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Abstract. We show that the Chabauty space S(G) of a computably locally

compact G admits a natural Π0
1-closed presentation. We construct a com-

putable discrete abelian group H such that S(H) is not computably closed.

Indeed, the only computable points of S(H) correspond to the trivial subgroups

of H, while the full Chabauty space S(H) is uncountable. In the totally dis-
connected case, we give an alternate effective characterization of the Chabauty

space in terms of meet groupoids, a purely algebraic notion introduced recently

by the authors (arXiv: 2204.09878). We apply our results and techniques to
establish an arithmetical upper bound on the complexity of the index set of

all locally compact abelian groups that contain (R,+) as a closed subgroup.
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1. Introduction

Computable mathematics probes the algorithmic content of mathematical con-
cepts and results. Our paper contributes to the study of computable Polish groups
initiated in [MM18, Mel18]. For early papers concerned with computable topologi-
cal groups, and specifically profinite groups, we cite Metakides and Nerode [MN79],
La Roche [LR81, LR78] and Smith [Smi81, Smi79]. The central notion of such in-
vestigation beyond the class of profinite groups is that of a computable Polish space
due to Lacombe [Lac59], Ceitin [Cei59], and Moschovakis [Mos64]. In the case of
groups, we additionally require the operations to be computable. All these notions
will be formally clarified the preliminaries. These investigations follow the general
pattern seen in computable algebra [EG00, AK00] that studies algorithmic prop-
erties of discrete countable structures. With the formal definitions of computable
presentability at hand, one can attack questions of the following sort:

- Which Polish groups in a given class admit a computable presentation?
- If a Polish group has a computable presentation, is it unique?
- Which classical invariants of groups are computable, and in what sense?

The list of potential questions goes on. As we will discuss later, such investigations
are closely related to the classification problem in the respective class of groups
or spaces. For various recent results that are not restricted to profinite groups,
we cite [MM18, GMNT17, Mel18, LMN21, MN22, KMK23] and [PSZ20]. We note
that in some of the cited papers, e.g. [LMN21, MM18], computable Polish groups
were used to prove theorems that may seem unrelated to topological groups.

This introduction contains an informal overview and the statement of our three
results. Most notions will only be defined formally in subsequent sections. We
investigate the computability-theoretic aspects of the Chabauty space S(G) of a
given locally compact (Polish) group G. This subtle compact invariant plays a
significant role in the theory of locally compact groups, as explained in, e.g., [Cor11].
We establish that or a computably locally compact G, its Chabauty space S(G) can
be uniformly represented as an effectively closed subset of a computably compact
space, but this set may be not computable in general. We then apply this effective
invariant to derive an effective classification-type result about computably locally
compact groups.

1.1. The Chabauty space. All our groups are Polish. Assume G is a locally
compact (l.c.) Polish group. One defines a topology on the collection of all closed
subgroups of G, including those subgroups that are not necessarily compact, as
follows. Using the notation of [Cor11, Section 2], a basic open set in the Chabauty
space S(G) (of closed subgroups of) a l.c. group G has the form

Ω(K;R1, . . . , Rn) = {U ≤c G : U ∩K = ∅ ∧ ∀i ≤ nU ∩Ri 6= ∅},
where K ⊆ G is compact, and the Ri ⊆ G are open.

If G is a l.c. Polish group, then the Chabauty space S(G) is a compact Polish
space. It is natural to ask whether this compact space is “computable” for a
computably locally compact group, and if yes, then in what sense.
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It is well-known that the Chabauty space S(G) of a l.c. group can be viewed as a
closed subset of the hyperspace of closed subsets K(G∗) of the Alexandroff 1-point
compactification G∗ of the group G; we will explain this in detail in Subsection 4.1.
We will see that, for a computably l.c. G, the hyperspace of closed subsets K(G∗) of
its 1-point compactification G∗ is computably compact (Theorem 3.4). A natural
question arises for a computably locally compact group G:

Is S(G) computably closed in K(G∗)?

Our first result answers this as follows.

Theorem 1.1. Let G be a computably locally compact group.

(1) S(G) is effectively closed (Π0
1) in the computably compact space K(G∗).

(2) S(G) is not in general computably closed in K(G∗).

(The standard notions of a computably locally compact, computably closed, and
effectively closed (Π0

1) sets will be given in the preliminaries section.) Our construc-
tion of the effectively closed presentation of S(G) has a number of further effective
features; the construction will appear in the proof of Proposition 4.2. One such
important feature will be stated shortly as our second main result (Theorem 1.2).
Also, (2) of Theorem 1.1 is witnessed by a discrete torsion-free abelian group that
has no non-trivial computable subgroups but has uncountably many proper sub-
groups, which makes S(G) uncountable too; this is Theorem 5.5. In particular, it
follows that S(G) has only two computable points; they correspond to the trivial
subgroups of G.

1.2. The t.d.l.c. case. Our second result is concerned with the special important
case of totally disconnected locally compact (t.d.l.c.) Polish groups. This is the
narrowest class of Polish groups extensively studied in the literature that contains
both the countable discrete and the profinite Polish groups; recent papers include
[Wil15, Wes15, GR17, CCC20, HW15]. In [MN22], the authors have initiated a
systematic study of computably t.d.l.c. groups; see also [LMN21]. It follows from
[MN22, MN23] (to be explained in Section 6 in detail) that there is a canonical way
to pass from a computably locally compact presentation of a t.d.l.c. group to an
effective presentation of the discrete countable meet groupoid W(G) of all compact
open cosets in G (see Theorem 6.7). A computable duality holds between G and
the respective W(G) [MN22].

Since both S(G) and W(G) reflect the subgroup structure of a t.d.l.c. group, it
is natural to compare these effective invariants. This is the main motivation behind
our next theorem.

Theorem 1.2. Suppose G is a computably locally compact group. For a closed
subgroup H of G, the following are equivalent:

(1) H is computably closed;
(2) H∗ ∈ S(G) is a computable point in K(G∗);
(3) If G is totally disconnected, H corresponds to a computable closed-subgroup

ideal in the (computable) dual meet groupoid W(G) of G.

This correspondence is computably uniform1.

1We identify G with its computable locally compact presentation, and we identify S(G) with

the presentation of the Chabauty space produced in Theorem 1.1. We also identify the meet
groupoid W(G) with its effective presentation that is produced combining the aforementioned

results from [MN22, MN23]; the technical details will be explained later in Section 6.
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The algebraic notion of a closed-subgroup ideal will be defined below (Def. 6.9);
be it sufficient here to say that this is the view of closed subgroups from the data
given by the meet groupoid of G. The correspondence in (3) above is (in a certain
sense) canonical and is rather natural as well; this will be clarified in Definition 6.8
and the subsequent discussion.

We believe that Theorem 1.2 illustrates that the effective presentation of S(G)
constructed in the present paper is rather (algorithmically) natural and robust. As
an immediate consequence of Theorem 1.1(2), we obtain that there is a computably
t.d.l.c. G so that only the trivial closed-subgroup ideals of W(G) are computable.

1.3. An application to index sets. The approach to classification problems via
index sets is standard in computable (discrete, countable) structure theory; for a
comprehensive introduction to this approach, see [GK02]. Early applications of in-
dex sets in analysis can be found in [CR99], and for many more recent results we cite
[HTM21, BS14] and the recent survey [DM20]. Our third result below essentially
states that it is arithmetical to tell whether a given locally compact abelian group
contains a closed subgroup isomorphic to R. We informally explain what we mean,
and then we formally state the result. Fix a computable enumeration (Gi)i∈ω of
all partial computable Polish groups. Each such Gi is given by a (potential) com-
putable pseudo-metric on N and Turing operators potentially representing group
operations upon this space. We are interested in measuring the complexity of the
index set of P ,

IP = {i : Gi is a computable Polish group with property P}.

The general intuition is that ‘tractable’ properties, such as being compact, tend to
have arithmetical index sets, meaning that its complexity lies at some finite level of
the arithmetical hierarchy. In contrast, if a given property P is difficult to ‘test’ for
a given space, then its index set tends to be either analytic or co-analytic complete
(or beyond). Such estimates reflect that such ‘difficult’ properties are intrinsically
not local and certainly not first-order even if we additionally allow quantification
over effective procedures.

We return to the discussion of our third result. Recall that a metric is proper
(or Heine-Borel) if all closed balls are compact with respect to this metric. We
say that G is properly metrized (or Heine-Borel) if the metric on G is proper. It
is well-known that each locally compact Polish space admits a compatible proper
metric ([WJ87]) and in Proposition 3.3 we will prove that this is computably true
as well. We write H ≤c G for ‘H is (isomorphic to) a closed subgroup of G’. The
property ‘R ≤c Gi’ seems intrinsically not first-order and not local. Nonetheless,
using Theorem 1.1 and the techniques developed in its proof, we establish:

Theorem 1.3. The index set

{i : Gi is a properly metrized abelian group and R ≤c Gi}

lies at a finite level of the arithmetical hierarchy.

The exact estimate is that it is Π0
3-complete. The Π0

3-hardness is easy to ver-
ify. Establishing the somewhat unexpected upper bound Π0

3 takes much more work.
We will see that every computable properly metrized group is 0′-computably locally
compact, and this is sufficiently uniform. Once we have access to a 0′-computably
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locally compact structure on an abelian Gi, we use a relativized version of The-
orem 1.1 to (uniformly) produce a 0′′-computably compact copy of its Chabauty
space S(Gi), and then we will use this presentation of S(Gi) and a result of Protasov
and Tsybenko [PT83] to (indirectly) test whether R ≤c Gi.

The final section contains several open questions.

2. Computable Polish spaces and groups

We use the standard computability-theoretic terminology and notation that can
be found in, e.g., [Soa87]. For instance 0(n) stands for the Turing degree of the
(n−1)th iteration of the halting problem, and Σ0

n,Π
0
n,∆

0
n denote the finite levels of

the arithmetical hierarchy. It is well-known that the ∆0
n+1 sets are exactly the sets

computable relative to 0(n), and Σ0
n+1 and Π0

n+1 are the classes of 0(n)-computably

enumerable (0(n)-c.e.) and the complements of 0(n)-c.e. sets, respectively.

