
COMPUTABLE FUNCTORS AND EFFECTIVE

INTERPRETABILITY

MATTHEW HARRISON-TRAINOR, ALEXANDER MELNIKOV,

RUSSELL MILLER, AND ANTONIO MONTALBÁN

Abstract. Our main result is the equivalence of two notions of re-
ducibility between structures. One is a syntactical notion which is an
effective version of interpretability as in model theory, and the other
one is a computational notion which is a strengthening of the well-
known Medvedev reducibility. We extend our result to effective bi-
interpretability and also to effective reductions between classes of struc-
tures.

1. Introduction

The main purpose of this paper is to establish a connection between two
standard methods of computable structure theory for reducing one structure
into another one. One of this methods, effectively interpretability (Definition
2), is purely syntactical and is an effective version of the classical notion of
interpretability in model theory . It is equivalent to the well-studied notion
of Σ-reducibility. The other method is purely computational, and it involves
computing copies of one structure from copies of the other using what we
will call computable functors (Definition 4).

In computable structure theory we study complexity issues related to
mathematical structures. One of the objectives of the subject is to measure
the complexity of structures. There are three commonly used methods to
compare the complexity of structures: Muchnik reducibility, Medvedev re-
ducibility and Σ-reducibility. The first two are computational, in the sense
that they are about copies of a structure computing other copies; while the
third one is purely syntactical. They are listed from weakest to strongest
and none of the implications reverse (as proved by Kalimullin [Kal09]).

Effective interpretability. Informally, a structure A is effectively inter-
pretable in a structure B if there is an interpretation of A in B (as in model
theory [Mar02, Definition 1.3.9]), but where the domain of the interpretation

The first author was partially supported by the Berkeley Fellowship and NSERC grant
PGSD3-454386-2014. The second author was supported by the Packard Foundation. The
third author was supported by NSF grants # DMS-1362206 and DMS-1001306, and by
several PSC-CUNY research awards. The fourth author was partially supported by the
Packard Fellowship and NSF grant # DMS-1363310. This work took place in part at a
workshop held by the Institute for Mathematical Sciences of the National University of
Singapore.

1

2 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

is allowed to be a subset of B<ω (while in the classical definition it is required
to be a subset of Bn for some n), and where all sets in the interpretation
are required to be “computable within the structure” (while in the classi-
cal definition they need to be first-order definable).1 Here, by “computable
within the structure” we mean uniformly relatively intrinsically computable
(see Definition 1). Effective interpretability is among the strongest notions
of reducibility between structures that are usually considered. It gives a
very concrete way of producing the structure A from the structure B, and
hence implies that essentially any kind of information encoded in A is also
encoded in B.

Effective interpretability is equivalent to the parameterless version of the
notion of Σ-definability, introduced by Ershov [Ers96] and widely studied in
Russia over the last twenty years (for instance [Puz09, Stu13, MK08, Kal09]).
The standard definition of Σ-definability is quite different in format: it uses
the first-order logic over HF(B), the structure of hereditarily finite sets over
B, instead of the computably infinitary language over B<ω. For a more
detailed discussion of the equivalence between effective interpretability and
Σ-definability see [Mon12, Section 4].

Before giving the formal definition, we need to review one more concept.

Definition 1. A relation R on A<ω is said to be uniformly relatively intrin-
sically computably enumerable (u.r.i.c.e.) if there is a c.e. operator W such

that for every copy (B, RB) of (A, R), RB = WD(B). A relation R on A<ω is
said to be uniformly relatively intrinsically computable (u.r.i. computable) if
there is a computable operator Ψ such that for every copy (B, RB) of (A, R),

RB = ΨD(B).
(Here D(B) referee to the atomic diagram of B; it is an infinite binary

sequence that encodes the truth of all the atomic facts about B̂. See [Mon12,
Section 2], for instance, for a formal definition).

These relations are the analogues of the c.e. and computable subsets of
ω when we look at relations on a structure. They are computability theo-
retic notions, but they can be characterized in purely syntactical terms: It
follows from the results in Ash, Knight, Manasse and Slaman [AKMS89],
and Chisholm [Chi90] that a relation R is u.r.i.c.e. if and only if it can be
defined by a computably infinitary Σ1 formula without parameters; a re-
lation R is u.r.i. computable if both it and its complement can be defined
by computably infinitary Σ1 formulas without parameters. (We will use Σc

1

to denote the computably infinitary Σ1 formulas, and the same for ∆c
1, Πc

1,
etc.) These theorems were originally proved for R ⊆ An for some n, but
they also hold for R ⊆ A<ω (see [Mon12, Theorem 3.14]). In this latter
case, we say that R is Σc

1-definable if there is a computable list ϕ1, ϕ2, ϕ3, ...
of Σc

1 formulas defining R ∩A1, R ∩A2, R ∩A3,... respectively. The use of

1We remark that this definition is slightly different from what the fourth author called
effective-interpretability in [Mon13, Definition 1.7], as we now allow the domain to be a
subset of B<ω rather than Bn for some n, and we do not allow parameters in the definitions.

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 3

A<ω is not just to be able to take subsets of the different An at the same
time. Traditionally, computability theory is usually developed by consid-
ering subsets of ω and this is workable because every finite object can be
coded by a natural number. In the same way, when we are talking about
computability over a structure, A<ω is the simplest domain where we can
develop computability without losing generality. For instance, it is not hard
to see that we can easily encode subsets of (A<ω) × ω by subsets of A<ω
in an effective way2 so that we can talk about r.i.c.e. subsets of (A<ω)× ω,
etc. Thus, we say that a sequence of relations (Ri : i ∈ ω) where Ri ⊆ A<ω
is r.i.c.e. or Σc

1-definable if it is as a subset of (A<ω)× ω.
Throughout the rest of the paper, we assume that all our structures have

a computable language. Without loss of generality, we may further assume
that all languages considered are relational.

Definition 2. We say that a structure A = (A;PA0 , P
A
1 , ...) (where PAi ⊆

Aa(i)) is effectively interpretable in B if there exist a ∆c
1-definable (in the lan-

guage of B, without parameters) sequence of relations (DomAB ,∼, R0, R1, ...)
such that

(1) DomBA ⊆ B<ω,
(2) ∼ is an equivalence relation on DomBA,

(3) Ri ⊆ (B<ω)a(i) is closed under ∼ within DomBA,

and there exists a function fBA : DomBA → A which induces an isomorphism:

(DomBA/ ∼;R0/ ∼, R1/ ∼, ...) ∼= (A;PA0 , P
A
1 , ...),

where Ri/ ∼ stands for the ∼-collapse of Ri.
3

As important as the notions of reducibility between structures are the
notions of equivalence between structures. Despite extensive study of ef-
fective interpretability, or Σ-definability, over the last couple of decades,
the associated notion of bi-interpretability has not been considered until re-
cently [Mon, Definition 5.2]. Let us remark that the notion of Σ-equivalence
between structures, which says that two structures are Σ-definable in each
other, has been studied ([Stu13]), but the notion of bi-interpretability we
are talking about is much stronger. Informally: two structures A and B are
effectively bi-interpretable if they are effectively interpretable in each other,
and furthermore, the compositions of the interpretations are ∆c

1-definable

2For example, (b0, . . . , bk,m) can be coded by the definable class of tuples of the form
(b′, b0, . . . , bk, b

′, . . . (m times) . . . , b′) where b′ 6= bi for all i. Different choices of b′ will code
the same tuple, but we can identify all such codes later when we introduce a definable
equivalence relation upon the domain.

