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Abstract. We give a systematic technical exposition of the foundations of the theory of computably compact metric

spaces. We discover several new characterizations of computable compactness and apply these characterizations
to prove new results in computable analysis and effective topology. We also apply the technique of computable

compactness to give new and less combinatorially involved proofs of known results from the literature. Some of these

results do not have computable compactness or compact spaces in their statements, and thus these applications are
not necessarily direct or expected.
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1. Introduction

1.1. Compactness. Compactness plays a central role in classical analysis. We don’t have space to talk about
all the applications of compactness in analysis, but refer the reader to the survey [62] for a detailed discussion.
Compactness allows us to have an intrinsic connection between the infinite and the discrete finite instances of
problems. In the words of Hewitt [62],

”A great many propositions of analysis are:
- trivial for finite sets;
- true and reasonably simple for infinite compact sets;
- either false of extremely difficult to prove for noncompact sets.”

If the reader thinks about any basic course in analysis, they will be struck about how many elementary theorems
about real analysis rely on compactness in some form or another. When we turn to analysis on more general spaces,
again compactness plays a central role. Classically, compact metric spaces are perhaps the most well-understood
separable spaces after the discrete ones. Metrizable compact manifolds and compact topological groups have been
studied extensively.

1.2. Goals. The concern of this paper is computable analysis; specifically computability aspects of Polish spaces
(complete separable metric spaces). In this paper we will hope to achieve three goals.

‚ We will give a unified and smooth account of uses of compactness in computable analysis. This will involve
the unification of a number of disparate approaches offered by many authors down through the years. We
will describe and improve the fundamental techniques associated with computable compactness that are
scattered throughout the literature.

‚ We will apply this machinery to prove several new results. This includes a characterization of recursive
profinite groups in terms of computable compactness and a new computation of Čech cohomology. We will
also give new simplified proofs of some known results (more details below).

‚ We will offer an answer to the following question:
“What is the ‘correct’ notion of computability for a compact Polish(able) topological space?”

In contrast with the situation for computable discrete algebra, the situation for Polish spaces is not clear
especially if we are willing to view them up to homeomorphism.

1.3. Historical context. The roots of computable analysis go back to the early 20th century; see, e.g., Borel [12].
In his seminal papers [144, 145], Alan Turing clarified this early intuition. He gave the first universally accepted
formal definition of a computable function. Turing used this definition to solve the Hilbert’s Entscheidungsproblem.
But Turing also introduced computable analysis on r0, 1s. He analysed computable functions on the field of com-
putable real numbers. He defined a real ξ to be computable if there is a Turing machine that, on input i, outputs a
rational r “ m

n such that |ξ ´ r| ă 2´i. This approach was pursued especially in Russia by Markov and his school,
culminating in Aberth’s book [1]. Strangely, Turing’s definition of a computable function (i.e. on the computable
reals) is now usually referred to as Markov computability. Our paper lies in the tradition of what has become known
as “type 2” computable analysis. This tradition goes back to the work of Grzegorczyk [57–59] and Kleene [81].
In this approach, we view effective functions as computable operators that are not restricted to computable reals
and work for arbitrary reals. Avigad and Brattka [4] give an excellent overview of the development of computable
analysis from the work of Turing.

The majority of early research was restricted to computability on the real line and in Rn. In these spaces, the
rationals and the tuples of rationals can be used to define computable points. This idea can be extended to more
general spaces, as follows. For an abstract Polish space, we fix a dense sequence and require that we have a distance
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function which is a computable on the dense set. For example, as above, we could use polynomials with rational
coefficinets in Cr0, 1s. (Precise definitions will be found in Section 2.) Within this setting, computability-theoretic
aspects of metric and normed spaces have also been studied for many decades, some of the earlier references include
[113, 125, 126].

Computability-theoretic aspects in the Euclidean and the totally disconnected ultrametric cases, particularly
Cantor space 2ω, have been of central importance. The Euclidean case – in the sense that the space is actually
a subset of Rn for some n – is treated in Pour-El and Richards [127], Ko [83], Braverman and Yampolsky [22],
and Weihrauch [148]. The ultrametric case – and more specifically the study of effectively closed subsets of Cantor
space – is a well-developed classical subject of computability theory with surveys such as [27, 28]. This subdivision
is of course a bit artificial since Cantor space can be viewed as a subset of r0, 1s, but the metric will no longer be
an ultrametric.

In the past decade or two there has been an increasing interest in the computability-theoretic aspects of abstract
metric spaces. The central questions in such investigations include:

- When does a space admit a computable presentation, and in what sense is it computable?
- Can we compute certain invariants or objects associated with this space (e.g., the space of probability

measures on the space), and if ‘yes’ then in what sense?
- Can we establish computable analogues of the classical topological results?
- Can we classify computable points in computable topological spaces?
- Can we classify computably presentable spaces in a given class? etc.

The computability-theoretic study of abstract metric and topological spaces is developing hand in hand with
work on reverse mathematics [111], algorithmic randomness [65], enumeration degree theory [121], and (to some
extent) effective descriptive set theory [110]. The notion of a computable presentation of a space is central in
such investigations. Many classical spaces such as 2ω and L2r0, 1s are equipped with a ‘natural’ computability
structure which is usually fixed ; the theory is then developed for the fixed computability structure. The two
classical texts [127, 148] essentially take this approach. Even though both books talk about ways to compare
different computability structures on a fixed space, the space under consideration is usually equipped with a few
‘natural’ computability structures that can be compared. For example, in Cr0, 1s one could use polynomials with
rational coefficients or, alternatively, piecewise linear functions with rational parameters; these turn out to be
equivalent (in a rather strong sense). But of course, not every space has a computable presentation simply from
cardinality-theoretic observations. Can we describe those spaces that do admit computable presentations, at least
from some common classes? For instance, for which compact Polish K does the Banach space CpKq have a
computable presentation? What about the space of probability measures on K? etc.

To attack these and similar questions we will often have to depart from classical computable analysis (that deals
with fixed ‘natural’ computable presentations) and use methods of computable topology. Although we can point at
earlier initiatives such as, e.g., [75–77], [117, 118], and [140–142], most of the related work in computable topology
is more recent and includes [50, 64, 78, 87, 89, 146, 150]. Computable topology is notorious for its zoo of various
notions of computability for a topological space. In contrast with effective algebra [3, 43] where all standard notions
of computable presentability had been separated more than half-a-century ago (e.g., Feiner [44]), some of the key
notions of computable presentability in topology have been separated only very recently [8, 61, 64, 95]; these results
will be discussed in detail later in the paper.

In the recent years there has been a tendency to focus on the three main notions of computable presentability of
a (compact) Polish space: a computable Polish space, a computable topological space, and a computably compact
space. Our paper is focused on one of these three important notions of computable presentability, namely computable
compactness that is defined and discussed below. Computable compactness is clearly restricted to compact Polish
spaces. Nonetheless, we will see that the notion and the techniques associated with it have far-reaching applications
in computable analysis that are not restricted to compact spaces.

1.4. Computable compactness. Recall that we mentioned that the notion of a computable Polish space, or
a computably metrized space, seems to be the most well-established notion of computable presentability for a
Polish(able) space. The early classical works on computable metric spaces include Lacombe [92], Ceitin [26], and
Moschovakis [109]. A Polish space is computable or computably completely metrized if there is a complete, compatible
metric d and a dense subset of special or ideal points pxiqiPω of the space such that dpxi, xjq are computable reals
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uniformly in i and j. If we view spaces up to isometry, we fix the metric; if we study them up to homeomorphism
then we assume d is compatible. In the present article, we assume the metric to be complete, since in all examples
that we care about it will indeed be such. For instance, compact metric spaces are complete and separable1.
However, the issue is that in a computably metrized compact space, we do not necessarily have computable access
to its finite covers.

Classical uses of compactness do not need an understanding of how finite covers are obtained. For classical
purposes, it is sufficient that the finite covers exist. Thus, when we consider computability aspects of compact
spaces, it is natural to quantify what we mean by this. There are many definitions of a space being computably
compact throughout the literature. Remarkably, as we prove below, they – as well as some new useful ones – are
all equivalent. For instance, Mori, Tsujii, and Yasugi [108] say that a computably metrized space is computably
compact (or effectively compact) if there is a computable function which takes n and produces a finite 2´n-cover of
the space by open balls centred in special points and having rational radii. (Such balls are called basic.)

The notion has proven to be extremely useful, and the techniques associated with computable compactness tend
to be elegant. Indeed, it is not uncommon that a tedious and technical proof in computable analysis becomes
transparent and compact (pun intended) after a thoughtful application of computable compactness.

In spite of the usefulness of computable compactness and its numerous applications in the literature, it seems there
is not many “standard” references that would contain a systematic exposition of the most fundamental results and
techniques associated with computable compactness. Even though these are some excellent papers and Ph.D. theses
written on related subjects (e.g., [21, 69, 107, 120]), many results and proofs are scattered throughout the literature.
As a result, it seems that some fundamental facts about computably compact spaces keep being rediscovered over
and over again. Proofs of some results in the literature (including some recent ones) can be significantly simplified
via choosing a more careful set-up in which computable compactness can be used to simplify combinatorics. It
seems that some of the standard techniques associated with computable compactness are not necessarily uniformly
known, and perhaps even that the theory itself is a bit under-appreciated.

Thus, as mentioned above, our first main goal of this article is to fill this apparent gap in the literature, at least
partially. Once we accumulate enough techniques and develop new ones, we will apply this machinery to prove new
results and improve known proofs; this is our second main goal. Recall that our third goal is to try to suggest a
correct notion of computable compact Polish space. The potential candidates for the ‘correct’ computability notion
include: a computable topological space, a computably metrized space, and computably compact space, and some
other perhaps more exotic notions – such as a right-c.e. (upper-semicomputable) metric spaces – that can be found
in the literature and some of which will be mentioned later. We suggest that the following might be true:

Computable compactness is the right notion of computability for compact Polish spaces.

Even if the reader will disagree with this thesis after looking at the results that we present here, the definition of
computable compactness is certainly robust. More formally, Theorem 1.1 contains seven equivalent formulations of
computable compactness some of which are new. Many of the applications that we discuss in this article – perhaps
most notably the recently discovered effective Stone and Pontryagin dualities – strongly suggest that our thesis
should not be dismissed even if we view spaces up to homeomorphism. We will also explain why all three standard
definitions of computable presentability for a compact Polish space – computably compact, computably metrized,
computable topological – differ up to homeomorphism.

The study of computably compact spaces is very closely related to the investigation of effectively closed subsets
of computably metrized Polish spaces, especially when the set happens to be computable closed. As we will see
in Proposition 3.29, under some mild restrictions computable closed sets can be viewed as computably compact
spaces, and vice versa by pviq of the theorem below. We cite [69] for an excellent recent survey. The cited survey
however does not really have many proofs or proof sketches, so we felt that including proofs should be a good idea;
this is done in Subsection 3.5 that includes the necessary facts that we will need in the present paper.

1There are various notions in the literature which do not assume the metric to be complete. For more details about these closely

related notions of effective presentability, such as ‘recursive’ and ‘computable’ metric spaces, we cite [56, 149]. We note that the

aforementioned two notions of ‘recursive’ and ‘computable’ spaces are equivalent up to scaling the metric by a computable real [56].
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Another classical and closely related subject in computability theory is the area of Π0
1 classes. This area can

be viewed as a special case of the theory of effectively closed sets but restricted to 2ω. Of course, more can be
said about 2ω than about an arbitrary space. Unlike the theories of computably compact spaces and computable
closed sets, there is no shortage of excellent surveys and papers about Π0

1-classes (e.g., [29, 30, 35]), and the draft
of a book “Effectively Closed Sets Π0

1 Classes” by Cenzer and Remmel that is available online (as of early 2022).
Thus, we will not include many proofs, we just state a few results in Subsection 2.6 that we will need, and will give
references.

These three topics – computably compact spaces, computable closed sets, Π0
1-classes – are closely related, and

no firm line can be drawn between them.

Before we proceed, we should admit that giving a complete and comprehensive survey of the existing literature
and results on the subject is not among the main goals of this article, but nonetheless we will provide many useful
references. This is not a survey paper in the usual sense, it is mainly a technical semi-survey paper with many new
results, and it should be treated as such. We also chose to spread further discussion and references to the literature
throughout the paper (where it is relevant) rather than to write a giant introduction.

1.5. The Main Theorem. The following theorem will be proven over the subsequent sections. The fundamentals
of computable compactness theory will be developed simultaneously with the proof. We will discuss each clause of
the theorem in detail shortly; for now we note that piiiq, pivq, and pviiiq are new.

Theorem 1.1. For a computably, completely metrized Polish space M , the following are equivalent:

(i) Given n, we can effectively compute (the finite set of parameters describing) a finite 2´n-cover Kn of M by
basic open balls.

(ii) We can effectively enumerate all finite basic open covers (each given at once as a finite set of parameters)
of the space.

(iii) Same as piq, but additionally in each finite cover n we can uniformly decide whether any finite collection of
basic open balls in Kn intersect.

(iv) In the notation of piiiq, we can additionally uniformly decide (non)emptiness of intersection for any finite
collection of balls in

Ť

nPωKn, but balls may have merely computable radii (and, thus, are not necessarily
basic).

(v) There is a computable sequence of computable reals pεnqnPω such that εn ď 2´n so that, for every n, we can
compute the maximal number of points in the space that are at least εn-far from each other.

(vi) M is computably homeomorphic to a computable closed subset of the Hilbert cube.
(vii) M is a computable surjective image of 2ω.

(viii) The full continuous diagram of M is decidable.

As we will note later, it is easy to see that piiq is also equivalent to the approach that is standard throughout
reverse mathematics (Simpson [136]): there exists an enumeration functional that, given a countable cover composed
of basic open balls outputs (an index of) some finite subcover of the cover. This approach is perhaps the most
familiar one to a working mathematician, while piq is rather an effective analogy of total boundedness. Of course, a
complete metric space is compact iff it is totally bounded, but this elementary fact is perhaps not quite as well-known
as the standard definition of compactness. There are also other characterizations of computable compactness, e.g.,
for subsets of a fixed space in terms of Hausdorff distance. We will mention this characterisation later when we
talk about computable closed sets and the Hilbert cube pviq; see Fact 3.39. There are also other characterisations
of computable compactness in special classes, e.g., in the class of profinite groups. We will discuss some such
characterizations in due course.

In view of this theorem, we have the following definition, which is a characterization established in this paper:

Definition 1.2. A computable Polish space is called computably compact or effectively compact if it satisfies (the
equivalent conditions in) Theorem 1.1.
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The equivalence of piq and piiq is well-known, and usually one of the two is taken as the standard definition of a
computably compact space. See Theorem 3.3.

It seems that piiiq or something similar might be also known, but perhaps in some other form; e.g., see [64]
for some related informal discussions. Also, Section 8.4 of [69] contains a discussion of spiritually similar results.
Perhaps, the most closely related material can be found in [122]. However, we were unable to find any explicit proof
of the equivalence of piq and piiiq anywhere in the literature. For a proof, see Theorem 3.13.

As far as we know, pivq is new. Characterization pivq will be very useful in several applications greatly reducing
the combinatorial complexity of proofs in many cases. It will be especially useful in computing cohomology groups
of spaces, but some further (perhaps, less expected) applications will also be presented. This equivalence is stated
and then proven in Theorem 3.16.

Iljazovič [67] was the first to discover the equivalence of the fifth formulation pvq with the standard definition; it
has recently been re-discovered in [123]. Its significance is the remarkable fact that computable compactness is an
isometric invariant of the space. In other words, computable compactness is not a property of some specific nice
presentation, but it is an intrinsic property that holds for all isometric presentations. The result will appear as
Theorem 3.21.

The sixth version pviq is well-known, we are not sure who was the first to observe its equivalence to computable
compactness. See Theorem 3.36 for a proof.

The seventh item pviiq is an effective version of the classical Hausdorff-Alexandroff Theorem; see Theorem 3.40.
The result is due to Brattka, de Brecht, and Pauly; see Proposition 4.1 of [18]. Also, working independently,
Couch, Daniel, and McNicholl [32] proved the result for the special case of closed subspaces of Rn. Around the
same time, Day and Miller [33] independently discovered another important special case of this result, specifically
for probability spaces. Interestingly, in Remark 3.23 of his large unpublished survey “Algorithmic randomness,
martingales and differentiability” Jason Rute refers to this property (being a computable image of 2ω) as being a
stronger version of computable compactness2. And indeed it may seem at first glance that it should be stronger
than, e.g., piq. We give two new and substantially different proofs of the result, one using pivq discussed above, and
the other one using Π0

1 classes and the Hilbert cube. Both proofs serve as a fine illustration of the techniques that
we develop in the paper. The effective Hausdorff-Alexandroff Theorem will be rather useful in several applications
that will be discussed in due course.

Finally, the last item pviiiq of the theorem is new; it is inspired by [10, Definition 9.9] and the very recent
paper [24]. It says that any formula of continuous logic formed in the language of pure metric uniformly defines
a computable function Mn Ñ r0, 1s, where n is the number of free parameters in the formula. This pleasant,
unexpected, but quite elementary result will be stated formally in Theorem 3.7. Theorem 3.7 will be restricted
to spaces of diameter ď 1, but as noted in the remarks preceding this theorem, it is just a mere notational
convenience. The result perhaps confirms one’s suspicion that in the case of compact metric spaces, continuous
logic is not particularly expressive.

1.6. Summary of applications. We now discuss several applications (of computable compactness) that can be
found in Section 4. We are mainly focused on the applications that are either new, or give new proofs of known
results. We also mention several applications that are very recent and are related to our research interests. We also
pose several open questions.

Our list of applications is not even close to being exhaustive, but we will discuss the literature where more results
of this sort can be found. Here is a summary:

(1) In Subsection 4.1 the reader can find several useful standard results most of which are at least half-a-century
old. They serve as a mere illustration of some of the basic techniques.

(2) The next Subsection 4.2 contains an unpublished result of Nies and Melnikov that states that Π0
1 classes

can be used to represent isometric isomorphisms between effectively compact spaces. The result is not
difficult, but its consequences are fairly powerful; in particular, combined with several standard results
about Π0

1-classes, this method gives elegant and much more ‘compact’ proofs of some results from the
literature.

(3) Subsection 4.3 contains an application of computable compactness to constructing basic sequences in Banach
spaces. The application is elementary but is neat. The subtlety is that, in classical Banach space theory,

2As of 2022, the survey is still available at the personal homepage of Jason Rute.
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one routinely uses dual spaces and Hahn–Banach Theorem to construct basic sequences (e.g., [25]), but it
is known that Hahn–Banach Theorem is not computable [16, 106]. Computable compactness gives a way
to circumvent this obstacle. The result is very recent and can be found in Long’s M.Sc. thesis [94].

(4) The next Subsection 4.4 applies the techniques developed in Section 3 to Stone spaces; these results are
very recent and can be found in [61, 64]. For instance, we will see that a Stone space is computably
compact iff it is computably metrizable iff the dual Boolean algebra is computably presentable. Among
many applications, we will explain why the isomorphism problem for Stone spaces is Σ1

1-complete. The
result is ‘known’ but it seems it has never been stated in the literature; we include it for future reference.
We will also see that these techniques can be used to produce an example of a computable topological Polish
space not homeomorphic to any computably metrized space.

(5) In Subsection 4.5 we prove that a profinite group is recursively presented (in the sense of [90, 138]; to be
defined) iff it is computably compact; this result is new.

(6) Subsection 4.6 contains a new algorithm for computing Čech cohomology of a computably compact space.
The algorithm is new, but the result itself is not new (though it is very recent [95]). In the subsection we
also discuss several applications of Čech cohomology in computable topology.

(7) Subsection 4.7 applies computability of Čech cohomology established in the previous subsection to produce
examples of computably metrized compact spaces that are not homeomorphic to any computably compact
space. It is not hard to find a computably metrized space that is not isometrically isomorphic to any com-
putably compact space (just take the interval r0,Ωs, where Ω is Chaitin’s omega3 or some other left-c.e. real
that codes 01.) However, the situation becomes more complex if we view spaces up to homeomorphism.
The result is not new but is very recent, and the proof that we give is a new combination of modern and
classical techniques some of which we introduce in the preceding subsections. Our new proof is perhaps the
simplest one known so far.

(8) Subsection 4.8 contains a new proof of computable universality of Cr0, 1s among computable Polish spaces
up to (computable) isometry. The issue is that the standard proofs of universality of Cr0, 1s rely on
Hahn–Banach Theorem; as we have already mentioned above, it is not computable in general. Sierpin-
ski [135] suggested a more direct proof that he thought was ‘effective’; however, his proof gives a merely
01-computable embedding. We use tools of computable compactness to produce a computable embedding
of any computable Polish space to the standard presentation of Cr0, 1s. The result is not new ([5]), but the
proof that we here give is new. Our new proof is much less combinatorially involved than the one in [5];
the latter does not use computable compactness tools. (However, it is not necessarily clear that our proof
holds primitively recursively, while the proof from [5] gives a primitive recursive embedding.)

(9) In Subsection 4.9 we prove that every computably compact space of finite covering dimension can be
computably embedded into a finitely dimensional Euclidean space. This is an improved version of a very
recent result of Harrison-Trainor and Melnikov [60] that establishes that there is an arithmetical embedding.
Our result is stronger and the technique that we use is different from what has been used in [60]. The new
version heavily relies on one of the new characterizations of computable compactness that we prove in the
paper. It will allow us to effectivize one of the standard proofs from the classical literature with only minor
modifications.

(10) Subsection 4.10 contains the proof of the fact that, for a computably compact X, the space of probability
measures PpXq on X is a computable homeomorphic image of 2ω. This is known, even though the standard
reference [33] does it only for the special case of X “ 2ω and via an explicit construction of a computable
map from 2ω onto PpXq. But it is actually easier to establish computable compactness of PpXq directly
(using covers), and then apply (vii) of Theorem 1.1. The result is very recent and is due to Marcone and
Valenti [96]. Computable compactness of PpXq can be used to show that a compact incomputable group is
computably compact iff it admits a computable Haar probability measure. This is a known result and we
will discuss it more fully in Subsection 4.10.

(11) The final Subsection 4.11 contains several open questions that are related to the material contained in the
previous subsections. Most of these questions are directly or indirectly related to compactness.

3While it is not central to this paper, Ω is the Lebesgue measure of the domain of a universal prefix-free Turing machine (see Downey

and Hirschfeldt [36]). It is a “natural” example of a left-c.e. real which is not computable, in the same way that the halting problem is
a natural example of a c.e. non-computable set.
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To make our exposition smoother, we shall often define notions when we need them. The most commonly known
basic notions of computable metric space theory can be found in the preliminaries.

2. Preliminaries

All of our spaces are Polish (separable and completely metrizable) spaces. Such spaces are also sometimes called
Polishable. All spaces are also compact, unless stated otherwise. There will be only very few exceptions towards
the end of the paper where the spaces considered will not be compact, namely the Urysohn space and the space of
continuous functions on the unit interval Cr0, 1s.

We will almost never consider the empty space, even though it is actually possible to include this rudimental case
into our framework. However, many proofs become more uniform and definitions more convenient if we exclude
this case.

We remind the reader that a real α is computable if there exists a computable sequence pqfpiq | i P Nq of rational

numbers such that |α´ qfpiq| ă 2´i. If we have a computable sequences of rationals but only know that qfpiq Ñ α,

but not a computable modulus of convergence, then we would say that α is a ∆0
2-real; and if the sequence qfpiq is

monotonically increasing (resp. decreasing), then α is said to be left-c.e. or lower semi-computable (resp. right c.e.
or upper semi-computable).

Much work in computable analysis from recent years has been concerned with the theory of representations [148].
In the type 1, countable case, when we talk about functions acting on, for example, polynomials, we really mean
functions acting on numbers or strings “representing” the objects. In the type 2 case, a representation is a way of
assigning an infinite string α in Baire space ωω with the object we wish to run algorithms upon; and to do so in
a computationally meaningful way. However, in the case of Polish spaces, Cauchy sequences provide a natural and
effective way to represent elements. Thus, we stick throughout with the notation as presented in the subsections
below.

2.1. Effective metrizations of Polish spaces. A Polish space pM,dq is right-c.e. presented or admits a right-
c.e. metric if there exists a sequence pαiqiPω of M -points which is dense in M and such that for every i, j P ω,
the distance dpαi, αjq is a right-c.e. real, uniformly in i and j. (In particular, we always assume that the metric is
complete.) More formally, there is a c.e. set W Ď ω2 ˆQ such that for any i and j,

tq P Q : dpαi, αjq ă qu “ tq : pi, j, qq PW u.

