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Abstract. The main result is as follows. Fix an arbitrary prime q. A q-divisible torsion-free (discrete, countable)

abelian G has a ∆0
2-presentation if, and only if, its connected Pontryagin – van Kampen Polish dual Ĝ admits a

computable complete metrization (in which we do not require the operations to be computable).
We use this jump-inversion/duality theorem to transfer results on degree spectra of torsion-free abelian groups

to results about degree spectra of Polish spaces up to homeomorphism. For instance, it follows that for every
computable ordinal α > 1 and each a > 0(α) there is a connected compact Polish space having proper αth jump

degree a (up to homeomorphism). Also, for every computable ordinal β of the form 1 + δ + 2n+ 1, where δ is zero

or is a limit ordinal and n ∈ ω, there exists a connected Polish space having an X-computable copy if, and only if,
X is non-lowβ . In particular, there is a connected Polish space having exactly the non-low2 complete metrizations.

The case when β = 2 is an unexpected consequence of the main result of the author’s M.Sc. thesis written under

the supervision of Sergey S. Goncharov.

In the present paper we establish a new algorithmic version of Pontryagin – van Kampen duality between compact
and discrete groups and apply it to derive new results on degree spectra of Polish spaces up to homeomorphism.
To motivate such investigations, we note that the paper contributes to a new theme in effective mathematics that
combines methods of computable algebra [1–3] with tools of computable analysis [4–6] to advance both subjects.
The main tools of such studies are the notions of computability of algebraic and topological structures; Turing [7, 8],
Banacha and Mazur [9], Fröhlich and Shepherdson [10], Maltsev [11], Rabin [12] and others suggested various notions
of computability for infinite mathematical structures and spaces. Historically, the study of computable processes
in separable uncountable structures [5, 6] and in countable discrete algebraic structures [1, 2] have been rather
independent, even though both theories share essentially the same motivation. In particular, one of the central
problems in both themes has traditionally been:

Describe computably presentable mathematical structures.

Beginning with [13], there has been a line of investigation that aims to unite these two subjects into one general
theory; we cite [14–16] for several recent results in this direction, and we also cite [17] for a detailed exposition
of this new general theory. The main result of the present paper completely reduces the problem of computable
metrizability of a broad class of compact Polish spaces to the problem of ∆0

2-presentability of countable torsion-free
abelian groups. This result provides an explicit link between computable analysis and effective algebra.

Fix a prime q. Say that an (additive) abelian group A is q-divisible if, for every n ∈ N and every a ∈ A, qnx = a
has a solution in A.

Theorem 0.1. For a (discrete, countable) q-divisible torsion-free abelian group H, the following are equivalent:

(1) H has a ∆0
2 presentation.

(2) The connected compact Pontryagin – van Kampen dual Ĥ of H admits a computable (compatible, complete)
metrization.

We will clarify the terminology in due course, but we note that, similarly to Stone duality for Boolean algebras
and Stone spaces, Pontryagin – van Kampen duality is injective on the isomorphism types of discrete and compact

Polish abelian groups, and indeed G ∼= ̂̂
G for any (Hausdorff) locally compact abelian group G. In a related

work [18], Lupini, Melniikov and Nies have recently established a version of Pontryagin – van Kampen duality

between computable torsion-free abelian H and effectively compact Ĥ. Although the proof of (2) =⇒ (1) uses
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the apparatus developed in [18], the proof of (1) =⇒ (2) relies on some new technical ideas. Indeed, the jump
inversion technique that we introduce to prove (1) =⇒ (2) seems to have no direct analogy in computable analysis.

We emphasise that in (2) of Theorem 0.1 we do not require the group operations of Ĥ to be computable with

respect to the metric. However, the proof of (1) =⇒ (2) gives a computable metrization of Ĥ in which the

operations are computable. It follows that, for a q-divisible torsion-free abelian H, if Ĥ is computably metrizable,

then there is also a metrization of Ĥ that makes the operations computable. We also (strongly) conjecture that

the proof of (1) =⇒ (2) produces a primitive recursive (“punctual”) metrization of the connected compact Ĥ
(which is likely polynomial-time). Compare this to (3) of Theorem 1.5 in [19] saying that every computable torsion-
free abelian group has a punctual presentation. We refer the reader to [20, 21] for the foundations of punctual
structure theory and to [22] to the connections of this theory with computable analysis. We note however that this
conjectured consequence is perhaps not that exciting because we still do not know if there is a computable Polish
space not homeomorphic to a primitive recursive one1. (This is an open question recently raised by Ng.) Further
consequences of our result are concerned with spaces that are not computably presentable. We discuss this in detail
below.