3 In previous definitions in the literature, DomBA was asked to be Σc
1 definable instead

of ∆c
1 definable (see for instance [Mon13, Definition 1.7] and [Mon, Definition 5.1]). But in

fact one can demonstrate these definitions are equivalent. Indeed, given a Σ-interpretation,
with the domain consisting of the tuples x̄ satisfying a countable disjunction of formulas
∃s̄ϕi(x̄, s̄), we find a new domain consisting of the tuples (x̄, s̄, i) with (x̄, s̄) satisfying ϕi,
and we have (x̄, s̄, i) equivalent to (ȳ, t̄, j) iff x̄ and ȳ are equivalent in the Σ-interpretation.

4 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

in the respective structures. In other words, when two structures interpret
each other, we have that A can be interpreted as a structure inside B<ω, and
that B<ω can be interpreted as a structure inside (A<ω)<ω. Thus, we have
an interpretation of A inside (A<ω)<ω. For bi-interpretability, we require
that the isomorphism between A and its interpretation inside (A<ω)<ω be
∆c

1-definable, and the same for the isomorphism between B and its interpre-
tation inside (B<ω)<ω.

Definition 3. Two structuresA and B are effectively bi-interpretable if there
are effective interpretations of each structure in the other as in Definition 2
such that the compositions

fAB ◦ f̃BA : Dom(DomBA)
B → B and fBA ◦ f̃AB : Dom(DomAB)

A → A

are u.r.i. computable in B andA respectively. (HereDom(DomBA)
B ⊆ (DomBA)<ω,

and f̃BA : (DomBA)<ω → A<ω is the obvious extension of fBA : DomBA → A
mapping Dom(DomBA)

B to DomAB .)

When two structures are effectively bi-interpretable, they look and feel the
same from a computability point of view. In [Mon, Lemma 5.3] the fourth
author shows that if A and B are effectively bi-interpretable then: they have
the same degree spectrum; they have the same computable dimension; they
have the same Scott rank; their index sets are Turing equivalent (assuming
the structures are infinite); A is computably categorical if and only if B is;
A is rigid if and only if B is; A has the c.e. extendability condition if and
only if B does; for every R ⊆ A<ω, there is a Q ⊆ B<ω which has the same
relational degree spectrum, and vice-versa; and the jumps of A and B are
effectively bi-interpretable too.

Computable functors. One of the most common ways of describing the
computational complexity of a structure is by its degree spectrum. Asso-
ciated with the degree spectrum is the notion of Muchnik reducibility: A
structure A is Muchnik reducible to a structure B if every copy of B com-
putes a copy of A, or (equivalently for non-trivial structures) if DgSp(A) ⊆
DgSp(B). The uniform version of this reducibility is called Medvedev re-
ducibility: A structure A is Medvedev reducible to a structure B if there is a
Turing functional Φ that, given a copy of B as an oracle, outputs a copy ΦB

of A. It is easy to see that if A is effectively interpretable in B, we can use
the interpretation to build a Turing functional giving a Medvedev reduction
from B to A. Kalimullin [Kal09] showed that this implication cannot be
reversed. In this paper we consider a strengthening of Medvedev reducibil-
ity that is equivalent to effective interpretability. This strengthening comes
from asking the Turing functional Φ to preserve isomorphisms in the fol-
lowing sense. Given an isomorphism between two copies of B, we want an
effective way to compute an isomorphism between the two copies of A that
we get by applying Φ. We will define this more precisely using the language
of category theory.

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 5

Throughout the paper, we write Iso(A) for the isomorphism class of a
countably infinite structure A:

Iso(A) = {Â : Â ∼= A & dom(Â) = ω}.

We will regard Iso(A) as a category, with the copies of the structures as its
objects and the isomorphisms among them as its morphisms.

Definition 4. By a functor from A to B we mean a functor from Iso(A)

to Iso(B), that is, a map F that assigns to each copy Â in Iso(A) a struc-

ture F (Â) in Iso(B), and assigns to each morphism f : Â → Ã in Iso(A) a

morphism F (f) : F (Â) → F (Ã) in Iso(B) so that the two properties hold
below:

(N1) F (idÂ) = id
F (Â)

for every Â ∈ Iso(A), and

(N2) F (f ◦ g) = F (f) ◦ F (g) for all morphisms f, g in Iso(A).

A functor F : Iso(A)→ Iso(B) is computable if there exist two computable
operators Φ and Φ∗ such that

(C1) for every Â ∈ Iso(A), ΦD(Â) is the atomic diagram of F (Â) ∈ Iso(B);

(C2) for every morphism f : Â → Ã in Iso(A), Φ
D(Â)⊕f⊕D(Ã)
∗ = F (f).

Recall that D(Â) denotes the atomic diagram of Â. We will often identify
a computable functor with the pair (Φ,Φ∗) of Turing operators witnessing
its computability.

Notice that Φ, without Φ∗, gives a Medvedev reduction from Iso(A) to
Iso(B). From the examples in the literature of Medvedev reducibilities, some
turn out to be effective functors, but not all.

Our first main result connects computable functors and effective inter-
pretability.

Theorem 5. Let A and B be countable structures. Then A is effectively
interpretable in B if and only if there exists a computable functor from B to
A.

We prove Theorem 5 in Section 2. It is well-known in model theory that
an elementary first-order interpretation of one structure in another gives rise
to a functor. One can find a treatment of this fact in the book by Hodges
[Hod93, pp. 216–218]. The corresponding direction in Theorem 5—from left
to right—is rather straightforward, and the only new thing is to consider
the effectiveness of the functor. The interesting direction is to build an
interpretation out of a functor.

Our proof of Theorem 5 not only shows the existence of such an inter-
pretation, but actually it builds a correspondence between functors and
interpretations. This last observation, which we will discuss in Proposition
7 and Section 3, is quite important. For instance, when A has a computable
copy Theorem 5 is trivial and Proposition 7 is still meaningful: in this case
we always have an effective interpretation of A into B which ignores the

6 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

structure in B, and also a functor from B to A that always outputs the same
computable copy of A and the identity isomorphism on it without consulting
the oracle.

Let us now explain how is that Proposition 7 extends Theorem 5. Suppose
we have a computable functor F : Iso(B) → Iso(A) whose effectiveness is
witnessed by (Φ,Φ∗). The backward direction of Theorem 5 says that A
must be effectively interpretable in B. Applying the forward direction of
Theorem 5 to this effective interpretation, we get a computable functor based
on this interpretation, denoting this new functor by IF (here I stands for
‘interpretation’). We will show that these functors are isomorphic even in
an effective way. The appropriate notion of equivalence is the following.

Definition 6. A functor F : Iso(B)→ Iso(A) is effectively naturally isomor-
phic (or just effectively isomorphic) to a functor G : Iso(B)→ Iso(A) if there

is a computable Turing functional Λ such that for every B̃ ∈ Iso(B), ΛB̃ is

an isomorphism from F (B̃) to G(B̃), and the following diagram commutes

for every B̃, B̂ ∈ Iso(B) and every morphism h : B̃ → B̂:

F (B̃)

F (h)
��

ΛB̃ // G(B̃)

G(h)
��

F (B̂)
ΛB̂
// G(B̂)

Proposition 7. Let F : Iso(B)→ Iso(A) be a computable functor. Then F
and IF (defined above) are effectively isomorphic.

We prove Proposition 7 in Section 3.
Suppose that F and G are functors, and F ◦ G and G ◦ F are effec-

tively isomorphic to the identity. The witness to G ◦ F being effectively
isomorphic to the identity functor is a Turing functional ΛA which gives,

for any Ã ∈ Iso(A), a map ΛÃA : Ã → G(F (Ã)). Thus, applying the func-

tor F , we get a map F (ΛÃA) : F (Ã) → F (G(F (Ã))). There is also a map

Λ
F (Ã)
B : F (Ã) → F (G(F (Ã))) which is obtained from the Turing functional

ΛB which witnesses that F ◦G is effectively isomorphic to the identity func-

tor. If these two maps F (Ã) → F (G(F (Ã))) agree for every Ã ∈ Iso(A),
and similarly with the roles of A and B switched, then we say that F and
G are pseudo-inverses.