Note that the sequence pαiqiPω may contain repetitions; equivalently, it is possible that dpαi, αjq “ 0 for some i, j.
We call points αi from the sequence special or ideal. For instance, an undirected (simple) graph with the shortest
path metric is a right-c.e. metrized space. We will see that Π0

1 classes can also be viewed as right-c.e. metrized
spaces.

The definition of a left-c.e. Polish space is obtained from the notion of a right-c.e. Polish space using the notion
of a left-c.e. real, mutatis mutandis.

Definition 2.1. A Polish space is computably presented or, perhaps more descriptively, computably metrizable if
there is a (complete) metric on the space which is both right-c.e. and left-c.e.

Strictly speaking, a computable or a right-c.e. metrization of a space is a countable object pαiqiPω, but we will

usually identify a computable metrization pαiqiPω of space M with its completion pαiqiPω.

Remark 2.2. Note that we intentionally did not emphasise whether we consider Polish spaces up to isometric
isomorphism or under some other notion of similarity, such as, e.g., quasi-isometry or homeomorphism. Indeed,
these will lead to non-equivalent notions. For example, for a real ξ, the space r0, ξs is isometrically isomorphic to a
computably metrized space if, and only if, ξ is left-c.e. However, for any real ξ this space is homeomorphic to the
unit interval r0, 1s which is of course computably metrizable. In this paper we usually consider Polish spaces under
homeomorphism, that is, a Polish space has a right-c.e. presentation if it is homeomorphic to the completion of a
right-c.e. metrized space. Nonetheless, we will emphasise this in most of the theorems and lemmas that we prove
to make sure that there is no conflict of terminology.
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2.2. Computable topological spaces. There are several definitions of a computable topological space that can
be found in Kalantari and Weitkamp [75], Korovina and Kudinov [85], and Spreen [140]. We will use the following.

Definition 2.3 (see, e.g., Definition 3.1 of [86] or Definition 4 of [150]). A computable topological space is given by
a computable, countable basis of its topology for which the intersection of any two basic open sets (“basic balls”)
can be uniformly computably listed. More formally, it is a tuple pX, τ, β, νq such that

‚ pX, τq is a topological T0-space,
‚ β is a base of τ ,
‚ ν : ω Ñ β is a computable surjective map, (i is called an index of νpiq) and
‚ there exists a c.e. set W such that for any i, j P ω,

νpiq X νpjq “
ď

tνpkq : pi, j, kq PW u.

Let pX, τ, β, νq be a computable topological space. For i P ω, by Bi we denote the open set νpiq. As usual, we
identify basic open sets Bi and their ν-indices. There are many versions of this notion above in the literature; see,
e.g., [140]. All of these notions are essentially Definition 2.3 with some extra assumption. For example, one can also
additionally require that there is a computable dense sequence pxiqiPω such that txi, jy : xi P Bju is computably
enumerable. See [118, 140] for many other extra assumptions, some of which definitely seem ad hoc. We thus stick
with the basic Definition 2.3. Perhaps, the most natural example of a computable topological Polish space is given
by the proposition below.

Proposition 2.4 (cf. Theorem 2.3 of [86]). Every right-c.e. Polish space is a computable topological space.

Proof. Let pM,dq be a right-c.e. Polish space, and let pαiqiPω be its sequence of special points. By τ we denote the
metric topology of pM,dq. As usual, the base β of τ contains basic open balls

Bpαi, qq “ tx PM : dpαi, xq ă qu, i P ω, q P Q`.
For i P ω and q P Q`, we put νpi, qq “ Bpαi, qq.

We prove that the tuple pM, τ, β, νq is a computable topological space. It is sufficient to establish the following:
for any i, j P ω and q, r P Q`, we can (uniformly) effectively enumerate a set X Ď ω ˆQ` such that

(1) Bpαi, qq XBpαj , rq “
ď

tBpαk, tq : pk, tq P Xu.

Our set X is defined as follows: X contains all pairs pk, tq such that

dpαi, αkq ă q ´ t and dpαj , αkq ă r ´ t.

Since the space pM,dq is right-c.e., it is not hard to see that the set X is c.e., uniformly in i, j, q, r. If pk, tq P X,
then by using the triangle inequality, we can easily show that Bpαk, tq is a subset of Bpαi, qq XBpαj , rq.

Let x be an arbitrary point from U “ Bpαi, qq X Bpαj , rq. Choose positive rationals ε and δ such that ε ă
q ´ dpαi, xq and δ ă r ´ dpαj , xq. Since U is open, we can find k P ω and t P Q` such that x P Bpαk, tq Ď U and
t ă minpε{2, δ{2q. Then we have

dpαi, αkq ď dpαi, xq ` dpαk, xq ă pq ´ εq ` t ă q ´ ε{2 ă q ´ t.

Therefore, pk, tq belongs to X, and the set X satisfies (1). Hence, pM, τ, β, νq is a computable topological space. �

For instance, every computably metrized Polish space is a computable topological space. We shall return to
computable topological and right-c.e. spaces later, when we talk about Stone duality. Effective compactness can
also be defined for computable topological and right-c.e. spaces, but we will not need this degree of generality
until Subsection 4.4. (This will be clarified in the remarks before Theorem 4.28.) Until Subsection 4.4 we restrict
ourselves to computable, completely metrized spaces.

2.3. The definition of computable compactness. We have already explained what it means for a Polish space
to be computably metrized. We usually assume that all our spaces are Polish metric and non-empty. Recall that a
complete metric space M is compact iff for every ε ą 0, there exists a finite set F of points such that every point
has distance less than ε to F . For now, we say that a space is computably compact if it satisfies piq of Theorem 1.1:

Definition 2.5. A computably metrized space is called computably compact if there exists a computable function
that, given n, outputs the index of a finite tuple of basic open balls of radii ă 2´n that cover M .
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We should explain a bit more carefully all the terms that we use in the definition above. A ball centred in a
special point is basic if its radius is a rational number. When we consider finite covers, we usually say that we
can compute a finite cover by basic open balls if we can compute the index of a finite set that codes the indices of
the finitely many centres and the rational radii of basic open balls in the cover. This should not be confused with
enumerating a finite cover, i.e, listing one ball after another in a c.e. fashion.

Remark 2.6. Most proofs in this article do not actually need the radii to be rational numbers, but would work
with balls of radius a computable real. However, we cannot list computable reals effectively. Therefore, we cannot
hope to have an effective base of topology consisting of all basic balls with computable radii and computable points.

Suppose a compact space is computably metrized. How much computational power do we need to make it
computably compact?

Definition 2.7. Let M “ pM,d, ppiqiPNq be a compact computable metric space. A compactness modulus of M is
is any function that bounds

hpnq “ mintj : @iDk ă j dppi, pkq ď 2´nu

from above. We call h the least modulus of compactness.

Note that if hpnq “ j, then the 2´n`1-basic open balls centred in p0, . . . , pj cover the space. Since dppi, pkq ď 2´n

is a Π0
1 condition and the quantifier Dk ă j is bounded, and the space is compact, h is computable relative to 01.

It is not difficult to show that there exists a computably metrized compact space in which the least modulus of
compactness computes 01, and indeed, any modulus of compactness as well. As we mentioned in the introduction,
the interval r0,Ωs defines a computably metrized space that is not isometrically isomorphic to any computably
compact space (by Theorem 3.21), and its modulus of compactness (for any computable presentation) computes 01.

It what will follow, we will not necessarily need the (least) modulus of compactness. Indeed, it is sufficient to
calculate some (and not necessarily the least) j such that @iDk ă j dppi, pkq ď 2´n. One way to state this would be
to require j to be ‘the first found’ (in some ∆0

2 approximation sense) that works. A space is computably compact
if for every n we can compute some j that works. It is not difficult to manufacture a pathological example of a
space where some j can be computably found for a given n, but one cannot compute the least such j. (See the next
subsection for a similar counterexample.)

2.4. More about basic open balls.

Notation 2.8. For a basic open B, write Bc for the basic closed ball with the same centre and radius as B.

The reader should keep in mind that the space can be very strange, quite unlike Rn. For instance, the closure B
of B does not have to be equal to Bc in general (think of an isolated point in BczB). Also, in general we cannot
decide whether two basic open or closed balls intersect or not, as is illustrated by the example below.

Example 2.9. There exists a computably compact subspace of the unit square such that there is no uniformly
computable procedure deciding whether two given basic open or basic closed 2´n-balls intersect.

To make sure that the non-emptiness of intersection of open balls is undecidable, for every n create a gadget
consisting of two points xn and yn at distance 2´n ´ 2´n´2 from each other, and also put a third point zn at
distance exactly 2´n from each of xn and yn. The point is at the intersection of the 2´n-circles centred at xn and
yn.

‚ Wait for the nth potential procedure to declare that Bpxn, 2
´nq XBpyn, 2

´nq “ H.
‚ If this ever happens at some stage s, take m “ s` n` 1 and put a new point wn at distance exactly 2´m

from zn so that wn P Bpxn, 2
´nq XBpyn, 2

´nq .

To make sure that the non-emptiness of intersection of basic closed balls is undecidable, for every n create a similar
gadget, but this time keep zn out of the space at every finite stage. Instead, initiate the enumeration of a sequence
pξi,nq of points in the complement of Bcpxn, 2

´nq Y Bcpyn, 2
´nq rapidly converging to zn, i.e., dpzn, ξi,nq “ 2´n´i.

At stage s, put ξs,n into the space.

‚ Wait for the nth potential procedure to declare that Bcpxn, 2
´nq XBcpyn, 2

´nq ‰ H.
‚ If this ever happens at some stage s, stop putting points ξs,n, ξs`1,n . . . into the space.
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It should be clear that, for each gadget, the diagonalization works. We also note that the gadgets are uniformly
computably compact. We can fit all these gadgets into the unit square and get a computably compact metric space
(of Cantor-Bendixson rank 2) with the desired property. ˝

Thus, we see that the non-emptiness of set-theoretic intersection of basic open balls in not c.e. in general. We
will return to this issue in Subsection 3.3 where we will see that there are enough balls for which this property
actually is decidable; and hence we can get a characterization of computable compactness where the basic balls
used in covers have decidable intersections.

A similar example can be produced to show that inclusion is also not c.e. in general. The following stronger
notion is c.e.; it will be very useful throughout the paper. We write rpBq for the radius of a basic ball B and we
use cntrpBq to denote its (distinguished) center.

Definition 2.10. A basic open ball U is said to be formally included into a basic open W , written U Ďform W , if

rpUq ` dpcntrpUq, cntrpW qq ă rpW q.

This notion has been around for many decades; see, e.g., [140] where it is called strong inclusion. If the centres
and the radii are computable (not necessarily special and rational, respectively), formal inclusion remains c.e. The
same can be said about formal s-disjointness defined as follows.

Definition 2.11. Two basic open balls U and W are formally s-disjoint if rpUq ` rpW q ă dpcntrpUq, cntrpW qq
and this can be seen after calculating the radii and the distance with precision 2´s. We say that U and W are
formally disjoint if the are formally s-disjoint for some s.

We note that formal inclusion remains c.e. in the context of right-c.e. metric spaces, while formal disjointedness
remains c.e. in left-c.e. metric spaces.

2.5. Effectively continuous maps. Let X be a computable topological space. For a point x P X, its name is the
set

Nx “ ti P ω : x P Biu.

We say that a map f : X Ñ Y between computable topological spaces X and Y is computable if there exists an
enumeration operator that, given the name of x P X, outputs the name of fpxq P Y .

An open name of an open set U Ď X is a set W Ď ω such that

U “
ď

iPW

Bi.

Definition 2.12. Let X and Y be computable topological spaces. A function f : X Ñ Y is effectively continuous
if there is a c.e. family F Ď PpXq ˆ PpY q of pairs of (indices of) basic open sets such that:

(C1) for every pU, V q P F , we have fpUq Ď V ;
(C2) for every point x P X and every basic open E in Y such that fpxq P E, there exists a basic open D in X

with pD,Eq P F and x P D.

The elementary fact below is well-known and can be traced back to, e.g., [26]. In this specific form it can be
found in [100]. The lemma essentially says that a map is computable if, and only if, it is effectively continuous.

Lemma 2.13. Let f : X Ñ Y be a function between computable Polish spaces. Then the following conditions are
equivalent:

(1) f is effectively continuous.
(2) There is an enumeration operator Φ that on input an open name of an open set V in Y lists an open name

of the set f´1pV q in X.
(3) There is an enumeration operator Ψ that given the name of a point x P X, enumerates the name of fpxq P Y .

(We remark that the proof below works for right-c.e. spaces. It also works for computable topological spaces with
c.e. formal (strong) inclusion that can be defined abstractly without any reference to a metric; see, e.g., [100, 140].)
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Proof. p1q ñ p2q. Suppose V “
Ť

iPW Bi. Note that (C2) implies that

f´1pV q “
ď

tD P X : pD,Eq P F & Di PW E Ďform Biu,

and thus the name of f´1pBiq can be listed using only positive information about W, with all possible uniformity.
p2q ñ p3q. Note that B P Nfpxq if and only if f´1pBq contains a basic open set in Nx.
p3q ñ p1q. Define a collection F of pairs pD,Eq of (indices of) basic open sets in X ˆ Y as follows. Fix a basic

open E in Y . Enumerate all basic open D in X, and for each such D, enumerate all finite collections D,A1, . . . , Ak
of basic open sets (in X) such that D Ďform XiďkAi (meaning that D is formally contained in each Ai). Feed these
finite collections to Φ and wait for some E to be enumerated in the output. When E is enumerated (if ever), put
pD,Eq into F .

We claim that F defined above satisfies (C1) and (C2). We check (C1). If pD,Eq P F then fpDq Ď E. Indeed,
suppose d P D. There exists a sequence D,A1 . . . Ak such that ΦtD,A1,...,Aku enumerates E. Recall D Ďform XiAi
implies D Ď XiAi, thus for any d P D the sequence listed by ΦN

d

will contain E, and therefore fpDq Ď E. We now
check (C2). Fix x P X and a basic open E Q fpxq. We must show that for some basic open D Q x, pD,Eq P F .
By assumption, ΦN

x

enumerates Nfpxq that contains E. Suppose E is listed with use A1, . . . , Ak. Since the Ai all
contain x, there exists a basic open D Q x that is formally included into their intersection. Since the operator uses
only positive information about its oracle, it will list E on input tD,A1, . . . , Aku as well, and thus pD,Eq will be
enumerated into F . �

2.6. Π0
1-classes. Π0

1 classes will be important for some of the work to follow. Thus we give a brief reminder of the
basic definitions and results.

We fix the standard computable presentation of 2ω under the usual shortest common initial segment ultra-metric.
The space 2ω can be viewed as r2ăωs the set of infinite paths through the complete binary tree, so points are paths.
A closed subset C of 2ω is called a a Π0

1 class if we can computably enumerate the basic clopen sets whose union
make up the complement of C in 2ω. That is, C is the set of paths rT s through a computable subtree T of 2ăω.

A moment’s thought reveals that in computable mathematics Π0
1 classes occur everywhere. One of the fun-

damental correspondences are Π0
1 classes and degrees of theories, pioneered by Jockusch and Soare in the early

1970’s [72–74], and even earlier by Kreisel [88] and Shoenfield [134]. That is, Π0
1 classes effectively correspond to

(completions of) axiomatizable theories under Stone duality.
We shall need the following elementary fact:

Fact 2.14. An isolated point in a Π0
1-class is computable.

Thus, for instance, if a Π0
1 class is countable, it must have a computable point. Another well-known but less

elementary fact that we will refer to is the following result.

Theorem 2.15 (The Low Basis Theorem [74]). A non-empty Π0
1 class contains a member P of low Turing degree,

that is P 1 ”T H
1.

Since we are concerned with computable compactness, it seems reasonable to see what computable compactness
means in this context.

Example 2.16. Let C “ rT s Ď 2ω be a Π0
1 class such that ExtpT q “ tσ P T | Dα P 2ωpσα P rT squ is computable4.

Then C “ rT s can be viewed as a computably compact space. To see why, first use computability of ExtpT q to
define a computable sequence of (uniformly computable) strings D “ tαi | i P ωu Ď 2ω so that D is dense in
C; we omit the details. (The example will be generalised in Subsection 3.5 where we will give a complete proof
of a more general result.) Clearly, being the completion of D, C forms a computably metrized space under the
ultra-metric inherited from 2ω. Given n, we compute a 2´n cover. Compute En “ tσ | σ P ExtpT q ^ |σ| “ n` 1u.
Let En “ tτ1, . . . , τku. For each i we can use the fact that ExtpT q is computable to calculate the leftmost extension
αi of τi in C, and then the balls of radius 2´n around the αi X C cover C.

Many other facts about Π0
1 classes can be found in Cenzer [27], Cenzer and Remmel [28] and Chapter 2 of Downey

and Hirschfeldt [36].

4Such Π0
1 classes (with ExtpT q computable) have been given several names historically: recursive, recursively closed, and decidable.

See, e.g., LaRoche [91] and Downey [37].
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3. The definition of computable compactness is robust

3.1. The other two standard definitions of computable compactness. Our convention is that all of our
spaces are nonempty Polish spaces. Definition of computable compactness says that for every n we can compute a
cover of the space by basic 2´n-balls. This definition seems a weak form of compactness, as it seems that having a
fixed cover for each 2´n does not seem quite as good as having access to all finite covers. The following definition
would seem to give a stronger notion of computable compactness.

Definition 3.1. We define computably metrized space to be ˚-computably compact if the collection of all finite
covers of M by basic open balls can be given as a c.e. collection of explicit finite sets.

We also note that Definition 3.1 is equivalent to:

Definition 3.2. We say that a computably metrized space is computably countably compact if there is a partial
computable operator that, on input any potential c.e. open basic cover, halts if it is a cover and outputs some finite
sub-cover.

It is easy to see that a space is effectively ˚-compact iff it is computably countably compact. To see why
computable countable compactness implies ˚-computable compactness, we can enumerate all finite collections of
basic open balls and apply the algorithm: if the procedure halts output its subcover. This enumerates a collection
of finite covers, and to enumerate them all, we consider the union of this collection with the collection of all finite
sets of balls. The other direction is also straightforward: if the space is ˚-computably compact, given a c.e. cover
wait till we enumerate a finite subcover. These versions of countable compactness is essentially the approach used
in reverse mathematics (e.g., Simpson [136]).

Interestingly, the two potential definitions suggested above (and a few more) turn out to be equivalent.

Theorem 3.3 (Folklore). For a computably metrized (compact) Polish space M , TFAE:

(1) M is computably compact;
(2) M is ˚-computably compact.

Proof. The implication p2q Ñ p1q is obvious.
Assume p1q, we prove p2q. Take a finite collection pBiq of basic open sets and assume it is a cover. We must

argue that eventually we will be able to effectively recognise that it is indeed a cover. The idea is that there exists
an ε “ 2´n so small that every ε-cover of M is formally contained in this given cover. (This will be the Lebesgue
number of the cover, in particular.) This will also be true for the ε-cover that will be given to us according to the
definition of computable compactness. Since formal inclusion is c.e., we will be able to recognise that this formal
inclusion has occurred. Noting that formal inclusion does imply set-theoretic inclusion, so if some ε cover is formally
included in some other finite collection of basic open balls, then this other collection must also be a cover. Thus, if
we succeed, it will show that pBiq is equivalent to saying that, for some n, every ball in the 2´n´cover given to us
by the definition of computable compactness (and indeed, any other 2´n-cover) is formally included in one of the
Bi. This is, of course, a Σ0

1-property.
It remains to prove that such an ε exists. We argue non-computably. Let ci be the center of Bi, and ri be its

the radius. Define for every i, a function fipxq “ ri ´ dpx, ciq if x is in the ball Bi, and 0 otherwise. This function
is continuous. Now take the supremum of the finite family pfiq to define a new continuous g; gpxq “ supi fipxq. If
pBiq indeed was a cover, then the function g would be strictly positive, because each x is inside one of the Bi.

Let v be its infimum that is achieved somewhere, by compactness. Take a rational ε “ 2´m less than v{2. Then
for every point y, we have ε ă ri ´ dpy, ciq; that is

dpy, ciq ` ε ă ri,

equivalently, Bpy, εq Ăform Bi. This inclusion will still hold if we replace ε with an even smaller ε1. Thus, in
particular, every basic open ε1-ball is formally included in one of the Bi. Consequently, p1q implies p2q. �

Remark 3.4. The proof of p1q Ñ p2q above additionally tells us that, for any given finite basic cover there is an ε
small enough so that any ε-cover formally refines the given cover. Also note that to recognize formal inclusion in a
c.e. way, we do not need the radii ri to be rational numbers; (uniformly) computable ri will suffice.
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In view of Theorem 3.3, henceforth we use computably compactness and ˚-computably compactness interchange-
ably, and without further comment.

Elementary properties of computably compact spaces. Examples of computably compact spaces are the unit interval
r0, 1s, the unit circle that can be viewed as the set of complex numbers having norm one: tξ P C : ||ξ|| “ 1u, the
Hilbert cube, cantor space 2ω, and also ‘natural’ (rational) geometric realisations of finite simplicial complexes that
are central to algebraic topology. Simplicial complexes will be used as a tool later in the paper, and indeed will be
discussed in the next subsection. We shall give much more intricate examples of computably compact spaces in due
course.

There are several properties of computably compact spaces that are immediate from the definitions. These, for
instance, include those summarised in the following:

Proposition 3.5 (Folkore). (1) Let f : M Ñ R be computable and M be computably compact. Then supxPM fpxq
and infxPM fpxq are computable real numbers. Furthermore, this is uniform.

(2) The class of (non-empty) computably compact spaces is closed under taking (finite or computably infinite)
direct products. More specifically, if pMiqiPI is a uniformly computable sequence of spaces, where I P ωYtωu,
then the direct product

ź

iPI

Mi

under (say) the metric
ÿ

iPI

2´i
dpxi, yiq

1` dpxi, yiq
,

where xi denotes the ith projection of x P
ś

iPIMi, is a computably compact metric space5. (See, e.g.,
Lemma 3 of [129].)

(3) If f, g : Mn Ñ R are computable and M is computably compact, then the following functions are also
computable:
‚ supxPM fpx, x2, . . . , xnq and infxPM fpx, x2, . . . , xnq;
‚ maxtf, gu and mintf, gu;
‚ f ´ g, f ` g, αg for any computable real α.

This is also uniform in the strongest sense possible.

We omit the elementary proof. We remark that in (2), the choice of a dense computable sequence is not canonical.
One way of choosing a dense computable sequence it is to fix some (e.g, the first found) sequence of special points
α in the product, and then using elements that are “eventually α”. That is the dense subset will be given by the
collection of sequences of special points that are equal to α for cofinitely many coordinates (projections). There
are other potential metrics that we can use instead of the one suggested above, but the natural choices will be
effectively equivalent (meaning that the identity map will be computable with respect to one and the other metric
under consideration).

3.2. Continuous logic and decidability. In this subsection we discuss continuous model theory and continuous
logic. For a smooth introduction to this subject, we cite [9]. We will not need the definitions of continuous model
theory in their full generality. Our structures are compact metric spaces of diameter at most 1. The restriction on
the diameter can be removed using linear scaling of the metric. We view such spaces as structures in the signature
tdu, where d : M2 Ñ r0, 1s.

The idea is that every formula φ of continuous logic is (associated with) a uniformly continuous function, and
rφs : Mn Ñ r0, 1s. In classical logic the truth values tT, F u are built into the language, and continuous logic has
r0, 1s similarly built into the signature. We therefore fix the standard computably compact copy of r0, 1s given by
Q X r0, 1s and view it as a part of the language, not a part of our structure. Traditionally, φpx̄q is interpreted
as ‘true’ if rφpx̄qs “ 0, and false if rφpx̄qs “ 1. But of course, there are continuum many possibilities in-between.
Having in mind this intended interpretation of formulae, we write f, g, h . . . to denote our continuous formuale.

5As was noted by one of the referees, it is not clear whether this observation holds in absence of the metric. Specifically, it is

not known whether Xω is computably compact for an arbitrary computably compact represented space. For more about effective

compactness in general represented spaces we cite [120].
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Because of the aforementioned somewhat unusual interpretation of the truth values, it makes sense to define the
analog ´ of implication as follows:

rf Ñ gs “ rg ´ f s “ rgs´ rf s “ maxt0, rf s ´ rgsu.

