 0. (Use
Ex. 4.2.60 noting that the lower cone of each degree is countable.)

Exercise 4.2.62 (Metakides and Nerode [384]). Recall that a field F is orderable iff it is formally
real, i.e., —1 is not a sum of squares in F'.

1. Let F be a computable formally real field. Show that the class of compatible orderings on F'
can be represented as a I19-class. Conclude that every computable, orderable field admits a
low compatible ordering.

2. Conversely, let C be a IT9-class. Show* that there is a computable formally real field so that the
compatible orders on F' are in effective 1-1 correspondence with elements of C. Conclude that
there is a computable, orderable field which is not computably orderable. [Hint: Matakides
and Nerode effectivise the earlier work of Craven [98, 99]. Take a computably presented
real closed field R (e.g., the real closure of Q using Theorem 2.2.32) and note that R has a
computable order which (ignoring the field operations) is dense. Consider the field R(y). The
space X (R(y)) of compatible orderings of R(y) is in an 1-1 effective correspondence with the
Cantor space, which can be thought of as the Stone space of the atomless Boolean algebra
freely generated by half-open half-closed intervals in R. Further, each clopen set in this space
has the form Uy = {0 € X(R(y)) : o makes f(y) > 0}. If R = {bg,b1,...} then such an f
can be chosen to be a product of linear factors of the form y — b; (up to a sign). This gives
a way to effectively represent a I19-class as X (R(y))\U,;ew Uy,» where W is a c.e. set. Take
F = R({y, 2A/—fi(y) : i € W,n € N}), noting that f;(y) have to be negative with respect to
any compatible order, while the algebraic elements 2\/— f;(y) must all be positive. A naturally
constructed computable copy of F' will have the property that its space of compatible orders
X (F) is effectively homeomorphic to C']

Exercise® 4.2.63 (Miller [395]). Suppose A is a computable algebraic field (i.e., algebraic over
its prime subfield) with a splitting algorithm (i.e., an algorithm that given a polynomial decides
whether it is irreducible). Prove that for any computable presentation B of A there exists an
isomorphism f: B — A so that f is low.
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Exercise 4.2.64. Show that the group SO(3) admits a computably compact presentation. (Hint:
Recall M3(R) is an inner product space under Frobenius inner product tr(ATB). Noting that
QT = Q" when Q € SO(3), we see that SO(3) is contained in the computably compact closed ball
B = B°(0, 3) of M3 under the Frobenius norm. Since SO(3) is defined by the equation det(Q) = 1,
it is effectively closed in B. To list a dense set of SO(3), use Rodrigues’ formula.)

Exercise® 4.2.65 (Brattka [60]). Let X and Y be computably Polish spaces and f: X — Y, and
assume X is computably compact. Then f is computable iff graph(f) is effectively closed and iff
graph(f) is computable closed.

Exercise® 4.2.66 (Folklore; e.g. [139]). 1. Show that the space of all compact (or closed) sub-
sets C(H) of the computable presentation of H = [0,1]* described in Exercise 4.2.19 is a
computable Polish space. (Hint: The metric is given by the Hausdorff distance dg(X,Y) :=
max {sup,cy d(,Y), sup,ey d(X,y)}. The countable dense set is formed by finite discrete
subsets of special points of H.)

2. Show that for a c.e. closed subset C' of H, C' is computable iff C' is a computable point in the
computable presentation C(H) described in the hint above.

Exercise* 4.2.67 (Brattaka, de Brecht, Pauly [61]; see also [139]). Show that a compact com-
putable Polish space X is computably compact iff there is a computable surjective f : 2¥ — X.

Exercise 4.2.68 (Folklore; e.g., [269]). Let X be a computable Polish space and let K < X be
compact. Say that K is semicomputable if we can list all finite open covers of K by basic open
balls, as tuples of their strong indices. (This resembles the notion of computable compactness, but
we do not assume that K is computable Polish; we use the basic balls of the larger space to list all
finite covers of K.) Show that K is computably compact iff K is c.e. closed and semicomputable.

Exercise 4.2.69 (Iljazovi¢ [268]; see also [139]). Show that any isometric computable Polish pre-
sentation of a computably compact space is also computably compact. (Note that we do not require
that the isometry is computable.)

Exercise® 4.2.70 (Folklore). Suppose X is a computably compact subspace of a computable Polish
space Y. Show that the inf-distance din¢(y, X) = infzex d(y,z) from a point y to the subspace X
is a computable function.

Exercise® 4.2.71 (Folklore; see Metakides and Nerode [385]). We say that a closed subspace C' of
a computable Polish space X is located if y — dint(y, C) = inf.ec d(y, ¢) is a computable function
X — R. Show that, for a finite-dimensional subspace C' of a computable (real) Banach space, the
following are equivalent:

1. C is located;

2. C has a basis consisting of computable points.

[Hint: We can assume C # ¢J. If C is located, then use a straightforward iterative procedure to
approximate a computable by € C. If C' — Rby # J, then (non-uniformly) fix a basic closed ball
disjoint from Rbg, and repeat the procedure within the respective open ball to find b;. Repeat until a
finite computable basis b of C'is found. Conversely, suppose C has a basis b consisting of computable
points. The basic case is when the dimension is 1 and b = (b). Note diu¢(x,C) = infaer ||ab —z|| <
[|z]|, as witnessed by av = 0. On the other hand, |a||b]| — ||z|| = ||ab|| — ||z]| < ||ab — z||, which
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means that when |al||b|| — ||z|| gets larger than ||z||, we cannot possibly achieve the infimum of
2] ]|
18]
inf{||ab — z|| : @ € [—&,&x]}. Since [—&;,&,] is computably compact relative to z, this value is
also computable relative to x (uniformly in ). To understand the inductive step, consider the case
b = (bo,b1). Let 81 5 = ding(z,Rb1) = infyer ||\b1 — ||, which is uniformly computable in z. As

[|ab — z||. In other words, if |a| > &, = the infimum cannot be attained. Thus, di¢(z,C) =

. a
before, [|apbo +a1b1|| —||z|| < ||aobo +a1by —x||, and assuming ag # 0, |a0|\|b0+a—1b1|| = |01,y -
0

We can bound the range of ag to [—2||z||/d1,by, 2]|%]|/01,5,]. A similar bound, this time using 6, ,
can be put on ;. This bounds the choice of (ag, a;) to an x-computably compact subset of R?, and
the case when dim C' = 2 follows. The general case of dim C' = n > 1 is not very much different.
It uses the distances from b; to the spans of b — {b;} to calculate parameters (that are computable
by the I.H.) which give a way to bound the search to an z-computably compact set in R™.]

Exercise® 4.2.72. Let X be a located closed subset (Ex. 4.2.71) of a computable Polish space M.
Show that X is computably closed. Further, if M is computably compact, then every computably
closed X € M is located, but without the computable compactness of M, this fails in general (even
for compact M).

Exercise® 4.2.73 (Folklore). Recall that two norms || - || and || - ||/ on a Banach space B are

equivalent, written ||-|| ~ || -]|’, if there exists ¢ > 0 such that for all x € B, 5||$H < ||l=||” < Oz

Note that this is an equivalence relation on the collection of all norms on B.

1. Prove that if || - || ~ || - |, then the identity operator Id on B is a homeomorphism from
(B, -[[) to (B,[|-]|"). [Hint: For a scalar A, define AB,.(v) = Bjy|,(Av) and observe CB.(x) <
Bl(x) = & Be(x), where the notation should be self-explanatory.]

2. Prove that all norms on R™ are equivalent. [This can be found in any textbook that covers
Banach spaces.]

3. Show that if || - || ~ || - ||' and both norms turn B into a computable Banach space, then
Id : (B,||-]]) — (B,]|-||') and id~! are computable. [Hint: Use that y € B.(z) implies
y € CB:(y) € B5(y) Sform BL(x) for some §. By decreasing the radii of some of these
balls slightly if necessary, we can assume that the condition is open, i.e., it is stable under
a slight variation of the parameters involved. In particular, y € CB.(u) S B§(u) Sform
B! (z) for some special u. Thus, to calculate id—!(BZ.(x)), list all basic open C'B.(u) so that

Bj(u) S form BL(x).]

Exercise® 4.2.74. Show that the closed unit ball in a finite-dimensional computable Banach space
is computably compact. [Hint: The closed unit ball B is evidently c.e. closed, so it is sufficient to list
all finite basic open covers of B. Assume the dimension is n; let eq, ..., e, be linearly independent
special points. (Note that such special points exist.) We can replace the original dense set with the
dense linear set Y, 7ie;, 7. € QF. Define (say) the usual || - |[|o-norm on Y}, rie;. This gives
a computable Banach presentation of R™ under || - ||o. The closed unit || - ||-ball D is evidently
computably compact (with respect to || - ||o), and so are the n-scaled || - ||o-balls n.D of radii n.
If || - || is the original norm, then 7 : (ai,...,an) = || X<, ai€il| is a computable map R" — R
(and thus nD — R). Recall that all norms on R” are equivalent and induce the same topology
(Ex. 4.2.73). The closed unit || - ||-ball B will be a closed subset of nD for some n. The special
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points that lie in the c.e. open n71((0,1)) are dense in B, and we can use 7~ *(1,0) to list the open
complement of B in nD. This makes B a computably closed subset of the computably compact
nD. By Proposition 4.2.53, B is computably compact, but with respect to the || -||o-norm. We can
now appeal to Theorem 4.2.57 and Exercise 4.2.73 to conclude that B is also computably compact
with respect to || - ||. Alternatively, we could directly list finite || - ||-covers of B, as follows. If

[l ]| <m-||]le, then every —-basic || - ||-ball will be contained in a d-basic || - ||-ball, and this

gives a way of listing finite covers of B with respect to the original norm. We remark that this
exercise can also be derived from Exercise 4.2.92; see the hint to Exercise 4.2.94.]

Exercise® 4.2.75. Suppose T : B — D is a computable linear map between computable Banach
spaces, where B is a computable Banach space of finite dimension. Show that ||T'|| is computable
uniformly in the index for T. [Hint: Use Exercise 4.2.74, Proposition 4.2.17(1), and the formula
1T = sup{||T=|| - ||lz|| < 1}]

Exercise® 4.2.76 (Computable Banach—Alaoglu Theorem; Brattka [59]). Let B be a computable
Banach space. Show that there is a computably compact space X such that the closed unit ball
of the dual space B’ can be computably embedded into X as a II{ closed (thus, compact) subset.
[Hint: Without loss of generality, we may assume there are no repetitions among the special points
(x;)ien of B (Exercise 2.4.32). Consider the space [ [,.y[—||il|,||2:]|]. Every linear operator can be
associated with a point in the space, and by continuity, the property of being linear is I19. We note
that here, the effective correspondence between the closed unit ball and the respective I1{ is not in
the Type II sense with respect to the norm on B’. The induced topology is the weak* topology.
Clearly, we cannot hope for a stronger result, as the unit ball in B’ may not be compact.]

4.2.4 Computable Stone duality. Proofs of Theorem B(1,2)

One of the topological characterisations of Stone spaces stated in Lemma 4.1.46 was as follows. A
(Polish) X is a Stone space if, and only if, X is a compact and totally disconnected, i.e., it has no
non-trivial connected subsets. The latter is equivalent to saying that the compact Polish space X
is totally separated, i.e., whenever = # y are points in X, there has to be a clopen set U such that
U 5z and X\U 3y (folklore). Having this property in mind, we say that a clopen split of M is a
pair of disjoint (cl)open sets X,Y such that X 1Y = M. The dual Boolean algebra is then equal
to the Boolean algebra of all clopen sets of the space under the set-theoretic operations.

Computable Stone duality

Various versions of the elementary lemma below can be found in, e.g., [266, 139, 245]. Fix a compact
M and assume it is computably metrised. Suppose an oracle Z is powerful enough to uniformly
list all basic finite covers of M. Then we say that M is Z-computably compact.

Lemma 4.2.77. Suppose M is computable Polish. If M is Z-computably compact, then there is a
uniformly Z-computable list all clopen splits of M.

Proof. Recall that two basic open balls B(cy,r1) and B(cg,r2) are formally disjoint if r1 + 7o <
d(c1,¢2). Two sets of basic open balls are formally disjoint if any pair of basic open balls, one
coming from the first set and the other from the second, are formally disjoint.
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Suppose M = X 1Y is a clopen split, and let § be the infimum-distance between these compact

open sets

0= (z,y;rel)f(XY d(x’ y)
(Since X x Y is compact and d is continuous, it attains its infimum at some pair (zo,y0). In
particular, § > 0.)

Suppose 0 < € < 6/4. Then every finite e-cover will consist of two formally disjoint subsets of
basic open balls. Indeed, every ball covering a point in X cannot contain a point in Y, and every
ball covering a point in Y cannot contain a point in X. If a basic open B has its centre in X and
D has its centre in Y, then the distance between their centres is at least J, while the sum of their
radii is at most §/2 < §, making them formally disjoint. The same can be said about the respective
closed basic balls.

On the other hand, if a finite open cover of M consists of two formally disjoint subcovers, then
these subcovers induce a split of M into clopen components. Since the property of being formally
disjoint is a c.e. property, Z is able to list all such covers. O

Another way to state the lemma above is that any modulus of compactness of M (see the proof
of Fact 4.2.11) can computably enumerate the clopen splits of M.

Theorem 4.2.78 (Hoyrup, Kihara, and Selivanov [266]). Let M be a computably compact Stone
space (a totally disconnected compact Polish space). Then the Boolean algebra of its clopen subsets
admits a computable presentation.

Proof. Fix a fully n-decidable system of covers K = | J,,cy Krn. Using the previous Lemma 4.2.77,
effectively list all clopen splits of M into (open, formally disjoint names of) pairs of clopen sets.
Let (X;,Y;) be the enumeration of these clopen splits; both of them have to be non-empty since
each of them has to at least contain the centre of at least one basic ball. Both X; and Y; are given
by their open as well as their closed covers, whichever is more convenient (recall Remark 4.2.34
and the discussion after when we argued that closed and open balls can be used interchangeably).
Write X} for the corresponding Y; in a clopen split; and let X? be another notation for X;.

The Boolean algebra is generated by the empty set and arbitrary finite non-empty conjunctions
of the form A, X%, where ¢; € {0,1}. Since the system of covers K is fully n-decidable, we can
indeed decide whether such a finite intersection is empty. In other words, if F' is the free Boolean
algebra generated by the X;, then the Boolean algebra of clopen sets of M is isomorphic to F/I,
where [ is a computable ideal generated by the empty conjunctions. This makes the Boolean algebra
computable. O

This result allows us to establish the following representation theorem.

Theorem 4.2.79 (Harrison-Trainor, Melnikov, and Ng [245]). Let M be a computable Polish Stone
space. Then the Boolean algebra of clopen subsets of M admits a computable presentation.

Proof. Let M be the computable space. Recall that @’ can list all finite covers of the space, by
Fact 4.2.11. Use Lemma 4.2.77 and relativise the previous Theorem 4.2.78 to get #'-computable
presentation of the Boolean algebra of clopen sets.

Suppose we are given a non-zero element of the Boolean algebra. It is a non-empty clopen set
represented via a finite union of basic balls. By slightly increasing the radii, we can assume they
are given by rational parameters while still keeping the complement of the component formally
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disjoint. We can ask whether there exist two unequal special points x,y that are contained in this
clopen set. This element is an atom iff no such pair of points exists. This question is uniformly
Y9 in the finite parameter representing the clopen set. Even though it takes (J to list such finite
parameters, when we are already given such a parameter, ¢’ can decide the property.

Thus, the atom relation is @f’-computable in the resulting ¢f’-computable Boolean algebra. By
Theorem 4.1.25, the Boolean algebra of clopen sets has a computable copy. O

The proof of Theorem B(2)

Recall that (2) of Theorem B states that every computable Polish Stone space is homeomorphic to
a computably compact Stone space. It follows from the theorem below.

Theorem 4.2.80 (Harrison-Trainor, Melnikov, and Ng [245]). For a countable Boolean algebra
B and its dual Stone space B, the following are equivalent:

1. B has a computable presentation;
2. B has a computable Polish presentation;

3. B has a computably compact presentation.

Proof. In the previous section, we explained that the dual Stone space Bofa computable Boolean
algebra B can be represented as the collection of infinite paths [T] through a computably branching,
computable tree T without dead ends. We also explained in Fact 4.2.16 that [T'] can be viewed as
a computably compact Polish space. The remaining implication is given by Theorem 4.2.79. O

Right-c.e. spaces and the proof of Theorem B(1)

Recall that a Polish space is right-c.e. if there is a dense sequence (o )ien such that d(a;, ;) are
uniformly right-c.e. reals, i.e., reals approximable from above. The sequence («;);en may contain
repetitions; equivalently, it is possible that d(a;, ;) = 0 for some ¢,j. In contrast with the com-
putable Polish case, these repetitions cannot be removed in general. We will see that II9 classes
can be viewed as right-c.e. metrised spaces. The following effective version of Stone duality was
established in [35].

Theorem 4.2.81. Let B be a countable Boolean algebra, and let B be the dual Stone space.
Then the following conditions are equivalent:

(a) B has a c.e. presentation,

(b) B admits right-c.e. presentation.
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Before we prove this version of Stone duality, we explain how to use it to prove (1) of Theorem B.
Recall that (1) of Theorem B says that there exists a right-c.e. Stone space that is not homeomorphic
to any computable Polish space.

Proof of Theorem B(1). For a c.e. presented Boolean algebra B given by Feiner’s Theorem 3.2.1.
Then B does not have computable copies. By Theorem 4.2.81, one can assume that the Polish
space B is right-c.e.. On the other hand, since B is not computably presentable, Theorem 4.2.80
implies that B is not homeomorphic to any computable Polish space. O

In the remainder of the section, we prove Theorem 4.2.81.

Proof of Theorem 4.2.81

Let T be a subtree of 2<“. As usual, [T] denotes the set of all infinite paths through 7. We say
that T is a pruned tree if for any o € T, there is a path z € [T], which goes through o. We write
2% to denote the complete binary tree, i.e., 2¢ = [2<¢].

In the final step of the proof of Feiner’s Theorem 3.2.1 we observed that every countable Boolean
algebra B is a factor of the atomless Boolean algebra F'(B) freely generated by the elements of B.
If B is c.e. presented then it is of the form F(B)/I, where I is a c.e. ideal. The topological version of
this observation is Proposition 4.1.49(2) which says that B has a c.e. presentation iff B is isomorphic
to the algebra of clopen subsets of [T] for some computable T'.

We prove (a)=>(b) of Theorem 4.2.81. Suppose that a Boolean algebra B has a c.e. presentation.
By Proposition 4.1.49, fix a computable T" such that B is isomorphic to the algebra of clopen subsets
of [T]. Equivalently, we can fix a co-c.e. pruned tree T' with this property (by compactness, we can
remove the dead ends in a c.e. way).

We define a right-c.e. Polish presentation (M, d) for the space B. We put M = [T], and the
distance d is induced by the standard ultrametric on the Cantor space 2 (i.e., d(§,n) = 27", where
n is the length of the longest common prefix of two unequal elements &, n € 2¢). Indeed, we prove
the following, more general fact.

Fact 4.2.82. A non-empty 11§ class S 2% can be viewed as a right-c.e. Polish space given by a
right-c.e. ultrametric on the Cantor space 2%.

We build a dense sequence (o );en inside (M, d) — our construction needs to ensure that the
distances d(a;, a;) are uniformly right-c.e.. Note that in general, a special point «; could be equal
to o for i # j.

Fix an effective sequence of finite trees (Ts)sen such that for any o € 2<%:

o if o €Ty, then |o] < s;

o if |o| < sand o ¢ Ty, then o ¢ Tsy1;

o geTiff (3s0)(Vs = sp)(0 € Ts);

e for every s, there is at most one 7 € Ts\Tsy1;

The sequence (Ts)sen is constructed as follows. Since the tree T is co-c.e., we choose an effective

enumeration of its complement: 2<“\T" = | J, Vs. At a stage s + 1, we proceed as follows. First,
we add to Tsy; all nodes o such that |o| = s + 1, 0 ¢ V;, and the parent of o belongs to Ts\Vs.
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After that, we consider a finite set F' = T n V. We choose a node 7 € F' with maximal length, and
delete it from Ty .

Now we are ready to construct our dense sequence («;);en. From now on, we assume that the
distance d(-, ) is induced by the metric on 2¢.

At a stage s, for every i < 2°, we define «,[s] as a string o such that |o| = s and o € Ts. Some
of these numbers i could be declared inactive. In the end, we will obtain a; as limg a;[s].

At stage 0, we define a[0] and a4[0] as empty strings.

Stage s + 1. For each active i < 2%, we proceed as follows. The string a;[s] satisfies one of the
following two cases.

Case 1: «;[s] € Ts+1 and there is a child o of «;[s] such that o € Ts1. We define o;[s+ 1] = 0.

Note the following: if z € 2 and «;[s] & =, then d(z, a;[s + 1]) = d(x, a;[s]).

Case 2: otherwise, either «o;[s] ¢ Tsy1, or a;[s] € Tsy1 and no child of «;[s] belongs to Ts1.
Since the tree T is pruned, this implies that a;[s] ¢ T

We find the largest n < s such that for the string 7 := «;[s] | n, thereis a £ > 7 with |{] = s+ 1
and € € Ts11. (Recall that p | n stands for the initial segment of p of length n.) Note that the
nodes £ | (n+ 1) and ay[s] | (n + 1) are siblings. Since T is pruned, one can show that every
o D a;[s] I (n+ 1) does not belong to T

For the chosen n, there could be several £ satisfying the conditions above. We choose the
leftmost one and set a;[s + 1] = &. We note that every = € 2% satisfies one of the following three
conditions:

1. Suppose that 7 &€ z. Then d(z,§) = d(z, o;[s]).
2. Suppose that a;[s] I (n + 1) € x. Then « is not a path through T.
3. Otherwise, we have £ | (n+1) € z. Then d(z,&) <2772 <271 = d(z, ay[5]).

For each i such that 2° < i < 2571 we search for the leftmost o € Ty41 such that |o] = s + 1
and o ¢ {a;[s + 1] : j < i}. If such o exists, then put a;[s + 1] = 0. Otherwise, for all ¢t > s + 1,
we set a;[t] = ap[t], and we declare this i inactive.

This concludes the description of our construction. It is not hard to show that every bit of
a;[s] can change only finitely many times. Hence, o; = limg a;[s] is well-defined. Furthermore, the
sequence {«; }ien is dense in ([T], d).

The properties of the construction ensure that

d(ay[s + 1], a[s + 1]) < d(ey[s], o[s]) for all 4,7, s.

Therefore, for a rational ¢, the condition d(a;, ;) < ¢ holds iff there is a stage s such that
d(ai[s], o[s]) < gq. We deduce that the reals d(c;,c;) are uniformly right-c.e., and the Stone

~

space B has a right-c.e. Polish presentation.
Proof of (b)=>(a). Suppose that the Stone space B has a right-c.e. Polish presentation (M, d).
This presentation is, in particular, A9 Polish. By Theorem 4.2.80 relativised to &', B has a A

presentation. By Proposition 4.1.50, B has a c.e. presentation as well.

The proof of Theorem 4.2.81, and therefore of Theorem B(1), is complete. O
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4.2.5 Computably categorical Stone spaces

We apply out techniques to completely describe Sone spaces that have a unique computably compact
presentation, up to computable homeomorphism. As we showed in Theorem 4.2.57, the inverse of
a computable bijection between computably compact spaces is necessarily computable as well.
Therefore, the following definition first proposed in [35] makes sense.

Definition 4.2.83. A compact space is computably categorical if it possesses a unique com-
putably compact presentation, up to computable homeomorphism.

We emphasise that the definition above uses computable homeomorphisms to compare spaces.
Recall that all our Stone spaces are Polish.

Theorem 4.2.84 (Bazhenov, Harrison-Trainor, and Melnikov [35]). A Stone space S is computably
categorical iff the dual Boolean algebra S is computably categorical. (Thus, by Theorem 4.1.17, these
are ezactly the Stone spaces having only finitely many isolated points.)

Proof. By Theorem 4.2.80, S has a computably compact presentation iff the Boolean algebra S has
a computable presentation. We use it without explicit reference. We give a somewhat brute-force
proof of Theorem 4.2.84 similar to the argument in [35]; it utilises various theorems and facts proved
in this chapter®. R R

Suppose the dual Boolean algebra S is computably categorical. Then, by Theorem 4.1.17, S has
only finitely many atoms. Under the duality, this translates to S having only finitely many isolated
points. Consequently, either S is finite or is homeomorphic to 2¢ u F, where F is finite. (Here u
stands for the operation of taking the disjoint union of spaces, so that in the resulting space each
of the two components is declared clopen.) In both cases it is easy to show that S is computably
categorical; this is Exercise 4.2.85.

Now assume that S is computably categorical. Let A and B be two computable presentations of
the Boolean algebra S. Using Proposition 4.1.49, produce two computable, computably branching
trees with no dead ends 7" and I so that

[T]gﬁ;SQE;[F].

Recall that every node o in T is labeled by some element a of A, so that each clopen set [o] of
all paths extending o naturally corresponds to the principal ideal {¢|c < a}, in the sense that the
elements labelling the nodes extending o generate this ideal. If aq, ..., a, is the complete list of all
elements corresponding to (i.e., labelling) the nodes of T at some level m, then

aVvaLVv...va,=1

and
a;na; =0, forall0<i<j<n.

SThere are other ways to prove the theorem. For example, one could view the dual space of X (the dual algebra
of X) to be the collection of all continuous homomorphisms X — {0, 1}. Then one could argue that the calculation
of the ‘dual maps’ is effective too.
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As a consequence of all these properties, every element a € A can be expressed as a finite v-
combination of elements labelling some nodes in T'; the same can be said about B and [I']. In this
sense, the elements labelling the nodes of the tree form a ‘basis’ of the respective Boolean algebra.
The same can be said about nodes in I' and elements of B. Under the usual shortest common prefix
ultrametric, both [T'] and [I'] are evidently computably compact (Fact 4.2.16).

Let ¢ : [T] — [I'] be a computable homeomorphism, which must exist by our assumption about
S >~ [T] = [I']. Let A | T denote the collection of elements of A that label the nodes in T' (together
with 0 which does not label any node in T'); define B | I similarly. Define 1[1 For every ae A ' T
as follows.

Set ©(0) = 0. To define ¢(a) for a non-zero a € A | T, let 0 € T be the node labeled by a.
Use computable compactness of [T] and [I'] to find non-zero elements by, ...,b, € B | T that label
T,...,Tn € I', respectively, such that

(o)) = [m]unlu...uln],

where (as before) L stands for the operation of taking disjoint union. It is not hard to see that such
strings 7; can be found effectively and uniformly in the index of ¢; this is Exercise 4.2.86. Define

1Z(G):bovbl\/...\/bn.

Since every x € A can be expressed as a union of nodes in a € A | T, this map is naturally extended
to all A by the rule

Y(z) = viv(ai),
where a; range over the finitely many incompatible (under <) elements in A | T that make up x.
It should be clear that the map 12)\ is well-defined on all of A, because 1 is a well-defined homeo-
morphism. For the same reason v is also onto. It is routine to check that, additionally, v respects
the Boolean algebra operations, and that the only pre-image of Op is 04; this is Exercise 4.2.87.
Therefore, 1) is a computable isomorphism of Boolean algebras A and B. O

Very little is known about computably categorical compact spaces. We suspect that much
stronger results can be established that will eclipse Theorem 4.2.84. Computably categorical profi-
nite abelian groups will be described in Section 9.5. We discuss computable profinite groups next.

Exercises

Exercise® 4.2.85 (Bazhenov, Harrison-Trainor, Melnikov [35]). Show that Cantor space is com-
putably categorical (in the sense of Definition 4.2.83). Conclude that any Stone space with only
finitely many atoms is also computably categorical.

Exercise® 4.2.86. In the notation of Theorem 4.2.84, show that for every o € T' we can uniformly
effectively find (incompatible) strings 71, ..., 7, € I' such that ¥([o]) = [n]u [n] w... U [m]

Exercise® 4.2.87. Finish the proof of Theorem 4.2.84 by showing that 1Z is an isomorphism of A
onto B.

Exercise 4.2.88 (Hoyrup [265]). A subset of a Polish space M is Gy is it is of the form (), Ui,
where U; are open. It is effectively G if the U; are uniformly c.e. open sets. Assume that X
is effectively Gs and contains a computable (in M) dense (in X) sequence of points. Prove the
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following effective version of Alexandrov’s Theorem (see [286, (3.11) Theorem] or [262, Thm 2-76]):
There exists a complete metric dx that turns X into a computable Polish space upon the dense
sequence. Furthermore, M-computable points in X uniformly correspond to computable points
in (X,dx). (Hint: Fix a sequence (a;) of special points in M. For some computable g;, U; is
an effective union of open balls B,, = B(ay,(n),») with rational radii r,, and centres ag, ). Let
r—d(x,a,
) = 0,0t
r

z,y € U;, define the metric d;(z,y) = d(z,y) + |fi(z)~' — fi(y)~'|. Together with the c.e. set of
special points that lie in U;, this metric turns U; into a computable Polish space. Define

1+ dz(xvy)

g

} and define f; = >, 27" f; . Then f;(z) = 0 iff = ¢ U;. For

dx(x,y) = Z g1

which, together with the computable dense sequence in X, turns X into a computable Polish space.
Note that a dx-fast Cauchy sequence is also dp- fast Cauchy, and since d < dy, implies it is d-fast
Cauchy. On the other hand, f; are uniformly d-computable and bounded by 1. This makes dx
computable relative to d, and so any d-fast Cauchy name can be uniformly turned into a dx-fast
one.)

Exercise 4.2.89 (Le Roux and Ziegler [333]). Show that there exists a connected I1{ closed subset
of [0,1]® with no computable points.

Exercise* 4.2.90 (Miller [391]). Recall that an arc is a topological space homeomorphic to the
unit interval [0, 1]. Prove the following facts:

1. There is a I1{ arc in R? which is not computable (as a closed set).

2. There is a computable closed arc in R? with non-computable endpoints.

Exercise* 4.2.91 (Miller [392]). Identify the Hilbert cube with its natural computable presentation
described in Exercise 4.2.19. A subset S < [0, 1]“ is convex if, whenever d € [0,1] and «, 8 € S, then
da+ (1 —d)B € S, where the sum is defined component-wise. Prove that there exists a non-empty
convex 119 closed subset of the Hilbert cube [0, 1]* containing no computable points.

Exercise* 4.2.92 (Miller [391]). Fix a natural computable presentation of R™ induced by Q"
under the Euclidean metric.

1. Suppose X < R™ is II9 (effectively closed) and homeomorphic to an n-sphere. Show that X
has to be computable (as a closed set).

2. Y < R™ homeomorphic to an n-ball, and both Y and its boundary spere are I1{ closed. Show
that Y is computable.

Exercise* 4.2.93 (Burnik and Iljazovié [70]). If X is a connected 1-manifold with boundary, then
X is a topological line (i.e. X =~ R), a topological ray (i.e. X =~ R*), a topological circle, or an
arc. Show that each semicomputable (Exercise 4.2.68) 1-manifold with finitely many connected
components is computable.

Exercise 4.2.94. Let B be a computable (real) Banach space of finite dimension, and assume
V € B is a I linear subspace. Prove that V is computably closed. [Hint: First, note that we
can fix a finite basis of B consisting of computable points. For that, observe that every subset
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generated by a finite computable tuple over R is closed; iterate starting with {0}. As explained in
Exercise 4.2.73, B is computably homeomorphic to the “standard” presentation of R™ in which we
can use the Euclidean norm or the co-norm upon Q™. The computable homeomorphism is witnessed
by the identity operator and it has computable inverse. Under this effective homeomorphism, the
unit ball S of B becomes a IT{ subset of R™ (indeed, computably closed by Exercise 4.2.74), and SNV
becomes a I1J subset of R™ homeomorphic to an m-ball for some m < n. By Exercise 4.2.92, this
set is computably closed, and thus so is S "V (in B). By Lemma 4.2.51, we can fix a B-computable
dense sequence in S NV, and its Q-linear span is computably dense in V]

Exercise 4.2.95. Show that for a finite dimensional (linear) subspace V of a computable real
Banach space, the following are equivalent:

. Vis c.e. closed;

.V has a basis consisting of computable points;

. Vis located (defined in Exercise 4.2.71);

. Vis II{ assuming dim B < oo;

T o= W N

.V is computably closed.
[Hint: Use Exercises 4.2.71 and 4.2.94.]

Exercise 4.2.96. Let B and D be computable real Banach spaces and assume the dimension of B
is finite. Let T : B — D be a computable linear operator. Show that ker(T) = {z : T(z) = 0} is
computably closed in B. [Hint: Use Exercise 4.2.94. We remark that one could instead use linear
algebra to derive this fact, as follows. Fix a computable finite basis b of B; this can be done as
explained in the hint to Exercise 4.2.94. Using this basis, produce the matrix representing the
linear operator; we note that all the coefficients in the matrix are computable reals, though we do
not necessarily promise that we can decide which ones are equal to zero or pairwise equal. We
do, however, know that this matrix can be transformed into one in the reduced row echelon form
in finitely many (not necessarily uniformly effective) steps. The resulting matrix will still have
all its coefficients as computable reals, and we can non-uniformly determine which ones are zero
and which are not. Using this row echelon form, we can produce the basis for the null space of
T following the usual textbook steps. The elements of this basis of ker(T") will be represented as
linear combinations of the points in the finite basis b that we fixed earlier, with coefficients being
computable reals. The Q-span of these elements is dense in ker(T').]

Exercise 4.2.97. Let T : B — DD be a computable linear operator between computable Banach
spaces, let K = ker(T) = {z : T(x) = 0}, and assume dimker(7) < o. Show that B/K is a
computable Banach space. [Hint: Use Exercise 4.2.95 to conclude that the standard quotient norm
|z||g/x = infyex ||z + v[| is computable; use the same dense set as in B. More generally, this works
for any located linear subspace K.]

Exercise 4.2.98 (Effective Hahn—Banach Theorem in finite dimension; Metakides and Nerode [385]).
Let B be a computable Banach space of finite dimension (over R), and let Y € B be a c.e. closed
linear subspace of B. Show that every computable linear T : Y — R has a computable linear
extension L : B — R such that ||T|| = ||L||. [Hint: In view of Exercises 4.2.97 and 4.2.95, we may
assume 7' is injective on B, and Y is computably closed in B. Further, by scaling, we may assume
that ||T'|| = 1. Use the following well-known fact. Let (X, | - |) be a normed space, Y € X a linear

188



subspace, 2 € X, and let Z be the linear subspace generated by Y u {z}. Let F : Y — R be a
linear functional with |F|| = 1. A functional G : Z — R with G|y = F|y is a linear extension of F
with |G| = 1 iff (1) sup,ey(F(u) — |z — u]) < G(z) < inf,ey(F(v) + |z — v||)). Noting that B has
a basis yZ consisting of finitely many computable points, where 3 spans Y, extend 1" to one more
point z in Z as follows. Observe that both the sup and the inf in () are left- and right-c.e. reals,
respectively; indeed, these values can be approximated using a dense computable sequence in the
c.e. closed Y. Thus, either (f) defines a computable real or a non-singleton interval. In the latter
case, non-uniformly pick any rational in this interval. In both cases, we can use a computable real
to define the extension of T to 2. To obtain L, iterate this process finitely many times”.]

Exercise 4.2.99 (Effective Hahn—Banach theorem fails in general; Metakides, Nerode, and Shore [386],
based on Bishop [48]). Show that there exists a computable Banach space X and a computable lin-
ear functional 7 : Y — R on a c.e. closed (indeed, computably located) linear subspace Y < X
with computable norm ||T, such that every extension L : X — R to the whole space with the
same properties has a larger norm. [Hint: The basic idea for the diagonalisation module for (1)
is depicted in the figure below. Initially, define T to be the identity on the z-axis, and define the
norm on R? to be (say) || - ||o- at stage s. With respect to this norm, the shape of the unit ball
is as depicted in the diagram. The key observation is that, when a # 0, the only linear extension
of T having norm 1 is that which fixes the bottom-right edge of the parallelogram. The same
can be said about the norm || - [|3_,, but this time the top-right edge needs to be fixed. As 27°
approaches 0, both norms approach the Li-norm || - || on R2. In particular, we can ‘switch gears’
arbitrarily late in the construction, and turn || - |[5_, into [| - |[;-s or vice versa. This provides a
way to diagonalise against one potential computable extension ®.. To obtain the theorem, put the
resulting sequence of computable Banach spaces H, together using the Hilbert space direct sum.
That is, X = @,y He = {h € [Toen He : Doan Ih(e)|E < 0}, under the sum-of-squares norm.]

Exercise® 4.2.100. Prove that there is a I1{ (effectively closed) subset of [0, 1] that is not home-
omorphic to any computable Polish space. (Hint: Use Theorem 4.2.80.)

Exercise 4.2.101 (Melnikov and Ng [380]). Show that every left-c.e. Stone space is homeomorphic
to a computably compact space.

Exercise* 4.2.102 (Harrison-Trainor, Melnikov, and Ng [245]). Show that for any computable
ordinal a there exists a computable Polish space M and II{ (effectively closed) subset X of M so
that X is not homeomorphic to any AY-Polish space. (The classes AY will be defined formally in
Chapter 10. For now, assume « € N.)

"Metakides and Nerode [385] also note that, following the ideas of Bishop [48], this non-uniformity can be avoided
if we relax the condition and require that ||T|| < ||L|| + €, where € > 0 is any fixed rational. Then such an extension
always exists and can be found uniformly (in all parameters, including €). For that, they use a relaxed version of
condition (1): (fe,) supuey((1 + en)F(u) — |z — u|) < G(z) < infyey((1 + €n)F(v) + |z — v[|]). They note that this
search can thus be restricted to a computably compact subset of the respective finite power of R™, much in the spirit
of the hint to Exercise 4.2.71. Thus, in particular, if we take [, (1+€n) < 14 ¢, we can iterate this process infinitely
many times as well. In other words, if we begin with a computable linear operator 71" on a located finite-dimensional
subspace, we can effectively find a linear extension L of T so that ||T|| < ||L|| + €. Also, as noticed by Brattka [59],
if such a computable T defined on a c.e. closed (not necessarily finite-dimensional) subspace Y admits a unique
extension of the same norm to the entire space, then this extension has to be computable. Indeed, the inf and the
sup in (}) are still (uniformly) right- and left-c.e. if Y is c.e. closed, and this makes the unique real defined by (t)
uniformly computable. It does not matter whether x € Y, as this process still works.
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Figure 4.1: The idea for the diagonalisation module in Exercise 4.2.99. The parallelograms
with corners {(0,1),(1 + a,a),(0,-1),(-1 — a,—a)}, {(0,1),(1 + a,—a),(0,—1),(—=1,a)}, and
{(0,1),(1,0), (0,—1),(=1,0)} serving as the unit balls for || - ||a, || - [|¥, and || - || on R2.

Exercise 4.2.103 (Hoyrup, Melnikov, and Ng [267]). Prove that for a (separable) Stone space S
and the dual Boolean algebra S, the following are equivalent:

S has an effectively compact computable topological presentation (Definition 2.4.26);
S has 0’-compact computable topological presentation;

S has a AY-compact Polish presentation;

S has a A9-Polish presentation;

S has a right-c.e. Polish effectively compact presentation;

S has a c.e. presentation;

NS g W=

S has a AY-presentation.

Recall that in Exercise 4.2.41 we saw that every effectively compact computable topological space
has a AY Polish presentation (which is in fact AJ-compact). Conclude that this upper estimate
(i.e., A9) cannot be be improved to “computable” in general. Further, conclude that there exists an
effectively compact topological space that is not homeomorphic to any effectively compact strong
computable topological space (Definition 2.4.26).

Exercise* 4.2.104 (Bazhenov, Melnikov, and Ng [37]). Show that every A9-Polish space (i.e., a
Polish space computable relative to 0') is 0”-computably homeomorphic to a computable topological
space.

Exercise™ 4.2.105 (Hoyrup, Melnikov, and Ng [267]). Show that every countably-based Ty-space
has a computable topological presentation.

4.2.6 Recursive profinite groups

In this subsection we apply the machinery of computably compact spaces to profinite groups. We
assume that the reader is familiar with the notion of a projective (aka inverse) limit in the context
of groups.
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Definition 4.2.106 (La Roche [324], Smith [473]). A profinite group is recursive if it can be
represented as the projective (aka inverse) limit of computable linear sequence of finite groups
(F;) under surjective f; : Fii1 —onto Fi, where all these finite objects are uniformly computably
represented by their strong indices (i.e., as indices of finite tuples).

In the theorem below, by a computably compact presentation we mean a computably compact
Polish space with a computable group operation. By Corollary 4.2.46, the inverse operation is
computable as well.

Theorem 4.2.107 (Downey and Melnikov [139]). For a profinite group G, the following are
equivalent:

1. G has a recursive presentation (in the sense defined above);

2. G has a computably compact presentation.

Proof. Clearly, every recursive presentation can be viewed as a computably compact presentation
(exercise). Now assume we are given a computably compact presentation of a profinite group.
Using Lemma 4.2.77, computably list all clopen components of the group. Our plan is to list all
normal clopen subgroups and then calculate their quotients to define a recursive inverse system
representing the group.

To say that a clopen component is a normal subgroup, use the fact that every clopen component
is a computable subspace of the group, and thus is computably compact, by Proposition 4.2.53. To
see if a clopen C is a subgroup, search for a pair of finite covers, say (B;) and (D), of C' such that
for every i, j there is a k with the property

Bi-ngDk

and for every i there is a k such that
B! C Dy,

We also search for a finite cover (U,) of G such that for all n and ¢ there is a k with
Ut -B;-U, C Dy.

We argue that such a cover exists, and this will imply that we can computably list all clopen normal
subgroups of G. Then we explain how to use these subgroups to build a recursive presentation of
the group.

Since the clopen component C' can be expressed as a (finite) union of open balls, the preimages
of the clopen component under the computable maps z,y — zy, * — =~ " and 2,z — 2z 'zz in the
respective product spaces can be uniformly listed. If C' were not a normal subgroup then there will
be special points witnessing this, and these would be witnessed together with sufficiently small basic
open balls containing them. On the other hand, if C is a normal subgroup then every equation of
the form, say,

27 ez = Y,
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where z,y € C and z € G, would be witnessed by small enough basic open balls containing these
points, i.e.,

U'.B-UcD,

where z € U, x € B, and y € D. These products of these balls would give a cover of the respective
compact product space. It follows that we can find a finite subcover.

We conclude that we can list all clopen normal subgroups of G. Note that, by the uniform
computable compactness of each such clopen C, we can compute the diameter of C, which is
sup, ,ec d(7,y). Using the techniques of Lemma 4.2.77 and Theorem 4.2.78 — that basically can be
summarised by saying that we take the next cover by very small balls — we can furthermore produce
a nested sequence of (finite open names of) clopen normal subgroups {C; : i € N} such that:

1. Ciu1 € C; formallyg,
2. diam C; < 27°.

3. For every i there exists a computable finite tuple (z; ;) of special points (given by its strong
index) such that (x; ;C;) is a cover of G.

4. For every i, j,n, if x; ;C;41 S Ti41,,Ciq1 then this inclusion is formal.
: -/
5. When Vi #* 7] xi,jCiH N T 500541 = @

If we succeed, then (), Ci = {e}, thus giving us a uniformly computable ‘basis of identity’ con-
sisting of clopen normal subgroups of G. We will then use the cosets to calculate the finite G/C;
and the homomorphisms from G/C; 41 onto G/C;.