Definition 8. Two structures A and B with domain ω are computably bi-
transformable if there exist computable functors F : Iso(A) → Iso(B) and
G : Iso(B)→ Iso(A) which are pseudo-inverses.

Theorem 9. Let A and B be countable structures. Then A and B are
effectively bi-interpretable iff A and B are computably bi-transformable.

We prove Theorem 9 in Section 4.

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 7

Effective transformations of classes. There has been much work in the
last few decades analyzing which classes of structures can be reduced to
others, and which are universal in the sense that the class of all structures
reduces to them. The meaning of “reduces” has varied. The intuition is
that one class reduces to another if every structure in the first class can be
somehow encoded by a structure in the second class, and usually we want
the encoding structure to have similar complexity as the structure being
coded. For instance, a class is universal for degree spectra if every degree
spectrum realized by some structure is realized by a structure in the class.
The most celebrated paper in this direction was written by Hirschfeldt,
Khoussainov, Shore and Slinko [HKSS02a]. They defined what it means for
a class to be complete with respect to degree spectra of nontrivial struc-
tures, effective dimensions, expansion by constants, and degree spectra of
relations. Then they showed that undirected graphs, partial orderings, lat-
tices, integral domains of arbitrary characteristic (and in particular rings),
commutative semigroups, and 2-step nilpotent groups are all complete in
these sense. Their definition is rather cumbersome and does not seem to be
equivalent to our definitions below, but the definitions appear rather close
in spirit.

Our intention is to apply the proofs of Theorems 5 and 9 to the situation
in which one class C of countable structures is effectively interpretable in
another class D.

In what will follow, a class is a category of countable structures upon the
domain ω and morphisms are permutations of ω that induce isomorphisms,
and we also assume our classes are closed under such isomorphisms. (That
is, if A and B are objects in the class, every isomorphism between them is
a morphism in the class.) We can extend the definition of a computable
functor to arbitrary classes (not necessarily of the form Iso(A)) by simply
allowing the oracles of Φ and Φ∗ to range over the objects and morphisms
of an arbitrary class.

Definition 10. Say that a class C is uniformly transformally reducible to a
class D there exist a subclass D′ of D and computable functors F : C→ D′,
G : D′ → C such that F and G are pseudo-inverses.

The syntactical counterpart of the above definition is:

Definition 11 ([Mon]). Say that a class C is reducible via effective bi-
interpretability to a class D if for every C ∈ C there is a D ∈ D such that C
and D are effectively bi-interpretable and furthermore the formulae defining
the interpretations and the isomorphisms do not depend on the concrete
choice of C or D.

We have:

Theorem 12. A class C is reducible via effective bi-interpretability to a
class D iff C is uniformly transformally reducible to a class D.

8 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

Proof. The proof of Theorem 9 is uniform in both directions. 2

Using the interpretations defined by Hirschfeldt, Khoussainov, Shore and
Slinko [HKSS02b], we get the following: undirected graphs, partial order-
ings, and lattices are on top (or universal) for effective bi-interpretability
(see [Mon, Section 5.2]). If we add a finite set of constants to the languages
of integral domains, commutative semigroups, or 2-step nilpotent groups,
they become on top for effective bi-interpretability too. A recent result by
J. Park, B. Poonen, H. Schoutens, A. Shlapentokh, and one of us [MPP+]
shows that fields are also universal for effective bi-interpretability.

2. Proof of Theorem 5

We split the proof into two propositions, one proposition for each direction
of Theorem 5. We start by quickly disposing of the easy direction.

Proposition 13. If A is effectively interpretable in B, then there exists a
computable functor from Iso(B) to Iso(A).

Proof. Suppose that A is interpreted in B via DomBA, ∼, and 〈Ri〉i∈ω as

in Definition 2. Given B̃ ∈ Iso(B), we first define Ã = F (B̃) upon the
domain ω as follows. Notice that since the sequence of relations DomBA,

∼, and 〈Ri〉i∈ω is ∆c
1 definable in B, the respective interpretations in B̃

are uniformly computable from the open diagram D(B̃) of B̃. Since B̃ has

domain ω, we have that DomB̃A ⊆ ω<ω and using a fixed enumeration of ω<ω

we get a bijection τ̃ :

τ̃ : ω → DomB̃A/ ∼ .
Note that τ̃ is uniformly computable from D(B̃). Using τ̃ , we define relations

Pi on ω via the pull-back from (DomB̃A/ ∼;RB̃0 , R
B̃
1 , ...) along τ̃ , and let the

resulting structure be F (B̃) = Ã.

Also, given an isomorphism f : B̃ → B̂, we need to define an isomorphism

F (f) : F (B̃)→ F (B̂). Using the respective bijections τ̃ and τ̂ as above, and

extending f to the domain B̃<ω in the obvious way, we define

F (f) = τ̂−1 ◦ f ◦ τ̃ : Ã → Â

It is straightforward to check that the above definition of F gives a functor
from Iso(B) to Iso(A). 2

We now move on to the more interesting direction.

Proposition 14. Suppose there exists a computable functor from Iso(B) to
Iso(A). Then A is effectively interpretable in B.

Proof. Let F = (Φ,Φ∗) be a computable functor from Iso(B) into Iso(A).
We will produce Σc

1-formulas for an effective interpretation of A in B. We
begin by introducing some notation and conventions. We will then define

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 9

DomBA and ∼ formally and prove several useful lemmas about them. After
that we define Ri and show that our definitions suffice.

Notations and conventions. We identify a function f : ω → ω with its
graph, using λ to denote the identity function on ω. If x̄ = (x0, . . . , xn) and
σ is a permutation of {0, . . . , n}, then (x̄)σ is the tuple (xσ(0), . . . , xσ(n)).

For b̄ ∈ B we view b̄ as a partial map which takes the tuple (0, . . . , |b̄| − 1)
to (b0, b1, ..., b|b̄|−1). Viewing x̄ as a partial map, note that (x̄)σ = x̄ ◦ σ.

If f is a map from ω to the domain of B, then we can “pull back” the
structure on B along f to get a structure Bf on ω such that f : Bf → B is an
isomorphism. Given a tuple b̄ ∈ B and f ⊃ b̄, we write D(b̄) to denote the
partial atomic diagram of (0, 1, . . . , |b|−1) in Bf that mentions only the first
|b̄|-many relations. This partial atomic diagram will be typically identified
with the finite binary string that, under some fixed Gödel numbering of
the atomic formulas, encodes D(b̄). Thus, D(b̄) is an initial segment of the
atomic diagram D(Bf) of Bf . Furthermore, D(Bf) =

⋃
n∈ωD(f �n). Note

that D(b̄) does not really depend on a particular choice of f as long as f ⊃ b̄;
it only depends on what atomic formulas hold of b̄.

Finally, for finite tuples b̄ and c̄, we write c̄ \ b̄ for the set of elements that
occur in c̄ but not in b̄.

Definitions of DomBA and ∼. Recall that B<ω×ω can be easily coded by
elements of B<ω. We define the domain DomBA and the equivalence relation
∼ upon that domain as follows:

DomBA: Define DomBA to be the set of pairs (b̄, i) ∈ B<ω × ω such that

Φ
D(b̄)⊕λ � |b̄|⊕D(b̄)
∗ (i) ↓= i.

∼: For (b̄, i), (c̄, j) ∈ DomBA, let (b̄, i) ∼ (c̄, j) if there exists a finite tuple
d̄ that does not mention elements from b̄ and c̄, such that if we let
c̄′ and b̄′ list the elements in c̄ \ b̄ and b̄ \ c̄ respectively, and let σ be
the finite permutation with (b̄c̄′d̄) = (c̄b̄′d̄)σ, then

Φ
D(b̄c̄′d̄)⊕σ⊕D(c̄b̄′d̄)
∗ (i) ↓= j and Φ

D(c̄b̄′d̄)⊕σ−1⊕D(b̄c̄′d̄)
∗ (j) ↓= i.