2.1. Computable Polish spaces. The notions below are standard and can be
found in, e.g., [DM23, IK21].

Definition 2.1. A Polish space M is computable Polish or computably (completely)
metrized if there is a compatible, complete metric d and a countable sequence of
special points (xi) dense in M such that, on input i, j, n, we can compute a rational
number r such that |r − d(xi, xj)| < 2−n.

Polish spaces with operations on them, especially computable Banach spaces,
have been studied extensively; see books [Wei00, Abe80, PER89]. To define what
it means for an operation upon a computable Polish space to be computable, we
will need a few more definitions.

A basic open ball is an open ball having a rational radius and centred in a special
point. Let X be a computable Polish space, and (Bi) is the effective list of all its
basic open balls, perhaps with repetition.

Definition 2.2. We call
Nx = {i : x ∈ Bi}

the name of x (in X).

A (fast) Cauchy name of a point x is a sequence (xn) of special points such
that d(xn, x) < 2−n. It is easy to see that we can uniformly effectively turn an
enumeration of Nx into a fast Cauchy name of x, and vice versa. We say that a
point x is computable if Nx is c.e.; equivalently, if there is a computable sequence
(xn) of special points that is a fast Cauchy name of x.

We can also use basic open balls to produce names of open sets, as follows. A
name of an open set U is a set W ⊆ N such that U =

⋃
i∈W Bi, where Bi stands for

the i-th basic open set (basic open ball). If an open U has a c.e. name, then we say
that U is effectively open or c.e. open. A closed set C is c.e. if the set {i : Bi∩C 6= ∅}
is c.e.; equivalently, if the set possesses a uniformly computable dense sequence of
points. A closed set is computable if both the set and its complement are c.e.; see
[DM23, IK21] for further details.

Definition 2.3. A function f : X → Y between two computably metrized Polish
spaces is effectively continuous if there is a c.e. family F ⊆ P(X) × P(Y ) of pairs
of (indices of) basic open sets in such that:

(C1): for every (U, V ) ∈ F , f(U) ⊆ V ;
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(C2): for every x ∈ X and basic open E 3 f(x) in Y there exists a basic open
D 3 x in X such that (D,E) ∈ F .

Note that a function is continuous if and only if it is effectively continuous relative
to some oracle. The lemma below is well-known.

Lemma 2.4. Let f : X → Y be a function between computable Polish spaces. The
following are equivalent:

(1) f is effectively continuous.
(2) There is an enumeration operator Φ that on input a name of an open set

Y (in Y ), lists a name of f−1(Y ) (in X).
(3) There is an enumeration operator Ψ, that given the name of x ∈ X, enu-

merates the name of f(x) in Y .
(4) There exists a uniformly effective procedure that on input a fast Cauchy

name of x ∈ M lists a fast Cauchy name of f(x) (note that the Cauchy
names need not be computable).

Definition 2.5. We say that a map (between computable Polish spaces X and Y )
is computable if it satisfies any of the items from the lemma above.

Clearly, computable maps are closed under composition, when it is well-defined.

Definition 2.6. A function f : X → Y is effectively open if there is a c.e. family
F of pairs of basic open sets such that

(O1): for every (U, V ) ∈ F , f(U) ⊇ V ;
(O2): for every x ∈ X and any basic open E 3 x there exists a basic open

D 3 f(x) such that (E,D) ∈ F .

The lemma below is elementary.

Lemma 2.7 ([MM18]). Let f : X → Y be a function between computable Polish
spaces. The following are equivalent:

(1) f is effectively open.
(2) There is an enumeration operator that given a name of an open set A in

X, outputs a name of the open set f(A) in Y .

In particular, if f is a computable and is a homeomorphism, then it is is effectively
open if, and only if, f−1 is computable. In this case we say that f is a computable
homeomorphism. We say that two computable metrizations on the same Polish
space are effectively compatible if the identity map on the space is a computable
homeomorphism when viewed as a map from the first metrization to the second
metrization under consideration. A special kind of self-homeomorphisms are the
(left or right) translations of a Polish group by its elements, and also the inverse
map. We discuss computable groups next.

2.2. Computable Polish groups. In the discrete (at most) countable case, Mal’cev
[Mal62] and Rabin [Rab60] define a computable group as follows. A discrete and at
most countable group is computable (recursive, constructive) if its domain is a com-
putable set of natural numbers and the group operations are computable functions
upon this set. A computable presentation (a computable copy, a constructiviza-
tion) of a group is a computable group isomorphic to is. The study of computable
groups, and especially of computable abelian groups, is a central subject in com-
putable structure theory; see the books [AK00, EG00]. (For the well-studied special
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case of abelian groups, see the surveys [Khi98, Mel14].) The following notion ap-
pears to be a rather natural extension of the well-established notion of a (discrete,
countable) computable group.

Definition 2.8. [MM18, Mel18] A computable Polish group is a computable Polish
space together with computable group operations · and −1.

The following rather elementary fact illustrates that the notions actually agree
in the discrete case:

Fact 2.9 ([KMK23]). For a discrete (at most) countable group G, the following
are equivalent:

(1) G has a computable Polish presentation as in Def. 2.8;
(2) G has a computable presentation in the sense of Mal’cev [Mal62] and Ra-

bin [Rab60].

The next fact will be used throughout, often without an explicit reference.

Fact 2.10 ([KMK23]). In a computable Polish group, the multiplication and in-
version operators are effectively open.

Proof. Given some name for an effectively open set U , in order to enumerate the
name for U−1, simply enumerate the preimage of U under −1. This must be the

name for U−1 since
(
U−1

)−1
= U . Thus −1 is effectively open.

Next, given names for effectively open sets U, V , we wish to computably produce
a name for U ·V . The map (x, y)→ x−1y is computable: enumerate all basic open
sets B such that there is some basic open set A with A ∩ U 6= ∅ and

A−1 ·B ⊆ V.
Now we claim that the union of all such B is equal to U · V . For the inclusion
“⊆”, if B is enumerated by the procedure above, let a ∈ A ∩ U . For each b ∈ B
we have b = a · a−1b ∈ U · A−1 · B ⊆ U · V , and so B ⊆ U · V . For the converse
inclusion, let a ∈ U and b ∈ V . Since a−1 · ab = b ∈ V , we can let A,B be basic
open sets containing a and ab respectively, such that A−1 ·B ⊆ V . Then B will be
enumerated by the procedure above, and ab ∈ B. �

In the important special cases of compact and (more generally) locally compact
groups, it is also natural to assume that the (local) compactness of the group is, in
some sense, effective. We discuss this next.

2.3. Computable compactness. The following definition is equivalent to many
other definitions of effective (computable) compactness that can be found in the
literature.

Definition 2.11. A compact computable Polish space is computably compact if
there is a (partial) Turing functional that, given a countable cover of the space,
outputs a finite subcover.

This is equivalent to saying that, or every n, we can uniformly produce at least
one finite open 2−n-cover of the space by basic open balls. For several equivalent
definitions of computable compactness, see [DM23] and [IK21]. It is also well-
known that, given a computable Polish space C that is compact (but not necessarily
computably compact), using 0′ one can produce a sequence of basic open 2−n-covers
of the space, thus making it computably compact relative to 0′. The following
elementary fact is folklore (see, e.g., [DM23]):
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Lemma 2.12. A computable image of a computably compact space is itself com-
putably compact.

Also, it is well-known that both the supremum and the infimum of a computable
function f : X → R is computable provided that X is computably compact, and
this is uniform. We will also use that a computable closed subset of a computably
compact space M is itself computably compact (as a space under the metric inher-
ited from M). The lemma below is elementary.

Lemma 2.13. Suppose C is co-c.e. closed in a computably compact Polish space
K. Then C admits a 0′-computable dense sequence of points.

Proof. Use the aforementioned result [BdBP12, Prop. 4.1] to fix computable sur-
jective f : 2ω → K. Since f is effectively continuous by Lemma 2.4, the pre-image
of the effectively open complement of C is effectively open in 2ω. Thus, f−1(C) is
a Π0

1 class in 2ω. With the help of 0′ we can produce the collection of finite strings
that are extendable to a path in f−1(C). This induces a 0′-computable dense set
in f−1(C) and, thus, in C. �

Note the proof of the lemma above is uniform. We cite [DM23, IK21] for further
background on computably compact spaces.

2.4. Computable local compactness. Recall that the name Nx of a point x is
the collection of all basic open sets (balls) of a computable Polish M that contain
x. In the definition below, a compact K ⊆ M is represented by the computable
index of a procedure enumerating a sequence of finite open 2−n-covers so that each
ball in the cover intersects K non-trivially. (It is not difficult to see that, up to
a uniform adjusting of the covers, this is equivalent to saying that every ball in
is centred in a computable point in K and has a rational radius.) In particular,
it makes K a computable closed set and a computably compact subspace of the
ambient computable Polish space M . The index of such a procedure enumerating
finite covers of K is sometimes refereed to as a compact name of K.

The usual definition of a locally compact space M says that for every x ∈ M
there is an open set B and a compact set K such that x ∈ B ⊆ K. We adopt
the following notion of effective local compactness which is essentially the approach
taken in [Kam01], up to a change of notation.

Definition 2.14. A computable Polish space M is computably locally compact if
there is an algorithmic procedure that, given (an enumeration of the name Nx of)
any point x, outputs a basic open set B and a computable compact set K ⊆ M
such that x ∈ B ⊆ K. We call the functional representing the procedure Nx →
K ⊇ B 3 x a computable locally compact structure on M .

Remark 2.15. Other closely related definitions can be found in [Pau19, XG09,
WZ99]. See [Pau19] for a detailed discussion of the various approaches to effectiviz-
ing local compactness in the literature and the subtle differences between them.

Clearly, if the space itself is compact then computable local compactness of the
space is equivalent to its computable compactness. Note that x does not have to
be a computable point, while the output of the procedure in the definition has to
be a computable index of the procedure representing K. If the functional in the
definition above is not computable but is Y -computable for some oracle Y (e.g.,
Y = ∅′′) then we say that M admits a Y -computable locally compact structure.
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We will need this relativized version of computable local compactness in the proof
of our index set result.