More formally, we proceed by recursion. Assume C;_; has been defined. We search for a C;
that satisfies all these five conditions. If we drop ‘formal’ in all these conditions, then it should be
clear that such a C; and z; ; must exist. Then fix such a C;.

By Lemma 4.2.77 and the analysis of normality above, a normal clopen C; will eventually be
found, and furthermore both C; and the finitely many cosets mod C; will be represented as a finite
collections of balls. Our task it to show that we can effectively recognise that these finite parameters
describing the cosets define what we need. For that, we might need to adjust the finite covers by
refining them so that, for instance, the inclusion is witnessed by formal inclusion of covers. This is
done as follows.

We satisfy (1) by choosing the radii of a finite cover describing C; small (see Remark 4.2.15),
and we satisfy (2) by evaluating the computable diameter of the clopen set (this is again essentially
done by further refining the cover). Here we use that C; is indeed a computable closed set because
of Lemma 4.2.77, so we can apply Proposition 4.2.53.

We elaborate why we will eventually find special points (z; ;) and will eventually recognise that
they satisfy (3). For that, note that each coset of C; is open, and thus in particular contains a
special point, say x. In particular, every coset mod C; has the form xC};. Since for every special x
its coset xC; is the image of C; under the computable map y — zy and C; is computably compact
with all possible uniformity, by Lemma 4.2.55 we conclude that xC; is also computably compact,
and with all possible uniformity. By refining the cover of xC; (see Remark 4.2.15), we can ensure
that all set-theoretical inclusions of zC; into the clopen sets seen so far in the construction hold

8We can avoid using formal inclusions entirely in this case using that the sets are clopen. Similar for condition
(4) below.

192



formally. We can also ensure that if two cosets do not intersect then this is also witnessed formally:
take the radii of open balls much smaller than the pairwise distances between the finitely many
clopen sets. This gives a way of computably recognising condition (5). We can also wait for finitely
many such special points x; ; so that the respective cosets x; ;C; cover the whole space.

To reconstruct the computable operation on G/C;, calculate the product and the inverse on the
special points x; ; with a sufficient precision until you see that the result is in one of the cosets
modulo C;. This is all computable because the cosets x; ;C; are (uniformly) given by their finite
open covers, and the operations on GG are computable.

Finally, use effectiveness of condition (4) to calculate the surjective group-homomorphism ¢; :
G/Ciy1 — G/C; that maps every z;11;C;11 to the unique coset z; jC; that contains it. This
gives a computable surjective inverse system (G/C;, ¢;)ien the (inverse, projective) limit of which
is topologically isomorphic to G. Since the system is uniformly computable (in the sense of strong
indices of finite sets), this gives a recursive presentation of G. O

It is not difficult to produce an example of a profinite group that has a computable Polish
presentation but has no computably compact presentation. This result follows from an example
that can be found in [373]. We also state:

Corollary 4.2.108. Every commutable compact profinite group is computably approzimable (Def-
inition 2.4.8).

Proof. The 2 *-approximations are uniformly given by the F; in Definition 4.2.106. O

Exercises

For a computable compact space X, the space of all probability measures P(X) is a computable
Polish space under the Wasserstein metric defined to be

duluv) = swp| [ s~ [ fav),

where the supremum is taken over all 1-Lipschitz functions upon X; that is, |f(z) — f(y)| < d(x,y)
for every xz,y € X. The dense set is given by Dirac measures which are the probability measures
concentrated at finitely many special points of X. If X is a group than there exists a unique
probability measure which is invariant under left translation by any element, called the (left) Haar
measure. (There is one for the right translation too.)

Exercise 4.2.109 (Marcone and Valenti [347]). If X is computably compact then so is P(X).

Exercise* 4.2.110 (Pauly, Seon, and Ziegler [427]; see also [139]). For a compact computable
Polish group G, the Haar measure in G is computable (as a point in P(G)) iff G is computably
compact.

Exercise* 4.2.111 (Bagaviev et al. [27]). Prove that every computable Polish space can be com-
putably isometrically embedded into the natural presentation of C[0,1]. (See [139] for a proof
that uses computable compactness. We note, however, the the proof from [27] gives a uniformly
primitive recursive embedding.)
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Exercise 4.2.112 (Koh, Melnikov, and Ng [313]). We defined right-c.e. Polish presentations for
groups in Exercise 2.4.27(1). In Exercise 2.4.28, we observed that there exists a discrete right-
c.e. group not isomorphic to any computably Polish group. Prove that there exists an effectively
compact (as a topological space according to Def. 2.4.26) right-c.e. Polish profinite abelian group
not isomorphic to any computably compact group.

4.2.7 Further related results*

As we mentioned earlier, this section is based on [139], which contains many more applications
of computable compactness. Further excellent references are [270, 64]. When it comes to totally
disconnected spaces specifically, the most closely related further reference is perhaps [380]. The
standard references for computable Banach spaces are [56] and [435]. We also cite the recent
survey [122].

We now very briefly discuss a few more recently established computable dualities.

Effective Banach—Stone duality

We state, without proof, another effective duality—this time between Stone spaces and Banach
spaces. The classical Banach—Stone Theorem states that Banach spaces C(X;R) and C(Y;R) are
isometrically isomorphic iff X and Y are homeomorphic.

Theorem 4.2.113 (Bazhenov, Harrison-Trainor, and Melnikov [35]). Let X be a separable Stone
space and let C(X;R) be the Banach space of continuous functions X — R. Then the following are
equivalent:

(1) C(X;R) has a presentation as a computable Banach space®;
(2) X has a computably compact presentation.

We emphasise that in (1) we consider C'(X;R) up to isometric linear isomorphism, but in (2)
we view X up to homeomorphism. We omit the proof, but note that it uses the Downey-Jockusch
Theorem 4.1.25. Koh, Melnikov, and Ng [311] have recently proven that there is a computable
Banach space of the form C(K;R) such that K is not homeomorphic to any computably compact
space; see Exercise 9.1.36 for a hint. Thus, the effective Banach—Stone Theorem fails in general
(at least in the strongest form). Theorems 4.2.113, 4.1.30, 4.2.80, and 4.2.81 combined give us the
following corollary that we have already mentioned in Chapter 2 (§2.4.3):

Corollary 4.2.114. There exists an &' -computable Banach space of the form C(K;R), where K
s a right-c.e. Stone space, that is not linearly isometric to any computable Banach space.

As we noted in §2.4.3, there exist a low right-c.e. Banach space not linearly isometric to any
computable Banach space (see Exercise 2.4.40 for a hint). Theorem 4.2.113, combined with Theo-
rem 4.1.25 about low Boolean algebras, gives the following peculiar consequence.

Corollary 4.2.115. Suppose C(X;R) has a low Banach space presentation. If X is a Stone space,
then C(X;R) is isometrically isomorphic to a computable Banach space.

In fact, it follows from Theorem 4.1.27 that the same can be said about low,; Banach spaces of this
form, by Theorem 4.1.27.

9Equivalently, as a computable Polish group, by Lemma 2.4.17.
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Effective Gelfand duality

We also remark that it has recently been demonstrated in [71] that the Gelfand Duality Theorem
between commutative unital C*-algebras C(K;C) and the respective compact domains K holds
effectively. That is, the C*-algebra C(K;C) has a computable C*-presentation (i.e., as a Banach
space with additional operations x and z — *) if, and only if, K is homeomorphic to a com-
putably compact space. The effective content of Gelfand Duality has been further investigated by
McNicholl in [363]. Under some mild extra effectiveness conditions, it has been shown that (much
like computable Stone duality) computable Gelfand Duality preserves computable categoricity in
the right sense ([363]). Further algorithmic properties of C*-algebras related to the general theme
of the book have recently been established by Fox [175, 176] and Fox, Goldbring and Hart [177].

Duals of computable Banach spaces

If B is a computable and hence separable Banach space, then its dual (the space of bounded linear
functionals B — R) is not necessarily separable, let alone computable. The non-computability of the
dual space is a significant impediment to the development of a theory of computable Banach spaces.
Alternative methods must be found to replace classical arguments using the dual. For example,
Brattka [56] showed that the dual space B’ of a computable Banach space B is always a computable
Banach space in a certain generalised sense. Just as effective Pontyragin and Stone dualities can
be used to relate computable separable and discrete structures, this effective Banach space duality
could potentially be used to develop a detailed and meaningful theory of non-separable Banach
spaces. We also remark that the following question appears to be open:

Question 4.2.116. Suppose B is a computable Banach space, and assume the dual B of B is
separable. Is it true that B’ is linearly isometric to a computable Banach space?

Some partial results were obtained in [62], where it was shown that if B has a computably
shrinking effective Schauder basis (we omit the definitions), then B’ has a natural computable
Banach presentation. McNicholl conjectured that for a real 1 < p < 2, if p is right-c.e., then the
Lebesgue space LP[0, 1] has a computable Banach presentation. In view of the well-known formula

— + — =1 for the exponent of the dual space and Exercise 2.4.39(2), a positive solution to the

conjecture would imply that the answer to the question above is negative.

Computable t.d.l.c. groups and their dual ordered groupoids

A bit more is known about totally disconnected Polish groups, but not much more beyond the
materials of §4.2.6 and Section 9.5 in Part II. The study of effective profinite groups began with
Metakides and Nerode [384], La Roche [324], and Smith [473, 472]. Smith [473] showed that a
profinite group is recursive iff it is topologically isomorphic to a decidable II{ class [T] where the
group operations are computable. Our Theorem 4.2.107 generalises his result to the case when the
metric is not necessarily an ultrametric. As Smith [473] observed, Waterhouse’s result [501] can be
effectivised to prove a computable version of Galois correspondence between computable algebraic
field extensions and profinite groups; we omit the statement.

In Lemma 2.4.5, we already encountered a non-compact totally disconnected group S, which
is the group of all permutations of N. Various effective aspects of S, were investigated in [220].
The special case of totally disconnected locally compact (t.d.l.c.) groups has been thoroughly
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investigated in [382, 341, 380]. In [382], it is also established that each t.d.l.c. group is effectively
dual to the partially ordered groupoid of its clopen cosets, which is a countable structure. This
is similar to the effective Stone duality established in this section, but the proof for t.d.l.c. groups
is much more subtle. Pontryagin duality, which we discuss in the next chapter, is effective for
computable abelian t.d.l.c. groups as well ([341]), but we will prove it only for profinite groups in
Section 9.5.

4.3 What’s next?

In the next chapter we prove another computable duality, this time between computable torsion-
free abelian groups and certain computably compact spaces. Various fundamental results about
computably compact spaces developed in this chapter will find direct applications in the next
chapter. The tools developed for Boolean algebras will not be directly applied in the next chapter;
however, working with Boolean algebras has hopefully prepared the reader for the somewhat more
“truly algebraic” class of torsion-free abelian groups.
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Chapter 5

Computable abelian groups and
Pontryagin duality

In this chapter we prove the following results that appeared in the introduction as (3) of Theorem
A and (3) of Theorem B, respectively.

Theorem (Khisamiev [288]). Every c.e. presented torsion-free abelian group is isomorphic to
a computable one.

Theorem (Lupini, Melnikov, and Nies [341]). There exists a connected compact computable
Polish space not homeomorphic to any computably compact space.

The key technical tool connecting these two theorems is a computable version of Pontryagin
duality. Similarly to Stone duality between Boolean algebras and totally disconnected compact
spaces, Pontryagin duality associates discrete countable abelian groups with compact connected
Polish spaces of a certain kind. However, in contrast with Boolean algebras and Stone spaces, the
relationship between the two theorems stated above is not quite as direct. It is more technical and
involves a computable version of Cech cohomology, among other things. The chapter is (again)
naturally split into two halves:

1. Section 5.1 contains a brief introduction to computable torsion-free abelian groups sufficient
to prove theorems of Dobrica and Khisamiev which are required to prove effective Pontryagin
duality.

2. Section 5.2 uses the results of Section 5.1 and Section 4.2 to prove two effective versions of
Pontryagin duality necessary for establishing the second main theorem stated above. To prove
these effective duality results, we will also need some elements of topological group theory
and algebraic topology.
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5.1 Computable torsion-free abelian groups

5.1.1 Abelian groups

All groups in this section are additive and abelian. We assume that the reader is familiar with the
standard notions of a factor-group, the order of an element, and the direct product of groups. The
standard references for pure abelian group theory are Fuchs [194, 195] and Kaplansky [285]; we
also recommend Kurosh [323] for a smooth and gentle introduction. We briefly review some basic
notions specific to the field of abelian groups. Further notions will be introduced as needed.

Abelian groups basics

All our groups are additive and abelian. It is customary to use additive notation for the group
operation in the abelian case. Recall the direct sum of abelian groups (A4;);cs is the group of all
sequences (a;)ier, a; € A;, that have finite support (i.e., are eventually 0). The standard notation
is @,.; Ai- This shouldn’t be confused with the direct product of (A;)ier, which is not countable
when [ is infinite, unless almost all A; are trivial.

Let A be an abelian group. Given a positive n € Z and a € A, define

na=a+a+a+...+a,

a repeated n times

and also define (—n)a = —(na) and O0a = 0. We do not adjoin this operation to the language of
groups and use it as an abbreviation. Using this notation, we list a few well-known standard notions
and facts below.

Property 5.1.1. Let A be an abelian group.
(i) A is torsion-free if na # 0 for any n # 0 and each non-zero a € A.

(i) A is torsion if for every a there exists an n > 0 such that na = 0. The least non-zero n such
that na = 0 is the order of a.

(iii) The collection of all elements in A having finite order forms a subgroup T(A), and A/T(A) is
torsion-free.

(iv) The torsion subgroup T(A) further splits into a direct sum of mazimal p-subgroups T,(A), in
which the order of every element is some power of the respective prime p.

Thus, in some sense, the study of abelian groups can be partially reduced to the theories of
torsion-free and p-groups. Unfortunately, an abelian group does not necessarily split into a direct
sum of its torsion and torsion-free subgroups. However, these two classes are traditionally viewed
as central.

In this chapter we restrict ourselves to the class of torsion-free abelian groups.

The following definition will be rather important throughout the chapter.
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Definition 5.1.2. Let A be an abelian group. Then aq,...,a;r € A are linearly independent
(Z-independent, Priifer independent) if for each mq, ..., my € Z, the equality

mia + ...+ mpap =0

implies m; = 0 for all 4 < k. We say that aq,...,ax are linearly dependent otherwise. A basis
of A is a maximal linearly independent subset of A.

We will apply linear dependence mostly in the context of countable torsion-free abelian groups.
We will see that countable torsion-free abelian groups are exactly the additive subgroups of @,y Q,
the Q-vector space of dimension w that we have already encountered in Theorem 2.2.16. In this
group, Z-independence is equivalent to the usual linear independence over Q. The rank of a (count-
able) torsion-free abelian group A is the smallest o < w such that A < @,_, Q. One can show
that the cardinality of any basis of a torsion-free abelian A is exactly the rank of A. The rank of
a finite subset of a group is defined similarly; we omit this material since it essentially repeats the
standard notions and proofs from linear algebra, with only very minor adjustments. Some further
details will be given later (e.g., Lemma 5.1.10, Exercise 5.1.44). Another intuitively clear property
is stated below.

Lemma 5.1.3. Suppose ¢ : A — G is a homomorphism of torsion-free abelian groups that maps a
basis B of A into a linearly independent set in G. Then:

1. v 1s injective, and
2. ¥ maps any basis of A into a linearly independent set in G.

Proof. We verify (1). If ¢(g) = 0, then for some integers n;p, almost all of which are zero, we have

¥ (Z nz,b) = > p(b) = 0.

beB beB

Since 1 (B) is independent in G, ny, = 0 for all b e B.

Part (2) is left as an exercise. O

Free abelian groups

The free abelian group of rank o < w is the group of the form @,_, Z, i.e., it is the direct sum of
« copies of (Z,+). If (fi)ica are some fixed generators of these direct summands, then a typical
element of this group has the form ), m; f;, where m; € Z and m; = 0 for almost all i. In this case,
we may also write @, ; Zf; to emphasise the choice of generators. Every generating set of a free
abelian group that generates it freely is a basis (with respect to Z-independence), but not every basis
s necessarily a generating set.

It is well known that a subgroup of a free abelian group is itself free abelian. We omit the
proof. It follows that every abelian group is isomorphic to a factor of the form F/H, where F' (and
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thus, H) are free abelian. The method of proof is similar to that used for Boolean algebras. If
A = {a; : i € I}, then fix the free abelian group

F = @ZGZ

iEQ

formally generated by a; € A. Then H is defined to be equal to ), m;a,; for all formal linear

combinations with m; € Z such that ZZ m;a; = 0 in A. Note that in A, we can give each element

m;a; a meaning, while in F', m;a is just a formal expression. It is not hard to see that A >~ F/H.
The lemma below is also well known.

Lemma 5.1.4 (Rado [441]). Let G < F be free abelian groups. There exist linearly independent
generating sets gi,...,gx and fi,..., fm (kK <m) of G and F, respectively, and integers ny, ..., ng
such that for each i < k, we have g; = n; f;.

We omit the proof, which can be found in most textbooks that cover abelian groups; e.g., see
[329, Theorem 7.8], where it is stated and proven in a slightly more general form. From the lemma
and rank considerations, it follows easily that any finitely generated abelian group is a direct sum of
cyclic groups. This consequence is known as the classification of finitely generated abelian groups in
the literature. (Indeed, the lemma can be viewed as a reformulation of the classification of finitely
generated abelian groups.) In the torsion-free case, these cyclic subgroups are infinite and, thus,
are copies of Z. In particular, every finitely generated torsion-free abelian group is free abelian.

Divisibility and pure subgroups

For a € A and a non-zero n € Z, the equation nx = a does not have to be solvable in A. If there is
such a solution, then we write n|a and say that n divides a (in A). If for every k € N we have n¥|a,
then we write n®|a and say that n infinitely divides a. We will use the following standard notions
and facts, which can be found in [194].

Property 5.1.5. Let A be an abelian group.

1. A subgroup B of A is pure or serving if for each b € B and n € Z, if n|b in A, then n|b already
in B.

2. A group D is divisible if n|d for every non-zero n € N and every d € D.
3. Every abelian group A can be isomorphically embedded into a divisible group.

4. For a torsion-free group A and a subset X of A, we can define the pure closure (X)% of X in
A to be the least pure subgroup of A containing X.

5. A pure cyclic subgroup C' = {(z) of an abelian group A detaches as its direct summand:
A=B®C, for some B < A.

6. Every finitely generated subgroup H of A that is pure in A detaches as a direct summand of
A, that is,
A=CoH

for some C < A.
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In a torsion-free group, there may exist at most one solution of nz = a when a # 0; indeed,
if there were two solutions zy # x1, then we would have n(zg — z1) = 0 for g — 21 # 0. Thus,
4. really makes sense only for a torsion-free group.

We explain 3. Fix F/H =~ A, where F is free abelian and H is a (free abelian) subgroup of
F. If F is generated freely by (f:)ien, then we can embed it isomorphically into the vector space
D(F) over Q upon the basis (f;)ien. Then D(F)/H makes sense because H < F < D(F), and
also D(F)/H contains F'/H as a subgroup. Since D(F) is divisible, so is any of its homeomorphic
images: this is because nx = a becomes n¢(a) = ¢(x) under any homomorphism. Thus, D(F)/H
is divisible and contains an isomorphic copy of F/H ~ A.

Similarly to the algebraic closure of a field, a divisible group containing A can be chosen “min-
imal” in some standard sense that we will not define. It is unique up to isomorphism over A; it is
called the divisible hull of A or the divisible closure of A. (We remark that this fact also has an
effective analogue; see Exercise 5.1.36.) For example, if A is torsion-free and (b;);es is a basis of A,
then the divisible closure of A is @), ; Qb;, i.e., the (additive group of the formal) vector space over
Q upon the basis (b;);er. Note that A is naturally contained in @),_; Qb;, because every element x
of the torsion-free A can be represented as

1

— > mibi,

m el
where almost all integers m; = 0, the integer m is strictly positive, and ma = >, m;b;. Such a
linear combination must exist because (b;);es is a basis of A. If we additionally assume that m > 0

is the least positive integer such that ma = )., m;b; for some m; € Z, then the choice of the integers
m, m; becomes unique for each x # 0. The torsion-freeness of A implies that the well-defined

correspondence
1
x> = mb;,
M
is a 1-1 homomorphism (Lemma 5.1.3). Thus, the most useful intuition that one could adopt when
working with torsion-free abelian groups is as follows.

Think of the elements of a torsion-free abelian group as “vectors” of the form % D M,
where the sum is finite (alternatively, almost all coefficients m; are zero) and the v; range over
some basis in a vector space over Q.

It will also be useful to avoid thinking of v; as Q-tuples, and rather, to think of them as formal
sums. The reason is as follows. When considering formal sums, we can leverage the algebraic
structure and properties of these sums more effectively. Also, a torsion-free abelian group is usually
not closed under division by a non-zero integer. It is only closed under + and — and, thus, under
multiplication by an arbitrary m € Z. In this sense, torsion-free abelian groups are generalisations
of vector spaces over Q. Nonetheless, this analogy with vector spaces can be extremely misleading.
For instance, unlike vector spaces, a torsion-free group of rank > 2 does not have to split into a
direct sum of non-trivial subgroups (folklore after Pontryagin and Levi). Torsion-free abelian groups
may look tame, but in reality, they are much more poorly understood than, e.g., countable torsion
abelian groups. No convenient invariants are known for countable torsion-free abelian groups of
rank > 1, and thus we shall proceed with caution.
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Linear span and pure subgroups
Fix a torsion-free abelian G.

Definition 5.1.6. For a set S € G, we write span(S) for the set of all elements that are “linearly
spanned by S”:

span(S) ={x e G : 3k e N Im,ng,...,ng € Z Jcp,...,cp € S ma = Z n;Ci}.
o<i<k
That is, span(S) it consists of all elements that can be expressed as a linear combination of some
finite subset of S. (But notice the coeflicient in front of x.) If S = ¢J we can agree that span(S) =

{0}.

Remark 5.1.7. In G, span(B) should not be confused with {B), which is the subgroup of G
generated by B. (We have that B is linearly independent iff B generates (B freely.)

In a torsion-free group, we have a nice description of linear span.

Lemma 5.1.8. Let G be torsion-free and S < G. Then span(S) is equal to the least pure subgroup
of G containing S (Property 5.1.5(4)):

span(S) = ()%

Proof. The case when S = ¢ is trivial, so we can assume S # . Since every element of span(5)
satisfies ma = ), n;c;, for some ¢; € S and m, m; € N, we have that span(S) < (S)% simply because
each such x is a solution of a linear equation with parameters from S. Conversely, suppose = € (S5)g
but z ¢ span(.S), which means that x is independent of S. But we can build a pure subgroup of G
starting with S, and then iteratively adjoining all solutions to linear equations (if there are any in
G) with parameters in the set we defined so far, and then closing it under the group operations.
By induction, at every step we will have only elements that are linearly dependent on S. This way
we will construct a pure subgroup of G that contains S but does not contain x, contradicting the
minimality of (S)%. O

Observe that the procedure described above actually gives an algorithm that, given a subset S
of a computable torsion-free G, enumerates span(S) = (S)& with all possible uniformity.

Definition 5.1.9. Fix S € G, where G is torsion-free. We say that = and y are independent over
S if x ¢ span(S U {y}) and y ¢ span(S U {z}).

In particular, we have that z ¢ span(S) = (5)%, and the same can be said about y. The
definition above essentially induces the notion of linear independence in the factor-group G/(S)¢
which itself is torsion-free; see Exercise 5.1.34. The following lemma is immediate.

Lemma 5.1.10. In a torsion-free abelian group G, the span operator induced by linear independence
satisfies the following properties for any A,B < G and a,be G.

1. A < span(A) and span(span(A)) = span(A),
2. A< B = span(4) € span(B),

3. span(A) is the union of the sets span(F') where F' ranges over finite subsets of A, and
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4. if a € span(A U {b}) and a ¢ span(A), then b € span(A u {a}).

Proof. (1), (2) and (3) follow immediately from the definition of the span and Lemma 5.1.8. We
therefore check only (4). If a € span(A U {b}) and a ¢ span(A), it means that ma = x + nb, for
some = € (A)f = span(A) and non-zero m,n € N. But then nb = ma — x € span(A u {a}), as

required.

The lemma above says that the closure operator A — span(A) induced by linear independence
is a “pregeometry” or a “Steinitz closure system”; we will not use it, but it can be useful [244]. For
instance, the properties of the lemma suffice to show that every linearly independent set can be
extended to a basis, and that the cardinalities of any two bases are the same; this is Exercise 5.1.44.
(For the specific case of the closure operator acl, detailed proofs of these facts can be found in [348,
Ch.6].)

Restricting independence

Let A be an abelian group. Recall that elements aq,...,a; € A are dependent if
dmq,...,mr myia; + ...+ mpag =0,

where not all m; are equal to zero. These unbounded existential quantifiers correspond to un-
bounded search. A computable restricted version of this notion is defined as follows. Fix s € N.
We write Z | <5 to denote the set of integers of absolute value < s,

Zl<s={meZ: |m|<s}.

If a is a non-zero element in a torsion-free group, then {a) =~ Z, and thus the notation {a) |<s also
makes sense:
(@ o= {ma : m] < s}.

More generally, we write (a1, ...,ar) |<s to denote the collection of all sums of the form >3, _, m;a;,
where |m;| < s.

Definition 5.1.11. We say that aq,...,a; € A are s-independent if
Vmi,....mp€Zl<s miar+...+mpap =0 = my =mg=...=my =0,
and we say that they are s-dependent, otherwise.

We typically also assume k < s in the definition, but this is optional. Of course, s-dependence
implies dependence.

If G is indexed by natural numbers, G = {go, g1, - . -}, then we write span,(S) to denote the col-
lection of all elements in the group having their indices < s that are s-dependent on S. That
is, * € span,(S) if z € {go,...,9s}, there is a k < s, elements ay,...,a; € S, and integers
m,mi,...,my € Z |<s, m # 0, such that

mx = mia; + ...+ mrag.

In various effective constructions, it is often convenient to assume G = {go, . .., gs(s)} rather than
{go,---,9s}, where t(s) depends on s. Then we restrict z to Gs.
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Unfortunately, span, is not nearly as well-behaved as span; for example, already (1) of Lemma 5.1.10
fails for span,. Perhaps, the best we can say about span, is

span(S) = | ] span, ($).
seN

and that for all s,
span,(S) < spang,(S).

Partial groups

Since our groups are torsion-free, all their non-trivial finitely generated subgroups are infinite.
However, we will need to deal with finite objects of the form span,(S) which are finite “segments”
of subgroups of the group. More formally, we say that a A < G is a partial subgroup if it satisfies
the group axioms whenever the operation is defined.

A homomorphism of partial groups is a map that preserves the operations whenever they are
defined. The (external) direct sum of partial groups A@® B is defined as the partial group of tuples
(a,b), where a € A and b € B, under the partial component-wise operation.

We cannot usually apply algebraic group-theoretic techniques to partial groups directly. Every
time we will have to find a way to extend a given partial group to an actual group. For instance,
at stage s, we will typically have Cs = span (B;) € G, for some finite set Bs; € G. The set B, will
typically be s-independent, but perhaps not linearly independent in G. However, it is evidently
independent in the free group F = F(B;) (formally) freely generated by Bs. When B, € G, the
formal free group F' does not have to be a subgroup of GG. For instance, we may later discover
that By is t-dependent in G, for some large t. We will use F' to decide some local properties about
span,(Bs), one such application is described in the remark below.

Remark 5.1.12. Using, e.g., Rado’s Lemma 5.1.4 and linear algebra applied to the free abelian
group F' formally generated by By, we can uniformly computably figure out the ranks of tuples in
Cs = spany(Bs) as seen in F. (A different method that entirely avoids integer linear algebra will
be presented in the proof of Lemma 5.1.22.) These ranks will not necessarily be equal to the actual
ranks in GG, however, if all coefficients witnessing the equalities that we need are sufficiently small,
this will typically be enough to “switch gears” in the construction. For example, we may want
to replace Bs with some other set BS so that BS and Bg are linearly interchangeable, i.e., By <
span(Bs) and B, < span(Bs). If all the coefficients witnessing B, < span(Bs) and B, < span(DBs)
are smaller than ¢, where ¢ is some parameter sufficient for our purposes, we could still replace By
with By even though B is actually not even linearly independent. We can perform all calculations
in F. This is because we are really using By < span,(B;) and B C span,(B,). While we search for
such a t and B, we may discover that B is not t-independent. In this case, we usually abandon
the strategy.

5.1.2 Effective presentations of torsion-free abelian groups

All our groups are additive and at most countable. A group is computable if its domain is a
computable set, and the group operations are computable. Of course, unless we forbid unbounded
search, it is sufficient to assume that only + is computable.

We say that H < A is a computable subgroup of a (computable) group A if the domain of H
is a computable subset of the domain of A. We define ¥2- and II%-subgroups in a similar fashion.
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The free abelian group on countably many generators clearly has a computable presentation with
a computable generating set. We denote this presentation by Z,,. In the context of abelian groups,
the main definitions of the book can be formulated as follows.

Definition 5.1.13. Say that an abelian group A is ¥0-presentable if A ~ Z,/H for some %0-
subgroup H of Z,, and say that A is II?-presentable if A ~ Z,/H for a I1%-subgroup H of Z,,.
Define AY-presentations similarly.

For instance, an infinite countable abelian group A has a computable (c.e.) presentation iff A is
isomorphic to Z,/H, where H < Z,, is a computable (respectively, c.e.) subgroup of Z,, (exercise).
A group admits a A%-presentation iff it has a 0(»~Y-computable copy, so there is no danger of
confusion.

Any c.e. subgroup of a computable group has a computable presentation. (A c.e. subgroup
should not be confused with a c.e. presented group.) To see why, fix a computable function f such
that range(f) = H < A, where A is computable. Set h; = f(i). Given 4,7, we can find the unique
k such that h; +4 h; = hy, and similarly for —. This gives a computable copy of H. Clearly, the
range of f does not have to be computable in general. Also, evidently, this observation works for
arbitrary computable structures and their c.e. substructures, not just groups.

Computable subgroups of the rationals

One of the earliest examples of a full description of computable groups in a given class belongs to
Mal’cev [346]. Fix any element a € A of an additive group and any positive integer n. Recall that
we say that n > 0 divides a (in A) and write nla if

dJreAd z+x+ax+...+x=a.

n times

Such an z (if it exists) is unique if A is a subgroup of (Q, +).

It should be clear that, up to isomorphism, the groups having their Z-rank equal to 1 are exactly
the non-null subgroups of Q; we leave this to Exercise 5.1.29. Suppose H < (Q, +) is a non-null
group, and let pg, p1, ... be the standard listing of all primes.

Definition 5.1.14. The characteristic of a non-zero element h € H is a sequence (g, a1, . ..) where
a; = o in case pF|h for all k, and otherwise o is the largest k > 0 for which p¥|h within H. We
also say that «; is the p-height of h.

Two characteristics x = (ag, a1, ...) and & = (Bo, f1, - . .) are equivalent, written y ~ &, if
i

which means that they can differ for finitely many ¢ where furthermore the respective «; and f3;
must both be finite. The ~-equivalence class of h is called the (Baer) type of h, written tg(h). It
is not hard to see that any two non-zero elements of H < Q are of the same type (Exercise 5.1.30).
It thus makes sense to define the type of H, denoted by t(H), to be tg(h) for some (equivalently,
any) non-zero h € H.

Theorem 5.1.15 (Baer [26], after Levi [337]). Suppose A, B < Q are non-trivial groups (equiva-
lently, rk(A) = rk(B) =1). Then A ~ B iff t(A) = t(B).
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We leave the proof of the theorem to Exercise 5.1.30. To describe computable subgroups of Q,
we need to slightly adjust the standard invariants. Given a characteristic x = (ag, aq,...), define

Sy ={G, k) a; = k = 0}.

Clearly, x ~ £ iff S, =* S¢, i.e., the sets agree up to a finite difference. We say that a type t is
computably enumerable (c.e.) if for some (equivalently, for all) x € t the set S, is c.e.

Theorem 5.1.16 (Mal’cev [346]). Suppose A < Q is of type t. Then A has a computable presen-
tation iff t is c.e..

Proof. If A has a computable presentation, then fix any non-zero element a of A and search through
all other elements of the group and evaluate the operation on them to computably list S, (). On the
other hand, assume S, €t is c.e.. Then define the additive subgroup of the rationals H, generated

by the set
1
{pk : <7,,k>e SX} .

K3

It follows from Theorem 5.1.15 that H, =~ A. The group H, (under the additive group operations
inherited from Q) is evidently a c.e. subgroup of Q, and, thus, is computably presentable. O

Recall that Theorem 3.1.1 states that there exists a c.e. non-computable low set A. If we
“encode” A into a subgroup of Q via p; | 1iff i € A, then we obtain a low group with no computable
presentation; we mentioned this already in Chapter 1, see also Exercise 5.1.31. The reader should
also take a few moments to convince themselves that every c.e. presented subgroup of (Q, +) has a
computable copy (Exercise 5.1.33).

Remark 5.1.17. Together with Theorem 2.2.6 and Theorem 3.1.1, the observations discussed
above imply that the three notions of effective presentability defined in §1.2.1 (low, c.e., computable)
are pairwise non-equivalent already in the class of groups. However, the historical example given in
Theorem 2.2.6 was not commutative. It is also known that the notions differ in the class of abelian
groups as well, as will be explained in Chapter 9 (see Corollaries 9.3.22 and 9.3.23).

Decidable subgroups of the rationals™

Recall that a group is decidable if it is computable and, furthermore, we can decide first-order
statements about arbitrary tuples of elements in the group. Following the general theme of the
book, we separate the notions of decidable and computable groups for subgroups of the rationals.
Since the technical details related to the model-theoretic aspects of abelian groups will not be used
in the sequel, we give only a sketch.

Theorem 5.1.18. There exists a computable torsion-free abelian group that is decidable relative to
a low oracle, but has no decidable presentation.

Sketch. In model theory, one proves that abelian groups admit quantifier elimination down to
Boolean combinations of existential formulae that involve only divisibility conditions of the form
m | x, i.e., Jymy = z. In the context of computable mathematics, a result of this sort is the
following fact (see [291, Prop.1.1]).

Proposition 5.1.19. For an abelian group G upon the domain N, the following are equivalent:
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1. (G, +) is decidable;

2. Th(G) is decidable, (G,+) is computable, and the predicates (p; | -)ien are uniformly com-
putable, where p; | x is the predicate of divisibility by the i-th prime number.

We skip the proof.
Let A be a low non-computable c.e. set (Theorem 3.1.1). Let G4 be the subgroup of (Q,+)

generated by
1
{ (i€ A} .
Di

Th(G ) = Th(Z).

It is also known that, for any set A < w,

This can be concluded after calculating the Szmielew invariants of the groups (for the invariants,
see, e.g., [291]). This calculation is relatively straightforward; see [198, Thm 17] where this result
is stated in the required form. Finally, it is well-known that the theory of the integers with +
is decidable (e.g., [158]). It follows from Theorem 5.1.16 that, for a c.e. set A, the problem of
decidable presentability of G4 can be completely reduced to the decidability of the divisibility
predicates (p; | *)ien.

We claim that the decidability of G 4 is equivalent to the computability of A. If H is any decid-
able presentation of GG, then the predicates have to be uniformly computable by Proposition 5.1.19.
This provides a method to decide 7 € A, as follows. Fix any non-zero element of the group and
appeal to Baer’s classification Theorem 5.1.15. Conversely, if A is a computable set, then we can
use the straightforward construction in Theorem 5.1.16 to build a computable copy of the group
in which, additionally, the divisibility predicates are decidable. Thus, if A is low c.e. but not com-
putable (Theorem 5.1.16), then G 4 has a computable copy that is decidable relative to the low
oracle A, but has no decidable presentation. O

The proposition above should be compared with Theorem 4.1.40 for Boolean algebras. Similarly
to Theorem 4.1.40, we indeed separated 1-decidability and computable presentability for abelian
groups.

Groups with linear dependence algorithm

Recall that in Theorem 2.2.16 we constructed a computable presentation of Q< = @, Q that
has no computable basis. But of course, Q<“ has a nice computable copy with a computable basis.
Therefore, the notion defined below is not presentation-invariant.

Definition 5.1.20. We say that a computable torsion-free abelian group A has a linear dependence
algorithm if, given any aq,...,a, € A, we can uniformly decide if ay, ..., ax are linearly dependent.

Of course, in the definition above k > 0 is not fixed. We remark that this definition is an adaptation
of the similar definition from the theory of computably vector spaces [383] and a special case of
the more general notion of a computable pregeometry [148, 244]. Tt follows from Proposition 5.1.19
that having a linear dependence algorithm does not imply decidability or even 1-decidability. This
is only to be expected, since linear (in)dependence is not a first-order property.
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Remark 5.1.21. It can be shown that if G is a homogeneous completely decomposable group that
is not divisible, then every decidable copy of G has an algorithm for linear independence [33] (to
appear as Exercise 7.2.23). We delay the definition of (homogeneous) completely decomposable
groups until Part 2, where they will play a significant role.

The fact below is well-known and holds much more generally in terms of effective pregeometries
(e.g., [244]).

Fact 5.1.22. For a computable torsion-free abelian group A, the following are equivalent:
1. A has a linear dependence algorithm,;
2. A has a computable basis;
3. A has a c.e. basis.

All implications are effectively uniform.

Proof. The implication (1) — (2) is an exercise, and (2) — (3) is straightforward. (For (1) — (2),
build a basis B in stages. Also, specifically make sure that the element with index s is in span B;.)
We prove (3) — (1). Fix a c.e. basis B. To decide whether z1,...,z, are dependent or not, find a
finite set A < B such that {z1,...,z,} S span(A4). Then x1,...,z, are independent iff there exist
ai,...,a, € A such that

ai,...,an € span({zy,...,x,} U (A\{a1,...,an})).

The latter is a X{-property. Since for {x1,...,2,} being dependent is ¥}, we conclude that the
property is AY, as desired. O

Is every computable torsion-free abelian group isomorphic to a computable group with a linear
dependence algorithm? Below, we provide a positive answer to this question. But first, we give a
characterisation of computable linear independence that will be useful later.

A useful characterisation of computable linear independence

In the next section, we will need to construct the dual of a torsion-free abelian group (to be defined).
For that, we will need to uniformly computably access the finitely generated subgroups of our group
(as opposed to merely its finite partial subgroups). More specifically, we will need to view a torsion-
free abelian group as a “computable direct limit” (union) of finitely generated groups, where each
such group also comes with its finite basis that generates it; cf. Definition 4.2.106.

Definition 5.1.23. We say that a computable G is tractable if there exists a uniformly computable
ascending sequence of finitely generated abelian groups (F;);eny with the following properties:

1. G = Uy Fi-

2. {0} = Fy € F} € F5, € F5 < ... is a uniformly computable sequence in which the set-theoretic
embeddings are also computable.

3. For every F; (i > 0) we can uniformly compute a (strong index for a) finite set of elements
ho, - .., hyiy such that
Fy = Cho) @<h) @ ... @ (higiy)-

208



Recall that a subgroup H of an abelian A is pure (in A) if, for any h € H and each positive integer
k,3a € A ka = himplies Ju € H ku = h. A finitely generated (f.g.) subgroup of A that is pure in A
detaches in A (i.e., forms a direct summand of A); this appeared earlier as Property 5.1.5(6). Recall
that we write (hq,...,hgy for the f.g. subgroup of the given group generated by hq,...,hg, and
that (hi,...,hi) |<; denotes the partial subgroup of it consisting of linear combinations »;; n;h;,
where |n;| <t i=1,..., k.

Lemma 5.1.24 (Melnikov [373]). Let G be a computable torsion-free abelian group. The following
are equivalent:

1. G is tractable.
2. G has a computable basis.

Proof of Lemma. Suppose G has a computable basis B = {b1, ba, ...} (we include the possibility of
B being finite or even empty). Enumerate B and G. Suppose at a stage we have effectively defined
a f.g. partial subgroup

Gs =Chyyeo he) <t

where k,t depend on the stage, the h; are linearly independent in G, and indeed span(hy, ..., h;) S
span(by,...,bg) in G. (It actually must be that span(hq, ..., hx) = span(by,...,bx).) Furthermore,
by linear independence we have that each h; generates a finite initial segment of the infinite cyclic
group, and also that

Gs=<Ch) <t @ .. ®Che) <t -

Suppose a new element h enters the enumeration of the group. Before taking action, keep adjoin-
ing elements bgy1,bg42,... from the basis B to hy,...,h; (noting that {h1,..., hg, brs1,bpt2,-- .}
forms a basis of G). At a later stage we will have a f.g. partial group of the form

G =) l<u @ @ i) |<u Bri1) |<u @ D ) | <u

containing Gs. We keep doing so until we find a linear combination

mh = Z nih; + Z n’;bj,

i<k k<j<k’

where the integer coefficients m,n;, and n; are reduced and m > 0 is smallest such. We are ready
to define Gs41. It will be a large enough finite partial subgroup approximating <(h,G’>. If m =1,
then we have h € G, and set G541 = G!,. Otherwise, suppose m > 1. In this case, without loss of
generality, (h) is pure in X = (h,G,,); if it is not, replace h with hg so that (hg) = (h)%. (Using
Rado’s Lemma 5.1.4, fix linearly independent generating sets of (h) and X with the nice properties
described in Lemma 5.1.4; it has to be that h is a multiple of some basic hg in X given by the
lemma, since the only 1-element generating sets of (h) are {h} and {—h}.) Since (h) is pure and
cyclic, we have

h, G =<y ® H.

We choose any direct decomposition of H into cyclic summands, and we wait until a late enough
stage v such that the generators of all these summands appear in the enumeration of G at stage v.
Then we set Gs11 = <h,Gy) |<o-
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In both cases, we also record the information about the generators of G411 and the natural
embedding of G into G41. It is clear that this embedding is fully determined by how the generators
of G are expressed in terms of the fixed generators of Gs41.

Strictly speaking, (Gs)sen is a sequence of finite partial subgroups, not a sequence of f.g. sub-
groups of G (as required). Otherwise, all the other properties that we need are satisfied by the
sequence (Gy)sen. But note that G = | J,.(Gs). Based on this observation, we claim that (G) is
a uniformly computable subgroup of G. Indeed, for any g € G, wait for g € G, (s < v), and then
use the information about G,, its generators, and how G is embedded into G, to see if g € (G;).
Finally, observe that the embedding of (G;) into {(Gs) is completely determined by the embedding
of Gy into Gs41. Thus, G = | J,.(Gs) witnesses that G is tractable.

Conversely, suppose G is a tractable constructive group, and let (F;);en be an ascending sequence
of its subgroups witnessing its tractability. Suppose we have gi,...,gr € G. Then for some large
enough m we must have gi,...,gx € Fi,. The generators of F;,, have to be linearly independent in
F,, and, thus, in G. Since we can compute a full decomposition of F},, into infinite cyclic summands,
we can decide whether g1, ..., gr are independent using Fact 5.1.22. O

How to approach c.e. presented abelian groups

In this paragraph we discuss several useful ways to approach c.e. presented torsion-free abelian
groups. We will need this in the proof of Khisamiev’s Theorem 5.1.41.