Intuitively, given b̄ ⊆ f , we have that D(b̄) ⊆ D(Bf), and hence ΦD(b̄)

is a finite initial segment of ΦD(Bf) which is isomorphic to A. The idea is
that (b̄, i) will represent the ith element in the presentation ΦD(Bf) of A. Of
course, there are many possible f : ω → B extending b̄, and the element i on
the different presentations ΦD(Bf) may correspond to different elements of
A. As we will see later, the condition we are imposing to have (b̄, i) ∈ DomBA
will guarantee that this ith element always corresponds to the same element
in A.

The intuition behind ∼ is that the partial diagrams D(b̄c̄′d̄), D(c̄b̄′d̄), and
the isomorphism between them are enough information for Φ∗ to recognize

10 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

that the element i of ΦBf should be paired with the element j of ΦBg for
any f ⊃ b̄c̄′d̄ and g ⊃ c̄b̄′d̄. We note that σ ⊆ g−1 ◦ f : Bf → Bg.

Properties of DomBA and ∼. Before we proceed, we verify that our def-
initions of DomBA and ∼ satisfy the nice properties that one would expect
from the “right” definitions of DomBA and ∼.

Lemma 15. The set DomBA and its complement are both definable in the
language of B by Σc

1-formulas without parameters.

Proof. One can simply observe that DomBA is u.r.i. computable in B, and
hence ∆c

1-definable without parameters. However, let us also include a more
syntactical proof to give the reader a better idea of what is going on. We can

enumerate the diagrams D(b̄) for which Φ
D(b̄)⊕λ � |b̄|⊕D(b̄)
∗ (i) converges and is

equal to i, and we can also compute the diagrams for which the computation
diverges or does not equal i. Each of these finite partial diagrams corre-
sponds to a quantifier-free formula about b̄. (Notice that here “divergence”

does not mean that the computation runs forever; indeed, Φ
D(B)⊕λ⊕D(B)
∗

must be total. Rather, we say that the computation diverges on an input if
it demands information about D(B) or about λ that the finite oracle does
not include, in which case we will recognize that the computation has di-
verged in this sense. If it fails to diverge in this sense, then it must in fact
halt.) Then DomBA is defined by the computable disjunction of those for-
mulas corresponding to diagrams where the computation converges and is
equal to i, and its complement is defined by the disjunction of the other
formulas (i.e., where the computation diverges or is not equal to i).

To ensure that the same computable disjunction works for every struc-

ture B̃ ∈ Iso(B), we include in the disjunction every finite string δ for which

Φδ⊕λ � k⊕δ
∗ (i) ↓= i (where k is the length of the tuple about which δ could be

a fragment of an atomic diagram). After all, the functional Φ∗ has no par-
ticular idea which copy of B it has for its oracle. Likewise, the computable
disjunction defining the complement of DomBA includes every finite δ for

which Φ
δ(i)⊕λ � k⊕δ
∗ (i) either converges to a value 6= i, or diverges by demand-

ing more information than δ or λ � k contains (as described above). These

are both Σc
1 disjunctions: there may exist certain δ for which Φδ⊕λ � k⊕δ

∗ (i)
neither converges nor demands too much information, but because (Φ,Φ∗) is
assumed to be a computable functor, such a δ cannot be an initial segment
of the atomic diagram of any copy of B. 2

Lemma 16. The binary relation ∼ and its complement are both definable
in the language of B by Σc

1-formulae without parameters.

Proof. It is clear that ∼ has a Σc
1-definition (the same argument as in

Lemma 15). We claim that the complement of ∼ also has a Σc
1-definition,

but this has a more complicated proof. Aiming for a definition of the comple-
ment of ∼ (and slightly abusing notations), we define a new binary relation

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 11

� as follows. Let (b̄, i) � (c̄, j) if there exist d̄ as in the definition of ∼ except
that

Φ
D(b̄c̄′d̄)⊕σ⊕D(c̄b̄′d̄)
∗ (i) ↓6= j or Φ

D(c̄b̄′d̄)⊕σ−1⊕D(b̄c̄′d̄)
∗ (j) ↓6= i.

If we show that � is equal to the complement of ∼ (as the notation suggests)
then we are done, since � clearly has a Σc

1-definition. Thus, it is sufficient
to prove that for (b̄, i), (c̄, j) ∈ DomBA, we have exactly one of (b̄, i) � (c̄, j)
and (b̄, i) ∼ (c̄, j).

First, we will show that at least one of (b̄, i) ∼ (c̄, j) or (b̄, i) � (c̄, j)
holds. Let b̄′ and c̄′ be tuples consisting of the elements in b̄ but not in
c̄, and in c̄ but not in b̄, respectively. Let σ be the map that matches the
elements of b̄, c̄′ with their natural copies in c̄, b̄′, so that (b̄, c̄′) = (c̄, b̄′)σ.
Let f, g : ω → B be bijections extending b̄, c̄′ and c̄, b̄′ respectively, and which
coincide on all inputs i ≥ |b̄, c̄′| = |c̄, b̄′|. Thus, h = g−1 ◦ f is a permutation
of ω extending σ which is constant on all inputs i ≥ |σ|. Recall that Bf and
Bg are the structures in Iso(B) that we get by pulling back f and g. Observe
that h is an isomorphism from Bf to Bg. Thus, by the choice of Φ∗, we must
have

Φ
D(Bf)⊕h⊕D(Bg)
∗ (i) ↓= j′ and Φ

D(Bg)⊕h−1⊕D(Bf)
∗ (j) ↓= i′

for some i′, j′ ∈ ω. Let us now consider an initial segment of these oracles
where these computations still converge. That is, for some d̄ with b̄c̄′d̄ ⊂ f
and c̄b̄′d̄ ⊂ g, and for σ′ ⊇ σ so that (b̄c̄′d̄) = (c̄b̄′d̄)σ′ , we have

Φ
D(b̄c̄′d̄)⊕σ′⊕D(c̄b̄′d̄)
∗ (i) ↓= j′ and Φ

D(c̄b̄′d̄)⊕σ′−1⊕D(b̄c̄′d̄)
∗ (j) ↓= i′.

If i = i′ and j = j′, we get (b̄, i) ∼ (c̄, j), and if either i 6= i′ or j 6= j′, we
get (b̄, i) � (c̄, j).

Second, we show that (b̄, i) ∼ (c̄, j) and (b̄, i) � (c̄, j) do not hold at the
same time. Suppose the contrary. Let σ and d̄1 witness that (b̄, i) ∼ (c̄, j),
and τ and d̄2 witness that (b̄, i) � (c̄, j). Without loss of generality, we may
assume

Φ
D(b̄c̄′d̄1)⊕σ⊕D(c̄b̄′d̄1)
∗ (i) = j but Φ

D(b̄c̄′d̄2)⊕τ⊕D(c̄b̄′d̄2)
∗ (i) 6= j.

Choose bijective maps from ω to B such that

f1 ⊃ b̄c̄′d̄1, g1 ⊃ c̄b̄′d̄1, f2 ⊃ b̄c̄′d̄2, g2 ⊃ c̄b̄′d̄2.

Then we have isomorphisms

B

Bf1
g−1
1 ◦f1 //

f−1
2 ◦f1

22

f1
//

Bg1
g−1
2 ◦g1 //

g1
66

Bg2
f−1
2 ◦g2 //

g2
hh

Bf2 .

f2
oo

b̄c̄′d̄1 c̄b̄′d̄1
(·)σ
oo c̄b̄′d̄2

(·)τ
// b̄c̄′d̄2

12 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

Since F is a functor, we have

F (f−1
2 ◦ f1) = F (f−1

2 ◦ g2) ◦ F (g−1
2 ◦ g1) ◦ F (g−1

1 ◦ f1).