In particular, 1 (which is the ‘ultimate false’) implies any g. Also, we interpret the disjunction as the minimum:

rf _ gs “ mintrf s, rgsu,

and we interpret the conjunction as the maximum of the two functions. The analog of the negation of f is 1 ´ f .

Also, we include
1

2
f to mean

1

2
rf s. Finally, instead of quantifiers we use sup and inf. For example, if fpx, yq has

already been defined, we can define gpxq to be
sup
y
fpx, yq,

and in this case clearly
rgs “ rsup

y
fpx, yqs “ sup

yPM
rfpx, yqs,

which is (uniformly) continuous if f was6.

Since our language is merely tdu, the atomic formulae are just dpx, yq and the constant functions 0 and 1. We

close these formulae under finite iterations of sup, inf,^,_,
1

2
¨, and ´ to define the (full) continuous diagram of

pM,dq. The definition below is inspired by [10, Definition 9.9] and [24, Definition 3.2]. Recall that we fixed the
usual computable presentation on the unit interval.

Definition 3.6. We say that a Polish space of diameter ď 1 is continuously decidable if its continuous diagram is
uniformly computable. That is, given (the Gödel number of) a continuous formula φpx̄q (from the full continuous
diagram of M) we can uniformly produce an index for a Turing operator that computes the function

rφpx̄qs : Mn Ñ r0, 1s,

where x̄ “ x1, . . . , xn.

In the definition above, we could allow M to have an arbitrary diameter 1 ď δ ď m P N and use m´1rφpx̄qs as
an interpretation of our formulae. Alternatively, we could scale the metric and use d1px, yq “ m´1dpx, yq. Thus,
the theorem below is not really restricted to spaces of diameter ď 1; it is a mere notational convenience.

Theorem 3.7. Suppose X is a computable Polish space that is compact and has diameter ď 1. Then the following
are equivalent:

(1) X is continuously decidable;
(2) X is computably compact.

Proof. p2q Ñ p1q. The supremums and infimums of computable functions are uniformly computable (see Proposi-
tion 3.5(1)), and so is f ´ g “ supt0, f ´ gu for every computable f and g. The proof then proceeds by induction
on the complexity of continuous formulae (with parameters).

(1) The distance function is computable by our assumption, and so are the constant functions 1 and 0.

(2) If fpx, ȳq, gpx, ȳq are computable, then so are supx fpx, ȳq, fpx, ȳq ´ gpx, ȳq, and
1

2
fpx, ȳq; see Proposi-

tion 3.5(3).

The latter also includes the case when there are no parameters, which means that the function is just the constant
function (a computable real).

p1q Ñ p2q. Let pxiq be the computable dense sequence. There is a formula of continuous logic saying that

Unpx0, ..., xmq “ sup
xPX

min
iďm

pdpx, xiq´ 2´nq

6In general, we should also include the moduli of uniform convergence into the definition of our formulae, but in the language of

just pure metric this is not needed. Since M is compact, and indeed will be computably compact, we can potentially make the moduli

implicit even in more general signatures.
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which we can computably evaluate with precision 2´n. If we discover that

Unpx0, ..., xmq ă 2´n,

then every point is at distance at most 2´n`1 from one of the xi, by the triangle inequality. Since we can effectively
list such formulae, and for every n there exists an m for which the formula holds up to 2´n (by compactness), we
conclude that we can effectively produce at least one 2´n-cover for every n. �

The result above should hold for any metric compact structures, e.g., compact Polish groups. Of course, p1q Ñ p2q
remains the same, but p2q Ñ p1q should be carefully verified. We leave this as a conjecture.

Remark 3.8. Note that in the proof, we only need to decide formulae with parameters special points. So it follows
that a presentation is decidable with parameters special points iff it is decidable with arbitrary parameters.

3.3. Deciding the intersection. The results in this section appear to be new as stated, however, similar arguments
and some informal explanations closely related to what we do here can be found in the literature (e.g., in [64, 122]).
One standard way of using a (finite) cover of a compact space in dimension theory and algebraic topology is to use
Alexandroff’s notion of a nerve.

Definition 3.9 (Alexandroff [2]). A nerve of a cover is a simplicial complex in which the faces are the collections
of basic open sets that have a non-trivial intersection; i.e., each basic open set is a 0-dimensional simplex (a node),
and balls tB,C,Du form a 2-dimensional face if B X C XD ‰ H.

From the computability-theoretic standpoint, the issue with this definition is that, for a fixed finite open cover,
the non-emptiness of each specific intersection is merely Σ0

1; recall Example 2.9 in the preliminaries. Intuitively,
most problems arise when the notions ‘closed ball’ and ‘closure of ball’ disagree. This in fact can happen only for
countably many radii, and we can find sufficiently small ”acceptable” radii” [122]. To state the result formally, we
push the notion of computable compactness to its limits.

Definition 3.10. A sequence of basic open balls is X-decidable if for every finite sequence of balls B0, . . . , Bk from
the sequence, we can computably decide whether

Ş

i“0,...,k Bi “ H.

Before we proceed, we state and prove one elementary but important lemma. Recall that, for a basic open B,
we write Bc for the basic closed ball with the same centre as B, and that the closure B of B does not have to be
equal to Bc in general.

Lemma 3.11. Suppose M is computably compact. Then, for basic closed balls Bci and Bcj , the property BciXB
c
j “ H

is c.e. uniformly in i, j. The same is true for any finite collection of basic closed balls.

Proof. The open set MzBci is c.e. Indeed, we just list all the basic open balls that are formally disjoint from Bci via
a standard argument7. Thus, the union of the complements, which is the complement of the intersection Bci XB

c
j ,

is also c.e. open. It covers the space if, and only if, the intersection is empty. By computable compactness of M ,
this is c.e. The case of finitely many balls is similar. �

Definition 3.12. A computably metrized (compact) M is nerve-decidable, or ˚˚-computably compact, if for every
n ą 0 we can computably find a finite 2´n-cover Kn (represented as a finite tuple of basic open balls) of M so that
Kn is X-decidable uniformly in n.

Theorem 3.13. A computably metrized M is nerve-decidable (˚˚-computably compact) if, and only if, it is com-
putably compact.

Proof. Obviously, ˚˚-computably compactness implies computable compactness. To this end, we assume com-
putable compactness of M . We will use the equivalence of computable compactness and ˚-computable compactness
throughout the rest of the proof without explicit reference.

We need to show that, for every ε ą 0, there exists a finite basic open ε-cover K of the space. Fix a finite
ε{2-cover of the space by basic open balls, and replace each ball in the cover with a ε-ball with the same centre.
Let S be this new ε-cover. Recall that Bc denotes the basic closed ball with the same centre as B. For each each
basic open B1, . . . , Bk P S, (exactly) one of the possibilities is realized:

7Every point in MzBc
i has the property dpcntrpBiq, yq ą rpBiq “ r, and if we take Bpy, qq where 0 ă q ă dpcntrpBiq,yq´rpBiq

2
then

dpcntrpBiq, yq ą r ` q.
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paq
Ş

iďk B
c
i “ H, or

pbq
Ş

iďk Bi ‰ H, or
pcq

Ş

iďk B
c
i ‰ H but

Ş

iďk Bi “ H.

Note that there are only finitely many conditions like that in total.
If we shrink the radii of all B P S by a δ ă ε{2 (but keep the same centres), then the conditions of the form paq

will still hold, and the smaller balls will still cover the space because the ε-balls do. If δ is small enough, then the
conditions of the form pbq will still be satisfied, since there are only finitely many conditions like that involved8.
The third alternative pcq must be witnessed only by points y such that, for some Bi “ Bpc, rq, dpy, cq “ r. This
means that, after the shrinking by ε{2 ą δ ą 0 so small that the alternative pbq still holds for each tuple of balls,
we completely exclude the third alternative for the new cover.

This argument shows that such a cover exists. Since the conditions are c.e. by Lemma 3.11, it remains to search
for a cover such that each finite collection of basic balls in the cover satisfies either paq or pbq. �

By Remark 3.4, we can additionally assume that Kn`1 formally refines Kn. Clearly, we get the following corollary
which will be useful later:

Corollary 3.14. Every computably compact space admits uniformly computable sequence of 2´n-nerves (one nerve
for each n), where the latter are represented as a finite combinatorial simplices. Furthermore, the formal inclusion
between covers Kn`1 and Kn induces a simplicial map between the respective nerves; these maps are uniformly
computable in n. (We cite Munkres [112] for the standard definitions from algebraic topology that we omit here.)

A stronger condition. It will be convenient to have a system of covers pKnq so that not only each Kn is X-decidable
but the whole collection

Ť

nKn isX-decidable. (We strongly conjecture that there is an elementary counterexample.)
For instance, we will see soon that having such a stronger system of covers will allow us to computably map 2ω

onto the space; this is pviiq of Theorem 1.1.
We are not sure whether such covers can be uniformly constructed for basic open balls with rational radii

(represented as a pair of integers), but we can contract such a system for balls with centres in special points and
uniformly computable radii9. We call such balls basic computable open.

Definition 3.15. A computably metrized M is strongly computably compact if M admits a system of 2n-covers
Kn, n P ω, by basic computable open balls such that

Ť

nKn is X-decidable.

Theorem 3.16. A computably metrized M is computably compact if, and only if, it is strongly computably compact.

Proof. By slightly increasing the radii of all the balls in a cover, we can ensure their radii are rational. Thus,
every strongly computably compact space is computably compact. To this end, we assume the space is computably
compact.

The idea behind the proof is as follows. We would like to argue that the idea from the proof of the previous
Theorem 3.13 can be iterated. For example, suppose we have come up with a X-decidable K0 and need to find K1

so that K0 YK1 is X-decidable. But to find such a cover, we might have to slightly shrink the radii of the balls
that we have already put into K0. This is because it could be that for some B P K0 and C that we attempt to put
into K1, there is a point at distance rpBq from the centre of B that lies in C and is isolated, so there is nothing in
B X C.

Suppose we iterate the strategy form the proof of Theorem 3.13 and allow the procedure to slightly shrink all the
balls in K0, thus updating the radii of balls in K0. But note K0 must still satisfy the closed properties

Ş

iďk B
c
i “ H

and finitely many open properties
Ş

iďk Bi ‰ H. The former is not an issue since the radii will decrease. The latter
however needs to be maintained more carefully. When we first discover the finitely many open relations of the form
of finitely many strict inequalities (when K0 is first introduced), we also compute a rational parameter δ0 ą 0 such

8Each such intersection is witnessed by a (special) point which must be at distance strictly less than 2ε to all centres, say, γ-less. If

we shrink the radii by a value less than the minimum of these γ (which is a positive value since there are only finitely many Bi involved)

then the inequalities will still hold. Another way to think about it is as follows: B XD ‰ H is an ‘open property’ of the parameters
(radii and centres), and a finite conjunction of open properties is also open because open sets are closed under taking finite intersections.

9The radii can likely be made rational if necessary, but they will be represented via Cauchy sequences, not as a fraction.
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that the relations will still hold if we decrease the radii of the balls by δ0. This is possible since the conditions build
down to finitely many strict inequalities involving the radii and computable numbers:

dpci, xjq ă ri,

where ci are centres of the balls and xi are special points witnessing that a certain intersection is not empty.
We then define δ0,n “ 2´n´2δ0 and note that

ř

i δ0,i ă δ0. We intend to shrink the radii of each ball in K0 by at
most δ0,s at stage s. This will make the radii in the balls computable while maintaining the finitely many conditions
that K0 needs to satisfy.

We also iterate this. When we define K1, we will have more open conditions to maintain for K0 Y K1. We
compute a δ1 ą 0 and set δ1,n “ 2´n´2δ1. We also ensure that δ1,n ď δ0,n, for every n. When we define (our first
approximation to balls in) K2 at stage t, we will allow balls in K0 to shrink by at most δ1,t ď δ0,t and balls in K1

by at most δ1,t. All the finitely many conditions will still be satisfied.
We iterate this process until, in the end of the construction, we finally get a collection of computable balls

Ť

nKn.
At no stage we are stuck. By the choice of the parameters, all of the open conditions still hold, while the closed
conditions will be satisfied vacuously.

Hopefully, the explanation above is sufficiently convincing, but we shall give a formal proof for completeness.

Formal proof.

Lemma 3.17. For every ε ą 0 and δ ą 0 and any finite collection K 1 of basic open balls, there exists a finite basic
open ε-cover K of the space and a collection of basic open balls K2 such that:

(i) Every ball in K2 has the same centre as some ball in K 1 but its radius is at most δ-smaller;
(ii) for each basic open B1, . . . , Bk P K

2 YK, either
Ş

iďk B
c
i “ H or

Ş

iďk Bi ‰ H holds.

Of course,
Ş

iďk B
c
i “ H implies

Ş

iďk Bi “ H, and thus K in the lemma has computable nerve, and for the
same reason K YK 1 is X-decidable.

Proof of Lemma 3.17. Fix a finite ε{2-cover of the space by basic open balls, and replace each ball in the cover with
a ε-ball with the same centre. Let S be this new ε-cover. Recall that Bc denotes the basic closed ball with the same
centre as B.

For each tuple of basic open B1, . . . , Bk P S YK
1, (exactly) one of the possibilities is realized:

pa1q
Ş

iďk B
c
i “ H, or

pb1q
Ş

iďk Bi ‰ H, or
pc1q

Ş

iďk B
c
i ‰ H but

Ş

iďk Bi “ H.

Note that there are only finitely many conditions in total.
If we shrink the radii of all B P S by a δ1 ă mintδ, ε{2u (but keep the same centres), then the conditions of the

form pa1q will still hold, and the smaller balls will still cover the space because the ε-balls do. If δ1 is small enough,
then the conditions of the form pb1q will also still be satisfied, since there are only finitely many conditions like that
involved. Note that the third alternative must be witnessed only by points y such that, for some Bi “ Bpci, rq,
dpy, ciq “ r. This means that, after we shrink the radii by ε{2 ą δ1 ą 0, pb1q will still holds for each tuple of balls,
but we completely exclude the third alternative. Define K2 to be the balls in K 1 after the shrinking, and K is the
shrunken balls from S. �

The rest of the proof proceeds by induction; we iteratively apply Lemma 3.17 to produce a system of covers that
satisfies the properties required in the definition of a strongly computably compact presentation. We produce a
sequence pKnq of covers, as follows.

At stage 0, search for a finite collection of basic open balls K satisfying conditions of Lemma 3.17 with ε “ δ “ 1
and K 1 “ H. Define K̂0,0 equal to the first found such K. Also, for the finite collection of strict inequalities that
witness non-emptiness of intersections in K0,0 calculate a parameter δ1 P Q such that the inequalities would still
hold if we decrease the radii by δ1. Set δ0 “ δ1 and δ0,i “ 2´i´2δ0.

At stage s ą 0, suppose Ki,s´1 (i ă s) and δs´1,s´1 have already been defined. Search for a finite collection of
covers K that satisfies the lemma with K 1 “

Ť

iăsKi,s´1, ε “ 2´s, and δ “ δs´1,s´1. This will give a finite collection
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of balls K2 having the same centres as balls in K 1 but perhaps having radii at most δ-smaller than the radii of the
respective balls in K 1. For i ă s, define Ki,s to be the collection of those balls in K2 that have the same centre as
some ball in Ki,s´1. Define Ks,s “ K, where K is first found satisfying the conditions of the lemma. Compute a
rational δ1 ą 0 so small that the finitely many strict inequalities that witness non-emptiness of finite collections of
balls in

Ť

iďsKi,s will still hold if we decrease all the radii of all balls in
Ť

iďsKi,s by δ1. Set δs “ mintδs, δ
1u and

define δs,s “ 2´s´2δs. Proceed to the next stage.

The verification boils down to noting that at no stage of the construction we are stuck, so Ki,s and δs,s are
defined for every s. This is because of Lemma 3.11 implying that the conditions pa1q and pb1q are uniformly c.e., and
because of Lemma 3.17 saying that balls and parameters with the needed properties exist. Thus, we just search for
the first found balls and parameters.

At every stage s, the radii of the balls in Ki,s shrink by at most δs,s ď 2´s, which makes each of the radii
uniformly approach a computable real number as s goes to infinity. Set Ki equal to these balls that have their
radii equal to the limit of the radii of the balls with the same centre in Ki,s. When compared to the radius of
the ball in Ks,s when it was first introduced, the radius of the respective ball in Ks will be smaller by at most
ř

nąs δn,n ă
ř

nąs δs,n ď δs, and δs is not greater than the parameter δ1 that was calculated at stage s and that
was sufficient to maintain the non-emptiness of finite intersections in Ks,s. Since the radii can only decrease, the
conditions that say that the closed balls do not intersect will be preserved from a stage to a stage, and in the limit.

It follows therefore that
Ť

nKn consists of uniformly computable collection of basic computable balls and is
X-decidable. �

Remark 3.18. The reader should note that, instead of using basic open covers, we could just as well used basic
closed covers in the proof of Theorem 3.16. For instance, for any finite collection of basic computable balls C0, . . . , Ck,
we have

Ş

iďk Ci “ H ðñ
Ş

iďk C
c
i “ H, where Cci is the basic closed ball with the same centre and radius as

Ci. Also, by Remark 3.4, we can always assume that Kn`1 is formally contained in Kn, and this will still be true
if we choose working with closed covers. For that, define a new system of (closed or open) covers Kfpnq where fpnq
is a computable monotone function that grows sufficiently fast so that Kfpn`1q formally refines Kfpnq.

However, even when we are working with closed basic computable balls, the intersection can always be witnessed
by a special point, because the respective open balls intersect too.

Recall that C denotes the closure of a basic computable open ball C, and recall that

C Ă C Ă Cc,

and, in general, both inclusions can be strict. But these inclusions also guarantee that we can use closures of the
open balls to form covers in Theorem 3.16 and still decide intersection. We can also come up with any combination
of open, closed and closures (e.g., decide whether Bi X Bj X Bck “ H) for any computable balls in K constructed
in Theorem 3.16.

Definition 3.19. If a computable sequence pKnq of finite 2´n-covers of computable balls satisfies the properties
described in Definition 3.15 then we say that pKnq is a fully X-decidable system of covers of the space. Such a
K is given by a uniformly computable sequence of (finite sets Kn of) indices of radii and special points, and we
can choose whether we want to consider open, closed, or closures of open balls that have these parameters (see
Remark 3.18).

For instance, when we say “Bcpr, qq is in Kn” or “Bpr, qq in Kn”, or the same for Bpr, qq, we really mean that
parameters xr, qy are listed in Kn (where q is given as an index of a computable real).

The following lemma will be useful later.

Lemma 3.20. Let K “
Ť

nKn be a fully X-decidable system of covers of a space M . Then, for every closed ball
Dc in K we can enumerate all basic open B in M such that B XDc ‰ H.
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Proof. Suppose BXDc ‰ H and let x be any (not necessarily special) point in the intersection. Suppose the radius
of B is δ, and let c1 be the centre of B, and r1 its radius. For some positive δ, we have

dpx, c1q “ r1 ´ δ.

Fix n so that 2´n ă δ{2, and consider the finite set Kn. Since Kn is a (closed or open) cover of the whole space,
there must exist some C P Kn such that x P C. Since x P Dc, it must be that

C XDc ‰ H,

and (by our assumption) this can be recognised computably. We claim that for this C, we have that C is formally
included into B.

Indeed, if c2 is the centre of C and r2 is it radius, then we have that dpx, c2q ă r2 ď 2´n ă δ{2, and therefore

dpc1, c2q ` r2 ď dpx, c1q ` dpx, c2q ` δ{2 ă r1 ´ δ ` δ{2` δ{2 “ r1,

which is the same as to say that C is formally included into B.
It follows that B intersects Dc if, and only if, there is an n ą 0 and a ball C P Kn such that C XDc ‰ H and C

is formally included into B. This is a Σ0
1-property. �

3.4. Isometry-invariance of computable compactness. Iljazovič [67] discovered that the notion of computable
compactness admits another characterization that entails that it is isometry-invariant, i.e., every isometrically
isomorphic computable metrization of the space must also be computably compact. This property has recently
been independently rediscovered in [123].

Theorem 3.21. Suppose M is computably compact and N is a computably metrized space isometrically isomorphic
to M . Then N is computably compact as well.

We claim that the theorem can be derived as a consequence of condition pvq in Theorem 1.1:

There is a computable sequence of computable reals pεnqnPω such that εn ď 2´n and so that, for
every n, we can compute the maximal number of points in the space that are at least εn-far from
each other (in the sense of strict inequality).

We first prove Theorem 3.21 assuming that piq Ø pvq in Theorem 1.1, and then we prove piq Ø pvq.

Proof of Theorem 3.21. Assume that, in M , we can compute pεnqnPω and the maximal number Dpnq corresponding
to εn. In N , search for Dpnq-many spacial points that are εn-far from each other. The εn-balls around these points
will give a finite cover of the space. We can slightly enlarge the radii to make sure that they are rational. �

Proof of piq Ø pvq in Theorem 1.1. The proof of Theorem 3.21 above essentially shows that pvq implies piq. Thus,
we assume computable compactness and prove pvq.

The reader perhaps wonders why we did not use εn “ 2´n in pvq. To clarify this subtlety, we shall attempt to
show that, in a computably compact M , the following invariant DpM, 2´nq is uniformly computable in n:

DpM, 2´nq is the maximal number of points of the space M that are ą 2´n-apart from one another.

The issue that we will face will clarify why we need to adjust our εn’s. Also, it will be easy to modify this naive
attempt and obtain a procedure that actually works for some εn ď 2´n.

We describe our attempt. Given x̄ PMm, we can calculate infiăjďm dpxi, xjq and then

sup
x̄PMm

inf
iăjďm

dpxi, xjq.

If this supremum is ă 2´n, then m is too large, i.e., m ą DpM, 2´nq. Note that this is a c.e. event. On the other
hand, by searching through all possible m-tuples we can bound the maximal number of such points from below.
The issue is that the supremum could be exactly equal to 2´n, so we may end up with a pair of integers n0, n0 ` 1
each of which can potentially be equal to the invariant DpM, 2´nq; here n0 ` 1 corresponds to the situation when
there are n0 ` 1 points at distance exactly 2´n from one another.

In this case we shall wait long enough so that any pn0`2q-tuple has at least one pair of points at distance ą 2´n,
and for some small ξn ă 2´n´1 there exist n0 ` 1 points at distance 2´n ´ ξn. Then

DpM, 2´n ´ ξnq “ n0 ` 1.
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This allows us to compute a computable sequence of rationals

εn “ 2´n ´ ξn,

where clearly εn ď 2´n, such that DpM, εnq is a computable sequence of natural numbers. Indeed, for this εn there
is a n0 ` 1 tuple ȳn of points that satisfy the desired properties. We can assume these points are special. �

It follows from the proof above that these εn can be chosen rational and indeed, computed in the strong sense
(as fractions). Note that we also obtain:

Corollary 3.22. Suppose that M and N are isometrically isomorphic computable metrized spaces. Then both admit
the same modulus of compactness up to Turing degree.

3.5. Calculus of effectively closed sets. In this subsection we present some well-known basic results about
effectively closed sets, and we also derive several pleasant consequences of these results that will be important in
the sequel. The notion of an effectively closed set is a generalisation of a Π0

1 class, and it is especially useful if the
ambient space is effective compact. We will need some basic facts of this generalised theory, but of course a lot
more is known; see the very recent large survey [69].

Definition 3.23. A closed subset C of a computably metrized M is effectively closed if MzC is c.e. open.

It should be clear that effectively closed sets are closed under finite unions and arbitrary computable intersections
(meaning that the effective procedures listing the complements must be uniformly indexed). The following lemma
is also an immediate consequence of the definition:

Lemma 3.24 (Folklore). Suppose f : AÑ B is a computable surjection, and assume C is effectively closed in B.
Then f´1pCq is effectively closed (in A).

Proof. This is because Azf´1pCq “ f´1pBzCq is c.e. open. To see why, recall that f is computable if, and only if, it
is effectively open. If a basic open D is enumerated into BzC, then we will list all pairs pD1, D2q in the continuous
name of f such that D2 is formally included in D. Since every x P D is contained in such a D2 (by surjectivity),
this will give an enumeration of f´1pDq. Putting these enumerations together for all such D in BzC, we will list
its preimage. �

Another observation is an easy generalization of a well-known fact about Π0
1 classes.