Let A be our group and U = L/E its c.e. presentation, where L is free abelian. A good way
to think about U is to assume its domain is w, the operations are computable, but the equality
between elements is merely c.e.; equivalently, being equal to 0 is a c.e. unary relation. We have not
yvet dealt with c.e. presented structures that are not locally finite, i.e., where a finite subset does
not necessarily generate a finite substructure. The difference is quite apparent: declaring x = 0 in
a torsion-free abelian group results in setting max = 0 for all m € Z. However, we can process only
finitely many relations at any given stage. To make matters worse, at any finite stage we can really
only examine a finite partial subgroup of U. While it is clear what this meant for a computable U,
in the case of a c.e. presented group this needs to be further clarified.

Property 5.1.25. Assume U = L/FE is a c.e. presented abelian group, where L is computable free
abelian, and FE is its c.e. subgroup. Without loss of generality we may assume the following about
L and F:

A) L is given together with a computable linearly independent set (¢;);en that generates it freely.
In particular, we may assume the rank of L is w.

B) We may assume that s = {(eg,s)®. . .@{e(s),s), Where e, ..., ex(s) € L are linearly independent.
Note that F, is an infinite object. It is given by the index of its independent generating set
€0,5y -+ +1€k(s),s € L.

C) Since U is torsion-free, we can further assume Fj is pure in L; equivalently, L/F; is torsion-free
(Exercise 5.1.34). Indeed, if z € E; and mh = x, we know that for some t > s, h € E}, for
otherwise U = L/E would not be torsion-free. Thus, we can just put h into Fy straight away.

D) By taking n(s) sufficiently large, we may assume
ES § LS = <£0> (—B “e (—B<€n(g)>,

note L is also an infinite object and is given by the parameter n(s).
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E)

F)

Appealing to Rado’s Lemma 5.1.4 (combined with brute force search), we see that Es is a
computable subgroup of L, uniformly in s.

Assuming U is torsion-free, the index of the free abelian group U, = L, /Es can be obtained
uniformly from the indices of Es and L,. Further, using brute-force search combined with
Rado’s Lemma 5.1.4, we can uniformly compute a linearly independent subset uo, ..., ug) of

U, that generates it freely. We may set

Us = (u0) @ .- (ug(s)))<s-

To avoid various pathologies (e.g., the £;-coefficients of representatives of the cosets of w; being
too large), we may wish to replace |<; with |<¢(s), where t(s) is a monotonic function'. More
generally, by increasing ¢ and ¢ when necessary, we can always assume that Uy is sufficiently
large; for example, we may assume that it contains a linearly independent set of size s.

To relate Usyq with U,, we use the fact that Fy < Es.1 < Lsy1, where all subgroups are
computable subsets, uniformly in s (by E). We have that U, = L, /Es, and we can computably
identify Ls/FE, with a (computable) subgroup of Lgi1/E;. Further, by the Third Isomorphism
Theorem,

L5+1/Es

Loy1/Esi1 = Bor /B,
s+ s

Using that all independent generating sets are uniformly computable in all these groups (as
subsets of L), we can uniformly compute

Ls+1/Es

s : L E, - ———
K +1/ Es-&-l/Es

and its restriction ns to Ls/Fys < Lgy1/FEs,

Lei1/E,
Ns - LS/ES - ia
Es+1/Es
Ls+1/Es
Es+1/Es
that the partial group U,y is large enough so that 75(Us) € Ug11, and thus we arrive at

where the range of 7, is computable in , uniformly in s. By F, we may further assume

Ns 1 Us = Usy1
which are uniformly computable homomorphisms of finite partial groups.

We leave further formal verification of the possibility of the assumptions summarised in A — G

above as an exercise.

IFor example, the function defined recursively via ¢(0) = 2 and t(s + 1) = 2(¢(s) + 1)! will usually suffice. It will

significantly exceed all numbers mentioned in all parameters at stage s. This is because all these calculations can be
performed in polynomial time instead of brute-force using linear algebra. Alternatively, we may first perform all our
calculations using brute-force (or any method) and choose t(s) to be large enough so that the partial subgroup U(s)

includes all elements of U, that we need; cf. Remark 5.1.12.
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Remark 5.1.26. Of course, all of these assumptions can be made about computable groups as
well, but in the computable case the maps n; : U; — Usy; are additionally injective. (Recall
Remark 2.2.19 in the proof of Mal’cev’s Theorem 2.2.16.)

In summary, the sequence of Us and ns has pretty much every conceivable algorithmic property
we could possibly hope for. To define U, at stage s + 1 monitor 7, to see which elements of U
need to be identified (declared equal modulo E) in Usy1. The domain of U can still be indexed by
natural numbers, however, with repetition. Deciding whether ¢ and j represent the same element
of the abstract group is c.e., since we need to see whether for some s, these indices are declared
equal in U;. However, the operation + on these indices is computable, since it can be computed
inside the large enough U. Since the maps 7, : Us — U,y are restrictions of homomorphisms
s U, — (~JS+1, these calculations agree with the group operations throughout the entire sequence
(Us)sen- This presentation of U will be used in the proof of Khisamiev’s Theorem 5.1.41.

Remark 5.1.27. The index of a coset in U is always assumed to be equal to the index of its
smallest representative at every stage. It follows that for every coset  + F in U there is a stage s
large enough so that the index of x + E, in Uy is equal to the index of z + E in U. In particular, we
can use the smallest index representative technique in a c.e. presented group as well. (In the context
of computable groups, we will use this technique shortly in the proof of Dobrica’s Theorem 5.1.37.)
However, we need to keep in mind that the index of an element (coset) in Us may not be final at a
stage, but it will settle at some stage.

Alternatively, we could use the uniformly computable sequence of finitely generated (free abelian)
groups U, with distinguished independent generating sets, and uniformly computable homomor-

phisms ns : Us — Ugy1. Then our presentation can be viewed as the direct limit

mn5m6:<UU>/— (5.1)

seN seN

of the computable (linear) direct system (Us, 7s)sen. (We shall write simply li—n)lsEN U, if there is
no danger of confusion.). We give more details. For u,v € | | U,, we set u = v if after several
iterative applications of the n-homomorphisms, the images of v and u become equal in some Us.
Also, to define + on classes [-]= modulo =, fix u € U and v € Uy; assume ¢ < s. Iteratively apply
the n-homomorphisms to « until the result of this process a is in U,. Set

[u]= + [v]= = [a + v]=,

where a + v is calculated in Us. Since we’ve been avoiding explicit use of formalisms related to
direct limits, we will leave the verification of U =~ h—n>15eN U, to Exercise 5.1.35.

On the other hand, observe that = is clearly c.e. on UsenUs. This gives the following useful
fact. Recall that a finite presentation of a group is a tuple {ag, ..., ag|ro, ...,y of generators and
relations upon these generators. Since all our groups are abelian, we may assume that aqg,...,ax
are generators of the free abelian group of rank k, @isk Z, and rg,...71, € @z’sk Z. Note that the

groups U, in (5.1) are uniformly finitely presented. Conversely, we clearly have:

Fact 5.1.28. Let G be an abelian group. Suppose there is a uniformly computable directed sequence
(Us,ng)geN of finitely presented (abelian) groups and homomorphisms ns : U, — US+1, where each
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U, is given by a finite set of generators and relations, and whose direct limit (given by (5.1)) is
isomorphic to G. Then G is c.e. presented, and the index of the c.e. presentation can be obtained
uniformly from the index of the sequence (Usg,Ms)seN-

Thus, for an abelian group, being c.e. presented and being presented via an effective direct
limit (5.1) are synonymous, and this is uniform. This observation was certainly already known
to Baumslag, Dyer, and Miller [31], though in a slightly different context and terminology. This
approach won’t help in the proof of Khisamiev’s Theorem, but it will be useful in Section 5.2.

Exercises

Exercise® 5.1.29. Show that, up to isomorphism, the rank 1 torsion-free abelian groups are exactly
the non-zero subgroups of (Q, +).

Exercise® 5.1.30. Check that any pair of non-zero elements in a given subgroup of Q have the
same type. Prove Theorem 5.1.15.

Exercise® 5.1.31. Show that for any set A there exist subgroups G4 and Hy4 of (Q, +) such that
G 4 has an X-computable copy iff A is c.e. relative to X, and H4 has a computable copy iff A <7 X.

Exercise® 5.1.32. Generalise Theorem 5.1.16 to additive subgroups of (Q", +). (Hint: Consider
a maximal Q-independent subset of G < (Q", +). Produce an invariant for G generalising S, that
uses the fixed basis as a parameter.)

Exercise® 5.1.33. Let G be an additive subgroup of (Q", +), for some finite n. Show that G has
a c.e. presentation iff G has a computable copy. (Hint: Use Ex. 5.1.32.)

Exercise® 5.1.34. Let A be torsion-free abelian. Show that H < A is pure in A iff H/A is
torsion-free.

Exercise® 5.1.35. Verify that the definition involving the direct limit (see (5.1)). Check that = is
an equivalence relation and that the operation + defined after (5.1) turns u;U;/ = into an abelian
group isomorphic to U.

Exercise* 5.1.36 (Smith [474]). The divisible closure (the divisible hull) of an abelian group A
is “the smallest” divisible group D that contains A. Formally, if C' is divisible and A — C is an
isomorphic embedding, then there is an embedding of D into C over A. Show that every computable
abelian group A can be computably embedded into its computable divisible closure.

5.1.3 Dobrica’s Theorem

Theorem 5.1.37 (Dobrica [114]). Every computable torsion-free abelian group is isomorphic
to a computable group with a computable basis.
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Idea

We are given a computable (torsion-free abelian) A. If A has a finite basis, then there is nothing
to prove. We therefore assume that the rank of A is infinite. We transform A into a computable B
having a computable maximal linearly independent set C' = (¢;);en, as follows.

Build a AY isomorphism 6 : B — A. Initially, let 6 copy A into B without any change. Suppose
we have (c;) = a; € A, i =0,1,.... At a later stage, we may discover that, in A, ag and a; are
linearly dependent. (The case of more than two a;’s is similar.) The idea is to use a modification
of the strategy from the proof of Mal’cev’s Theorem 2.2.16; however, it will need to be modified
further. Choose the first found d € A which currently looks independent of ag and define

O(c1) = a1 + tld,
where ¢ is larger than any number mentioned so far in the construction. If previously
mb(z) = moag + myaq,
then we have to set
mb(x) = moag + mq (a1 + t!d) = (mgag + miar) + mytld,

where (moao+miaq) is divisible by m as witnessed by the previous image of =, and m;t!d is divisible
by m because m < t (recall ¢ is large). This is exactly why we used the factorial. In particular, the
relation mz = mgco + mycy will be preserved under 6.

If d is indeed independent of ag, then so is a; + t!d; furthermore, a; + t!d and d will have equal
linear spans over ag. Otherwise, the strategy will be repeated with a fresh d’, and then perhaps d”
(etc.) until a d® truly independent over aq is found. In particular, it follows that this process of
correcting mistakes will eventually stabilise?.

Construction

We build a computable group B and its computable basis C' = (¢;)jen. At every stage ¢, we also
define a partial map 6, : B; — A;. We also assume that for each ¢ the partial group Ay is sufficiently
large in the sense of Property 5.1.25 (F) and Remark 5.1.26.

At stage 0, begin with Cy = ¢ in By, and let By copy Ag via 6y = Id, i.e., without any nontrivial
permutation.

Let a; = 0t_1(ci) (S At—ly 1 < t.
Stage t. We subdivide the stage into several phases:

(a) Choose k < t largest such that 6;_1(co),. .., 0:—1(ck) are 2(¢t + 1)-independent in A;. Choose
dg41,---di € Az such that

ag...,0k, Qg1 + t!dk+1, coy a1 i1, dy

2The construction below can be viewed as a movable markers argument, where each “movable marker” corre-
sponds to 0(c;) € A for some ¢; € C. When the value 6(c;) needs to be changed, we “move” the “marker” to a new
value. We will, however, not make movable markers explicit since the main complexity of the proof is not related to
computability-theoretic combinatorics.
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form a 2(t 4+ 1)-independent set, and dgy1,...d; € A; have the smallest possible indices
(lexicographically).

(b) Define 6; as follows.
(b.1) For each ¢, k < r <t, set

Gt(c,«) = Gt,l(cr) + t'dr = a, + t'dr

(b.2) Declare 0:(c;) = 0:—1(c;) for every i < k.
(b.3) Introduce ¢; and declare ;(c;) = d;.

(b.4) For each x € By such that mx = >, _; njc;, set
n,t!
Ou(x) = Op1(z) + ) d,.
t>r>k

(b.5) For every a € A; that does not already have a ;-preimage, if

ma = Z n;0.(cj), where m,|n;| <t,
Jst

introduce a new element b in B, declare

mb = Z n;Cj

J<t
in By, and set 0;(b) = a.

Go to the next stage.

Verification
Claim 5.1.38. FEvery stage of the construction eventually terminates its search.

Proof. In (a), we search for elements in A; which are 2(¢ + 1)!-independent. If 6;(c; ), ..., 0:(ci k)
are indeed independent, then such elements must exist because the rank of A; is infinite. Such
elements (independent or not) will eventually be found.

In (b.4), for each @ such that mz = 3, njc; j, we set

n,t!

Ou(x) = Ora(x) + D, ——dn;

t=r>k
such an element exists because m < t. O

Claim 5.1.39. At the end of every stage t, each 0y is an injective homomorphism of partial groups.
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Proof. By induction on t. The case when ¢t = 0 is trivial. Suppose 8;_1 is an injective homomorphism
of partial groups. Then, by induction, 6; clearly respects the group operations whenever they are
defined. Thus, we need only to verify that 6, is injective.

Suppose z, z € B;_1 and therefore 8;_; is defined on z, 2z € dom #;_;, where

nz = an6j7
J

mx = ijCj.
J

If 8;—1 and 6, are equal on the domain of 6;_;, then there is nothing to prove. Suppose 6 needs to
be redefined. Assume 6;(z) = 6;(x), then

myt!
Oyz) = ) ——dr + 01 (),

and

o) = ”;“dr + 0,1 (x).

r>k

These values satisfy the equations:

mbi(z) = Y mf_1(c;) + D mp(Br-1(cy) + d,),

i<k r>k
nbi(z) = > nif_1(c;) + Y ne(Broi(c,) + tld,).
I<k r>k

Multiply the first equation by n and the second by m, and then subtract the first one from the
second one. According to the instructions in (a) at stage ¢, the values 6;,_1(c;) and 6;—1(c,) + t!d,
form a 2(t + 1)!-independent set. In particular, it must be that, for every r > k, tlnm, = thmn,,
and since both m,n # 0, we arrive at

myt!  n,t!
T — T for each r > k.
n

m
Now recall that "
myt!
0 = . -
t(.’L‘) Z m dr +9t 1((1))
r>k
and "
nyt!
0u(2) = ] dy + 0 (2).
r>k
. n,t! myt! .
Since »;, _, —d, = >, _, ——d, by the above remarks, and 6,(z) = ,(z) by our assumption, we
m

must have that
Ot_l(z) = Gt_l(a:).

Since 6;_1 is injective by the inductive hypothesis, z = x.
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It remains to argue that injectivity is maintained when we extend the domain of € in (b.3) and
(b.5). Recall that in (a) we chose ag,...,ak, ag+1 + tldgs1, ... ae-1 + tldi—1,ds to be 2(¢t + 1)!-
independent, where a; = 6;_1(¢;), i < t. Thus, in (b.3) and, more generally, in (b.5), injectivity
is maintained: this is because different choices of coefficients n; < ¢ will result in different linear
combinations in A;. O

Claim 5.1.40. For every x € B, lim; 0;(z) exists.

Proof. Since B = span(C), it is sufficient to check the lemma for elements of C. In (a) we always
choose ag, ..., ak, ag+1+tldgs1, ..., ai—1 +tldi—1, d to be 2(t+1)!-independent, where a; = 6;_1(c;)
for i < t, so that the index of the tuple of d; is lexicographically the smallest possible. Also, we

make sure that dg1,...,d; € A have the lexicographically smallest possible indices. In particular,
by induction, if 8 has settled on cy, ..., cy before stage ¢, then after finitely many attempts we will
find a stable #-image for cpy1. O

Define 6(x) = lim; 0:(x). Since 0; is injective at every stage, 6 is injective too. It is a homo-
morphism because each 0; is (of partial groups). It remains to check that 6 is onto. Since in (a)
we choose dgy1,...,d; € A so that they have the least possible indices among all choices available,
it follows that {6(c;) : i € N} is a maximal linearly independent subset of A. To see why, assume
there exists w € A independent of {f(c;) : i € N}. Go to a large enough stage of the construction
to get a contradiction. Further, by (b.4) and (b.5), we have §(B) = span8(C). We conclude that
the map 6(-) = lim, 04(-) is a well-defined (Claim 5.1.40) surjective homomorphism B — A, which
is furthermore injective by Claim 5.1.39. Under 6, the computable subset C' of B corresponds to a
maximal linearly independent set in A.

The proof of Dobrica’s Theorem is complete.

5.1.4 Khisamiev’s Theorem A(3)

Theorem 5.1.41 (Khisamiev [288]). Every c.e. presented torsion-free abelian group is isomor-
phic to a computable group. Furthermore, if the group is non-trivial, then this computable copy
can be built uniformly in the index of the c.e. presentation.

Khisamiev’s Theorem is more subtle than Dobrica’s Theorem 5.1.37. As far as we know, the only
published proof of the result can be found in [288] where it is stated in more general terms. Our
proof is different from the non-uniform proof in [288] (which is similar to the non-uniform proof of
Dobrica’s Theorem 5.1.37 presented above). In our proof, we do not assume that the rank of the
group is infinite. But of course, if the rank is finite, an easy non-uniform argument shows that the
group has a computable presentation; this is Exercise 5.1.46. We will need the extra uniformity in
applications.

Proof. Let U + L/E be a c.e. presentation of a non-trivial torsion-free abelian group. We assume
that L and E in U = L/E satisfy A)-G) of Property 5.1.25. In particular, by C), we assume that
if = is declared equal to zero at a stage, then any element h such that mh = x for some m is also
immediately declared zero.
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The setup

We build a computable presentation C' and a AY isomorphism f : C — U. At every stage, we
have a finitely generated partial group Cs and a (finite, homomorphic) embedding fs of Cy into the
c.e. presentation U. We will also have

Cs = span,(Bs),
where
BS = {b07b17 e 7bs}7

is s-independent. It is important to note that span,(Bs) should attempt to copy the span of fs(Bs)
in Uy; of course, it could be later discovered (in Uy) that fs(Bs) is not linearly independent, and
indeed, can even contain elements equal to zero. Our task, however, is to try to keep B independent.
To achieve this, f(b;) of some of these b; will likely need to be corrected. Unlike the previous proof
of Dobrica’s Theorem 5.1.37, we may have to also declare the current values of B to be dependent
and redefine the values of some of these b; in C' by introducing new interpretations for such b; in C.

Setting up the correction procedure

At some stage we may discover that the set f(B;) is linearly dependent. In general, fs(Bs) can
become dependent in two different ways:

1. fs(Bs) is dependent in U because we discovered some non-trivial linear combination with
large coefficients that we have not examined before.

2. Some previously non-zero h € span, fs(Bs;) is declared equal to zero in U.

The former situation could happen in a computable U too, but the latter is specific to c.e. pre-
sented groups. Nonetheless, these two cases are not really that different. In the second case, we
also have

mh =" n; fo(bi),

1<s
where m # 0, and h is declared equal to 0. Because of our assumptions about the enumeration
of U, Dlic,nifs(b;) = 0in U. Thus, in the second case we also have »;,_ n;fs(b;) = 0, but the
coefficients n; do not have to be “large”.

The correction procedure

Recall that the s-independent By = {b; : i < s} is our attempt to approximate a basis of C at stage
s, and Cs = span(B,). In the notation above, when f,(b;11) is discovered to be in the span of

{fs(bO)a fs(bl)v ceey fs(bj)}

in Usy1, we should be able to declare

bi, € span({bo, b1, ...,b;}),

for k =7+ 1,...,s. Let j be smallest with this property. The case when fs(bp) is declared 0 in U
will be considered separately.
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The algebraic recycling strategy. We can view
Cs = span,({bg, b1,...,bs})

at stage s as a finite initial segment of a free abelian group F freely generated by bg, b1, ..., bs; see,
e.g., Remark 5.1.12 and the discussion preceding it. Using Lemma 5.1.4, fix do, ..., d; and co, ..., cs
such that

<d0,...,dj> = <b0,...,bj> and <Co,...,CS> = F,

and furthermore d; = k;c; for some integers k;, i = 0,...,j. Rank considerations imply that these
generating sets must be linearly independent (in F'), and thus each generates the respective group
freely. Pick a very large natural number M and declare

Cp = Mk_jco, J<k<s.

Since M is very large, it defines an isomorphic embedding ¢ of the partial group spang({bg, b1, ..., bs})
into {co, ..., ¢;); the reasoning is exactly the same as in the old Mal’cev’s Theorem 2.2.16.

Note {cg, ..., cjy 2 span,{bo,...,b;}. The map & fixes cy,...,c; and, thus, also does not move
spang{bo, ..., b;}. However, it clearly puts b;1,...,bs into the span of {bg,...,b;}.

Declare fs11 to be the linear extension of fs to the initial segment of {co,...,c;) that was
sufficient to perform the manipulations described above (i.e., to define £). At the end of this
process, declare by, k > s, undefined.

The spacial case when f,(bg) is discovered to be in E (i.e., is 0 in U4 1) is explained below.

Complete initialisation. Using the algebraic recycling strategy explained above with j = 0, put all
br, 0 < k < s, into {cg). (In particular, by,...,bs will be declared undefined and by will be put in
{cpy.) Once this is done, pick a non-zero element u € U1 having the smallest index (in the sense
of Remark 5.1.27) and declare fq11(co) = u. Extend f,s11 linearly to all other elements listed so far
in {¢g). In particular, fs11(bg) € (u). Note by has not been declared undefined.

Redefining by, k > j. Suppose j, 0 < j < s is the largest index so that b; is defined (see Re-
mark 5.1.27). Pick fresh aj41,...,as+1 and declare

Cs+1 =Cs® (<aj+1>@ N <as+1>) |<s+1 .

Define foy1(b;) = ai, ¢ = j+1,...,s + 1. Choose wji1,...,ust1 € Usp1 with the least indices
(lexicographically and in the sense of Remark 5.1.27) such that

Fs+1(b0)s s for1(by)swjnn, ooy Usta
are (s + 1)-independent in Uz, 1. Set
fse1(bp) =ug, k=7+1,...,s,

and then extend fsy1 linearly to Cs 1.

Finally, we need to make sure that f = limg f, is surjective. This substage of stage s + 1 will
be performed after the “redefining by” substage described above, and so the (preliminary) values
of fs4+1 and Cs 1 will already be defined.
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Eztending the range of fsy1. If there is a u € cls11(fs+1(Cs+1)) that is not in the range of fs 1,

u=— D nifera (i),

i<s+1

then introduce a ¢ in Cy11 (together with ke, |k| < n), set

C = l Z nibz-,

n 1<s+1

and declare fi11(c) = u. Extend fs;1 linearly to Csy1.

Construction

Build C, f and B in stages.

At stage 0, define By = {bo}, Co = {0, ¢}, where by is interpreted as ¢ (¢ # 0), and set fo(c) = u,
where u # 0 is the smallest index element of U, that is not equal to 0.

At stage s + 1, if fs(bo) is declared 0 in U (i.e., is listed in Fsy1), then initialise the whole con-
struction according to the instructions of complete initialisation. Otherwise, let j be largest such
that {fs(bo), ..., fs(bj)} are s + l-independent in U,y;. Perform the algebraic recycling strategy
to put by (k > j) into the span of by, ...,b;, and then perform the “redefining b;” procedure as
described above to (re)define the values of bj11,...,bs+1 and to define fy11. Finish the step with
the “extending the range of fs11” sub-step.

Proceed to the next stage.

Verification

Both the recycling strategy and the complete initialisation strategy allow us to preserve the finite
open diagram of Cs when we define Cjs, 1, via the usual argument (this was explained in detail in
Mal’cev’s Theorem 2.2.16). We have two cases.

In the first case, we suppose the rank of U is infinite. Then, by induction, we argue that for
every i, the value of b; and also f(b;) eventually settle.

Indeed, by is never redefined. Also, the complete initialisation strategy eventually locates a
non-zero element in U, and once this happens f(by) will never be redefined again. This is because
we always use the smallest index element u; see Remark 5.1.27. (This is where we need U # {0}.)

The recycling strategy makes sure that, whenever the f-images of some elements are either
discovered dependent or equal to zero, they are put into the span of bg,...,b; for the largest j
so that fs(bo),..., fs(b;) still look independent. Furthermore, in this case fs41(b;) = fs(b;) for
all ¢ < j. Thus, since we always choose the new f-images for b;;1,...,bs to have the smallest
possible indices lexicographically, we conclude that in the limit of the process f(B) is maximal
linearly independent in U. Since f is evidently a homomorphism, it follows that f is injective
(Lemma 5.1.3). Further, C' = span(B) by construction, and furthermore in the very final phase of
the construction we ensured that f : B — U is extended to the entire U = span(f(B)). It follows
that in this case C' = U via the AY isomorphism f.
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In the second case, assume the rank of U is n. Since U is non-trivial by our assumption, n > 0.
In this case the values by, k > n never settle in the construction. However, for each i < n, both
b; and f(b;) eventually settle, and thus f(c) eventually settles for each ¢ € span{bg,...,b,_1}.
Further, C is built to be equal to span{by,...,b,_1}, and in the last phase of the construction we
ensured that f: C — U = span({f(by),..., f(bn-1)}), where f = lim, f;, is surjective. Since f is a
homomorphism and maps a basis to a basis, we conclude that f is a A9-isomorphism of C' onto U.

The proof of Khisamiev’s Theorem is now finished. O

Combined with Dobrica’s Theorem 5.1.37, we obtain:

Corollary 5.1.42. FEwery c.e. presented torsion-free abelian group has a computable presentation
with a computable basis.

5.1.5 An application to categoricity*

Recall that an algebraic structure is called computably categorical if it has a unique computable
presentation, up to a computable isomorphism.

Theorem 5.1.43 (Nurtazin [417]). A computable torsion-free abelian group is computably categor-
ical iff its rank is finite.

Sketch. (For a complete proof, see, e.g., [203, 244].) The case when the group is the zero group is
trivial. Suppose G has a finite basis by, ..., bx, K = 0. Fix any other computable copy H and any
isomorphism f : G — H. We argue that f is computable. Non-uniformly fix bg,...,br € G and
f(bo),..., f(br) € G. Given g € G, search for integers m, ng, ..., n such that

mg = Z n;b;.

i<k

In H, search for h such that
mh =" n;f(bi).
i<k
It must be that h = f(g), by torsion-freeness (as explained in §5.1.1).

Now assume the rank of G is infinite. By Dobrica’s Theorem 5.1.37, we can assume that
the group G has a computable basis. Our proof of Khisamiev’s Theorem 5.1.41 gives a strategy of
building a computable copy H of any given c.e. presented torsion-free group so that, when necessary,
we can declare

bi € span{by, b1,...,b;}, k> j,

where By = {b; : i < s} is our attempt to approximate a basis. Of course, the strategy works for
computable groups as well.

The idea is to apply this strategy to build a computable copy H of G without a computable
basis. If we succeed, then H and G cannot be computably isomorphic. This is because if we had
a computable isomorphism h : G — H, then the image of the computable basis of G would be a
c.e. basis of H; apply Fact 5.1.22 to get a contradiction. (Compare this argument with the proof
of Mal’cev’s Theorem 2.2.16.)
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By Fact 5.1.22, to build H =~ G without a computable basis it is sufficient to diagonalise against
all potential algorithms for linear independence in H. Interpret the e-th computable ¢, as the
e-th potential algorithm for linear (in)dependence. We may assume e > 0. Build H and a A
isomorphism f : H — G, as follows.

1. Let H copy G via f.
2. Wait for ¢, to declare by, ..., b. independent.

3. If this ever happens, use the algebraic strategy above to declare by € span{by,...,b._1} for
e < k < s, introduce new interpretations for these by in H.

4. Then use elements linearly independent over {fs(b;) : i < e} (i.e., in G/span({fs(b;) : i < e}))
to define fo11(bk), e < k < s.

The rest of the proof is a standard finite injury argument; we omit it. O

Exercises

Exercise® 5.1.44. Using Lemma 5.1.10 prove that every linearly independent subset of a torsion-
free abelian group can be extended to a basis of the group, and that all bases of the group have the
same cardinality.

Exercise* 5.1.45 (Dobrica [114]). Prove Dobrica’s Theorem 5.1.37 for arbitrary computable
abelian groups.

Exercise* 5.1.46. Give a direct non-uniform proof that every c.e. presented torsion-free abelian
group of finite rank has a computable presentation.

Exercise® 5.1.47. Give a complete and detailed proof of Theorem 5.1.43.

Exercise* 5.1.48. Prove Khisamiev’s Theorem 5.1.41 using a modification of the combinatorial
strategy from the proof of Dobrica’s Theorem 5.1.37.

For the next exercises, recall that an (additive, abelian) group G is ordered if a < b implies
a+c < b+c for any a,b,c € G. It is well-known that an abelian group is orderable iff it is
torsion-free; we cite books [314, 193] for a general exposition of the theory of ordered groups. Also,
if < is an order in an ordered abelian G, then we say that a,b € G lie in the same Archimedean
class, or Archimedean equivalent (written a ~ b) if there exist non-zero integers n,m such that
a < nb and b < ma. The Archimedean classes are also ordered under the induced [a]. < [b]~ iff
a < b, which is well-defined on the classes. While none of the exercises below is marked with a star,
some of them are certainly non-trivial, especially those based on the results of Solomon [479].

Exercise® 5.1.49 (Downey and Kurtz [135]). Show that there is a computable copy of the free
abelian group that is not computably orderable. (Use a simplified version of the strategy from
Khisamiev’s theorem.)

Exercise 5.1.50 (Melnikov [366]). Show that, given a AY linear order L with a least element, we
can produce an ordered group G(L) so that the ordering < of the Archimedean classes of G(L) is
isomorphic to L. (Combine the strategy from the previous exercise with a A9 approximation of L.)
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Exercise® 5.1.51 (Solomon [479]). Show that if G is a computable presentation of a torsion-free
abelian group of rank 1, then G has exactly two orders both of which are computable.

Exercise® 5.1.52 (Solomon [479]). Prove that if G is a computable presentation of a torsion-free
abelian group with finite rank strictly greater than 1, then G has orders of every Turing degree.

Exercise 5.1.53 (Solomon [479]). Let G be a computable presentation of a torsion free abelian
group with infinite rank. Show that G has orders of every degree a =1 0’.

Exercise 5.1.54 (Solomon [479]). Show that there exists a II{-class C = 2 so that for any
computable presentation of a (torsion-free) abelian group G, C' does not realise the orders on G in
the sense of Exercise 2.2.25. (Hint: Use the previous three exercises and Exercise 4.2.59.)

Exercise® 5.1.55 (Solomon [479]). Use Dobrica’s Theorem to prove that every computable torsion-
free abelian G is isomorphic to a computably ordered, computable H. (Hint: Embed the group
into the additive group of computable reals using, e.g., the reals |/p;.)

5.1.6 Some further remarks®*

The strategy we utilised in Dobrica’s Theorem was invented by Nurtazin [417], as far as we know. Of
course, the key idea behind the strategy can be traced (at least) back to Mal’cev; see Theorem 2.2.16.
Dobrica [114] adopted a modified version of this strategy. (We remark that the other standard
spelling of Vyacheslav’s family name is Dobritsa.) Notably, Dobrica’s theorem does not require
the group to be torsion-free in its full generality. Khisamiev [288] further extended this strategy
to c.e. presented groups. Khisamiev’s result answered a question of Baumslag, Dyer, and Miller
[31], which was raised in the context of homologies of finitely presented groups; more about this in
§8.3.2.

Goncharov, Lempp, and Solomon [215] applied this combinatorial strategy to ordered abelian
groups, proving analogous versions of Dobrica’s and Nurtazin’s Theorems for such groups. However,
as we have seen, this combinatorial strategy is not the ultimate method for handling computable
torsion-free abelian groups. In fact, it appears that the strategy can often be circumvented if
necessary. For instance, our proof of Khisamiev’s Theorem avoids this combinatorial approach
altogether, replacing it with an application of Rado’s Lemma to (partial) groups. In [203], Gon-
charov bypasses the combinatorial strategy entirely when demonstrating that every abelian group
of infinite rank has infinitely many computable copies, up to computable isomorphism. However, it
is worth noting that he does reference Dobrica’s Theorem when he fixes a copy with a computable
base. Much more recently, Harrison-Trainor, Melnikov, and Montalban [244] gave a simultaneous
proof of Dobrica’s Theorem and Nurtazin’s Theorem, avoiding the combinatorial strategy using the
notion of a c.e. pregeometry (see the discussion after Lemma 5.1.10).

The study of abstract computable pregeometries had been initiated long before [244]. Notions of
independence play a central role in the study of the combinatorial properties of effectively presented
vector spaces and of other structures with an appropriate notion of independence. Such studies were
quite popular in the 1970s and 1980s; the standard reference is the fundamental paper of Metakides
and Nerode [383], see also [110, 111, 112, 468, 117] and, for applications to reverse mathematics,
[470]. Many results on subspaces of computable vector spaces remain true in the abstract setting
of computable pregeometries (closure or span operators) — see the survey [148].

The main meta-theorem in [244] pushes this intuition even further. For instance, it follows
from the meta-theorem that the natural analogies of Dobrica’s Theorem and Nurtazin’s Theorem
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hold for real closed fields and differentially closed fields, with respect to their natural notions of
independence [244]. Also, [244] gives a combinatorially much simpler proof of the aforementioned
results from [215] about ordered groups. The method from [244] has been applied in [373] to give a
new ”factorial-free” proof of Dobrica’s Theorem for abelian groups that are not necessarily torsion-
free. In our book, we do not need this degree of generality. However, [244, 148] could be worth
looking at.

We shall return to discrete abelian groups in Part 2, where a much more in-depth analysis of
(torsion-free, abelian) completely decomposable groups will be presented in Chapter 7. Computable
torsion-free abelian groups (that are not completely decomposable) will be used as a technical tool
in Chapter 8 to study connected spaces. Finally, the theory of computable abelian p-groups and
their computable profinite duals will be presented in Chapter 9.
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5.2 Effective Pontryagin duality

In this section, all groups are additive and abelian. Pontryagin duality is one of the main tools of
abstract harmonic analysis (see textbook [173]), and it will also play a central role in this section.
Let T = (R,+)/(Z,+), the unit circle group. Alternatively, T is the multiplicative group of the
complex numbers having norm 1. For any locally compact topological group G, form its dual group

G = {x | x is a continuous group homomorphism from G to T}.

It is easily seen that G is itself a topological group under the operation (x+¢&)(a) = x(a)+£(a) and
the topology of uniform convergence. We will only need the case when G is either compact Polish
or discrete countable. If G is compact Polish, then the topology of uniform convergence is exactly
the topology given by the metric 5queG(|X( ) — x(y)|) on the space of all continuous functions
G — T, in which G forms a closed set. We will soon explain (§5.2.1) an easy way to think about G
for a discrete countable G.

Pontryagin duality states that if G is compact or discrete abelian, then G = G It is not hard
to see that G is discrete when G is compact. This means that the discrete dual G of a compact
abelian G contains all the information about G. Thus, the duality essentially reduces the study
of compact abelian groups to the algebraic theory of abelian groups; a detailed exposition of this
theory can be found in [340]. We note that van Kampen extended the duality to arbitrary locally
compact abelian groups, but we will focus on the compact Polish/discrete countable case. As we
noted earlier, a locally compact abelian G is discrete iff G is compact abelian, and in this case, G
is torsion-free (abelian) iff G is connected compact. We take all these properties for granted and
refer to the books [429, 404] for proofs.

The main goal of this section is to prove (3) of Theorem B. Recall that it states that the notions
of effective compactness and computable Polish presentability differ in the class of connected Polish
spaces, up to homeomorphism. Much of the work necessary to prove Theorem B(3) has been done
in the previous section and in the previous chapter. In this section, we establish the following:

Theorem 5.2.1 (Melnikov [373], Lupini, Melnikov, and Nies [341]). Let G be a (countable,
discrete) torsion-free abelian group. Then G has a computable presentation iff the connected
compact domain of its dual G has a computably compact presentation.

Theorem 5.2.1 does not require the group operations on G to be computable. It will follow from
the proof that, whenever the domain of the compact connected GG has a computably compact copy,
it must also have a computably compact copy in which the group operations are computable. This
theorem and its unexpected counterpart, Theorem 5.2.25, for A groups and computable Polish
spaces will be crucial in the proof of Theorem B(3).

5.2.1 From discrete to compact

IIn this subsection, we describe how to build a computable compact presentation of G given a
computable discrete torsion-free G. This provides one implication in Theorem 5.2.1.
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Proposition 5.2.2. Suppose G is computable torsion-free. Then G admits a computably compact
presentation. Furthermore, G can be realised as a computable closed (thus, computably compact)
subgroup of the computably compact group

A=T]m,
ieN

where each T; is a copy of the natural computably compact presentation of the unit circle group

T =R/Z. If G has infinite rank, then this is uniform.

The proof below heavily relies on the material from the previous section and on the calculus of
computably compact sets developed in the previous chapter. Modulo these results, the construction
of a computably compact copy of G and its verification are not too difficult.

Proof of Proposition 5.2.2. The direct product

A:Hm—

ieN
of infinitely many identical copies T; of T carries the natural product metric

0
1
=0

where each d; denotes the shortest arc metric on T;.

Every compact abelian group can be realised as a closed subgroup of A, as follows. Suppose
G = {90 = 0,91,92,...} is a countably infinite discrete group. Let Hom(G,T) be the subset of
A = [],cn Ti, consisting of tuples x = (xo, X1, - - .), where each such tuple represents a group homo-
morphism x : G — T such that x(g;) = x; € T;. Since G is discrete, every group homomorphism
X : G — T is necessarily continuous. Thus, G ~ Hom(G,T). Since being a group homomorphism
is a universal property, Hom(G,T) is closed in A. Thus, Pontryagin duality implies that every
separable compact abelian group is homeomorphic to a closed subgroup of A. Our task is to show
that this presentation can also be computably closed, though it is not guaranteed for an arbitrary
computable presentation of G (Exercise 5.2.15). This will require some work.

We say that a point x € T is rational if the respective point of the unit interval is a rational num-
ber. Then T, equipped with rational points and the shortest arc metric, is evidently a computably
compact Polish group.

Lemma 5.2.3. Under the metric D and the component-wise operation, A is a computably compact
Polish group.

Proof. The underlying space A is a computable product of computably compact spaces; this was
already stated in Proposition 4.2.17 earlier. The computable dense set is given by sequences (a;);en,
where a; is a rational point in T;, and almost all a; are equal to zero. The group operation is clearly
computable. O

Using Dobrica’s Theorem 5.1.37, fix a computable presentation H of G that admits a computable
maximal linearly independent set. By Fact 5.1.22, this is equivalent to saying that in H we can
decide whether a given tuple of elements is dependent or not.
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Recall that in Definition 5.1.23 we defined a tractable presentation as follows. A computable
torsion-free H is tractable if there exists a uniformly computable ascending sequence of finitely
generated abelian groups (F;)ieny with the following properties:

1. H =y B

2. {0} =Fy € Fy € F», € F3 < ... is a uniformly computable sequence in which the set-theoretic
embeddings are also uniformly computable.

3. For every F; (i > 0), we can uniformly compute a finite set of elements ho, ..., hy;) such that
Fi = Cho) @<h) @ ... @ Chiggiy)-

By Lemma 5.1.24, H is tractable, and furthermore, the proof of Lemma 5.1.24 is uniform. Before
we proceed, note that Z =~ T (Exercise 5.2.13).

Lemma 5.2.4. Suppose a computable torsion-free abelian group H is tractable. Then Hom(H,T)
is a computably closed subset of A = [,y T.

Proof of Lemma 5.2.4. Suppose C' < [[,.yT; is a closed subgroup, then let C; < T; denote the
projection of C' onto T;. (By the torsion-freeness of H, we will actually have C; = T; when ¢ > 0 and
Co = {0}. We, however, stick with the notation C; to emphasise that we are dealing with projections
of C.) We say that C; is defined by a primitive relation if one of the following possibilities is realised:

1) there is a j < i and a positive integer k such that every x € C satisfies x; = kx;,

2) there is a j < i and a non-negative integer %k such that every x € C satisfies kx; = x;,

3) there exist u,v < i such that every y € C satisfies x; = Xu — Xov,

(1)
(2)
(3)
(4) there exist u,v < 4 such that every x € C satisfies x; = xu + Xo-

In each of the four cases, we assume that every finite sequence (xo,...,x:), where x; (j < 1)
satisfies the respective linear conditions, can be extended to an infinite sequence y € C. Note, if
j =k = 0in (2), then essentially there is no restriction on x; since xyo = 0. We also say that
C < [LienTi is effectively predictable if each C; is defined by a primitive relation that can be
computed uniformly in i.

Claim 5.2.5. Ewvery effectively predictable (thus, closed) subgroup of [ [,cy Ti is a c.e. closed subset
of HieN T;.

Proof of Claim. Recall that the dense sets in T; are given by rational points. Fix the computable
(in A) dense (in C') sequence that is given by the sequences of rationals that satisfy the primitive
relations. This makes C' c.e. by Lemma 4.2.51. U

Claim 5.2.6. Every effectively predictable subgroup of | [,y Ti is effectively closed (119) in | [, Ti-

Proof. A sequence Y is not in C' if there is an 4 such that the i-th relation fails. This is an effectively
open condition. O
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By definition, computable closed sets are those I1{ sets that are additionally c.e. closed. Since
computable closed subsets of computably compact spaces are themselves computably compact by
Proposition 4.2.53, it remains to prove the following claim.

Claim 5.2.7. Suppose (F;)ien 1s a tractable computable presentation of a (discrete and torsion-free)
abelian group G. Then Hom(H,T) =~ G is effectively predictable.

Proof of Claim. Suppose H = {hy = 0,hq,...}. Our goal is to define C; < T; and list primitive
relations defining each of the C; < T; in terms of some C}, k < i. Using Rado’s Lemma 5.1.4, we
can uniformly effectively refine the sequence (F;);eny witnessing Definition 5.1.23 and assume that
for every i, there exists an a € F; 41 such that either F; 1 = (a)@® F; or F;;1 = (F};, a) and for some
m we have ma € F;y1, where m is assumed to be the least such. (See the proof of Lemma 5.1.24
where this was explained.)

We can effectively find full decompositions of F; and F;;; and the embedding, and thus we can
effectively figure out which of the two possibilities is realised. Since we need to define characters, we
need to specify the index of a in the enumeration of H = {hg = 0, hq,...}. So suppose a = h; € H.

In the former case, do not put any restriction on y; (formally, we declare that 0-x; = xo =0
in (2)). For every n there exists an element hy = nh;(= na); we will also set Cj, = T and declare
Xk = nX; as the respective primitive relation.

Otherwise, if we have ma € F; and a = h; € H, then we check what is the k such that
hiy = mh; € F;, k < j, and declare x, = my;. For each 0 < n < m, there exists an element
hi = nhj(= na). As in the previous case, we will set C, = Tj and declare x; = ny; as the
respective primitive relation.

