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Abstract. The paper contributes to the general program which aims to eliminate unbounded search

from proofs and procedures in computable structure theory. A countable structure in a finite language

is punctual if its domain is omega and its operations and relations are primitive recursive. A function
f is punctual if both f and f−1 are primitive recursive. We prove that there exists a countable rigid

algebraic structure which has exactly two punctual presentations, up to punctual isomorphism. This

solves a problem left open in [Mel17]; see also [BDKM].

1. Introduction

After decades of development, computability theory and computable structure theory [EG00, AK00]
gave a well-developed framework to investigate the limits of computation in mathematics. Beginning in
the 1980’s and rather independently, there has been quite a lot of work on online infinite combinatorics;
see [Kie81, Kie98, KPT94, LST89, Rem86]. Nonetheless, there is no general and established theory for
online structures, and until recently there has been very little (if any) correlation between computable
structure theory and online combinatorics. The paper contributes to a new general program [KMN17b,
Mel17, BDKM, KMN17a, MN] that aims to lay the foundations of online computability in algebra
and combinatorics. The new program has many aspects; see surveys [Mel17, BDKM] for a detailed
exposition. The main result of the paper belongs to a branch of this new framework which is motivated
by the classical results on (Turing) computable algebraic structures. The result resembles the well-
known theorem of Goncharov [Gon80, Gon81] saying that there is a structure of computable dimension
two. Informally, our theorem says that there is a structure of “online” or “punctual” dimension two;
the formal definitions will be given shortly. Although the statement of our result is similar to the
statement of the above mentioned Goncharov’s theorem, our proof shares almost nothing in common
with the proof in [Gon80] (or with any other known dimension two proof). Now to the details.

1.1. Turing computable mathematics. The general area of computable or effective mathematics is
devoted to understanding the algorithmic content of mathematics. The roots of the subject go back
to the beginning of the 20th century as discussed in [MN82]. Early work concentrated on developing
algorithmic mathematics in algebra, analysis, and randomness; e.g., [Her26, Deh11, Bor09, vM19].
These ideas were later recast by Godel, Kleene, Church, Turing and others and, in particular, lead to
the refutation of Hilbert’s conjecture on decidability of first order logic.

The standard model for such investigations is a (Turing) computable presentation of a structure. By
this we mean a coding of the structure with universe N, and the relations and functions coded Turing
computably. There has been a large body of work on Turing computable presentations of structures,
see books [EG00, AK00] and the relatively recent surveys [FHM14, Mil11].

One topic in such investigations is the study of computable structures up to computable isomorphism.
The motivation here is clear: algebraic groups and fields are viewed up to algebraic isomorphism, topo-
logical groups and rings are studied up to algebraic homeomorphism, and therefore the right morphisms
in the category of computable algebraic structures are the computable algebraic isomorphisms. Malt-
sev [Mal61] was perhaps the first to make this idea explicit and formal. He also initiated a systematic
study of structures which have a unique (Turing) computable presentation up to (Turing) computable
isomorphism. Such structures are called computably categorical or autostable. As was first noted by
Goncharov, in many natural classes an algebraic structure has either exactly one or infinitely many
computable presentations up to computable isomorphism, see [EG00] for many results illustrating this
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dichotomy. Remarkably, via an intricate argument Goncharov [Gon80] constructed an algebraic struc-
ture which has exactly two computable presentations up to computable isomorphism. Although the
first such structure was algebraically artificial, similar examples can be found among two step nilpo-
tent groups [Gon81], (remarkably) fields [MPSS18], and some other natural classes [HKSS02]. There
has been many further remarkable works on finite computable dimension with applications to degree
spectra of relations and categoricity spectra; see the somewhat dated survey [KS99], the excellent PhD
thesis of Hirschfeldt [Hir99], and also the very recent paper [CS19].

Note that this framework uses the general notion of a Turing computable function. In particular,
we put no resource bound on our computation. One therefore naturally seeks to understand whether
the abstract algorithms from computable structure theory can be made more feasible.