0.1. Degree spectra of countable algebras. In computable algebra, one seeks to find a computably-theoretic
sufficient condition for a structure to be computably presentable. For example, every low Boolean algebra2 is
isomorphic to a computable one [24], and indeed every low4 Boolean algebra also has this property [25]. More
generally, we follow Richter [26] and define the degree spectrum of a countable algebraic structure A to be the set
of Turing degrees that compute a presentation of the structure:

DSp(A) = {a : a computes B ∼= A},
where ∼= stands for algebraic isomorphism. So, for a Boolean algebra A, if a low degree is in its degree spectrum
then A has a computable presentation. Therefore, the study of degree spectra is directly related to the problem
of computable presentability of structures. Much work has been done on degree spectra in common algebraic
classes [27–30] as well as for structures in general [26, 31–34].

One naturally seeks to understand what kind of collections of Turing degrees can be realized as a degree spectrum
of some structure. One of the most notable and counterintuitive results of this sort was obtained by Wehner [32] and,
independently, Slaman [33]: There exists a structure whose degree spectrum contains exactly the non-computable
degrees. (We call the collection of all non-zero Turing degrees the Slaman-Wehner spectrum.) The result answered
a question of Lempp in negative. One standard notion that can be used to measure the complexity of a spectrum
is as follows. If A is a countable structure, α is a computable ordinal, and a ≥ 0(α) is a Turing degree, then A has
αth jump degree a if the set

{d(α) : d ∈ DSp(A)}
has a as its least element. In this case, the structure A is said to have αth jump degree. A structure A has proper
αth jump degree a if A has αth jump degree a but not βth jump degree for any β < α. In this case, the structure A
is said to have proper αth jump degree. We cite [35–39] for various results on jump degrees of structures.

Usually, if a structure has αth jump degree this means that one can code a set of natural numbers into its Σc
α

diagram (in the sense of the infinitary computable language Lc
ω1ω [2]), while the standard way of getting a structure

with the non-lown-spectrum is to code a family of sets into the Σc
n+1-diagram of the structure.

0.2. Degree spectra of Polish spaces. While Banach spaces are usually considered up to linear isometries,
Polish spaces and Polish groups are often studied up to homeomorphism. Given a Polish space, one way to define
its computable presentation is to say that there exists a complete compatible metric d and a dense countable
sequence (xi) such that d(xi, xj) is a computable real uniformly in i, j. In this case we also say that the space
admits a (compatible, complete) computable metrization.

1By this we mean the metric completion of a countable metric space upon the domain of ω in which the predicates D<(i, j, k) ⇐⇒
d(i, j) < 2−k and D>(i, j, k) ⇐⇒ d(i, j) > 2−k are uniformly primitive recursive.

2Recall that an oracle X is low if the Halting problem X′ for Turing machines with oracle X can be computed using ∅′, the usual

Halting problem (with no oracles. The class low4 is defined similarly, but using X(4) and ∅(4). This is a degree-invariant property. We

cite [23] for further background.
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While the study of degree spectra of countable algebraic structures is a well-developed theory, essentially nothing
was known about the degree spectra of Polish spaces up to homeomorphism until the publication of the three recent
papers [40–42]. We follow [40] and define the degree spectrum of a Polish space M up to homeomorphism as follows:

DSphom(M) = {a : a computes N ∼=hom M},

where N is a separable metrized space with a distinguished dense set (xi) for which a can uniformly compute
d(xi, xj).