Fact 3.25 (Folklore). Suppose P “ tpu is effectively closed singleton in a computably compact space X. Then the
only point p of P is (uniformly) computable10.

(This can of course be pushed to show that isolated points can also be computed, though non-uniformly.)

Proof. Given n, wait for a basic open ball D of radius 2´n and finitely many basic open B1, . . . , Bn P XzP such
that D,B1, . . . , Bn cover X. Then p P D. �

The fact above admits various generalisations, but we will encounter one such generalisation (specifically, in the
proof of Corollary 4.11). More generally, effectively closed sets, Π0

1-classes, computable functions, and computably
compact spaces are closely technically related. To make this relationship explicit, we need one more definition. As
usual, we identify basic open balls with their indices.

Definition 3.26. A closed subset of a computably metrized M is c.e. if tB : B basic open and BXC ‰ Hu is c.e.

Sets that satisfy the definition above are sometimes called computably overt in the literature. For more about
effectively overt spaces, we cite [21, 34]. The fact below is well-known; we are not sure who was the first to observe
this. We cite, e.g., [21, Corollary 3.14(1)].

Lemma 3.27. A closed subset C of a computably metrized space M is computably enumerable if, and only if, C
possesses a uniformly computable (in M) dense sequence of points.

Note that the dense sequence makes C a computable Polish space under the induced metric.

10As has been pointed out by one of the referees, this seemingly obvious and tame fact is indeed rather useful in many applications

of effective compactness. We will discuss some of these applications in due course.
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Proof of Lemma 3.27. Suppose C possesses such a computable sequence pαiqiPN. Then the density of the sequence
in C implies that Bi X C ‰ H iff Djαj P Bi, which is a uniformly Σ0

1 statement.
Now suppose C is a computably enumerable closed subset of M . Our goal is to construct a uniformly computable

(finite or infinite) sequence of points pαiqiPI that is dense in C. The proof below does not have to be non-uniform,
but for notational convenience we split it into two cases, namely, when C is finite or infinite.

If C is finite, then it clearly contains only computable points. To see why, assume it is not empty (in this case
there is nothing to prove) and let x be any point in C. Take a ball small enough so that txu P B X C. To get
an 2´n-approximation to x, wait for a basic open B1 of radius ă 2´n so that B1 X C ‰ H and additionally B1 is
formally contained in B.

Without loss of generality, we assume C is infinite. We uniformly approximate a computable sequence by stages.
Before we describe stage s, recall that two basic open balls U and W are formally s-disjoint if rpUq ` rpW q ă
dpcntrpUq, cntrpW qq and this can be seen after calculating the radii and the distance with precision 2´s. Then U
and W are formally disjoint if the are formally s-disjoint for some s.

At stage 0, search for a basic open ball B0,0 of radius ă 1 such that B0,0 XC ‰ H. If such a ball is never found
then do nothing. If it is every found, go to the next stage.

At stage s ą 1 first check whether there exists a basic open ball with index ă s which is formally s-disjoint from
B0,s´1, . . . , Bs´1,s´1. If such a basic open B exists, then choose the first fund Bs,s Ďform B and Bi,s Ďform Bi,s´1,
i ă s such that Bj,s XC ‰ H, the Bj,s are pairwise formally disjoint and rpBj,sq ă 2´s, j “ 0, . . . , s. Otherwise, if
no such B exists, fix the first found pairwise formally disjoint B0,s, . . . , Bs,s that intersect C, have radii ă 2´s, and
such that Bi,s Ďform Bi,s´1 for i ă s (note there is no further restriction on Bs,s). This ends the construction.

Let αi be the unique point of the Polish space such that tαiu “
Ş

jěiBi,j . Since the construction is uniform and
the radii of balls are rapidly shrinking, the points αi form a uniformly computable sequence. Since each of the Bi,j
(j “ i, i ` 1, . . .) intersects C and C is closed, each αi P C. It remains to check that pαiqiPN is dense in C. Let

pαiqiPN be the completion of pαiqiPN.

Suppose c P C. We claim that c P pαiqiPN. Assume c R pαiqiPN, and there is a ball U centred in c which is outside

pαiqiPN. There will be a basic open ball B1 Q c of radius at most 2´n and which is formally contained in U with
precision 2´n:

dpcntrpUq, cntrpB1qq ` rpB1q ă rpUq ` 2´n.

Then at every stage s ą n ` 4 the balls Bi,s´1, i “ 0, . . . , s ´ 1 will be formally s-disjoint from B, as will be
readily witnessed by the metric. At some late enough stage s1 we will get a confirmation that B X C ‰ H. There
exist only finitely many basic balls that have their index smaller than the index of B. Therefore, eventually B will
be used to define Bt,t Ďform B, contradicting the assumption that U X pαiqiPN “ H. �

Definition 3.28. A closed subset of a computably metrized M is computable if it c.e. and effectively closed.

As we mentioned immediately after the statement of Lemma 3.27, a c.e. closed subset of a computable metric
space M can be viewed as a computably metrized space under the induced metric. It thus makes sense to ask when
this subspace is computably compact. If M is computably compact, then it is both computable compact subset of
itself and an effectively closed subset of itself. Interestingly, this trivial example is not misleading. The proposition
below is also folklore; see, e.g., [21, Corollary 4.14(1)].

Proposition 3.29. For a closed subset C of a computably compact M , the following are equivalent:
1. C is a computably compact subspace of M ;
2. C is computable.

Before we proceed to the proof, the reader might well wonder what is wrong with the following analog of the
classical argument that closed subsets of compact spaces are compact:

Suppose that C is a effectively closed subset of a computably compact space P , then C is computably compact.
Apply computable compactness we can compute a finite subcover and then attempt to ‘throw away’ C (that can
be listed). One obvious problem with this idea is that we can never be sure whether a basic open ball B (in P )
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intersects C, and thus we can never be sure whether we can keep B in our cover of C. By Lemma 3.27, this is
equivalent to locating a computable dense sequence in C. This problem cannot be circumvented as C might not
contain a computable dense sequence. Indeed, as Kleene showed in the 1950’s there are effectively closed subsets
of 2ω containing no computable points at all. We discuss more about this issue in Section 4. We turn to the proof
of Proposition 3.29.

Proof. Assume (1). It is clear that C is c.e. (by Lemma 3.27). To list its complement, fix x P MzC. Let
δ “ infcPC dpx, cq. Then any δ{4 -cover of C must be formally disjoint from any ball centred in y with dpy, xq ă δ{4.
For every n, fix a finite 2´n-cover K of C. It follows that MzC is equal to the union of the (uniformly) effectively
open sets Un, where

tB : B basic open and B is formally disjoint from every ball in Ku.

It follows that (2) holds.

Now assume (2). C is computably metrized by Lemma 3.27; let pyjq be the computable dense subsequence. Fix
ε “ 2´n. We need to find an ε-cover of C by basic open balls11. Regardless of whether the balls involved are basic
or not, as long as their centres and radii are computable, the relation of formal containment remains c.e.

If a finite collection K of basic open (in C) balls formally contains a cover K1 by basic open (in M) balls, then
clearly K is a cover of C. We claim that this condition is also necessary (for K to cover C).

From the proof of Lemma 3.3 we know that, for a given cover K of C by (basic or not) open balls there is a small
enough ε such that every ε-cover of C will be formally contained in at least one ball of K.

Take δ “ ε{4. Fix a finite δ-cover K1 of C by balls that are centred in special points of M , not C. Every B1 P K1
intersects C at some point x, and by the choice of δ, dpx, cntrpB1qq ` δ ă ε, thus Bpε, xq Ąform B1. By transitivity
of formal inclusion12, we have that B1 must be formally contained in some ball in K.

By computable compactness of M and computability of C, we can produce at least one δ-cover K1 of C by basic
open balls of M , uniformly in δ. (To see why, replace every basic open ball in the c.e open name of MzC by the
effective union of balls of radii at most δ that are formally contained in it. This gives a new c.e. enumeration of the
complement of C but with balls of radii at most δ. Then take the c.e. collection of all basic δ-balls that intersect
C. Together these sets of balls cover M . Initiate the combined enumeration of these two c.e. sets and wait until at
some finite stage we discover that we have a cover of M .)

Since formal inclusion is c.e., this gives a procedure of listing covers of C by basic balls (in C). �

We see that computable compactness and computability of a closed set are very closely related notions. We
have already mentioned above that an effectively closed set does not have to be computable, in general. However,
suppose C is an effectively closed (Π0

1) subset of, say, R3, and suppose further that we know that it is a sphere or
a ball. Is it computably closed? J.Miller [107] used algebraic topology to answer this question in the affirmative
(in fact, in any dimension). The idea is that, roughly, we can non-uniformly localise it to a compact box in Rn
and then use that a computably compact ball will eventually contained in a simplex that “looks like the ball”;
algebraic topology helps to make this formal. The results of Miller have been extended (e.g., to compact manifolds
under some extra conditions) in [23, 66, 68, 70]. But of course, if we are interested in presentations of spaces and
especially up to homeomorphism, then a sphere or a compact surface is clearly homeomorphic to a computably
compact space (e.g., given by a geometric realisation of its triangulation).

In general, there is no good reason why a basic closed ball (or the closure of a basic open ball) in an abstract
Polish space needs to be computable closed; pathological examples similar to Ex. 2.9 can be constructed. Inter-
estingly, it follows that there are always enough closed balls with computable radii that are computable closed as

11Note that yj does not have to be special in M , and thus basic open balls in C do not have to be basic open in M . Nonetheless,

an open ball of M centred in a computable point y and having a computable (more generally, left-c.e.) radius r is effectively open:

Bpy, rq “
ď

tBpx, qq : dpx, yq ` q ă ru,

that is, Bpy, rq it is the union of basic open balls formally contained in it. Note effective openness of Bpy, rq is uniform in y and r.
12This is because dpx, yq ` r2 ă r1 and dpy, zq ` r3 ă r2 (together with the triangle inequality) imply dpx, zq ` r3 ă r1.
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sets, and indeed uniformly so13. More specifically, an immediate consequence of the proposition above is that, in
Theorem 3.16, we can additionally state that the basic closed balls in the covers are computable closed sets:

Proposition 3.30. Suppose K “
Ť

nKn is a fully X-decidable system of covers of a computably metrized M . Then
each computable closed ball Dc in K is a computable closed set (thus, is a computably compact subspace of M), and
this is uniform.

Proof. Lemma 3.20 says that each such Dc is c.e. closed. If x PMzDc, then x inside an open ball C that is formally
disjoint from Dc, and such balls can be computably enumerated14. Thus, the c.e. union of such open balls formally
disjoint from Dc makes up the complement of Dc. �

The fact above will be useful when we talk about the universality of 2ω. More generally, it seems to be useful in
any iterated recursive argument in which a space is eventually replaced by its compact subset, and then a subset
of this subset, etc. The lemma below will also be useful throughout the rest of the paper. It is also well-known; see
[149, Theorem 3.3] and [120, Proposition 5.5].

Lemma 3.31. Suppose f : X Ñ Y is a computable map, and assume X is computably compact. Then fpXq is
c.e. closed (in Y ) and computably compact.

Proof. Let pxiq is a computable dense sequence in X. Then pfpxiqq is dense in fpXq. (Every α “ limj xj for
some subsequence pxjq and, by continuity, fpαq “ limj fpxjq, so fpXq Ď clpfpxiqq. Suppose ξ P clpfpxiqq, say
ξ “ limj fpxjq. By compactness, pxjq has a convergent subsequence pxjkq, so let z “ limk xjk P X be its limit.
Then fpzq “ limk fpxjkq “ limj fpxjq “ ξ.)

Given a cover Bj of fpXq by basic open (in fpXq) balls of radius 2´n centred in fpxjq, calculate the c.e. names
of each Bj in Y and begin enumeration of f´1pCq for each such open basic C; note it could be that some of these
f´1pCq will be undefined. At some stage the preimages must cover the whole X. We can see which Bj included
the basic open (in Y ) balls whose images were sufficient to cover X. This gives a way of producing at least one
2´n-cover of fpXq uniformly in n; now apply Lemma 3.3. �

Combining Lemma 3.31 with Proposition 3.29, we get:

Corollary 3.32. Suppose f : X Ñ Y is computable and X is computably compact.

‚ If f is surjective then Y “ fpXq must be computably compact.
‚ If Y is computably compact then fpXq is a computable closed subset of Y .

In computable algebra, the inverse of a computable bijective map is clearly computable as well. In contrast,
there is no reason why the inverse of a computable bijection between spaces has to be computable even if its inverse
is continuous (we mention here that this is actually true for isometric maps). The theorem below is elementary and
is folklore (e.g., [18, Corollary 6.7]), but it is rather important because it tells us that effectively continuous maps
are the right morphisms in the category of computably compact spaces.

Theorem 3.33. Suppose f : X Ñ Y is a computable bijection between computably metrized spaces, and assume X
is computably compact. Then Y is also computably compact, and f´1 is computable.

It is easy to see that f is indeed a homeomorphism15. Our task is to produce a more subtle computable version
of this observation.

Proof. computable compactness of Y follows from the corollary above. Given a (not necessarily) special point y P Y ,
act computably relative to y. The set Y ztyu is effectively open relative to y. Indeed, for every z ‰ y there must
exist formally disjoint basic open B Q y and D Q z. Thus, it is sufficient to list, effectively in y, all basic open balls
formally disjoint from some ball in the name of y.

13Issues of this sort are investigated in detail in [122].
14To see why, let c be the centre of Dc and r its radius, and assume dpc, xq “ r`δ. There must be a special xi such that dpxi, xq ă δ{2.

Take the basic open ball C “ Bpxi, δ{2q. Then the distance between their centres is dpc, αq ą r ` δ ´ dpxi, xq ą r ` δ ´ δ{2 “ r ` δ{2,

which is the sum of their raddii. So the balls are formally disjoint.
15Fix any for every open Z in X, its complement is closed and thus is compact. Since the continuous image of a compact set is

compact and therefore closed, fpXzZq is closed. Since f is a bijection, fpXzZq “ fpXqzfpZq “ Y zfpZq, which makes fpZq open.
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Since f is computable, f´1pY ztyuq is effectively open relative to y. Since f is bijective, we have that

Xzf´1pY ztyuq “ tf´1pyqu.

To list a basic open D into the name of x “ f´1pyq, wait for finitely many basic open balls B1, . . . , Bk in XzC0 “

f´1pY ztyuq such that D,B1, . . . , Bk cover X. Note that, for each D Q x, such a finite collection must exist by
compactness. Since X is computably compact, the process described above is uniformly computable in y, and thus
f´1 is computable. �

One useful consequence says that partial inverses also exist under some conditions.

Corollary 3.34. Suppose f : C Ñ M is a computable injective embedding of a computably compact C into a
computably compact M . Then f´1 is computable on fpCq (when viewed as a map between the induced computable
structure on fpCq and C).

Proof. LetN be the computably compact induced computable metrization of fpCq that exists because of Lemma 3.31
and which is furthermore computably compact by Corollary 3.32 and Proposition 3.29. The map f : C Ñ fpCq can
be viewed as a computable map from C to the induced computable metrication on C, as follows. When pB,Cq is
enumerated in the name of f , find a basic open ball D in fpCq that formally contains C. The basic open balls in
C are balls with centres that are special in fpCq but are computable in M , but formal containment is still c.e. So
we enumerate pB,Dq into the new name of f .

Another way to view this is to replace an ε-approximation xi P M to fpyq by an 2ε-approximation ci P C to
fpyq; it must exist.

To compute f´1, apply the previous theorem. �

We also include another nice fact connecting computable compactness with computable closed sets proved by
Brattka [17]. The result will be used later (in Corollary 4.3) to clarify one of the well-known applications of
computable compactness.

Theorem 3.35. Let X and Y be computably compact spaces and f : X Ñ Y . Then f is computable if and only if
graphpfq is effectively closed and if and only if graphpfq is computable closed.

Proof. We know that X ˆ Y is computably compact. Suppose f is computable. Then fpxq “ y is clearly a Π0
1

property.
Now assume graphpfq is effectively closed. The subspace txuˆY is effectively closed relative to x, thus graphpfqX

txuˆY is an effectively closed singleton relative to x. By Fact 3.25 relativized to x, given x we can compute px, fpxqq
and, thus fpxq.

It remains to note that graphpfq is actually c.e. closed for a computable f , because if a basic open B (in X ˆY )
intersects the graph then we will eventually recognise it. �

We did not really have to assume that Y is computably compact; the proof would still work. But of course, by
Theorem 3.33 the space fpXq has to be computably compact, so we can always replace Y with fpXq.

3.6. Computable universality of the Hilbert cube. We now discuss another way of looking at computably
compact spaces, using the Hilbert cube H. In H “ r0, 1sω, we define the distance as dppxiq, pyiqq “

ř

i 2´idpxi, yiq.
A canonical dense sequence is given by rational sequences that are eventually zero.

The Hilbert cube is a universal space for computably compact spaces. To see this, recall that all our spaces are
complete with respect to their metric. We embed a given compact computably metrized space M into the Hilbert
cube, as follows. Assume the diameter of M is at most one16. Map a point x PM to the sequence pdpx, xiqqiPN in
H “ r0, 1sω.

It is easy to see that this embedding is computable and its image is c.e. closed. We will see that the image does
not have to be effectively closed, and hence the image does not have to be computable by Proposition 3.29. This
embedding gives yet another characterisation of computable compactness, but this time up to homeomorphism:

16If it is ą 1, then replace the metric with the new metric
1

n
dp¨, ¨q, where n is a large enough positive integer. You can also redefine

the metric to be equal to one on a pair x and y if the original distance between x and y is greater than 1. The latter method is computably

uniform and gives a metric computably compatible with the original one, i.e., the identity map is a computable homeomorphism between

the old metrized space and the newly metrized one.



26 RODNEY G. DOWNEY AND ALEXANDER G. MELNIKOV

Theorem 3.36. For a computably metrized compact M , the following are equivalent.

(1) M is homeomorphic to a computably compact space;
(2) M is homeomorphic to a computable closed subset of H.

Proof. Note that H being a (computable) product of computably compact spaces is itself computably compact by
Proposition 3.5.

If the space has a computably compact presentation, then its image under the canonical embedding will also
be computably compact (Proposition 3.29, Lemma 3.31), and thus the image will be computable closed by Corol-
lary 3.31. On the other hand, if a closed subset of H homeomorphic to the space is a computable closed subset,
then it gives a computably compact homeomorphic presentation of the space by Proposition 3.29 because H, being
a (computable) product of computably compact spaces, is itself computably compact. �

Remark 3.37. We note that, by Theorem 3.33, if (the fixed computable complete metrization of) M is computably
compact, then it is computably homeomorphic to fpMq, meaning that both f and f´1 (when restricted to M) have
to be computable; see Corollary 3.34.

In other words, we can always effectively reduce the study of computably compact spaces up to homeomorphism
to the investigation of computable closed subsets of H. One pleasant and well-known (e.g., [21, Corollary 3.14])
characterization of computably closed sets in H is given below.

Lemma 3.38. An closed subset C of H is computable if, and only if, Dpxq “ dpx,Cq is a computable function.

Proof. We can list the basic open balls Bpxi, rq for which Dpxiq ą r, and they must cover MzC. But we can also
list the balls Bpxj , qq such that Dpxiq ă r, and these are exactly the basic open balls that intersect C. �

Note that we can uniformly list r such that Dpxiq ą r, i.e. D is left-c.e. (lower semi-computable) iff C is
effectively closed, and we can uniformly list r such that Dpxiq ă r, i.e., D is right-c.e. (upper semi-computable) iff
C is c.e. closed. We omit details. We also note that there is really nothing special about the choice of H in the
lemma above; it could as well be some other computably compact space.

The closed subsets of H give us yet another way to look at computably compact spaces. Recall that compact
spaces correspond to c.e. closed subsets of H, and computably compact ones to computable closed subsets of H.
Note that the space of all compact (or closed) subsets CpHq of H is a Polish metric space in which the metric is
given by the Hausdorff distance and the countable dense set is given by finite discrete subsets of special points of
H.

Fact 3.39. [Folklore] For a c.e. closed subset C of H, C is computable iff C is a computable point in CpHq.

Proof. If C is computable then it is computably compact by Proposition 3.29. If pBiq is a finite 2´n cover of C and
xi is a special point in Bi, then every point of C is at most 2´n`1-far from one of the xi.

On the other hand, assume c P Bi X C; indeed c is contained in Bi together with an ε-ball. Thus, there is ε so
small that any D that is ε-close to C in CpHq contains a special point in Bi. This will be eventually recognised,
and thus such Bi can be computably enumerated, making C c.e. closed. �

Of course, there is again nothing really special about H is the fact and the remark above, and it can be replaced
by some other computably compact space if necessary. For instance, one could look at computability of graphs of
functions f : r0, 1s Ñ r0, 1s and see that f is computable iff it can be approximated by piecewise linear functions iff
the graph is a computable closed set (cf. Theorem 3.35). Generalizations of this fact can be found in [17].

3.7. Computable universality of Cantor space. We assume that our spaces are non-empty Polish ones, and
so that our metrics are complete.

We identify 2ω with its standard computable presentation of Cantor space by infinite strings under the usual
ultrametric. It is well-known that every compact metric space is a homeomorphic image of 2ω; this is the classi-
cal Hausdorff-Alexandroff theorem. The following computable version of this fact fully characterises computable
compactness.

Theorem 3.40 ([18]). A computably metrized (non-empty) compact M is computably compact if, and only if, there
is a computable continuous surjective f : 2ω ÑM .
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If M is a computable image of 2ω then it has to be computably compact by Theorem 3.33. To this end, we
therefore assume M is computably compact. We give two proofs of the harder direction of the theorem. The first
proof exploits the strongest so far combinatorial characterisation of computable compactness given in Subsection 3.3
(specifically, Theorem 3.16) and basically follows the standard textbook argument pretty closely. The second proof
is more indirect. It handles the combinatorics differently using a space-filling curve and a technical Lemma 3.41
that is of independent interest.

The first proof. Fix a fully X-decidable system of covers pKnq of M that exists by Theorem 3.3. By Remark 3.18,
we can use finite basic computable closed covers throughout.

We follow the standard classical topological proof very closely, and we use X-decidability of
Ť

nKn throughout.
Suppose K0 “ tD1, . . . Dku, and fix Di P K0. Then K1 contains finitely many balls that cover Di, denote them
Di,j . These can be computed and indeed, these Di,j are exactly the closed balls in K1 that intersect Di, because

the rest are disjoint from it. Define D̂xi,jy “ Di XDi,j .

We can computably proceed by recursion and define D̂σ, which is a finite non-empty intersection of basic closed
balls, where σ ranges over a computably branching tree T with no dead ends (observe that σ ‰ τ does not necessarily

imply that D̂σ ‰ D̂τ ). Equip the set of all infinite paths through rT s with the standard (longest common prefix)
ultrametric; then rT s is computably metrized space in which the dense sequence is given by σ1ω, σ P T . We identify
σ with the basic clopen ball of rT s consisting of all strings with prefix σ.

Also recall that, by the construction of pKnq, without loss of generality we can assume that basic open balls
intersect whenever the respective closed balls intersect, and thus we can always calculate a special point xσ in each
D̂σ (see Remark 3.18). We could view xσ to be an ε-approximation to any path in rT s extending σ, where ε “ 2´n`1

for the largest n such that a ball from Kn is mentioned in D̂σ. So we define fpσq “ xσ with precision 2´n`1.

For an infinite path ξ P rT s, D̂ξæn Ď D̂ξæm whenever m ď n are prefixes of ξ, and since the diameter of D̂ξæn is
at most 2´n`1 and it is non-empty, we conclude that

č

n

D̂ξæn “ tαu

for some α P M . So we set fpξq “ α P M . It is routine to show that the procedure above defines a computable
and surjective f : rT s Ñ M . It is not difficult to see that rT s is a computable image of 2ω; as we promised in the
preliminaries, we include a proof of this well-known fact.

Claim 1 (Folklore). (1) If T is a computable, computably branching tree with no dead ends then there is a
computable surjective map from 2ω onto rT s.

(2) For every computable, non-empty Π0
1 class C there is a surjective computable map from 2ω onto C.

Proof. We first reduce (2) to (1). Realise C as the set of (infinite) paths through a computably branching tree
T without terminal nodes, as follows. Computably rearrange T into a new tree Γ such that rT s is computably
homeomorphic to rΓs and Γ is (at most) binary. To do so, split a node only if both basic clopen sets associated
with the two successors of the node in T contain elements of C. (Note that, given a basic clopen set, we can decide
whether it intersects C.) Neither Γ nor T has terminal nodes, and there is a computable homeomorphism between
C and rΓs.