1.2. Feasible mathematics. What happens when we put resource bounds on the definitions of al-
lowable computation?

Khoussainov and Nerode [KN94] initiated a systematic study into automatically presentable algebraic
structures. Automatic structures are linear-time computable and have decidable theories, but such
presentations seem quite rare. For example, the additive group of the rationals is not automatic [Tsa11].
The approach via finite automata is highly sensitive to how we define what we mean by automatic. See
[ECH+92] for an alternate approach to automatic groups. Cenzer and Remmel, Gregorieff, Alaev, and
others [CR98, Gri90, Ala17, Ala18] studied the much more general notion polynomial time presentable
structures. We omit the formal definitions, but we note that they are sensitive to how exactly we code
the domain. In contrast with automatic structures, in many common algebraic classes we can show
that each Turing computable structures has a polynomial-time computable isomorphic copy [Gri90,
CR, CR92, CDRU09, CR91].

Kalimullin, Melniukov and Ng [KMN17b] noted that many known proofs from polynomial time
structure theory (e.g., [CR91, CR92, CDRU09, Gri90]) are focused on making the operations and
relations on the structure merely primitive recursive, and then observing that the presentation that we
obtain is in fact polynomial-time. The restricted Church-Turing thesis for primitive recursive functions
says that a function is primitive recursive iff it can be described by an algorithm that uses only bounded
loops. Furthermore, to illustrate that a structure has no polynomial time copy, it typically easiest to
argue that it does not even have a copy with primitive recursive operations; see e.g. [CR92]. From a
computable model theory perspective, the most natural way to construct structures is via a Henkin
construction. Almost all natural decision procedures in the literature are primitive recursive, and
as observed in [KMN17b] the natural Henkin construction will automatically give an appropriately
primitive recursively decidable model.

Kalimullin, Melnikov and Ng [KMN17b] thus proposed that primitive recursive structures provide
an adequate and rather general model to unite the theories of feasible (polynomial-time) structures
and online combinatorics. Although their approach may seem way too general, they very shortly
discovered that “merely” forbidding unbounded search leads to a profound impact on both intuition
and techniques. Also, compare this to the approach in, e.g., Kierstead [Kie81] where the only restriction
on an algorithm is that it must have a bounded use, and there is no resource bound imposed otherwise.

Primitive recursiveness gives a useful unifying abstraction to computational processes for structures
with computationally bounded presentations. In such investigations we only care that there is some
bound. We have to act “now” or “without unbounded search”, where these notions are formalised in
the sense that we can precompute the bound. Irrelevant counting combinatorics is often stripped off
proofs thus emphasising the effects related to the existence of a bound in principle. These effects are
far more significant than it may seem at first glance; the non-trivial and novel proof of the main result
of the paper will be a good illustration of this phenomenon. See [BDKM] for a detailed exposition of
the new unexpectedly rich and technically non-trivial emerging theory of primitive recursive structures.
Below we focus only on the aspects of the theory relevant to the present article.

1.3. Punctual computability. Kalimullin, Melnikov, and Ng [KMN17b] proposed that an “online”
structure must minimally satisfy:

Definition 1.1 ([KMN17b]). A countable structure is fully primitive recursive (fpr) if its domain is N
and the operations and predicates of the structure are (uniformly) primitive recursive.
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We call fpr structures computable without delay, punctually computable, or simply punctual. The
intuition is that a punctual structure must reveal itself without unspecified delay. Here “delay” really
means an instance of a truly unbounded search. We could also agree that all finite structures are also
punctual by allowing initial segments of N to serve as their domains. Although the definition above is
not restricted to finite languages, we will never consider infinite languages in the paper; therefore, we
do not clarify what uniformity means in Def. 1.2.

Recall that the inverse of a primitive recursive function does not have to be primitive recursive.

Definition 1.2 ([KMN17b]). A function f : N → N is punctual if both f and f−1 are primitive
recursive.

Punctual isomorphisms appear to be the most natural morphisms in the category of punctual structures.
We say that a structure is punctually categorical if it has a unique punctual presentation up to punctual
isomorphism.