We also keep working towards closing C' under 4+ and —. Whenever we have hy = h; + h;,
declare x = x;j + Xi, and similarly for —. (We can assume that k > 4, j, and we allow ¢ = j.) The
procedure described above witnesses that C = Hom(H,T) =~ G is effectively predictable. O

The proof of Lemma 5.2.4 is finished. O

Thus, we conclude that Hom(H, T) is computable closed in A which is itself computably compact
by Lemma 5.2.3. Proposition 4.2.53 implies that Hom(H,T) ~ H =~ G is computably compact.
Together with the computable group operations inherited from A, it forms a computably compact
group. O

The proposition above can be restated in terms of computable direct and inverse limits, if
necessary, and it essentially says that the well-known property

— P
€N ieN

holds computably for discrete torsion-free G = li_n)lieN G; (where G; £ G are finitely generated)
assuming G has an algorithm for linear independence. We remark that the torsion-freeness of G in
Proposition 5.2.2 can be dropped; see Exercise 5.2.16. We will return to this in Chapter 9, where we
will carefully verify this effective correspondence between inverse and direct limits of finite abelian
groups.

Remark 5.2.8. The proof of Dobritsa’s Theorem 5.1.37 is uniform in the case when the rank of G
is infinite, and Fact 5.1.22 is uniform as well. The rest of the argument above is uniform without
any restriction on the rank of G. In conclusion, provided that G has infinite rank or we have access
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to its basis, the index of the computably compact presentation of G constructed in the proposition
above can be obtained uniformly from the index of G (and the index of its basis, if it is given).
This assertion could be true without any restriction on the rank, but it would require a much more
careful proof (if true), and more importantly, we won’t need full uniformity.

Turning a AY discrete group into a computable Polish space
Fix a prime number q.
Definition 5.2.9. We say that H is g-divisible if ¢ | h for every h € H, i.e., for any n € N,
Vhe HIye H q"y=h
holds in H.
The lemma below will be crucial in the proof of Theorem B(3). It is also somewhat unexpected.

Lemma 5.2.10 (Melnikov [374]). Assume a AY group H is torsion-free abelian and q-divisible.
Then its Pontryagin dual H has a computable Polish presentation.

Proof. We build G < A = T*, where, as before, T is the “natural” computably compact presentation
of the unit circle group. Our goal is to ensure G = H.

Using Dobrica’s Theorem 5.1.37 relativised to 0, fix a A presentation with a AS basis B.
Taking the retract of the domain under a suitable A map, we can ensure that the indices of the
basic elements form a computable set3. We can additionally assume that the index of the zero
element is 0.

The basis freely generates a free abelian subgroup of H. Every non-zero element h € H satisfies
a relation of the form

nh = Z mpb,
beB
where n > 0 and almost all coefficients m; are zero. We can view H as a £ subgroup of Vig| =
@Kcard(B) Q so that the basis B is equal to the standard basis of V|p|, where B is a computable
set. To list H as a subgroup of V|p), it is sufficient to list elements h € H that satisfy relations of
the form
p'h = Z mpb,
beB
where p ranges over primes and v over positive integers. Note that if such an h exists, then it is
unique. We computably guess whether the relation holds in the group in the spirit of the Limit
Lemma 3.1.3. The relation holds in the group iff

e b c
pU

H.

Since H is a ¥.9 subgroup in general, the relation holds if we eventually never see it to fail. However,
if the relation fails, we can have infinitely many stages at which we believe that the relation might
hold.

3The case of a finite basis is trivial. If the domain of H is w and B C w is infinite, fix an injective Ag map
f:w—> wsothat {f(2k+ 1) : k € N} = B and {f(2k) : k € N} = G\B. It is defined to be the map that lists the
respective Ag sets in natural increasing order. We define the new Ag presentation of the group by setting a; = a; +ay
if f(4) = f(j) + f(k), which is 0’-computable. In this presentation, f~1(B) is a computable set.
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We reserve a special copy Ty of T for every such generator h, including T} for each b € B. In
this notation, the elements of G are sequences of the form (x7)nen going through the computably
compact A = [[,.y Tp. Similarly to the proof of Proposition 5.2.2, we would like to declare
mxn = Ypep MauXs for all x € T, 0 G whenever we have a relation mh = ),z myb. This, however,
seems to require @’ in general, so we cannot just get away with relativising Proposition 5.2.2.

An informal outline of the basic strategy. The idea is to ensure that, in the dual group, myy, =
D e MuXs holds up to (say) error 2% at stage s, and therefore it can be corrected later if nec-
essary. If we decide that my;, = >},c5 msXs no longer holds for any h (in the spirit of the Limit
Lemma 3.1.3), we will be able to turn it into a relation of the form ¢*h = D ez Mub, where ¢ is the
fixed prime (so that the group is ¢-divisible) and k is very large.

We provide additional details. At each stage, we will place only finitely many rational points
into each circle. Suppose we initially have a relation of the form

mxn = Z My Xbs (1)

beB

which is approximated by finitely many intervals in the respective copies of the unit circle, with an
error of 27° at stage s. If this relation is consistent for h and remains unchanged, we will continue
to refine these intervals, making them smaller. Consequently, we will obtain a closed set where
the relation indeed holds. The process of shrinking intervals will enable us to approximate a dense
computable subset of this closed set.

Now suppose we no longer believe in the relation mx, = >},c5 msXs» at stage s. At this stage,
we have only finitely many intervals approximating the relation with precision 27°. Choose k
sufficiently large such that each of these finitely many intervals in T} contains at least one point of
the form qk+m’ where r < (¢ —m). Under the map x — ¢*z, the point qkim on the unit circle is
mapped to

rq® r(g¥ —m +m) rm rm

= =7+ = .
k—_m & —m T -m  F-m (#)

q

In other words, z + ma and x — ¢*x agree on all points of this form. Consequently, for these
points,
¢"xn = Z My Xb (*)
beB

will also hold “up to 27°”, which corresponds to

Ih ¢Fh = Z mpb
beB

in H, and this holds vacuously since the group is g-divisible. Therefore, we can consistently switch
the approximation of our closed set locally, perhaps making further necessary adjustments, as
explained below.

Remark 5.2.11. For instance, if we are dealing with the relation mh = b and changing it to
g"h = b, then we need to introduce 2~ 5-approximations for many new pre-images of b under the
(adjusted) map. For example, there are only two pre-images under the map = — 2z, but there are
four pre-images under the map x — 4x. Such adjustments can make the c.e. closed set that we
build not effectively closed (not II9) in general.
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Then we introduce a fresh circle corresponding to the relation

mh = Z mpb,
beB

and repeat the process. If the relation indeed holds, then we will eventually find a “stable” circle
realising it. Otherwise, we will continue adding circles to witness the g-divisibility of the group, and
as a result, no circle will actually realise the relation. The verification is similar to Proposition 5.2.2,
but, as explained in Remark 5.2.11, we cannot guarantee computable compactness.

Note there is essentially no interaction between strategies working with different generators of
H in V|g|. There are only two further subtleties that perhaps need to be discussed.

1. What if, at some stage, we mistakenly believe that mh = b and nh = b for m # n? Our
presentation H of G, using V|p|, automatically resolves all such issues, since every subgroup
of V|| is clearly torsion-free.

2. The relations of ¢"-divisibility play a special role in the construction; in particular, we must
ensure that all elements are ¢™-divisible. In the construction, we implement the basic strate-
gies only for generators with relations of the form nh = 3}, _; myb, where n and g are co-prime.
Meanwhile, we manually introduce more and more new circle-components for relations of the
form ¢*h = b, for each b. To ensure that no such relations are missing, we continue adding
circles corresponding to elements g such that g = mh (as in the proof of Proposition 5.2.2).

Now the reader hopefully sees how to organise the construction, but we include a (somewhat
compressed) formal proof nonetheless. To make our proof a bit more transparent, we will actually
split the relation myy, = ZbeB mpXp into two relations: x, = ZbeB mpXxp and mxp = X Thus, we
will apply the strategy outlined above to relations of the form myy; = x,. This is, of course, a mere
notational convenience.

Formal proof. We first provide a “crude” construction that manipulates copies of the unit circle
and relations of the form nx;, = >, 5 MsXs, Which seemingly yields a merely 0’-computable Polish
presentation of the dual group. We then combine this crude definition with the approximation
technique outlined above to define a computable Polish group.

The crude construction. For every b € B, reserve a copy T of the unit circle group. At stage
s of the crude construction, introduce one more T, and monitor one more relation of the form
p’h = 5 mpb. For every such relation that had not previously been considered, do the following:

(a.1) Introduce a copy of the unit circle group T, and declare

Xr = Z mMpXb-
beB

(a.2) Introduce a new copy of the unit circle group T, ¢ and declare it active.
(a.3) Declare p¥x,0 = xr. (Informally, x, o is our initial attempt to define a “stable” circle for h.)

For every relation that has already been considered, check if it still holds according to the ¥9-
approximation that we fixed above. If it does not hold, then let v be largest such that T, ,, is
currently active, and so that x,» = p*“x; . was declared at the stage when T, , was introduced.
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1) Declare T, , inactive and declare x,» = p”x, ., dismissed.

)
2) Choose k very large (to be clarified) and declare x,» = ¢¥x 4.

.3) Introduce a new copy T, ,+1 of the unit circle group and declare it active.
A4) Declare X, = p¥Xr u+1-

The construction builds a system of circles and relations between them. If in step (b.2) we define
k carelessly, we might end up with a crude construction that builds a AS-closed subgroup of T¢.
We now explain how this crude construction can be approximated computably.

Approzimating the crude construction computably. Note that, for intervals I, J < T with rational
end-points and m € Z, both m/I and I + J are also intervals with rational end-points.

Definition 5.2.12. For a finite equation of the form mh = Y _pmpb, its e-name is a finite
collection of open basic intervals U} € T}, and U] € Ty of diameter e with the following properties:

1. Uj cover Ty;
2. U,"L cover Tp;

3. If ma = Y,z mpys holds for x € Ty, and y;, € Ty, then for some intervals U}'L 3 2 and Ug” S Yp,

mU}. = Z mpU;".
beB

To define G, we monitor the crude construction. At each stage s, we perform the following
steps:

1. Enumerate additional points into each copy of the unit circle that has been introduced by the
crude construction.

2. For every declared relation that has not yet been dismissed, except for those declared in (b.4)
of the current stage, refine its 27**!'-name to a 2~*-name.

3. For every relation of the form x, = q’“xr,u introduced at a (b.2)-type substage of the current
stage for some 7, replace the 27*Tlname of the dismissed relation y, = p¥x;, with a 275-
name of X, = ¢* x4

In particular, in step (b.2) we choose k sufficiently large so that substep (3) can be executed
according to (1) and the discussion preceding it. This ensures that we obtain a closed subset C' of
the constructed copy of T%, consisting of all characters that satisfy the relations introduced during
the construction. (Note that this copy is not literally [ [, . Th, because it requires " to identify
the circle corresponding to h € H.)

The verification. We first explain how to list a dense subset of C. At every stage, we list only finite
tuples of special points in the constructed copy of T that satisfy the currently declared relations
up to 27° (in the sense of Definition 5.2.12). During the construction, we will keep refining and
extending each such finite tuple, so that the result will converge uniformly to an infinite tuple
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of points going through the whole of T¢. This is done arbitrarily, say, by choosing the smallest
available index among the special points that obey the current 2~*-names (Definition 5.2.12).

It should be clear that C' is equal to the completion of the uniformly computable list of points
that we build according to the procedure described above. To finish the verification, note that C' is
topologically isomorphic to the character group of H, and therefore is a computable presentation
of H =~ G under the operations inherited from T*. O

Exercises

Exercise® 5.2.13 (Folklore). Show that the unit circle group T and the group of integers Z are
dual to each other. Show that cyclic groups are self-dual.

Exercise® 5.2.14 (Folklore). Let A, B be either discrete or compact abelian groups. Show that
A®B>ADB.
Exercise 5.2.15 (Melnikov [373]). Prove that the I1{-closed subset Hom(G, T) of A defined in the

proof of Proposition 5.2.2 does not have to be computably compact in general, i.e., without the
extra assumption that the computable discrete group G has a computable basis.

Exercise* 5.2.16 (Melnikov [373]). Prove Proposition 5.2.2 for arbitrary computable abelian G.
(Hint: Use Exercise 5.1.45.)

5.2.2 From compact to discrete

In this subsection, we establish the remaining implication of Theorem 5.2.1, and also its version
for connected computable Polish spaces and AY-groups. Before we proceed, we need to review the
basic definitions from algebraic topology. The reason is that, for a compact connected abelian G,
its torsion-free dual group is isomorphic to the first Cech cohomology group (to be clarified). Thus,
to finish the proof of Theorem 5.2.1, we need to calculate the latter for a computably compact G.
We explain all terms below.

Simplicial (co)homology

We very briefly review the classical notions of simplicial homology and cohomology; for a thorough
introduction see [411].

Geometric simplicial complexes. Recall that a simplicial complex is essentially a space with a
triangulation. A simplex is the higher-dimensional counterpart of a triangle. Thus, a point is a
0-simplex, a line segment is a 1-simplex, a triangle is a 2-simplex, and so on. Objects in the space
composed solely of these simplices are called simplicial complexes. A (geometric) simplicial complex
K in R™ is a collection of simplices in R™ such that:

1. Every face of a simplex in K is also in K, and
2. The intersection of any two simplices in K is a face of each of them.

We will only need the case where the complex is finite (i.e., composed of finitely many simplices).
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An n-simplex on (n+1) vertices in R™, where m > n, can be easily parameterised using linearly
independent vectors. If we have wq,...,w, € R™ such that vy = w; — wy,...,v, = w, — wy are
linearly independent, then the simplex is parameterised via

n n
{Zaivi : Zai=1andai>0,i=1,...,n}.
i=1 i=1

It is not difficult to see that when v; are computable, the resulting object is computably compact,
but we will not need this. What we need is the cohomology group of a (finite) abstract simplicial
complex. These notions are defined below.

Abstract simplicial complexes. An abstract simplicial complex is essentially a higher-dimensional
generalisation of a graph. It consists of:

1. a set V of objects called vertices, and

2. a set S of subsets of V called simplices such that:

(a) o€ S and 7 € o implies 7 € S, and
(b) for each ve V, {v} € S.

If 7 € o, we say that 7 is a face of o. If o has k£ + 1 elements, then its dimension is k.

We are interested in finite simplicial complexes. Every finite abstract simplicial complex can be
realised as a geometric simplicial complex, but we will not actually need it. In fact, all parameters
in such a realisation can be chosen to be rational. Since we know there is one, we can simply search
for it. Thus, the geometric realisation is also uniformly effective in the right sense. We omit further
details. However, it is perhaps useful to have some geometric intuition when working with abstract
simplicial complexes.

Computing homology. Suppose K = (V,S) is a finite abstract simplicial complex. Orient every
simplex in S by choosing the order of vertices. The orientation can, for instance, be defined using
the sign of the determinant of [v; —vo, ..., vx —vg] in the geometric realisation; recall the vectors can
be taken to have rational coordinates. However, the orientation can be done essentially arbitrarily
(more details below); it is known that we always arrive at the same (co)homology groups as a result.
Thus, we do not actually have to calculate a geometric interpretation.
If o € S, we assume it is already oriented and write o = (vg, . .., vg). We also write (vg, ..., 0; ..., V%)

to denote the (oriented) face of o that has all vertices except for v;, and which has the orientation
from vg to vg. A simplicial k-chain is a finite formal sum

Z CiOi,
%

where ¢; € Z and o; are oriented k-simplices, i.e., for each %, 0; = (vi0,...,v; k) for some v; j € V.

Also, we would like to have (vg,v1) = —(v1,v9). More generally, if 7 is a permutation of vertices
in ¢ and 7 is obtained from o by applying this permutation, then we also declare o = sgn(7)7,
where sgn is the sign of the permutation. Equivalently, swapping two adjacent vertices results in
a change of the sign of ¢ in the group. Either way, we have finitely many generators and finitely
many relations upon these generators that we define computably.
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We arrive at a computable finitely generated abelian group
Cr = Gi/ R,

where Gy, is freely generated by oriented k-chains and Ry is freely generated by the aforementioned
relations. By Rado’s Lemma 5.1.4, we can uniformly computably find a set of generators of the
resulting finitely generated abelian group so that these generators determine a (complete) direct
decomposition of Cy, = G /Ry, into cyclic summands. Also, define the boundary operator 0y by the
rule

Ok(vo, -y vk) = D (=1 (Vo -, Bi ey vk).

i<k
This can be extended to k-dimensional chains linearly, thus inducing a group homomorphism

(?k : Ck i Ckfl.

(We can set 9y equal to the zero map 0.) Note that, so far, all definitions were uniformly computable
in the strongest sense possible.
It is well-known and easy to see that 0y o Jr+1 = 0, and thus

Im g1 S Ker 0y,.
Definition 5.2.17. Define the k-th homology group of a finite simplicial complex K to be
Hk(K) = Ker ak/ImékH.

The other standard notation is Hy(K;Z) to emphasise that we used coefficients ¢; € Z when we
defined k-chains. It could be any other abelian group, but we will not need this degree of generality.
We see that simplicial homology is computable.

Fact 5.2.18 (Folklore; see [411]). Given a (strong index of an abstract) simplicial complex, we
can uniformly compute its i-th homology group represented as @i<k<ai>, where ag, . ..,a are the
generators of the group such that the orders of the cyclic {a;)y are also uniformly computable.

We leave the formal verification of this fact as an exercise. (Chapter 1 (Section 11) of [411]
contains a rather detailed verification of Fact 5.2.18.)
Simplicial cohomology. Following the general pattern of the book, we will need a notion that is dual

to homology. For the chain of groups and homomorphisms

Oit1 ,~ 0;
= Ciy1 > Ci=> Ciy — -+

define the dual “cochain”

% di edicl g
N z‘+1“C¢ — i1 <

where
Cf := Hom(C;,Z)
is the abelian group of all homomorphisms from C; to Z and

di—1:Cfy — CF

(3
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is the homomorphic map dual to ¢; in the sense that

(di-1f)(c) = f(dic),

for any f € C¥ and ¢ € C;. The above relation also fully determines what the map d;_; does on
every such f. Also, each element f of C} is fully described by where it maps the finitely many
generators of C;. This is all uniformly computable. It s not hard to show that Imd;_, < Kerd;.
(When ¢ = 0 assume I'm(d_1) = {0}.) We arrive at:

Definition 5.2.19. Define the i-th cohomology group of a finite simplicial complex K to be

HY(K) = Kerd;/Imd;_,.

Again, HY(K;Z) is the other standard notation, because in our definitions Z can be replaced
with some other abelian group G throughout, giving the notions “with coefficients in G”. We will
need only cohomologies “with coefficients in Z”. It is not difficult to see that a version of Fact 5.2.18
holds for the cohomology groups as well; we delay the verification of this claim until later (this is
Claim 5.2.22).

Cech cohomology

We follow Section 73 of [411]. Given a compact M, let N be the directed set of all its finite open
covers (under refinement). Since the covers by basic e-balls, where € ranges over positive rationals,
are cofinal among all covers, without loss of generality we can restrict ourselves only to covers by
basic open balls with rational radii. For instance, A could be a nerve-decidable system of covers
(Definition 4.2.29) well-ordered under formal refinement instead of the usual refinement.

For each cover K from the system N, recall that its nerve N(K) is the collection of all subsets
in the cover that intersect non-trivially. One can view N(K) as a (finite, abstract) simplicial
complex in which the n-dimensional faces are exactly the n-element subsets X of N(K) such that
({Y : Y € X} is a non-empty set. For these finite simplicial complexes, we can define their

cohomology groups ‘
H'(N(K)) = ker(d;)/im(d;—1)

(with coefficients in Z). If we have two covers, K and K, and K refines K, then any refinement
map R ~
r: N(K) — N(K), such that »(B) € B,

is simplicial in the sense that the images of the vertices of a simplex always span a simplex. Indeed,

if several balls intersect, then the bigger balls that contain them must obviously intersect as well.
This map induces a map between k-chain complexes as well. It is well known that, furthermore,

it induces homomorphisms _ _ _ R

Vi i H'(N(K)) —» H'(N(K))

between the respective i-th cohomology groups; see Section 73 of [411] for a careful verification.

Keep refining covers and keep “extending” the respective cohomology groups; note, however, that

some elements of H"(N(K)) can be declared equal to zero when we “extend” them to H'(N(K)).
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Consider the group obtained in the limit of this process. Recall the discussion after Property 5.1.25,
where in (5.1) we (somewhat informally) introduced the notion of the direct limit in the specific
context of well-ordered systems of finitely generated abelian groups. We arrive at:

Definition 5.2.20. In the notation above, let the i-th Cech cohomology group Hi{(M) of M
be the (direct) limit of H*(N(K)), K € N, induced by the (inverse) system N

For a finite simplicial complex, its Cech cohomology is isomorphic to its simplicial cohomology:;
see the last chapter of [411]. The i-th Cech cohomology groups are homeomorphism invariants of
the given space. (In particular, the definition of H*(M) does not depend on the choice of covers, as
long as every cover is eventually refined by an e-cover, for any € > 0.) Proving this fact is actually
not that difficult, but due to the complexity and length of the definitions involved, we omit it.
We refer the reader to the last chapter of [411]. We take these properties of Cech cohomology for
granted. Our next task is to analyse the computability-theoretic complexity of Cech cohomology.

Computing Cech cohomology

Recall that a (discrete, countable) group is c.e. presented if it is isomorphic to a factor of a com-
putable free group by a computably enumerable subgroup. In other words, the operations of the
group are computable but the equality is c.e..

Theorem 5.2.21 (Lupini, Melnikov, and Nies [341]). For a computably compact space M, its
i-th Cech cohomology group admits a c.e. presentation uniformly in .

The proof below first appeared in [139]; it is different from the proof in [341].

Proof of Theorem 5.2.21. As we noted above, we can assume that we are given a system of 27"
covers N that is linearly nested under formal inclusion and is n-decidable (nerve-decidable); by
Theorem 4.2.33 and Remark 4.2.34, this can be done uniformly computably.

Fix a n-decidable finite cover K and a positive i € N.

Claim 5.2.22. The groups H'(N(K)) are finitely presented, and the strong index of H'(N(K))
can be obtained uniformly uniformly from K and 1.

Proof. The finite complex N(K) is computable because the cover K is n-decidable. A close exam-
ination of the definitions shows that, given K (as a finite set of parameters) and 4, we can compute
the generators of C* = Hom(C;,7Z) and compute d;. In the notation of Definition 5.2.19, we can
uniformly computably find a finite set of independent generators (a;) of Ker(d;) and a finite set of
generators (bs) of Im(d;_1). O

Recall that a group admits a c.e. presentation if it is isomorphic to a factor of a computable
group by a 39 subgroup.

Claim 5.2.23. The direct limit limgen HY(N(K)) admits a c.e. presentation.
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Proof. Recall that A/ consists of n-decidable covers linearly ordered under the refinement relation.
The refinement relation is c.e. and implies refinement. As explained earlier, if we have K Cfopm K’
in NV, the it (uniformly effectively) induces a simplicial map between the respective nerves N(K) and
N(K’). The latter in turn uniformly computably induces a homomorphism between the respective
cohomology groups ¢ : H(N(K)) — H'(N(K')). By Claim 5.2.22, these abelian abelian groups
are (uniformly) finitely presented. It follows that

Jim H(N(K)) = HY (M)

can be viewed as a c.e. presentation of H(M), by Fact 5.1.28. O

It is clear that the proofs of the claims above are uniform in 7. This finishes the proof of the
theorem. O

5.2.3 Effective dualities and the proof of Theorem B(3).

Recall that Theorem 5.2.1 states that, for a discrete torsion-free abelian group G, G has a com-
putable presentation iff the compact connected domain of the dual group G admits a computably
compact presentation. Note that we do not need to assume that the operation of G is computable.
And here is why.

Theorem 5.2.24 (Folklore). For a compact connected Polish abelian group H,
H'(H) ~ H,

where as usual H denotes the Pontryagin dual of H, and H'(G) stands for the first Cech cohomology
group of the underlying space.

One does not need the operation of G to define H'(G); therefore homeomorphic connected
compact abelian groups are necessarily isomorphic as topological groups. The proof of this theorem
is essentially a direct calculation; it is omitted since it is not really related to our story. See Exer-
cise 9.5.18 in Part 2 of the book for a hint. For a detailed proof of Theorem 5.2.24, see pp. 474-477
of [263]. For an even more detailed (and quite technical) general exposition of cohomology theories
of compact abelian groups, we cite [264].

Proof of Theorem 5.2.1. 1f G is computable torsion-free, then its dual is computably compact by
Proposition 5.2.2. Conversely, if the underlying space of the connected G is computably compact,
then by Theorem 5.2.21, we can calculate a c.e. presentation of H*(G). By Theorem 5.2.24, we

obtain a c.e. presentation of the torsion-free abelian group G =~ G (by Pontryagin duality). By
Khisamiev’s Theorem 5.1.41, G has a computable copy. O

We will also use the following version of effective Pontryagin duality established in [374]. Fix a
prime q.

Theorem 5.2.25 (Melnikov [374]). Suppose G is a q-divisible torsion-free abelian group. Then
G has a AY presentation iff the compact dual G of G has a computable Polish presentation (as
a space).
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Proof. If G is AY, then G is computable by Lemma 5.2.10. Otherwise, if G is computable, then
G is computably compact relative to 0/, by Fact 4.2.11. Relativise Theorem 5.2.1 to obtain a A
presentation of G. O

We note that another version of effective Pontryagin duality, this time between torsion discrete
and profinite abelian groups, will be established in Section 9.5.

Recall that to prove Theorem B(3), we need to find an example of a connected compact space
that has a computable Polish presentation, but has no computably compact copy.

Proof of Theorem B(3)

Fix a non-computable c.e. set A; we can take A to be low (Theorem 3.1.1). Counsider the group of
the rationals G 4 generated by the set

{1,1 : ieAandkeN},
287 p;

where (p;)ien is the natural list of all prime numbers. By Malcev’s old result (Theorem 5.1.16)
and the remarks after Theorem 5.1.16, G 4 has an X-computable copy iff A is computable relative
to X. In particular, G4 has a AY presentation, but it has no computable presentation. Also, G o
is clearly torsion-free and 2-divisible. It follows from Theorem 5.2.25 that the connected compact
domain of G4 has a computable Polish presentation. However, Theorem 5.2.1 implies that the
compact connected domain of G4 cannot possibly have a computably compact presentation, as it
would contradict the choice of A.

The proof of Theorem B(3) is complete.

Exercises

Exercise® 5.2.26. Let (A;);en be discrete abelian groups. Show that

1€N €N

Exercise 5.2.27. Show that every computably compact abelian group admits a computably ap-

proximable presentation in the sense of Definition 2.4.8. (Hint: Given G, consider G and use that
the proof of Proposition 5.2.2 produces a computably approximable group.)

Exercise** 5.2.28 (Effective Birkhoff-Kakutani Theorem; Koh, Melnikov and Ng [313]). A com-
putable topological group is a computable topological space (Def 2.4.26) with group operations - and
~! that are effectively continuous. (See also Exercise 2.4.29.) Let G be a computable topological
group. Show:

1 There exists a computable left-invariant metric* realised as an effectively continuous functional

GxG—R.

4That is, a metric d compatible with the group topology that has the property d(z-x, z-y) = d(z,y), for all z,y, 2.
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2 Further, in cases when the group is either abelian or locally compact, it is possible to produce
an effective dense sequence, giving a right-c.e. Polish presentation of the group.

3 Conclude that for locally compact and for abelian groups, computable topological and right-
c.e. presentability (Exercise 2.4.27) are equivalent.

4 Note that the result in (3) cannot be improved to “computable Polish” in general. (This follows
from Exercises 2.4.28 and 4.2.112.)

Exercise* 5.2.29 (Melnikov and Ng [380], Lupini, Melnikov, and Nies [341]). Take for granted the
well-known van Dantzig’s Theorem, which says that a totally disconnected locally compact (t.d.l.c.)
group always contains a compact open subgroup. Prove that the following are equivalent for an
infinite t.d.l.c. (Polish) group:

1. G=([T],,~ '), where:

(a) T is either the natural copy of 2<“ (in which case the group is profinite) or is obtained
by joining w-many natural copies of 2<“ below the common root;

(b) the operations are computable upon the space [T] of paths through T

2. G is computable Polish and furthermore computably locally compact ([512, 507]): There is a
uniform procedure which, given (the name N* of) any point z, outputs a basic open B and
a computable compact K < G such that z € B € K, where K is given by a sequence of finite
open 2~ "-covers so that each ball in the cover is centred in a (computable) point in K and
has a rational radius.

3. Show** that if G is additionally abelian, then (1) and (2) are equivalent to G being the limit
of a computable inverse system of uniformly computable abelian groups:

AO o A1 A7) A2 T e

where the groups A; are uniformly computable and the kernel of the surjective homomor-
phisms 1); are finite and are uniformly given by their strong indices (i.e., as finite sets).

Exercise* 5.2.30 (Lupini, Melnikov, and Nies [341]). Suppose that A is a computably locally
compact t.d.l.c. group, as defined in Exercise 5.2.29.

1. Show that the dual A of A is also computably locally compact. (This is not how it is stated
in [341], but the proof in [341] gives computable local compactness.)

2. If additionally A is also t.d.l.c., then A is computably locally compact iff A is computably
locally compact.

5.2.4 Further related results: comparing notions*

In this chapter, we completed the task of separating right-c.e., computable Polish, and computably
compact spaces up to homeomorphism, and we did so using effective dualities. Both left- and right-
c.e. Polish spaces form natural subclasses of AY Polish spaces. It has been shown in [37] that every
AY Polish space admits a computable topological presentation, which is another classical notion of
presentability in effective topology (Definition 2.4.26). The notions and the implications between
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Figure 5.1: Notions of computable presentability for Polish spaces.
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Figure 5.2: Notions of computable presentability for locally compact Polish groups.

them are summarised in the figure below. Arrows illustrate the implications between these notions
up to homeomorphism.

It has been shown in [37, 245, 266, 341, 35], culminating in [311], that the only implications
between the notions in Fig. 5.1 are those depicted in the diagram. Some of these results appeared (or
will appear) as exercises throughout the book; e.g. Exercises 4.2.24-4.2.26, 4.2.41, 4.2.104, 4.2.105,
and 9.4.16. For example, in Exercise 4.2.104, we saw that every (not necessarily computable)
Polish space admits a computable topological presentation, making such “presentations” essentially
meaningless. On the other hand, in the compact case, there this notion can be used to give (yet)
another equivalent form of computable compactness (Exercise 4.2.41). In the context of closed
surfaces, a few more notions were compared in [241]; it was discovered that all these notions are
arithmetically equivalent to each other. Not all of the papers cited above rely on dualities to
compare these notions up to homeomorphism. For example, the key combinatorial tool in [311] (see
Exercise 9.1.36) is the notion of a limitwise monotonic set. We will introduce and utilise limitwise
monotonic sets and functions in Chapter 9.

We now briefly discuss computable Polish groups. The second diagram illustrates implica-
tions between several natural notions of effective presentability for locally compact groups, up to
topological group-isomorphism. Arrows illustrate the evident implications, and the dashed arrows
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represent the implications recently established in [313, 380]. Examples of compact and discrete
groups separating the notions of “right-c.e. Polish” and “computable Polish” have been suggested
in [313, Section 5]. In Theorem 4.2.107 we proved that for profinite groups, recursive and com-
putably compact presentations are synonymous. Computably tdlc groups generalise the notion of a
recursive profinite group; in Exercise 5.2.29 we extended Theorem 4.2.107 to such groups. See also
Exercise 5.2.28 that establishes that locally compact “computable topological” groups are precisely
the right-c.e. Polish ones, up to topological isomorphism. We will return to computably presented
Polish groups in Part 2.

A special case of a computable Polish group is a computable Banach space (Lemma 2.4.17).
Banach spaces are usually viewed up to linear isometry (equivalently, up to isometric group-
isomorphism). For left-c.e., right-c.e., and computable Banach spaces compared up to linear isom-
etry, see Exercise 2.4.40.

5.3 What’s next?

We have finished proving Theorems A and B, and we have established several effective dualities
in the process. In the second part of the book we will use these dualities to transform results
about discrete structures into results about Polish spaces and groups. The second part will also be
generally more technically challenging. For example, a generalisation of the infinite injury technique,
the infamous 0” (zero-triple) technique, aka the “Lachlan monster”, will be used to prove the main
result of Section 9.

242



Part 11

Computable classification
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Chapter 6

Introduction

Classification theory is a hoary old theme in mathematics and indeed, science. In the second part
of the book, we apply the methods and results developed in Part 1 to investigate the complexity of
the classification problem in various classes of algebraic and topological structures.

In Part 2 of the book, we focus on results that measure the complexity of the
classification problem in common algebraic and topological classes.

Much of the theory revolves around a few basic definitions of what it means for a class to have
an algorithmically useful classification. These definitions will be tested in various natural classes
of mathematical structures, with a strong emphasis on discrete and compact abelian groups and
compact metric spaces. We will always bear in mind our central theme of unifying the countable and
the uncountable. Nonetheless, the second part of the book is generally more focused on countable
structures, and especially discrete abelian groups. Their computable classification theory is much
more developed than its separable counterpart. Another reason is that computability theory appears
to integrate more easily with discrete algebra and combinatorics. Using the effective dualities
established in Part 1, along with some further theorems, these results will find direct applications
to separable structures.
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6.1 Classification via computation

Generally, in mathematics, we categorise objects into groups we regard as being the same. We
typically have a notion of equivalence =, and a class C of objects that we compare using =. The
equivalence classes will form a classification of the objects. In algebra and combinatorics, = would
typically be isomorphism =~. Examples of classifications up to isomorphism include the famous
classifications of the finite abelian groups in terms of cyclic groups, compact 2-surfaces in terms
of connected sums of tori or projective planes, and the celebrated classification of the finite simple
groups. However, other equivalences are useful too. For example, the Turing degrees are a classifi-
cation of the class of sets under =7, where =7 means “equi-computability”. In metric spaces, we
would often use either isometry or homeomorphism as classifiers, but one could also use bi-Lipschitz
maps, homotopy equivalence, diffeomorphisms, and so on. We typically get quite distinct classifi-
cations with the different equivalence relations: for example, spaces might be homeomorphic but
not isometric.
For a fixed class C, the kinds of questions studied classically are:

1. How do various invariants compare?
2. How do we compare the complexity of different classifications?
3. Can we show there can be no reasonable classification?

Logic is a great tool to tackle such questions. Since this is a book about computable structure
theory, we will concentrate on using computability theory for these tasks.

6.1.1 The three main approaches used in the book

We will examine the following three mutually related approaches:

(i) Classification up to X-computable isomorphism

Since we are interested in the effective content of mathematics, it is natural for us to replace
isomorphism with computable isomorphism. Recall the definition:

Definition 6.1.1 (Mal'cev). A computable structure A is computably categorical if any other
computable B isomorphic to A is computably isomorphic to A.

In Part I of this book, we classified computably categorical linear orderings, Boolean algebras,
Stone spaces, and torsion-free abelian groups. Sometimes computable classification and classifica-
tion coincide, such as in the case of finitely generated structures. But for most classes of structures,
these are quite different. One recurrent theme in this area is to seek to understand how semantic
notions (like computable isomorphism) relate to syntactic notions (such as definability); we will dis-
cuss this in detail in Chapter 10. Sometimes it will be natural to look at more complex classifiers,
such as X-computable isomorphisms.

Definition 6.1.2. Fix n € N, n > 0. A computable structure A is A%-categorical if for any
computable B =~ A, there is a A% isomorphism between A and B.

The notion has a transfinite analogue, but we won’t really need it. This approach will be useful
in other classification themes, such as (i4) below; these applications are mostly technical in their
nature.
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(ii) Classification via index sets

Index sets (Def. 2.1.11) have been used in computability theory and computable structure theory
for many decades; e.g., [113], but in computable topology and analysis, this approach is relatively
new (e.g., [138]).

Let (M, )een be a uniform enumeration of all (partial) computable structures in the language of
K; we will never encounter the unnatural situation when such a list does not exist.

Definition 6.1.3 (Goncharov and Knight [213]). For a class K of structures (or spaces), define
the following index sets.

1. I(K) = {e: M, is a member of K} is called the recognition problem for IC, the character-
1sation problem for IC, or simply the index set of K.

2. E(K) = {{,jy :i,j € I(K), M; =~ M;} is called the isomorphism problem for K. (Here
“E” stands for “equivalent” under the fized classifier.)

Note that the isomorphism problem mimics the similar problem in combinatorial group theory
mentioned in Part 1 of the book. The intuition is that these index sets usually accurately reflect the
complexity of the classification problem for a given class K. We will see that, for common classes,
the estimates obtained for the complexity of F(K) tend to always relativise, and thus reflect the
complexity of classification of arbitrary members of K, not just of the computable ones. Because
of Rice’s Theorem 2.1.12, neither E(K) nor I(K) can be computable for any reasonable class. The
next best estimate that we can hope for is that E(K) and I(K) are arithmetical.

Definition 6.1.4. We say that a class K is arithmetical if E(K) and I(K) are arithmetical
sets, i.e., are both ¥ for some n € N.

Goncharov and Knight [213] suggested that a class K should be viewed as tractable if both
I(K) and E(K) are hyperarithmetical sets. However, after over 20 years of systematic research, the
following phenomenon has been observed. In algebra, analysis, and topology, obtaining an index
set of transfinite hyperarithmetical complexity seems to require a transfinite definition of the class.
For example, we could fix some computable o > w and consider abelian p-groups of Ulm type < «
or all countable compact spaces of Cantor-Bendixson rank at most a. Nonetheless, examples of
transfinite index sets can be found in model theory. For instance, White [509] and, independently,
Pavloskii [428] showed that the index set of computable homogeneous models is X2, ,-complete.

On the other hand, if a class is not arithmetical, then either E(K) or I(K) (or both) will
typically be I13- or ¥1-complete (or beyond). At this stage, it is enough to say that ¥1-completeness
means that the problem is as hard as checking through all possible functions N — N; IIi-sets are
the complements of ¥} sets (the formal definitions will be given in Chapter 8). We arrive at the
following dichotomy, which seems to universally hold in algebra, topology, and computable analysis.
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The index set dichotomy. Let K be a “natural” class of algebraic or topological
structures. Then one of the two alternatives holds:

— K is arithmetical, or
— either E(K) or I(K) is X1- or II}-complete (or beyond).

Here, “natural” means “not ad hoc”—a standard class that can be found in the literature. Of
course, counterexamples can be easily manufactured, but we have yet to discover a class in the
literature that fails the dichotomy. Thus, it makes sense to agree that a class should be regarded
as (potentially) “tractable” if it is arithmetical, and “difficult” or even “unclassifiable” if the other
alternative holds.

The approach via index sets has its limitations, such as Rice’s Theorem 2.1.12. Also, it is not
applicable to finitely generated structures for which it tends to be too crude. It also depends on
the exact choice of computable presentability that we use; however, as we will discuss in Chapter
7, this never seems to cause any issues.

There are other ways of using computability theory to measure the classification problem in
a class, circumventing some of these obstacles. In the book, we will primarily focus on one more
approach.

(iii) Enumerations with no repetition

Note that if both I(K) and E(K) are arithmetical, i.e., both are computable relative to (™ for
some n € N, then we can use @™ to remove repetitions from I (K), so that every computable
structure from the class appears in the new list exactly once. We could argue that we “fully
understand” a class K if we could make a computable listing {A; : i € N} of all the structures of
K that mentions exactly one structure per isomorphism type. For example, all finitely generated
abelian groups can be listed up to isomorphism without repetition. Similarly, there is a 1-1 list of
all compact 2-surfaces up to homeomorphism. Both lists are algorithmically effective.

Recall that Friedberg [182] proved that there is a uniformly computably enumerable list of all
c.e. sets with no repetition (up to the usual equality of sets); see Theorem 3.1.43. He produced
such a list in spite of the fact that the index set {(i,5) : W; = W,} is II3-complete. This is known
as a Friedberg enumeration of all c.e. sets. Motivated by this classical theorem, Goncharov and
Knight [213] suggested the following definition.

Definition 6.1.5. Let IC be a class of structures. We say that K admits a Friedberg enumeration
(a Friedberg numbering or a Friedberg listing) if there is a uniformly computable listing of all
computably presentable members of I without repetition, up to isomorphism.

In such a list, every member of I is usually represented by its index. For example, it could
be the strong index of the group presentation in the list of all finitely presented abelian groups
up to isomorphism, or the index of a computably compact presentation in the list of all orientable
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compact surfaces up to homeomorphism. But the surfaces can also be given by the strong indices
of the finite simplicial complexes representing them. It will be always clear from the context which
algorithmic presentations we use to produce a Friedberg list.

This approach is restricted to computable members of the class, but the classifier (the notion of
isomorphism) does not have to be effective. For example, in Friedberg Enumeration Theorem 3.1.43,
we list c.e. sets under equality, which is 1. As usual, results of this sort can be relativised to any
oracle. However, this approach seems more suitable for understanding computable members of IC
specifically.

There are several trivial reasons related to index set calculations that prevent many classes from
having a Friedberg enumeration. As a result, there are very few positive results in the literature
when it comes to Friedberg enumerations. Thus, even if the reader thinks that (iii) does not always
accurately reflect the complexity of classifying structures in K, any result showing the existence of
a Friedberg enumeration for a class K should be viewed as a very strong positive classification-type
result about K. Some of these positive results require sophisticated machinery, such as 0”-priority
arguments, which we did not need in Part 1 of the book.

6.1.2 Other approaches

Before we discuss the main results of Part 2 of the book, we remark that the approaches above are
not the only methods used to study the classification problem in a class of structures. For example,
in descriptive set theory, one uses Borel reductions to compare classes of structures; see the book
[197]. Another approach is due to Shelah; we cite [465] and [332] for the details. His idea is to
consider the (cardinal) number of non-isomorphic models of a theory. This material is way beyond
the scope of the present book, and we only mention it for interest. Instead, we briefly discuss a few
further computability-theoretic classification themes, some of which will be used in the book as a
technical tool.

Effective reductions between classes

This relatively popular approach (e.g., [170, 283]) effectivises the standard definition from descrip-
tive set theory. Suppose C; and Cs are classes of countable structures up to isomorphism, where
every structure is identified with its atomic diagram. We say that C; is effectively reducible to Ca,
written C; <gpp Co, if there exists a Turing functional ® such that

M =~ N if and only if (M) =~ &(N),

where M, N range over Cy, and ®(M), ®(N) are structures in C3. The above definition has several
natural variations (e.g., [170, 283]). We won’t focus too much on this method, but we will use some
known reductions between classes to make conclusions about index sets. More about this approach
can be found in Section 8.2. This approach also has a natural “Type 1”7 analogue, which requires
the reduction to work on indices of computable structures rather than for arbitrary presentations;
it will also be defined and discussed in Section 8.2.

Effective universality

In Section 8.2, we will also discuss computably universal classes, which is a notion (essentially)
coined in [257]. These are the most complex classes from a computability-theoretic perspective.
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Such classes can “effectively encode” any other class of countable algebraic structures, preserving
important properties like classical and computable isomorphism types, and more. Like effective
reductions between classes, computably universal classes will serve as a tool. However, we won’t be
developing a detailed theory of the effective universality of structures.

The two themes discussed above can also be extended to classes of separable structures. Natural
examples of such generalised effective transformations are the computable dualities presented in Part
1 of the book; we delay further discussion until Section 8.2. One last theme is as follows.