We discuss the little that is known about degree spectra of spaces up to homeomorphism. Results from [42] and
the unpublished manuscript [43] provide direct ways to code a set into the space using 4 and 3 jumps, respectively,
giving examples of spaces having proper 4th and 3rd jump degree. In [42, 43] two computable versions of Stone
duality have been established. As a consequence of the version contained in [42], degree spectra of Boolean algebras
are in a 1-1 correspondence with the degree spectra of the respective Stone spaces. We also cite [44] for a further
detailed computability-theoretic analysis of Stone duality, and for an application of Stone spaces to degree spectra
of Banach spaces up to linear isometry. However, degree spectra of Boolean algebras are not particularly rich.
For instance, the above-mentioned result about low4 Boolean algebras implies that the Slaman-Wehner spectrum
(indeed, the non-lown spectrum for n < 4) cannot be realized for Stone spaces. Also, the main result of [39] says
that no Boolean algebra has nth jump degree d > 0(n). Thus, to get interesting examples of degree spectra of
Polish spaces, one needs to consider spaces that are not totally disconnected compact.

A version of the main result of the present paper for effectively compact presentations can be found in the recent
work [18]. Using this version of Pontryagin – van Kampen duality from [18], one can get corollaries similar to the
ones we will give below shortly, but for effectively compact presentations. We will not define what it means to be
effectively compact here, but we do say that there is no direct way to connect the above-mentioned consequences
of [18] with degree spectra up to homeomorphism in our sense. This is because there exist computably metrized
spaces that have no effectively compact presentation [43], and indeed this in particular is true for the spaces
considered in [18] (as explained in [18]).

We now give several consequences of our main result.

Corollary 0.2 (Follows from [45, 46]). For every computable ordinal β of the form 1+ δ + 2n+ 1, where δ is zero
or is a limit ordinal and n ∈ ω, there exists a a connected compact Polish space having an X-computable copy if,
and only if, X is non-lowβ .

As an immediate consequence of the above, we obtain:

Corollary 0.3. For every β as in Corollary 0.2, there exists a connected compact Polish space having 0(β+1) as its
proper (β + 1)th-jump degree.

Corollary 0.4 (Follows from [36, 37, 46, 47]). For every computable ordinal α > 1 and degree a > 0(α), there is a
connected compact Polish space having proper αth jump degree a.

We now discuss how these corollaries follow from our main theorem and the cited results from the literature.
Recall that (2) of Theorem 0.1 does not assume that the group operations are computable. However, the theorem
does assume that the discrete group is q-divisible, and there is no such assumption in the cited results. Luckily,
all these constructions of interesting degree spectra of (discrete) torsion-free abelian groups in the literature share
the same feature, namely, they remain true if one also additionally makes the groups q-divisible for some prime q
(that is not used anywhere in the definition of the group otherwise). For instance, to see that this is indeed the
case for groups constructed in [36, 45] one has to get accustomed with the heavy machinery used in these papers.
We refer the reader to, e.g., Lemma 4.4 of [36] for a sample technical result of this sort where this stability under
q-divisibility is explicitly stated and verified. Discussing this machinery in any reasonable detail is outside the scope
of this paper; we cite the survey [48] for an informal explanation, and we also cite [49] for a more detailed technical
exposition of this machinery. When β = 2 in Corollary 0.2, no such complex machinery is required, and indeed the
space admits a relatively nice description. We give a complete explanation of this case in the last section.

We leave open whether Corollary 0.4 holds for α = 0, i.e. when a is just the degree of M . Also, we do not
know if Corollaries 0.2 and 0.3 hold for α = 0, 1. In particular, we do not know if there is a Polish space with the
Slaman-Wehner spectrum, up to homeomorphism. Such examples are not known for Polish spaces in general (up
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to homeomorphism), let alone compact or connected compact Polish spaces. Finally, we leave open whether the
main result holds without any extra assumption on the isomorphism type of the torsion-free group.

1. Pontryagin - van Kampen duality

All groups in this section are separable and Hausdorff. Given a topological abelian group G, the character

group Ĝ of G is the collection of all continuous homomorphisms from G to the unit circle group R/Z under the
compact-open topology (the topology of uniform convergence on compact sets), with pointwise addition. Note

that Ĝ is abelian as well. To avoid repetitions, henceforth we assume that all our groups are Polish and abelian.

Pontryagin - van Kampen duality states that, if G is locally compact, then Ĝ is also locally compact; furthermorê̂
G is topologically isomorphic to G via the map sending g ∈ G to the evaluation map ϕ 7→ ϕ(g) [50]. Similarly to

Stone duality in the case of Boolean algebras, the character group Ĝ contains all the information about G. For

a locally compact abelian group G, the character group Ĝ is usually called the Pontryagin - van Kampen dual of
G, the Pontryagin dual of G, or simply the dual of G if there is no danger of confusion. We refer the reader to

the books [51, 52] for more on this subject. We will need that G is discrete countable torsion-free iff Ĝ is compact
connected Polish.