For (1), we can also reduce the case of an arbitrary computably branching tree to the case when the tree is at
most binary. If a node splits into n successors, where n ą 2, replace it with a gadget in which every node has
at most two successors. This gives a computable and (at most) binary tree Γ with no dead ends such that rΓs is
computably homeomorphic to rT s.

Thus, it remains to prove (1) for such a Γ. Define the map g from 2ω onto rΓs by recursion. We define the name
of g by mapping clopen sets (on)to clopen sets. We also identify finite strings with the respective clopen sets in
both trees.

At a stage s, assume g has already been declared on paths/basic clopen sets of length s-1. Suppose gpσq “ τ P Γ
such that |τ | “ |σ| “ n´ 1. If τ0 and τ1 both exist in Γ, then set gpσ1q “ τ1 and gpσ0q “ τ0. Otherwise, without
loss of generality, only τ0 exists. In this case, set gpσiq “ τ1 for i “ 0, 1. Do that for every string of length n, and
then go to the next stage. The map is clearly computable and surjective, and thus induces a computable surjective
map of 2ω onto C. �
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In combination with f defined above, this gives a computable surjection of 2ω onto M . �

The second proof. Recall that we assumed that M is computably compact. Without loss of generality, we can
assume it is a computable closed subset of H; see Remark 3.37. Recall that there is a computable map from 2ω

onto r0, 1s; for instance, map every infinite sequence σ in 2ω into the binary expansion
ř

iPω 2´i´1σpiq. Also, the
famous Hilbert’s curve computably maps r0, 1s onto H “ r0, 1sω; see, e.g., [131] for a primitive recursive version
due to Schoenberg. (See [5] for a detailed explanation of computability of this particular construction. We also cite
[32] for more about computability of space-filling curves.) This gives a computable surjective f : 2ω Ñ H Ě M ,
and we know from Lemma 3.24 that f´1pMq is a Π0

1-class which, unfortunately, does not have to be computable in
general. Recall that, in the beginning of the subsection, we assumed that M (thus, P ) is non-empty. If it were a
computable Π0

1 class, then we would be able to computably surjectively map 2ω onto it by Claim 1. But first, we
must be in the position to apply the claim. The lemma below helps.

Lemma 3.41. Suppose f : 2ω Ñ K is computable, surjective, and K is computably compact. If P Ď K is (non-

empty) computable closed, then there is a computable f̃ : 2ω Ñ K and a computable Π0
1-class C Ď 2ω such that

f̃pCq “ P .

Furthermore, f̃ can be chosen so that f̃ agrees with f on f´1pP q and f̃p2ωzCq Ď KzP ; we will also include the

verification of these properties in our proof below. Also, we will see that the simultaneous construction of f̃ and C
is uniform. The proof below is somewhat informal: after all, we have already proven the theorem. We hope that
the elementary formal details that are missing should be easy to reconstruct.

Proof. This is done as follows. We use a c.e. formal open name of f and computable compactness of K and
computability of P throughout. In particular, we will use that f is uniformly computably continuous. This is done
by listing 2´n-covers Kn of K and using the formal name of f to find a cover S of 2ω such that, for every σ P S
there is a D P Kn so that pσ,Dq is in the name.

Since P is computable and thus is a computably compact subspace (see Proposition 3.29), we can assume that
we know which open sets in Kn intersect P and which do not. To see why, create two lists: one is the list of all
finite covers of P , and the second list includes finite collections of basic open balls in K that are formally disjoint
from some cover from the first list. For every ε, there is a finite ε-cover K 1 YK2 of K, where K 1 is from the first
list and K2 is from the second list17. The finite set of balls K2 can be empty, but K 1 is never empty. If ε “ 2´n

then we can set Kn “ K 1 YK2.

The construction of C and f̃ proceeds as follows.
Suppose at a stage we see that, for some basic open set σ in 2ω, fpσq Ď B for some ε-ball B such that BXP “ H.

Then declare σ outside of the closed set C that we build, and let (the name of) f̃ copy (the name of) f .
Now suppose, using the same notation and premises, B X P ‰ H. It still possible that fpσq X P “ H (because

all we know is that fpσq Ď B, so it can miss P ), but we do not know that yet. In this case declare that σ intersects
C and proceed to the next stage. (As we made sure above, for any such B and σ that we use at the stage we can
decide whether B intersects P or not.)

At the next stage we will find a refined cover of K and 2ω and, in particular, of σ. If at least one such σ1 refining
(extending) σ has the property that fpσ1q Ă B1, where B1 X P ‰ H (here B1 is taken from the more refined cover

of K and B1) then we let (the name of) f̃ copy (the name of) f .
Of course, it is entirely possible that we discover that for all of the finitely many extensions σ1 of σ, the respective

ball B1 (such that fpσ1q Ď B1) does not intersect P . However, we have already declared that σ X C ‰ H.
In this case, go to the previous stage and find a computable point x P B X P (that can be uniformly extracted

from the proof of Lemma 3.27) and declare

f̃pξq “ x

17Every point in KzP is contained in a basic ball formally disjoint from some finite cover of P by basic open balls. If we take the

collection of all such balls around all such x P KzP of radius at most ε, then, together with any (finite) cover of P , they must cover the
whole space K. Thus, there is a finite subcover in which we can keep all the finitely many ε-balls that cover P and intersect P . By

our assumption, K is computably compact / computable closed, and thus all these conditions are c.e.; we just wait until such a finite

ε-cover of K is found.
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for every ξ P B. In this case we also say that the clopen ball B is declared artificially in C. (This is also the only

case when f̃ does not agree with f ; we set f and f̃ equal in all other cases.)

By construction, f̃ is well-defined on all of 2ω and is computable. We need to argue that it additionally has the
properties claimed in the statement of the lemma.

If ξ P B then clearly f̃pξq P P . If ξ P f´1pP q then at no stage it can be declared in a ball which is out or

artificially in C, so it must be that f̃ and f agree on ξ.
If ξ is such that it is never in any ball that is artificially in or out, it means that for every 2´n there must be a

point αn P P that is 2´n-close to f̃pξq, and we see that ξ̃ “ limn αn P P because P is compact and thus closed.

Finally, fp2ωzCq Ď KzP follows from the fact that if a basic clopen σ is declared out of C, we let f̃ follow f in
its definition within σ. �

It follows that M is a computable surjective image of a computable Π0
1-class. It remains to map 2ω to such class

surjectively using Claim 1. This finishes the second proof. �

Note that, in the second proof, the combinatorics is handled using Lemma 3.41 rather than using X-decidable
covers; we did not need them here.

4. Applications

4.1. A few elementary applications of Π0
1-classes. In this subsection we briefly discuss several applications of

effectively closed sets and Π0
1 classes in classical computable analysis. Most of these applications are well-known and

are not difficult. However, they serve as a good illustration of the convenience of the techniques we have described
in the previous sections. Indeed, in each case we can come up with a brute-force direct proof which would however
be much less pleasant and often would give a less general result too.

Consider a computable function f : r0, 1s Ñ R. Then the set of zeroes Zf “ tx P r0, 1s : fpxq “ 0u is effectively
closed in r0, 1s. Following result shows that any Π0

1 class can be ‘realized’ as the set of zeros of a computable
function. This allows for simple applications of Π0

1 classes in real analysis.

Theorem 4.1 (Nerode and Hwang [114]). Given a Π0
1 class C (C is thought of a subset of the Cantor set) there

is a computable function f : r0, 1s Ñ R whose zeroes Zf “ tx : fpxq “ 0u exactly the members of C.

Sketch. Define a computable function by stages on the Cantor set (linear elsewhere) so that, while an interval is
not yet declared out of C, f keeps getting closer to 0, say, from below. If the interval is declared out, freeze the
function at this interval and, thus, keep it away from zero. It shall approach zero but only at points that correspond
to paths in C. �

Ignoring the Π0
1 coding, this method of diagonalization sketched above goes back to Specker [139] and is a

mainstay of Aberth [1], and arguably has roots in the work of Bishop [11]. We also cite [18, Corollary 3.14] for a
more general version of Theorem 4.1.

Here are well-known (cf. [18, Theorem 11.8.3, Corollary 11.8.4]) easy applications:

Corollary 4.2. For a function f : r0, 1s Ñ R, let Zf “ tx : fpxq “ 0u denote the set of its zeros.

(1) There is a computable function f : r0, 1s Ñ R with uncountably many zeroes and no computable zeroes.
(2) If f : r0, 1s Ñ R is computable and Zf ‰ H, then then Zf contains a low point.
(3) If Zf ‰ H is finite then all of its members are computable.
(4) If Zf is infinite and countable, then it contains infinitely many computable points.

Proof. (1) Fix an uncountable Π0
1-class P without computable points and the apply Theorem 4.1; for example,

some Π0
1 class consisting of only Martin-Löf random reals (e.g., Downey-Hirschfeldt [36]).

(2) By Theorem 3.40, there is a computable surjection g : 2ω Ñ r0, 1s, and by Lemma 3.41 the pre-image of the
effectively closed X “ f´1Zf is also effectively closed in 2ω, that is, it is a Π0

1 class. Using this argument, we easily
see that if Zf is nonempty then it has a low point, by the Low Basis Theorem.

(3) This is because isolated members of effectively closed sets are computable.

(4) If Zf is infinite and countable, and thus it has no perfect kernel. In particular, there must be infinitely many
isolated points; apply (3). �
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The elementary corollary below entails that the intersection of two computable closed sets is not computable in
general. This unfortunate property of computable closed sets is well-known. The issue is that, although we can list
balls that intersect both sets, some balls like that can have no points from the intersection of the closed sets.

To see why the corollary implies this counter-intuitive property of closed sets, note that every non-empty com-
putable closed set has at least one computable point (since it has to be effectively overt).

Corollary 4.3. There exist two computable compact subsets of the unit square r0, 1s2 that intersect but have no
computable points in the intersection.

Proof. In view of Theorem 3.35, it is sufficient to take C1 “ graphpfq for f in (2) of the theorem above, and
C2 “ r0, 1s (the “x-axis”) which is clearly computable too. �

Another application of Π0
1-classes, similar technically to (1) of Theorem 4.2 above, it is concerned with Markov

computability. As mentioned in the introduction, the original definition of computable function used by Turing in
[144], was that f is computable if there is a Turing operator taking any computable index of a computable real ξ
to some index of the computable real fpξq. Note we could define this notion of computability for a function that
is not even defined on non-computable reals, let alone continuity. It is of course much more interesting to have a
continuous counter-example.

Theorem 4.4 (Folklore; see Remark 4.5). There is a continuous, Markov computable f : r0, 1s Ñ R such that
supxPr0,1s fpxq is not computable and, thus, f is not computable (by, e.g., (1) of Proposition 3.5).

The function constructed below, when viewed as a function on computable reals only, has a unique continuous
extension on the whole interval r0, 1s that cannot be (uniformly, type II, Kleene) computable. Thus, another way
to state the theorem is that there is a Markov computable function (which, by definition, can be merely defined
only for computable reals) that has a continuous extension on r0, 1s but has no computable continuous extension on
r0, 1s.

Sketch. This is somewhat similar to the proof of Theorem 4.2(1). Fix a Π0
1 class without computable members and

define f on the Cantor set (and linearly elsewhere), but this time make its value approach a left-c.e. non-computable
real α. Note that, if a point x is computable, then it has to be either on a segment of the Cantor set that was
declared out at some stage, or it is on a linear segment connecting two such points that have been declared out.
Observe also that each linear segment connects computable points. In either case, we can wait for the point to
be listed in the effectively open complement of the homeomorphic image of the Π0

1 class, go to the stage of the
construction where that happened, and compute the index of the image. �

Remark 4.5. The first example of a Markov computable function not extendible to a continuous computable one
was provided by Aberth; see [1, Theorem 7.3]. We are not sure who was the first to construct such an example
with domain restricted to r0, 1s; this seems to be folklore. The history according to Aberth is in the back of his
book [1, pp. 178-179)]. Zaslavskii [151] was certainly among the first to study various basic properties of Markov
computable functions. Similar ideas and constructions are routinely used in reverse mathematics. For example, see
[136, Theorem IV.2.3(2)], which can be viewed as a slight modification of the construction found in Specker [139].
Specker used a Π0

1 class with no computable members to construct a Markov computable function that approaches
a computable real from below but does not attain the supremum at any computable point. Simpson uses the same
idea to (essentially) construct an example of a Markov computable function on r0, 1s that is not even bounded, but
the key idea remains the same. We simply slightly modify this construction and make the supremum approach a
left-c.e. non-computable real instead of driving it to 8 or to a computable value; the rest remains the same.

Another more recent application of Π0
1 classes in computable analysis is by Barrett, Downey and Greenberg [6],

and concerns Cousin’s Lemma. This is a core lemma in the theory of the Denjoy integral. Recall that a gauge is
a function δ : r0, 1s Ñ R`. A tagged partition is a partition 0 “ a1 ă a2 ă . . . an “ 1 together with a sequence
zi P pai, ai`1q. For a gauge δ we say that a tagged partition is δ-fine iff for all i, rai, ai`1s Ă pzi´ δpziq, zi` δpziqqq.
Cousin’s Lemma states that for any gauge δ, there is a δ-fine partition. Using similar codings to those of Theorem
4.2, we have the following theorem.

Theorem 4.6 (Barrett, Downey, and Greenberg [6]). There is a computable gauge δ with no computable δ-fine
partition.
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Actually this was stated in [6] as “RCA0 proves that ‘Cousin’s Lemma for continuous functions’ is equivalent
to WKL0.” Many results in Reverse Mathematics concerning WKL0 correlate to coding Π0

1 classes. (See Simpson
[136].) In passing we remark that in [6], the authors looked also at Borel gauges δ. We say that f is effectively Baire
0 if it is computable, and effectively Baire n` 1, if it is the pointwise limit of a computable collection of effectively
Baire n functions. In [6] it is shown that if α is a computable ordinal, then there is a effective Baire 2 function f
such that any δ-fine partition computes Hpαq.

4.2. The space of isometries. An isometry is a metric-preserving map. It is clearly continuous. Note that an
isometry is always injective, and if f is surjective then we say that it is an isometric isomorphism. Using a brute-
force search, we can easily show that the inverse of a computable isometric isomorphism is always a computable
map even if the spaces are not computably compact. In particular, we do not need to refer to Theorem 3.33 to
compute the inverse of an isometric isomorphism.

Remark 4.7. However, we can argue that its proof can be used to find a more satisfying way to compute it. For
instance, we might be able to argue that a primitive recursive procedure might be possible under the right choice of
definitions. The subject of primitive recursive or “punctual” analysis (see [7, 39]) is largely unexplored. Moreover,
connections between polynomial time analysis (Ko and Friedman [84], Ko [83]) and compactness also remain to be
analysed.

The following result was stated in [103] without proof. As correctly noted in [46] the space of isometries between
any computable Polish spaces can be viewed as a Π0

1-class in Baire space, but since we are only interested in compact
spaces and classes we shall not explain this. The details can be found in [45].

Theorem 4.8 (Melnikov and Nies). Suppose X is computably compact and Y is computably metrized and is
isometrically isomorphic to X. Under an appropriate coding, the collection of all isometric isomorphisms IsopX,Y q
can be viewed as a Π0

1-class18.

Proof. Unfortunately, the space CpX,Y q of all continuous maps from X to Y does not have to be compact.
Nonetheless, there are still ways to appeal to the theory of effectively closed and computably compact sets. But it
seems easier to just do the coding explicitly.

Recall that an ε-isometry is a function f such that |dpx, yq ´ dpfpxq, fpyqq| ď ε, where ε ą 0 and x, y range
over the space. By Theorem 3.21, Y has to be computably compact as well. Let h be a computable compactness
modulus of Y as defined in Definition 2.7. The idea is that we have at most hpnq-many essential refinements of a
given partial 2´n`1-isometry from X to Y since any other choice will be within a 2´n-error. We will also use the
fact that every isometric embedding X in Y has to be onto, by compactness, and because X is isometric to Y .
Suppose the special points of Y are given by the sequence priqiPN, and let ppiqiPN be the dense computable sequence
in X. We define a computably bounded tree B Ď ωăω.

Definition 4.9 (The definition of the tree). The n-th level of B is given by Gödel numbers of (some) tuples from

tr0, . . . , rhpnqu
n

that satisfy the Π0
1 condition

|dY pri, rkq ´ dXppi, pkq| ď 2´n`1

for each i ă k ă n. (Recall h is a computable compactness modulus for Y .)

We view these tuples r “ xr0, . . . , rn´1y as possible isometric images of xp0, . . . , pn´1y, up to an error of 2´n`1.
Thus, we require the Π0

1 condition that |dY pri, rkq ´ dXppi, pkq| ď 2´n`1 for each i ă k ă n. For a tuple u at level
n and a tuple v at level n ` 1, we posit as a further Π0

1 condition that v is a child of u if dpui, viq ď 2´n for each
i ă n. We let B consist of all strings σ such that for each n ă |σ|, σpnq is on level n, and if n ą 0 then σpnq is a

child of σpn´ 1q. Then B is Π0
1; furthermore, clearly there is a function ĥ ďT h that bounds any f P rBs.

18More formally, IsopX,Y q admits a natural representation as a Π0
1 class rBs in the sense that there is a Turing functional turning

infinite paths through B into isometries from X to Y , and so that every member IsopX,Y q has a code in rBs.



32 RODNEY G. DOWNEY AND ALEXANDER G. MELNIKOV

We claim that rBs codes IsopX,Y q, in the sense that there is a map from rBs onto IsopX,Y q. Furthermore, we
claim that the map is computable in the sense that there is a computable functional that turns any infinite path
through B into an isometry from X to Y .

This is verified below.

Suppose there is an isometric embedding Θ : X Ñ Y . Then let πpnq be a tuple of special points on level n that
is at distance less than 2´n from xΘpp0q, . . . ,Θppn´1qy. Then π P rBs, and using π we can effectively reconstruct
Θ.

Now suppose f P rBs. We claim that f uniformly computes an isometric embedding Θf : X Ñ Y . For each
i, we have a Cauchy sequence sin “ fpnqi (where n ą i). Thus f uniformly computes the function Θf given by
Θf piq “ limnąi fpnqi. For each i ă k ă n we have

|dY ps
i
n, s

k
nq ´ dXppi, pkq| ď 2´n`1.

Thus, Θf is an isometric embedding. Note that this is all uniformly effective. �

We can now appeal to facts about Π0
1 classes.

Corollary 4.10. For a computably compact space X, if Y –iso X then there is a low isometric isomorphism
witnessing this.

Using different methods, Iljazović [67] proved a special case of the next corollary for the case when AutisopMq is
finite.

Corollary 4.11. Suppose a computably compact X has only at most countably many self-isometries. If Y –iso X
then there is a computable isometric isomorphism witnessing this.

Proof. This follows from the fact that IsopX,Y q must contain an isolated point. To see why, fix an arbitrary
ψ : X Ñ Y . Then every isometry φ from X to Y gives an automorphism ψ´1φψ of X, and since there are only
countably many isometric isomorphisms, there could be only countably many members in IsopX,Y q. Thus, it
cannot be a perfect space, so it must contain an isolated point Θ.

Take any neighbourhood U in CpX,Y q under the metric

dpf, gq “ sup
xPX

dY pfpxq, gpxqq

so that it contains a unique member Θ P IsopX,Y q. If F : rBs Ñ IsopX,Y q is the computable functional from
Definition 4.9, then F´1pΘq does not have to be a singleton in rBs. On the other hand, CpX,Y q does not have to
be compact. Thus, we cannot appeal to Fact 3.25 directly. However, this is not really an issue, because all paths
through F´1pΘq eventually give very close approximations to Θ and, thus, we can use any extension that looks
good so far (to be clarified). As was pointed out by one of the referees, Fact 3.25 and the argument that we present
below admit a generalisation that would suffice, but we give a direct proof.

Fix an n so that 2´n is smaller than the diameter of U . Fix a sufficiently long σ P B that:

(1) σ is extendible to an infinite path in rBs, and
(2) the F -images of all its extensions in rBs lie in U .

Note that for any such extension π P rBs, we must have F pπq “ Θ.
Given m ą n, wait for a late enough stage s so that all extensions of σ that have not yet been declared out of B

have their potential F -images at distance at most 2´m from each other. Since Θ is isolated in U Ď IsopX,Y q and
rBs is a Π0

1 class, it follows that such a stage must exist. Choose any such ρm extending σ that has not yet been
declared out of B. It determines a finite partial map that can be used to calculate Θ to precision 2´m`1. It follows
that Θ is computable. �

It is natural to ask whether the isomorphism in the corollary above can be reconstructed uniformly from a given
pair of compact presentations of the space. The answer to this question is (perhaps, not surprisingly) negative;
an intricate example can be found in [55]. The cited paper also contains a subtle definability-theoretic analysis of
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computably unique metric spaces, i.e., up to computable isometry. It is also known that every compact Polish space
admits a Scott sentence of very low complexity; see [103].

In their very recent paper [71], Iljazović and Validžić prove two further interesting results generalising Corol-
lary 4.11 and the techniques that Iljazović used in [67]. Both results from [71] can be derived from Theorem 4.8.
For example, using clever combinatorial techniques, they show:

Corollary 4.12. In a computably compact metric space, the orbit of a computable point under the action of the
self-isometry group is Π0

1.

We give a proof that uses Theorem 4.8.

Proof. Suppose X is computably compact and consider the presentation P “ rBs of CpX,Xq as a computably
bounded Π0

1 class given in Definition 4.9. Without loss of generality, we can assume that the computable point that
we care about is actually special; if it is not, add it to the computable dense sequence. We can therefore assume
x “ p0.

We examine the class P of all potential partial 2´n-isometries and see whether there is an f P P such that
fpp0q “ y. By compactness, this is the same as to say that, for every n, there is a σ P P of length n that codes some
2´n`1-isometry gn mapping p0 to some ri P Y with dpy, riq ď 2´n. Note that the existential quantification over
such σ is computably bounded, since there are only finitely many such σ at level n of P , and we can computably
bound this number. Also, the condition dpy, riq ď 2´n is Π0

1 uniformly in n and y. Thus, the overall property of
being in the orbit of x “ p0 is Π0

1, uniformly in y and n. In other words, the orbit is effectively closed19. �

We see that a careful use of Π0
1 classes and effective compactness can help to simplify proofs. Nonetheless, we

emphasise again that in this subsection we view spaces up to isometric isomorphism. When we study spaces up
to homeomorphism, the situation usually becomes more complex. We will discuss spaces up to homeomorphism
a bit later; here we only cite [115] where it is shown that the closure of the set of orientation-preserving self-
homeomorphism of the unit square forms a computable closed set in Cpr0, 1s2, r0, 1s2q.

We now discuss another corollary that uses index sets to estimate the complexity of the classification problem
for compact spaces, up to isometry. Fix an effective listing pMiq of all (partial) computable Polish spaces. Each
such Mi is given by a dense sequence that can be identified with ω and a (partial) computable metric on it. (The
space Mi represents is the completion Mi of Mi.) We could list all partial computably compact spaces in a similar
way, but this approach is not standard and has never been used in the literature.

Corollary 4.13 (Melnikov and Nies [103]). The following index sets are arithmetical:

(1) The characterisation problem ti : Mi is compactu.
(2) The isometric isomorphism problem txi, jy : Mi –isom Mj &Mi,Mj are compactu.

Sketch. For p1q, say that the metric is total, is indeed a metric, and for every n there is a 2´n-cover of the space
by closed basic balls.

To see why p2q holds, note that (by Corollary 4.10) it is sufficient to state that there exists a 01-computable
isometry. All conditions that express that it ‘works’ are arithmetical. �

In contrast with compact spaces, the characterisation problem for locally compact Polish spaces is Π1
1-complete

as conjectured in [103] and then formally clarified in [116] (the sketch contained in [103] is incorrect). We will return
to index sets later when we discuss computable Stone duality.

We now discuss potential converses to Theorem 4.8. J. Miller (personal communication with Nies) suggested the
following example.

Proposition 4.14. Let A,B Ď N be disjoint c.e. sets. There are isometric computably compact computable metric
spaces L,R such that any representation of an isometry computes a set S such that A Ď S and B X S “ H.