Note that g−1
2 ◦ g1 ⊃ λ � |c̄| and f−1

1 ◦ f2 ⊃ λ � |b̄|. Now, on the one hand,
since (b̄, i) and (c̄, j) are in DomBA, we have:

F (f−1
1 ◦ f2)(i) = Φ

Bf1⊕(f−1
2 ◦f1)⊕Bf2

∗ (i) = Φ
D(b̄)⊕λ � |b̄|⊕D(b̄)
∗ (i) = i,

F (g−1
2 ◦ g1)(j) = Φ

Bg1◦(g
−1
2 ◦g1)⊕Bg2

∗ (j) = Φ
D(c̄)◦λ � |c̄|⊕D(c̄)
∗ (j) = j.

On the other hand, since g−1
1 ◦ f1 ⊃ σ and g−1

2 ◦ f2 ⊃ τ we have:

F (g−1
1 ◦ f1)(i) = Φ

Bf1⊕(g−1
1 ◦f1)⊕Bg1

∗ (i) = Φ
D(b̄c̄′d̄1)⊕σ⊕D(c̄b̄′d̄1)
∗ (i) = j,

F (g−1
2 ◦ f2)(i) = Φ

Bf2◦(g
−1
2 ◦f2)⊕Bg2

∗ (i) = Φ
D(b̄c̄′d̄2)⊕τ⊕D(c̄b̄′d̄2)
∗ (i) 6= i.

Composing the latter three equation lines, we get that F (f−1
1 ◦ f2)(i) 6= j,

contradicting the first line. 2

Lemma 17. On its domain, DomBA, the relation ∼ is an equivalence rela-
tion.

Proof. It is evident that ∼ is symmetric (use σ−1) and reflexive (since (b, i) ∈
DomBA). We show that ∼ is transitive. Suppose that (ā, i), (b̄, j), and (c̄, k)
are in DomBA and are such that (ā, i) ∼ (b̄, j) and (b̄, j) ∼ (c̄, k).

Let b̄′, ā′, d̄′, σ witness (ā, i) ∼ (b̄, j), and let c̄′′, b̄′′, d̄′′, τ witness (b̄, j) ∼
(c̄, k) (see the definition of ∼). Let c̄′′′ be a string listing c̄ \ ā, and ā′′′ be a
string listing ā \ c̄. Choose bijections from ω to B as follows:

f1 ⊃ āb̄′d̄′ g1 ⊃ b̄c̄′′d̄′′ h1 ⊃ āc̄′′′

f2 ⊃ b̄ā′d̄′ g2 ⊃ c̄b̄′′d̄′′ h2 ⊃ c̄ā′′′

where h1 and h2 agree outside the initial segment of length |ā| + |c̄′′′| =
|c̄+ ā′′′|.

B

Bh1
f−1
1 ◦h1 //

h−1
2 ◦h1

22

h1 ,,

Bf1
f−1
2 ◦f1 //

f1
00

Bf2
g−1
1 ◦f2 //

f2

66

Bg1
g−1
2 ◦g1 //

g1

hh

Bg2
h−1
2 ◦g2 //

g2
nn

Bh2 .

h2rr

āc̄′′′ rr
(·)ρ

āb̄′d̄′ oo
(·)σ

b̄ā′d̄′ b̄c̄′′d̄′′ c̄b̄′′d̄′′//
(·)τ

c̄ā′′′

Since F is a functor, we have

F (h−1
2 ◦h1) = F (h−1

2 ◦g2)◦F (g−1
2 ◦g1)◦F (g−1

1 ◦f2)◦F (f−1
2 ◦f1)◦F (f−1

1 ◦h1).

Note also that (b̄, j) ∈ DomBA and g−1
1 ◦f2 ⊃ λ � |b̄| imply F (g−1

1 ◦f2)(j) = j.

Similarly, F (f−1
1 ◦ h1)(i) = i and F (h−1

2 ◦ g2)(k) = k. We also have F (f−1
2 ◦

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 13

f1)(i) = j and F (g−1
2 ◦ g1)(j) = k by the choice of f1, f2, g1 and g2. Thus,

F (h−1
2 ◦ h1)(i) = k which must be witnessed by Φ

Bh1⊕(h−1
2 ◦h1)⊕Bh2

∗ (i) = k.

A symmetric argument shows Φ
Bh2⊕(h−1

1 ◦h2)⊕Bh1
∗ (k) = i. Now recall that

h1 and h2 agree outside the initial segment of length |ā|+ |c̄′′′| = |c̄|+ |ā′′′|.
Thus, for some long enough ē and for ρ ⊂ h−1

2 ◦h1, the permutation mapping
āc̄′′′ē to ā′′′, c̄′′′, ē we get a witness for (a, i) ∼ (c, k). 2

The following two lemmas will be useful later. Their proofs are not diffi-
cult and can be skipped in a first reading of the paper.

Lemma 18. For (b̄, i) ∈ DomBA, there is an initial segment c̄ = B �n of B
and j ∈ ω such that (b̄, i) ∼ (c̄, j).

By B �n we mean the tuple that corresponds to (0, 1,, n − 1) in this
given presentation B.

Proof. Let n be sufficiently large that b̄ ∈ B �n. Let σ be a permutation of
{0, . . . , n− 1} such that σ(0, . . . , |b̄| − 1) = b̄. Extend σ to a permutation f
of ω by setting f to be the identity on {n, n + 1, . . .}. Then let j be such

that F (f)(i) = Φ
D(Bf)⊕f⊕D(B)
∗ (i) = j. Since F is a functor, i = F (f−1)(j) =

Φ
D(B)⊕f−1⊕D(Bf)
∗ (j). Let m > n be such that these computations use only

the first m relation symbols and elements of B. Let c̄′ = f(|b̄|, . . . ,m − 1)
and c̄ = B �m. Then b̄c̄′ and c̄ contain the same elements. Let τ = f �m, so
that (b̄c̄′) = (c̄)τ . Then (b̄, i) ∼ (c̄, j) as witnessed by τ . 2

Lemma 19. If (b̄, i) and (c̄, j) are in DomBA, and b̄ ⊆ c̄, then (b̄, i) ∼ (c̄, j)
if and only if i = j.

Proof. Since (b̄, i) ∈ DomBA, we have

Φ
D(b̄)⊕λ � |b̄|⊕D(b̄)
∗ (i) = i.

Let c̄′ = c̄ r b̄ and let d̄ and σ ⊃ λ � |b̄| witness that either (b̄, i) ∼ (c̄, j) or
that (b̄, i) 6∼ (c̄, j) as in the proof of Lemma 16. Thus

Φ
D(b̄c̄′d̄)⊕σ⊕D(c̄d̄)
∗ (i) = j′,

for some j′, and (b̄, i) ∼ (c̄, j) hold if and only if j = j′. But the oracle
for this computation extends the oracle D(b̄) ⊕ λ � |b̄| ⊕ D(b̄). Therefore
j′ = i. 2

Defining the relations. For each relation symbol Pi of arity p(i) in the
language of A (recall that p is a computable function), we define a relation
Ri on DomBA as follows:

Ri: We let (b̄1, k1), . . . , (b̄p(i), kp(i)) be in Ri if there is a tuple c̄ and

j1, . . . , jp(i) ∈ ω such that (b̄s, ks) ∼ (c̄, js) for each 1 ≤ s ≤ p(i), and

the atomic formula Pi(j1, . . . , jp(i)) is true in ΦD(c̄).

14 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

We define a relation Qi the same way, except that Qi requires Pi(j1, . . . , ja(i))

to be false in ΦD(c̄). (We will show Qi is the complement of Ri.)
Lemma 16 combined with a standard argument (see, e.g., Lemma 15)

imply that both Ri andQi are definable by a Σc
1 formula without parameters,

and these formulae can be defined uniformly in i. Alternatively, it is not
hard to see they are u.r.i.c.e. The following lemma implies that (Ri : i ∈ ω)
is ∆c

1-definable without parameters.
Fix i. We suppress i in Ri, Qi, and p(i).