Kalimullin, Melnikov and Ng [KMN17b] characterised punctual categoricity in many standard al-
gebraic classes. Similarly to the above-mentioned “1 vs. ω” Goncharov’s dichotomy in (Turing) com-
putability, it is easy to see that in each of these classes a structure has either one or infinitely many
punctual copies. Thus one naturally seeks to either confirm or refute the conjecture saying that the
1 vs. ω dichotomy holds in the punctual world. The main obstacle in proving or disproving the
conjecture has been the lack of adequate techniques and, more importantly, of intuition. To illus-
trate the counter-intuitive nature of punctual structures, we mention that Kalimullin, Melnikov and
Ng [KMN17b] constructed a punctually categorical structure which is not computably categorical.
Although this sounds contradictory, the latter does not (formally) imply the former; nonetheless, all
natural examples seemed to confirm that the implication must hold. After a few years of investigation,
we have finally accumulated enough intuition and technical tools to finally refute the conjecture.

Theorem 1.3. There exists an algebraic structure which has exactly two punctual presentations, up
to punctual isomorphism.

The proof combines a “pressing” strategy from [KMN17b] with a new technique and several new
ideas. We emphasise that our proof shares virtually nothing in common with Goncharov’s dimension
two proof. The only similarity is perhaps their hight combinatorial complexity. The reader therefore
should prepare themselves for a relatively involved proof. We strongly conjecture that our proof can
be modified to produce a structure with exactly n incomparable degrees. We however leave it as a
conjecture for someone to verify. We also believe that both the result and the new techniques introduced
in its proof will find important applications in the theory of punctual structures, and perhaps beyond.

The rest of the paper is devoted to the proof of Theorem 1.3. We also state several further open
questions in a short conclusion (Section 3).

2. Proof of Theorem 1.3

2.1. The requirements. We are building two punctual presentations A ∼= B of a countably infinite
rigid structure in a finite language which will be described in due course.

We need to meet the following requirements:

A|prB
and

Pe
∼= A =⇒ Pe

∼=pr A or Pe
∼=pr B,

where Pe stands for the e’th punctual presentation in their total enumeration (recall the domain has
to be the whole of ω).

The former requirement we split into subrequirements:

pe : A 6→∼= B and pe : B 6→∼= A,
where pe stands for the e’th primitive recursive function in their uniform total enumeration.
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2.2. The pressing strategy. Although these below requirements are not quite the requirements we
will have to meet, it is easier to describe the strategy (which we call the pressing strategy) for these
simplified requirements; we then modify the strategy to alternate between two copies.

Thus, we attempt to meet, for each e, the requirement

A ∼= Pe =⇒ A ∼=fpr Pe,

where (Pe)e∈ω is the natural uniformly computable listing of all punctual structures. Clearly, the list
itself is not primitive recursive, for otherwise we would be able to produce a punctual structure which
is not in the list. The reader should think of Pe as of being “increasingly slow” in e. However, we will
argue that for each fixed e there is a primitive recursive time-function, i.e., a function that bounds the
speed of approximation of Pe =

⋃
s Pe,s within the overall uniform primitive recursive approximation

(Pe,s)e,s∈ω. We take this property for granted throughout the proof; see the Appendix of [BDKM] for
a formal clarification.

2.2.1. Pressing P0. The idea is as follows. Start by building an infinite chain using a unary function
S:

0→ S(0)→ S2(0)→ S3(0)→ · · · ,
and use another unary function, say U , to attach a U -loop of some fixed small size to each Sn. To be
more specific, suppose we attach 2-loops. Use another unary function r that sends each point back to
the origin:

∀x r(x) = 0.

Do nothing else and wait for the opponent’s structure P0 to respond. (The structure will be rigid.)
The opponent’s structure P0 must give us a few 2-loops, otherwise P0 6∼= A. However, it is important

to see how exactly P0 could fail to be isomorphic to A.

(1) The structure P0 does not even look right; that is, it is not an S-chain, etc. In this case we do
nothing.

(2) Otherwise, P0 could give us an U -loop of a wrong size, say 4. Then we will forever forbid 4 in
the construction.

(3) P0 starts growing a long simple U -chain. It is easiest to drive it to infinity in the construction,
as follows. At stage s other strategies will be allowed to use only loops that are shorter than
the U -chain as seen in P0[s].

Assume none of the above cases apply. Then P0 does respond by giving us a few consequent 2-loops.
Note that, perhaps P0 has not revealed the position of x in the S-chain. This point could correspond
to one of the 2-loops that we have produced in A while waiting for the slow P0 to give us something.
But one of our tasks is to demonstrate that the (unique) primitive recursive isomorphism from P0 to
A is primitive recursive. We must decide promptly where x must be mapped. But we cannot just keep
building 2-loops in A, as it will give the opponent an upper hand.