A useful reformulation of the notion of computable local compactness presented
below involves the notion of a computable closed ball. If B = B(ξ, r) is an open
ball, then we write Bc to denote the respective closed ball {x : d(ξ, x) ≤ r} which
does not have to be equal to the closure B of B in general. Recall that we say that
B = B(ξ, r) is basic if ξ is special and r is a rational (given as a fraction). If ξ and
r are merely computable, we say that the ball is computable.

The following proposition will be rather useful. See [Pau19, Proposition 12] for
a similar fact in a different framework. The property established in the proposition
below is essentially [WZ99, Definition 3].

Proposition 2.16. In the notation of Definition 2.14, we can assume that K is
equal to Bc for a computable open ball B containing x. In other words, given x we
can produce a computable index of a computable point ξ and of a computable real
r so that B(ξ, r) 3 x and Bc(ξ, r) is computably compact (and is represented by its

compact name). Furthermore, we can additionally assume that Bc(ξ, r) = B(ξ, r),
where the latter is the closure of B(ξ, r).

Proof. Proposition 3.30 of [DM23] establishes that we can uniformly produce a
system of finite 2−n-covers Cn of a computably compact space K that consist of
computable open balls that possess the following strong property. Each ball in Cn
is represented by the pair of indices of its computable centre and its computable
radius. Given any finite collection of (the parameters describing) balls B0, . . . , Bk ∈⋃
n Cn, we can uniformly decide whether⋂

i≤k

Bi 6= ∅.

Furthermore (as explained in [DM23, Remark 3.18]), when we decide intersection,
we can replace some (or all) balls in the sequence B0, . . . , Bk with the respective
closures or the closed balls, e.g.,

B0 ∩B1 ∩Bc2 ∩B3 6= ∅
iff

B0 ∩B1 ∩B2 ∩B3 6= ∅,
where Bi are the closure of Bi and Bci is the basic closed ball with the same
parameters as Bi. Additionally, we can further assume that every B(a, r) ∈ Cn+1

is formally included in some B(b, q) ∈ Cn, meaning that d(a, b) + r < q.

The following further convenient property of such covers was not mentioned in
[DM23].

Claim 1. In the notation above, for any computable ball B ∈
⋃
n Cn we have

B = Bc.

Proof. Suppose α ∈ Bc \B. The set U = K \B is open, and each α ∈ U ∩Bc must
be contained in U together with some B′ ∈ Cn, where n is sufficiently large. But
then we have B′ ∩Bc 6= ∅ while B′ ∩B = ∅, contradicting the properties of

⋃
n Cn

described before the claim. �

Recall that every ball in
⋃
n Cn is represented by a pair of indices for its com-

putable centre and its radius.
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Claim 2. In the notation above, for every B ∈
⋃
n Cn the closed ball Bc = B

is a computably compact subspace of K, and this is uniform in the parameters
describing B. Indeed, this is witnessed by finite 2−n-covers C ′n ⊆ Cn that can be
found uniformly in n.

Proof. We can list a dense sequence of uniformly computable points in B which
turns B into a computable Polish space. Since intersection is decidable in

⋃
n Cn

in the strong sense described earlier, we can uniformly effectively restrict each Cn
to its finite subset C ′n consisting of B′ ∈ Cn having the property B ∩ B′ 6= ∅. The
resulting uniformly computable system (C ′n)n∈ω of 2−n-covers of Bc witnesses that
Bc is itself a computably compact subspace of K. �

We now return to the proof of the proposition. Let x ∈ B ⊆ K be as in
Definition 2.14, where B = B(a, q) = {y : d(a, y) < q}. Fix a system of covers (Cn)
of K with the strong properties described above, and (using x) search for the first
found open ball D = B(ξ, r) ∈

⋃
n Cn such that

x ∈ D ⊆ B

as witnessed by d(ξ, x) < r and d(a, ξ) + r < q. (Note the latter implies Dc ⊆ B.)
This search is uniformly effective in the name Nx of x and will eventually terminate.

The closure of D in K is equal to the closure of D in M because both sets are
contained in B ⊆ K ∩M . By Claim 1, Dc = D. This makes Dc a computable
subspace of M . Using Claim 2, restrict (Cn) to a uniformly computable system
(C ′n) of covers of Dc, witnessing that Dc is computably compact. Since we have

x ∈ D = B(ξ, r) ⊆ B(ξ, r) = Bc(ξ, r) ⊆ B(a, q),

the computably compact ball Dc = Bc(ξ, r) = B(ξ, r) satisfies the required prop-
erties. �

Definition 2.17. We say that a locally compact Polish group is computably locally
compact if its domain is computably locally compact and the group operations ·
and −1 are computable upon this domain. (The notion of a computably compact
group is defined similarly.)

In the discrete case, Definition 2.8 and Definition 2.17 are actually equivalent;
this follows quite easily from Fact 2.9. It is known that a profinite group is “re-
cursive profinite” [MN79, LR81, LR78, Smi81] if, and only if, it is computably
compact [DM23]. Further effective properties of locally compact groups have re-
cently been investigated in more detail in [KMK23, MN23]. We will later use the
following result from [MN23]. It has been established [MN23] that the natural
and robust notion of computable presentability for t.d.l.c. groups [MN22] is in fact
equivalent to Definition 2.17; we will give further details in Subsection 6.1. Given
the evidence that Definition 2.17 is natural and robust, we choose it as the basic
definition of computability for a locally compact Polish group.

Then lemma below was mentioned in the introduction in relation with the effec-
tive content of proper metrization results established in [KMK23]. The lemma will
be used in the proof of Theorem 1.3.

Lemma 2.18. Let G be a computable Polish group. Then G is locally compact if
(and only if) G is 0′-computably locally compact.
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Proof. Clearly, if G is 0′-computably locally compact then it is locally compact. To
this end, assume G is locally compact.

Recall that for every element g ∈ G, the translation x→ x·g is a homeomorphism
of G onto itself. In particular, G is locally compact if, and only if, the identity
element e lies in basic open ball B(e, r) for some positive r ∈ Q, so that the
closure (the completion) of B(e, r) is compact. Without loss of generality, the
identity element e = x ·x−1 can be assumed a computable point in G (here x is the
first found special point of G). Any basic open ball B(e, r) contains a c.e. dense
sequence of special points of G which turns its closure into a computable Polish
space, uniformly in r.

If the closure C of B(e, r) is compact, then using 0′ we can list all finite covers
of C by basic open balls centred at special points inside B(e, r). Recall that we
assumed that G was a computable Polish group. In particular, the group operations
on G are computable and computably open, by Fact 2.10. Also, the maps ry : x→
x · y are computable and computably open uniformly in y, where y ranges over
all special points in G. If B = B(e, r) has compact closure C, then the uniformly
0′-computably compact sets

{C · y : y special in G}
and the uniformly computably open sets

{B(e, r) · y ⊆ C · y : y special in G}
give a 0′-computably compact structure on G. �

Notice that the lemma above relied heavily on computability of the group opera-
tions on G; in particular, that they are total. It is not hard to see that compactness
of a computable Polish space is a Π0

3-property; see [MN13]. Of course, a group is

locally compact iff for some r ∈ Q, B(e, r) is compact, where e = xx−1 is the iden-
tity element. Thus, local compactness of G is arithmetical assuming G is indeed a
computable Polish group.

3. Computability of the 1-point compactification

In this subsection we will establish several technical facts about computably
locally compact spaces that will be sufficient to prove Theorem 1.1 and Theorem 1.2.
In contrast with the technical lemmas established earlier, some of these facts seem
to hold interest on their own.

3.1. Computable σ-compactness, a strong form. Let M be a Polish space
with a fixed metric d.

Definition 3.1. For ε > 0, we say that a set U is a uniform ε-neighbourhood
(ε-nbhd) of a set V if

U ⊃ V (ε) = {x ∈M : ∃y ∈ V d(y, x) < ε}.
In other words, each point of V is contained in U together with the open ε-ball
around the point.

There is a danger of confusing computability-theoretic uniformity with topolog-
ical uniformity (as defined above). In what follows next, we shall avoid saying
‘U uniform ε-neighbourhood of V ’ and instead we will use the associated notation
‘U ⊂ V (ε)’.
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We believe that the technical lemma below is new as stated, since it appears to
be stronger than other similar results in the literature. Very closely related results
can be found in [Pau19]. (Compare this lemma with [Pau19, Proposition 8] that
also produces a nice list of compact neighbourhood of a given space. Also, note
that the notion of computable σ-compactness as defined in [Pau19, Definition 14]
appears to be weaker than the technical property established in the lemma below;
see, e.g., [Pau19, Example 17].)

Lemma 3.2 (Strong computable σ-compactness). Suppose M is a computably lo-
cally compact Polish space. There exists a nested sequence (Kn)n∈ω of uniformly
computably compact sets Kn ⊆M and a uniformly computable sequence of positive
reals ci ≤ 2−i with the following properties:

(1) Kn+1 ⊇ Kn(cn) for all n. (Recall Def. 3.1.)
(2) M =

⋃
n∈ωKn.

(3) Each Kn is represented as a finite union of computable closed balls.
(4) Given x ∈M we can uniformly effectively (in x) calculate some n such that

x ∈ Kn, and indeed x is inside one of the open balls whose respective closed
balls make up Kn.

Proof. Suppose the computable local compactness of M is witnessed by an operator
Ψ. We can replace Ψ by a functional Ψ that turns a Cauchy name (xi) of a point
to an enumeration of its name Nx and then uses Ψ to produce a compact name
of the compact neighbourhood of the point. List all finite sequences of the form
x̄ = 〈x0, . . . , xk〉, where xi are special in M and d(xi, xi+1) < 2−i, and calculate
the uniform sequence of those Ψx̄ which halt with use at most the length of x̄. Let
Kx̄ denote (the computable index of) the computably compact set that is output
by the procedure on input x̄ if it halts. Observe that any point α of M (special or
not) will be contained in some such Kx̄ that will be listed in the sequence. Further,
by Proposition 2.16 we may assume Kx̄ is a basic computable closed ball Bc with
a uniformly computable radius; in the enumeration, it will be represented by its
computable index. Let (Di)i∈ω be the resulting sequence of (computable indices
of) uniformly computably compact closed balls.