19As was pointed out by one of the referees, one of the many convenient features of computable compactness is that in certain

scenarios quantification over a computably compact set can be treated as computably bounded search. For instance, c.e openness (or

being Π0
1) is typically preserved under such quantification.
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Let A and B be disjoint c.e. sets. The collection of separating sets P “ tX : X Ě A and X X B “ Hu is a
non-empty Π0

1 class. A pair of c.e. sets A and B is effectively inseparable if there is no computable set C, such
that C Ě A and C Ě B. For example, by the proof of the incompleteness theorem, for Peano Arithmetic (PA), the
c.e. sets of (Gödel codes for) provable formuale A “ t#ψ : PA $ ψu and B “ t#ψ : PA $  ψu form an effectively
inseparable pair. (For a more straightforward example, consider A “ te : ϕep0q “ 0u and B “ te : ϕep0q “ 1u.) If
we choose A,B effectively inseparable, then this shows that the Π0

1 class of isometries from X to Y is Medvedev
complete within the Π0

1 classes, meaning that whenever there is a member of some other class of degree d then this
Medvedev-complete class also has a member of that degree. Thus, the isometries are as complicated as allowed by
Theorem 4.8. In particular, there exist isometric computably compact spaces that are not computably isometric.

Proof. We describe the metric spaces by giving a connected graph of special points. If there is an edge the distance
is defined directly. All the other distances between pairs of special points p, q will be given indirectly as the path
distance. We ensure in the construction that this distance function is consistent and computable. There will be
only one limit point in the space. Thus the space has Cantor-Bendixson rank 2.

Let δn “ 4´n. For each n, there are special points an, un, vn, an`1 in L that have pairwise distance δn. We call
this basic configuration the n-th diamond. The space R looks similar with special points a1n, u

1
n, v

1
n, a

1
n`1 sharing

the same properties.
At any stage of the construction, the procedure markpx, γq, where x is a special point already introduced, adds

a new special point y with dpx, yq “ γ.

Construction of L,R. We may assume at most one number enters AYB at any stage.
If n enters A at stage s, call markpun, 3

´sq and markpu1n, 3
´sq.

If n enters B at stage s, call markpun, 3
´sq and markpv1n, 3

´sq.

It is clear that L,R are isometric. Each space is computably compact: let hpnq be so large that the special points
up to hpnq include the first n ` 1 diamonds, and the points used for marking up to stage n. Then in either space
the special points up to hpnq form a 2´n-net. Now suppose that Θ: L Ñ R is an isometry. The special points an
and a1n pn ą 0q are singled out by having three points at distance δn, and three points at distance δn`1. Thus,
Θpanq “ a1n. Therefore Θpunq P tu

1
n, v

1
nu. Let S “ tn : Θpunq “ u1nu. Then A Ď S and B X S “ H as required.

Since dpu1n, v
1
nq “ δn, using a term sufficiently far out in the Cauchy name for Θpunq, we can decide whether

n P S using the representation as an oracle. �

We conjecture the following.

Conjecture 4.15. Every Π0
1-class can be realised (e.g., up to m-degree) as IsopM,Nq for two isometric computably

compact spaces.

Conjecture 4.15 holds for computable discrete algebraic structures in the place of effective compact spaces [46]
and we conjecture that it should be possible to turn such structures into compact spaces. Also, as was noted by one
of the referees, the simple construction above should have implications at the level of the Weak König’s Lemma,
under the appropriate coding and in the spirit of the results found in, e.g., [51, Section 6]. Specifically, among other
things [51] studies the computability-theoretic and reverse mathematical strengths of the Hahn-Banach Theorem in
Banach spaces. The cited paper also utilises the technique of effective compact sets, but we will not discuss these
results here. Instead, we shall discuss the recent results about bases in Banach spaces.

4.3. Basic sequences in Banach spaces. Some of the most used Polish Spaces are Banach spaces, and there
is a reasonably well-developed theory of effective Banach spaces beginning with Pour-El and Richards [126]. We
note that Banach spaces are usually viewed under isometric isomorphism, and it is well-known that every isometric
isomorphism has to be affine (this is Mazur-Ulam Theorem).

Definition 4.16. A computable Banach space is a computably metrized Banach space in which the Banach space
operations are computable.

This definition means that any computable Banach space needs to be separable, since it needs a computable
dense set. We regard this as presented with a computable norm || ¨ ||, and for simplicity will consider the space as a
complete normed vector space B over the reals, although the results also work if the field is the complex numbers.
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Some consequences of computable compactness, such as and effective version of the open mapping theorem,
can be found in [15]. We will give a couple of recent applications of computable compactness to the theory of
computable Banach spaces. A simple application of computable compactness is Pour-El Richards [127] result that
linear independence in a Banach space is Σ0

1. To see this, we note that tx1, . . . , xnu is independent iff

min
λiPRzt0u

||

n
ÿ

i“1

λixi|| ą 0.

But by normalizing we can consider the ball

S “ tpλ1, . . . , λnq P Rnzt0u |
n

ÿ

i“1

|λi| “ 1u,

for the quantification, and this is computably compact, meaning that the minimum minpλ1,...,λnqPS ||
řn
i“1 λixi|| is

Σ0
1.
Almost all elementary linear algebra works via the fact that vector spaces have bases. However, the analog for

Banach spaces is not so easy. The most accepted candidate of a basis for a Banach space is called a Schauder Basis.

Definition 4.17. A sequence X “ txi | i P ωu is called a Schauder Basis for B iff for each z P B there is a unique
sequence tλi | i P ωu such that

8
ÿ

i“1

λixi “ z.

Brattka and Dillhage [19] showed that the theory of computable Banach spaces with well-behaved computable
Schauder bases20 is relatively well-behaved. In particular, many theorems using duality lift quite smoothly to have
computable versions.

However, one of the unfortunate aspects of Banach space theory is that not only don’t (computable) Banach
spaces necessarily have computable Schauder bases, but in fact some don’t have Schauder bases at all. This is a
remarkable result of Enflo [42] : There is a separable Banach space with no Schauder basis. (This result solved
a question of Banach that had been open for 45 years.) Bosserhoff [13] proved that Enflo’s construction could be
made computable to give a computable Banach space.

The fundamental fact about Schauder bases is the following characterization by Banach.

Lemma 4.18 (Banach). Let X “ x1, x2, . . . be a sequence of elements of B. Then this sequence forms a Schauder
basis iff

(1) xi ‰ 0 for all i
(2) The finite span of txi | i P ωu is dense in B.
(3) There is a K P R such that for all m ă n, and all sequences of scalars λi,

||

m
ÿ

i“1

λixi|| ď K||
n

ÿ

i“1

λixi||.

K in (3) above is called the Basis Constant bcpXq of the Schauder basis. The hard direction of this lemma is to

suppose that X is a basis and consider the projections Skp
ř8

i“1 λixiq “
řk
i“1 λixi. We need to prove that

ř

j ||Sj ||

is finite, and this is achieved by considering the equivalent norm || ¨ ||1 defined by ||
ř8

i“1 λixi||
1 “ supm ||

řm
i“1 λixi||.

This is bounded by the Open Mapping Theorem.
Note that we can also define the basis constant of a space as the infimum of the basis constants of Schauder

bases for the space. We remark that there are even finite dimensional spaces without a basis with K “ 1. But in
the finite dimensional case, we can at least get a computable basis constant for the whole space. That is, a simple
application of computable compactness yields the following:

Lemma 4.19. Let X be a computable Banach space.

(1) (Bosserhoff [13]) Assume x1, . . . , xn P X is a (computable) independent sequence. Then bcpx1, . . . , xnq is a
computable real.

20Specifically, those with “monotone” or “shrinking” bases.
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(2) (Downey, Long and Greenberg [94]) For a finite dimensional X, bcpXq is a computable real.

Notice that Lemma 4.19 means that each finite dimensional projection in the proof of the existence of K must
have a computable basis constant. Therefore the sup K is a computable sup of computable reals. That is K is a
left c.e. real for a computable Schauder basis X. In fact, in Long’s MSc thesis [94] it is shown that any left c.e. real
can be the basis constant of a computable Banach space. It is presently unknown what can be said about the basis
constants of computable spaces.

The one theorem we will look at is the following. It provides a counterpoint to the theorem of Metakides and
Nerode [104] where they constructed a computable vector space over Q where every c.e. independent set is finite.

Theorem 4.20 (Downey, Long and Greenberg [94]). If B is an infinite-dimensional computable Banach space,
then B has an infinite dimensional subspace with a computable Schauder basis Z “ z1, z2, . . ..

Sketch. Let E “ tei | i P ωu be an effective dense set for B. We begin with a lemma of Mazur: If B is an infinite
dimensional Banach space and Y a finite dimensional subspace, ε ą 0 then there is x P B with ||x|| “ 1 and

||y|| ď p1` εq||y ` λx||,

for all y P B and λ P R. Since E is dense, it is not hard to show that we may choose x “ ei for some i, by playing
with the triangle inequality, choosing one close to x. Now we can follow the classical argument of Banach. Choose
a sequence of reals εi with

ś8

i“1p1 ` εiq ă 8. Then construct the basic sequence in stages. Having constructed

z1, . . . , zn, find an ei in the effectively dense sequence E with bcpx1, . . . , xn, eiq ď
śn`1
i“1 p1 ` εiq, and we know by

computable compactness, that this procedure is computable. �

We will return to Banach spaces a bit later, when we discuss the effective content of Banach-Stone duality
that establishes a 1-1 correspondence between computable presentability of Banach spaces in a broad class with
computably compact presentability of totally disconnected compact spaces.

4.4. Computable Stone duality with applications. Recall that two basic open balls Bpc1, r1q and Bpc2, r2q

are formally disjoint if r1 ` r2 ă dpc1, c2q. Two sets of basic open balls are formally disjoint if any pair of basic
open balls, one coming from the first set and the other from the second, are formally disjoint. A clopen split of M
is a pair of (cl)open sets X,Y such that X \ Y “M .

Computable Stone duality. Various versions of the elementary lemma below can be found in [20, 61, 64, 99], but is
some of the cited papers the proof contains minor but misleading errors, thus we give a proof.

Lemma 4.21. Suppose an oracle X can effectively enumerate all basic finite covers of M . Then X can also
effectively enumerate all clopen splits of M .

Proof. Suppose M “ X \ Y is a split, and let δ be the infimum-distance between these compact open sets

δ “ inf
px,yqPXˆY

dpx, yq.

(Since X ˆ Y is compact and d is continuous, it attains its infimum at some pair px0, y0q. In particular, δ ą 0.)
Suppose 0 ă ε ă δ{4. Then every finite ε-cover will consist of two formally disjoint subsets of basic open balls.

Indeed, every ball covering a point in X cannot contain a point in Y , and every ball covering a point in Y cannot
contain a point in X. If a basic open B has its centre in X and D has its centre in Y , then the distance between
their centres is at least δ, while the sum of their radii is at most δ{2 ă δ, making them formally disjoint.

On the other hand, if a finite open cover of M consists of two formally disjoint subcovers, then these subcovers
induce a split of M into clopen components. Since the property of being formally disjoint is a c.e. property, X is
able to list all such covers. �

Another way to state the lemma above is that any modulus of compactness of M can computably enumerate
the clopen splits of M . Also note that we could have used X-decidable covers in the proof of the lemma above, and
this way we can additionally assume that, for the clopen sets that we list, we can additionally decide whether they
intersect or not. This will be very convenient in the proof of the next result.

Theorem 4.22 ([64]). Let M be a computably compact Stone space (a totally disconnected compact Polish space).
Then the Boolean algebra of its clopen subsets admits a computable presentation.
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Proof. Fix a X-decidable system of covers K “
Ť

nPωKn. Using the previous Lemma 4.21, effectively list all clopen
splits of M into (open, formally disjoint names of) pairs of clopen sets. Let pXi, Yiq be the enumeration of these
clopen splits. Note that we can also wait and see whether both Xi and Yi are non-empty; just wait for a special
point to appear in one of the two. In this case we say that the split is proper. This is a c.e. event because Xi and
Yi are both given by their open as well as their closed covers, whichever is more convenient. Thus, without loss of
generality we can assume that we list only the proper splits. Write X´1

i for the corresponding Yi in a proper split;
and let X0

i be another notation for Xi.
The Boolean algebra is generated by the empty set and arbitrary finite non-empty conjunctions of the form

Ź

iX
εi
i , where εi P t0, 1u. Since the system of covers K is X-decidable, we can indeed decide whether such a finite

intersection is empty. In other words, if F is the free Boolean algebra generated by the Xi, then the Boolean
algebra of clopen sets of M is isomorphic to F

I , where I is a computable ideal. This makes the Boolean algebra
computable. �

Remark 4.23. For a computably compact Stone space, we can uniformly produce the dual Boolean algebra of its
clopen sets. (As usual, we assume our spaces are non-empty. Alternatively, we can stretch our terminology a bit
and view the 1-element lattice as a Boolean algebra.) It is also not difficult to see that the construction is also locally
uniform in the following sense. Using clopen components we can produce a computably branching, computable
tree T without dead ends such that the space is homeomorphic to rT s. If we take the usual ultrametric on the
infinite paths through T , then this metric will be computably compatible with the original metric in the sense that
Id : M Ñ rT s is a computable map.

This result allows us to establish the following representation theorem.

Theorem 4.24 ([61]). Let M be a computably metrized Stone space. Then the Boolean algebra of its clopen subsets
admits a computable presentation.

Proof. Let M be the computable space. Recall that 01 can compute a modulus of compactness of the space.
Relativize the previous theorem to get 01-computable presentation of the Boolean algebra of clopen sets. Given an
element of the Boolean algebra, we can use its representation via a finite union of basic computable balls and ask
whether there exist two unequal special points x, y that are contained in this clopen set; this is a Σ0

1 property. This
element is an atom if, and only if, no such pair of points exists. Thus, the atom relation is also 01-computable.
It is well-known that every 01-computable Boolean algebra in which the atom relation is also 01-computable has a
computable presentation; see [82] for the explicit statement and [38] for the first implicit use of this property. It
follows that the Boolean algebra of clopen sets has a computable copy. �

Given a computable Boolean algebra B, it is not difficult to represent its dual Stone space pB as the collection of
infinite paths rT s through a computably branching, computable tree T without dead ends; see [52] for the details.
Thus, we have:

Theorem 4.25 ([61, 64]). For a countable Boolean algebra B, B has a computable presentation iff its dual Stone

space pB can be computably metrized iff pB has a computably compact metrization.

Corollary 4.26 ([61]). Every computably metrized Stone space is homeomorphic to a computably compact Stone
space.

Computable topological vs. computable Polish spaces. The following result is folklore; see, e.g., [143] and [31].

Theorem 4.27. For a countable Boolean algebra B, the following are equivalent:

(1) B admits a c.e. presentation.

(2) The dual Boolean algebra pB is homeomorphic to a Π0
1-class.

Idea. To see why p1q ñ p2q should hold, think of a B “ A{I, where A is atomless and I is a c.e. ideal. One can
view A as a full binary tree in which some nodes can be declared equal. Instead of making them equal, we can
declare them to be outside of a Π0

1 tree T such that the Stone space of B is rT s. To understand why p2q ñ p1q
should hold, define a c.e. ideal by setting a node x to be equal to the left-most node y at the same level that still
remains in the tree (representing the Π0

1 class). �
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Working independently, Bazhenov, Melnikov and Harrison-Trainor [8] proved another closely related and much
more subtle computable version of Stone duality. To state it, note that the basic notion of computable compactness
(Definition 3.1) can be defined without the assumption that the metric is computable. Definition 3.1 also works
for computable topological spaces: just say that we can effectively enumerate all finite covers of the space by basic
open sets. In this case we say that the computable topological space is effectively compact. Recall that right-c.e.
spaces are computable topological spaces, where the base is given by the basic open balls; see Proposition 2.4.
An example of such a right-c.e. “effectively compact” space is any non-empty Π0

1 class. (This requires a relatively
straightforward inductive argument that can be found in, e.g., [8].)

Theorem 4.28 ([8]). For a countable Boolean algebra B, the following are equivalent:

(1) B admits a c.e. presentation.

(2) The dual space pB is homeomorphic to an effectively compact right-c.e. completely metrized space.

Idea. The proof of p1q ñ p2q is similar to the proof of p1q ñ p2q the previous theorem. (A non-empty Π0
1 class can

be viewed as a right-c.e. metrized space.)
To prove p2q ñ p1q use a theorem a Odintsov and Selivanov [119] who showed that a Π0

2-presented Boolean
algebra admits a c.e. presentation. It is therefore sufficient to show that the Boolean algebra of clopen sets has the
form β{I, where β is the atomless algebra and I is its Π0

2 ideal. This can be done using methods similar to the
techniques described in this section; we omit the details. �

Recall again that every right-c.e. space is a computable topological space (Proposition 2.4). Recall also that
Feiner [44] constructed an example of a c.e. presented Boolean algebra that does not admit a computable presen-
tation. Thus, Theorems 4.27 and 4.28 imply:

Corollary 4.29 ([8]). There exists a computable topological Polish space that is not homeomorphic to any com-
putably (completely) metrized space.

In spite of appearing as a standard classical result, Corollary 4.29 is very recent. We really have a stronger
consequence. In view of Theorem 4.27, it follows also that effective compactness for computably metrized and
right-c.e. metrized spaces differ up to homeomorphism.

Applications to classification problems. The next corollary measures the classification problem for compact com-
putable Polish spaces up to homeomorphism. Recall that we fixed an effective listing pMiqiPω of all (partial)
computable Polish spaces. (We identify Mi with the completion of the respective dense computable sequence.)

As was pointed out by Selivanov (in personal communication with the second author), it seems that the corollary
below has actually never been explicitly stated in the literature. The corollary is, of course, not really new. Compare
the corollary below with Corollary 4.13.

Corollary 4.30. The homeomorphism problem txi, jy : Mi –hom Mj &Mi,Mj are compactu for computable com-
pact Polish spaces is Σ1

1-complete.

Proof. The Σ1
1-hardness follows from the Σ1

1-completeness of the isomorphism problem for computable Boolean
algebras [53] and the fact that Stone duality is computably uniform.

We need to argue that the index set is Σ1
1. We give only a sketch since this fact seems to be well-known. A

rather similar fact is folklore in descriptive set theory [49]. A detailed proof in the lightface case (and in the harder
context of topological groups) can be found in [99]. A very closely related (and, in some sense, stronger) argument
is Lemma 3.6 of [60].

It is arithmetical to say that Mi is a (presentation of a) compact Polish space; see (1) of Corollary 4.13. To
say that there is a homeomorphism f : Mi Ñ Mj , it is sufficient to state that there exist continuous surjective
f1 : Mi Ñ Mj and f2 : Mj Ñ Mi such that f1 ˝ f2 “ IdMi . Every g : X Ñ Y between compact X and Y can be
represented by, e.g., a pair pg̃,mq where g̃ : ω2 Ñ ω and m : ω Ñ ω, where the function g̃pn, kq is interpreted as the
image of the nth special point with precision 2´k, and m as the modulus of uniform continuity.

It is arithmetical to say that pg̃,mq represents a continuous function limk gp¨, kq : X Ñ Y . This is because totality
is arithmetical, and also one can express that m is a modulus of continuity that works for g̃ as a closed property.
Thus, as before, if it fails then it must fail for some special points. Since the continuous image of a compact space
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is closed, it is arithmetical to say that pg̃,mq represents a surjective function. (If it does not, then again there is a
special point in the complement witnessing this.)

This allows to state the existence of f1 and f2 in a Σ1
1 way. Finally, to say that f1 ˝ f2 “ IdMi

, it is sufficient
to say that it is true for special points because the property is (again) closed. This can be expressed arithmetically
(in the presentations of) f1 and f2. �

Of course, the result above can be relativized to any oracle, thus implying the classical descriptive-theoretic
result saying that the homeomorphism problem for compact Polish spaces is analytic complete.

Remark 4.31. The Σ1
1-completeness in the proof above is witnessed by computably compact Stone spaces. It is

also not difficult to see that the index set of Stone spaces is arithmetical, and thus the homeomorphism problem is
actually complete within the class of Stone spaces (that can further be assumed computably compact). To see why
saying that Mi is a Stone space is an arithmetical property, iterate the process of splitting the space and search for a
non-trivial connected component using Lemma 4.21. Every connected component can be expressed as a finite union
of basic open balls, and thus the existence of a non-trivial connected component can be expressed as a first-order,
arithmetical property.

A substantially different proof of Corollary 4.30 can be extracted from a closely related result for topological
groups established in [99]. A computably metrized topological group is a computable Polish space with computable
group operations defined on the space. We say that it is computably compact if the space is furthermore computably
compact.

Theorem 4.32 ([99]). The topological isomorphism problem for computably metrized connected compact abelian
groups is Σ1

1-complete.

The proof of the result above uses a computable version of Pontryagin duality that was proved in [99] and has
recently been extended in [95]; we omit the definitions. In fact, it follows from the version of computable duality
established in [95] that the Σ1

1-completeness is witnessed by computably compact groups. We now explain how the
theorem above gives a different proof of Corollary 4.30. As we shall discuss later in the paper (see Subsection 4.7,
the second proof of Theorem 4.40), using algebraic topology it is possible to show that two compact connected
abelian Polish groups are homeomorphic (as spaces) if, and only if, they are isomorphic as topological groups.
Assuming this result, Corollary 4.30 follows from the theorem above, but this time the corollary is witnessed by
connected computably compact spaces, not totally disconnected computably compact spaces.

To conclude the subsection, we mention one more application of computably compact Stone spaces, this time to
Banach spaces. Recall that computable Banach space is a computably metrized Banach space in which the Banach
space operations are computable. Recall that Banach-Stone duality states that CpK0;Rq and CpK1;Rq are linearly
isometrically isomorphic if, and only if, the respective compact spaces K0 and K1 are homeomorphic. In [8], a
computable version of Banach-Stone duality has been established:

Theorem 4.33. For a countable Boolean algebra B, B has a computable copy iff the space Cp pB;Rq is a computable
Banach space.

In view of Theorems 4.27 and 4.28, this correspondence gives an explicit application of computable compactness
to computable Banach space theory. In particular, we obtain the following corollary. Fix a computable list pBiqiPω
of all (partial) computable linear spaces over Q with a computable norm, and write Bi for the completion of Bi
with respect to its norm.

Corollary 4.34. The linear isometric isomorphism problem txi, jy : Bi –iso Bju for computable separable Banach
spaces is Σ1

1-complete.

Proof. We have that CpxB0;Rq –iso CpxB1;Rq iff xB0 –hom xB1 (iff B1 – B2). The proof of aforementioned result
from [8] is uniform when passing from computably compact Stone spaces to the respective Banach spaces. So
Σ1

1-hardness follows from the previous corollary.
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It remains to note that the upper bound is also Σ1
1. It is sufficient to state that there is an isometry that works

for special points, maps zero to zero, and is, furthermore, surjective (these properties are closed). The well-known
Mazur-Ulam theorem asserts that every isometry with these properties has to be linear. �

Further results and open questions related to index sets in analysis, and to compact spaces and compact groups
more specifically, can be found in [40].

4.5. Profinite groups. Profinite groups are the Galois groups. They are inverse limits of finite groups. The
study of effective profinite groups began with Metakides and Nerode [105], La Roche [90, 91] and Smith [137, 138],
where they defined the group to have a co-r.e. presentation if it was isomorphic to a computably bounded Π0

1

class rT s (in Baire space) where the group operations were computable. La Roche and Smith defined the group
to be recursively presentable (computable) if the set of extendible nodes in T forms a computable set. If F is a
computable (countable) field, and K is a c.e. subfield of F , then the Galois group GpF zKq is a co-r.e. profinite
group. As Smith [138] observed, Waterhouse’s result [147] can be effectivized to show that each co-r.e. profinite
group is effectively isomorphic to GpF zKq for some computable F and K.

A profinite group is recursive if it can be represented as the projective limit of computable linear sequence of
finite groups pFiq given by their strong indices and computable surjective fi : Fi`1 Ñonto Fi. Smith [138] showed
that a profinite group is recursive if, and only if, it it is isomorphic to a decidable computably bounded Π0

1 class rT s
where the group operations were computable. Since every infinite profinite group is homeomorphic to 2ω, and any
two computably compact presentations of 2ω are computably homeomorphic (e.g., [8]), without loss of generality
we can assume that rT s “ 2ω.

A natural question arises what happens when the metric on the group is not necessarily an ultrametic. For
example, it is sometimes convenient to think of abelian profinite groups as subgroups of an infinite direct power of
the unit circle group.