Instead, as soon as P0 responds by giving a 2-loop, we switch from the pattern

2− 2− 2− 2− 2− 2− 2− 2− · · ·

to the pattern (say)

2− 4− 2− 4− 2− 4− 2− 4− · · · ,
assuming that 4 is currently not forbidden in the construction.

How do we punctually map x ∈ P0 (see above) to A? Recall that x was a part of a chain of a few
consequent 2-loops. In A, the initial segment consisting of adjacent 2-loops has a specific length that
we know at the stage, say k. In P0, calculate r on x to find the origin, and then calculate S of the
origin at most k times to figure the position of x.

To compute the unique isomorphism from A to P0, simply start from the origin in P0 and map A
onto P0 naturally, according to the speed of P0. We use the primitive recursive time which measures
the speed of its enumeration (see the discussion above). In a way, this will be a non-uniformly primitive
recursive proof.
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2.2.2. Pressing P0 and P1. For simplicity, the highest priority structure can be pressed using loops
attached to even positions in the S-chain:

0, S2(0), S4(0), · · · , S2k(0), · · ·

and the lower priority P1 will be associated with odd positions of the S-chain. Also, P0 will be using
U -loops of even length, and P1 of odd length.

The difference is that the loops corresponding to P0 are located at even positions:

2−�− 2−�− 2−�− 2− · · · ,

where the content of the �s does not worry the strategy. The strategy then switches to:

· · · − 2−�− 4−�− 2−�− 4− · · · ,

assuming 4 is small enough and is not restrained. If the strategy for P0 must act again then we could
sue a more complex pattern of 2 and 4, such as:

· · · − 2−�− 4−�− 4−�− 2−�− 4−�− 4 · · · .

Alternatively, we could start using 23 = 8:

· · · − 2−�− 8−�− 2−�− 8−�− 2−�− 8 · · · .

We prefer to go with the second option. For simplicity, we associate each Pi with loops of sizes pki ,
k ∈ ω, where (pi)i∈ω is the standard list of all primes. Then we could slowly introduce longer loops
into the construction, when we are ready. This will allow to keep the strategies fairly independent from
each other.

Remark 2.1. Even in the most general case of many strategies, we could get around with using only
2 and 4 (and their patterns) throughout the construction, for P0. At a late enough stage we will know
the size of the interval that we have to check in P0 to understand where the respective location is.

From the perspective of the strategy working with P0, the following scenaria are possible:

• P0 has an obviously wrong isomorphism type. This is an instant win which requires no action.
• P0 shows and S-interval of length 4 with a loop of size 2k, where k has not yet been used.

Then the strategy forever forbids the interval, and thus guarantees P0 is not isomorphic to the
structure.

• P0 shows an S-interval of length 4, and at least one of the loops that could potentially have
length of the form 2k has not closed yet. We wait until the chain grows longer than the largest
loop of the form 2k used so far. While we are waiting, we keep building our chain using the
same pattern as before. We will never switch to a new pattern of powers of 2. Again, P0 must
have a wrong isomorphism type.

Remark 2.2. Note that, in the third clause we do not worry about the � components, and this
trick removes some tensions in the construction. We elaborate it using an example. Suppose we see a
sequence x−y−z−w of S-successors. We start evaluating the unary function for all of them. Suppose
the P0-strategy have used loops of sizes 2, 4, 8.

Evaluate the unary function on x, y, z, w exactly 8 times. We have the following sub-cases:

• We discover that exactly two loops (x and z or y and w) form an admissible pattern of powers
of 2. Then ignore what happens at the other two points, even if their chains have not yet
closed.

• We discover that x− y − z − w cannot possibly give us a right pattern of powers of 2. This is
judged based on the sizes of the (finite) loops that we discover.