Lemma 20. Q is the complement of R in DomBA.

Proof. First, we need to show that each (b̄1, i1), . . . , (b̄p, ip) in DomBA is either
in Q or in R. By Lemma 18 and Lemma 19, for some sufficiently long initial
segment c̄ of the presentation B, there are j1, . . . , jp such that (b̄k, ik) ∼
(c̄, jk) for each 1 ≤ k ≤ p. Now ΦD(B) determines either that (j1, . . . , jp) is
in P , or that it is not in P . By extending c̄ to the use of this computation
and using Lemma 19, we get that (b̄1, i1), . . . , (b̄p, ip) is either in Q or in R.

We show that (b̄1, i1), . . . , (b̄p, ip) cannot be both in Q and in R. Aim-
ing for a contradiction, suppose that there are c̄ and d̄, and j1, . . . , jp and
k1, . . . , kp, such that (b̄m, im) ∼ (c̄, jm) and (b̄m, im) ∼ (d̄, km) for 1 ≤ m ≤ p,
and the atomic formula P (j1, . . . , jp) is in ΦD(c̄), but ¬P (k1, . . . , kp) is

not in ΦD(d̄). Note that by the transitivity of ∼, for each m we have
(c̄, jm) ∼ (d̄, km).

Let f ⊃ c̄ and g ⊃ d̄ be permutations ω → B. Then, since ΦD(c̄) says that
P (j1, . . . , jp) holds, and since D(c̄) ⊆ D(Bf), in F (Bf) the tuple (j1, . . . , jp)

belongs to PF (Bf). Similarly, since ΦD(d̄) says that ¬P (k1, . . . , kp), the tuple

(k1, . . . , kp) is not in PF (Bg).
The map g−1 ◦ f : Bf → Bg is an isomorphism. With (c̄, jm) ∼ (d̄, km) we

must have F (g−1 ◦ f)(jm) = km, since otherwise (c̄, jm) 6∼ (d̄, km) as in the
proof of Lemma 16. So the isomorphism F (g−1 ◦ f) : F (Bf)→ F (Bg) maps
(j1, . . . , jp) to (k1, . . . , kp), yielding a contradiction. 2

Thus, for each relation symbol Pi in the language of A, we get a relation
Ri interpreting P which is uniformly ∆c

1. The corollary below follows from
the proof of the previous lemma.

Corollary 21. If (b̄1, i1), . . . , (b̄p, ip) and (c̄1, j1), . . . , (c̄p, jp) are all in DomBA,
with (b̄m, im) ∼ (c̄m, jm) for each m, then (b̄1, i1), . . . , (b̄p, ip) is in R if and
only if (c̄1, j1), . . . , (c̄p, jp) is in R.

Defining an isomorphism. We already know, from Lemma 17, that ∼
is an equivalence relation, and Corollary 21 says that ∼ agrees with our
definition of Ri. Thus, (DomBA/ ∼;R0/ ∼, R1/ ∼, ...) is a structure that can
be viewed as a structure in the language of A (interpreting Pi as Ri/ ∼).
To finalize the proof, we need to define an isomorphism between

(DomBA/ ∼;R0/ ∼, R1/ ∼, ...) and A = (A;PA0 , P
A
1 , . . .).

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 15

Using our fixed presentation B, we define F : A → DomBA as follows: Given
i ∈ ω = A, let F(i) = (c̄, i) where c̄ = B̄ �n for the least n ∈ ω such that
(c̄, i) ∈ DomBA.

Lemma 22. The function F : A → DomBA defined above induces an isomor-
phism of (DomBA/ ∼;R0/ ∼, R1/ ∼, ...) onto (A;PA0 , P

A
1 , ...).

Proof. Lemma 19 shows F to be one-to-one. Lemma 18 shows it to be onto.
That it is an isomorphism follows directly from the definitions of Ri. 2

This completes the proof of the proposition and thus of Theorem 5. 2

Abusing terminology, we will often refer to maps such as F : A → DomBA in
Lemma 22 as isomorphisms, although in fact they only induce isomorphisms.
Likewise, a relation on A×DomBA may be called an isomorphism from A onto
DomBA if it becomes one after modding out on the right by the equivalence
∼. Finally, a composition of such “isomorphisms” may also be called an

isomorphism, as when we have maps between A and DomDom
A
B

A .

3. Effective uniqueness.

This section is devoted to a further analysis of Theorem 5. We will
prove Proposition 7, which describes more explicitly what we actually get
from the proof of Theorem 5. Recall that Proposition 7 states that if
F : Iso(B)→ Iso(A) is a computable functor, then it is effectively isomorphic
to IF , where IF is the functor we get by transforming F into an effective
interpretation as in the proof of Proposition 14 and then transforming it
back into a computable functor using Proposition 13.

Proof of Proposition 7. For a presentation B, set A = F (B). We will define

ΛB : F (B)→ IF (B).

On the one hand, note that the map F : F (B)→ DomBA from Lemma 22 can
be computed uniformly from a presentation of B. To be more explicit, we
denote it by FB. On the other hand, recall from the proof of Proposition 13
that we build IF (B) out of the interpretation of A within B by pulling back
through a bijection τ : ω → DomBA. Let us call this bijection τB; it gives a
well-defined isomorphism from IF (B) to DomBA/ ∼. We define

ΛB = (τB)−1 ◦ FB : F (B)→ IF (B).

We need to show that Λ is a natural isomorphism. It is clear that Λ(B) is an

isomorphism. We must prove that, for all B̃, B̂ ∈ Iso(B) and all isomorphisms

h : B̃ → B̂, the following diagram commutes.

16 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

F (B̃)

F (h)
��

FB̃ //

ΛB̃

&&

DomB̃A

h
��

IF (B̃)

IF (h)
��

τ B̃oo

F (B̂)
FB̂
//

ΛB̂

99
DomB̂A IF (B̂)

τ B̂
oo

where h : DomB̃A → DomB̂A is the restriction of h : B̃<ω → B̂<ω, which is

the extension of h : B̃ → B̂.
The right-hand square commutes by definition of IF (h). To show that

the left-hand square commutes, take i ∈ F (B̃) and j = F (h)(i) ∈ F (B̂). Let

(ā, i) = FB̃(i) ∈ DomB̃A and (b̄, j) = FB̂(j) ∈ DomB̂A. We need to show that

h(ā, i) ∼B̂ (b̄, j). Observe that h(ā, i) = (h(ā), i).

With Φ
D(B̃)⊕h⊕D(B̂)
∗ (i) = j, we can make Φ

DB̃(ā)⊕h � |ā|⊕DB̂(b̄)
∗ (i) = j by

extending ā and b̄. Since DB̃(ā) = DB̂(h(ā)), we get that that (h(ā), i) ∼
(b̄, j) in B̂ as needed. 2

4. Proof of Theorem 9

Before proving Theorem 9, we will prove the alternate characterization of
bi-interpretations which is independent of the choice of fAB and fBA. Through-
out this section we will use the following convention. Given a map h with
domain A, h induces a map on tuples, and hence a map on DomAB . We will

denote this induced map by h̃, and the map induced on DomDom
A
B

A by
˜̃
h. For

example, if h : DomAB → A is a map, then h̃ is a map Dom(DomAB)
A → DomAB .

Proposition 23. Let A and B be computable structures. Suppose that A
is effectively interpretable in B and B is effectively interpretable in A, and
let F and G be the functors obtained from these interpretations. Then the
following are equivalent.

(1) A and B are effectively bi-interpretable using the interpretations
above.

(2) There are u.r.i. computable isomorphisms g : Dom(DomAB)
A → A and

h : Dom(DomBA)
B → B, along with isomorphisms α : DomBA → A and

β : DomAB → B, such that α ◦ h̃ ◦ ˜̃α−1 = g and β ◦ g̃ ◦ ˜̃
β−1 = h.