To make sure that all conditions of the lemma are satisfied, we need to modify
the sequence as follows. Set K0 = D0. If Kn has already been defined, uniformly
fix a finite 2−n-cover L1, . . . , Lk of Kn so that the respective closed balls Lci are
(uniformly) computably compact, and set

Kn+1 = Dn+1 ∪
⋃
i

Lci .

(These balls are the first found balls in the sequence (Di)i∈ω; they must exist so
we just search for the first found ones.) It should be clear that conditions (2), (3),
and (4) of the lemma are satisfied by the sequence (Ki) of uniformly computably
compact subspaces.

It remains to define the parameters cn required in (1). In the notation above,
use [DM23, Remark 3.18] to uniformly produce a finite cover of Kn that formally
refines L1, . . . , Lk. This means that for each ball in this cover B(a, r) there is
some ball Lj = B(b, q) containing it so that d(a, b) + r < q. For each such B(a, r)
effectively choose a positive rational l = lj so that d(a, b) + r+ l < q still. It follows
from the triangle inequality that for any z ∈ Kn we have that the l-ball around z is
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contained in Lj = B(b, q). (If w ∈ B(z, l) then d(a,w) ≤ d(a, b)+d(b, z)+d(z, w) ≤
d(a, b) + r + l < q.) Choose cn to be smaller than the least among all these
lj , j = 1, . . . , k, and also is at least twice smaller than cn−1 (to make sure the
sequence (cn) satisfies cn ≤ 2−n). Then we have that Kn(cn) (see Def. 3.1) has to
be included into

⋃
i L

c
i , and thus

Kn(cn) ⊆ Dn+1 ∪
⋃
i

Lci = Kn+1.

This gives (1). �

The subsequent proposition, which can be readily deduced from the above lemma,
was already mentioned in the introduction. It appears to be new. The proposition
will not be directly used in the rest of the paper, however, it seems to be sufficiently
important for the framework of computable Polish spaces.

Proposition 3.3. Every computably locally compact Polish space admits a com-
putable regular (i.e. Heine-Borel) metric. Furthermore, δ and d are effectively com-
patible, i.e., the map Id : (M,d)→ (M, δ) is a computable homeomorphism2.

Proof. We use Lemma 3.2 to implement an idea similar to that suggested in [WJ87],
which in turn the authors attribute to H. E. Vaughan. In the notation of Lemma 3.2,
define

fn : M → [0, 1]

to be

fn(x) =

{
d(x,Kn)/cn d(x,Kn) ≤ cn,
1 d(x,Kn) ≥ cn,

where the two cases are not mutually exclusive but evidently agree at when d(x,Kn) =
cn. Since Kn is computably compact uniformly in n, (fn)n∈ω is a uniformly com-
putable sequence of functions. Note also that, for each fixed x ∈ M , the sequence
(fn(x))n∈ω is eventually zero. Define

f(x) =
∑
n∈ω

fn(x),

which is well-defined and is computable. Finally, define

δ(x, y) = d(x, y) + |f(x)− f(y)|.
It is clear that δ is indeed a metric; we claim it is also equivalent to d, i.e. that
the metrics share the same converging sequences. Since δ ≥ d, we need only to
show that every d-converging sequence also converges with respect to δ; but this
follows from computability (thus, continuity) of f . In particular, we may use the

same dense sequence (xi) in M as we used for d, and we get that ((xi), δ) is a

computable Polish space such that ((xi), δ) = ((xi), d) = M .
We show δ is proper. If a closed δ-ball Bc(x, r) is not fully contained in one of the

compact sets Kn, then there will be an infinite sequence (ym) so that ym /∈ Km+1,
and thus f(ym) =

∑
n fn(yi) ≥ m, contradicting that we must have

δ(x, ym) = d(x, ym) + |f(x) + f(ym)| ≤ r.
it follows that each basic closed ball has to be compact.

2In particular, the space remains computably locally compact under δ.
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To see why δ and d are effectively compatible, first recall that ((xi), δ) =

((xi), d) = M . The pre-image of each basic open δ-ball B(x, r) under the iden-
tity map is simply

{y : d(x, y) + |f(x)− f(y)| < r}
which is clearly an effectively open set with respect to d. On the other hand, if (xi)
is a fast Cauchy sequence with respect to δ,

δ(xi, xi+1) = d(xi, xi+1) + |f(xi)− f(xi+1)| < 2−i,

then clearly (xi) is also fast Cauchy for d. It remains to interpret the latter as the
image of x = limi xi under id−1, where the limit can be taken with respect to either
metric. �

See the last section for a further discussion of proper metrics.

3.2. Effective 1-point compactification. Theorem 3.4 will be a key step in the
definition of the Π0

1-presentation of the Chabauty space of a computably locally
compact group.

Theorem 3.4. Given a computably locally compact Polish space M that is not
already compact, we can uniformly effectively produce a computable homeomorphic
embedding f of M into its computably compact 1-point compactification M∗ ∼=
M ∪ {∞}. Furthermore, f−1 is computable (everywhere except for ∞), and this is
also uniform.

A brief discussion. In order to prove the theorem, we combine Lemma 3.2 with the
metric on M∗ suggested in [Man89]. There are other potential ways to prove the
theorem, e.g., using some effective version of the Urysohn’s metrization theorem
along the lines of [GW07]. However, the rather explicit construction in [Man89]
provides us with some extra information about the constructed metric, and this
will be rather convenient in establishing the computable compactness of M ∪{∞}.
We strongly suspect that the assumption that M is not compact can be dropped
without any effect on the uniformity of the procedure, however, we will not verify
this claim.

Proof. Given a computably locally compact (M,ρ), adjoin a point ∞ to M and
declare the point to be special in M∗. Fix a sequence of uniformly computably
compact neighbourhoods (Kn) for M and the corresponding computable sequence
(cn) given by Lemma 3.2. For any x ∈M , let

h(x) = sup{ci − ρ(x,Ki) : i ∈ ω}.

Claim 3. The function h : M → R is computable.

Proof of Claim. Given x, we can uniformly find some n so that x ∈ Kn; this is (4)
of Lemma 3.2. It follows that, for such an n, h(x) = sup{ci − ρ(x,Ki) : i ≤ n},
because (ci) form a decreasing sequence and since x ∈ Km for all m ≥ n. Since
Ki are uniformly computable, ρ(x,Ki) are reals uniformly computable relative to
x. This makes h(x) a uniformly x-computable real. �

Define d on M ∪ {∞} by the rule

d(x, y) =

{
inf{ρ(x, y), h(x) + h(y)}, if x, y ∈M,

h(x), when x ∈M,y =∞,
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and set d(x, x) = 0 for any x ∈M ∪ {∞}. It is clear that for any x, y ∈M we have

d(x, y) ≤ ρ(x, y),

and thus the identity map maps fast ρ-Cauchy names to fast d-Cauchy names.
Thus, we can set f = IdM . It is shown in [Man89] that this definition of d gives
a metric compatible with the topology in the one-point compactification of M ;
the metric is clearly complete (by compactness). By the claim above, d(x, y) is
uniformly computable for any pair of special points x, y in M ∪ {∞}.

Recall that Kn(cn) ⊆ Kn+1, where the latter is viewed as a computable Pol-
ish space w.r.t. the new metric d. Recall that we set f = IdM . We can view
IdM (Kn) = Kn as the computable image of a computably compact space Kn

(w.r.t. ρ) inside a computable Polish space Kn+1 (w.r.t. d). It thus follows that
(Kn, d) is computably compact; see, e.g., [DM23, Lemma 3.31], [Wei03, Theorem
3.3] and [Pau16, Proposition 5.5]. This is also computably uniform (in n). It follows
from the definition of d that, when x ∈ (M ∪ {∞}) \Kn+1, we have

ρ(∞, x) = h(x) ≤ cn+1 < cn,

see [Man89] for an explanation and for further details. We conclude that

M ∪ {∞} = B(∞, cn) ∪
⋃

i≤n+1

Ki.

To find a finite 2−n-cover of M ∪ {∞}, recall that cn < 2−n. Effectively uniformly
fix a finite 2−n cover of

⋃
i≤n+1Ki (in the new metric d). Together with B(∞, cn),

this gives a finite 2−n-cover of M ∪ {∞}.

We now show that f−1 is also computable on M . (Recall that f is the identity
map, but viewed as a map between two different metrizations of M .) Assume x 6=
∞. Calculate d(x,∞) to a precision sufficient to find some n so that d(x,∞) > cn.
By the definition of the metric d and the sequence (cn), it must be that x ∈ Kn.
Since f is just the identity map, it is clearly guaranteed that f−1(x) ∈ (Kn, ρ).
It is well-known that the inverse of a computable homeomorphic map between
computably compact spaces is computable; see, e.g., [DM23, Theorem 3.33] or
[BdBP12, Corollary 6.7]. This is also clearly effectively uniform. Apply this fact to
f : (Kn, ρ)→ (Kn, d) to calculate f−1(x). �

Let M be a computably locally compact space, M∗ = M∪{∞} be its computably
compact 1-point compactification, and f : M → M∗ a computable embedding
having computable inverse; see Theorem 3.4.

The Hausdorff distance between finite sets of computable points is clearly com-
putable. The hyperspace of compact subspaces of a computably compact space is
itself computably compact; this is folklore. (To see why, note that, given a finite
ε-cover, we can restrict ourselves to finite subsets of the centres of the balls involved
in the cover. These finite subsets will give rise to an ε-cover of the hyperspace.)
Since M∗ is computably compact, we conclude:

Fact 3.5. For a computably locally compact Polish space M , the space K(M∗) is
computably compact as well, and this is uniform.

In a different framework and using different methods, a similar fact was established
in [Pau19, Subsection 5.2].
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4. Proof of Theorem 1.1(1): S(G) is effectively closed in K(G∗).

We begin our proof with an explanation of how the Chabauty space of a l.c. G
can be viewed as a closed subspace of the hyperspace of closed sets of the 1-point
compactification of G. In the next subsection we will use the results from the
previous section, specifically Fact 3.5, to prove that this presentation is indeed Π0

1.

4.1. The Chabauty space of G and the 1-point compactification of G. The
fact below appears to be folklore among the experts in topological group theory.

Fact 4.1. If G is locally compact Polish group, then there exists a homeomorphic
embedding for the Chabauty space S(G) into the hyperspace K(G∗) of closed (thus,
compact) subsets of the 1-point compactification G∗ of G. The embedding is given
by the map i : C → C ∪ {∞}.