• None of the two cases above. This means that some of the chains are longer than 8, which
makes k > 3 in any configuration of the form 2−�− 2k or 2k −�− 2 that could potentially
be realised by the sequence in the future. In this case it is sufficient to forbid 2k when (and if)
it is every discovered. Meanwhile, keep using only 2, 4, and 8.
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Meanwhile, the locations reserved for P1 – these are marked with � above – will be filled with 3
and perhaps (later) with 3k for some k. Our punctual definition of the isomorphism between P1 and
A is essentially the same as in the description of one strategy in isolation. We only need to look at a
bit larger interval in P1 around a given point x.

2.2.3. Pressing all Pe at once with a single S-chain. In the general case of many Pe we generalise
the ideas described above. At later stages the construction will respect more of the P -structures. To
implement the above idea, we allow P0 to play at every second location, P1 at every forth, P2 at every
eighth etc., and we fill the missing locations with loops of size 1. When we are ready to monitor Pj ,
we start replacing the filler 1-loops with loops of the form pkj . This way there is always some room left
for the next Pj when it steps into the construction.

Also, using 1 as a filler will allow for a similar analysis as above, where we could pick an interval and
challenge the opponent’s structure to show us loops or chains in the interval. Note that Pj will know
the minimum length of an S-interval sufficient for at least two loops (associated with Pj) to be found
in the interval. Initially, this length will depend on the stage at which Pj steps into the construction.
Later, if Pj responds, this length can be dropped to a constant dependent on j (more specifically, 2j+2).
The outcomes in the general case are similar, and the strategies still act independently. See [KMN17b]
for a further explanation.

2.2.4. Making the chains finite. In the subsection above the whole structure was assumed to be one
single S-chains with complicated patterns of U -loops, and with another unary function r which maps
every point to the single generator – the left-most point in the S-chain.

Clearly, our structure will be much more complicated than just one chain. For that, we should be
able to close a chain and start a new one.

Suppose at a stage of a construction we are monitoring P0, . . . , Pk. If each of these structures
either responded by giving the right patterns or have been declared dead, we can finish the
current S-chain by declaring S(x) = x for the right-most point. We say that the chain is now
closed. We immediately start a new, disjoint S-chain which is built using updated patterns.
The patterns are updated according to the basic pressing strategies for P0, . . . , Pk and the first-
attended Pk+1.

Note that making the chains finite does not change the essence of the pressing strategy. We still
can recognise the “coordinates” of any point of Pi using the same argument as in the case of a single
S-chain. This idea was first used in [KMN17b].

Notation 2.3. We will also use another unary function p to connect chains. The unary function will
be used to map the final element of a chain to the root (the generator) of some other chain.

We will view every finite S-chain as a substructure. Its isomorphism type will be uniquely determined
by the patterns of loops used in its definition. Furthermore, we will guarantee that any isomorphic
pair of finite S-chains will be automorphic.

Notation 2.4. For future convenience, we will use letters with subscripts do denote finite chains. We
imagine that the S-chains are build from left to right, with the generator being the left-most point.

• x3 means that x3 has been finished, and x3 means that the chain is still being built.

• a1 ← a2 means that the final point of the chain a2 is mapped to the left-most point of the closed

chain a1 under the unary function p. We note that only closed chains can be mapped to chains,
and only to closed chains.

• c1 L99 c2 means that we intend to map c2 to c1 as soon as c2 is declared closed.

2.2.5. Chains of chains, and a special binary relation K. We can form chains of chains, abbreviated
ch.ch., using the unary function p. Using the chains of chains we will be able to put more than one finite
chain of some fixed isomorphism type into the construction without upsetting the pressing strategies.

For that, we will be using a new binary relational symbol K. We illustrate this procedure in the
example below.
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Example 2.5. We emphasise that the steps (1)-(5) below do not guarantee the correctness of the
procedure. The necessary modification to the steps, which involves K, will be described in detail after
we describe the 5 steps below.

(1) x1.
(2) x1.

(3) x1 L99 x2.

(4) x1 ← x2, initiate x3.

(5) x3, and instantly x′1 ← x3, where x′1
∼= x1 is a new chain.