Classification using infinitary formulae

In computable structure theory, another approach, discussed and tested already in [213], involves
using computable infinitary L,,. formulas to explore the algorithmic content of the well-known
fact that every countable structure is fully described by an infinitary sentence up to isomorphism
(Theorem 10.1.2). These formulas allow for computable infinite conjunctions and disjunctions. In
Exercise 10.1.65, we will see that for discrete algebraic structures, this approach is very closely
related to the approach via index sets, though these two frameworks are not equivalent even for
subgroups of (Q, +) (Exercise 10.1.66). In the book, we shall avoid the use of infinitary logic when
possible; we only use it in Chapter 10, and only in passing. Also, there has been very little progress
in this direction in the context of separable structures (e.g., [381]). For more about this topic, we
cite the recent survey [238].

6.2 The main results of Part II

In Chapter 7, we develop a systematic approach to the classification of structures and spaces using
index sets and A%-categoricity. We will see that the two themes are very closely related technically.
The main result of Chapter 7 is as follows:

Theorem C (Lupini, Melnikov, and Nies [341], based on Downey and Melnikov [136]). Let K
be the class of direct products of solenoid groups.

1. K admits an arithmetical characterisation among all Polish groups.

2. The isomorphism problem for K is arithmetical.

In both 1. and 2., the upper estimate is X9. Solenoids are exactly the Pontryagin duals of
rank 1 torsion-free abelian groups, and their topology uniquely determines the group operation on
them. Solenoid spaces were introduced by Vietoris in [499]. Solenoids are important in the area
of dynamical systems; e.g., [510]. These objects are also used throughout topology and topological
group theory as a source of examples and counterexamples. The direct products of solenoid spaces
are the Pontryagin duals of completely decomposable groups, introduced and first studied by Baer
[26]. Completely decomposable groups traditionally play an important role in the theory of infinite
abelian groups [195]. Their compact duals are also reasonably well-studied; see, e.g., [340]. Among
other tools, the proof of Theorem C relies on the effective Pontryagin duality from Part 1 of the
book and on our technical result in [137], which states that completely decomposable groups are A2-
categorical. We will include a detailed proof of the result from [137], as well as some further related
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results about computable completely decomposable groups. In Exercise 7.2.49, we will see that it is
possible to “computably transform” a linear order in a completely decomposable group and, thus,
into the compact groups in Theorem C. This observation seems to suggest that K cannot possibly be
an arithmetical class. However, as we will discuss at the end of Chapter 7, there is no contradiction
because the “coding” hinted at in Exercise 7.2.49 is ill-behaved. Theorem C illustrates that the
sketch in Exercise 7.2.49 cannot be modified to produce a sufficiently well-behaved transformation.
This is certainly a non-trivial fact, as reflected in the complexity of the proof of Theorem C.

Chapter 8 lays the foundations of the non-classification theory, in the spirit of [213]. In this
section, we are mainly focused on proving that the isomorphism problem in certain classes is :1-
complete. We develop sufficient machinery to prove:

Theorem D (Melnikov [373], based on Downey and Montalban [146]). The homeomorphism
problem for connected compact Polish spaces is ¥1-complete.

Theorem D was proven in [373], but it was stated for connected compact groups. As noted
in [139, 341], the result holds for spaces too, via the same proof. Just as with Theorem C, this
result is derived from a similar result for discrete structures due to Downey and Montalbén [146],
using effective Pontryagin duality. Chapter 8 is, of course, not limited to the proof of Theorem D.
We will also show that many other classes of structures and spaces have Y1-complete isomorphism
problems, including linear orders, Stone spaces up to homeomorphism, Banach spaces up to linear
isometry, two-step nilpotent groups, and internal domains. To obtain some of these results, we
will use the effective dualities established in Part 1. Other results, such as the ¥}-completeness for
integral domains, will follow from the effective completeness of the respective class. The notion of
effective completeness has two versions, Type I (on indices) and Type II (for arbitrary members of
the class). For example, in Theorem 8.3.10 we will establish that the isomorphism of computable
torsion-free abelian groups is complete among all $}-equivalence relations, and thus, the same is
true for their connected duals too (Theorem 8.3.28). Theorem 8.3.28 implies Theorem D, but is
harder to prove.

Chapter 9 is focused on the approach to classification via Friedberg enumeration. As we will see
in Chapter 7, positive results stating the existence of a Friedberg enumeration in a class are very
rare; the reason for this is often a straightforward index set calculation. Recall also that proving
the original Friedberg Enumeration Theorem 3.1.43 for c.e. sets under equality requires infinite
injury. Note that the index set {(i,j) : W; = W,} is merely II3-complete. In the main result of
Chapter 9 stated below, the complexity of the isomorphism problem increases monotonically with
the parameter n.

Theorem E (Downey, Melnikov, and Ng [145]).  For any fixed n > 0, there is a Friedberg
enumeration of all pro-p abelian groups of pro-Ulm type < n.

Here, pro-Ulm type is the Ulm type of the Pontryagin dual of the group; this will be clarified
later. Chapter 9 presents a systematic exposition of computable abelian p-group theory, as it is
necessary to prove Theorem E. Following the general pattern of the book, the main theorem is
established through a sequence of transformations. First, we establish the existence of a Friedberg
enumeration for equivalence structures [143]; this requires an application of the 0”-machinery. Then

250



we use methods of Khisamiev and Ash, Knight, and Oates to produce a Friedberg enumeration of
abelian p-groups of Ulm type < n. To derive Theorem E, in Theorem 9.5.7, we establish another
effective version of Pontryagin duality between torsion discrete and profinite abelian groups.

In Chapter 10, we attempt to classify computable structures up to computable isomorphism.
We will see that the notion of computable categoricity admits several variations, the most popu-
lar being that of relative computable categoricity. Relative computable categoricity is a Type 11
analogue of computable categoricity (which itself is Type I), since we will show it is witnessed by
Turing functionals. This Type II version of computable categoricity is well-behaved and admits a
syntactical reformulation. The analogy with the situation in computable analysis is indeed striking,
especially with the material of Section 2.3. For instance, we will prove theorems resembling the
Kreisel-Lacombe-Shoenfield-Markov Theorem 2.3.7 and Specker’s Theorem 2.3.24 from Part I. We
will include several results about separable structures in Chapter 10, but these results work only for
presentations viewed up to isometry. For example, in Theorem 10.2.9, we will give the description
of (isometrically) relatively computably categorical Polish spaces in terms of approximate Scott
families, and in Proposition 10.2.14, we apply approximate Scott families to the Urysohn space.

We will also outline the proof of the well-known theorem of Goncharov, stating that there
is a structure with exactly two computable presentations, up to computable isomorphism (The-
orem 10.3.2). Goncharov’s theorem has consequences for structures in several standard classes,
including metric spaces up to isometry.

We will finish the chapter, and the book, with a detailed proof of the following result:

Theorem F (Melnikov and Ng [376]). The space (C[0, 1], dsyp) has infinitely many isometric,
but not computably isometric, computable Polish presentations.

The main technical step in the proof of Theorem F, Theorem 10.3.20, generalises (and indeed,
implies) another well-known theorem of Goncharov (Theorem 10.3.2) about discrete computable
structures. Using Theorem 10.3.20, Theorem F will be derived from Theorem 2.4.20, which was
the main result of Chapter 2.

251



Chapter 7

Classification theory

This chapter is mostly focused on establishing arithmetical upper bounds for index sets for various
classes. The machinery of A%-categoricity will be crucial in establishing many index set estimates,
including the main result of the chapter, which is as follows.

Theorem C (Lupini, Nies, and Melnikov [341], based on Downey and Melnikov [136]). Let K
be the class of direct products of solenoid groups.

1. K admits an arithmetical characterisation among all Polish groups.

2. The isomorphism problem for K is arithmetical.

The structure of the chapter is as follows:

1. Section 7.1 contains several basic results about index sets of structures and spaces. These
index set estimates serve as examples, though some are not particularly straightforward and
will be used in Section 7.3. We also briefly discuss Friedberg enumerations, but deeper results
are postponed to Chapter 9.

2. Section 7.2 is devoted to computable completely decomposable groups. The main result of
the section says that this class is arithmetical. We also include a complete classification of
AY-categoricity for homogeneous completely decomposable groups in our discussion.

3. Section 7.3 combines the results of Section 7.1 and Section 7.2 with effective Pontryagin
duality (established in Part 1) to prove Theorem C.

This chapter relies heavily on the results and techniques established in Part 1, particularly on
the content of Chapters 3 and 4.
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7.1 Calculus of index sets for structures and spaces

This section contains foundational material that will be important for the rest of Part 2 of the
book. The results and examples discussed in the section are technically not difficult; however, some
of them are quite neat.

7.1.1 Discrete countable structures

In this subsection, we go over some well-known examples of index sets. We also simultaneously
establish upper estimates for A%-categoricity (to be defined) in these classes. The elementary
properties of arithmetical predicates summarised in Exercise 2.1.30 will be rather useful throughout
this section.

Fix a class K of structures in a computable (typically, finite) language. We will be looking at
I(K) = {M. : M, represents a member of K},

where (M. )cen is a uniformly effective list of all partial computable structures in the language of

K.
Proposition 7.1.1 (Folklore). For the following classes, I(K) is I19.
(i) Linear orderings.
(i) Graphs.
(iii) Groups.
(iv) Abelian groups.
(v) Torsion abelian groups.
(vi) Torsion-free abelian groups.
(vii) Equivalence structures.
(viii) Boolean algebras.
(iz) Vector spaces over a fized computable field.
(z) Rings.
(xi) Trees.
(xii) Partial orderings.

Proof. They are all basically the same. All these classes are V3-axiomatisable, and some are V-
axiomatisable. For M., being total is I13. O
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Vector spaces

A computable structure is AY-categorical if any two computable presentations of the structure are
AY-isomorphic.

Fact 7.1.2. If every structure in a class K is AY-categorical, and I(K) is arithmetical, then E(K)
is arithmetical too.

Proof. The complexity of saying that A ~xo B is »0 Y O

For example, the isomorphism problem for vectors spaces over a fixed field is arithmetical,
since every vector space is AJ-categorical. This provides us with the upper estimate X for the
isomorphism problem. This upper bound can be improved. The following fact is folklore; e.g.
[213, 72, 146].

Theorem 7.1.3. E(K) is II3-complete for the class of computable vector spaces over Q. Indeed, if
Vo is the Q-vector space of dimension w, then

{i T M; ~ Voo}
is T19-complete. The same is true about the additive group of V.

Proof. Being a computable vector space over Q is I19, by Proposition 7.1.1 (vii). Let U,V be
two computable vector spaces. To express that dim V < dim U, state that for all n, if there is a
linearly independent n-tuple ¥ € V, then there is a linearly independent n-tuple 4 € U. Being a
linearly independent tuple is a II9-property, thus making dim V' < dim U a II3-property. Clearly,
dim V > dim U is also I1J. Of course, V =~ U iff dim U = dim V. Therefore E(K) € I13.

To see why the index set of V; is also I3, observe that

Vn b, ..., by, {bo,...,b,} is linearly independent

is a 1T property.

In Theorem 2.2.16 we proved that the additive group operation effectively determines the vector
space scalar multiplication in V,,. Being divisible, abelian, and torsion-free is I1. As a consequence,
the upper bound for the index set of V,, remains II3 in the signature of additive groups.

We also note that the I13-completeness of the index set of Vi, (among spaces) implies the I13-
completeness of E(K). To obtain the I13-completeness of E(K), simply consider pairs of the form
(Ve, Vi), where Vy, is identified with some computable presentation of this space. To this end, we
outline the proof of I1-completeness of the index set of V.

Fix a I13-complete set X. For each e, we will define a space V. with

Vo~ Vo ifee X,
© ™ | a finite dimensional space otherwise.

Since our construction will be uniform, the index of V. with respect to the enumeration of all
structures in the language of Q-vector spaces will also be computable:

Ve = My (e),
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for some total computable f, thus illustrating the desired I1-completeness for V.. Let R be a
computable predicate such that

e € X if and only if Yn3=*m R(e,n,m);

it exists by Exercise 2.1.30. Reserve elements {b, b, ,, : m,n € N}, and keep them linearly indepen-
dent. If the predicate R(e,n,m) “fires” on m, then use the strategy explained in detail in the proof
of Theorem 2.2.16 to put the following elements in the span of b:

1. bp i, k= m;
2. bn/,m’7 n > n, m’ € N.

It is easy to see that V. is a non-trivial vector space (i.e., dim V. > 1), and furthermore dim V, is
finite iff for some n, the predicate fires infinitely often. O

A similar argument works for any infinite computable field; see Exercise 7.1.13. In the case of
a finite field the upper bound drops down to I13, we leave the proof to Exercise 7.1.14.

Theorem 7.1.4. E(K) is Iy complete for the class of computable vector spaces over a fived finite
field F.

An equivalence structure is a structure of the form (X, ~), where ~ is an equivalence relation
on X. We will need the proposition below in Chapter 9.

Proposition 7.1.5 (Calvert, Cenzer, Harizanov, and Morozov [75]). The isomorphism problem for
computable equivalence structures is 11-complete. Indeed, there is an equivalence structure R so
that

{’L : Mz = R}
is T19-complete.

Proof. The axioms of equivalence structures are 17, and totality of a presentation is I19. Given
M; and Mj, first check if the presentations are total and represent equivalence structures. To see
whether M; = Mj, it is sufficient to state that, for each n:

1. If M; has (at least) n classes of size exactly A € Nu {oo}, then M; also has (at least) n classes
of size exactly A.

2. The same but with M; and M; interchanged.

Effectively in 0” we can calculate the size of each individual class. This gives the upper bound
9.

To prove I19-completeness, let R be the structure with infinitely many infinite classes and with
infinitely many finite classes of each finite size. Clearly, R has a computable presentation which we
identify with R. Using Exercise 2.1.30, represent a I13 predicate P as follows:

P(e) if and only if 3%i3%j U(i, j, ),

where U is a computable predicate and “3*” stands for “there exist infinitely many”. Let also F
be the structure that has no infinite classes but has infinitely many finite classes of each fixed size;
this structure is also clearly computable.

We build an equivalence structure B, to be F'u E, where the i-th class of E has a size equal to
1+ card{j : U(3i, j,e) holds}. The construction is uniform, so for some total computable f, we have
that B, = My (.. Also, B, has infinitely many infinite classes iff P(e) holds. In this case, B. = R,
and otherwise B, £ R. O
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Ordinals

We fix the enumeration (M,)cen of all partial computable structures in the language of one binary
relation. The theorem below can be extended to transfinite levels, but we omit the transfinite
version and leave it to Exercise 8.1.27.

Theorem 7.1.6 (Folklore after Ash). Fizn e N.
(i) WY s (sharply) A3, ,,-categorical.
(ii) The index set {e: M, ~ w D} is 119, . 5-complete.

Sketch. For n = 0. Using &', we can decide the adjacency relation in any computable copy of w;
this gives the upper bound A9 in (i). This is sharp because of Exercise 3.2.17. The index set of w
is 119 since a linear order is w iff it has the least element 0, and every other element of the order is
in a finite block with 0. The II3-completeness uses the method of Theorem 7.1.3 to produce

L ifee S,
Nk +wt+w ifeésS,

where S is a I13-complete set.
The case when n > 0 follows by induction. The upper bound is routine. Iterate Theorem 3.2.46
(which is uniform for the linear orders that we use) to obtain

5o e ifees,
Wk +wt+w) ife¢sS,

where S is 113, | 5-complete. 0

The theorem above skips some levels in the arithmetical hierarchy. We can also obtain index sets
of other levels using Theorem 3.2.22 and Watnick’s Theorem 3.2.23; we leave this to Exercise 7.1.11.
Superatomic Boolean algebras

A (computable) Boolean algebra is superatomic if it is the interval algebra of a (computable) ordinal;
see §4.1.4. The theorem below also has a transfinite version, but we leave it to Exercise 8.1.28.

Theorem 7.1.7 (Knight). Fizne N, Then
(i) Intalg(w™™) is A, ,-categorical but not A, ,-categorical.
(i) The index set {e : M, = Intalg(w™*)} is 113,  5-complete.

Sketch. We have calculated the complexity of some properties needed to establish the upper bounds
in the proof of Feiner’s Theorem 4.1.30. We also note that, in the proof of Theorem 7.1.6, if e ¢ .S
(where S € 119, , 5), then we construct a linear ordering of Hausdorff rank one higher than w™*!, and
hence the corresponding Boolean algebra will not be isomorphic to Intalg(w”*!). This is because,
for example, the Stone space will have a higher Cantor-Bendixson rank. We leave the details to
Exercise 7.1.12. U
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Torsion-free abelian groups of rank 1

We use the materials and notation introduced in §5.1.2, and specifically the classification of sub-
groups of Q by their types (Theorem 5.1.15). Recall that a torsion-free abelian group has rank 1 iff
it is isomorphic to a (non-zero) subgroup of Q. Let Iy be the class of torsion-free abelian groups
having rank < 1. (We also include the rank-zero trivial group {0} in the class for convenience; this
won’t make any difference.) The following elementary (but neat) proposition is due to Calvert [73],
and in the slightly stronger form given in Corollary 7.1.9, it appeared in [132].

Proposition 7.1.8. 1. The index set of K1 is II3-complete.
2. The isomorphism problem for Ky is $3-complete.

Proof. Being total and torsion-free abelian is II3. The rank is > 1 iff there exists a,b € G such that
for all m,n e N,
ma+nb=0—->m=n=0,

which is 9. (The II9-completeness follows vacuously from the IT13-completeness of Tot. Alterna-
tively, simply stop building a copy of Z if II3 no longer fires.)

The upper bound is X9 because any two groups in the class are isomorphic if, and only if, they
are computably isomorphic. The X3-completeness follows from Theorem 3.1.8(iii) combined with
Theorem 5.1.15, but we outline a direct proof below.

Fix a X3-predicate P and represent it as 323°yR(z,y,1), where R is computable. Produce a
computable group G, realised as a c.e. subset of Q that contains 1, with the following properties.

P(i) fails = t(G;)>(1,1,1,1,...,1,1,...)
and

P(i) holds = t(G,) % (1,1,1,1,...,1,1,...),

where the latter is achieved by keeping 1 non-divisible by infinitely many primes. If we succeed,
Theorem 5.1.15 will guarantee $3-completeness. Indeed, if H is some fixed computable presentation
of the group having the same type as (1,1,1,1,...,1,1,...), then simply consider pairs (H, G;).
We now explain the construction of G;. We begin with 1 € G;, and initially make progress
in building G; ~ Z. Each z in J23®yR(zx,y,) controls a marker which occupies some prime p;.
Initially, x occupies p,. The goal of the marker is to keep 1 non-divisible by the p; that it occupies.
If x “fires”, all markers y > « move. We move « to the next available p; (currently occupied by
x+1), and we move z + 1 also either to the position of x +2 (if it is defined), and so on. The largest
marker defined at the stage is moved to the next available prime larger than all primes occupied
by any markers. We also introduce one more marker and place it on the next prime. We declare
1 divisible by the prime p; (once), where p; was the prime that previously carried z. If P(¢) fails,
then every marker eventually settles, making 1 non-divisible by infinitely many primes. Otherwise,
some marker will keep moving, making 1 divisible by almost all primes. O

Notice that the X9-completeness is achieved using just one group. This is the group of type
(1,1,1,...,1,1,...).

Corollary 7.1.9 (Downey, Kach, Lempp, and Turetsky [132]). There exists a computably categor-
ical group H such that I(H) = {e: M. =~ H} is ¥9-complete.
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We remark that essentially all completeness estimates we’ve seen have had a slightly stronger
feature. For example, in the corollary above, the index set I(H) was X3-complete within the class of
rank 1 torsion-free abelian groups, meaning that under both X3- and I13-outcomes, we can produce
a rank 1 torsion-free abelian group. As far as we know, the notion of “completeness within” for
structures was coined by Calvert. Such results are slightly more insightful in the rare cases when
the complexity of the index set of a class is not less complex than the (crude) estimate for the
isomorphism problem in the class. We, however, usually won’t concern ourselves too much with
this minutiae, and will just aim for whatever is easier to prove.

Using other presentations®

We remark that in all results above we used computable presentations (M. )een, but we could have
used c.e. presentations instead. Another possibility is to use computable presentations with some
additional properties, e.g., vector spaces or abelian groups with a linear independence algorithm.

However, c.e. presentations and computable presentations are only one Turing jump apart, and
the general intuition is that, at least in common classes, the complexity estimates for index sets
will also be at most one quantifier apart. We cite [47] for many examples comparing index set
complexity of various properties of groups using c.e., computable, and finite presentations; all these
results confirm our intuition. Recall also that we are aiming at establishing arithmetical estimates,
and typically it makes almost no difference which presentations we use. Indeed, we could perhaps
use n-decidable or A9 presentations for some fixed n € N, and we would likely still get arithmetical
estimates. (Of course, decidable presentations do not fall into this pattern.) In this sense, the
index set approach is quite robust. Using computable presentations seems more convenient simply
because it is usually easier to prove completeness results and because typically more is known about
computable members of the class.

But, of course, we know that c.e. presentations differ from computable presentations in general
(e.g., Theorem A in Part 1), so we must be careful. Pathological examples can be rather complex,
and it is perhaps natural to wonder how complex they can be exactly. Among computably presented
structures, the index sets of decidable, 1-decidable, automatic, primitive recursive, and polynomial-
time presentable structures are all X1-complete [237, 34] (see Exercise 8.1.42). Using a modification
of the main construction in [34], one can show that this index set of computably presentable
structures among all c.e. presented structures is Xi-complete as well (Exercise 8.1.43). We will
discuss Y{-completeness in the next chapter.

In view of Feiner’s Theorem and the effective Stone duality established in Part 1, we are espe-
cially interested in the complexity of this index set restricted to Boolean algebras.

Question 7.1.10. What is the complexity of the index set of computably presentable Boolean alge-
bras among all c.e. presented structures?

The proof of Feiner’s Theorem 4.1.30 can be easily modified to show that the index set in the
question above is not arithmetical (i.e., not X0 for any n); this is left as Exercise 7.1.15. However,
nothing is known beyond this observation.

Exercises

See also Exercises 9.3.59-9.3.61 for the index sets of subclasses of abelian p-groups, and see Exer-
cise 10.1.31 for the index sets of decidably categorical structures.
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Exercise® 7.1.11. Calculate the index sets of the orders of the form Z"*! (Q + 2 + Q)1
(Q+2+Q)"zm+l and Z™H1(Q + 2 + Q)"*L; m,n e N.

Exercise® 7.1.12. Give details for Theorem 7.1.7.

Exercise® 7.1.13. Prove Theorem 7.1.3 for vector spaces over any fixed infinite computable field.
(Note that a slight modification to the initialisation strategy is necessary in the case when the
characteristic is finite.)

Exercise® 7.1.14. Prove Theorem 7.1.4.

Exercise 7.1.15. Show that the index set of c.e. presented Boolean algebras that admit a com-
putable copy is not arithmetical. Conclude that the index sets of compact right-c.e. Polish spaces
that admit a computable Polish presentation is also not arithmetical. (Hint: Use a uniform modi-
fication of the proof of Feiner’s Theorem 4.1.30.)

Exercise 7.1.16 (Calvert [72]). Show that the isomorphism problem for the class of computable
algebraically closed fields of any fixed characteristic is I13-complete.

Exercise 7.1.17 (Calvert [72]). Show that for the class of Archimedean real closed fields (i.e., those
that have no “infinitely large” elements; equivalently, those embeddable into R), the isomorphism
problem is I13-complete.

Exercise 7.1.18 (Calvert, Harizanov, Knight, and Miller [76]). Define the class d-X2 to consist
of all sets of the form X\Y, where X,Y € ¥2. Let A be a computable Archimedean real-closed
ordered field (see the previous exercise).

1. If the transcendence degree is 0 (i.e., A is isomorphic to the ordered field of algebraic reals),
then I(A) = {i : A; = A} is II3-complete (within the class of Archimedean real-closed ordered
fields).

2. If the transcendence degree is finite but not 0, then I(A) is m-complete in the class d-39
(within the class of Archimedean real-closed ordered fields).

3. If the transcendence degree is infinite, then I(A) is II3-complete (within the class of Archimedean
real-closed ordered fields).

Exercise* 7.1.19 (White [509]; Pavlovsky [428]). Define the class X2, , to be the collection of sets
that are X9 relative to ().
1. Show that the index set of computable prime models is % 4o-complete.

2. Show that the index set of computable homogeneous models is X0, ,-complete.

Exercise** 7.1.20 (Carson et al. [80], McCoy and Wallbaum [358]). Let F,, denote the free (non-
abelian) group of rank w. Show that the index set {i : G; =~ F,} is I13-complete.

Exercise** 7.1.21 (Boone and Rogers [52]). Show that the collection of all finite presentations
having a decidable word problem forms a ¥3-complete set!.

1While the proof is not particularly difficult, it relies on techniques that are not covered in the book.
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7.1.2 Compact spaces and groups

Fix an effective listing (M;);en of all (partial) computable Polish spaces. Each such M; is given by a
dense sequence that can be identified with w and a (partial) computable metric on it. We could list
all partial computably compact spaces in a similar way; we will discuss this approach a bit later.
The estimates that we would obtain in these two different frameworks would be at most one jump
apart, and it will make little difference to us. However, it is not entirely obvious that in the case
of compact Polish spaces we indeed get this robustness of the index set approach; establishing this
foundation is one of the main goals of this subsection. As the main result of the subsection, we will
prove that the index set of solenoid groups is arithmetical.

The space of isometries

In this subsection, we present sharp arithmetical calculations for the index sets of compact spaces
up to isometry. For that, we need to accumulate enough information about computably isometric
compact spaces.

An isometry is a metric-preserving map. It is clearly continuous and is always injective. If
an isometry is surjective, then we say that it is an isometric isomorphism. Using a brute-force
search, we can easily show that the inverse of a computable isometric isomorphism is always a
computable map even if the spaces are not computably compact. In particular, we do not need to
refer to Theorem 4.2.57 to compute the inverse of an isometric isomorphism. Further, to compute
an isometry f between two computable Polish spaces X and Y, it is sufficient to uniformly compute
the isometry on the special points of X. Indeed, if (z;)en is a fast Cauchy name of a point z in
X, then (f(x;))ien is also fast Cauchy in Y. We can use the computation of f(x;) to find a special
y; € Y so that d(y;, f(z;)) < 27% and conclude that (y;)ien converges to f(z) quickly. We write
X =50 Y to mean that X and Y are isometrically isomorphic.

Theorem 7.1.22. For computably compact metric spaces X,Y, X =5, Y is a U{-property (of
the indices of X and Y ).

Proof. We modify the proof of an unpublished result of Nies and Melnikov stated in [381] (see
Section 4.2 in [139] for a slightly different proof).

Proposition 7.1.23. There is an informally effective procedure which, given two computably com-
pact spaces X and Y, outputs a computably compact space F(X,Y) and an index of an effectively
closed subset I(X,Y) € F(X,Y) whose members are exactly the (codes for) isometries X — Y.

Indeed, the computable compactness of X can be dropped. Also, F((X,Y) is just a convenient
computably compact presentation of 2¢ which, in view of Theorem 4.2.84 (which is uniform in the
case of 2¥), can be identified with 2%.

Proof of Proposition 7.1.23. Suppose the special points of Y are given by the sequence (7;);en, and
let (p;)ien be the dense computable sequence in X. Using the computable compactness of Y, for
each n, fix a finite 27"-cover of the space. Define the space F;, of all finite partial maps which
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assign each of the first n special points in X to one of the centres of the finitely many 2~ "-balls
covering Y. Tt is computably compact under the discrete metric d(a,b) = 1 iff @ # b. Define

F(X,Y)=]]Fn,

neN

which is also computably compact (Proposition 4.2.17). Each element of F(X,Y) is a string of
finite tuples

(01,09,...),
where o,, = {rj,,7j,,...,7j,_, is a tuple of special points in Y. These points are the images of the
first n special points pg,...,pn_1 € X, respectively, under the partial map coded by o,,. To isolate

the elements that code isometries, consider the following conditions:
L |dy (rj,,rj.) — dx (pi,pr)| <27 for each i < k <n,
2. dY(Un»0n+1 rn) <277,

where the distance between strings of equal length is the supremum of the distances of the respective
coordinates. These conditions are II{ and define an effectively closed subset I(X,Y) of F(X,Y).
Clearly, every point in I(X,Y") codes an isometry. Further, 7 is an isometry iff the sequence (7, ) nen
lies in I(X,Y"), and this correspondence is computably uniform. O

We note that 7 € I'so(X,Y’) can have more than one “name” in I(X,Y). (It is IT{ to tell whether
two members of I(X,Y’) code the same isometry.)

Claim 7.1.24. Suppose X is computably compact. For an isometry f: X — Y, “being onto” is 119
relative to f.

Proof. We have that f(X) is compact and thus closed; therefore, f is not onto iff

Hldin Ty X)) = inf dT’i, >O,
0 fX0) = intd(ri.y)

where the space f(X) is computably compact relative to f by Lemma 4.2.55. In particular, the
inf-distance to f(X) is f-computable, by Exercise 4.2.70 (also relativised). This makes “f being
not onto” X relative to f. O

We return to the proof of Theorem 7.1.22. If a counter-example is found for 7 € I(X,Y)
witnessing that (f represented by) 7 is not onto, then the non-surjectivity is witnessed by an
“Initial segment” of 7, i.e., by some clopen set in F(X,Y") containing . By restricting I(X,Y") to
the effectively closed set I*(X,Y) of surjective isometries, we see that X >, Y iff I*(X,Y) # .
Since F(X,Y) is computably compact, if I*(X,Y) = ¢, then it will be effectively recognised at a
finite stage: just wait for the complement of I*(X,Y’) to cover F(X,Y). It follows that X ~;, Y
is I1{ in the indices of X and Y. Theorem 7.1.22 is proved. O

In the proof of the theorem above, we established that Iso(X,Y) can be represented as a I19-
class. Even though this representation does not have to be 1-1, we can now appeal to facts about
I classes and effectively closed sets. By The Low Basis Theorem 4.2.47, we obtain:
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Corollary 7.1.25. For a computably compact space X, if Y ~;5, X, then there is a low isometric
isomorphism witnessing this>.

Of course, self-isometries of a compact Polish space form a topological group which (as we have
essentially established above) is compact. In contrast with Stone spaces, a compact topological
group cannot have isolated points unless it is discrete and, thus, finite; this is because translations
by elements are self-homeomorphisms of the group. If the identity is isolated, then all points are
isolated too, and if one point is not, then all points are not. In particular, a compact space has
either finitely many or uncountably many self-isometries.

Corollary 7.1.26 (Iljazovié¢ [268]). Suppose a computably compact X has only finitely many self-
isometries. If for some computable Polish' Y we haveY =~;5, X, then there is a computable isometric
isomorphism witnessing this.

Proof. We use the notation from the proof of Theorem 7.1.22 throughout. We know that I'so(X,Y)
must contain an isolated point ©. It can be tempting to refer to Fact 4.2.45 to establish the
corollary. However, if F': I*(X,Y) — Iso(X,Y) is the computable functional associating members
of I*(X,Y) with isometries, then F~1(6) does not have to be a singleton. (We remark that
I*(X, X) = I(X, X) since every self-isometry of a compact space is surjective.)

Since every isometry is clearly continuous, we can view every isometry as an element of C'(X,Y)
under the supremum metric

dsup(f,9) = Sup d(f(z),g(x)).

Take any U < C(X,Y) that contains a unique member © € Iso(X,Y).
Fix an n so that 27" is smaller than the diameter of U. Fix a sufficiently long o € F(X,Y)
that:

1. o is extendible to an infinite path in I*(X,Y), and
2. the F-images of all its extensions in I*(X,Y) lie in U.

Note that for any such extension 7 € I*(X,Y’), we must have F(7) = ©.

Given m > n, wait for a late enough stage s so that all extensions of ¢ that have not yet been
declared out of I*(X,Y) have their potential F-images at a distance of at most 2™ from each
other, in the sense of (2) of the proof of Theorem 7.1.22.

Since O is isolated in U and I*(X,Y) is a II{ class, it follows that such a stage must exist.
Choose any (finite initial segment of) such p,, extending o that has not yet been declared out of
I*(X,Y). It determines a finite partial map that can be used to calculate © to precision 2-™+1,
It follows that © is computable. O

For example, geometric simplices are isometrically computably categorical with respect to com-
putably compact presentations.

We are now ready to apply these techniques to calculate the complexity of the classification
problem for compact spaces, up to isometry. Recall that (M;);ey is the uniform enumeration of all
(partial) computable Polish spaces. We identify M; with its completion, and we write M; =5, M;
to mean that (the completions of) M; and M; are isometrically isomorphic.

2We do not assume that Y is computably compact, because this is guaranteed by Exercise 4.2.69. The same
comment applies to the next corollary too.
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Corollary 7.1.27 (Melnikov and Nies [381]). 1. The recognition problem for compact spaces
Toomp = {1 : M; is compact}
is T13-complete.
2. The isometric isomorphism problem for compact spaces
Eiso = {,5) : M; =50 M; & M;, M; are compact}
is 113-complete®.

Proof. For (1), say that the metric is total, is indeed a metric, and for every n there is a 27 "™-cover
of the space by closed basic balls Dy, ..., Dg. The latter is the same as to say that for every special
point z, x € Dy U ... U Dy; this is because the complement of Dy U ... U Dy is open. Since x € D;
is a I1-property, the overall complexity of

Vn3ikVaspecial xe€ Dygu...u Dy

is T19. The II$-completeness can be witnessed by closed c.e. subspaces of the standard computable
copy of w¥; see Exercise 7.1.42.

For (2), recall that every compact computable Polish space is computably compact relative to
0’, by Fact 4.2.11. Thus, by Theorem 7.1.22, given 4, j € Icomp, it is 19 in 4, j to tell that M; and
M; are isometrically isomorphic. The 19-completeness of Ej,, follows from the I13-completeness
of I omp vacuously; simply consider pairs (C;, C;)en for the sequence (C;)ien witnessing the I19-
completeness of Icomp. (To see that the upper estimate 119 is optimal provided that M;, M; are
both compact, fix some infinite compact C. Produce a finite subspace of C' in the ¥9-outcome, and
C in the TI9-outcome.) O

Compact Polish groups

In this subsection, we measure the complexity of the index sets of profinite and compact connected
groups. The first step is to measure the complexity of being a compact group.

Fix an effective listing G, G1, ... of (partially) computable Polish spaces in which every (per-
haps, partial) computable Polish space G; is additionally equipped with a pair of c.e. sets that are
interpreted as names of (partial, potential) group operations on G,;. We usually identify G; with
its completion G;. Recall Definition 4.2.8:

Definition 7.1.28. A function f: G — M is effectively continuous if there is a c.e. family F of
pairs (D, E) of (indices of) basic open balls such that:

(C1) for every (D, E) € F, we have f(D) € E;

(C2) for every x € G and every basic open E 3 f(x), there exists a basic open D with (D, E) € F
and x € D.

For technical convenience, we will use the following uniform variation of Definition 7.1.28. If B
is a basic open ball, let B° denote the basic closed ball having the same radius r(B) and centre
¢(B) as B.

3Indeed, it is Hg-complete within the Hg-complete set Icomp, meaning that its Hg-completeness can be witnessed
using only indices from Icomyp for both the Hg and the Zg—outcomes.
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Definition 7.1.29. Let f be a continuous function between Polish metric spaces M and N. A
x-name of f is any collection of pairs of basic open balls (B, C') such that f(B) < C°, and for every
x € M and every € > 0, there exists (B, C) € ¥ such that B 3z and 7(C) <e.

We can uniformly pass from a =-name of f (Definition 7.1.29) to a name of f (Definition 7.1.28)
and back, as follows. Suppose ¥ is a name of f. Since f(B) c C implies f(B) c C¢, every *-name
is a name. Now suppose U is a =-name of f. Using €/2 instead of € in Definition 7.1.29, fix (B, C)
with 7(C) < €/2 such that € B and f(B) < C°. Replace C with an equicentric C' > C' such that
r(C) < r(C’") <e. We have f(B) c C°< C" and 7(C') < e.

The uniform procedure of passing from a name to a *-name can be applied to any c.e. set W
which does not even have to be a name of any function. We denote the resulting c.e. set by W*.
Then W is a name iff W* is a #-name (of the same function).

Having this uniform correspondence in mind, without loss of generality, we may always assume
that any (partial) computable group is given by the =-names of its potential operations. We shall
follow this convention throughout the rest of this subsection.

Proposition 7.1.30. The index set CPGr = {i : G; is a compact Polish group} is I13-complete.

Proof of Proposition 7.1.30. We are given a triple G; = (G, W,U), where G is a (partial) com-
putable Polish space and W, U are c.e. sets interpreted as potential #-names. We need to check
whether G is compact and W and U are names of computable group operations on G. By Corol-
lary 7.1.27(1), it is IS to tell whether G is compact Polish.

Lemma 7.1.31. Let G and M be computable Polish spaces that are also compact. Then
{e : W, is a = -name of a computable f: G — M}
is 113, uniformly in G and M.
Proof. Fix a c.e. set ¥ and interpret it as a set of pairs of basic open balls with rational radii:
¥ = {(C, B) : C, B basic open in G, M respectively}.
To ensure that V¥ is a *-name of a computable operation, we require that ¥ additionally satisfies:
1. For every (By, Cy),...,(Bn,Cn) € ¥, (), B; # & implies (), C; # &.

2. For each rational € > 0, there exists a finite cover By, ..., By of G and (By, Cy), ..., (B, Ck) €
U such that r(C;) <efori=1,... k.

We first check that (1) and (2) are (at most) I1J, and then we prove that they capture the
property of being a #-name.

Claim 7.1.32. The properties (1) and (2) are I13.

Proof of Claim. Since ¥ is c.e. and the intersection of open sets must be witnessed by special points
from the respective computable structures, it is clear that (1) is II3. To see why (2) is I13, recall
that every compact Polish space is ('-computably compact. Thus, ”being a finite cover” is X9.
Therefore, (2) is I13. O

Clearly, if ¥ is a #-name of a computable operation f : G — M, then ¥ satisfies (1) and (2)
(recall G is compact).
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Claim 7.1.33. If U satisfies (1) and (2), then it is a *-name of a computable operation.

Proof. We define a map ¢ as follows. For every z € G, choose (B,C) € ¥ such that x € B and
declare C° a (closed) W-neighbourhood of ¢¥(x). (Note that if  is a computable point, then this
process is effective.) Set 1(z) to be equal to any point in the intersection

ﬂ{C : C' is a U-neighbourhood of ¥ (z)}.

Property (1) implies that any two U-neighbourhoods of ¢(z) have a non-empty intersection. Let
C, be the intersection of the first n U-neighbourhoods of 1(z) in any (not necessarily effective) list
of such neighbourhoods. Then (C,,) is a nested sequence of non-empty compact sets, thus it has a
non-empty intersection. Property (2) guarantees that for every e there exists a U-neighbourhood of
¥ (z) of size e. Therefore, the intersection is a singleton. We conclude that v is a (total) function.

We claim that ¥ is a x-name for ¢. Property (2) implies that for every ¢ > 0 there exists
(B,C) € U such that B 3 z and r(C) < e. It remains to show that for each (B,C) € ¥ we have
Y(B) € C°. Fix x € B. Then

{(z)} = ﬂ{C’ : C'is a W-neighbourhood of ¥(z)}.

Since C is a W-neighbourhood of ¥(z), it follows that ¥ (x) € C*. O
To finish the proof of the lemma, observe that our analysis was fully uniform in G and M. O

We return to the proof of Proposition 7.1.30. The product space G x G is compact. There is
a uniform procedure that, given a computable Polish space GG, outputs a computable presentation
of G x G. It follows from Lemma 7.1.31 that the index set of Polish spaces equipped with two
well-defined computable operations is II3. To finish the proof of Proposition 7.1.30, recall that the
group axioms are closed properties and thus can be checked only for special points (set e = x - 7 *
for the first found ). The II3-completeness is Exercise 7.1.44. O

Theorem 7.1.34 (Melnikov [373]). (1) For a computable Polish compact group, being con-
nected is I19.

(2) The index set of profinite Polish groups is 113-complete.

Proof. Part (1) follows from Lemma 4.2.77 with Z = §’ because every compact computable Polish
space is '-computably compact. This upper bound is optimal; see Exercise 7.1.45.

We prove (2). We establish that the index set is I13; the II-completeness is Exercise 7.1.45. It is
well-known that a compact Polish group is profinite iff its neutral element 15 has a basis consisting
of normal clopen subgroups. Recall that a closed subgroup of a profinite group is itself profinite.

Consider the following procedure. Let Dy = G. At stage s > 0, let Dy be the first found clopen
normal subgroup such that the diameter of Dy is at most 27° and Dy, € D,_; (if such D, exists
at all). To find a clopen subgroup, we use ¥’ to find a clopen split that works (Lemma 4.2.77).
For that, search for finitely many closed balls witnessing that the group is disconnected, where the
union of the first k£ of them together forms a normal subgroup. Since all involved sets are clopen,
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it suffices to check the inclusion, the diameter, normality, and the group operations only for special
points. (Compare this to the proof of Theorem 4.2.107.)

It follows that @’ is capable of uniformly finding such a Dy (if it exists), and thus Vs(Dj is defined)
is a [13-statement equivalent to profiniteness for a compact group G. O

Remark 7.1.35. The proof of 1. above of course also gives that being a connected compact space
is arithmetical (I13).

Switching to computably compact presentations

In Part 1 of the book, we saw that computably compact presentations are more suited for com-
pact Polish spaces than other effective presentations. Recall also that one of the many equivalent
formulations of computable compactness involved covers by basic closed balls (Exercise 4.2.18).

Definition 7.1.36. A computably compact presentation is given by:

1. A computable Polish presentation M.

2. A (closed) modulus of compactness which, given n, outputs a finite tuple of closed basic balls
of radii < 27 that cover the space.

Every computable Polish space that is also compact is @f’-compact. Also, being compact for
a computable Polish space is arithmetical by Corollary 7.1.27. In view of the results established
so far in this section (e.g., Proposition 7.1.30), if we only aim for arithmetical estimates and are
only interested in compact objects, it makes sense to use computably compact presentations. It is
immediate that some complexity estimates become one level lower if we use computably compact
presentations; e.g., compare Corollaries 7.1.22 and 7.1.27.

It seems that switching between computable Polish and computably compact presentations usu-
ally does not make any difference, unless we worry about sharp estimates. But we also recognise that
pathologies can be rather complex in general. The following question seems to be of considerable
technical interest.

Question 7.1.37. What is the complezity of the index set of computable Polish (compact) spaces
that admit a computably compact presentation?

Index sets of computably compact groups

Fix the enumeration of all (partial) computably compact groups (G;)ien, where each computable
Polish domain additionally comes with a (potential) computable modulus of continuity. In exchange,
by Corollary 4.2.46, we can drop the (name for the potential) inverse operation and keep only the
product.

Proposition 7.1.38. With respect to computably compact presentations, the index set of compact
groups is 119.

Proof. This is a routine modification of Proposition 7.1.30. We only need to check the totality
of the operation; compactness is automatic provided the II{ condition 2. of Definition 7.1.36 is
satisfied. (We of course get I1-completeness since Tot can be easily coded into the index set.) [

The estimates for connectedness and being profinite in Theorem 7.1.34 become I19 and II3,
respectively.
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Proposition 7.1.39.

1. For a computably compact Polish group, being connected is 119.

2. The index set of profinite Polish groups with respect to computably compact presentations is
I19-complete.

We leave the proof of Propositions 7.1.38 and 7.1.39 to Exercise 7.1.46. We illustrate the use of
compact presentations on the index set of solenoid groups.