We explain why the dual of a discrete group can be viewed as a closed subgroup of A = Tω, where T is the
unit circle group. Let T be the group R/Z, which is isomorphic as topological group to the multiplicative group of
complex numbers having norm 1. We say that a point x ∈ T is rational if the respective point of the unit interval
is a rational number. Then T equipped with rational points is a computable Polish group. The direct product

A =
∏
i∈N

Ti,

of infinitely many identical copies Ti of T carries the natural product-metric

D(χ, ρ) =

∞∑
i=0

1

2−i−1
di(χi, ρi),

where each of the di stands for the shortest arc metric on Ti. Under this metric and the component-wise operation
A is a computably metrized Polish abelian group. The dense sets are given by sequences (ai), where ai is a rational
point in Ti, and almost all ai are equal to zero. The basic open sets in

∏
i∈N Ti are direct products of intervals with

rational end-points such that a.e. interval in the product is equal to the respective Ti. Clearly, we can effectively
list all such open sets. (The exact choice of this basic system of balls is not crucial, but it will be convenient to
assume that the end-points of the intervals are rational.) Every compact abelian group can be realised as a closed
subgroup of A, as explained below.

Suppose G = {g0 = 0, g1, g2, . . .} is a countably infinite discrete group. Let Hom(G,T) be the subset of A =∏
i∈N Ti, (each Ti is a copy of T) consisting of tuples χ = (χ0, χ1, . . .), where each such tuple represents a group-

homomorphism χ : G → T such that χ(gi) = χi ∈ Ti. Since G is discrete, every group homomorphism χ : G → T
is necessarily continuous. Thus, Ĝ ∼= Hom(G,T). Since being a group-homomorphism is a universal property,
Hom(G,T) is a closed subspace of A. Pontryagin - van Kampen duality implies that every separable compact
abelian group is homeomorphic to a closed subgroup of A.

2. Proof of Theorem 0.1

2.1. Turning a computable Polish space into a ∆0
2 discrete group. Lupini, Melnikov and Nies [18] proved

that, for a connected compact Polish abelian group G, the following are equivalent:

(1) G has an effectively compact presentation (as a Polish space);

(2) Ĝ has a computable presentation.

In (1) there is no assumption about the computability of the group operations. A computably metrized compact
space is effectively compact if for every n we can uniformly computably list all of its open 2−n-covers. Since every
computably metrized Polish space is 0′-effectively compact, we obtain that for every computably metrized connected
Polish abelian G, its dual admits a ∆0

2-presentation. The effectively compact case requires extra care because the
non-emptiness of the intersection of basic open balls can be an undecidable property. In [18] this is circumvented
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using a new constructive version of a metric nerve to replace the usual nerve of a cover. However, if our goal is

to show that Ĝ admits a ∆0
2-presentation for a computably metrized G, then we do not need this new notion, and

therefore the proof becomes much more direct and transparent. We explain this below.

Our goal is to prove a computable version of the remarkable result stated below.

Theorem 2.1 (See Part 5 of Chapter 8 of [53]). For a compact connected Polish abelian group G,

H1(G) ∼= Ĝ,

where as usual Ĝ denotes the Pontryagin – van Kampen dual of G and H1(G) stands for the first Čech cohomology
group of the underlying metric space.

One does not need the operation of G to define H1(G); therefore homeomorphic connected compact abelian groups
are necessarily isomorphic as topological groups. See, e.g., [54] for a detailed exposition of cohomology theory for
compact abelian groups. So, our goal is to prove the following.

Theorem 2.2. Let M be a compact, computably metrized Polish space. Then, for each i, its ith Čech cohomology
group Hi(G) admits a ∆0

2-presentation.