As the result of these actions we obtain x′1 ← x3 and x1 ← x2,, with x′1
∼= x1. However, the

opponent’s structure P = Pe could give us its copy of x′1 too early, long before we finish or even initiate

x3. Another possibility is that P shows x′1 before it shows x1. But then P will have to show x2

according to the pressing strategy, and therefore he will have to show us his version of x1 before we
close x3. Either way, we will see x1 and x′1 together in P before we put them into our structure. In this
case:

(a) We ask P to calculate K on the generators of both x1 and x′1; we abuse notation and write
K(x1, x

′
1). (We note that x1 does not have to be closed here. The trick works at any stage of

the procedure described above in (1)-(5).)
(b) As soon as the answer is known, all we need to do is to make the value of K different in our

structure when we finally introduce x′1 to our structure A.

It follows that in this scenario P 6∼= A.

Not that the same trick with K can be used to prevent the opponent from showing any pair of
chains too early (these two do not have to be isomorphic chains). As long as we have not seen these
two chains together in our copy, we can later “kill” P by defining K differently from what it is in P
on this pair.

The overall conclusion for this section is:

If Pe
∼= A then Pe cannot reveal itself too early.

It must follow A lagging behind and copying it with a (punctual) delay.

2.3. One basic strategy in isolation. We will follow the notation and terminology introduced in
the previous section. In particular, we will be forming (finite) chains according to the instructions of
the pressing strategy as described in Subsection 2.2.

Initially, start building A and B as follows:

• Put a chain x1 into A and a chain x2 into B.
• Do not close (finish) the chain until P0 chooses to either copy x1 or to copy x2; however, still

keep the chains open.
• Wait for pe : A → B to prove that it is not an isomorphism.

Remark 2.6. We pause the description of the strategy to emphasise the implicit use of a
binary predicate K which is crucial even at the first stages of the strategy. We must make sure
A ∼= B, and therefore at some point in the future we must introduce x1 to B and x2 to A. The
opponent’s structure may try to reveal both x1 and x2 too early (to be more precise, not x1

and x2 but their recognisable fragments). But in this case we evaluate K on x1 and x2. Note
that x1 and x2 have not yet been seen together in A (or B). Later, when we finally put both
chains into A (and B), we will define K differently on them, thus making sure A 6∼= P .

We also note that, unless there is a specific instruction for K, we set K equal to 1. We
resume the strategy below.

• After the waits above have been finished, close x1 in A and x2 in B.
• Immediately initiate x3 in A and x4 in B.

Remark 2.7. Currently A consists of x1 and x3, and B contains only x2 and x4.

• Wait for P to show a segment of x3 or prove P 6∼= A. (Recall that P follows A.)
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Remark 2.8. Note that, according to the description of finite chains given in the previous
section, as soon as we recognise a segment l of x3 we can, with a bounded delay, reconstruct
the chain connecting the origin of x3 with l. Also, if P chooses to show some other pattern
which we plan to include into A later, we use K (as described above) to ensure P 6∼= A.

• Once P responds, initiate the B-recovery and A-recovery stages (simultaneously) as described
below. Note that x3 and x4 have not yet been declared finished yet.

• A-recovery: Using a fresh point on x3 which has just been introduced and a unary function p
(see Notation 2.3), map this point of x3 to x2 (which must be instantly introduced in A). This

forces P to introduce x2 too:

Remark 2.9. Currently A consists of x1 and x2 ← x3.

• B-recovery: Simultaneously with A-recovery, use a fresh point along the x4-chain and p to put
x1 into B.

Remark 2.10. Currently B consists of x1 ← x4 and x2. Of course, in isolation we would not

have to be too careful with B because P has chosen to copy A. However, in general care must
be taken, so we treat A and B symmetrically.

• Close x3 and x4.

After the module above has finished its work, immediately restart the strategy using fresh chains
x5 and x6 in A and B instead of x3 and x4, respectively. We diagonalise against another potential
isomorphism, this time from B to A. Later, use fresh points on these chains and p to put x4 into A
and x3 into B. Then repeat this with x7 and x8 to diagonalise against the next potential isomorphism

from A to B, etc. Note that in the limit A ∼= B.

Remark 2.11. If we ignore the exact definition of K which will depend on the construction, then the
isomorphism type of both A and B can be sketched as follows:

x1 ← x4 ← x5 ← x8 ← . . .← xi ← xi+3 ← xi+4 ← . . . . . .

x2 ← x3 ← x6 ← x7 ← . . .← xi+1 ← xi+2 ← xi+5 ← . . . .

Obviously, the isomorphism type of each chain will also depend on the construction.