It is difficult to find a reference where this fact is thoroughly explained. Cornulier
mentions it at the very beginning of his paper [Cor11], but in terms of convergence
of nets. A more general fact appears already in [Fel62]; see (II) on p. 475. It is
stated much more explicitly, but still not quite in the form that we need it, in the
unpublished lecture notes by Pierre de la Harpe that can be found on arXiv [dlH08];
see “2. Prop. (v)” on pages 2-3. To make our presentation more self-contained, we
include a detailed verification below.

Proof of Fact 4.1. Recall that the topology of the 1-point compactification G∗ = G ∪ {∞} of G is
generated by:

- the open sets of G, and
- the sets (G \K) ∪ {∞}, where K ranges over compact subsets of G.
Now recall that Vietoris topology on the set of its closed (thus, compact) subsets of G∗ is generated

by

{F : F ∩ V 6= ∅} and {F : F ⊆ U}

where U, V are open in G∗. It is well-known that the topology induced by the Hausdorff metric and the
Vietoris topology are equivalent. The Chabauty topology on the closed subgroups of G is generated by
the sub-basic sets

{F : F ∩K = ∅} and {F : F ∩ V 6= ∅}

where K is compact and V open in G.

Given a closed subgroup (more generally, subset) C ⊆ G, define

i : C → C
∗

= C ∪ {∞}

which can be viewed as a map from the Chabauty space S(G) of X to the hyperspace K(G∗) of the
1-point compactification of G. The map is evidently injective. We show that it is continuous, and thus
a homeomorphism. (S(G) is known to be compact and thus so is its i-image, so establishing continuity
will suffice.)

When V is open in G ∪ {∞} and does not contain ∞, then it is open in G and

i
−1{F∗ : F

∗ ∩ V 6= ∅} = {F : F ∩ V 6= ∅}

which is open in Chabauty topology. Otherwise, if ∞ ∈ V , the pre-image is the whole space S(G).
Now consider an open set of the second kind, specifically {F∗ : F∗ ⊆ U}. If U does not contain

∞, then the set is empty and thus so is its i-preimage. Otherwise, if U is an open set containing ∞,
then it has to be of the form (G \ K) ∪ {∞}, where K is compact in G; in particular, ∞ /∈ K. (This
K is the intersection of Ci = (G ∪ {∞}) \ Ui, where U = ∪Ui and each Ui is a finite intersection of
sub-basic sets in the topology of G ∪ {∞}. At least one such Ui = Ui1

∩ Ui2
∩ . . . ∩ Uik

has to contain
∞, so necessarily each of its sub-basic Uij

contains ∞. The complement Kij
of Uij

is compact in G,

for each j ≤ k, and thus Ki = Ki1
∪Ki2

∪ . . . ∪Kik
is compact too. The complement of U = ∪Ui is

the intersection of Ki with the closed complements of Um,m 6= i; it is compact.)
We arrive at

i
−1{F∗ : F

∗ ⊆ U} = {F : F ⊆ (G \K)} = {F : F ∩K = ∅}

which is open in Chabauty topology. �
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4.2. S(G) as a Π0
1-subset of K(G∗). Recall that an open set U is computably

enumerable if there is a computably enumerable sequence of basic open balls making
up the set. A closed set is Π0

1 or effectively closed if its complement is computably
enumerable open. For a computably l.c. G, we identify K(G∗) with its computably
compact presentation established in Fact 3.5.

Proposition 4.2. For a computably locally compact G, the Chabauty space S(G) of
G is Π0

1 (effectively closed) in the computably compact hyperspace K(G∗) of compact
subsets of the 1-point compactification of G.

Proof. In K(G∗), we can distinguish between special points that contain ∞ from
those that are generated by points coming from G; recall that the point {∞} is
special in G∗. We suppress “H” in “dH” throughout and write simply “d” for
the Hausdorff metric. Recall also that f : G → G∗ is computable, and f−1 is
computable everywhere except for ∞ where it is undefined.

A non-empty closed H ⊆ G is a subgroup iff xy−1 ∈ H, for all x, y ∈ H. For the
corresponding K = H ∪ {∞} in K(G∗), this condition corresponds to

∀x, y ∈ K inf{d(x,∞), d(y,∞)} > 0→ f(f−1(x) · [f−1(y)]−1) ∈ K,

for any x, y ∈ K \ {∞}. Recall that f is effectively continuous and effectively open,
and the group operations are effectively continuous and effectively open as well. It
follows that the function

g(x, y) = f(f−1(x) · [f−1(y)]−1)

is computable on its domain. Thus, the condition above fails if, and only if, for
some small enough basic balls B,D, V (in the metric of G∗), all not containing ∞,
we have that

[B ∩K 6= ∅] ∧ [D ∩K 6= ∅] ∧ [V ∩K = ∅] ∧ [g(B,D) ⊆ V ],

where the basic open balls not containing ∞ and satisfying g(B,D) ⊆ V can be
effectively enumerated. Say that a triple of basic open balls (B,D, V ) is wrong if
g(B,D) ⊆ V .

We are ready to effectively enumerate the complement of S(G) in K(G∗). Given
an wrong triple (B,D, V ), define the effectively open set (in K(G)) to be all closed
(compact) subsets K that satisfy:

(1) B ∩K 6= ∅;
(2) D ∩K 6= ∅;
(3) d(K, cntr(V )) > r(V ),

where cntr(V ) and r(V ) are the distinguished rational centre and the radius of the
basic open V = B(cntr(V ), r(V )) in the metric of G∗. (Note that the former two
intersections, if they hold, will be witnessed already by a sufficiently close finite
approximation to K, in K(G∗), by a finite collection of special points in G∗. The
same can be said about condition (3). In other words, the conditions are Σ0

1.) Let
W be the collection of all such K, where (B,D, V ) ranges over all wrong triples.
Since (1)− (3) are uniformly Σ0

1, W is effectively open in K(G∗).
If a compact set does not contain {∞}, then it is separated from {∞} by a

non-zero distance. Also, any subgroup of G has to contain the identity element. It
is clear that

V = {K ∈ K(G∗) : d(∞,K) > 0 or d(f(e),K) > 0}
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is an effectively open set as well.
Then K ∈ K(G∗) corresponds to a closed subgroup of G if, and only if, there is

no wrong triple for K, and f(e),∞ ∈ K. It follows that

S(G) = K(G∗) \ (V ∪W),

where V ∪ W is a c.e. open set in K(G∗). We conclude that S(G) is effectively
closed in the computably compact space K(G∗). �

5. Proof of Theorem 1.1(2): S(G) is not computably closed in
general.

We will show more than is stated in Theorem 1.1(2). Recall that that for a
Π0

1-closed subset of a computable space, being computable is equivalent to having
a computable dense sequence of points; see Subsection 2.1.

We will prove that there exists a computable abelian discrete G so that the
only computable points of S(G) are the ones corresponding to {0} and G, yet
G has uncountably many subgroups. Clearly, {0} and G have to be computable
subgroups; in this sense our result is also optimal. We split the proof into several
subsections.

5.1. The effective correspondence lemma. In the notation of the previous
section, we have:

Lemma 5.1. Let G be a computably locally compact group, and S(G) ⊆ K(G∗) its
effectively closed Chabauty space. Then the following are equivalent:

(1) H 5c G is computably closed.
(2) H∗ = H ∪ {∞} is a computable point in K(G∗).

(The lemma above essentially states that (1)↔ (2) in Theorem 1.2.)

Proof. The proof is not difficult, but it relies heavily on various properties of
c.e. closed and open sets, computable and effectively open maps (see Subsection 2.1)
and the technical results established earlier (e.g., Theorem 3.4). We will also use
the following, seemingly well-known, fact.

Fact 5.2. A closed subset C of a computably compact spaceK is computably closed
if, and only if, C is a computable point in the space K(K) (under the Hausdorff
metric).

Proof. We have that C is computably closed in K if, and only if, it is a computably
compact subspace of K; see, e.g., [DM23, Proposition 3.29].

Assume C is computably closed. Since C is computably compact, we can uni-
formly compute the Hausdorff distance d(x,K) = infy∈C d(x, y) to any special point
x ∈ K. (This is because taking the infimum of a computable function over a com-
putably compact set gives a computable real, and this is uniform, as mentioned
in Subsection 2.1.) If follows that we can also uniformly calculate the Hausdorff
distance between C and any finite set of special points. The finite sets of special
points of K are the special points in K(K). Given n, search for a finite set of special
points Dn at distance 2−n from C. The sequence (Dn)n∈ω is a computable fast
Cauchy name of C.

Conversely, suppose C is a computable point in K(K). A basic open ball
B(x, r) ⊆ K does not intersect C if (and only if) d(x,C) > r, which is Σ0

1. On the
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other hand, C ∩ B(x, r) 6= ∅ is equivalent to d(x,C) < r, which is also Σ0
1. The

latter is equivalent to C having a computable dense sequence of points (folklore;
see [DM23, Lemma 3.27]). �

Assume (1). By the fact above, it is sufficient to show that H∗ is computably
closed. Fix f given by Theorem 3.4. Since f : G → G ∪ {∞} is computable, it
uniformly maps computable points to computable points. In particular, it maps
the dense computable set X of H to a uniformly computable sequence that we
denote f(X). The set f(X)∪{∞} is dense in H∗. It follows that H∗ is c.e. closed.
To conclude that H∗ is computably closed, we need to show that it is Π0

1, i.e., its
complement is c.e. open. By Theorem 3.4, f−1 is computable when defined. Since f
is a homeomorphism of G onto its image in G∪{∞} (and in particular is injective),
this is equivalent to saying that f is effectively open. Since f is effectively open,
it maps the c.e. complement of H (in G) to a c.e. open set. But this set is the
complement of H∗ in G∗. Thus, H∗ is computable closed in G∗, and (2) follows
from (1).