Solenoid groups

Recall that a class is arithmetical if both the recognition and the isomorphism problems are arith-
metical for the class. Also, a solenoid group is the Pontryagin dual of a subgroup of (Q, +).

Remark 7.1.40. Why are such groups called “solenoids”? Every H < Q can be represented as
the direct limit of a sequence

L —mg L —my L=y Lo =g .-y
where Z —,, Z maps Z isomorphically onto m;Z < Z. Under Pontryagin duality, His isomorphic
to

Ty Ty Ty T g ...,

where each T «,,, T is just m;z <« x. (These further properties of Pontryagin duality will be
discussed in Section 9.5.1; in this informal explanation we take them for granted.) This map
T «,,, T can be visualised as T being “wrapped around” T exactly m; times. As we zoom in, we
see more and more copies of the unit circle wrapped around the first copy. This perhaps explains
the name.

The theorem below was not stated explicitly in [341], but it follows easily from the methods
developed in this paper (cf. [341, Corollary 1.4(3)]).

Theorem 7.1.41. Solenoid groups form an arithmetical class.

Proof. We use computably compact presentations. We will prove that, with respect to computably
compact presentations, the recognition problem is II3-complete and the (topological) isomorphism
problem is ¥3-complete.

Propositions 7.1.38 and 7.1.39 guarantee that being a connected compact group is an arithmeti-
cal property (I19), and being abelian is II{ and can be checked only for special points. It is also ¢
to tell whether the group is non-zero. (If it is zero, we are done.) Given G that is already known
to be non-zero and connected compact abelian, apply Theorem 5.2.21 (and Theorem 5.2.24) and
produce a c.e. presentation of its discrete Pontryagin dual. Since G is non-zero, we can uniformly
pass to its computable presentation using Khisamiev’s Theorem 5.1.41. Let H be the resulting
computable presentation of the dual. By Proposition 7.1.8, it is II9 to tell whether H has rank 1.
This makes the index set of solenoid groups I19; and indeed, it is evidently I19-complete.

Given two groups, use the procedure described above to pass to their duals. (The case when at
least one of them is the zero-group is trivial and can be considered separately.) By Proposition 7.1.8,
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expressing that the duals are isomorphic is 39. Further, the ¥3-completeness for discrete groups
established in Proposition 7.1.8 is witnessed by rank 1 groups, which of course come with a basis
(being the element 1 € Q, for example). Proposition 5.2.2 is uniform provided the discrete torsion-
free groups are equipped with computable bases, as explained in Remark 5.2.8. This gives the
¥9-completeness for their solenoid duals. O

Note that using computable Polish presentations would give estimates with one extra quantifier,
but the estimates will of course remain arithmetical, and the result would still hold. The respective
index sets must also be complete at their respective levels, but this we won’t verify.

Exercises

Exercise® 7.1.42. Let P be a II$-predicate and identify w® with its standard computable pre-
sentation by strings under the usual ultra-metric. Build a uniform sequence (C;);en of c.e. closed
subsets of w* such that C; is compact iff P(7) holds.

Exercise® 7.1.43 (J. Miller (unpublished); see [139]). Let A, B < N be disjoint c.e. sets. There
are isometric computably compact computable metric spaces L, R such that any representation of
an isometry computes a set S such that A € S and Bn S = (.

Exercise® 7.1.44. Prove that the index set of compact Polish groups is I13-complete.

Exercise® 7.1.45. (1) Let P be a II9-predicate. Prove that there is a uniformly computable
sequence of compact Polish groups (H;);en so that

P(i) if and only if H; is connected.

In other words, being connected is I19-complete within compact groups.
(2) Tterate the strategy from (1) above to prove that the index set of profinite groups is 13-
complete within compact groups.

Exercise® 7.1.46. Prove Propositions 7.1.38 and 7.1.39.

Exercise 7.1.47 (Cenzer and Remmel [87]). Show that the index set of the computably bounded
19 classes in w* is X3-complete, and the index set of the computably bounded II{ classes which
have infinitely many computable members is I1-complete.

Exercise 7.1.48 (Cenzer and Remmel [88]). Prove the following results about (Type II) com-
putable functions [0,1] — [0, 1]:
1. The index set of functions having a computable derivative is X3-complete.
2. The index set of functions having a continuous derivative is I13-complete?.
3*. The index set of functions having a continuous derivative but no computable derivative is

I13-complete.

Exercise* 7.1.49 (Qian [437]). Show that the index set of computable Banach spaces with com-
putable Schauder bases (Exercise 2.4.41) is $3-complete.

4We remark that Westrick [508] extended this result to establish sharp index set estimates for functions at arbitrary
(computable) transfinite levels of the Kechris-Woodin differentiability hierarchy of functions.
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Exercise* 7.1.50 (Xie [511]). Let X be a Banach space and (z;);en be a Schauder basis of X
(Exercise 2.4.41), with {S;};en its associated sequence of projections. The basis constant of (x;),
denoted be((x;)), is the value sup, |S;||. The basis constant of the space X, denoted be(X), is the
infimum of basis constants across all of its bases. A Banach space X is said to have the local basis
structure (LBS) if there is some constant K € R such that for any finite-dimensional subspace
B c X, there exists a finite-dimensional space L € X such that B € L and be(L) < K. Show that
the index-set of computable Banach spaces with the local basis structure is $3-complete.

Exercise** 7.1.51 (Becher and Slaman [45]). Show that the set of indices for computable real
numbers which are normal to at least one base is %$-complete®.

Exercise** 7.1.52 (Harrison-Trainor and Melnikov [241]). 1. Show that every compact 2-surface
is AYs-categorical (with respect to computable Polish presentations) up to homeomorphism®.

2. Use the classification of all compact 2-surfaces to conclude that the index set and the home-
omorphism problem of closed surfaces are arithmetical.

7.1.3 Index sets and Friedberg enumerations

Before we move on to more technical results, we also mention one elementary application of index
sets to Friedberg enumerations. Recall that a Friedberg enumeration of a class K is a computable
listing {V, : e € N} of all computable structures in K where every isomorphism type occurs precisely
once. Whilst we treat this concept in more detail in Chapter 9, we are in a position to show that
certain classes do not have Friedberg enumerations based on index sets.

The following observation is (essentially) due to Goncharov and Knight [213], but in this partic-
ular form was first stated in [330]. In the fact below, K can be either a class of algebraic structures
or of topological objects.

Fact 7.1.53. Fiz a class K and a positive n € N. Suppose I(K) is A% and I(K) is %0 -complete.
Then K does not admit a Friedberg enumeration.

Proof. Assume (U;);en is a Friedberg enumeration of isomorphism types in K. Let (M,).en be the
uniform enumeration of all structures in the language of K given by the universal Turing machine.
There is a computable f such that U; = My ;). For every m,n € I(K), My, # M, iff

3i # j (n, f(i)) € E(K) A (m, f(j)) € E(K),
which is 3. This makes F(K) AY, contrary to the hypothesis. O

Of course, ¥2-completeness in the fact above can be replaced with “X? and not A%”. The
following is a consequence of Proposition 7.1.8 and Fact 7.1.53.

Corollary 7.1.54 (Lange, Miller, Steiner [330]). There is no Friedberg enumeration of all additive
subgroups of Q up to isomorphism.

The index set calculations in the proof of Theorem 7.1.41 imply:

5A real number is said to be normal to base b if, for every positive integer n, all possible strings of digits in base
b of length n have asymptotic density b~ ™. That is, all strings of digits occur with equal likelihood in the expansion
of the real number to base b. We omit the formal definitions since they are irrelevant to the content of the book.
61t is perhaps not surprising that we do not know at present whether 26 is optimal.
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Corollary 7.1.55. There is no Friedberg enumeration of computably compact solenoid groups, up
to topological group isomorphism.

But of course, the sufficient uniformity in Effective Pontryagin Duality makes the corollaries above
equivalent. Thus, using the proof of Theorem 7.1.41 was not really necessary.

Exercises

Exercise® 7.1.56. Prove that there is no Friedberg enumeration of all computably compact spaces
up to isometry. (Give a direct diagonalisation argument.)

Exercise® 7.1.57. Prove that there is no Friedberg enumeration of all computably compact spaces
up to computable homeomorphism.

Exercise® 7.1.58. A finite presentation (f.p.) of a group is a tuple

By ey T Ty ey Ty

where x1, ..., x,;, are generators and r1, . .., T, are relations upon the generators. A group is finitely
presented (f.p.) if it has a finite presentation. Let (F});en be the uniform enumeration of all finite
presentations given by their strong indices (i.e., as pairs of tuples). The isomorphism problem for
f.p. groups is the collection {(4, j) : F; = F;}, where F; = F; means that the groups represented by
F; and F}; are isomorphic. Take for granted that isomorphism of two finitely presented groups is an
undecidable problem (Adyan [3, 4] and Rabin [438]).

(i) Show that the isomorphism problem for f.p. groups is 2.

(ii) Conclude that there is no c.e. list of finite presentations (given by their strong indices) in
which every f.p. group is mentioned exactly once, up to isomorphism.
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7.2 Completely decomposable groups

In this section, we examine an important illustrative class of torsion-free abelian groups in much
detail. Elements of the theory of computable torsion-free abelian groups were presented in Section
5.1. There, we proved Nurtazin’s Theorem 5.1.43, which classified the computably categorical
torsion-free abelian groups exactly as those having finite rank. In the present section, we will
concentrate on a class of torsion-free abelian groups which are best understood classically beyond
the rank one groups. For an important subclass of homogeneous completely decomposable groups,
we will be able to completely describe the A%-categorical members of the class, for all n. The
techniques that we will accumulate in this section will be used in the next section to produce
estimates for index sets.
In this section all our groups are discrete and at most countable.

Definition 7.2.1. A torsion-free abelian group is completely decomposable (c.d.) if it is iso-

morphic to

D Hi,

iel
where H; is a subgroup of the rationals Q under addition, for every ¢ € I. If all the elementary
summands H; are pairwise isomorphic, we say that the group is also homogeneous.

The subgroups H; in @), ; H; will be referred to as elementary (direct) components and elemen-
tary (direct) summands of the group. Algebraic properties of completely decomposable groups are
quite well studied, especially in the countable case; see Fuchs [195]. Baer [26] was the first to sys-
tematically study this class of groups. He showed that, up to isomorphism, a countable completely
decomposable group @),  H; is fully determined by the isomorphism types of the elementary sum-
mands H;, and that the complete decomposition is unique up to a permutation of the summands.
Thus, the homogeneous case is completely described by the type (see Theorem 5.1.15) and the rank
of the group. In this section we prove:

Theorem 7.2.2 (Downey and Melnikov [136]). Every computable homogeneous completely
decomposable group is AY-categorical.

We also completely describe AY-categoricity in the class (Theorem 7.2.25). With enough ma-
chinery accumulated, we will prove the main result of this section:

Theorem 7.2.3 (Downey and Melnikov [137]). FEvery computable completely decomposable
group s Ag-categom'cal.

As we will see, the theorem and its proof will allow us to give arithmetical estimates for the
index set and the isomorphism problem of completely decomposable groups. To understand the
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effective categoricity of these groups, we will need both new uses of computability theory in the
study of torsion-free abelian groups, and some new algebraic structure theory, as described in the
next subsection.

7.2.1 Background, notation, and conventions

We refer the reader to Section 5.1 for the basic definitions of abelian group theory. We recall some
of these definitions here. Also, we will slightly adjust our notation (e.g., Definition 7.2.5).

Recall that we write k|g in G (or simply k|g if it is clear from the context which group is
considered) and say that k divides g in G if there exists an element h € G for which kh = g, and
we say that h is a k-root of g. (The latter term is not standard in abelian group theory, but it will
be convenient to us.) Clearly, k|g is simply an abbreviation for the formula

@r)(h+h+...+h =g)

h repeated k times

in the signature of abelian groups. If the group G is torsion-free then every g € G' has at most one
k-root, for every k # 0.

Definition 7.2.4. Suppose G is a torsion-free abelian group, g is an element of G, and n|g some
m

n. If r = 2 then we denote by rg the (unique) element mh such that nh = g.
The definition below already appeared in §5.1.1, but we state it again here.

Definition 7.2.5 (Pure subgroups and [X]). A subgroup A of G is called pure if for every a € A
and every n, nla in G implies n|a in A. For any subset X of G we denote by [X] the least pure
subgroup of G that contains X to avoid conflict of notation (the pure closure of X in G).

The standard notations for the least pure subgroup of G containing X are (X )¢ and (X)* (when
G is clear from the context); we used this notation in §5.1.1. However, in this section we will stick
with [X] which resembles the notation for the localisation of an integral domain. The reason we
adjust our notation is to avoid conflict with the following convenient notation.

Notation 7.2.6. Let G be an abelian group and A € G. Suppose {r, : a € A} is a set of (rational)
indices. If we write )} 4 rqoa then we assume that roa # 0 for at most finitely many a € A, and
every element r,a is well-defined in G, according to Definition 7.2.4. We will use this convention
without explicit reference to it. Now suppose R < Q, and A € G. We denote by (A)r the subgroup
of G (if this subgroup exists) generated by A € G over R < @, i.e.

(A)r ={) rea:rq € R}

acA
Finally, for R < @ and a € G, we denote by Ra the subgroup ({a})r of G.

Let R < Q. If a set A < G is linearly independent then every element of (A)gr has the unique
presentation ), _, rqa. Therefore, (A)gr = @, 4 Ra for every linearly independent set A.
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Computable homogeneous c.d. groups

We fix a computable presentation of the rationals (Q, +, x). This structure is computably categor-
ical, and thus we do not need to be more specific in our description of this copy. Recall Theorem
5.1.16:

Theorem 7.2.7 (Mal’cev [346]). Let G be a torsion-free abelian group of rank 1. Then the following
are equivalent:

(1) The group G has a computable presentation.

(2) The type t(Q) is c.e.

(8) The group G is isomorphic to a c.e. additive subgroup R of (Q,+). Furthermore, we may
assume that 1 € R.

The (1) < (2) part of Theorem 7.2.7 can be easily generalised to the class of homogeneous
completely decomposable groups:

Proposition 7.2.8. A homogeneous completely decomposable group G has a computable presenta-

tion iff t(G) is c.e..

Computable modules and categoricity. The definition of Gp.

We omit the standard definition of a module over a ring, but we recall that this is essentially a
vector space, except the ”scalars” range over a ring rather than over a field. We say that C' is a
computable presentation of a module M over a fixed computable presentation of a ring R if C'is a
computable presentation of M as an abelian group and the operation - : R x C' — C' is computable.

Fix a set of primes P. Let Q) be the subgroup of the rationals (Q, +) generated by the set
of fractions {pik :keNandpe P}, and let Gp = @,y QP), i.e., the direct sum of w copies of

Q). Of course, Q) can also be viewed as a ring. The proof of the following two facts are left as
exercises.

Proposition 7.2.9. The following are equivalent:

1. P s c.e.
2. Q) is a c.e. subring of a computable presentation of (Q, +, x).
3. Gp is computably presentable as an abelian group.

4. Gp is computably presentable as a module over Q(F).

Lemma 7.2.10. For a c.e. set of primes P, the following are equivalent:

1. Every computable presentation of the group Gp has a X0 basis which generates this presen-
tation as a module over Q(F).

2. The group Gp is Al -categorical.
3. The Q) -module Gp is AY-categorical.

Thus, from the computability-theoretic point of view, Gp may be alternatively considered as
an abelian group or a Q)-module.
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Exercises

Exercise® 7.2.11. Prove Proposition 7.2.9 and Lemma 7.2.10.

7.2.2 S-independence and excellent S-bases

The notion of p-independence (for a single prime p) is a fundamental concept in abelian group
theory (see [194], Chapter VI). We introduce a certain generalisation of p-independence to sets of
primes. The notion of S-independence below can also be viewed as a restriction of the notion of
independence used in Pontryagin’s freeness criterion (it can be found in [192]). It states that a
countable abelian group is free if, and only if, it is the union of a countable chain of pure free
groups of finite rank. To obtain Pontryagin’s notion, just let S in Definition 7.2.12 below be the
set of all primes.

Definition 7.2.12 (S-independence and excellent bases). Let S be a set of primes, and let
G be a torsion-free abelian group. If S # ¢J, then we say that elements by,...,b; of G are
S-independent in G if

P 2 m;b;

ie{1,....k}
in G implies
/\ plm;,
ie{1,....k}
for all integers mq,...,my and any p € S. If S = J, then we say that elements are S-

independent if they are simply linearly independent. Every maximal S-independent subset of
G is said to be an S-basis of G. We say that an S-basis is excellent if it is a maximal linearly
independent subset of G.

It is easy to check that S-independence in general implies linear independence. However, an
S-basis does not have to be excellent; we leave this to Exercise 7.2.24.

Since “p-independence” and “P-independence” sound exactly the same, and since P can be
confused with the set of all primes (rather than interpreted as some set of primes), we chose to use
S instead of P in the definition above. Another reason is given in Notation 7.2.13 below.

Notation 7.2.13. In this section P stands for a set of primes (which is not necessarily the set of
all prims) and P for the complement of P within the set of all primes:

P = {p:pis prime and p ¢ P}.

The set P will typically serve as the set S in “S-independence” throughout the rest of the chapter.
We also will often consider the group

GP = @ @(P)a

el

where P-independence will play a special role.
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Lemma 7.2.14. Fiz B < Gp = @, QP). Then B is an excellent P-basis of Gp iff G =
@beB Q(P)b'

Before we prove the lemma, we discuss the extreme cases. Let P be the set of all primes.
Then P = &. Recall that @-independence is simply linear independence, and Gp =~ @,y Q. It
is well-known that every maximal linearly independent set generates the vector space over Q. If
P = & then Gy = @,y Z is the free abelian group of the rank w. As a consequence of the lemma,
every excellent P-basis of G generates it as a free abelian group; this is a reformulation of the
Pontryagin’s criterion that we mentioned above.

Proof. (=). We assume that P # J throughout, and we write G for Gp. Let B be an excellent
P-basis of G = Gp. Suppose g € G. By our assumption, B is a basis of G. Therefore, there exist
integers m and my, b € B, such that mg = >}, myb. Suppose m = pm/ for some p € P. By Definition
7.2.12, p|my, for all b € B. Therefore, without loss of generality, we can assume that (m,p) = 1, for
every p € P. By the definition of G, we have:

m
g=> Ebb € (B)gr < G.
b

The set B is linearly independent, therefore (B)gr) = @yep Q)b (see the discussion after Nota-
tion 7.2.6). We have g € (B)gwr) = G for every g € G. Thus, G = (B)g~).

(<). Let G = @3 QDb for B < G, and ph = 3, _ mpb, where my, is integer for every b € B,
and p € P. We have h € Gp and thus h = Db ho, where hy € QWPp for each b e B (recall that
hy = 0 for a.e. b).

Therefore ph = p> .5 ho = D pe Phe = D, mpb, and phy = myb for every b (by the uniqueness
of the decomposition of an element). Each elementary direct component of G in the considered
decomposition has the form Q)b. In other words, the element b plays the role of 1 in the cor-
responding Q)-component of this decomposition. Now recall that p ¢ P. Thus, m; # 0 implies
p|my, for every b, by the definition of QWP O

In later proofs we will have to approximate an excellent basis stage-by-stage, using a certain
oracle. Recall that not every maximal P-independent set is an excellent basis of Gp. Therefore, we
need to show that, for a given finite P-independent subset B of Gp and an element g € G p, there
exists a finite extension B* of B such that B* is P-independent and the element g is contained in
the QP)-span of B*.

Proposition 7.2.15. Suppose B < Gp is a finite P-independent subset of Gp. For every g € Gp
there exists a finite P-independent set B* € Gp such that B < B* and g € (B*)q) .

Proof. Pick {e; : i € N} € Gp such that Gp = @,y QP)e;. Let {eq,e1,...,e,} be such that both
B = {bo,...,b} and g are contained in ({eg,e1,...,en})gr. We may assume k < n. We will need
the following well-known generalisation of Rado’s Lemma 5.1.4.

.....
.....

,,,,,,,,,,

(2) ({7‘0007 . ,chk})Q(P) = (B)@(P),
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Proof. Tt is a special case of a well-known fact ([329], Theorem 7.8) which holds in general for
every finitely generated module over a principal ideal domain (note that Q) is a principal ideal
domain). 0

We show that if B is P-independent (and not merely linearly independent) then we can set
B* ={bg,...,bp} U {Ckt1,---,Cn}, where C = {cp,...,c,} is the set from Lemma 7.2.16. Suppose

pl > mibi+ ), mic

0<i<k k+1<isn

for a prime p € P. We have
@ QPe; = @ QPe; @ @ QP

1€{0,...,n} 1<i<k k+1<i<n
and X3, <o nibi € Dy QP)¢;. By the purity of direct components, we have

D) Z1<i<k n;b; within ®1<i<k QB¢

and
Pl D 1<i<n MiCi Within By cicn, QWP)¢;.
But the former implies p|n; for all 1 < i < k by our assumption, and the latter implies p|n; for all

k +1 <i < n by the choice of C' and Lemma 7.2.14.
The set B* is actually an excellent P-basis of @ie{o,...,n} QPe;, since the cardinality of B* is

n + 1, which is exactly the rank of @ie{o,...,n} QWe;. Therefore, the set

B* ={by,...,bp} U {ckt1,---,Cn}
is a P-independent set with the needed properties. O

Suppose G is a torsion-free abelian group, and a,b € G. Recall that x(a) < x(b) iff h;(a) < h;(b)
for all 4. In other words, p¥|a implies p¥|b , for all k € N and every prime p.

Definition 7.2.17. Let G be a torsion-free abelian group. For a given characteristic «, let G[a] =
lge G:a<x(9)}

We have h;(a) = h;(—a) and inf(h;(a), hi(b)) < h;(a + b), for all . Furthermore, x(0) > «, for
every characteristic «. Therefore, G[a] is a subgroup of G.

Notation 7.2.18. Let o = (g, aa, . . .). The subgroup of (Q, +) generated by elements of the form
1/pf where & < ay, will be denoted Q(«).

Recall that the type is an equivalence class of characteristics. Thus, the type of H < Q is simply
the type of any nonzero element of H. We are ready to state and prove the main result of this
subsection. Recall Notation 7.2.13.

Theorem 7.2.19. Let G = @,y H, where H < Q, t(H) = f and a = (o, a1, ...) is of type f.
Then Gla] = Gp, where P = {p; : h; = o in «}. Furthermore, if B is an excellent P-basis of G[a],
then G is generated by B over Q(«).
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Proof. We prove that G[a] =~ Gp.

Let g; be the element of the i-th presentation of H in the decomposition G = @, H such that
X(gi) = a. The collection {g; : i € N} is a basis of G. Therefore, {g; : i € N} is a basis of G[a].
By the definition of P, ({g; : i € N})gr) is a subgroup of G[a]. Furthermore, since {g; : i € N} is
linearly independent,

({gz‘ 11 € N})Q(P) = @Q(P)gi.
€N
Thus, we have
PQPyg; < g[al.
€N

We are going to show that every element g € G[a] is generated by {g; : i € N} over Q). This
will imply G[a] = Gp.

Pick any nonzero g € G[a]. The set {g; : i € N} is a basis of G[a], therefore ng = >, m;g; for
some integers n and m;, i € N. Since direct components are pure, n| ..., m;g; implies n|m;g; for

’
every i € N, and g = >, ; " g;. After reductions we have g = >, ; %’gi, where ZL’ is irreducible.

It suffices to show that Zl—; e Q).

Assume there is i such that % ¢ QP). Equivalently, for some pj € P, we have m} # 0 and
n; = penj, where n} is an integer (recall that = is irreducible).
We have hk(%gl) = hk(%g—k) < hi(2), since mj is not divisible by py. But hip(2) <

hi(g;) (recall that hy(g;) is finite). It is straightforward from the definitions of hy that hi(g) =

min{hy(>tg;) : i € I,m; # 0}, since each g; belongs to a separate direct component of G. Therefore

hi(g) < hk(:—/@gl) < hi(gi). But x(g;) = a. Thus, x(g9) * « and g ¢ G[a], and this contradicts our
choice of g. Therefore, Gla] = Gp.

We show that if B is an excellent P-basis of G[a], then G = (B)g(a) (recall Notation 7.2.6).

For every b € B consider the minimal pure subgroup [b] which contains b (recall Definition
7.2.5). Consider

H(B)= Y [b] =G.
beB
In fact, H(B) = @, z[b], because B is linearly independent within G[a] and, therefore, within G
as well.
By our choice, b € G[a]. Thus, x(b) = a within G. We show that in fact x(b) = . Assume
x(b) > a. We have b = pa for some a € G[a] and p € P. But B is P-independent. This contradicts
the fact that p|1-b and 1 is evidently not divisible by p. Therefore, we have

and thus H(B) = (B)g(a)- It remains to prove that G < H(B).

Pick any nonzero g € G. There exist integers m and n such that (m,n) = 1 and x(%g) = . To
see this we use the fact that x(g) € f. It is enough to make only finitely many changes to x(g) to
make it equivalent to .
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Equivalently, g € G[a]. Applying Lemma 7.2.14, we obtain

m
—g = Z .
n

beB,r,eQ(P)

By our assumption, x(b) = x(%g) = «, for every b € B. Obviously, m|™g in G. Therefore, by the
definition of o and B, we have m|b in Q(«a)b. Thus, there exist z; € [b] = Q(a)b such that maxy, = b.

We can set
o= 3 nnas,
beB

where nryxp € [b]. This shows G = (B)g(a)- O

7.2.3 Aj-categoricity and the proof of Theorem 7.2.2

Recall that the main result of this section, Theorem 7.2.2, states that every computably presentable
homogeneous completely decomposable group is A3-categorical. The proof of the Theorem 7.2.2 is
based on the lemma below.

Lemma 7.2.20. Let G = @,y H, where H < Q, the type t(H) is £, and a = (ap,a1,...) is a
characteristic of type £. Let Gy and G be computable presentations of G. Suppose that both G1[a]
and Ga[a] have X2 excellent P-bases. Then there exists an A% isomorphism from G1 onto Gs.

We first prove Theorem 7.2.2, and then prove Lemma 7.2.20. We need to show that a given
homogeneous completely decomposable group satisfies the hypothesis of Lemma 7.2.20 with n = 3.

Proof of Theorem 7.2.2. Let G be a computable presentation of G =~ @, H, where H < Q. Let
a be a characteristic of type t(H) and

P ={py:ar = in a}.

By Theorem 7.2.19 and Lemma 7.2.20, it suffices to construct a excellent P-basis of G[a] which is
9.

We are building C' = | J,, Cr,. Assume that we are given C,,_;. At step n of the procedure, we
do the following:

1. Pick the n-th element g, of G[a].

2. Find an extension C,, of C,,_1 in G[«] such that:

(a) C, is a finite P-independent set, and

(b) Cp, U {gn} is linearly dependent.

Let G =@

have

.e1 Rei, where x(e;) = v and R = H. Observe that at stage n of the procedure we

gn U Cn1 < ({eo, ... ex})oe,

for some k. By Proposition 7.2.15, the needed extension denoted by C,, can be found. It suffices to
check that the construction is effective relative to 0”.
By Theorem 7.2.19, we have G[a] =~ Gp, where P = {p : p*|h} is a IIJ set of primes.

Claim 7.2.21. G[a] is a I13-subgroup of G.
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Proof. Pick any h € G with x(h) = a. By its definition, for every g € G, the property x(g) > « is
equivalent to
Vp prime Yk e N((3z)p*z = h — (Jy)p*y = g).

Therefore, the group G[a] is a I19-subgroup of G. O

Claim 7.2.22. There is a 0”-computable procedure which decides if a given finite set B < G[a] is
P-independent, uniformly in the index of B.

Proof. Note that in general P € I19. By Claim 7.2.21, the group G[a] is a I13-subgroup of G. Thus,
the condition “B is a P-independent set in G[a]” seems to be merely I19:

vVm € Z=<% Vp prime (lpgéP/\ (3z) (meG[a] A DT = Zmﬂ))] —>/\p|mb>.
b

beB

The idea is to substitute the X3 condition (3z)(z € Gla] A pr = >, 5 mpb) by an equivalent X9
one, using a non-uniform parameter ¢ € G such that x(c) = a. We are going to show that for every

py ¢ P, the property
(3x) (x € Gla] A pyx = Z mbb>

beB
is equivalent to
(Fk)(Fy € G) (av <knply=>] mbb> :
beB

where a, is the v-th component of « corresponding to p, and
ay <k e —(a, =k) = -3¢ =c).

Suppose there is © € G[a] such that p,x = >,z mpb. Since h,(x) > a,, we have pJvy = x and
p2v Ty = p,x, for some y € G, so we can set k = «, + 1. For the converse, suppose there exist
such k and y. Then p,x = pFy for x = pF~'y. We have k > a,, and therefore (k — 1) > a,,. But
hy(z) = (k—1) because x = p*~1y is divisible by k — 1, and thus h,(z) > «,. The characteristic of

x differs from the characteristic of y only at the position for the prime p,. Thus, for every w # v,

ho () = hw(pfy) = hy (Z mbb> = Oy,

beB
since ), 5 mpb € Gla]. Therefore, x(z) = a and z € G[a]. O
By Claim 7.2.21 and Claim 7.2.22, the procedure is computable relative to 0”. O

Proof of Lemma 7.2.20. Recall that G; and G5 are computable presentations of G such that both
Gi[a] and Ga[a] have X9 excellent P-bases. We need to show that there exists an A? isomorphism
from G onto Go. Let B; and By be excellent P-bases of G1[a] and Go[a], respectively.

Observe that the group Q(«) is isomorphic to a c.e. additive subgroup R of (Q, +, x). Further-
more, we may assume that 1 € R. (Pick h with x(h) = « non-uniformly, and consider [h].) By
Theorem 7.2.19, we have

Gi= @ Rb=Gy= @ RY.

be By b’eBa
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To build a A? isomorphism from G to Gy first define the map from B; onto Bs using a standard
back-and-forth argument. Then extend it to the whole G; using the fact that r - b can be found
effectively and uniformly, for every r € R and b € B;. O

Exercises

Exercise* 7.2.23 (Bazhenov, Goncharov, and Melnikov [33]). Let H be a decidable homogeneous
completely decomposable group that is not a divisible group. Show that H admits a computable
maximal linearly independent set.

Exercise® 7.2.24. Show that, for S # ¢, a maximal S-independent set does not have to be
maximal linearly independent. (Hint: For example, Lemma 35.1 in [194] implies that the free
abelian group of rank w contains a {p}-basis which is not excellent.)

7.2.4 Semi-low sets, and Aj-categoricity

In this subsection we give a complete and detailed proof of Theorem 7.2.25 that describes AY-
categoricity of homogeneous c.d. groups in terms of semi-low sets. This result will not be used
in the sequel. However, this is the only satisfactory description of AS-categoricity in a non-trivial
natural class that we are aware of. Even AJ-categorical equivalence structures do not seem to
possess such a description, as we will briefly discuss in Chapter 9. Thus, the result presented in
this section is rather unusual and surprising.

A set A is semi-low if the set

Hy={e:W.nA#J}={e: W, & A}

is computable relative to . We have already met semi-low sets in Exercises 3.1.23, 3.1.24,
and 3.1.25, and in §3.1.5 we saw that semilowness can be used to imitate lowness in some con-
structions.

This notion arose in the understanding of the automorphisms of the lattice of c.e. sets [477]. It
is quite remarkable that this notion captures A9-categoricity of a homogeneous c.d. group, as we
show next. As before, Gp stands for the direct sum of infinitely many copies of the localisation of
the integers by a set of primes P.

Theorem 7.2.25 (Downey and Melnikov [136]). A computable homogeneous completely de-
composable group A of rank w is AY-categorical iff A is isomorphic to

GP = @ Q(P)a

iel
where P is a c.e. set of primes such that
P = {p:p prime and p ¢ P}

is semi-low.
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Before we prove the theorem, we discuss its corollaries. Combined with Lemma 7.2.10, the
theorem above gives:

Corollary 7.2.26. For a c.e. set P, the following are equivalent:

1. Gp has a 23 excellent ﬁ—basis;

2. Gp has a ¥9-basis as a free Q) -module” ;

3. Gp is AY-categorical;

4. P is semi-low.

In particular, since every low set is semi-low (Exercise 3.1.23), we have:
Corollary 7.2.27. If a c.e. set of primes P is low then Gp is AY-categorical.

In particular, the free abelian group of rank w is AY-categorical. It is known that every non-low
c.e. degree contains a c.e. set whose complement is not semi-low; see Exercise 3.1.25. Thus, we
conclude that the upper bound n = 3 for A-categorcity of homogeneous c.d. groups established in
Theorem 7.2.2 cannot be improved in general.

Corollary 7.2.28. There exists a c.e. set of primes P so that the homogeneous c.d. group Gp
is not AY-categorical. Indeed, any non-low c.e. degree contains a c.e. set of primes P with this

property.

In Chapter 10 we will study a “Type II” version of AY-categoricity, relative AY-categoricity. A
computable structure H is relatively AY-categorical if every X-computable copy of H is isomorphic
to H via an X’-computable isomorphism. For the class of homogeneous completely decomposable
groups, this notion corresponds exactly to Gp having a computable sets of primes P; this is Exer-
cise 10.1.94. It follows from Theorem 3.1.1 that relative and “plain” AY-categoricity differ for the
class of homogeneous completely decomposable groups.

Proof of Theorem 7.2.25 and computable settling time*

The proof of the theorem is not particularly difficult; however, it is relatively long. The proof
can be either skipped or skimmed through. However, the reader should note that the notion of a
computable settling time strongly resembles the notion of a limitwise monotonic function that will
be of central importance in Chapter 9.

Proof of Theorem 7.2.25. The proof is split into several parts. Each part corresponds to a differ-
ent hypothesis on the isomorphism type of G. Different cases will need different techniques and
strategies.

We need the following technical notion:

Definition 7.2.29 (Computable settling time). Let oo = (h;)ien be a sequence where h; € w U {0}
for each 4 (in other words, let a be a characteristic). Also, suppose that there is a non-decreasing
uniform computable approximation h; s such that h; = sup, h; s, for every 4 (in other words, the
characteristic is c.e.).

"That is, {eo,e1,...} so that Gp = ®ien QP)e;.
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We say that « has a computable settling time if there is a (total) computable function ¢ : w — w
such that

" hi iy, if hi is finite,
L 0, otherwise,

for every i. We also say that ¢ is a computable settling time for (h; s); sen.

This is the same as saying that, given i, there exists an effective (and uniform) way to compute
a stage s after which the approximation of h; either does not increase, or increases and tends
to infinity. Note that this is the property of a characteristic, not the property of some specific
computable approximation. Indeed, given an approximation of a having a computable settling
time, we can define a computable settling time for any other computable approximation of a.
Furthermore, as can be easily seen, this is a type-invariant property. Thus, we can also speak of
types having computable settling times.

If a homogeneous completely decomposable group G of type f is computable, then f is c.e. (see
Proposition 7.2.8). Suppose that G is a computable homogeneous completely decomposable group
of type f, and let a = (h;)sen be a characteristic of type f. We consider the cases:

1. The type f of G has no computable settling time. In this case G is not AY-categorical by
Proposition 7.2.32. Observe that if f has no computable settling time then the set Fin(a) =
{i : 0 < h; < 0} has to be infinite (see, e.g., Proposition 7.2.9). Thus, G can not be isomorphic
to Gp, for a set of primes P.

2. The type f of G has a computable settling time, Fin(a) = {i : 0 < h; < o} is empty (finite),
and the set {i : h; = 0} is semi-low. In other words, the group G is isomorphic to Gp with P
semi-low. In this case G is A9-categorical, by Proposition 7.2.30 below.

3. The type f of G has a computable settling time, the set Fin(a) = {i: 0 < h; < o0} is empty
(finite), and the set {i : h; = 0} is not semi-low. Here G is again isomorphic to Gp, but in
this case G is not A9-categorical, by Proposition 7.2.33 below.

4. The type f of G has a computable settling time, and the set Fin(a) = {i : 0 < h; < oo} is
infinite and not semi-low. As in the above case®, G is not A9-categorical, by Proposition 7.2.33.

5. The type f of G has a computable settling time, and the set Fin(a) = {i : 0 < h; < oo} is
infinite and semi-low. The group is not AY-categorical, by Proposition 7.2.34 below.

We first discuss why case (3) and case (4) above can be collapsed into one case. First, define
Inf(a) = {i: hy = o} and V = {i : 0 < h; ;) < %0}, where ¢ is a computable settling time for

a. Note that V is c.e.. Evidently, Inf(a) = Fin(a) v {i : h; = 0} and Fin(a) = Inf(a) n V. We

claim that “Fin(«a) is not semi-low” implies “Inf(a) is not semi-low”. We assume that Inf(a) is
semi-low and observe that

{e: Wen Fin(a) # @} ={e: WenV nInf(a) # T} = {e: Wy n Inf(a) # T}

for a computable function s. Therefore, Hpip(a) <m Hm <r @', as required.

8We distinguish these two cases only because these cases correspond to (algebraically) different types of groups.
We discuss a bit later why these cases are essentially not different.
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Therefore, cases (3) and (4) can be combined into

(3') If f has a computable settling time and Inf(«) is not semi-low, then G is not AJ-categorical.

Now we state and prove the propositions which cover all the cases above.
Recall that, by Proposition 7.2.9, the group Gp has a computable presentation as a group
(module) iff P is c.e..

Proposition 7.2.30. If P is semi-low (and co-c.e.) then Gp is AY-categorical.

Proof. The proof may be viewed as a simpler version of the proof of Theorem 7.2.2. Let G = {go =
0,91,...} be a computable copy of Gp. By Lemma 7.2.10, it is enough to build a X9 excellent
P-basis of G.

We are building C' = | J,, Cr,. Assume that we are given C,_;. At stage n of the construction,
we do the following:

1. Pick the n-th element g, of G.

2. Find an extension C,, of C,,_; in G such that (a) C,, is a finite P-independent set, and (b)
Cy, U {gn} is linearly dependent.

The algebraic part of the verification is the same as in Theorem 7.2.2 (and is actually simpler).
Thus, it is enough to show that (a) in (2) above can be checked effectively and uniformly in ¢f’.
Given a finite set F' of elements of G, define a c.e. set V' consisting of primes which could potentially
witness that F is P-dependent:

Vi={p s 3me 2 O I} myg) n (\/ b Imy)] }-
geF

geF

The c.e. index of V' can be obtained uniformly from the index of F. It can be easily seen from
the definition of P-independence that

V n P = @ iff Fis P-independent.
By our assumption on P, this can be decided effectively in &f'. O

Fix a computable listing {®.(x,y)}een of all partial computable functions of two arguments;
e.g., Pe(z,y) = ve({z,y)), where {z,y) = 2°3¥. We say that lim, ®.(z, s) exists if D.(z,s) | for
every e and s and the sequence (®.(z,s))sen stabilises. In the upcoming propositions we will use
the following:

Notation 7.2.31. Fix an effective listing {¥.(x, s)}cen of total computable functions of two argu-
ments satisfying the property:

(limg @, (x, s) exists) = (lim, Pe(x,s) = limg U, (x, s)),

for every x and e.

Proposition 7.2.32. Suppose that the type f of a computably presentable G = @, H has no
computable settling time. Then G is not AY-categorical.
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Proof of Proposition 7.2.32. In the construction below we identify elements of A and B and the
corresponding elements of w. It suffices to build two computable presentations, A and B, of the
group G = @, H, and meet the requirements:

R : limy U, (be, t) exists = lim; ¥ (x,t) is not an isomorphism from B to A.

The nonzero element b, is a witness for the R, strategy below. More specifically, we enumerate
A=@,yHan, and B = @, Cebe in such a way that the sets {a,, : n € N} and {b. : e € N} are
computable. Let (h;);en be a characteristic of type f. Fix a computable approximation (h; s); sen
of (hi)ien such that (1) h; s < hjs41, and (2) h; = limg h; 4, for every ¢ and s.

We make sure x(ay) = (h;)en, for every n, while the characteristic x(be) = (d(€);)iew Of be will
be merely equivalent to (h;);ew, for each e (thus, C. =~ H, for each e).

The construction is injury-free, and we do not need any priority order on the strategies.

For every e, the strategy for R, defines its own computable function v, which is an attempt to
define a computable settling time for (h;);e.. Since it will be clear from the construction at which
stage 9. is defined (if ever), we omit the extra index t in . and write simply ¢.. We omit the
index ¢ for parameters k., as well. To define v, the strategy uses the sequence (k. ;)ien (to be
defined in the construction).

Strategy for R.: If at a stage s of the construction the parameter k. o is undefined then:

1. Compute ¥.(b.,s). From this moment on, the strategy is always waiting for ¢ > s such
that U, (be,t) # Ue(be, s). As soon as such a t is found, R, initialises by making all its parameters
undefined and also making d(e);; = h;; for every j we have ever seen so far.

2. Let a € A be such that a = W, (b.,s). Find integers ¢, and ¢ such that ca = ), cna,. Let
Jj be a fresh large index such that (1) the prime p; does not occur in the decompositions of the
coefficients ¢ and ¢,, (2) hjs > 0, and (3) d(e); s < hj .

3. Once j is found, declare 1.(j) = s. We may assume that at stage s such an index j can
be found, otherwise we speed up the approximation (h; s); sen during the construction. From this
moment on, make sure d(e),; = h;, — 1 for every t > s, unless the strategy initialises. Set ke o = j,
and proceed.

Now assume that the parameters ke o, . . . ke, have already been defined by the strategy. We also
assume that 1. (i) has already been defined for each ¢ such that k.o < i < maz{ke, : 0 < z < y}.
Assume also that k., was first defined at stage v < s. Then do the following:

I. Wait for a stage t > s (of the construction) such that either (a) h;; > h; s for some i
such that kg < i < maz{ke, : 0 < = < y} and @ ¢ {keo,... key}, or (b) Ry < hyy for
each i € {kco,...kcy}. While waiting, make d(e);, = h;, (r is the current stage of the
construction), where j < r and j ¢ {kco,... key}-

II. If (a) holds for some i, then set k. ,41) = i. If (b) holds, then let i be a fresh large index
such that (1) h;; > 0, and (2) d(e)s,s < hs, and set k. (,41) = i. In this case also define ¥, (j)
to be equal to the current stage for every j such that maz{ke, : 0 < <y} < j < ke (y41)-
Then proceed to III.

1. Set d(e);+ = his — 1 at every later stage ¢, where i = k (,41), unless the strategy initialises.

End of strategy.

Construction. At stage 0, start enumerating A and B as free abelian groups over {a,}nen and
{be}ken, respectively. Initialise R., for all e.
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At stage s, let strategies R., e < s, act according to their instructions. If R. acted at the
previous stage, then return to its instructions at the position it was left at the previous stage.
Make x(an) = (his)ien in A for every n < s, and x(be) = (d(e); s)ien in By for every e < s, by
making a,, and b, divisible by corresponding powers of primes.
End of construction.

Verification. For each e, the following cases are possible:

1. limg U, (b, s) does not exist. In this case the strategy initialises infinitely often. By the way
the strategy is initialised, the characteristic of b, is identical to «.

2. lims U, 5(be, s) exists and is equal to W, (be,!). The domain of 1. should be co-infinite. For if
it was co-finite, then a would have a computable settling time. Therefore, there is a parameter
ke, such that the kéhy position in « is finite. Thus, the strategy ensures lim, ® (b, s) is not
an isomorphism since the characteristic of b, and « differ at the kéhy position. Therefore, «

differs from x(b.) in at most finitely many positions, and the differences are finitary.