(3) There are u.r.i. computable isomorphisms g : Dom(DomAB)
A → A and

h : Dom(DomBA)
B → B such that, for all isomorphisms α : DomBA → A

and β : DomAB → B, we have α ◦ h̃ ◦ ˜̃α−1 = g and β ◦ g̃ ◦ ˜̃
β−1 = h.

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 17

In (2) and (3), one may always take g and h to be the u.r.i. computable
maps from the bi-interpretation in (1).

Proof. (1)⇒(2). Suppose that A and B are effectively bi-interpretable; then
the compositions

fAB ◦ f̃BA : Dom(DomBA)
B → B and fBA ◦ f̃AB : Dom(DomAB)

A → A

are u.r.i. computable. Take g = fBA ◦ f̃AB and h = fAB ◦ f̃BA. Let α = fBA and
β = fAB . Then

α ◦ h̃ ◦ ˜̃α−1 = fBA ◦ f̃AB ◦
˜̃
fBA(

˜̃
fBA)−1 = fBA ◦ f̃AB = g

and similarly β ◦ g̃ ◦ ˜̃
β−1 = h.

(2)⇒(3). Let g : Dom(DomAB)
A → A and h : Dom(DomBA)

B → B be as in (2),

with isomorphisms α : DomBA → A and β : DomAB → B such that α◦h̃◦ ˜̃α−1 =

g and β ◦ g̃ ◦ ˜̃
β−1 = h. Let α′ : DomBA → A and β′ : DomAB → B be arbitrary

isomorphisms. Let δ : DomBA → DomBA be such that α′ ◦ δ = α. Then

g = α ◦ h̃ ◦ (˜̃α)−1 = α′ ◦ δ ◦ h̃ ◦ (
˜̃
δ)−1 ◦ (

˜̃
α′)−1.

We claim that δ ◦ h̃ ◦ (
˜̃
δ)−1 = h̃, and hence that g = α′ ◦ h̃ ◦ (

˜̃
α′)−1. Using

h, we can extend δ to an automorphism γ = h ◦ δ̃ ◦ h−1 of B, and we show
below that γ̃ = δ. Now, since h is u.r.i. computable, γ(Γh) = Γh where Γh
is the graph of h. But this means that γ ◦ h ◦ (˜̃γ)−1 = h. Taking tildes of

both sides then shows that δ ◦ h̃ ◦ (
˜̃
δ)−1 = h̃ as required.

To see that γ̃ = δ, notice that

id = γ−1 ◦ h ◦ δ̃ ◦ h−1 = h ◦ (˜̃γ)−1 ◦ δ̃ ◦ h−1,

so ˜̃γ = δ̃. Let

ĝ = (α)−1 ◦ g ◦ ˜̃α : DomDom
DomBA
B

A → DomBA.

Now ĝ must be u.r.i. computable in B, since g is (in A) and since the
structure of DomBA is Σc

1-defined in B. This yields

γ̃ = ĝ ◦ ˜̃̃γ ◦ (ĝ)−1 = ĝ ◦ ˜̃
δ ◦ (ĝ)−1 = δ,

since δ induces (via α) an automorphism of A, which fixes the graph Γg.

A similar argument shows that h = β′ ◦ g̃ ◦ (
˜̃
β′)−1.

(3)⇒(1). Let g : Dom(DomAB)
A → A and h : Dom(DomBA)

B → B be as in (3).

Fix an isomorphism fAB : DomAB → B. Let fBA : DomBA → A be g ◦ (f̃AB)−1,

so that fBA ◦ f̃AB = g. Then

h = fAB ◦ g̃ ◦ (
˜̃
fAB)−1 = fAB ◦ f̃BA ◦

˜̃
fAB ◦ (

˜̃
fAB)−1 = fAB ◦ f̃BA.

Thus fBA ◦ f̃AB and fAB ◦ f̃BA are u.r.i. computable. 2

18 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

Recall theorem 9 that says that A and B are effectively bi-interpretable
iff A and B are computably bi-transformable.

Proof of Theorem 9. Suppose A and B are effectively bi-interpretable. From
the interpretation of B in A, we get a computable functor F = (Φ,Φ∗)
from Iso(A) to Iso(B) which arises by exactly the process described in the
proof of Proposition 13. Recall again from the proof of Proposition 13

that for each Ã ∈ Iso(A) we build F (Ã) out of the interpretation of B
within A by pulling back through a bijection τ̃ : ω → DomAB . Then τ̃ is an

isomorphism F (Ã) → DomAB / ∼ and we remarked that it was given by a

computable functional in Ã. So there is a computable functional Ω with

ΩÃ : DomÃB → F (Ã) (note that Ω gives the inverse of τ). Similarly, there is
a computable functor G = (Ψ,Ψ∗) from Iso(B) to Iso(A) and a computable

functional Γ with ΓB̃ : DomB̃A → G(B̃). We will show that F and G are
pseudo-inverses. We begin by showing that G ◦ F : Iso(A) → Iso(A) is
effectively isomorphic to the identity functor.

The u.r.i. computable map fBA ◦ f̃AB : DomDom
A
B

A → A gives rise to a com-

putable functional Θ which gives isomorphisms ΘÃ : Ã → DomDom
Ã
B

A .

Given Ã ∈ Iso(A), define ΛÃ as follows. We have the following maps:

Ã

ΘÃ

))

F

��

←↩ DomÃB ←↩

ΩÃyy

DomDom
Ã
B

A

Ω̃Ãyy

F (Ã)

G
��

←↩ DomF (Ã)
A

ΓF (Ã)yy

G(F (Ã))

where Ω̃Ã is the extension of ΩÃ to tuples. Let ΛÃ be the composition

ΛÃ = ΓF (Ã) ◦ Ω̃Ã ◦ΘÃ.

We will show that Λ is the Turing functional which witnesses that G ◦ F
is effectively isomorphic to the identity functor. We must show that the
diagram from Definition 6 commutes.

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 19

Now given j : Ã → Â, we have maps as shown in the following diagram
(which has not yet been seen to commute):

DomDom
Ã
B

A ⊆

Ω̃Ã ""

DomÃB ⊆
ΩÃ

""

Ã

ΘÃ

ww

F

��

j //

ΛÃ

��

Â

ΛÂ ��

ΘÂ

''

F

��

⊇ DomÂB ⊇
ΩÂ

||

DomDom
Â
B

A

Ω̃Â||

DomF (Ã)
A ⊆

ΓF (Ã) ""

F (Ã)

G
��

F (j)
// F (Â)

G
��

⊇ DomF (Â)
A

ΓF (Â)||

G(F (Ã))
G(F (j))

// G(F (Â))

By definition (see Proposition 13) we have that

G(F (j)) = ΓF (Â) ◦ F̃ (j) ◦ (ΓF (Ã))−1

and

F (j) = ΩÂ ◦ j̃ ◦ (ΩÃ)−1.

Hence

G(F (j)) ◦ ΓF (Ã) ◦ Ω̃Ã = ΓF (Â) ◦ Ω̃Â ◦ ˜̃j.

Also, since Θ is u.r.i. computable on A, for any isomorphism j : Ã → Â, we

have that ˜̃j ◦ΘÃ = ΘÂ ◦ j. Hence

G(F (j)) ◦ ΓF (Ã) ◦ Ω̃Ã ◦ΘÃ = ΓF (Â) ◦ Ω̃Â ◦ΘÂ ◦ j.

Using the definition of ΛÃ, we have

G(F (j)) ◦ ΛÃ = ΛÂ ◦ j.
Thus G ◦ F is effectively isomorphic to the identity functor via Λ.