Now assume (2). As noted above, (2) is equivalent to saying that H∗ is com-
putable closed in G∗. Recall that f−1 is computable (and defined) everywhere
except ∞. Since ∞ is a special point in G∗, we can effectively list those points
in the computable dense sequence of H that are not equal to ∞. The f−1-images
of these points make up an effective dense set of H in G. It shows that H is
c.e. closed. Let U be the c.e. complement of H∗ in K(G∗); note ∞ /∈ U . Since f
is computable it is effectively continuous, and thus f−1(U) is c.e. open in G. Since
we have H = G \ f−1(U), it follows that H is both c.e. and Π0

1, and therefore
computably closed. �

We view a computable discrete group (in the sense of Rabin and Malcev) as a
computable Polish group w.r.t. the discrete metric:

d(x, y) = 1 whenever x 6= y.

Any such computable discrete group is clearly computably locally compact. Fur-
thermore, a subset of such a group is c.e. iff it is c.e. as a closed or open subset of
G. In particular, we have:

Fact 5.3. For a discrete computable G, a subgroup H ≤ G is a computable sub-
group iff it is computably closed w.r.t. the discrete metric defined above.

By Fact 5.3 above, in the discrete case we can ‘forget’ about topology and simply
work in the standard, discrete recursion-theoretic setting. This approach is taken
in the next section where computable topology is not mentioned at all.

5.2. Computably simple groups. All groups in this subsection are discrete,
abelian, and at most countable. A lot is known about computable presentations
of such groups, however, the definition below is new. (For the foundations of com-
putable abelian group theory, we cite the surveys [Khi98, Mel14].)

Definition 5.4. A computable group is computably simple if it has no non-trivial
computable proper normal subgroups.

Since all our groups are abelian, all subgroups are trivially normal.
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Theorem 5.5. There exists a computably simple presentation of the free abelian
group of rank ω.

Proof. We build a computable presentation H of the free abelian group

A =
⊕
i∈ω

Z

of countably infinite rank. We view it as a module over Z. The ‘natural’ computable
copy of the group A, which we identify with A, is (freely) spanned by the computable
sequence (bi)i∈ω over Z. At every stage we will have only a finite part Hs of the
group H enumerated. Initially, we will just copy A into H, unless we have to
diagonalise. At some stage we may want to declare some of the bj dependent on
bi, i < j, using large coefficients never seen before that stage; the exact choice will
depend on our strategy. (Equivalently, we introduce a relation on the generators;
for instance, it could be of the form mbi = bk for a large m ∈ N and k < i. Our
construction can be reformulated in terms of building a computable subgroup X of
A and then setting B = A/X, but this point of view would not be too helpful.) This
way we will build the not-so-natural copy H =

⋃
sHs of the group A =

⊕
i∈ω Z

that is not computably simple.

5.2.1. The requirements. Fix the uniformly effective enumeration (Wj)j∈ω of all
computably enumerable (c.e.) sets. We identify elements of H with their N-indices.
Every potential computable subgroup will be represented by a pair (We,Wj) of
c.e. sets, where We is thought of as listing the subgroup and Wj its complement.
The requirements are:

Re,j : (We,Wj) does not represent a proper subgroup of H.

For (We,Wj) to represent a proper subgroup, both We and Wj have to contain
non-zero elements, and We has to be closed under + and −.

5.2.2. The strategy for Re,j. Recall We is a potential subgroup and Wj is its com-
plement. We shall assume that at every stage s, We,s is closed under the group
operations (whenever they are defined) in Hs, otherwise we do not have to worry
about We at all. Recall that we initially begin building B to be freely generated by
(bi)i∈ω, but later we may opt to make the current value of some of these bi linearly
dependent.

The set We does not have to contain (the potential) basic elements bi. However,
since the group is free abelian, at least one such bi has to be put into Wj (which
is supposed to list the complement), for otherwise We will have to be equal to the
whole of H, and (We,Wj) will not represent a proper subgroup.

In the strategy below, we say that an integer k is ‘large’ at stage s if k > s, and
thus, it is larger than any parameter seen so far in the construction. We identify
elements of H with their N-indices, and we also fix some computable bijection
〈·, ·〉 : N2 → N. The strategy is as follows.

Suppose the strategy becomes active at stage t the first time after its ini-
tialization (to be clarified).
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(1) Wait for some bv to be put Wj and some non-zero x enumerated into
We.

(2) Wait for bw, where w > max{x, v, 2〈e,j〉, t} to be put in either We or
Wj .

(3) If bw ∈Wj , then declare bw = mx for some large m.
(4) If bw ∈We then:

(4.a) Declare bw = mbv for a large integer m.
(4.b) Wait for some bu, where u > w, to be put in either We or Wj .
(4.c) If bu ∈Wj then declare bu = kx for a large integer k.
(4.d) If bu ∈We then declare bu = qbv for a large prime q > m.

5.2.3. The verification of one strategy in isolation. We argue that the strategy
guarantees that the pair (We,Wj) cannot represent a proper subgroup of H. As we
explained above, if we never find bv and x in (1) then (We,Wj) cannot represent a
proper subgroup, and thus we do not have to worry about Re,j . Also, our search in
(2) must eventually terminate, otherwise H 6= We ∪Wj . If bw ∈Wj , then we act in
(3) and set bw = mx. But x ∈We, so either We is not a subgroup or Wj is not its
complement. If bv ∈Wj , then our search for bu in (4.b) has to terminate, otherwise
H 6= We ∪Wj . If bu ∈ Wj then we declare bu = kx in (4.c) for a large integer k.
In this case, just as in (3) explained above, we have that either We 3 x is not a
subgroup or Wj 6= H \We. If bu ∈We , then in (4.d) we declare bu = qbv for a large
prime q > m. In particular, (q,m) = 1. Recall earlier in (4.a) we set bw = mbv. We
have that bw, bu ∈We, and bw = mbv together with bu = qbv Z-generate bv because
(q,m) = 1. If We were a subgroup, it would imply bv ∈We. However, bv ∈Wj (see
(1)), and therefore either We 6= H \Wj or We is not a subgroup.

5.2.4. Putting the strategies together. Movable markers. In presence of many strate-
gies we will need to redefine the interpretation of bi whose values in H have been
declared dependent over some other bj , j < i. Then we later argue that this process
of re-defining bi has to eventually settle for each i. In the limit, the final values of
bi will indeed freely generate the group. Of course, in presence of only one strategy
this was not necessary.

We arrange the strategies into a priority order, with Re,j declared higher priority
than Re′,j′ if 〈e, j〉 < 〈e′, j′〉. Additionally, in the construction we shall redefine the
interpretation of the parameters bi in a way that at the end of every stage these
parameters correspond to linearly independent elements of Hs that generate Hs

freely. We write bi,s to denote the value of bi at the beginning of stage s. Think

of bi as being a ‘movable marker’ i that at every stage is placed at some element

of H. Then bi,s is the element h of Hs so that currently i is placed at h. If
bi,s+1 6= bi,s then we have ‘moved’ the ‘marker’. We usually suppress s in bi,s if it
is clear that we mean the value of bi at some stage, where the exact index of the
stage is not important or can be reconstructed from the context. We now explain
how exactly we move the markers.

At every stage s, at most one strategy will act according to its instructions.
Assume some bj (where j = u or w in the notation of the strategy) is declared to
be inside the Z-span of some other elements bi, i 6= j. In this case we say that the
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strategy acts. It must be that we declare bj,s ∈ SpanZ(b0,s, . . . , bj−1,s) because the
strategy always chooses its witnesses bu and bw to be large. In particular, we can
assume that x and bv are so that x =

∑
i<jmibi,s and v < j. After the relation

witnessing bj,s ∈ SpanZ(b0,s, . . . , bj−1,s) is introduced, also declare

bk,s+1 =

{
bk,s when k < j

bk+1,s when k ≥ i.

Because strategies of higher priority will have their parameters x and bv too small
compared to j, they will be in SpanZ(b0, . . . , bj−1) and therefore will not have to
be updated. We also initialize all weaker priority strategies by setting all their
parameters undefined.

Before we proceed to the construction, we also mention that some other require-
ment R′ could be accidentally met because of the actions of the R-strategy. We
make this possibility implicit. In this case we do not have to do anything to meet R′.

5.2.5. The construction. We build H ∼= A in stages. At every stage,

Hs =
⊕
i≤s

Z �s bi,s.

At stage 0, we initialize all strategies by setting all their parameters undefined.

At stage s, we let the highest priority instruction act according to its instructions,
but only if there is a strategy Re,j with 〈e, j〉 ≤ s that needs to act. Also, redefine
the values of bi,s explained in the previous subsection. In any case, let each Re,j
with 〈e, j〉 ≤ s do s more steps in their search for suitable parameters (unless they
are already defined) according to their instructions. If any of these strategies needs
to act, delay this until the next stage.

5.2.6. The verification. By induction, every strategy can be initialized only finitely
many times, and also that lims bi,s exists, i.e., the sequence stabilizes. Consider
the strategy corresponding to Re,j . Suppose it becomes active at stage t the first
time after its last initialization, and suppose it will never be initialized again. It
will then choose its parameters bu, bw large, and the same is true for any strategy
corresponding to a Re′,j′ having its priority weaker than Re,j . Consequently, the
values of bj for j < t will remain unchanged after stage t. If the strategy for
Re,j will eventually act, then requirement for Re,j will be met as explained in
Subsection 5.2.3. Otherwise, if it never acts, Re,j is also met because either We is
not closed under the group operations or the strategy fails to find its parameters, or
perhaps it will be accidentally met due to other strategies of weaker priority acting.
In any case, the strategy will act only once, and the requirement will be met. Note
that we simultaneously illustrated that lims bi,s = bi,t for all j < t. The group H
is obviously computable, and since each bi eventually settles, it is also free abelian
upon the generating set (lims bi,s)i∈ω. �

5.3. Finalizing the proof of Theorem 1.1(2). By Theorem 5.5, there exists a
computable presentation of the free abelian group of countably infinite rank that is
computably simple. Clearly, it has uncountably many proper subgroups. Fact 5.3
implies that the group can be viewed a computably locally compact that has no
non-trivial computable closed subgroups. By Lemma 5.1, its Chabauty space S(H)



COMPUTABLY LOCALLY COMPACT GROUPS AND THEIR CLOSED SUBGROUPS 23

will have uncountably many points, but only two computable points, specifically
H∗ and {0}∗. Thus, S(H) does not have a computable dense sequence (in K(H∗)).