We give a classification of profinite groups with an arbitrary compatible metric that have a recursive presenta-
tion. The result below is new. A similar result that establishes an arithmetical bound without the assumption of
computable compactness can be found in [99]. Recall that the notion of a computably compact group was defined
before Theorem 4.32.

Theorem 4.35. For a profinite group G, the following are equivalent:

(1) G has a recursive presentation;
(2) G has a computably compact presentation.

Proof. Clearly, every recursive presentation is computably compact. Now assume we are given a computably
compact presentation. Using Lemma 4.21, computably list all clopen components of the group. At this stage there
are two ways we can proceed to prove the theorem.

The first possibility is to use the materials of the previous section to construct a computably branching tree T
with no dead ends such that the domain of G is rT s, and note that the natural shortest-prefix ultrametric inherited
from the tree is computably compatible with the original metric (in the sense that the identity map G Ñ rT s is
computable; see Remark 4.23). Then we can use the aforementioned result of Smith and conclude that G admits a
recursive presentation (i.e., via a surjective linear computable inverse system). We will not give any further details.

The second possibility is to directly calculate the recursive presentation without any reference to effective com-
patibility and the result of Smith. To make the paper self-contained, we give the details below.

To say that a clopen component is a normal subgroup, use the fact that every clopen component is a computable
subspace of the group, and thus is computably compact, by Proposition 3.29. To see if a clopen C is a subgroup,
search for a pair of finite covers, say pBiq and pDjq, of C such that for every i, j there is a k with the property

Bi ¨B
1
j Ď Dk

and for every i there is a k such that
B´1
i Ď Dk.

We also search for a finite cover pUnq of G such that for all n,m and i there is a k with

U´1
n ¨Bi ¨ Um Ď Dk.
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We argue that such a cover exists, and this will imply that we can computably list all clopen subgroups of G.
Then we explain how to use these subgroups to build a recursive presentation of the group.

Since the clopen component C can be expressed as a (finite) union of open balls, the preimage of the clopen
component under the computable maps x, y Ñ xy, x Ñ x´1 and z, x Ñ z´1xz in the respective product space
(respectively, C ˆ C, C, and G ˆ C ˆ G) can be uniformly listed. If C were not a normal subgroup then there
will be special points witnessing this, and these would be witnessed together with sufficiently small basic open balls
containing them. On the other hand, if C is a normal subgroup then every equation of the form, say,

z´1xz “ y,

where x, y P C and z P G, would be witnessed by small enough basic open balls containing these points, i.e.,

U´1 ¨B ¨ U Ď D,

where z P U , x P B, and y P D. These products of these balls would give a cover of the respective compact product
space (in the case of conjugation and in the notation above, B ˆ U ˆD cover Gˆ C ˆG.) It follows that we can
find a finite subcover.

We conclude that we can list all clopen normal subgroups of G. Note that, by the uniform computable compact-
ness of each such clopen C, we can compute the diameter of C, which is supx,yPC dpx, yq. Using the techniques of
Lemma 4.21 and Theorem 4.22 – that basically can be summarised by saying that we take the next cover by very
small balls – we can furthermore produce a nested sequence of (finite open names of) clopen normal subgroups
tCi : i P ωu such that:

(1) Ci`1 Ď Ci is formal21,
(2) diamCi ă 2´i,
(3) for every i there exists a computable finite tuple pxi,jq of special points (given by its strong index) such

that pxi,jCiq is a cover of G.
(4) For every i, j, n, if xi,jCi`1 Ď xi`1,nCi`1 then this inclusion is formal.
(5) When j ‰ j1, xi,jCi`1 X xi,j1Ci`1 “ H.

If we succeed, then
Ş

iPω Ci “ t0u, so it is a uniformly computable basis of clopen normal subgroups of G. We will
then use the cosets to calculate the finite G{Ci and the homomorphisms from G{Ci`1 onto G{Ci.

More formally, we proceed by recursion. Assume Ci´1 has been defined. We search for a Ci that satisfies all
these four conditions. If we drop ‘formal’ in all these conditions, then it should be clear that such a Ci and xi,j
must exist. Then fix such a Ci.

By Lemma 4.21 and the analysis of normality above, a normal clopen Ci will eventually be found, and furthermore
both Ci and the finitely many cosets mod Ci will be represented as a finite collections of balls. Our task it to show
that we can effectively recognise that these finite parameters describing the cosets define what we need. For that,
we might need to adjust the finite covers by refining them so that, for instance, the inclusion is witnessed by formal
inclusion of covers. This is done as follows.

We satisfy p1q by choosing the radii of a finite cover describing Ci small (see Remark 3.4), and we satisfy p2q by
evaluating the computable diameter of the clopen set (this is again essentially done by further refining the cover).
Here we use that Ci is indeed a computable closed set because of Lemma 4.21, so we can apply Proposition 3.29.

We elaborate why we will eventually find special points pxi,jq and will eventually recognize that they satisfy (3).
For that, note that each coset of Ci is open, and thus in particular contains a special point, say x. In particular,
every coset mod Ci has the form xCi. Since for every special x its coset xCi is the image of Ci under the computable
map y Ñ xy and Ci is computably compact with all possible uniformity, by Lemma 3.31 we conclude that xCi is
also computably compact, and with all possible uniformity. By refining the cover of xCi (see Remark 3.4), we can
ensure that all set-theoretical inclusions of xCi into the clopen sets seen so far in the construction hold formally.
We can also ensure that if two cosets do not intersect then this is also witnessed formally22. This gives a way

21Meaning that each ball from the open cover of Ci`1 is formally included into some basic open ball in the fixed cover of Ci. Similar

for condition p4q below.
22Just take the radii of open balls much smaller than the pairwise distances between the finitely many clopen sets to see that it can

be done. It is crucial here that the sets are clopen, see, e.g, Corollary 4.3 for a potential issue in general.
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of computably recognising condition p5q. We can also wait for finitely many such special points xi,j so that the
respective cosets xi,jCi cover the whole space.

To reconstruct the computable operation on G{Ci, calculate the product and the inverse on the special points
xi,j with a sufficient precision until you see that the result is in one of the cosets modulo Ci. This is all computable
because the cosets xi,jCi are (uniformly) given by their finite open covers, and the operations on G are computable.

Finally, use effectiveness of condition p4q to calculate the surjective group-homomorphism φi : G{Ci`1 Ñ G{Ci
that maps every xi`1,jCi`1 to the unique coset xi,j1Ci that contains it. This gives a computable surjective inverse
system

pG{Ci, φiqiPω

the (inverse, projective) limit of which is topologically isomorphic to G. Since the system is uniformly computable
(in the sense of strong indices of finite sets), this gives a recursive presentation of G. �

Remark 4.36. In view of the results in the previous subsection that connect c.e.-presented Boolean algebras
with Π0

1-classes, we conjecture that co-c.e. presented profinite groups should correspond to computably compact
right-c.e. metrized groups. Melnikov [99] gives the first example of a profinite computably metrized group that
does not admit a recursive presentation. In view of our theorem above and the results of Smith, the notion of a
recursive profinite group seems to be the “right” notion of computability for profinite groups. See [99] for a complete
description of computably categorical profinite abelian groups and an effective version of Pontryagin duality that
works for such groups.

4.6. Computability of Čech cohomology. The earliest application of simplicial homology in computable anal-
ysis we are aware of can be found in J. Miller’s thesis [107] (this application has already been discussed above).
Simplicial (co)homology is computable in its nature, and this can be made formal. For example, Chapter 1 (§11) of
[112] contains a careful verification of the computability of the homology groups for finite simplicial complexes. This
of course entails computability of cohomology groups as well. More specifically, given a (strong index of a) simplicial
complex, we can uniformly compute its ith homology group represented as

À

iďkxaiy, where a0, . . . , ak are the gen-

erators of the group such that the orders of the cyclic xaiy are also uniformly computable. Since Ai “ HompAi,Zq,
we can easily observe that respective cohomology groups are also computable in this strong sense.

In this section we extend these results to arbitrary computably compact spaces and their Čech cohomology groups
that will be defined shortly. For a finite simplicial complex, its Čech cohomology is isomorphic to its simplicial
cohomology; see that last chapter of [112]. One of the convenient features of Čech cohomology is that it does not
rely on triangulation and works for an arbitrary compact metric space.

Background from algebraic topology. Given a compact M , let N be the directed set of all its finite open covers
(under refinement). Since the covers by basic ε-balls, where ε ranges over positive rationals, are cofinal among all
covers, without loss of generality we can restrict ourselves only to covers by basic open balls with rational radii.
For instance, N could be the X-decidable system of covers nested under formal refinement instead of the usual
refinement (at this stage, computability of these conditions is not important).

For each member C of N , recall that its nerve NpCq is the collection of all sets in the cover that intersect
non-trivially. One can view NpCq as a (finite) simplicial complex in which the n-dimensional faces are exactly the
n-element subsets X of NpCq such that

Ş

tY : Y P Xu is a non-empty set. For these finite simplicial complexes we
can define their cohomology groups H˚pNpCqq (with coefficients in Z) as follows.

We follow §73 of [112] and define the Čech cohomology group of a compact metrized space as follows. For a fixed
finite set of basic open balls C P N and the respective simplex NpCq, define the simplicial chain complex as usual:

. . .Ñδ3 A2 Ñδ2 A1 Ñδ1 A0

where Ai are finitely generated free abelian groups and δi are boundary homomorphisms, and then define the
associated cochain complex Ai “ HompAi,Zq and define di : Ai Ñ Ai´1 to be the dual homomorphism of δi`1.
Then HipNpCqq “ Kerpdiq{Impdi´1q is the ith cohomology group23 of the simplex NpCq which is a finitely

23We are not really interested in the case when i “ 0 when d´1 is not really defined; just assume Impd´1q “ t0u.
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generated abelian group which can be thought of as given by finitely many generators and relations. Let H˚pMq
be the direct limit of H˚pNpCqq induced by the inverse system N under the refinement maps.

The result. Recall that a (discrete, countable) group is c.e.-presented if it is isomorphic to a factor of a computable
free group by its computably enumerable subgroup. In other words, the operations of the group are computable by
equality is c.e., thus the name.

Theorem 4.37 ([95]). For a computably compact M , its ith Čech cohomology group admits a c.e. presentation
uniformly in i.

A version of this proof for computably compact spaces can be found in [95], and similar result for computable
Polish spaces (and with a simpler proof, but giving merely 01-computable nerves) is contained in [98]. The proof
in [95] relies on a new constructive version of Čech cohomology that was designed to circumvent the following
obvious obstacle: for a given cover, we cannot (in general) compute its nerve. However, Theorem 3.16 tells us
that this difficulty can be circumvented even if we use the standard notion of a nerve. Thus, we do not need to
out-source to the notationally heavy apparatus of algebraic topology compared to which the somewhat tedious
proof of Theorem 3.16 looks rather tame.

Proof of Theorem 4.37. As we noted above, we can assume that we a given a system of 2´n covers N that is
linearly nested under formal inclusion and is X-decidable; by Theorem 3.16 and Remark 3.18 this can be done
computably. We say that a sequence of finitely generated uniformly computable abelian groups pAjq is strongly
completely decomposable if each Ai uniformly splits into a direct sum of its cyclic subgroups, and furthermore the
sets of generators of the cyclic summands are given by their strong indices.

Fix a X-decidable finite cover C.

Claim 2. The groups HipNpCqq are strongly completely decomposable (uniformly in C and i).

Proof. The finite complex NpCq is computable because the cover C is X-decidable. A close examination of the
definitions shows that, given C (as a finite set of parameters) and i, we can compute the generators of Ai “
HompAi,Zq and compute di. We will need the fact below which is well-known; see [47] for a proof.

Fact 4.38. Let G ď F be free abelian groups. There exist generating sets g1, . . . , gk and f1, . . . fm (k ď m) of G
and F , respectively, and integers n1, . . . , nk such that for each i ď k, we have gi “ nifi.

We can computably find the set of generators pajq of Kerpdiq and a set of generators pbsq of Impdi´1q such that
for each s there is an integer m and an index i such that mai “ bs; we know that such generators exist so we just
search for the first found ones. It follows that the factor HipNpCqq “ Kerpdiq{Impdi´1q is strongly completely
decomposable with all possible uniformity. �

Recall that a group admits a Σ0
1 presentation if it is isomorphic to a factor of a computable group by a Σ0

1

subgroup.

Claim 3. The direct limit limCPN HipNpCqq admits a Σ0
1 presentation.

Proof. We can list the ε-covers and decide whether two given basic open balls intersect in the listed covers. The
refinement relation between two covers C Ďform C 1 in N induces a simplicial map between the respective nerves
NpCq and NpC 1q, and this induces a homomorphism between the respective cohomology groups HipNpCqq Ñ
HipNpC 1qq. By Claim 2, these finitely generated abelian groups are effectively completely decomposable uniformly
in C and i. Note that Imφ is generated in HipNpC 1qq by the images of the generators of HipNpCqq. Similarly to
the proof of Claim 2, choose new generators of HipNpC 1qq and Imφ so that the latter are integer multiples of the
former. In particular, it is easy to see that Imφ is a computable subgroup of HipNpC 1qq. This means that we can
augment Imφ with extra generators in a computable way to expand it to HipNpC 1qq. It follows that

lim
CPN

HipNpCqq “ HipGq

can be consistently defined as the “union” of the HipNpCqq, C P N , to obtain a group in which the operations are
computable and the equality is Σ0

1. (The equality is merely Σ0
1 because an element a P HipNpCqq can be mapped

to 0 in some HipNpC2qq which appears arbitrarily late in the directed system.) �
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This finishes the proof of the theorem. �

We will also see that in Theorem 4.37 “uniformly c.e. presented” cannot be improved to “uniformly computably
presented”; this is Corollary 4.43. (In fact, in the example given in the next subsection each individual cohomology
group will actually have a computable presentation, just not uniformly so.)

Applications. Perhaps the most significant application to date is computability of Pontryagin duality for computably
compact connected groups; see [95]; we omit the definitions. Further applications of computability of cohomology
include various index set results in topology; see [95]. One sample result is:

Corollary 4.39 ([95]). The index set of solenoid spaces24is arithmetical among all compact Polish spaces.

It follows that in any class of compact manifolds in which non-homeomorphic members have non-isomorphic
cohomology groups (for some i), the homeomorphism problem is arithmetical provided that the respective coho-
mology groups have arithmetical isomorphism problem. The significance of this fact is that, in general, even if a
computably metrized manifold admits a triangulation, it is not known whether it always admits an arithmetical
triangulation25. Indeed, even in the seemingly trivial case of compact surfaces, producing an arithmetical triangu-
lation based entirely on the given metric takes some 18 Turing jumps [60]. It is believed that complexity is likely
close to being optimal. In contrast, calculating Čech cohomology groups allows to completely avoid triangulation
(that does not even have to exist, let alone an arithmetical triangulation). Some further discussion can be found in
[60].

In the next subsection we discuss how Čech cohomology can be used to find a computably metrized space not
homeomorphic to a computably compact one.

4.7. Computably metrized spaces not homeomorphic to computably compact ones. As we noted in the
introduction, finding an example of a computably metrized compact space not isometric to a computably compact
one is easy: just take r0, αs for a left-c.e. non-computable real α. The situation is significantly more difficult if we
want to work up to homeomorphism. For instance, we have seen that every computably metrized Stone space is
homeomorphic to a computably compact one, so no such example can be found among totally disconnected compact
Polish spaces.

It seems that constructing such an example necessarily requires some relatively advanced techniques. A few years
ago, a closely related result was established by Bosserhoff and Hertling [14]: For any n ě 2 there exists a c.e. compact
subset C Ď Rn such that φpCq is not computable compact for any self-homeomorphism φ of Rn. However, the
result and the techniques that were used to establish it are restricted to Rn. Hoyrup, Kihara and Selivanov [64]
were the first to announce a general construction of a computably metrized space that is not homeomorphic to
any computably compact space. Using completely different techniques, a connected example has recently been
suggested in [95].

We outline two constructions of a compact computable space not homeomorphic to any computably compact
space. The first proof is more similar to what Hoyrup, Kihara and Selivanov [64] announced; it will be given in
almost complete detail. The second proof can be found in [95]. It produces a relatively natural example using
Pontryagin- van Kampen duality; because too much background is necessary to fully explain the proof, we will only
briefly sketch it here. Both proofs rely heavily on Čech cohomology. Finally, we will briefly discuss whether we can
completely avoid cohomology to prove the theorem below.

Theorem 4.40. There exists a computably (completely) metrized compact Polish space not homeomorphic to any
computably compact space.

First proof of Theorem 4.40. The proof is very similar to the one given in Hoyrup, Kihara and Selivanov [64]. The
proof that we give here replaces the most complex definability part of their proof with an argument that involves
computability of Čech cohomology first established in [95] and then improved in the proceeding subsection.

The definition below “encodes” a set into a space. We view an isolated point as a 0-sphere S0.

24A solenoid (space) is a compact connected topological space which the inverse limit of a system pSi, fiq with fi : Si`1 Ñ Si, where

each Si is a circle and fi is the map that uniformly wraps Si`1 ni ě 2 times around Si. These constructions are important in the area

of hyperbolic dynamical systems.
25Classically, classification of manifolds works via trangulations.
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Definition 4.41. For a set X Ď ω, let CP pXq be the one-point compactification of the disjoint union of spheres
Sk, with infinitely many copies for each k P X.

One way to think about CP pXq is as follows. Fix a fishbone (a 1-atom) in the Cantor space 2ω in which every
isolated path (an atom) is replaced with a copy of Sk for some k ě 0.

Proposition 4.42.

(1) X is Σ0
3 if, and only if, CP pXq is computably (completely) metrizable.

(2) X is Σ0
2 if, and only if, CP pXq admits a computably compact presentation.

Proof. (1) Recall that using a modulus of compactness we can find a split of a computable Polish space into two
clopen subspaces, as explained in Subsection 4.4. Recall also that 01 can compute a modulus of compactness. Also,
a space is connected if it does not have a non-trivial clopen split. Thus, 02 can produce a uniform list of computable
indices of the clopen connected subspaces of CP pXq. Each such index is a finite collection of (open or closed) open
balls that contain (only) the component. For a (finite) simplicial complex, Čech cohomology groups are isomorphic
with the respective simplicial cohomology groups; see the final chapter of [112]. For the n-sphere we have:

HppSnq – Z iff p “ 0, n,

and it vanishes otherwise.
Suppose that we know that a computably mertrized M is homeomorphic to Sk, k ą 0, but we do not necessarily

know what this k is. The modulus of compactness of each connected component of M is 01-computable uniformly
in the finite set of parameters that isolates this component. Since the Čech cohomology groups are uniformly Σ0

2-
presentable (by Theorem 4.37 relativized to 01), in this case M – Sk is equivalent to saying that ȞkpMq contains
at least one non-zero element, which is a Σ0

3 property (the equality in the group is Σ0
2). It follows that 02 can list

the components for which the kth cohomology group is non-trivial, and it can also list such k ą 0. The set of these
k is equal to X.

Now we prove that, given X P Σ0
3, we can produce a computable metric on CP pXq. Represent Σ0

3 as the set
of all k such that DxD8yRpx, y, kq, for some computable predicate R Ď ω3; see [130]. Say we are testing whether
k P X, k ą 0. For each existential witness x corresponding to k, create a new component and do more steps in
making it look like Sk. This is done by enumerating more points into the components when more D8-witnesses are
found for the given existential witness x; abandon the finitely many points until the next expansionary stage.

This gives a uniformly computable sequence of spaces, each space is either finite discrete or is equal to Sk. We
can make sure there are infinitely many copies Sk for each k P X. Put them together (uniformly shrink the ith
component by 2´i and use an ultra-metric of the Cantor space to define the distance between different components).

(2) It follows from the material in Subsection 4.4 that, using computable compactness we can list indices (names)
clopen connected components of a (compact) space using 01. It also follows from Proposition 3.30 that each
component can be viewed as a computable closed subset of M (being a finite union of computable sets), and thus
it is also computably compact uniformly in its name.

computable compactness makes the Čech cohomology groups uniformly c.e.-presented, and saying that it is not
trivial is now merely Σ0

2. This makes X a Σ0
2-set.

For the other direction, given a Σ0
2 infinite X, represent it via D@. Assume we are guessing whether k P X. For

each D-witness keep building a computably compact copy of Sk unless a counterexample to the universal quantifier
is found (in which case abandon the component). Then put the spaces together as before, but this time observe
the space is computably compact since each component can be easily made uniformly computably compact. �

It remains to fix a Σ0
3-complete set X. �

Corollary 4.43. Theorem 4.37 cannot be improved to state that the Čech cohomology groups are uniformly com-
putably presented.

Proof. Let X be Σ0
2-complete and consider CP pXq defined above. Then CP pXq admits a computably compact

presentation. In fact, the construction of CP pXq is based on the uniform construction of a sequence of computably
compact disjoint components, each being either Sk or a finite union of isolated points.
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Assume that the Čech cohomology groups were uniformly computably presented in general (and for these com-
ponents in particular). It is well-known that the cohomology of a finite disjoint union is the direct sum of the
cohomologies of the components; this follows from Mayer–Vietoris sequence calculations [112]. Thus, the compo-
nents that are a finite union of isolated points will have trivial cohomology groups for i ą 0. Also, by assumption,
saying that the ith computable cohomology group has a non-zero element is now Σ0

1. Thus, to decide if i P X (i ą 0)
it is sufficient to ask whether there is a component whose ith cohomology group is non-trivial, and this is also Σ0

1

contradicting the choice of X. �

As we already mentioned above, Khisamiev [80] showed that every c.e. presented torsion-free abelian group has a
computable presentation. All known proofs of this result are non-uniform, but the only non-uniformity comes from
deciding whether there is a non-zero element on the group. As a biproduct of the proof of the corollary above, it
follows that this obstacle cannot be circumvented.

The basic idea of the first proof above was to code information into connected components of the space. Producing
a connected example seems to necessarily require some advanced techniques that are outside the scope of this paper.
We outline an argument that relies on the recent results from [95, 98] and which gives a connected example of covering
dimension 1. We leave many terms and notions undefined, see [95, 98] for the definitions and more explanation.

Second proof (sketch). For a discrete torsion-free abelian group G, the 1st Čech cohomology group of the space

of its compact connected Pontryagin - van Kampen dual pG is isomorphic to G; see, e.g., Part 5 of Chapter 8 of
[63]. Using the aforementioned result of Khisamiev and two new computable versions of Pontryagin – van Kampen
duality from [95] and [98] we can conclude that, for some broad enough class of groups, namely q-divisible groups, G

has a ∆0
2-presentation iff pG is computably metrizable, and G has a computable presentation iff pG has a computably

compact presentation. As there are plenty of ∆0
2 q-divisible groups that have no computable presentation (including

examples having X-computable copies iff X is non-low [97, 98]), the result follows. Indeed, we can find a subgroup
of the rationals with this property; this will give a connected example of a solenoid space that satisfies the theorem.
In particular, there exist examples like that having covering dimension 1. �

We conjecture that one can completely avoid using homological algebra to prove Theorem 4.40. We suspect that
one way to do this would rely on a combinatorially involved construction similar to one that can be found in [61].
We outline a plan of this argument; a detailed verification would take too much space (if it works).

Cohomology-free proof idea (for Theorem 4.40). An n-star is a the Wedge sum of n-copies of the unit interval
(identify the left most-points of n copies of r0, 1s). The basic idea here is to replace n-spheres with n-stars in the
previously discussed proof of Theorem 4.40. A 0-star is just an isolated point. One can use a fairly basic technique
of ε-chains to produce a Σ0

4-enumeration of the set of n P N such that the space has an n-star component. As has
been suggested by Ng (personal communication with the second author), under the assumption of computable com-
pactness, this definition should become Σ0

3. It remains to prove that, given a Σ0
4-set, we can produce a computably

metrized (compact) space that codes the set into its n-star components. This requires a relatively involved priority
construction that can be viewed as a 03-argument; see [61]. In [61], we can find a construction of this sort that
produces a locally compact space. As explained in [61], we can use the 1-point compactification of this space to
produce a compact space. �

It is not clear at all whether this approach (if it works) is any simpler than the approach that uses cohomology
since it relies on a 03-argument.