2.1.1. The necessary tools from algebraic topology. Given a compact M , let N be the directed set of all its finite
open covers (under refinement). Since the covers by basic ϵ-balls, where ϵ ranges over positive rationals, are cofinal
among all covers, without loss of generality we can restrict ourselves only to covers by basic open balls with rational
radii. For each member C of N , define its nerve N(C) to be the collection of all sets in the cover that intersect
non-trivially. One can view N(C) as a (finite) simplicial complex in which the n-dimensional faces are exactly the
n-element subsets X of N(C) such that

⋂
{Y : Y ∈ X} is a non-empty set. For these finite simplicial complexes we

can define their cohomology groups H∗(N(C)) (with coefficients in Z).
We follow §73 of [55] and define the Čech cohomology group of a compact metrized space as follows. For a fixed

finite set of basic open balls C ∈ N and the respective metric simplex N(C), define the simplicial chain complex as
usual:

. . .→δ3 A2 →δ2 A1 →δ1 A0

where Ai are finitely generated free abelian groups and δi are boundary homomorphisms, and then define the
associated cochain complex Ai = Hom(Ai,Z) and define di : A

i → Ai−1 to be the dual homomorphism of δi+1.
Then Hi(N(C)) = Ker(di)/Im(di−1) is the ith cohomology group of the simplex N(C) which is a finitely generated
abelian group which can be thought of as given by finitely many generators and relations. Let H∗(M) be the direct
limit of H∗(N(C)) induced by the inverse system N under the refinement maps.

Chapter 1 (§11) of [55] contains a careful verification of the computability of the homology groups for finite
simplicial complexes, in the following sense. Given a (strong index of a) simplicial complex, one can uniformly
compute its i-th homology group represented as

⊕
i≤k⟨ai⟩, where a0, . . . , ak are the generators of the group such

that the orders of the cyclic ⟨ai⟩ are also uniformly computable. Since Ai = Hom(Ai,Z), one can easily observe
that that respective cohomology groups are also computable in this strong sense. We need a similar result for the
Čech cohomology groups, but these groups are no longer finitely generated.

2.1.2. Computability of the Čech cohomology.

Proof of Theorem 2.2. A version of this proof for effectively compact spaces can be found in [18]. We say that a
sequence of finitely generated uniformly computable abelian groups (Bj) is strongly completely decomposable if each
Bi uniformly splits into a direct sum of its cyclic subgroups, and furthermore the sets of generators of the cyclic
summands are given by their strong indices.

Claim 1. The groups Hi(N(C)) are strongly completely decomposable (uniformly in C and i).

Proof. A close examination of the definitions shows that, given C (as a finite set of parameters) and i, we can
compute the generators of Ai = Hom(Ai,Z) and compute di. We will need the fact below which is well-known;
see [56] for a proof.

Fact 2.3. Let G ≤ F be free abelian groups. There exist generating sets g1, . . . , gk and f1, . . . fm (k ≤ m) of G
and F , respectively, and integers n1, . . . , nk such that for each i ≤ k, we have gi = nifi.
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We can computably find the set of generators (aj) of Ker(di) and a set of generators (bs) of Im(di−1) such that
for each s there is an integer m and an index i such that mai = bs; we know that such generators exist so we just
search for the first found ones. It follows that the factor Hi(N(C)) = Ker(di)/Im(di−1) is strongly completely
decomposable with all possible uniformity. □

Recall that a group admits a Σ0
2 presentation if it is isomorphic to a factor of a ∆0

2 group by a Σ0
2 subgroup.

Claim 2. The direct limit limC∈N Hi(N(C)) admits a Σ0
2 presentation.

Proof. Note that 0′ can list all open ϵ-covers and decide whether two given basic open balls intersect. A refinement
map between two covers C ≤ C ′ in N induces a simplicial map between the respective nerves N(C) and N(C ′), and
this induces a homomorphism between the respective cohomology groups Hi(N(C)) → Hi(N(C ′)). By Claim 1,
these finitely generated abelian groups are 0′-effectively completely decomposable uniformly in C and i. Note that
Imϕ is generated in Hi(N(C ′)) by the images of the generators of Hi(N(C)). Similarly to the proof of Claim 1,
choose new generators of Hi(N(C ′)) and Imϕ so that the latter are integer multiples of the former. In particular,
it is easy to see that Imϕ is a ∆0

2 subgroup of Hi(N(C ′)). This means that we can augment Imϕ with extra
generators in a 0′-computable way to expand it to Hi(N(C ′)). It follows that limC∈N Hi(N(C)) = Hi(G) can
be consistently defined as the “union” of the Hi(N(C)), C ∈ N , to obtain a group in which the operations are
0′-computable and the equality is Σ0

2. (The equality is merely Σ0
2 since an element a ∈ Hi(N(C)) can be mapped

to 0 in some Hi(N(C ′′)) which appears arbitrarily late in the directed system.) □

Since Ĝ is torsion-free, to finish the proof it is sufficient to apply the result below relativized to 0′.