2.4. The case of two structures P0 and P1. Initially, we monitor only P0. The exact stage at which
we finally start considering P1 depends on us. This delay will not effect the construction because it
does not delay the enumerations of A and B. In particular, before we start considering P1 we wait for
P0 to start copying either A or B or be “killed” using K.

We make sure that when P1 finally steps into then construction P0 has already made its choice. If
A 6∼= P0 then the analysis of P1 is identical to that in the previous subsection. Thus, without loss of
generality, assume that P0 is currently copying A.

• Suppose xi is open in A and xj in B.
• Wait for P1 to either reveal a segment of xi or a segment of xj .
• If in the process P1 reveals some of its parts too early (see the previous subsection) then declare
P1 ready for execution.

While we monitor P1 we also keep observing P0 because we have to punctually define an isomorphism
between P0 and A. If P0 reveals itself too quickly, it must also be immediately declared ready for
execution.

There are three cases to consider.

2.4.1. Case 1: P1 has been declared ready for execution. If P0 keeps obediently following A, then the
next time we introduce the missing chains into A and B we will use K to ensure P1 6∼= A in the same
way we did it in the previous section. However, it could be the case that P0 also reveals its parts too
early and thus is declared ready for execution.

The obvious conflict there is that the value of K on a pair of points (which we intend to use for
diagonalization) may be different in P0 and P1. Say, we are planning to use the left-most points a and
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b of xi and xk (resp.) in both P0 and P1, but KP0
(a, b) 6= KP1

(a, b). The fix however is trivial. Simply
use the successors of a and b along the respective chains xi and xk to diagonalise against P1, and use
a and b to “kill” P0.

More generally, we reserve the k’th point of each chain as a potential witness for diagonalization
against Pk. This way there will be no interaction between the diagonalization strategies because they
will use K on distinct points.

2.4.2. Case 2: Both P1 and P2 copy A. This is similar to the description of one P0 in isolation, but
now we have to wait for both P0 and P1 to respond in the basic pressing strategy according to its
description in Subsection 2.2; this process has already been described in Subsection 2.2. Any action
for the sake of P1 has to be delayed until P0 gives more evidence that A ∼= P0. In particular, if P1 is
declared ready for execution, we first finish all actions associated with P0 and then we can diagonalise
against P1 using K and the reserved witnesses in the respective chains.

2.4.3. Case 3: P1 copies A and P2 copies B. This is essentially the same as Case 2 above, but simpler
because the basic pressing technique is now essentially acting independently in the currently active
chains in A and B (because they are pressing different structures). As in Case 2, we always wait for P0

to respond before taking any action for the sake of P1. The diagonalization with the help of K is also
similar. Since we agreed to use different points of the chains as witnesses for K, there is essentially no
interaction or conflict between the two diagonalization strategies working with P0 and P1, respectively.

2.5. The construction. The general case of all Pe. In the construction, we will slowly increase
the number of monitored structures Pe. At every stage we monitor only finitely many of them. Only
after each of them has responded again or has been diagonalised against, will we start looking at the
next structure in the list. The formation of the simple chains xi in presence of many Pe has already
been described in Subsection 2.2. Since Pi and Pj will use different witnesses for K, there is no conflict
between the diagonalization K-strategies working with different structures. Thus, in the construction
we let all the strategies act according to their instructions as described above; no further modifications
are necessary.

2.6. Verification. Much of the verification was incorporated explicitly into the description of the
strategies. For instance, it is clear that A and B are lagebraically isomorphic, but they cannot be
punctually isomorphic because we have diagonalised against each potential punctual isomorphism from
A to B and from B to A.

It takes a bit more effort to show that each Pe
∼= A either is punctually isomorphic to A or is

punctually isomorphic to B. We split it into several claims.

Claim 2.12. If Pe initially chooses to copy A (or B) then it will either be diagonalised against or will
forever keep copying A (resp., B).

Proof. Assume Pe has initially chose to follow A. If Pe ever attempts to not follow A by revealing some
pattern so far unseen, the basic pressing strategy (Subsection 2.2) will ensure Pe 6∼= A by forbidding
this pattern from use in the construction. If A attempts to show a part of B not yet enumerated into
A, then it will be declared ready for execution and will be diagonalised against (and in finite time)
using the special binary predicate K, as described above. �

Note that A ∼= B is rigid and consists of two (infinite) chains of (finite) chains.