6. The Chabauty space of a t.d.l.c. group via its meet groupoid

In this section we establish an effective correspondence between the Chabauty
space S(G) of G and the meet groupoid W(G) of all compact open subsets of a
totally disconnected locally compact (t.d.l.c.) group G, which is defined below.

Recall that a groupoid is given by a domain W on which a unary operation
(.)−1 and a partial binary operation, denoted by “·”, are defined. These operations
satisfy the following conditions:

(a) (A ·B) · C = A · (B · C), with either both sides or no side defined;
(b) A ·A−1 and A−1 ·A are always defined;
(c) if A ·B is defined then A ·B ·B−1 = A and A−1 ·A ·B = B.

A meet groupoid [MN22] is a groupoid (W, ·, (.)−1
) that is also a meet semilattice

(W,∩, ∅) of which ∅ is the least element. Writing A ⊆ B ⇔ A∩B = A and letting
the operation · have preference over ∩, it satisfies the conditions

(d) ∅−1 = ∅ = ∅ · ∅, and ∅ ·A and A · ∅ are undefined for each A 6= ∅,
(e) if U, V are idempotents such that U, V 6= ∅, then U ∩ V 6= ∅,
(f) A ⊆ B ⇔ A−1 ⊆ B−1, and
(g) if Ai ·Bi are defined (i = 0, 1) and A0 ∩A1 6= ∅ 6= B0 ∩B1, then

(A0 ∩A1) · (B0 ∩B1) = A0 ·B0 ∩A1 ·B1.

Definition 6.1. [MN22] Let G be a t.d.l.c. group. We define the meet groupoid
W(G) of G, as follows. Its domain consists of the compact open cosets in G (i.e.,
cosets of compact open subgroups of G), as well as the empty set. We define A ·B
to be the usual product AB in case that A = B = ∅, or A is a left coset of a
subgroup V and B is a right coset of V ; otherwise A ·B is undefined.

Notice that the groupoid defined above also carries a natural partial order ⊆ of
set-theoretic inclusion under which it is also forms a meet semilattice, hence the
name. It has been established in [MN22] that a duality holds between t.d.l.c. groups
and their respective meet groupoids. This duality is also fully effective in the sense
that it gives a computable 1-1 correspondence between the respective computable
meet groupoids and computably t.d.l.c. groups.

6.1. Computable setting. A separable t.d.l.c. group is homeomorphic to a locally
compact subspace of ωω. It therefore makes sense to represent such groups using
trees. Our (rooted) trees are viewed as sets of strings in ω<ω closed under prefixes.
Finite strings can be viewed as ‘nodes’ of the tree. A tree has no dead ends if every
finite string on the tree is extendible to an infinite path through the tree. The space
of paths through a tree T is denoted [T ]. The space T is a metric space under the
shortest common initial segment ultrametric. A computable tree T with no dead
ends evidently induces a computable Polish presentation on [T ].

Definition 6.2. We say that a computable tree is nicely computably locally com-
pact if it has no dead ends, only its root can be ω-branching, and given a node one
can compute the number of its successors.

Clearly this implies that [T ] is a computably locally compact space.
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Definition 6.3 ([MN22]). Let G be a Polish t.d.l.c. group. A computable Baire

presentation of G is a topological group Ĝ ∼= G of the form Ĝ = ([T ], ·,−1 ) such
that

(1) T is a nicely effectively locally compact tree;
(2) · : [T ]× [T ]→ [T ] and −1 : [T ]→ [T ] are computable (as operators).

We have already mentioned the following result:

Theorem 6.4 (M. and Ng [MN23]). For a t.d.l.c. G, the following are equivalent:

(1) G has a computably locally compact presentation, and
(2) G has a computable Baire presentation.

The implication (2) → (1) in the theorem above is of course obvious. It is
important for us that (1)→ (2) is witnessed by a computable Baire presentation of
G that is computably homeomorphic to the given computably locally compact copy
of the group. (Recall this in particular means both the homeomorphism f and its
inverse f−1 are computable.) Thus, the closed subgroups of these presentations
will be in a 1-1 effective correspondence induced by this effective homeomorphism.
It follows that, in the special case of t.d.l.c. Polish groups we can use the rather
convenient Definition 6.2 above in place of the (seemingly) more general notion of
a computably locally compact presentation. In particular, for a fixed computable
tree with no dead ends, the notions of a computable open and closed sets become
rather explicit:

Definition 6.5. An open subset R of [T ] is called computable if {σ ∈ T : [σ] ⊆ R}
is computable. A closed subset S of [T ] is called computable if [T ]−S is computable.
Equivalently, the subtree {σ ∈ T : [σ] ∩H 6= ∅} corresponding to S is computable.

For the dual meet groupoid, we shall use the following:

Definition 6.6. [MN22] A meet groupoid W is called Haar computable if

(a) its domain is (indexed by) a computable subset D of N;
(b) the groupoid and meet operations are computable; in particular, the rela-

tion {〈x, y〉 : x, y ∈ D ∧ x · y is defined} is computable;
(c) the partial function with domain contained in D × D sending a pair of

subgroups U, V ∈ W to |U : U ∩ V | is computable.

The key result relating the definitions above is the following:

Theorem 6.7 ([MN22]). A group G has a computable Baire presentation if, and
only if, its meet groupoid W(G) has a Haar computable copy.

This effective duality result also enjoys a number of further effective proper-
ties. For instance, the elements of the Haar computable copy of W(G) produced
based on a Baire presentation of G are in an effective 1-1 correspondence with
computable compact open cosets of the respective computable Baire presentation,
and vice versa. Note however that W(G) captures only compact open subgroups.
What about closed subgroups of G? How are they reflected in W(G)? We answer
this question (non-effectively) in the following section, and then in the subsequent
section we establish an effective correspondence in order to prove Theorem 1.2.
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6.2. Ideals in a meet groupoid. To this end, G will always denote a t.d.l.c.
group, and W = W(G) its meet groupoid. Recall that the compact open cosets
form a basis for the topology of G. For A,B1, . . . , Bn ∈ W, the relation A ⊆

⋃
iBi

is first-order definable in W, because its negation is given by the formula ∃C ⊆
A
∧
i[C ∩Bi = ∅]. So W determines a set of ideals in the following sense.

Definition 6.8. We say that a set J ⊆ W is an ideal of W if ∅ ∈ W and

(B1, . . . , Bn ∈ J ∧ A ⊆
⋃
iBi) ⇒ A ∈ J .

Similar to Stone duality between Boolean (Stone) spaces and Boolean algebras,
open subsets R of G naturally correspond to ideals J of W via the maps

R 7→ {A : A ⊆ R} and J 7→
⋃
J .

We also write SJ = G−
⋃
J , which is a closed set in G.

Definition 6.9. Let J be an ideal closed under inversion A 7→ A−1.
(i) We say that J is an open-subgroup ideal if

A,B ∈ J ∧ A ·B defined ⇒ A ·B ∈ J .

(ii) We say that J is a closed-subgroup ideal if

A ·B defined ∧A ·B ∈ J ⇒ A ∈ J ∨B ∈ J .

It is immediate that J is open-subgroup ideal ⇔ RJ is an (open) subgroup
of G. Note that the set CSI(W) of closed-subgroup ideals is closed in the product
topology on P(W).

Lemma 6.10. J is closed-subgroup ideal ⇔ S = SJ is a closed subgroup of G.

Proof. ⇐: Immediate.
⇒: Let g, h ∈ G. If g−1 6∈ S then there is A ∈ J such that g−1 ∈ A. Since J is
closed under inversion, this implies g 6∈ S.

If g, h ∈ S but gh 6∈ S then pick C ∈ J such that gh ∈ C. By continuity there
are A,B ∈ W such that g ∈ A, h ∈ B and AB ⊆ C (the product of subsets in G).
Let A be left coset of U and B be right coset of V . Let L = U ∩ V . Replacing

A by Â = gL and B by B̂ = Lh, we have Â · B̂ ⊆ C and hence Â · B̂ ∈ J . But

Â ∩ S 6= ∅ 6= B̂ ∩ S, so neither Â nor B̂ are in J , contrary to the assumption that
J is a closed-subgroup ideal. �

We now look at the Chabauty space of a t.d.l.c. G. Using the notation of [Cor11,
Section 2], a basic open set in S(G) has the form

(1) Ω(K;R1, . . . , Rn) = {U ≤c G : U ∩K = ∅ ∧ ∀i ≤ nU ∩Ri 6= ∅},
where K ⊆ G is compact, and the Ri ⊆ G are open. (If G is t.d.l.c. then S(G) is also
totally disconnected. So unless S(G) has isolated points, it will be homeomorphic
to Cantor space. We cite Cornulier [Cor11] for further background.)

Proposition 6.11. The map Γ: CSI(W)→ S(G), given by

J 7→ SJ = G−
⋃
J ,

is a continuous bijection of compact spaces, and hence a homeomorphism.

Proof. Fix a closed-subgroup ideal J . To show that Γ is continuous at J , suppose
that S = Γ(J ) ∈ Ω(K;R1, . . . , Rn), a basic open set as defined in (1). Since
the compact open cosets form a basis of the topology of G, we may assume that
each Ri is a compact open coset. Since K ⊆ G − S which is open, there are
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compact open cosets B1, . . . , Bm such that K ⊆
⋃
k Bk ⊆ G − S. Let L be the

basic open set of CSI(W) consisting of the subgroup ideals A such that Bk ∈ A
for each k ≤ m, and Ri 6∈ A for each i ≤ n. Clearly J ∈ A, and H ∈ L implies
Γ(H) ∈ Ω(K;R1, . . . , Rn). �

6.3. Concluding the proof of Theorem 1.2. Recall that (1) ↔ (2) of Theo-
rem 1.2 was already verified in Lemma 5.1. To establish (1) ↔ (3), we first prove
the following lemma.

Lemma 6.12. Suppose that a t.d.l.c. G is given as a computable Baire presentation
based on a tree T , and let W denote the corresponding Haar computable copy of
W(G). For an ideal J ⊆ W,

J is computable ⇔ the open set RJ ⊆ [T ] is computable.

