
A NOTE ON REALIZATION OF INDEX SETS IN Π0
1 CLASSES

ROD DOWNEY AND ALEXANDER MELNIKOV

1. Introduction

We assume that the reader is familiar with Π0
1 classes and index sets as per

Cenzer and Jockusch [1], and Soare [4]. The Kriesel Basis Theorem says that each
Π0

1 class has a member of c.e. degree. In [2], Csima, Downey and Ng analysed the
problem of determining which sets of c.e. degrees can be realised as members of Π0

1

classes. Such sets of degrees can be considered as index sets. To wit, we say that e
is realized in a Π0

1 class C iff there a member P of C with degT (We) =degT (P ), and
C is a Π0

1 class, then W [C] = {e : We is realisable in C}. Csima, Downey and Ng [2]
have recently gaven a precise classification of the index sets which name precisely
the c.e. degrees realised in some Π0

1 class. This involved the following notion. A set
S represents an index set I iff I =def G(S) = {e : (∃j ∈ S) We ≡T Wj}.

Theorem 1.1 (Csima, Downey and Ng [2]). An index set I is realisable in a Π0
1

class iff I has a Σ0
3 representation iff I has a computable representation.

Notice that a crude upper bound for the relevant index sets is Σ0
4, while some

Σ0
4-complete index sets such as {e |We complete} have Σ0

3 representations. (In this
last case take the singleton consisting of any index for the halting problem.)

This led to Csima, Downey and Ng trying to ascertain precisely which index sets
have Σ0

3 representations. Classical index set results by Yates [5, 6] show that if A is
low2 then {e |We ≤T A} has a Σ0

3 representation. Csima, Downey and Ng showed
that the collection of superlow c.e. sets have Σ0

3 representations, as do all upper
cones. They asked the following question.

Question 1.2 (Csima, Downey and Ng [2]). Is there some non-low2 c.e. set A
such that the c.e. lower cone below A has a Σ0

3 representation?

In this note we solve this question verifying a conjecture from [2].

Theorem 1.3. {e |We ≤T A} has a Σ0
3 representation iff A is low2.

2. The Proof

The proof is not difficult, but involves assembling a number of facts in a new
way. First we consider the computable functions f and g defined by the uniform
construction which, for each Wk, builds a splitting Wk = W 1

k ⊕W 2
k ≡def Wf(k) ⊕

Wg(k), and meets the requirements for i = 1, 2,

R〈e,i〉 : ∃∞s(Φ
W i

k
e (e) ↓ [s])→ Φ

W i
k

e (e) ↓ .
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We do this in the usual way: put x entering Wk[s] into the set which does not
injure the requirement of highest priority threatened. (This is the standard Sacks’
method.)

We could assume that f and g are strictly increasing in their arguments, andnote
that their domains do not overlap. In particular, without loss of generality we could
assume that:

(1) f(k) 6= f(j), g(k) 6= g(j) whenever j 6= k;
(2) f(k) 6= g(i) for any i and j;
(3) the sets {f(k) : k ∈ ω} and {g(k) : k ∈ ω} are both computable;

In particular, given j ∈ ω we can recognise whether j = f(k) or j = g(k) for some
k, and thus compute this k. Also, note that the family of sets {Wg(k),Wf(k)}k∈ω

is uniformly low.
Assuming (1)− (3) above, the following lemma is immediate:

Lemma 2.1. Let S ⊂ ω and let Ŝ = {f(k) | k ∈ S}∪{g(k) | k ∈ S}. Then S ≤1 Ŝ.

Proof. Both f and g 1-reduce S to Ŝ. �

Now suppose that A is non-low2. Then S = {e | We ≤T A} is Σ0
4 complete by

Yates [5, 6]. Suppose that S has a Σ0
3 representation R. Consider Ŝ.

We claim that e ∈ Ŝ if, and only if, either e = f(k) or e = g(k) for some k, and
if so then for this k we have

(∃j, i)(Wf(k) ≡T Wj &Wg(k) ≡T Wi &R(j) &R(i)).

If e ∈ Ŝ then e must be either f(k) or g(k) for some k, and since Wf(k) and
Wg(k) split a set below A both halfs must be c.e. sets below A. In particular, their

Turing degrees must be listed in the Σ0
3 representation R of S. Conversely, if both

Wf(k) and Wg(k) are listed in R, up to Turing equivalence, then they must be a
split of a set Turing below A.

To produce the upper bound on the syntactical complexity of the definition
above, recall that the sequence {Wg(k),Wf(k)}k∈ω is uniformly low. In particular,

the Σ
Wg(k)

3 set

{i : Wg(k) ≡T Wi}

is Σ0
3 uniformly in k, and similarly the Σ

Wf(k)

3 set

{j : Wf(k) ≡T Wj}

is Σ0
3 uniformly in k.

This brings the complexity of the relation e ∈ Ŝ down to Σ0
3. But S ≤1 Ŝ,

contradicting the Σ0
4-completeness of S. This concludes the proof.

3. Questions

There are a number of quite interesting questions which remain open.

(1) For what intervals of c.e. degrees [a, b] can we realize {c | c ∈ [a, b]}? We
know that for any a and b = 0′, and a = 0 and b low2. What else?

(2) (Csima, Downey, Ng) What is the situation for separating classes? If we
insist that the host class is a separating class, what Index Sets can be
realized. The only known singleton is 0′ as witnessed by, for example, the
class of Martin-Löf random reals. It is known by using results of Downey,
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Jockusch and Stob [3], no “array computable” singleton is possible. Is any
incomplete (nonzero) singleton possible?

(3) What about strong reducibilities? For instance weak truth table reducibil-
ity? Again we know that ∅′wtt is possible using random reals, but it also
seems that some singletons are not possible. Of course here the indxex sets
will be Σ0

3 as given.
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