Claim 2.13. If Pe initially chooses to copy A (or B) then Pe and A are punctually isomorphic1.

Proof. The description of the pressing strategy allows us to for a set of local “coordinates”. As described
in Subsection 2.2, using these “coordinates” we can punctually map points in Pe to points in A if Pe

initially chose to copy A. Punctually mapping points in A to points in Pe requires a bit more care.
The pressing strategy in Subsection 2.2 does not take into account the following scenario. It could be
the case that Pe initially chose to copy B by giving a pattern in the chain xj which is currently being

1Meaning that both the isomorphism and its inverse are primitive recursive.
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built in B but is not yet present in A. Then xj will be eventually mapped to roughly a half of the
chains currently present in B, but this delay is not punctual. The other half will be forced to appear in
Pe too, due to the actions on a recovery stage; that is, another fresh chain will eventually be put into
B, then much later closed and mapped to the “other half” of B via p. This delay is also not punctual.
However, we can use the stage at which these processes finally happen as a non-uniform parameter.
After all chains currently present in B are forced to appear in Pe, we can use the “coordinate system”
defined by the pressing strategy to punctually map any point in B to a point in Pe. �

The verification is finished, and the theorem is proved.

3. Conclusion

Recall that the inverse of a primitive recursive function does not have to be primitive recursive. This
leads us to a natural reduction on the set of all punctual copies of a structure:

Definition 3.1. Let A be a punctual structure. Then, for punctual C,B isomorphic to A,

C 6pr B if there exists a surjective primitive recursive isomorphism f : C →onto B.
The associated equivalence relation ∼=pr and the reduction between its classes gives the punctual

degree structure of A which will be denoted PR(A). Immediately, we run into a surprisingly challenging
question:

Question 3.2. Is there a structure A such that PR(A) consists of exactly one degree yet A is not
punctually categorical?

Note that the former means that every pair of copies have primitive recursive isomorphisms in
both directions, but this does not formally imply the existence of a punctual f between them (with
both f and f−1 primitive recursive). it is not hard to see that if a structure is finitely generated then
|PR(A)| = 1 is the same as being punctually categorical. Melnikov and Ng [MN] used a rather involved
argument to prove that the same holds for graphs. It is not even clear at present if their proof can
be extended to cover ternary relational structures or unary functional structures. As it stands, the
question above is open.

What does PR(A) reflect? If C 6pr B then, in a way, B has more online content than C does. For
example, the standard copy of (Q, <) punctually embeds any other punctual copy of the rationals,
but some other copies may have slow intervals. The FPR degrees serves as a punctual invariant of a
structure. A reader familiar with the terminology of computable structure should compare FPR degrees
with degree spectra and categoricity spectra of structures. Note that non-trivial degree or categoricity
spectra are typically realised by unnatural structures which have to be specifically constructed; see, e.g.,
[Mil01, KKM13, FKH+12, FKM10]. In contrast, the FPR degrees of natural and common algebraic
structures such as the dense linear order or the random graph seem to possess remarkably non-trivial
properties which are yet to be understood. Therefore, it makes sense to study the FPR degrees of
specific and natural algebraic structures and compare them with FPR degrees of other structures. For
example, the FPR degrees of the dense linear order, the random graph, and the universal countable
abelian p-group are pairwise non-isomorphic; see [MN]. It is not known whether the FPR degrees of
(Q,<) and the atomless Boolean algebra are isomorphic [BDKM].

Our proof above of Theorem 1.3 shows that there exists a structure A whose punctual degrees
PR(A) consist of exactly two incomparable degrees. We leave open:

Question 3.3. Is there a structure A such that PR(A) consists of finitely many (and more than one)
degrees and so that not all of them are incomparable?

In fact, we do not even know the answer to the seemingly less challenging (but closely technically
related) question below.

Question 3.4. Is there a structure A such that PR(A) contains more than one degree and so that
PR(A) is linearly ordered under 6pr?

We suspect that new insights will be needed to make progress in these two questions. We also believe
that answering one of the two questions will likely give a way to answer the other one.
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