In both cases x(be) is equivalent to «. By Theorem 5.1.15, A ~ B ~ G. O

Recall that cases (3) and (4) were both reduced to:

Proposition 7.2.33. Let G be computable homogeneous completely decomposable abelian group of
type £, and suppose a = (supg h; s)ien in £ has computable settling time 1. Furthermore, suppose
Inf(a) is not semi-low. Then G is not AS-categorical.

Proof of Proposition 7.2.33. We build two computable copies of G by stages. Recall that the first

copy A = @, Ha; is a “nice” copy with x(a;) = a, for every i. The second (“bad”) copy B =

DBoen Preny Cenbe,n is built in such a way that x(be ) is equivalent to a, for every e and n.
Recall Notation 7.2.31. It suffices to meet the requirements:

R, : (VYn)lim; U, (be,pn, t) exists = lim; U, (x,t) is not an isomorphism from B to A.

The strategy for R, initially attempts to define a total I such that I'(n) = 0 iff W,, € Inf(«).
If we succeeded, this would imply

HW: {n: Wy nlinf(a) =} ={n: W, £ Inf(a)} <t &,

contradicting the hypothesis. In the following, we write I in place of Inf(a). We split R, into
substrategies R, ,, n € N:

Substrategy Re n. Permanently assign the element b ,, to Re . Suppose that the strategy becomes
active for the first time at stage s of the construction. Then:

1. Start by setting I's(n, s) = 0 (we may suppose that I'j(n, j) = 0, for every j < s). At a later
stage t, we define I';(n,t) to be equal to I't_1(n,t — 1), unless we have a specific instruction
not to do so.

2. Wait for a stage t > s and a number j € Wy, /\I;.
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3. We see p = p; with j € W, \I; at a later stage ¢t. Find a € A; such that a = ¥, (b,,t) (recall
that the enumeration of A is controlled by us). Find integers ¢, and ¢ such that ca = ) ¢panp.
Let k be a fresh large natural number such that (i) the prime p = p,; has power at most [k/2]
in the decompositions of the coefficients ¢ and c,, and (ii) h; ;) < [k/2], where 1 is the
computable settling time. Note that (i) and (#i) imply k is so large that p* does not divide
a = V. (ben,t) within A, unless j € I;. Make b, , divisible by p* within B.

Wait for one of the two things to happen:

I. (I changes first). We see j € I,, at a later stage u > ¢, and W, (ben,v) = V(b p,t) for
each v € (t,u]. We return to (2) with u in place of s.

II. (P, changes first). We see W, (be pn,u) # Ye(ben,t) for u > ¢, and j € Wy, ,\I, for each

€ (t,u]. Then set T, (n,u) = 1 and start waiting for a stage w > u such that j € I,.

If such a stage w is found, then we set I';,(n,w) = 0 and go to (2) with w in place of s
(and we do nothing, otherwise).

End of strategy.

Construction. At stage 0, start enumerating A and B as free abelian groups over {a;};,en and
{be,n}e,neN'
At stage s, let strategies R. ,, e,n < s, act according to their instructions. If R, , acted at the
previous stage, then return to its instruction at the position it was left at the previous stage.
Make x(a;) = a = (hj)jen in A for every i. For every e,n € N, make x,(be,n) = h; in B for
every j except at most one position, according to the instructions of R, ,. We do so by making a;
and b, ,, divisible by corresponding powers of primes.

End of construction.

Verification. By Theorem 5.1.15, A =@ B =~ G. Assume that lim, ¥, (b ., s) exists for every n
(thus, IT does not get visited infinitely often). Given n, consider the cases:

e R., eventually waits forever at substage (2). Then lim; ®(n,s) = 0 and W,, € I. Thus, we
have a correct guess about Hm.

o R, , visits I of (3) from some point on. Then lim, ®(n,s) = 0 and W,, < I, and we again
have a correct guess about Hm.

e R., eventually waits forever at substage (3). Then z., witnesses that lims . s(xen,s) is
not an isomorphism from B to A.

There should be at least one n for which limg ®(n, s) # Hm(n) Therefore, for at least one

n, the strategy R., eventually waits forever at substage (3). Thus, R, is met. O

Proposition 7.2.34. If the type f of a computable homogeneous completely decomposable group
G has a computable settling time, and Fin(a) = {i : 0 < h; < o0} is infinite and semi-low for
a = (a;)ien of type £, then G is not AY-categorical.

Proof of Proposition 7.2.34. Let T' be a computable function such that

Fin(a) n W, = limI'(n, s).
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As in the proof of Proposition 7.2.32, we are building two computable copies,

A= @Han and B = @C’ebe,

neN eeN

of G. We make x(a,) = a and x(b.) = (d(e))ieny =~ «, for every n and e. Recall Notation 7.2.31.
The requirements are:
R, : If lim; W, (b, t) exists, then lim; ¥, (x,t) is not an isomorphism from B to A.

For every e, the strategy for R, will enumerate its own sequence of c.e. sets. The indexes for
the sets are listed by a computable function g of two arguments:

{Wg(e,s) }SEN'

Let (hi,s)isen be a computable approximation of « such that, for every i, either o; = h; or
a; = 0. Also, let n(0),n(1)... be an effective increasing enumeration of the infinite computable
set N = {’L : h@o # 0}
The strategy for R.: Suppose s = 0 or W, (b, s) # U.(be,s — 1). Do the following substeps:

1. Make x(be) = (d(e))ien and « equal at all positions seen so far.
2. Begin enumerating Wy, ) by setting Wy o) = .
3. Wait for a stage u such that I'(g(e, s),u) = 0.

4. Let a € A be such that a = U, (b, s). If a = 0 do nothing. If a # 0, find integers ¢,, and
c such that ca = ), ¢mam. Let n(i) € N be a fresh large number such that (1) the prime
Pn(i) does not occur in the decompositions of the coefficients ¢ and ¢, (2) hp(),0 > 0, and
(3) d(€)k,s = 0 for every k = n(i).

5. Enumerate n(i) into W ). Keep d(e)y(;), = 0 for [ = s (unless we have a specific instruction
not to do so). Restrain the element b, by not allowing the construction to make it divisible
by any prime greater than p,,(;-

6. Wait for one of the following three things to happen:

I. W.(be,s) # Ue(be,t) at a later stage t. Then declare b, not restrained and restart the
strategy with ¢ in place of s (go to (1); for instance, make b, divisible by the corresponding
power of p,,;y).

II. The number n(i) enters the c.e. set Inf(a) at a stage s > t (thus, h,«) = ©). Make
be infinitely divisible by p,,(;y and return to (5) with n(i + 1) in place of n(i) keeping b,
restrained.

L. T'(g(e,s),t) = 1 (thus, we believe Wy, sy N Fin(a) # & and j € Fin(a)). We remove
the restraint from the element b, allowing the construction to make b, divisible by p;
with i ¢ W s if needed. We keep b, not divisible by py,(;)-

If at a later stage r the number n(i) enters Inf(a), (thus, Wy s S Inf(a),), then
make b, infinitely divisible by p,, (7). In this case also wait for a stage w > r such that
I'(g(e, s),w) = 0. Then return to (4) with a new fresh and large n(j).
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End of strategy.

Construction: At stage 0, start enumerating A and B as free abelian groups over {a,}nen and
{be}ken, Tespectively.

At stage s, let strategies R, e < s, act according to their instructions. If R, acted at the
previous stage, then return to its instruction at the position it was left at the previous stage.

Make X (an) = (his)ien in Ag for every n < s, and (hi s)ien = (d(€)is)ien in By for every e < s
which is not restrained, unless R, keeps d(e); s = 0.

End of construction.

Verification. If limy W, (b, t) does not exist, then we reach I of (6) infinitely often and, therefore,
X(be) = . Assume that lim; U, (b, t) exists. Let s be a stage such that

U, (be,s) = li%rn U, (be,t).

Let u > s be a stage such that lim; T'(g(e, s),t) = T'(g(e, s), u).

The set Wy (. ,) is designed to make lim; I'(g(e, s),t) = 1. If I'(g(e, s),u) = 0 was the case, then
we would add more elements to Wy ) at a stage v > u and eventually put some n(j) € Fin(a)
into Wy(e,s), a contradiction.

By the definition of T, if lim; I'(g(e, s),t) = 1, then there is at least one j € Wy s N Fin(a).
Furthermore, the strategy guarantees that there is exactly one such a j, namely the last witness
n(i) which visits TI1T of the strategy at some stage and stays there from this stage on. For instance,
the element b, will eventually be unrestrained (see the construction).

The algebraic strategy guarantees b is not divisible by p;,(;) while the image is. Furthermore,
be is declared not restrained as soon as we reach 111 with n(¢), meaning that the characteristic of
be satisfies the property d(e); = a; for each j # n(7). It remains to apply Theorem 5.1.15. O

We note that in the proposition above the algebraic strategy from Proposition 7.2.33 would not
succeed. Theorem 7.2.25 is proved. O

7.2.5 Arbitrary completely decomposable groups

As we mentioned earlier, the isomorphism type of a completely decomposable group is fully de-
termined by the types of its elementary summands (elementary direct components), and each ele-
mentary summand can be described by its type. However, the collection of types of the elementary
components may (in some sense) “encode” a countable linear order (see Exercise 7.2.49), and one
may expect that there is no arithmetical upper bound on the complexity of isomorphisms between
such groups. Nonetheless, in this section we prove Theorem 7.2.3 that states that every computable
completely decomposable group is AS-categorical.

The proof of Theorem 7.2.3 extends methods from §7.2. Using the algebraic machinery developed
in the proof of Theorem 7.2.3, in the next section we will show that the index set of computable
completely decomposable groups is arithmetical.

Proof of Theorem 7.2.3

We prove that every completely decomposable group is A2-categorical. The proof of this theorem is
divided into several parts. In the first part we state and prove algebraic facts about decompositions
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of completely decomposable groups, not all of the facts are well-known. In the second part we
introduce an algebraic notion of a basic pair which is central to the proof, and prove the main
algebraic lemma. In the third part we give the construction which builds an isomorphism between

any two copies of the group, and in the forth part we verify that the construction is computable in
0,

Proof of Theorem 7.2.3. Let G be a completely decomposable group.

Decompositions of completely decomposable groups. Fix any complete decomposition of G
into elementary summands. For a type f, denote by G g the sum of all elementary summands of
G having type f. If the group G has no elementary summands of type f, then we set G = 0. We

have:
G=DGCnw,
f

where f ranges over all types. Whenever we are given a completely decomposable group, we usually
fix a complete decomposition of it. Given two types t and s, write t < s if for some y € t and p € s,
we have x < p (component-wise).

Definition 7.2.35. For a torsion-free abelian group A and a type f, denote by Ag the subgroup
generated by elements of having types > f, and denote by A} the subgroup of A generated by the
elements having types > f.

Remark 7.2.36. Note that, in general, Af may contain elements of type f. For example, consider
a group having elementary components of only two types:

A=A ®Aw),

where inf{s,t} = f and both s and t are strictly greater than f. We have Af = A. As can be
easily seen, the group A contains elements of type f. Every element having non-zero projections
onto both summands has this property.

Fact 7.2.37. Let G be a completely decomposable group, and let G = @, G be its decomposition
in homogeneous completely decomposable summands. For every type f,

Gr=@DGy
t=f
and
G} =DGCn.
t>f

Proof. Clearly, @;>¢Gt) is contained in Gg. For every element g of G, let g = >, gt be its
decomposition into projections onto the homogeneous summands G(). Here t ranges over all
types, and gy = 0 for almost every t. Note that the type of g is the infimum of the types of the
projections. Therefore, only projections onto the components of types > f may occur if t(g) > f.

This shows
Gf = @ G(t)

t>f

The proof for G} = @;.¢G ) is similar. O
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As a consequence of the preceding fact,
Gf/G; = G(f).

We can not expect this group to be definable within G, and we have to deal with the quotient
Gt/G§ isomorphic to G g).
Let a be a characteristic of type f. Define Gla] = {ge G : a < x(9)}.

Fact 7.2.38. In the notation introduced above, Gla] = H[a| @ C, where C < G} and H = Gy
which is the sum of elementary components of G having type f.

Proof. By Fact 7.2.37,
Gr = G @ G-

By its definition, G[a] < G¢. For every g € Gy, x(g) = « implies the projection of g onto G
has characteristic > «. Also, every element H|[«] can be realised as a projection of a g € Gy with
X(g) = a. The fact now follows. O

Let P be a set of primes which is not the set of all primes. As before, let Q) be the additive
subgroup of the rationals (Q,+) generated by fractions of the form p%, where p € P and m € N.
Let r be a cardinal number. Define
VP,T = @Q(P)
i<r
Let @ = (a;)sen be a characteristic. Consider the group (G[a] + G§)/Gf. By Fact 7.2.38,
(Gla] + G})/Gt = Hla],

where H = G(5. The group H is homogeneous completely decomposable of type f. An easy
modification of the first part of Theorem 7.2.19 implies:

Fact 7.2.39. For any characteristic «,
H[a] = Vp,r,

where P = {p; : a; = oo}, and r is the rank of H.

Let P be a set of primes corresponding to a type f in the sense as above. Recall that, for a set
of primes P, ~
P = {p:pis prime and p ¢ P}.

The second part of Theorem 7.2.19 gives:

Fact 7.2.40. If a set B is an excellent P-basis of (G[o] + G})/G}, then Gy/G} is generated by B
over Q(av), where Q(«) is the subgroup of (Q,+) containing 1 in which x(1) = a.

Recall that (G[a] + G§)/Gy = H|a], where H = G|y, the homogeneous component of G having
type f. For a collection B < (G[a] + G§)/Gf, we say that C' < G is a set of representatives of B if
each element from C belongs to a class from B, end each class from B has a unique representative
in C'. The definition of S-independence implies:
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Fact 7.2.41. Let B < (Gla] + G})/G} be P-independent, and let C be any set of representatives
of B. Then the projection of C' onto Gy is P-independent in Hla], where H = G 5.
We should note that in Fact 7.2.40 “generated” clearly means “generated mod Gg”. This is also

one of the main difficulties in proving the theorem: we need to deal with representatives of classes
mod Gf, not with elements of H[«a]. This difficulty is circumvented by using basic pairs.

Basic pairs. We will need a listing of characteristics representing types of the elementary sum-
mands of G such that this listing does not contain equivalent characteristics:

Notation 7.2.42. Let G be a completely decomposable group. In the following, (f;);e; stands for
the listing of types of nonzero homogeneous components, and for every ¢ € I, a; = (; ;) jen is a
characteristic of type f;. Define also P; = {p; : o; ; = 0}, where pg,p; ... is the standard listing of
primes.

Definition 7.2.43. We say that a pair (o, v) is basic if the following conditions hold:

1. o is a finite tuple of elements of G;
2. v:o — I is a function;
3. i # j implies oy # oy, for every i, j € rangev;

4. for every 4, if v=1(i) # & then v~(4) is a set of representatives of P;-independent classes in

(Gleu] + GE)/ G,

Notation 7.2.44. Given R € Q and X < G, denote by [X]g the set of sums

e

zeX

where r, € R for every z, and r, = 0 for almost all x. We also assume G contains r,x, for every
re X.

Given a basic (o, v), let Span (c,v) = ZieN[v_l(i)]@(m), where [F]g(a,) = 0. By the definition
of basic pairs, the sum above is in fact direct:

Span (o,v) = PBv"" ()],

ieN

and, furthermore, every homogeneous summand of this direct decomposition splits into elementary
components, each elementary component being the span of an element of o over the corresponding
Q(ai).

Thus, for every basic (o,v), the subgroup Span (o,v) is a completely decomposable group
of rank || with homogeneous components [v™1()]g(a;), Where v™1(i) is an excellent P;-basis of
[0 ()] a(a)-

The lemma below is central to the proof of the theorem.

Lemma 7.2.45. For every basic pair (o,v) and every element g € G there is a basic pair (T,u)
such that o € 7 and g € Span (1, u).
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Proof. Note that Span (o,v) is contained in A < G which is a finite direct sum of elementary
summands of G. By the definition of a basic pair, if v™! (i) # & then v~ (i) is a set of representatives
of P;-independent classes in (G|a;] + G})/Gy, . By Fact 7.2.39,

H[Ozz] = VPi,k,

where H = G g,y and k is the rank of H. By Fact 7.2.41, the projection of v=1(i) onto H = G,
is P-independent within H [a;]. Furthermore, the projection of v~1(i) onto H is contained in
A,y [a;] which is isomorphic to Vp, i, where k € N. By Proposition 7.2.15, the projection of v~ (i)
can be extended to an excellent P;-basis of Agg,y[oi]. Note that, considering the pre-image of this
extension under the projection onto H, we may choose representatives C; of an excellent P;-basis
of (A[a;] + Af,)/ A}, so that these representatives are contained in A.

Let 7 be the union of the Cj, where i ranges over the set J = {i : A, # 0}, and let u be a
function which maps every element of 7 into its characteristic. We prove by induction that

Span (1,u) = A.

The group A is of finite rank, and the partial ordering {f; : i € J} of the types of its elementary
components is finite. We argue by induction on the number of types in this partial ordering, as
follows. By Fact 7.2.40, for every i € J the factor-group Ay, /Af is generated over Q(c;) by the
classes corresponding to C;. (Recall the discussion after Fact 7.2.41.) Let j € J be such that f; is
maximal in {f; : i € J}. By Fact 7.2.37,

g =0.
Consequently, C; generates A; over Q(o).

Let p =7-C; = Uie]f{j} C;, and let w be the restriction of u onto p. By the induction
hypothesis,

A/As,) = Span (p,w)/As,).-
Therefore, every element of (P, ; Ar,) 1s generated by elements of p and elements of A;y. This
shows Span (1,u) = A and, by the choice of A, we have g € Span (1, u)

Building an isomorphism. Given a computable completely decomposable group G = {go =
0,91,-..}, we define stage-by-stage a sequence of basic pairs

(00,v0), (01,01), ...

starting with o9 = J such that Span (o}, v;) contains g;, for each j. Without loss of generality, we
may assume G has infinite rank (for otherwise it is computably categorical). By Lemma 7.2.45, we
obtain an infinite sequence:

(O'j, Uj)jEN-
ojand U = UjeN v;. The set B is a basis of GG, and, by the definition of a

G =B (D)o,

el

Consider B =
basic pair,

jeN

where (f;);es is the listing of types of homogeneous components, and for every i € I,

@i = (i,j)jen
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is a characteristic of type f;. On the other hand,

G=@R,,

beB

where Ry, is the span of b over Q[a;] with j = U(b). Thus, if we are given (B,U), we can
uniformly construct a “regular” decomposition of G into elementary components with U pointing
the characteristic of a given “regular” element b in this decomposition.

It remains to observe that we may run this process on any other computable copy D of G and
obtain a pair (7, V), where T is a basis and V is a function mapping elements of T into their
characteristics. Given (B,U) and (T,V), we stage-by-stage map b € B to a rational multiple of
c € T having the same characteristic as b, and then extend this map to an isomorphism of G onto
D in the obvious way.

It remains to check which oracle is sufficient to build such a sequence of basic pairs in a given
computable completely decomposable group G.

Calculating the complexity. Let G = (go,¢1,...) be a computable completely decomposable
group, and let G = @, ; G, be its decomposition into homogeneous completely decomposable
components. For every j, let 8; = x(g;). We need an enumeration of characteristics which corre-
spond to different types.

Fact 7.2.46. There exists a 22 set J < w such that
(a.) for every i€ I there exists j € J such that §8; € f;;
(b.) Bi # Bj, for everyi,je J.

Proof. 1t is sufficient to show that the relation {(,7) : 3; ~ B;} is £3. Note that there is a 1-1
correspondence between (3; and the set of pairs

Xi = {(j.k) : pllgi}.

The family of sets (X;);en has a uniform enumeration. Also, every X; is associated to the corre-
sponding element g; in an effectively uniform way. It remains to observe that 3; ~ 3; if, and only
if, X; =" X, for every i, j. O

Note that (f;);cs are not necessarily exactly the types which correspond to non-zero G(¢,) in the
decomposition of G. Using J we establish a 0”-computable uniform enumeration of pairwise
non-equivalent c.e. characteristics («;);e; covering all types of non-zero component present in the
complete decomposition of G.

Fact 7.2.47. For every j:
(1.) Glay] is IS uniformly in j;
(2.) G}j is X9 uniformly in j.

Proof. We have
g9 € Gla;] < x(9) = o < (VE)(Vn)(pilg; — (n, k) € o)
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which is T19. Also, g € Gi, iff

3k eN)(Fg1, .-, 91 € G)(An € N) <X(9i) #ajax(g) a5 ang= 3 91:>

1<i<k

which is X9, because x(g;) # «; is I1$ as we have observed in the proof of Fact 7.2.46, and x(g;) > «;
is T19. O

As a consequence of this fact, (G[a] + G’f*j) /G;j has a %2 set of representatives. We need more:

Fact 7.2.48. Given i and elements g1, ..., g, € Glo;], the statement “the classes of g1, ..., gr are
Pi-independent in (Gloy] + G} )/G} 7 is 19 uniformly in the indices of elements and in ;.
J J

Proof. 1t is sufficient to require that, for every choice of coefficients my, ..., my and for every prime
'z

l(ﬂy)(ﬂw) (l’GG[a] NYEGE ApEP; npr+y = stgsﬂ = \p|ms,

s<k s<k
which is I19, by the preceding facts. O
Thus, 0 can build a sequence of basic pairs generating the whole group G. This finishes the
proof. O
Exercises

Exercise 7.2.49. Given two types t and s, write t < s if for some y € t and p € s, we have
X < p (component-wise). Let L be a computable linear order. Give an example of a computable
completely decomposable group G(L) in which the order on the types of the elementary summands
is isomorphic to L. (Hint: Given a countable linear order L, associate every point £ € L with a type
t(¢) so that

€ < 4y if and only if t(£) < t(4).

Use a dichotomy-like process manipulating with infinite computable disjoint sets of primes. Then

define G(L) = @, Q(t(¢)), where Q(t(¢)) < Q has type t(¢).)

Exercise 7.2.50 (Melnikov [365, 374]). Using the family from Exercise 3.2.63, show that there
exists a completely decomposable group that has an X-computable presentation iff X’ >¢ &', i.e.,
iff X is non-low?. Using the material of Subsection 5.2.3, deduce that there exists a space that
has an X-computably compact presentation iff X in non-low, and that there is a space that has an
X-computable Polish presentation iff X” >+ ", i.e., X is non-low,.

Exercise* 7.2.51 (Kach, Lange, and Solomon [276]). A computable completely decomposable
group is effectively completely decomposable if it splits into the direct sum of its uniformly com-
putable subgroups of rank 1. Let H be an effectively completely decomposable group of infinite
rank. Show that there is a computable presentation G of H so that in G, the Turing degrees of
orders compatible with the group operation (i.e., turning the group into an ordered group) are not
closed upwards.

9This exercise is not difficult but requires a new idea.
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Exercise* 7.2.52 (Downey et al. [120]). For a prime p, let Q) = [Z], = <{% :ne N} <Q.
p

Show that @pes Q@) is computably presentable iff S is a ¥9 set of primes.
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7.3 Applications to index sets

This section contains upper estimates for the characterisation problem and the isomorphism problem
of completely decomposable groups and their Pontryagin duals, the products of solenoids.

7.3.1 Completely decomposable groups

Our machinery enables us to prove:

Theorem 7.3.1 (Downey and Melnikov [137]). Completely decomposable groups form an arith-
metical class. Both the recognition and the isomorphism problem for this class have complexity
0.

Proof. Recall that every characteristic o = (o )ieny can be viewed as a set of pairs {(k,7) : k < oy}
thst we call the corresponding characteristic sequence. The following fact is easy but helpful.

Fact 7.3.2. There exists a uniform enumeration of all c.e. characteristic sequences.

Proof. Given an enumeration of a c.e. set, effectively and uniformly transform it into an enumeration
of a characteristic sequence by closing every column {s : (s,47) € W,.} downwards. O

Identifying characteristics and corresponding characteristic sequences, let (53;) jen be the uniform
enumeration from Fact 7.3.2. The isomorphism type of a completely decomposable group G =
PDs G|y is uniquely determined by the set

{(f. k) : rank (G(g) = k}.

We may replace every type in the set above by a characteristic of that type, and still get a full
invariant describing G up to an isomorphism, modulo the equivalence of the characteristics. The
proof of Theorem 7.2.3 enables us to re-formulate Theorem 7.2.3 as follows:

Fact 7.3.3. For every computable completely decomposable group G, there is a 0% enumeration
of a set of the form
{(4,8) : rank (G(t(ﬁj))) > s> 0},

where B; # B; and G = @j Gup;))-

On the other hand, every uniformly computable family of characteristic sequences can be realised
as one corresponding to a direct decomposition of a computable completely decomposable group:

Fact 7.3.4. For every set S = {(j,s) : s = 1} such that {5, : (j,1) € S} is a set of pairwise non-
equivalent characteristics in the uniform enumeration of all characteristics (8;);en, there exists a

computable completely decomposable group of the form ®j:(j,1)es <@k:(j,k)es (@(@)) .

Proof. The proof is not difficult and is left as Exercise 7.3.6. O
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Summarising the above, every computable completely decomposable group has a correspond-
ing X2 family of characteristic sequences, and every such sequence can be associated to a 0.
computable completely decomposable group in a uniform way. Also, Fact 7.3.2 can be relativised
to 0. We obtain:

Fact 7.3.5. There is a X2 listing (A;)ien of 0 -computable completely decomposable groups con-
taining all isomorphism types of computable completely decomposable groups (possibly with repeti-
tions).

Note that every group A; from the enumeration provided by Fact 7.3.5 and Fact 7.3.4 has a 0()-
computable complete decomposition algorithm: every group A; is given together with a basis, where
each element of the basis belongs to a separate component. By Fact 7.3.3, we may assume that
characteristics of elements of the complete decomposition basis of A; are c.e. (whereas the indexes
of these characteristics are merely c.e. in 0(¥)). By the third part of the proof of Theorem 7.2.3,
if a computable completely decomposable group G is isomorphic to A;, then this isomorphism is
in fact A2: it suffices to build a sequence of basic pairs in G, take their union, and then map each
element from the union to an element of the basis of A; having an equivalent (c.e.) characteristic,
maybe up to a rational multiple. Notice that we are implicitly using the uniqueness of the complete
decomposition of G.

Thus, a computable structure is a completely decomposable group if, and only if, it is isomorphic
to one of the groups (A;)en from Fact 7.3.5 via a 0)_computable isomorphism. Given a computable
structure M, we ask “Is there ¢ and a 0¥-isomorphism from A; onto M ;7”7 which is uniformly 9.
It follows that the recognition problem is 9.

It remains to check that the isomorphism problem is ¥9. But this follows from the recognition
problem being ¥9 and from Fact 7.1.2. O

7.3.2 Products of solenoids. Proof of Theorem C

Recall that Theorem C states that direct products of solenoid groups form an arithmetical class
(under topological isomorphism). Recall that a solenoid group is a group that is dual to some
(non-nil) subgroup of Q. It is well known that, under Pontryagin duality, direct sums become
direct products, and vice versa. Thus, the duals of direct products of solenoid groups are exactly
the completely decomposable groups.

In Theorem 7.3.1 we established that completely decomposable groups form an arithmetical
class. The rest of the proof is very similar to the proof of Theorem 7.1.41. We use computably
compact presentations; computable Polish presentations would give one more extra quantifier for
the complexity.

Propositions 7.1.38 and 7.1.39 guarantee that being a connected compact group is an arithmeti-
cal property (I13), and being abelian is I1 and can be checked only for special points. It is also X to
tell whether the group is non-zero. (If it is zero we are done.) Given G that is already known to be
non-zero and connected compact abelian, apply Theorem 5.2.21 (and Theorem 5.2.24) and produce
a c.e.-presentation of its discrete Pontryagin dual. Since G is non-zero, we can uniformly pass to
its computable presentation using Khisamiev’s Theorem 5.1.41. Let H be the resulting computable
presentation of the dual. By Theorem 7.3.1, it is £ to tell whether the resulting abelian group is
completely decomposable. This makes the recognition problem for products of solenoid groups X9.

Given two groups, use the procedure described above to pass to their duals. (The case when at
least one of them is the zero-group is trivial and can be considered separately.) By Theorem 7.3.1,
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expressing that the duals are isomorphic is X9.

This finishes the proof of Theorem C.

Exercises

Exercise® 7.3.6. Prove Fact 7.3.4.
Exercise* 7.3.7. Prove Theorem 7.3.11.

Exercise* 7.3.8. Prove Theorem 7.3.10.

7.3.3 Concluding remarks and further related results*

We conjecture that the estimate X9 (for both the completely decomposable groups and their duals)
is not optimal, i.e., the index sets are not X9-complete. However, obtaining optimal estimates
remains an open problem.

Problem 7.3.9 (Downey and Melnikov [137]). Provide optimal complexity calculations for the
isomorphism problem and the recognition problem for the class of completely decomposable groups
(and for the class of their Pontryagin duals).

In contrast with Theorem 7.3.1 and Theorem C, we do know that n = 5 in Theorem 7.2.3 is
sharp:

Theorem 7.3.10 (Downey and Melnikov [137]). There is a computable completely decomposable
group which is not AY-categorical.

For instance, Theorem 7.2.2 fails beyond homogeneous completely decomposable groups. It
could be that every AY-categorical group was already AJ-categorical, similarly to well-orderings [16].

Theorem 7.3.11 (Downey and Melnikov [137]). There is a computable completely decomposable
group which is A$-categorical but not AS-categorical.

It is perhaps worth noting that AY-categoricity of torsion-free abelian groups that are not
completely decomposable is very poorly understood (for n > 1). The best we know is the following
technical result that solved an open problem posed by Goncharov.

Theorem 7.3.12 (Melnikov [372]). For every n > 0 there exists a torsion-free abelian group G,
which is (relatively) A3, -categorical, but not AS, _,-categorical.

The theorem has a transfinite extension to “even” successor computable ordinals; the formal
statement will be given in Exercise 10.1.118. The reader may find it intriguing why the case of
odd levels of the (hyper)arithmetical hierarchy in the theorem above is still open. For a detailed
explanation of the technical difficulties and a further discussion of many related results, see [372].
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Historical remark

The systematic study of effective properties of completely decomposable groups was initiated by
Khisamiev and Krykpaeva [293] and then further developed by Khisamiev in [292]. The main notion
investigated in these papers was that of an effectively completely decomposable group defined in
Exercise 7.2.51. The earliest results about completely decomposable groups without any extra
restrictions on effectiveness of the decomposition can be found [365, 120]. The main result of [120]
(see Exercise 7.2.52) was further extended in [452]. We also cite [33] and [276] for further results
about computable completely decomposable groups. See also [222] where uncountable free abelian
groups were investigated using methods of higher recursion theory.

The “unsatisfactory” coding

Finally, recall that one can “computably code” an arbitrary countable linear order into the types
of a completely decomposable group; see Exercise 7.2.49. We can further use effective Pontryagin
duality to turn a computable linear order into a computably compact connected group. In the next
chapter, we will see that computable linear orders are unclassifiable, while Theorem C suggests that
the class of Pontryagin duals of completely decomposable groups is generally tame.

But clearly, there is no contradiction. The “transformation” hinted in Exercise 7.2.49 is heavily
dependent on the specific presentation of the input linear order, with two different presentations
very likely giving non-isomorphic groups. To get a contradiction with the results of the present
chapter, one must find an effective transformation that is well-defined on isomorphism types, i.e., so
that L — G(L) has the property L =~ I" if and only if G(L) = G(I'). Theorem 7.2.3 and Theorem
C illustrate that no such well-behaved transformation can possibly exist.

7.4 What’s next?

In the next chapter we will develop enough techniques to illustrate that in many natural classes of
structures and spaces, the index sets are 13- and Yi-complete. In the book, we put emphasis on
positive results, and the “nonclassification” chapter that follows next is a bit more brief than this
chapter. However, references to the (vast) relevant literature will be provided.
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Chapter 8

Nonclassification theory

In this chapter we will prove that in many classes having an arithmetical recognition problem, the
isomorphism problem is ¥i-complete. These classes include Boolean algebras, separable Banach
spaces, and integral domains. The main result of this chapter is as follows.

Theorem D (Melnikov [373], based on Downey and Montalbdn [146]). The homeomorphism
problem for connected compact Polish spaces is ¥1-complete

The structure of this chapter is as follows:

1. Section 8.1 contains the basic definitions and results related to X1- and IT}-complete sets.

2. Section 8.2 gives a brief introduction to the recently emerged theory of effective reducibilities
between classes of structures, with applications to index sets.

3. Section 8.3 presents the proof of the Downey-Montalbdn Theorem, which states that the
isomorphism problem for torsion-free abelian groups is ¥1-complete. We also present a proof
of a stronger result, Theorem 8.3.10, which establishes the completeness of the class of torsion-
free abelian groups among ¥} equivalence relations. Combined with effective Pontryagin
duality (established in Part 1) and the material of Section 8.1, these theorems will be used to
derive results about separable spaces, including Theorem D.
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8.1 Foundations

This section contains a brief exposition of definitions and facts concerning ¥1- and IT}-completeness,
and their immediate applications to the index sets of discrete and separable structures.

8.1.1 Definitions and notation

The classical theorems discussed in this subsection will be utilised as “black boxes” in applica-
tions without further modifications. This is in contrast with priority techniques, which had to
be combined with algebra and combinatorics throughout much of Part 1 of the book. For a de-
tailed exposition of this topic, see [454, Ch.16]. For a more in-depth study of higher recursion
theory, refer to [458]. Additionally, [20] contains a detailed and comprehensive introduction to the
hyperarithmetical and the analytical hierarchies.

We identify a (total) function f : w — w with a member of w*. We say that a relation
R(f1,- s fri®1ye oy @Tm) S (W)™ x W™ is computable if there is a Turing functional ®, with the

property

¢£17f27'“7fn($1, ) = L, if R(fh v fas T T) = 1
0, otherwise.

In ®Jrf2fn 2y, ... x,,), we either use a multi-tape Turing machine of fix some computable coding
of f1, fa,..., fn into one function, e.g., f1 ® fo...® [n({i,k)) = fi(k), 1 <i < n. The analytical
relations are the members of the least class that includes computable relations (in the sense above)
and is closed under complements and projections on individual and function variables. In other
words, a relation is analytical if it can be written in the form

Q161Q282 ... Qu&n R

where R is a computable relation, @Q; € {V,3}, and each &; either ranges over w or over w*. For
example, if R is computable on (w®)3 x w?, then {(h,m) : IfVnVgR(f,g,h;n,m)} € (w*) x w is
analytical.

Theorem 8.1.1 (The Normal Form). Any analytical relation P has a definition of the form

(T) Qlf]. Q2f2 --~7Qkkak+1ZR(f1a'~'af]€a"';z7"')7

where R is a computable relation, the quantifiers Q; alternate between 3 and ¥V, and all but the last
one ranges over function variables.

Proof. This follows from Exercise 8.1.21 which summarises the rules of manipulating with quanti-
fiers. O

Definition 8.1.2. Fix k > 0. An analytical relation P is:
1. II; if (there is a computable R so that) P satisfies () with Q1 = V;
2. X} if P satisfies () with Q1 = 3.

We also say that P is A} if it is both II} and Xj.
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We also use E}ﬁ and 1_[,1€ to denote the respective complexity classes. Thus, A}c = 1’[,1€ N E}v.
Clearly, P € II}, if and only if =P € ¥}, where —P is the complement of P in the respective
domain.

We are mainly interested in relations on (subsets of) w; thus, the reader may safely assume that
all our analytic relations are subsets of w unless otherwise specified.

Theorem 8.1.3 (Kleene). For every k, there is a set in SI\IIE and a set in T} \Xi.

The proof of this fact can be derived from the existence of the universal ¥}- and II}-relations
combined with the usual diagonalisation; see Exercises 8.1.23 and 8.1.24.

8.1.2 Xi- and II}-complete sets
Explicit examples of sets in LI\IT} are the Xi-complete sets.

Definition 8.1.4. A ¥} set P € w is X}-complete if any other ¥}-set < w is m-reducible to P.
The notion of a IT}-complete P € w is defined similarly.

We give two examples of a natural ¥i-complete and ITi-complete index sets. As before, by a
tree we mean a subset of w<* closed under prefix. An infinite path through a tree T', or sometimes
just a path through T, is p € w* such that all finite initial segments of p lie in T'. A tree with no
path is called well-founded. Otherwise, T is ill-founded.

Interpret every c.e. set W, as a collection of indices of finite strings. We can uniformly modify
every c.e. set into a c.e. set W that closes the listed strings under prefixes, i.e., whenever o is a
prefix of 7 and 7 is listed in W¥, we also put ¢ in W*. Denote the resulting tree € w=¥ listed by
W2 by Te. Define the index sets

WF = {e: T, is well-founded}

and
IF = {e: T, is ill-founded} = w\WF.

Theorem 8.1.5 (Folklore). IF is Xi-complete and, thus, WF is 113 -complete.

Proof. Tt is clear that WF € I and IF € X}. Fix a ¥{-set S and a computable relation R such
that z € S if and only if IfVyR(f;y,z). Given z, define a c.e. set V. as follows. Put the code for
a string o in V,, if for some y, Vz < y R(0; 2, z) holds, where o is identified with 0%, and also o is
assumed to be shorter than the use of (the computable functional witnessing the computability of)
R on inputs z, z (z < y).

Using the s-m-n Theorem, fix a computable function g such that Wy, = V, for every z. The
tree Ty(,) has an infinite path if, and only if, x € S. Thus, g witnesses S <,,, [F. Indeed, g also
simultaneously witnesses the I1}-completeness of W F. O

With each tree in Baire space, we associate an ordering.

<w

Definition 8.1.6. The Kleene-Brouwer ordering <y p on strings of a tree T' € w=<% is defined as

follows. Declare o <gp 7 if one of the two conditions hold:

1. o is a (proper) initial segment of 7, or
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2. o and T agree up to, but not including, position n, and o(n) < 7(n).

Welet o <gprTifo=71oro<gpr.
It is easy to see that <k p is a linear ordering.

Remark 8.1.7. Kleene used the ordering extensively in his work. However, originally, the ordering
had been defined before Kleene by Lusin and Sierpinski [342], and Brower [66] in the 1920’s. In
keeping with the standard terminology, we will refer to the ordering as we have.

Theorem 8.1.8. T is well-founded iff <xp is a well-ordering of nodes in T.

Proof. Tf T is ill-founded and « € [T], then the finite initial segments of a form an infinite descending
<k p-chain. Conversely, suppose that 01,09, ... is an infinite descending <k g-chain. Then for each
n, the set {k : 3Im o,,(n) = k} is bounded from above, and, thus, o1, 09, ... belong to the restriction
of T to a finitely branching subtree of w=<*. It follows that [T] # & (e.g., by Konig’s lemma). O

Further note that the transformation T' — KB(T) is effectively uniform. Let (L.)cen be a
uniformly effective enumeration of all partial computable structures in the language of linear orders
(one binary relation). We arrive at:

Corollary 8.1.9. The index set {e : L. is an ordinal} is I} -complete.

Kleene’s O

Recall that in Section 2.2.3 we defined O to be the collection of all (notations for) constructive ordi-
nals. In Section 2.2.3 we also proved that an ordinal is computable if, and only if, it is constructive,
i.e., has a notation in O. In view of Corollary 8.1.9 the classical theorem below is perhaps not too
surprising. However, its proof is non-trivial and is omitted.

Theorem 8.1.10 (Kleene, Spector). O is 1} -complete.
Kleene’s idea was to extend the definition of (@) = @,,en@ ™ as follows:

Definition 8.1.11 (Kleene). We define the sets H (o) for notations o by effective transfinite recur-
sion as follows.

. H(1) - o
e H(2*) = H(a)
o H(3-5°%) = {{u,v): In(u <o we(n) Anve H(u))}

The operator H is well-behaved under <p. The result is certainly nontrivial, and was thought
to be quite surprising when first proved; we omit the proof.

Theorem 8.1.12 (Spector [481]). 1. There is a partial computable function f such that for no-
tations a,b € O, if lalo < |blo then f(a,b) is an index for H(a) as a set computable from
H(b).

2. Thus if a and b are notations for an ordinal o, H(a) =1 H(b).
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Thus, for a € O is a notation for «, then the “a-th Turing jump” can be well-defined up to =
via
H(2") = H(b)

if a = 2° and, when a = 3 - 5,
H3:5% ={{u,v):u<p3-5°Ave H(u)} = {{u,v): In(u <o ve(n) A ve H(u))}.
Theorem 8.1.13 (Kleene [301]). Ae Al iff A<y H(a) for some ae O.

For instance, every arithmetical set is A}, and so is every & (@)_computable set. For a computable
ordinal @ > w, define A? to be the complexity class of all sets computable relative to H(a), where
a is any notation for a.

Since H(a) =r H(b) for any other notation b for «, the class is well-defined. (Note that for
a finite & = n, the A%, -sets are those computable in 00", not in 0**1).) It follows from the
theorem above that

NER:

a<w{E

which is a remarkable fact. The classes A%, o > w, form the extension of the arithmetical hierarchy
known as the hyperarithmetical hierarchy. If X € w, then we can define the classes A% (X) and
A}(X) by iterating X% X', X” ... over computable ordinals. It is also not too hard to show that
if Xe A and Y e A%(X), then Y € Ag+5, i.e. “hyperarithmetical relative to a hyperarithmetical
oracle is again hyperarithmetical”; e.g. [20, Proposition 5.21].

The Harrison order

For proofs of the following two facts, we refer to Lemma 2.1.IIT and Lemma 2.2.1IT of [458], respec-
tively.

Theorem 8.1.14 (Kleene). There exists a computable linear ordering with an infinite descending
sequence but no hyperarithmetical descending sequence.

Theorem 8.1.15 (Harrison). Any computable linear order with the property as in Theorem 8.1.14
must have order type
wIE(1+ Q)+,

CK

K s the least non-computable ordinal, and § < w{'X is a computable ordinal.

where w

Note that if L satisfies Theorem 8.1.14 then so does L - w. Thus, there is a computable linear
order of the order-type w$* (1 4+ Q) which has no hyperarithmetical descending sequence.

Definition 8.1.16. The linear order w{% (1 + Q) will be called the Harrison order and denoted
H.

The linear order H is not computably categorical. However, we shall occasionally stretch our
notation and identify H with some computable copy of H; the exact choice of this copy will usually
be clear from the context.
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A useful lemma

Given a linear order L indexed by natural numbers, define the tree of descending sequences DS(L)
of L to be the collection of all tuples (fg, ...l € L=% = w=<* such that ¢y >, ... > ¢} (together
with the empty string). It should be clear that L is a well-order iff DS(T') is well-founded.

It T,S are trees, then define their product U =T « U = {(0,7) : |o| = |7|,0 € T, 7 € U} that
can be viewed as a tree in w=¥ x w<¥ =~ W=, under the coordinate-wise prefix relation on pairs.
Note that T = U is ill-founded iff both U and T are ill-founded. Further, any infinite path through
T = U computes an infinite path through 7" and an infinite path through U.

The following lemma will be used in applications to index sets. It can be found in [213]; see the
proof of [213, Theorem 4.4(d)] where it is sketched. A variation of the lemma is [146, Lemma 3.1].