4.8. Computable universality of C[0,1]. Fix the standard computable presentation of Cr0, 1s under the supre-
mum metric given by piecewise linear functions with finitely many rational breaking points. We should note that
there are also “non-standard” computable presentations of this space that are isometric but not computably iso-
metric to the standard one. We also cite [8, 102] for further results about the computability-theoretic aspects of
this space. The theorem below has recently been established in [5] using a direct combinatorial argument. We give
a new proof that uses computable compactness to sort out the combinatorics.



COMPUTABLY COMPACT METRIC SPACES 47

Theorem 4.44. Every computably (completely) metrized Polish space can be computably isometrically embedded
into Cr0, 1s.

It is known that Cr0, 1s is actually not computably unique up to computable linear isometry [101, 102]. We
prove the theorem for the ‘natural’ computable presentation of the space given by, e.g., piecewise linear functions
with rational parameters.

Proof. It is sufficient to computably embed the Urysohn space U into the natural computable presentation of Cr0, 1s.
It is known (and is not hard to show) that it is computably universal in the sense that every computable Polish
space can be computably isometrically embedded into the Urysohn space; see [5, 79]. There is no ambiguity here
because the Urysohn space admits a unique computable presentation, up to computable isometry [101]. It is also
known that the original construction of Urysohn is actually primitively recursively universal [5], but unfortunately
the space is no longer primitively recursively unique (categorical). For the present proof, we shall only need the
(general recursive, Turing) computable universality of U. For a related construction of the Urysohn metric space in
constructive setting without choice principles, we cite [93].

We return to the proof. Recall that QU “ ppiqi, the rational Urysohn space, is dense in U. It is also known that
the distances between special points pi and pj are rational numbers uniformly computable from i, j (as fractions).

In the Hilbert cube, basic open box is a product of intervals only finitely many of which are open rational
sub-intervals of r0, 1s and the rest are r0, 1s. It is clear that basic open boxes are effectively open. We computably
adjust the metric in the Hilbert cube and view it as H “ r´dpp0, pnq, dpp0, pnqs

ω, and thus adjust the notion of a
basic open box accordingly.

Observe that
´dpp0, pnq ď dpp, pnq ´ dpp, p0q ď dpp0, pnq,

for any pn. Say that a point ξ in H “ r´dpp0, pnq, dpp0, pnqs
ω corresponds to pj if the projections πnpξq of the point

to the edges of the cube are exactly the

γnppjq “ dppj , pnq ´ dppj , p0q,

and let U be the collection of all such points. We can effectively enumerate U as a sequence of computable points.

Lemma 4.45. P “ clpUq is computable closed.

Proof. Since we can list U which is dense in clpUq, by Lemma 3.27 it is sufficient to show that clpUq is effectively
closed. One way to do this is as follows.

Say that reals d1, ..., dk are legit if there is a real d such that

tdppi, pjq, d, d1 ` d, ..., dk ` d, i ă j ď ku

is a diagram of a metric space (on points pi, p), where di “ dpp, piq´dpp, p0q and d “ dpp, p0q. Recall also that U has
the extension property, in other words if there is a finite metric space extending p0, . . . , pk then it is isometrically
embeddable to U over p0, . . . , pk. The existence of a 1-point extension p, p0, . . . , pk is equivalent to saying that
d0, . . . , dk are legit, where di “ dpp, piq ´ dpp, p0q, as witnessed by d “ dpp, p0q.

Claim 4. We can decide whether a given basic open box in H contains a legit tuple.

Proof. There is a first-order formula in the language of pR,`,ˆ, 0q that says that, for some real d and reals d1, . . . , dk
that range between some fixed rational parameters (describing the intervals in a given open box), tdppi, pjq, d, d1 `

d, ..., dk ` d : i, j ă ku is a diagram of a metric space. Recall that dppi, pjq are rational. Using Tarski’s elimination
of quantifiers, we can computably find an equivalent quantifier-free formula with rational parameters. It follows
that the property is decidable because equality and order are decidable for rational numbers. �

Recall that QU “ ppiqi, the rational Urysohn space, is dense in U. Since QU is dense in the Urysohn space, a basic
open box of H (determined by the projection onto the first k coordinates) contains a tuple of legit reals if, and only
if, it contains dppj , piq´dppj , p0q, where pj is sufficiently close to p, where p P U are such that di “ dpp, piq´dpp, p0q

and d “ dpp, p0q witness that the tuple is legit.
Since we can decide whether a basic open box is free of legit tuples, it follows that we can decide which basic

open box contains no pγippjqqi for any j. Since the collection of such sequences U is dense in clpUq, and since basic
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open boxes are uniformly effectively open and form a basis of topology in H, we conclude that we can effectively
enumerate the complement of clpUq. �

We effectively identify 2ω with the ternary Cantor set C in r0, 1s (in the sense that we do not distinguish
between these computably homeomorphic spaces; see also Theorem 3.33). This is where we get to use effective
compactness (which is implied by Claim 4 and the effective compactness of the Hilbert cube). Using Theorem 3.40
and Proposition 3.29, fix a computable surjective g : C Ñ P , and let gi “ πig, where πi is the ith projection in
the cube. Define a computable fi to be equal to gi on the Cantor set, and to be linear otherwise (this standard
technique was discussed in Subsection 4.1). We define a computable embedding of U into Cr0, 1s by mapping pi
into fi.

To show that the map pn Ñ fn is isometric, first note that

d ppi, pkq “ pdppk, piq ´ dppk, p0qq ´ pdppk, pkq ´ dppk, p0qq “ γi ppkq ´ γk ppkq “ fi ptkq ´ fk ptkq ,

where tk is any pre-image (under g) of the point in H corresponding to pk. It thus follows that

d ppi, pkq ď dsup pfi, fkq .

On the other hand, for any i, k P ω and any t P C with gptq “ limjpγsppjqqs P clpUq, we have

fi ptq ´ fk ptq “ πiplim
j
pγsppjqqsq ´ πkplim

j
pγsppjqqsq “ lim

j
γi ppjq ´ lim

j
γk ppjq “ lim

j
pd ppj , piq ´ d ppj , pkqq.

By the triangle inequality we get |d ppj , piq ´ d ppj , pkq| ď d ppi, pkq for every j, and therefore

|fi ptq ´ fk ptq| ď d ppi, pkq ,

for any t P C. By the definition of fn, any maximum difference must be attained on C. Thus

dsup pfi, fkq ď d ppi, pkq .

Since the maps pi Ñ fi are uniformly computable in i, it follows that the isometry defined above for ppiqiPω induces
a computable isometric embedding UÑ Cr0, 1s. �

4.9. Covering dimension and embeddings into Rn. Fix a compact Polish space M .

Definition 4.46. The covering dimension of M is the least n P N Y t8u such that every open cover of M has a
refinement of order n` 1, i.e., each point belongs to at most n` 1 sets.

We know that every compact space is homeomorphic to a subspace of the Hilbert cube r0, 1sω, and we have seen
that this also holds effectively. It is well-known that a compact space of covering dimension n can be homeomor-
phically embedded into R2n`1 (and indeed, into r0, 1s2n`1). Is this also computably true? One pleasant application
of X-decidable covers is the following theorem that answers the question in the affirmative:

Theorem 4.47. Let M be a n computably compact Polish space of covering dimension n. Then there is a computable
homeomorphic embedding of M into R2n`1.

The proof is an improved version of a result of Melnikov and Harrison-Trainor [60] that states that every com-
putably metrized compact Polish space of covering dimension n can be 01-computably homeomorphically embedded
into R2n`1. The proof that we give below is more subtle and relies heavily on a classical argument from [124] but
with some modifications. It uses computability of nerves, so strictly speaking ˚˚-computable compactness would
be enough to run the proof.

Proof. We say that a continuous f : M Ñ R2n`1 is an ε-homeomorphism if f´1pxq has diameter at most ε for every
x in the range. We will need to prove an computable version of the following well-known fact:

Fact 4.48. The set of ε-homeomorphisms form a dense open set in CrM,R2n`1s.

Let’s first explain how at least one ε-homomorphism can be found. The proof below is an adaptation of the
argument that can be found in [124] (see Theorems 4 and 5), however, our definition of an ε-homomorphism is a
bit different.

Fix ε “ 2´m for some m. Construct a computable ε-homeomorphism of M to R2n`1 as follows. Use Theorem 3.16
and fix a strongly X-decidable basis of computable balls K in M , recall that this means that the non-emptiness of
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intersection (of finite families) is decidable. (By Remark 3.18, we could alternatively use computable closed balls
with the same centres and same radii.)

(1) Find an open ε-cover C1, ..., Ck of M having order n`1, where each Ci is a finite union of open computable
balls from K.

(2) Compute the nerve N of C1, . . . , Ck.
(3) Find special points c1, ..., ck in R2n`1 and a (geometrical) simplicial complex on vertices c1, ..., ck isomorphic

to N via a simplicial map which maps vertices to vertices.
(4) Define dipxq as follows. First, assume Ci “ YjPJiBpki,j , ri,jq and set di,jpxq “ suptri ´ dpx, ki,jq, 0u. (In

Theorem 4 of [124] Pontryagin uses the distance from x to the complement of Ci.) Then define

dipxq “ sup
jPJi

dipxq,

let upxq “ d1pxq ` . . . ` dkpxq. Noting that u is strictly positive (because C1, . . . , Ck cover the space), set
θipxq “ dipxq{upxq, and finally define

fpxq “
ÿ

i

θipxqci.

We will argue that f is an ε-homomorphism of M to R2n`1 with some additional properties. But first, we argue
that the steps above can be performed computably. The first step is possible because some ε-cover C 11, . . . , C

1
r

having order n` 1 exists. By compactness, each C 1i can be replaced with a finite union Ci of (closed or open) basic
computable balls from K of radii at most ε and that are contained in C 1i, and so that together C1, . . . , Cr cover the
space. The new cover C1, . . . , Cr has order at most the order of C 11, . . . , C

1
r because Ci Ď C 1i. We conclude that,

in (1), such a cover exists among finite subsets of K. We can decide intersection for computable balls in K, and
therefore we can also decide which finite families (representing Ci) intersect. The diameter of each Ci can be easily
computably estimated from above26. Together with X-decidability of K this implies that, given ε “ 2´m, we can
computably search for such an ε-cover satisfying p1q. This also implies that the nerve formed in the second step is
uniformly computable (as a finite object, i.e., is uniformly given by its strong index).

The third step is possible because in topology we prove that finite simplicial complexes are realizable in Euclidean
spaces, this is done using points in a general position, and being in a general position is an open property27. If
the (combinatorial) dimension of the simplex is n then this can be done in R2n`1 using points that are in general
position, which is a c.e. property. See, e.g., Theorem 3 of [124]. There is much freedom in the choice of points
in general position, in particular, those can be found in any collection of open balls V1, . . . , Vk in R2n`1; this is
Theorem 2 of [124]. Theorem 1 of [124] also implies that c1, . . . , ck can be chosen special. Searching for a simplicial
map is a finitistic task and can be done in finite time.

The third step uses elementary properties of computable functions to define a computable f .

The proof that f is an ε-homeomorphism is essentially literally the same as the proof of the analogous property
of the ε-homeomorphism constructed in the proof of Theorem 4 of [124], because our function satisfies the same
properties (sufficient to prove that it is an ε-homeomorphism) as the function built in the proof of the aforementioned
Theorem 4 of [124]. More specifically, θi is continuous and has support Ci, and also for every x we have that
ř

i θipxq “ 1. For instance, it follows that a face in the nerve of the cover is mapped to the corresponding face in
the geometric complex on c1, . . . , ck. We refer the reader to Theorem 4 of [124] for further details.

It is rather important that in step (3) of the definition of f we only needed that c1, . . . , ck were in general position.
By the aforementioned Theorem 2 of [124], such points can be found in any collection of open neighbourhoods of
R2n`1. In particular, this is exploited in the proof of Theorem 5 of [124] to show that the set of ε-homeomorphisms
form a dense open set in CrM,R2n`1s. Although our definition of f is different from that in [124], it shares all the

26This can be done using, e.g., the distances between the centres and the radii. Alternatively, replace all computable balls in Ci with

the respective closed balls that are computable closed sets by Proposition 3.30. Then use that the union of finitely many computable

closed sets is computable, and that the diameter is a supremum of a computable function defined on the computably compact space;
see Proposition 3.5. This gives an arbitrary tight upper estimate on the diameter of Ci, with all possible uniformity.

27Points c1, . . . , ck P Rd are in general position of any subset of at most d-many points of tc1, . . . , cku is linearly independent.
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properties needed from an ε-isomorphism in the proof of Theorem 5 of [124]; in particular, all that is needed is that
it maps a face of the nerve to the respective face of the geometric complex.

In other words, we have:

Fact 4.49. For every g P CrM,R2n`1s and every m, k ą 0, there exists a computable 2´k-homomorphism f such
that

sup
xPM

||fpxq ´ gpxq|| ă 2´m.

Such an f from the fact above will have a rather clear definition given by the construction described above, and
for some specific choice of special points c1, . . . , ck.

We thus iterate this process. Given an 2´n-homeomorphism fn, search for an 2´n´1-homeomorphism fn`1

(according to (1)-(4) above), such that supxPM ||fnpxq ´ fn`1pxq|| ă 2´n. The limit of the process exists and gives
a computable injective continuous embedding of M into R2n`1, thus, it is a homeomorphic embedding (as injective
continuous functions on compacta are homeomorphisms). �

4.10. Probability spaces and Haar measure. For a computable compact space X, the space of all probability
measures PpXq is a computably metrized space under the Wasserstein metric defined to be

dwpµ, νq “ sup |

ż

fdµ´

ż

fdν|,

where the supremum is taken over all 1-Lipschitz functions upon X; that is, |fpxq ´ fpyq| ď dpx, yq for every
x, y P X. The dense set is given by Dirac measures which are the probability measures concentrated at finitely
many special points of X. We refer the reader to [65] for further background on computability of measure spaces.
Gács [48] initiated a systematic investigation of the effective content of abstract probability and measure spaces in
the context of algorithmic randomness.

Perhaps the first known construction of a surjective computable Φ : 2ω Ñ Pp2ωq can be found in Day and Miller
[33], but a very closely related argument can be found in the earlier paper [65]. Computable compactness of Pp2ωq
was later used in [128]. Interestingly, this is a special case of Theorem 3.40 and the lemma below due to Marcone
and Valenti [96]. We also note that in the special case of Pp2ωq the lemma essentially becomes a triviality; its
two-line proof can be extracted from [33].

Lemma 4.50 ([96]). If X is computably compact then so is PpXq.

Proof. To cover PpXq, take a finite 2´n-cover of X and let pxiq be the finitely many centres of the open balls
forming the cover. Say, there are N such balls. Take the finite collection of Dirac measures concentrated in the

points pxiq and taking the values of the form k
2´n

N2
, where k P ω. There are only finitely many such measures, let

D be the set of these measures. We claim that balls of radius 2´n`2 centred at these points cover the whole space.
Take any other Dirac measure µ concentrated at finitely many points pyjq. We can find, for each j, the least

index i “ cpjq such that the ball centred at xi contains yj . For each i, let

Ci “ tyj : cpjq “ iu,

and note that dpxi, yjq ă 2´n for every yj P Ci. Define

νpxiq “
ÿ

jPCi

µpyjq

and let ρ P D be a measure (from the fixed above finite set) that differs by at most
2´n

N
from ν at every xi. Fix

any 1-Lipschitz function f and assume it takes value 0 at x0 (recall this means |fpxq ´ fpyq| ď dpx, yq) and assume
the diameter of the space X is 1, which makes the absolute value of f also bounded by 1. Then

|

ż

fdν ´

ż

fdρ| “ |
ÿ

iăN

fpxiqpµpxiq ´ ρpxiqq| ď |
ÿ

iăN

pµpxiq ´ ρpxiqq| ď N
2´n

N
“ 2´n.
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On the other hand,

|

ż

fdµ´

ż

fdν| “ |
ÿ

iăN

p
ÿ

jPCi

fpyjqµpyjq ´ fpxiqνpxiqq| “ |
ÿ

iăN

ÿ

jPCi

pfpyjq ´ fpxiqqµpyjq|,

and noting that dpxi, yjq ă 2´n for every yj P Ci, this is bounded from above by 2´n
ř

j µpyjq “ 2´n. It follows

that the distance between ρ and µ is at most 2´n`1. To finish the proof, recall that such Dirac measures are dense
in the space, and the choice of µ was arbitrary. �

A few years ago Jason Rute suggested the proof below in a personal communication with Melnikov and Nies. A
proof sketch similar to the one that we give below can be found on the logic blog edited by Nies; see [41, Section
17]. Recently this result has been rediscovered in [123]; see [123] for a complete and detailed proof.

Theorem 4.51. For a compact computable group G, the Haar measure is computable iff G is computably compact.

Sketch. Suppose G is computably compact. The property of being translation invariant is a Π0
1 property. So the

Haar measure is contained in an effectively closed singleton of the computably compact (by Lemma 4.50) space
PpGq. Therefore, the Haar measure is computable by Fact 3.25.

Now take a computable compact group G that has a computable Haar measure. We want to show it is computably
compact. Replace dpx, yq with the (integral) average of dpgx, gyq, where the average is taken in the Haar measure
as g varies across the group. This gives a computable G-invariant metric compatible with the original metric.

Now, to show that G is computably compact (in this new metric), it is enough for each rational k, to effectively
find a finite set of points ak0 , ..., a

k
n´1 for which every point in G is within distance 2´k of one of these points. Fix k.

Using our Haar measure find the measure of a ball of radius 2´pk`1q. Call this measure δ. (Since the new distance
is G-invariant, all balls of the same radius have the same measure.) Find a collection of balls B0, ..., Bn´1 with
radius 2´pk`1q whose union C “ B0 Y ... Y Bn´1 has measure ą 1 ´ δ; recall that the measure is left-c.e. Now,
consider any point x not in this union C. It has to be at distance ă 2´pk`1q from the union. Otherwise, there
would be a ball centred at x with radius 2´pk`1q, and hence having measure δ, which is disjoint from the union C.
But the union C has measure ą 1 ´ δ, so this cannot happen. Therefore all points of G are within distance 2´k

of the centres of B0, ..., Bn´1. This algorithm shows that the space is computably compact in the new metric. To
show it is computably compact in the original metric, for any finite list of rational balls in original metric, convert
it to a list of balls in the new metric. Now, if this list of balls covers the space G, by computable compactness, we
will eventually find this out. �

It follows from Theorem 4.35 that a profinite group admits a recursive presentation iff it has a computably
metrization with computable Haar measure iff it admits a computably compact presentation. (In the latter two
cases we need to also assume the operations are computable.) It was established in [99] that recursive profinite
groups are exactly the Pontryagin duals of computable torsion groups, and it is not difficult to construct an example
of a procyclic, computably metrized group whose dual has no computable copy [99]. (A similar result has recently
been established in [123].) In the connected case, one of the proofs of Theorem 4.40 actually builds a computably
metrized group with computable operations whose space is not homeomorphic to any computably compact space.
We summarise this below:

Corollary 4.52 ([95, 99]). In the classes of connected compact abelian and profinite abelian groups there exist
examples of computably metrizable groups no computable metrization of which can compute Haar measure.

4.11. Some further open questions. In Subsection 4.4 we explained why the characterisation problem and the
isometric isomorphism problem for compact sets are arithemtical, and also why the homeomorphism problem for
compact Polish spaces is Σ1

1-complete. Similar results for compact Polish groups can be found in [99]. The following
related questions are left open:

Question 4.53.

(1) (Melnikov and Harrison-Trainor28) What is the complexity of the isomorphism problem for (not necessarily
compact) Polish spaces? (Is the naive upper bound optimal?)

28This question and question (2) below have been posed in [60] in a slightly different form.
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(2) (Melnikov and Harrison-Trainor) What is the complexity of the characterisation problem ti : Mi –hom S3u

for the 3-sphere S3? What about the 2-ball? More generally, is it true that the (topological) characterisation
problem ti : Mi –hom Su for any compact manifold S is arithmetical?

It is known that the characterisation problem or every compact 2-surface (including the 2-sphere, obviously) is
arithmetical [60]. They key step in their proof produces an arithmetical atlas of a given computable surface.

Question 4.54 (Melnikov and Harrison-Trainor [60]). Suppose a compact computable manifold S. Does S admit
an arithmetical atlas?

We have already mentioned above that the index set approach has not yet been applied to the effective enu-
meration of all (partial) computably compact spaces. This seems reasonable assuming the thesis of the article
(that computable compactness is a natural approach to computability in the compact case). Also, there are not
many arithmetical completeness index set results in the literature (some can be found in [99]). The approach via
computable compactness seems rather natural for such potential completeness results in the compact case (cf. Re-
mark 4.31).

Question 4.55.

(1) Develop the index set approach to classification using the enumeration of all (partial) computably compact
spaces.

(2) Prove completeness results for the arithmetical index set estimates stated above and also for other results
that can be found in, e.g., [40, 60, 95].

In Subsection 4.4 we also explained how to construct a compact computable Polish space not homeomorphic to
any computably compact space; this is Theorem 4.40. We also conjectured that a 03 proof can be used to replace
algebraic topology, but this approach is by no means elementary (if it works). It is rather natural to ask whether
there is a less involved proof of Theorem 4.40. The question below is, of course, loosely stated.

Question 4.56. Find an elementary (elegant?) proof of Theorem 4.40.

In Subsection 4.3 we discussed an application of computable compactness to constructing basic sequences in
computable Banach spaces. Bosserhoff [13] constructed a computable Banach space with a Schauder basis and
no computable Schauder basis, and Downey, Long and Greenberg [94] showed that the index set of computable
Banach spaces with computable bases is Σ0

3 complete. Using the characterisation of Schauder bases together with
computable compactness, it is possible to show [94] that having a basis is a Σ1

1 property. The following question
seems rather challenging.

Question 4.57. Is the complexity of the index set ti |Wi is a computable Banach space with a Schauder basisu Σ1
1

complete?

There are many interesting open questions in the area of computable Banach spaces; see, e.g., Long [94]. It is
highly plausible that computable compactness can be used to attack some of these questions.

Algebraic topology has played a considerable role in many proofs throughout the paper. We believe that there
is much more to be said about the algorithmic content of algebraic topology, so we state:

Problem 4.58. Develop a general theory of computable algebraic topology and computable homological algebra.

Classically, the class of locally compact spaces is perhaps the narrowest natural class that contains both compact
and discrete spaces. There have been many attempts to define effective local compactness in the literature (e.g.,
[122]). Nonetheless, it seems that there is no commonly accepted and robust notion that would be considered
‘standard’.

Problem 4.59. Suggest a robust (and useful) notion of effectively locally compact Polish space.

We of course do not exclude the possibility that some of the known definitions will already be good enough, but
certainly we need to accumulate more results to draw any conclusions.
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Our last problem is concerned with primitive recursive analysis. Historically a lot of elementary computable
analysis was in fact developed primitively recursively; see, e.g., book [54]. However, gradually, primitive recursiveness
was abandoned, perhaps because of technical difficulties that arise while dealing with primitive recursive procedures.
Beginning with the 1980-s pretty much all computable analysis has been done using general Turing computability,
see [127], [148]. On the other hand, there has been an increasing interest in polynomial-time analysis of continuous
functions; see book [83]. Recently in [39] and [132, 133], it has been proposed to revive primitive recursive analysis
using modern methods; this program could potentially serve as a link between abstract computable analysis and
the more practical polynomial time and computational analysis.

For instance, say that a Polish space is punctual is the distances between special points are uniformly primitive
recursive nonzero reals (to avoid dealing with equality). Some recent results about punctual spaces can be found
in [5]. The role of compactness in primitive recursive analysis is very poorly understood. For example, using
computable compactness of r0, 1s, it is easy to show that every computable continuous function on r0, 1s is effectively
uniformly continuous, i.e., has a computable modulus of uniform continuity. The last section of [39] outlines a
primitive recursive version of this elementary fact. The proof also uses compactness, but it uses it rather differently
from the usual proof. On the other hand, one of the main results in [5] relies on the standard computable compactness
(in the sense of this paper) to establish a primitive recursive result. So perhaps more insight is needed to attack
the following:

Problem 4.60. Give a robust (and useful) definition of a punctually compact space.

We suspect that there are several potentially useful definitions of a punctually compact space that are not
equivalent. For instance, we would like to know whether the results discussed in this paper, especially Theorem 1.1,
hold primitively recursively.
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[68] Zvonko Iljazović. Compact manifolds with computable boundaries. Log. Methods Comput. Sci., 9(4):4:19, 22,

2013.
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