By a similar argument, F ◦ G is effectively isomorphic to the identity
functor. Denote the Λ obtained for G ◦ F as ΛA, and that for F ◦ G as
ΛB. Let Υ be the Turing functional which arises from the u.r.i. computable

isomorphism fAB ◦ f̃BA, so ΥB : B → DomDom
B
A

B . Then

ΛB̃B = ΩG(B̃) ◦ Γ̃B̃ ◦ΥB̃.

Then

F (ΛÃA) = ΩG(F (Ã)) ◦ Γ̃F (Ã) ◦ ˜̃ΩÃ ◦ Θ̃Ã ◦ (ΩÃ)−1.

Now by Proposition 23 with h−1 = ΥF (Ã), g−1 = ΘÃ, and β = ΩÃ, we have:

ΥF(Ã) =
˜̃
Ω
Ã
◦ Θ̃Ã ◦ (ΩÃ)−1

and so

F (ΛÃA) = Λ
F (Ã)
B .

20 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

A similar argument shows that

G(ΛB̃B) = Λ
G(B̃)
A .

Now suppose that we have computable functors F and G which give a

computable bi-transformation between A and B. Let ΛÃ : Ã → G(F (Ã))
witness that G ◦ F is effectively isomorphic to the identity. From F and G
we get interpretations of A in B and of B in A, and Turing functionals Ω

and Γ as before. For any Ã ∈ Iso(A), we get an isomorphism

ΘÃ = (Ω̃Ã)−1 ◦ (ΓF (Ã))−1 ◦ ΛÃ : Ã → DomDom
Ã
B

A .

We can view ΘÃ as a subset of Ã × DomDom
Ã
B

A .

First, let j : A → Ã be any isomorphism. We show that the graph of ΘÃ

is the image, under j, of the graph of ΘA, i.e. that ΘÃ ◦ j = ˜̃j ◦ΘA. This is
very similar to the argument above. By the properties of Λ we have

ΛÃ ◦ j = G(F (j)) ◦ ΛA = ΓF (Ã) ◦ Ω̃Ã ◦ ˜̃j ◦ (Ω̃A)−1 ◦ (ΓF (A))−1 ◦ ΛA.

Then

(Ω̃Ã)−1 ◦ (ΓF (Ã))−1 ◦ ΛÃ ◦ j = ˜̃j ◦ (Ω̃A)−1 ◦ (ΓF (A))−1 ◦ ΛA

which gives ΘÃ ◦ j = ˜̃j ◦ΘA.
This argument shows first that ΘA is fixed under automorphisms j : A →

A, hence Lω1ω-definable. The same argument also shows (with j : A → Ã
any isomorphism) that the same formula also defines ΘÃ. But Θ is a Turing

functional, so membership in ΘÃ is always computable below Ã, and so ΘA

is u.r.i. computable.

A similar argument works to define ΥB̃ : B̃ → DomDom
B̃
A

B . Let ΛÃA : Ã →
G(F (Ã)) now denote the Turing functional which witnesses that G ◦ F is

effectively isomorphic to the identity, and let ΛB̃B : B̃ → F (G(B̃)) denote the
Turing functional which witnesses that F ◦G is effectively isomorphic to the

identity. We claim that (2) of Proposition 23 is satisfied by h−1 = ΥF (Ã),

g−1 = ΘÃ, α = ΓF (Ã), and β = ΩÃ.
We have

ΥF (Ã) = (Γ̃F (Ã))−1 ◦ (ΩG(F (Ã)))−1 ◦ Λ
F (Ã)
B .

Then

Ω̃Ã ◦ Θ̃Ã ◦ (ΩÃ)−1 = (Γ̃F (Ã))−1 ◦ Λ̃ÃA ◦ (ΩÃ)−1.

Now

F (ΛÃA) = ΩG(F (Ã)) ◦ Λ̃ÃA ◦ (ΩÃ)−1

and so

ΩÃ ◦ Θ̃Ã ◦ (ΩÃ)−1 = (Γ̃F (Ã))−1 ◦ (ΩG(F (Ã)))−1 ◦ F (ΛÃA).

COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 21

Since F (ΛÃA) = Λ
F (Ã)
B , ΩÃ ◦ Θ̃Ã ◦ (ΩÃ)−1 = ΥF (Ã). Similarly, we get that

ΓB̃ ◦ Υ̃B̃ ◦ (ΓB̃)−1 = ΘÃ. By Proposition 23, we get a bi-interpretation. 2

References

[AKMS89] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman. Generic copies
of countable structures. Ann. Pure Appl. Logic, 42(3):195–205, 1989.

[Chi90] John Chisholm. Effective model theory vs. recursive model theory. J. Symbolic
Logic, 55(3):1168–1191, 1990.

[Ers96] Yuri L. Ershov. Definability and computability. Siberian School of Algebra and
Logic. Consultants Bureau, New York, 1996.

[HKSS02a] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and
Arkadii M. Slinko. Degree spectra and computable dimensions in algebraic
structures. Ann. Pure Appl. Logic, 115(1-3):71–113, 2002.

[HKSS02b] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and
Arkadii M. Slinko. Degree spectra and computable dimensions in algebraic
structures. Ann. Pure Appl. Logic, 115(1-3):71–113, 2002.

[Hod93] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge, 1993.

[Kal09] I. Sh. Kalimullin. Relations between algebraic reducibilities of algebraic sys-
tems. Izv. Vyssh. Uchebn. Zaved. Mat., 53(6):71–72, 2009.

[Mar02] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. An introduction.

[MK08] Andrei S. Morozov and Margarita V. Korovina. On Σ-definability without
equality over the real numbers. MLQ Math. Log. Q., 54(5):535–544, 2008.

[Mon] Antonio Montalbán. Computability theoretic classifications for classes of
structures. To appear in the Proccedings of the ICM 2014.

[Mon12] Antonio Montalbán. Rice sequences of relations. Philos. Trans. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci., 370(1971):3464–3487, 2012.

[Mon13] Antonio Montalbán. A fixed point for the jump operator on structures. Journal
of Symbolic Logic, 78(2):425–438, 2013.

[MPP+] R. Miller, J. Park, B. Poonen, H. Schoutens, and A. Shlapentokh. A com-
putable functor from graphs to fields. To appear.

[Puz09] V. G. Puzarenko. On a certain reducibility on admissible sets. Sibirsk. Mat.
Zh., 50(2):415–429, 2009.

[Stu13] Alexey Stukachev. Effective model theory: an approach via Σ-definability. In
Effective mathematics of the uncountable, volume 41 of Lect. Notes Log., pages
164–197. Assoc. Symbol. Logic, La Jolla, CA, 2013.

22 M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, AND A. MONTALBÁN

Group in Logic and the Methodology of Science, University of California,
Berkeley, USA

E-mail address: matthew.h-t@math.berkeley.edu

URL: http://math.berkeley.edu/∼mattht

The Institute of Natural and Mathematical Sciences, Massey University,
New Zealand

E-mail address: alexander.g.melnikov@gmail.com

URL: https://dl.dropboxusercontent.com/u/4752353/Homepage/index.html

Mathematics Dept., Queens College; Ph.D. Programs in Mathematics &
Computer Science, Graduate Center, City University of New York, USA

E-mail address: Russell.Miller@qc.cuny.edu

URL: http://qcpages.qc.cuny.edu/∼rmiller

Department of Mathematics, University of California, Berkeley, USA
E-mail address: antonio@math.berkeley.edu

URL: www.math.berkeley.edu/∼antonio

http://math.berkeley.edu/~mattht
https://dl.dropboxusercontent.com/u/4752353/Homepage/index.html
http://qcpages.qc.cuny.edu/~rmiller
http://www.math.berkeley.edu/~antonio/index.html

	1. Introduction
	Effective interpretability
	Computable functors
	Effective transformations of classes

	2. Proof of Theorem 5
	3. Effective uniqueness.
	4. Proof of Theorem 9
	References