Lemma 8.1.17. There is a computable operator R mapping computable trees to computable trees
with the following properties:

1. R(T) is well-founded iff T is well-founded, and
2. if R(T) is not well-founded, then R(T) =~ DS(H),

where H is the Harrison order and DS(L) be the tree of finite descending sequences of a linear
ordering L.

Proof. Identify H with a a computable linear order L =~ H given by Theorem 8.1.14 (and the remarks
after Theorem 8.1.15)). Given T, define Ro(T) = T« DS(H). If T is not well-founded, then Ry (T")
has no hyperarithmetical paths, and thus by Theorem 8.1.15, KB(Ro(T)) = w{%(1 + Q) + 6.
Define I(T) = KB(Ro(T)) -w and let R(T) = DS(I(T))). By Theorem 8.1.8 and the properties of
L— DS(L), T is well-founded iff R(T) is. If T' is not well-founded, then R(T) = DS(H). O

Remark 8.1.18. Note that in the proof above we also established that I(T) =~ H iff T is not
well-founded, and otherwise I(T) is a computable ordinal. (This is [92, Lemma 5.2].)

Tree rank

Definition 8.1.19. Let T be a subtree of w=<*. We define the tree rank of x € T, denoted by tr(z),
by induction:

1. tr(z) = 0 if z has no successor;
2. For a > 0, tr(z) = a if « is the least ordinal greater than tr(y) for all successors y of x;
3. tr(z) = oo if 2 does not have an ordinal tree rank.

The tree rank of the tree T' is defined to be the rank of the top node 0.

The tree rank of the tree ST is the minimum of the tree ranks of S and 7T'. In particular, S =T
has an infinite path iff both S and T have infinite paths. We note that if 7" has no infinite paths,
then its tree rank must be a computable ordinal; the proof is similar to that outlined in the hint to
Exercise 8.1.26. We always have

tr((o, 7)) = min(tr(a), tr(r)),

where c € Sand 7€ T.
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Recall that W F' denotes the set of indices of computable well-founded trees on w. For each
computable ordinal «, let W F,, denote the set of indices of computable trees of tree rank less than
«. This fact below a consequence (a reformulation) of the Bounding Principle.

Fact 8.1.20. If f is a hyperarithmetical function from a hyperarithmetical subset of w into W F,
there exists a computable o such that the range of f is contained in WF,,.

To see why Fact 8.1.20 would hold, first consider the case when f is computable; put the
trees T)(,) together under the common root. The rank of this well-founded computable tree is
a computable ordinal and bounds the rank of each T}). Now, if f is hyperarithmetical, then
we can relativise this to f and use that “hyperarithmetical relative to hyperarithmetical is again
hyperarithmetical”. We omit the formal proof and refer the reader to, e.g., [458, Corollary 11.3.4].

Exercises

Exercise® 8.1.21 (Kleene). Write V° and 3° for quantifiers ranging over numbers, and 3* and V?
for quantifiers ranging over functions. In the context of analytic relations, prove that the following
prefix transformations are permissible; i.e., in each case, for any predicate form with the given
prefix, an equivalent predicate form with the new prefix can be obtained:

1. ...393%. .. — ...3%°... and the same for V°;
3130 — .31 ... and the same for V'

..3%. ..~ ...3' ... and the same for ¥° and V!;

2
3

4. 90T e 3O
5. 300 e W30
6

.~ ...Q..., where @ is any quantifier (adding “dummy quantifiers”).
[For a detailed proof, see [454, Theorem III, Ch.16]. Also, see [20, pp.75-77] for an extended sketch.]

Exercise® 8.1.22. If S, R are ¥j-relations on (w*)™ x w™ (m +n > 0), then so are S A R, S v R.
The same is true for II}-relations.

Exercise® 8.1.23 (Kleene). Based on the existence of the uniformly effective enumeration of all
functionals (§2.1.4), prove the following. For each k > 1 and each tuple of variables & ranging over
(W)™ x w™ (m+n > 0), there is a ¥} -relation U(Z, e) so that the list {U(Z,e) : e € N} includes all
Yi-relations. (The same for II}.)

Exercise® 8.1.24. Prove Theorem 8.1.3 assuming the previous exercise.

Exercise 8.1.25 (Spector). Show that any hyperarithmetical well-ordering is isomorphic to a
computable one. (Hint. Let wiX denote the first ordinal that is not X-computable. All results
of this section and Section 2.2.3 can be relativised to X. Suppose L is hyperarithmetical, say
X-computable for some hyperarithmetical X. It is sufficient to show that wX = w{'X. Obviously,
wi = Wi Assume wi¥ > WK and thus there exists an X-computable presentation U =~ w{'¥.
Then for a computable linear order L, being well-founded would be equivalent to saying that L
is isomorphically embeddable into U, which is a %}-property (because of, e.g., Theorem 8.1.13),

contradicting Theorem 8.1.5. See [458, Cor.7.4.I1] for a detailed proof.)
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Exercise 8.1.26. Prove 1 — 3 of Theorem 4.1.29. [Hint: The Stone space X of such a Boolean
algebra can be viewed as a computable closed subset of 2. The operation of taking the Cantor-
Bendixson derivative is a monotone Al-operator on X, and it is well-known that this implies that
the CB-rank of the space has to be < w{'X; see, e.g., [458, Theorem 8.9.III]. Since the space is
countable, we obtain that each £ € X is ranked, and thus by ([458, §8.11.II1]), we obtain that the
sequence stabilises at a computable ordinal. It follows that the computable superatomic Boolean
algebras are exactly the algebras of the form Int(w® - k), where « is a computable ordinal. See
Exercise 10.1.64 for a different version of proof.]

Exercise* 8.1.27 (Ash). Prove an extension of Theorem 7.1.6 to ordinals of the form w®, where
« is a computable ordinal.

Exercise* 8.1.28. ([20, Theorem 17.8]) State and prove an extension of Theorem 7.1.7 to Boolean

algebras of the form Intalg(w®), where « is a computable ordinal.

8.1.3 Index sets of discrete structures

All results in this subsection can be found in [213].

The recognition problem

Recall that in Corollary 8.1.9 we established that the recognition problem for (the index set of)
well-orders is IT} complete. Recall that the superatomic Boolean algebras are exactly the interval
algebras of ordinals; see §4.1.4. We obtain:

Theorem 8.1.29. The recognition problem for superatomic Boolean algebras is 11} -complete.
Proof. A Boolean algebra is superatomic iff B =~ Intalg(L) for a well-ordered L, and indeed, any such

L has to be well-ordered. Since we can uniformly calculate some such L from a given presentation
of a Boolean algebra (Corollary 4.1.15), the result follows from Corollary 8.1.9. O

Another elementary consequence is as follows. Recall that an abelian group A is divisible if,
and only if, for every x € A and every integer m > 0, we have that

dye A my = x.

An abelian group is reduced if it does not have non-trivial divisible subgroups. It is well-known
that the maximal divisible subgroup of an abelian group detaches as its direct summand. Fix an
effective enumeration (A;);en of all partial computable structures in the language of groups.

Theorem 8.1.30. The index set
{i: A; is a reduced abelian p-group}

is 1} -complete.
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Proof. The foundations of the theory of abelian p-groups will be explained in detail in Section 9.3.1.
There, in Corollary 9.3.4 we will show that for an abelian p-group, being not reduced is equivalent
to the existence of a sequence of non-zero elements (x;);en such that for all ¢, pzr; = x;4+1. Thus,
the property of being reduced is I13.

In Chapter 9.3.1 we will also describe a uniform transformation 7' — G(T') that turns trees into
abelian p-groups. The resulting p-group is defined by relations = = py where y is the successor of
x and x,y range over the nodes of T. The root of T' corresponds to the element 0. It follows from
Corollary 9.3.4 that the group G(T) is reduced if, and only if, T is well-founded. (We can uniformly
add at least one non-root node to T' to make sure that G(T) is never the trivial group if we define
the trivial group to be divisible.) Being well-founded for T is II}-complete by Theorem 8.1.5. [

A single structure can have its index set maximally complicated.

Theorem 8.1.31. The recognition problem for the Harrison order (Definition 8.1.16)
{Z L, =~ H}

is $1-complete. The same is true for the computable tree DS(H).

Proof. For a fixed computable (countable, discrete) structure, its recognition problem is always 1.
The X1-completeness for H follows from Corollary 8.1.9, Remark 8.1.18, and in the case of DS(H)
it is guaranteed by Theorem 8.1.5 and Lemma 8.1.17. O

Remark 8.1.32. In the theorem above, the ¥}-completeness for H is witnessed by a uniformly
computable sequence (L;);ey so that L; is not an ordinal iff L; >~ #. Similarly, in the case of
DS(H), the II}-outcome is always witnessed by a well-founded tree.

The isomorphism problem

For a class of (countable, discrete) computable structures K with arithmetical recognition problem,

the isomorphism problem
{(4,4) : My, M; € K, M; = M;}

is always ©1. If it is Y}-complete then we say that the class is analytic complete. In the previ-
ous chapter we observed that the recognition problem for all classes from the theorem below are
arithmetical. Thus, the theorem says that these classes are analytic complete.

Theorem 8.1.33 (Goncharov and Knight [213]). For the following classes, the isomorphism
problem is X1-complete.

1. Trees.
2. Linear orders.
3. Boolean algebras.

4. Abelian p-groups.
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Proof. 1. is Lemma 8.1.17, and 2. is Remark 8.1.18. To prove 3., consider the functional that
on input a linear order L outputs Intalg(L). Let (L;);eny be a uniformly computable sequence of
computable linear orders such that L; =~ H iff L; is not an ordinal; see Remark 8.1.32. If L; is
a computable ordinal, then the Stone space of Intalg(L;) vanishes after taking w$®-many CB-
derivatives. Otherwise, it stabilises at the perfect kernel which is non-trivial when L; = H. (Note
that the Boolean algebra Intalg(L;) is superatomic iff L; is an ordinal; see §4.1.4). It follows that
the uniformly computable sequence of pairs

(Intalg(L;), Intalg(H))ien

witnesses the Yi-completeness in 3.

For 4., fix a uniformly computable sequence (T );en witnessing the Y1-completeness of the recog-
nition problem for DS(H); see Remark 8.1.32. In this sequence, T; is well-founded iff T; 2 DS(H).
In the proof of Theorem 8.1.30 we defined a uniformly computable transformation T — G(T) with
the property that T is well-founded iff G(T) is a reduced abelian p-group. Thus, the sequence

(G(T3), G(DS(H)))ien

witnesses the Yi-completeness in 4. 0

8.1.4 Index sets of separable structures

All results of this subsection are either folklore or can be found in [139] or [373].

Upper bounds

It is obvious that the isomorphism problem for discrete countable structures is %1 provided that
the recognition problem for the class is ¥1. For separable structures the situation is more complex;
however, in the two important cases of Banach spaces and compact spaces we also obtain the upper
bound ¥}, as we prove next.

Fix a uniformly computable list (M;);en of all partial computable Polish spaces. We slightly
abuse our notation and identify M; with its completion M;.

Proposition 8.1.34. The homeomorphism problem
{(4, 5+ M; =Zpom Mj & M;, M; are compact}
for compact computable Polish spaces is 1.

Proof. Tt is arithmetical to say that M; is a (presentation of a) compact Polish space; see (1) of
Corollary 7.1.27. To say that there is a homeomorphism f : M; — Mj, it is sufficient to state that
there exist continuous surjective fi : M; — M; and fo : M; — M; such that f1 o fo = Idy,. Every
g: X — Y between compact X and Y can be represented by, e.g., a pair (§,m) where §: w? — w
and m : w — w, and where the function §(n, k) is interpreted as the image of the n'" special point
with precision 27%, and m as the modulus of uniform continuity.

We claim that it is arithmetical to say that (g, m) represents a continuous function

liing(-,k:) X - Y.
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Indeed, totality is arithmetical. Also one can express that m is a modulus of continuity that works
for g as a closed property. Thus, as before, if it fails then it must fail for some special points. Since
the continuous image of a compact space is closed, it is arithmetical to say that (g, m) represents a
surjective function. (If it does not, then again there is a special point in the complement witnessing
this.)

This allows to state the existence of f; and f» in a X1 way. Finally, to say that fi o fo = Idyy,,
it is sufficient to say that it is true for special points because the property is (again) closed. This
can be expressed arithmetically (in the presentations of) f; and fa. O

Before we proceed, we note that the same result clearly holds if we used computably compact
presentations instead of computable presentations.

Fix a computable list (B;);en of all (partial) computable linear spaces over Q with a computable
norm. (We again identify B; with B;.)

Proposition 8.1.35. The linear isometric isomorphism problem {(i,j) : B; =50 B;} for com-
putable separable Banach spaces is 1.

Proof. Exercise 8.1.38. O

Finally, fix a uniformly computable list of all (partial) computable Polish groups (G;)ien. Each
G, is given by a computable Polish space equipped with operators for the group operations. In
§7.1.2 we proved that the index set of compact Polish groups is arithmetical.

Proposition 8.1.36. The topological group isomorphism problem
{Gi,7) : Gy = G and G;,G; are compact groups}
for compact groups is $1.
Proof. Exercise 8.1.39. O

Similarly to compact spaces, the result will of course also hold true for computably compact
groups. As we noted earlier, in the case of computably compact groups we do not even need to
require the inverse operation to be explicitly included into a presentation; this is Corollary 4.2.46.

Completeness results

All structures in the theorem below are separable.

Theorem 8.1.37. The isomorphism problem is ¥}-complete in the following classes:
1. Stone spaces (Downey and Melnikov [139]).
2. Banach spaces (Downey and Melnikov [139]).
3. Profinite abelian groups (Melnikov [373]).
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Proof. Tt follows from Propositions 8.1.34,8.1.35 and 8.1.36 that the upper bound in each case is
s,

To establish completeness in 1., use the ¥1-completeness of the isomorphism problem for Boolean
algebras (Theorem 8.1.33) combined with Effective Stone Duality (Theorem 4.2.80) established in
Part 1. Note that Y{-completeness is witnessed by computably compact spaces for which Effective
Stone Duality is uniform.

To prove 2., use 1. and the Effective Banach-Stone Duality (Theorem 4.2.113). But in fact,
we do not need the full power of this effective duality. If (S;, B;)ien are the computably compact
Stone spaces witnessing the Yi-completeness in 1., then the sequence of pairs of Banach spaces
(C(Si,R),C(B;,R)) is clearly uniformly computable and witnesses the Y}-completeness in 2.

To establish 3., recall that the isomorphism problem for abelian p-groups is X1-complete (The-
orem 8.1.33). In Section 9.5 we will establish that Pontyragin duality between computably discrete
torsion and computably compact profinite abelian groups is uniformly computable. Taking this
result for granted, we obtain the Yi-completeness in 3. O

Note that 1. and 3. of the theorem above are witnessed by computably compact Stone spaces and
computably compact pro-p abelian groups, respectively. Thus, these completeness results remain
true if we restrict ourselves to computably compact presentations. Notice also that in all three
cases, there is a single structure so that the set of indices of other structures isomorphic to it is
Y1-complete.

Exercises

Exercise® 8.1.38. Prove Proposition 8.1.35.
Exercise® 8.1.39. Prove Proposition 8.1.36.

Exercise® 8.1.40 (Melnikov [368, 366]). Show that the isomorphism problem for computable
ordered abelian groups is ¥1-complete. (Hint: Use the strategy from Exercise 5.1.50.)

Exercise 8.1.41 (Calvert [72]). Show that the isomorphism problem for real closed fields, and
thus for formally real fields, is ¥1-complete. Deduce that the isomorphism problem for computable
fields of characteristic zero is ¥1-complete. (Hint: We remark that the order in a real-closed field
can be reconstructed using (or imitated by) the field operations: for an a # 0, a > 0 iff 3x 22 = a.
Fix a linear order L. Consider the theory of real-closed fields together with a collection of new
symbols {¢; : £ € L} and sentences stating that:

1. forall e L, 0 < cy;

2. for each pair £ < £” in L, for every polynomial p(cs) in ¢, with coefficients involving {cg~ :
0" < £}, we have p(cg) < cp.

Using the material of §2.2.2, uniformly in L produce a computable formally real field F(L). The
computable real-closed (or formally real, depending on the signature) field F'(L) codes L into the
Archimedean classes of positive elements.)

The next few exercises are here mainly to inform the reader. Their proofs are too complex and
go beyond the material covered in the book.
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Exercise** 8.1.42 (Bazhenov, Harrison-Trainor, Kalimullin, and Melnikov [34]). A computable
structure in a finite language (signature) is:

1. polynomial-time if the domain, the operations, and relations on the structure are computable
in polynomial time;

2. primitive recursive if the domain, the operations, and relations on the structure are primitive
recursive;

3. punctual or fully primitive recursive if it is primitive recursive and the domain is w;

4. automatic if there is a finite automaton computing its open diagram (the definition is sensitive
to the exact choice of formal details, see [34]).

Show that the following index sets are Y1-complete among computable structures:

automatically presentable structures;

structures that admit a polynomial-time presentation;
primitive recursively presentable structures;
punctually presentable structures;

structures that admit a 1-decidable presentation;

S ok W=

structures that admit a decidable presentation (Harrison-Trainor [237]).

Exercise* 8.1.43 (Kalimullin (unpublished), based on [34]). Use the main result of [34] to prove
that the index set of computably presented structures among all c.e. presented structures is %i-
complete. (Hint: First, define a transformation ¥ such that, for the structures witnessing the
main result in [34], A has a computable presentation iff ®(A) has a AJ presentation, and A has a
1-decidable presentation iff ®(A) has a computable presentation. For that, add predicates coding
the 3-diagram of the structure. This readily gives that the index set of computably presented
structures among AY-presented structures is Xi-complete. This is because the outcomes of the
main construction in [34] give either an automatic (thus, decidable) structure or a structure that is
not even 1-decidable. To get the claimed ¥}-completeness among c.e. presented structures, restrict
this idea to the diagonalisation modules. Modify the diagonalisation module and use a 3-definable
congruence ~ on pairs of automorphic points in A, and consider A/ ~.)

Exercise® 8.1.44 (Downey et al. [131]). Show that the index set of computably categorical
structures is ITi-complete.
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8.2 Effective reductions between classes

In this section we discuss effectively universal and effectively complete classes. The notion of an
effectively universal class is not easy to define formally. In this section the simpler notion of effective
completeness and the even weaker notion of F'F-completeness will generally suffice.

8.2.1 Effective transformations between structures

All our classes have computable languages (signatures). The following is an effectivisation of the
standard Borel reduction from descriptive set theory that we briefly discussed in §6.1.2.

Definition 8.2.1 (Calvert, Cummins, Knight, and Miller [283]). Fix two classes of computable
structures C; and KCs. Then Ky is effectively reducible to Ko,

K1 <grr Ko,

if there is a Turing functional ® taking open diagrams of structures in K3 and outputting
diagrams of structures in Ko, such that

A=~ Biff o(A) = ¢(B).

(The most common but somewhat unfortunate notation in the literature is Ky <z K2.) The
definition above is usually used only for discrete structures in the literature, however, it can be
useful for separable structures as well. For example, the effective dualities proved in Part 1 the book
induce reductions between classes of discrete and separable structures, and the effective Banach-
Stone duality induces an effective reduction between compact spaces K and the respective Banach
spaces C(K;R).

Definition 8.2.2. A class U is effectively complete with respect to discrete structures if for any
class K of discrete countable structures, X <gpp U.

It is immediate from the results in the preceding sections that every effectively complete class
has its isomorphism problem YX}-hard. Thus, for example, the class of completely decomposable
groups is not effectively complete, and the same can be said about the class of solenoid groups (or
their products).

Preserving spectra and computable dimension

Many natural examples of effective transformations witnessing < gpp satisfy various further proper-
ties beyond Definition 8.2.1. Perhaps, the two most important properties of effective transformations
that occur throughout the literature are as follows.

Definition 8.2.3. Assume K <gpp U via ®. We say that:
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1. & preserves computable dimension if it preserves the number of computable copies of
structures, up to computable isomorphism.

2. ® preserves degree spectra if A has an X-computable copy iff ®(A) admits an X-
computable copy.

That is, 1. says that if A has exactly x € N U {w} computable presentations up to computable
isomorphism, then so does ®(A). In particular, it maps computably categorical structures to
computably categorical structures. (In Chapter 10 we will prove that for every k € N u {w}
there exist an algebraic structure having exactly x computable presentations, up to computable
isomorphism.)

In the literature, in 2. it is often further assumed that the coded structures from K are “auto-
morphically non-trivial”, i.e., they do not become homogeneous after fixing finitely many constants.
This assumption becomes unnecessary according to our definitions. Under the slightly more strict
definition saying that A is a-computable if degr(A) = a (rather than degr(A) < a), this assump-
tion is required to exclude the pathological case when the degrees of presentations are not closed
upwards [304].

For the purposes of the book we usually restrict ourselves to the case when K ranges over
discrete countable structures, while i/ could be a class of spaces. This restriction is of course not
really necessary in general. For example, effective Stone duality between computably compact
Stone spaces and Boolean algebras preserves computable dimension and degree spectra in the right
sense; this easily follows from the proofs of Theorems 4.2.80 and 4.2.84, and from Exercise 10.4.8.
The same can be said about effective Pontryagin duality mapping profinite abelian groups to their
torsion abelian duals; this can be easily extracted from Theorem 9.5.7 that will be presented in
the next chapter. We will usually further restrict our classes to their infinite members, since to
establish X1- or IT}-completeness we do not need to consider finite structures. This assumption
will sometimes be implicit in the proofs and proof sketches contained in the next two subsections.
Nonetheless, most proofs that we present here can be adjusted to work for finite structures as well.
For effective reducibilities between classes of finite structures, see [283].

Definition 8.2.4 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). An effectively complete
class U is complete with respect to computable dimension if for every class of discrete structures
IC, there is a transformation ® witnessing X <gppp U that preserves computable dimension.

Similarly, we have:

Definition 8.2.5 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). An effectively complete
class U is complete with respect to degree spectra if ® witnessing X <gpp U can always be
chosen to preserve degree spectra.

314



Definitions 8.2.4 and 8.2.5 are directly related to the two central problems of effective algebra:
the existence and uniqueness of effective presentations for structures in the class. Since in this
section we mainly look at index sets and their ¥}-completeness, the much weaker notion of effective
completeness will usually suffice. However, in this section our proofs of effective completeness will
give transformations that are much stronger than just witnessing < g g, but we leave the verification
of Definitions 8.2.4 and 8.2.5 for these transfoirmations to the exercises. These additional properties
of the transformations will be useful in the last chapter.

Effectively universal classes™

Definitions 8.2.4 and 8.2.5 are just two examples of the many properties that natural transfor-
mations between structures can preserve. For a few examples of such additional properties, see
Exercises 8.2.10 and 8.2.11. Seeking to define a transformation between classes that preserves as
many properties as possible yet is not too restricted, we arrive at a “zoo” of definitions. For ex-
ample, we may or may not allow our transformation to use a finite tuple of parameters in the
structures. This approach was taken in Hirschfeldt, Khoussainov, Shore, and Slinko [257].

It is however worth noting that a formal and general definition of a strong effective reduction be-
tween classes exists and can be found in [243]. Essentially all known useful effective transformations
in the literature that satisfy Definitions 8.2.4 and 8.2.5 satisfy this definition from [243].

Furthermore, this definition is robust in the following sense. It was illustrated in [243] that
the notion in terms of functionals has an equivalent formulation using Lf, -definability. Both
definitions are a bit too technical and we won’t need them; thus, we omit them.

The canonical example of an effectively universal class is the class G of directed graphs. We will
see that, for any other class K of countable structures, the transformation ® witnessing K <gpp G
satisfies much more than required in Definition 8.2.1 and even more than is stated in Definitions 8.2.4
and 8.2.5 above. Indeed, from the perspective of computable structure theory, the graph ®(A) is
“essentially” A, up to a change of the signature.

8.2.2 Simple codings

The results contained in this subsection are folklore, and their proofs and proof sketches follow
Hirschfeldt, Khoussainov, Shore, and Slinko [257] closely!. The only exception is Theorem 8.2.9
which is trivial. As an immediate corollary of these results and Theorem 8.1.33, we obtain that in
all of these classes the isomorphism problem is X1 -complete. As we already noted before, the trans-
formations witnessing the effective completeness for these classes preserve computable dimension
and degree spectra, but the verification of these claims will be left as an exercise.

Throughout the rest of this subsection, we usually assume that our structures are infinite and
have domain w. The case of finite structures is usually not very interesting to us since we seek to
prove non-classification type results. (The case of finite structures was investigated in [283].) But
at least for the simple codings in this section, the coding in the finite case is typically exactly the
same as for the infinite case.

The effective completeness of directed graphs

The result below is folklore.

I'We thank Denis Hirschfeldt for allowing us to use the diagrams from [257].
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Theorem 8.2.6. Directed graphs form an effectively complete class.

Proof. Let A be a countable structure in a computable language with (possibly infinitely many)
constants cg,cq, ..., function symbols fy, f1,..., and relation symbols Ry, R1,.... Let k; be the
arity of f; and let I; be the arity of R;. See Fig. 8.2.2 for the idea behind the transformation. We
remark that there are many different ways to define A — G(A), so the particular transformation
from [257] which we adopt is certainly not canonical.

0
N

C():O

Ry(0,0) Ry(1,0)

~Ro(0,1)  —Ro(1,1)

Figure 8.1: A portion of G(A).

We give the detailed formal definition of A — G(A). The corresponding directed graph G =
G(A) and the set of directed edges F = E(A) consists of the following:

1. A unique node z with (x,z) € E.
2. A node z; for each element i € A, with (z,z;) € E.

3. Suppose j = ¢; in A. Then there is a cycle? of length 4i + 2 with an edge from z; to one of
the elements of this cycle.

2A cycle of length k is a sequence of elements xo,...,z,_1 so that there is an edge from z; t0 ;11 modk, €&
from zj_1 back to xg.
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4. For each function f; and each tuple (jo,...,jk,—1) in A, we put:

(a) a cycle C of length 47 + 3;

(b) a chain of elements yo, ..., yx,, where yg is an element of C, with an edge from y, to
Yn+1 for each n < k;;

(c) an edge from x;, to y, for each n < k;;

(d) an edge from yy, to x;, where j = f;(jo, ..., jk;—1) in A.
5. For each relation R; and each tuple (jo, ..., Jj;,—1) in A such that R;(jo,...,j;,—1) holds in A:

(a) a cycle C of length 4i + 4;

(b) a chain of elements yq,...,y;,—1, where yo is an element of C, with an edge from y, to
Yna1 for each n < l; — 1;

(c) and an edge from x;, to y, for each n < ;.
6. For each relation R; and each tuple (jo,...,Ji;,—1) in A such that R;(jo,...,Ji,—1) does not
hold in A:
(a) a cycle C of length 4i + 5;

(b) a chain of elements yo, ..., y;,—1, where yg is an element of C, with an edge from y,, to
Yn+1 for each n < [; — 1; and

(c) an edge from z;, to y, for each n < ;.
It is immediate that the transformation A — G(A) is uniformly effective, and furthermore, there
exist first-order existential formulae defining the relations and their complements of A inside G(A),

as well as the functions and the constant symbols. The verification of these properties is left as an
exercise. In particular, it follows that A — G(A) is injective on isomorphism types. O

Undirected Graphs

Recall that an undirected graph is simple if it does not have edges of the form (x, z). Since we view
our graphs as predicate structures, multiple edges are automatically excluded.

Theorem 8.2.7. The class of undirected simple graphs is effectively complete.

Proof. By Theorem 8.2.6, it is sufficient to prove that the class of directed graphs is effectively
reducible to the class of undirected graphs. Let G be a directed graph with edge relation E.
We define the symmetric, irreflexive graph H(G) = (H, F). See Fig. 8.2 for the idea behind the
transformation G — H(G). (Fig. 8.2 shows a part of H(G) coding E(0,1), E(1,0), E(1,2), E(2,2),
-FE(0,0), =E(0,2), =E(1,1), —E(2,0), and —=F(2,1).)

The formal definition is as follows.

1. H= {(l,d,b} U {ci,di,ei (1€ G}

2. F(z,y) holds only in the following cases.
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Figure 8.2: A part of H(G).

(a) F(a,a) and F(a,a).
(b) For all i € G,
i. F(a,c;) and F(c;,a),
ii. F(b,e;) and F(e;,b),
F(ci,d;) and F(d;, ¢;),
F(d;,e;) and F(e;,d;).
(c) If E(3,7) then F(c;,e;) and F(e;,¢;).

iii.
iv.

Obviously, G =~ G’ implies H(G) =~ H(G"). To see why H(G) =~ H(G’) implies G =~ G’, we show
that G is definable in H(G) (indeed, it is first-order 3-definable). Let

D={xeH:x#anF(a,z)} ={c;:i€G}
and
R(z,y) = {(z,y) : D(x) A D(y) A 3d,e(F(b,e) A F(y,d) n F(d,e) n F(x,e))}.

The definable predicates D and R essentially imitate G and E. To see that D and R are
invariant, it is enough to notice that x = a is the only element of Hg that satisfies the formula

IPy(F(z,y)) A Fz(F(x,2) A Vw(F(w, z) > w = x)),
x = a is the only element of Hs that satisfies
Fz,a) A Vy(F(z,y) =y = a),
and x = b is the only element of Hs that satisfies
I%y(F(z,y)) A~ ~F(a,z) A =32(F(a,2) A F(z, 2)).

We omit further elementary details. O

318



Exercises

Exercise® 8.2.8. Prove that the transformations in the proofs of Theorems 8.2.7 and 8.2.6 witness
that the respective classes are effectively complete with respect to computable dimension and degree
spectra.

Discrete metric spaces under isometry

We say that a discrete metric space M is rational-valued if d(x,y) € Q for any =,y € M. Such
spaces can be viewed as algebraic structures in the language (D;)reqg, where D, (z,y) holds iff
d(z,y) = r. Further, two discrete metric spaces are isometrically isomorphic iff the respective
algebraic structures are isomorphic. Thus, such as space is not really an honest metric space; it
can be viewed as a countable algebraic structure. The fact below is trivial, but it will be useful in
the last chapter. Recall that, according to Definition 8.2.2, an effectively complete class has to be
<grr-above any class of discrete structures in a computable language.

Theorem 8.2.9. Rational-valued discrete Polish spaces (viewed up to isometry) are effectively
complete.

Proof. We use the universality of undirected simple graphs established in Theorem 8.2.7. For a
graph G, define M (G) upon the set of vertices of G under the following metric:

1.z # y and (z,y) € E implies d(z,y) = 1;
2. x # y and (z,y) ¢ E implies d(z,y) = 2;
3. d(z,x) =0, for all .

The triangle inequality d(z,y) + d(y, z) = d(z, z) follows from a straightforward case analysis,
and the positivity of d is evident. Also,

(z,y) € E if and only if d(x,y) = 1,
so the graph relation is definable in M(G). O

Of course, every space of the form M(G) is automatically a computable Polish space. On the
other hand, in every computable Polish space isometric to M (G) we can uniformly decide whether
d(x,y) = 0 or 1 or 2, for every pair of points. It should be clear that the transformation G — M (G)
preserves computable dimension and degree spectra, and indeed, perhaps any reasonable property
one can possibly think of.

Exercises

Exercise® 8.2.10. Let ® be one of the transformations described in Theorems 8.2.6, 8.2.7, and
8.2.9. Prove that A is X-computably isomorphic to B if, and only if, ®(A) and ®(B) are X-
computably isomorphic.
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Exercise® 8.2.11. Let ® be one of the transformations described in Theorems 8.2.6, 8.2.7, and
8.2.9. Show that there is a uniformly effective transformation X +— S(X) such that whenever
X = ®(A), we have that S(X) =~ A. Furthermore, and this reverse transformation S has the
property described in the previous exercise, i.e., respects X-computable isomorphisms (whenever it
is defined).

8.2.3 Integral domains and 2-step nilpotent groups*

Recall that an integral domain is a commutative ring with identity that has no zero divisors, i.e.,
a - b = 0 implies that either a = 0 or b = 0. Every integral domain is contained in its field of
fractions, and every finite integral domain is a field.

Theorem 8.2.12 (Hirschfeldt, Khoussainov, Shore, and Slinko [257]). Let p be either 0 or a prime.
The class of integral domains of characteristic p is effectively complete. Furthermore, it is complete
with respect to degree spectra and computable dimension.

Sketch. It is sufficient to effectively transform graphs into integral domains. The graphs constructed
in §8.2.2 have the following property: for every finite set of nodes S there exist nodes x,y ¢ S that
are connected by an edge. Let G be a symmetric, irreflexive, countably infinite graph with edge
relation F, having the property mentioned above. We assume that the domain |G| of G is w.

The construction is essentially the same for the cases of infinite and finite characteristic p. Thus,
it makes sense to adopt a unified notation. Let Zy = Z. We write I,, = I be the set of invertible
elements of Z,, including the case when p = 0. (Note that for each p, I is finite.) The integral
domain A(G) is defined to be

ZA@JEM[y:E@ﬁH

il

:ﬂE@Jﬂ[jﬁLnew}

il i

where, fractions are interpreted as elements of the enveloping fraction field of Z,[z;,z,y], and
R[X][Y] is identified with R[X U Y] under the natural isomorphism.

It is easy to see that when G is computable, A(G) is computable too, and this is uniform. To
reconstruct G from an isomorphic copy A of A(G), define

Dz{xeA:xqéI/\ﬂr(mQT:Z)}’

Q= {(z,2"): D(x) AJa € I(z' = ax)},

and

R={(z,2"): D(z) A D(2) A =Q(z,2") A Ir(rza’ = y)}.

Using a relatively involved (but self-contained) combinatorial argument, it is possible to show that
D and R are invariant under any automorphism of the ring. The graph G is isomorphic to (D, R)
defined on the @Q-classes of elements. The definability analysis indeed shows that both R and D
are computable relative to A, thus giving universality with respect to degree spectra.

It takes a bit more effort to prove that the coding also gives completeness with respect to
computable dimension, since any isomorphism between copies of A(G) effectively induces an iso-
morphism between the respective definable copies of G, and vice versa. (We omit the details.) O
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As noted in [257], the proof outlined above also illustrates that the multiplicative semigroup
upon the generators

. ) .. z .. Y .
+1} ufx; :1e N} U s B(i, U - FE(d, Ul =:i,new;.
(o toieN o {2 B | o { 2 m | o { 2 }
also effectively codes the graph G preserving most effective properties of interest, including com-
putable dimension and degree spectra.

Recall that every field is trivially an integral domain. Using algebraic geometry, the following
stronger result was established by Miller, Poonen, Schoutens, and Shlapentokh [397]; we omit the
proof.

Theorem 8.2.13. Theorem 8.2.12 holds for the class of fields (of arbitrary characteristic).

Let G be a group. The center of G is the set {z € |G| : Vy € |G| (zy = yx)}. The commutator
[z,y] of 2,y € |G| is the element xyz~1y~!. The group G is 2-step nilpotent if [z, y] is in the center
of G for every pair of elements z,y € |G|.

Theorem 8.2.14 (Harisanov et al. [230], based on [257]). The class of 2-step nilpotent groups
18 effectively complete. Furthermore, it is complete with respect to degree spectra and computable
dimension.

Proof idea. This is an effectivisation of an old result that [257] attributes to Mal’cev. By Theo-
rem 8.2.12; it is sufficient to define a transformation R — Gp from integral domains of any fixed
characteristic to 2-step nilpotent groups. Let R = (|R|,+,-,0,1) be a countably infinite integral
domain of characteristic p > 2. Define Gy to be the group of upper triangular 3 x 3 matrices of
the form

b
1
0

O O =
— 2 0

a,b,c € |R|, which is known as the Heisenberg group of R. The verification is omitted, but we
note that [257] uses two non-uniform parameters to reconstruct the integral domain from G g, and
in [230] the use of these two parameters is eliminated. (Indeed, it is illustrated that any pair of
non-commutative elements could be used to reconstruct R.) O

In all examples of transformations that we presented above the effective completeness was wit-
nessed by a transformation that preserved lots of computability-theoretic properties of the trans-
formed structures, including computable dimension. However, Definition 8.2.2 in its raw form does
not assume any of these additional properties. If we take Definition 8.2.2 as the base of our theory,
and do not put any additional restrictions we of course can obtain more effective completeness
results, and often via much simpler proofs. For example, it is easy to see that the elementary
embedding of graphs into fields of characteristic zero described in Exercise 8.2.32 is effective, thus
showing that such fields lie on to under <gpp. In contrast, establishing “effective universality” of
fields (Theorem 8.2.13) requires a lot more effort.
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8.2.4 A Type I version of effective completeness

Definition 8.2.2 uses a Turing functional ®, perhaps with parameters, to transform arbitrary count-
able structures from the given class. The “Type I” analogue of this notion works on indices of
computable structures. It is as follows. Note that the isomorphism problem for a class of com-
putable discrete structures is typically ¥}, and the same is true for a class of computably compact
Polish spaces. Further, the induced equivalence relation is defined on a (hyper)arithmetical subset
of w which corresponds to the index set of the class. The definition below is abstract and does not
mention classes of structures at all, and it is not restricted to isomorphism problems on structures.

Definition 8.2.15 (Friedman and Fokina [170]). Let E, R be a X}-equivalence relations on
(hyper)arithmetical subsets of w.

1. We write F <pp R and say that E is F'F-reducible to R if there is a (partial) computable
function f such that
zFEy if and only if f(z)Rf(y),

where we of course assume f always halts on the support of £ and outputs an index in
K.
2. A %} equivalence relation on w is effectively complete among 1 -equivalence relations, or

simply FF-complete, if it is F'F-reducible to any 1 equivalence relation on w.

3. We say that a class IC of computable structures is F'F-complete if the isomorphism prob-
lem for K is F'F-complete.

We are mainly interested in the F F-reducibility between classes of structures.

Separating the Type I and Type II effective reducibilities

It is clear that K1 <gpp Ko implies K1 <pp K. Of course, <pp-reducibility is in general
weaker than the <gpp-reducibility, as the elementary example below illustrates. A much more
insightful result separating Type II and Type I effective completeness will be given a bit later, in
Theorem 8.2.25.

Example 8.2.16. Fix an abelian group H < Q that has no computable presentation. For each
n € N, consider the classes F;, of homogeneous c.d. groups of rank < n; there are groups of the form
H™, m < n, including {0} for m = 0. Then each class has exactly one computable structure, this
being {0}, and thus

F, =rr Fp,

for all m,n € N, via the identity function. However, F,, 1 €grr F,, by pigeonhole.

The exaggerated Example 8.2.16 above is rather unsatisfying. It works simply because the
compared classes do not have “enough” computable members. A natural question arises as to
whether the two notions of reducibility, <gpp and <pp, can be distinguished using only subclasses
K$ and K§ composed of the computable members of the compared classes.
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We now explain why the answer is (essentially) negative, at least for all “natural” classes of
structures that we have encountered in Proposition 7.1.1, and many more. We have already men-
tioned infinitary computable formulae in the introduction, but we delay the more detailed discussion
until Chapter 10 (Definition 10.1.4). Here, we briefly explain the little that is needed to prove the
next theorem.

A II§-class of structures is a class that is described by a single computable infinitary axiom of

the form

N\ Vivi(z),

eW
where (¢;(Z)):ew is a c.e. sequence of formulae (i.e., W is a c.e. set listing their Godel numbers), each
1; being a c.e. disjunction of first-order existential formulae. For example, any class axiomatised by
a computable collection of first-order V3-axioms is a II§-class. Every class from Proposition 7.1.1 is
certainly like that. We do not need to know more about infinitary logic to prove the result below,
which appears to be new.

All our classes have computable signatures, and we assume all structures have domain < w.
Without loss of generality, we can also replace all operations with the relations representing their
graphs. This will not violate the property of being a II§-class, but it will make the notion of
“effective density” easier to define.

Definition 8.2.17. Computable structures are effectively dense in a class K if there is a uniformly
computable collection of structures (X;);en in K such that an arbitrarily large finite substructure
of A € K can be extended to some structure from the list.

All classes listed in Proposition 7.1.1 have this property, but this is not true for the ad-hoc
classes described in Exercise 8.2.16.

Theorem 8.2.18. Suppose K1 and Ko are I1§-classes of algebraic structures in which further-
more computable structures are effectively dense. Then K1 <pp Ko tmplies K <gprr KS,
i.e., the F'F-reduction can be witnessed by a Turing functional that is guaranteed to work on
computable members of the classes.

Proof of Theorem 8.2.18. In Exercise 2.4.34 we saw that I can be associated with C(K) € w* so
that computable structures are in a natural effective 1-1 correspondence with the computable points
of this set. Computable structures are effectively dense in KC if there is a uniformly computable
sequence of structures in K so that the corresponding points are dense in C'(K).

Recall that in Exercise 4.2.88 we defined a subset of a computable Polish space to be effectively
Gy if it is an intersection of uniformly effectively open sets. The reader should convince themselves
that all classes K from Proposition 7.1.1 correspond to effectively Gy subsets C(K) of w*. In
Exercise 10.1.67(1) we will see that, for any II5-class IC, C'(K) € w is effectively G5. This is the
only step when we need infinitary logic.

As we mentioned earlier, computable structures in X are in a uniform 1-1 correspondence with
computable points in C'(K). (More generally, every computable structure in the language of K can
be uniformly effectively associated with its code in w*.) By Exercise 4.2.88, C'(K1) and C(Ks)
admit computable complete metrics. Together with the respective dense sequences of computable
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(codes of) structures, C'(K1) and C(K3) are computable Polish. Furthermore, we can uniformly
effectively pass between computable points in the original metric on w* and the new complete
metric in C(K;) (i = 1,2), provided that the points lie in C(K;).

Recall that in Chapter 2 we proved Kreisel-Lacombe-Shoenfield-Markov Theorem 2.3.7 which
says that every Markov (Type I) computable real function is Borel computable. That is, every
Markov computable function is realised by a Turing functional that is guaranteed to work cor-
rectly when the inputs are computable reals. In Exercise 2.4.35 (Ceitin [82]) we saw that this
result also holds for computable Polish spaces too via a relatively straightforward generalisation of
Theorem 2.3.7.

A reduction K7 <pp Ko induces a Markov computable function from C(K;) to C(K3). By
Exercise 2.4.35, there is a computable functional that works on computable members of C(K;) to
C(K3). This functional can be uniformly turned into a functional witnessing K¢ <gpp KS. O

We remark that the effective density of computable structures in Ko can be dropped. Perhaps,
the result can be extended to cover classes of separable structures as well. Indeed, we suspect that
an even more general result holds, but we shall be satisfied with Theorem 8.2.18 as stated and leave
it at that.

The FF-completeness of trees and torsion abelian groups

Similarly to what we had with EF F-completeness, any F F-complete class will have its isomorphism
problem Yi-hard. However, the F'F-completeness of K should not be confused with the usual $1-
completeness for the isomorphism problem for . Thus, the theorem below is not an elementary
consequence of Theorem 8.1.5.

Theorem 8.2.19 (Fokina et al. [171]). The class of computable trees is FF-complete.

Before we prove the theorem, we briefly review some definitions introduced earlier in §8.1.2.
Our trees are isomorphic to subtrees of w<*. Let S,T € w=<% be trees. Recall that we define the
tree S =T to consist of ordered pairs (a,7), where a € S and 7 € T. The successors of (o, 7) are the
pairs (0, 7'), where o’ is a successor of o in S, and 7’ is a successor of 7 in T. We also write tr(x)
for the tree rank of a node = in T, and tr(7) for the tree rank of the root of T

Proof of Theorem 8.2.19. We follow [171] closely. We will need a technical notion first introduced
in [171].

Definiti