Proof. As we already noted after Theorem 6.7, elements of the groupoid are in a 1-1
effective correspondence with the respective cosets in the group. We elaborate how
exactly this leads to the claimed effective correspondence between J and RJ ⊆ [T ],
and give references to the technical claims in [MN22] that we use.
⇒: Given σ ∈ T , we may assume that length(σ) > 0, and thus [σ]T is compact.
Hence by [MN22, Lemma 2.6] one can compute A1, . . . , An ∈ W such that

⋃
iAi =

[σ]. Then [σ] ⊆ R iff Ai ∈ J for each i.
⇐: By the definition of W from the computable Baire presentation based on the
tree T , each A ∈ W is given in the form Ku =

⋃
η∈u[η]T (as in [MN22, Def. 2.5])

where u encodes a finite set of nonempty strings on T . Then A ∈ J iff [η] ⊆ R for
each η in u. �

Corollary 6.13. In the notation of the above, it follows that an open-subgroup
ideal [closed-subgroup ideal] J is computable iff RJ [resp., SJ ] is computable.

By Theorem 6.4 and the discussion after it, given a computably locally compact
presentation C of a t.d.l.c. G we can produce a computable Baire presentation
of the group via a tree T and a computable group-homeomorphism f : C → [T ]
with computable inverse. By Lemma 5.1, computable closed Sj correspond to
computable points in the effective closed presentation of S(G) based on [T ] or,
equivalently, based on C. Let W be the Haar computable presentation of the
dual meet groupoid given by Theorem 6.7. Lemma 6.10 illustrates that closed-
subgroup ideals J are in 1-1 correspondence with closed subgroups SJ of G. By the
corollary above, the computable closed-subgroup ideals are in a 1-1 correspondence
with computable closed subgroups SJ in the presentation given by [T ]. This is
also clearly uniform, and so is the proof of Lemma 5.1. This gives (1) ↔ (3) of
Theorem 1.2.

Remark 6.14. There is nothing special about computability of points and ideals
in the proof above. Indeed, we can computably uniformly transform (names of)
X-computable points into X-computable ideals, and vice versa. Thus, as we al-
ready pointed out in the introduction, the proof above really gives a ‘computable
homeomorphism’ between CSI(W) and S(G). However, formalising this statement
would involve various notions that we did not define in the present paper. This is
because neither of these objects is a computable Polish space. Thus, we leave the
exact formulation of the more general fact (and the formal verification of it) as a
strong conjecture.
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7. Complexity of index sets

Recall from Def. 2.14 that an X-computably compact structure on a computable
Polish space is an X-computable functional representing the procedure Nx → K ⊇
B 3 x that works for any point x of the space. Recall that Theorem 1.3 states that

{i : Gi is a properly metrized abelian group and R ≤c Gi}

is arithmetical.

7.1. Proof of Theorem 1.3. We have already discussed the following fact in the
introduction.

Proposition 7.1. The index set of properly metrized Polish groups is arithmetical3.

Proof. Fix G = Gi given by a computable Polish space and two operators acting
on the space. Since we have that

B(x, r) = cl{y : d(x, y) < r} ⊆ Bc(x, r) = {y : d(x, y) ≤ r} ⊆ B(x, r′)

whenever r′ > r, G is properly metrized iff B(x, r) is compact, for all x, r. First,
view G as a computable Polish space ignoring the group operations; the computable
index of the space can be computably reconstructed from i. We claim that it is
arithmetical to tell that for every special x and each positive r ∈ Q, the closure
B(x, r) of B(x, r) is compact. The (c.e.) collection of special points in B(x, r) =

{y : d(x, y) < r} makes B(x, r) a computably Polish space, uniformly in x, r. It is
Π0

3 to tell whether a given computable Polish space is compact; see [MN13].

Fact 7.2. Every properly metrized Polish space admits a 0′-computably locally
compact structure, and this is uniform.

Proof. Since every compact Polish space is 0′-computably compact (and this is
uniform), the basic balls and their closures induce a 0′-computably locally compact
(0′-c.l.c.) structure on the space. �

Assume G is properly metrized (as a space). Using Fact 7.2, fix 0′-c.l.c. structure
on the domain of the group. We claim that it is arithmetical to tell whether the
functionals representing the (potential) group operations on a 0′-c.l.c. group are
well-defined (total). This is because they are total if, and only if, for every n their
restrictions to Kn are total, where the Kn are the compact sets from Lemma 3.2
(relativized to 0′) making up the 0′-c.l.c. G. The totality on each Kn is uniformly
Π0

3; this is essentially the aforementioned [Mel18, Lemma 4.2]. Thus, we conclude
that totality of the (potential) group operation is an arithmetical property, uni-
formly in the index of G.

Assuming that the operations are witnessed by total functionals, the collection
of all points that satisfy the group axioms form an effectively closed set. Thus, if
there are some points that fail the axioms, then there are special points that fail
the axioms. It follows that the group axioms can be tested on special points, which
makes the test (uniformly) Π0

1 in the index of the group and the names of the group
operations. �

3The bound in Π0
3, and it follows from the proof of [Mel18, Proposition 4.1] that this is indeed

Π0
3-complete within the class of totally disconnected groups. The same upper bound holds for the

index set of properly metrized Polish spaces, and this is also complete (via the same proof).
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Remark 7.3. In view of the effective proper metrization result Proposition 3.3,
the proposition above allows to apply the index set approach to the class of com-
putable compact groups in a meaningful way. Also, it contrasts greatly with
the Π1

1-completeness of being locally compact Polish space proved by Nies and
Solecki [NS15].

We return to the proof of Theorem 1.3. Of course, being abelian is a Π0
1-property

and can be tested on special points as well. In summary, using several Turing
jumps we can ensure that G = Gi is indeed a properly metrized (thus, locally
compact) abelian group. Recall that we can arithmetically check whether it is
compact [MN13]. (If Gi is compact, obviously it cannot contain R as a closed
subgroup.) Thus, we can assume Gi is not compact. By Lemma 2.18, G = Gi
admits a 0′-computable locally compact structure whose index can be uniformly
recovered form i using 0′.

Using Theorem 3.4 relativized to 0′, uniformly pass to its 0′-computably compact
1-point compactification G∗i , and uniformly effectively define the 0′-computably
compact hyperspace K(G∗). Using Theorem 1.1, uniformly produce the Π0

1(0′)-
presentation of S(G) inside K(G∗). By Lemma 2.13, S(G) has a 0′′-computably
compact presentation.

We need the following:

Lemma 7.4 (E.g., [Mel18, DM23]). It is arithmetical (Π0
1) to tell whether a given

computably compact set is connected.

Proof. By the elementary [DM23, Lemma 4.21], we can effectively list all clopen
non-trivial splits of the space. Thus, we simply need to state that such a split will
never be found, which is Π0

1. �

Relativising the lemma above to 0′′, we conclude that the following is an arith-
metical (Π0

3) property:

S(G) is connected.

In summary, it is arithmetical (Π0
3) to tell whether Gi is an abelian properly

metrized group so that its Chabauty space S(G) is connected. To finish the proof
of the theorem, apply the following result is due to Protasov and Tsybenko [PT83]:
Suppose G is a locally compact group. If its Chabauty space S(G) is connected, then
some subgroup of G is topologically isomorphic to (R,+). For abelian groups, the
converse holds.

Remark 7.5. To establish Π0
3-completeness, take the effective sequence (Ci) totally

disconnected abelian groups from [Mel18, Proposition 4.1] which indeed witness the
Π0

3-completeness in Proposition 7.1, and consider Ci ⊕ R.

8. A few open questions

In Theorem 1.1 we constructed a Π0
1 presentation of the Chabauty space of a

computably locally compact group, and we argued that this presentation is (effec-
tively) natural. However, following the general pattern of computable mathemat-
ics, we wonder if this presentation is (in some sense) computably unique for some
groups.

Question 8.1. Can we describe those groups G for which S(G) is computably
unique?
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The computable uniqueness here should perhaps be interpreted using homeomor-
phisms that are (in some sense) effective; we are not sure what the right effectiveness
notion would be in the context.

In Theorem 5.5 we constructed a fixed computable presentation H of the free
abelian group Z<ω so that S(H) is not computable in K(H∗). Clearly, the ‘natural’
computable presentation of this group does not have this pathological property.
Thus, we leave open:

Question 8.2. Is there a computable discrete group G so that for any computable
presentation H of G, S(H) is not computable in K(H∗)?

Recall that Theorem 5.5 established that there exists a computable group that
is not simple but has no computable proper normal subgroups. We called such
groups ‘computably simple’. Can this pathological property hold in any computable
presentation of some (non-simple) group? It is not difficult to see that, if such a
group exists, it cannot be abelian. In the class of abelian groups, the following
similar question can prove to be challenging.

Question 8.3. Can we describe computable discrete abelian groups that admit
computably simple presentations?

We used discrete groups as a tool, but clearly such investigations do not have to
be restricted to discrete groups. For instance, we wonder whether it is possible to
produce examples similar to Theorem 1.1(2) among, say, profinite groups.

Recall that we relied on proper metric in our proofs, and that in Proposition 3.3
we showed that every computably compact Polish space admits an effectively equiv-
alent proper metric. Struble [Str74] showed that every locally compact Polish group
admits a proper left- (or right-) invariant metric; see also [HP06]. It has been
shown in [KMK23] that, with much extra work, the result can be effectivized for
computably locally compact groups, but it produces a right-c.e. metric in general.
(Interestingly, the right-c.e. space is effectively locally compact in the same sense
as Π0

1-classes in 2ω are effectively compact; see [KMK23].) It is currently open
whether a computably locally compact group admits a proper left-invariant metric
that would also be computable.

We move on to index sets. Recall that every locally compact Polish group ad-
mits a proper (left- or right-invariant) metric; see also [HP06], and this result has
been effectivized in [KMK23]. Combined with these results, Proposition 7.1 en-
tails that various index set questions can be attacked in a meaningful way for the
class of locally compact groups using proper metric presentations. For example,
we conjecture that the index set of properly metrized totally disconnected groups
is arithmetical. Further properties of S(G) (e.g., [Cor11]) could be of significant
assistance.

We also wonder whether “Pontryagin-Chabauty duality” established in [Cor11] is
computable. Various effective dualities have recently been established in [BHTM21,
LMN21, DM23, HTMN20, HKS20, MN23].
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