Proposition 2.4 (Khisamiev [57]). Every c.e.-presented torsion-free abelian group A has a computable presentation.

It follows that, for a computably metrized connected abelianG, its torsion-free discrete dual is ∆0
2-presentable. □

2.2. Turning a ∆0
2 discrete group into a computable Polish space. The goal of this section is to prove the

lemma below which is a partial converse of Theorem 2.2 sufficient for our goals. Fix a prime number q. We say
that H is q-divisible if q∞|h for every h ∈ H.

Lemma 2.5. There is a uniform procedure which, given any non-zero q-divisible ∆0
2-group H outputs a computably

metrized presentation of Ĥ.

Proof. The proof uses ideas and techniques from [18, 58], however, new tools are necessary to handle the case of an
arbitrary q-divisible ∆0

2 group.

2.2.1. The setup. We build G ≤ A = Tω, where T is the “natural” computably metrized presentation of the unit

circle group. Our goal is to make sure G ∼= Ĥ. We define G to be a closed subgroup of the product; indeed, it is
sufficient to specify a dense subset of it.

First, imagine that H is computable. We use the well-known result of Dobrica [59] and fix a presentation of H
with a computable basis B which may or may not be finite. (We cite [58] for a modern proof of the result of Dobrica
that uses the meta-theorem from [60], and we also cite [18] fora modern proof of a more general result that implies
the theorem of Dobrica.) The group is generated by elements that satisfy relations of the form ng =

∑
b∈B mbb,

where almost all coefficients are zero, and we can list such relations effectively. We reserve a special copy Tg of T
for every such generator g, including Tb for each b ∈ B. In this notation, the elements of G are sequences of the
form (χh)h∈H going though the computably metrized A =

∏
g Tg.

We declare nχg =
∑

b∈B mbχb for all χ ∈ Tg ∩G whenever we have a relation ng =
∑

b∈B mbb. We will proceed

in this way and will end up with a computably metrized presentation G of Ĥ [58]. The issue is, of course, that H
is merely ∆0

2.

2.2.2. An informal outline of the basic strategy. We fix a ∆0
2 presentation with a ∆0

2 basis. In fact, taking the
retract of the domain under a suitable ∆0

2 map, we can make sure that the indices of the basic elements form a
computable set. So the only difference with the computable case is that the relations are no longer computable but
are merely ∆0

2, in the sense that, for a fixed g, ng =
∑

b∈B mbb can change to some other n′g =
∑

b′∈B m′
bb finitely

many times before it settles.
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The idea is to ensure that nχg =
∑

b∈B mbχb holds up to (say) error 2−s at stage s, and therefore it can be
corrected later if necessary. If we decide that nχg =

∑
b∈B mbχb no longer holds for any g, we will be able to turn

it into a relation of the form qkg =
∑

b∈B mbb (where q is the fixed prime and k is very large).
We give more details. At every stage we will put only finitely many rational points into each circle. Suppose we

initially had

(�) nχg =
∑
b∈B

mbχb,

that is witnessed by finitely many intervals in the respective copies of the unit circle that approximate this relation
up to error 2−s, where s is the stage. If this relation will never change for g, we will keep making these intervals
smaller, and will end up with a closed set for which the relation does indeed hold. The shrinking intervals will allow
us to approximate a dense computable subset of the closed set similarly to how one lists a dense set for (say) the
Baire space; we omit the standard details.

Now suppose the relation mχg =
∑

b∈B mbχb has to be replaced with some other relation at stage s. Note that
at the stage we have only finitely many intervals approximating the relation with precision 2−s. Take k so large

that each of these finitely many intervals of Tg contains at least one point of the form
r

qk −m
, where r ≤ (qn−m).

Under x→ qkx, the point
r

qk −m
on the unit circle is mapped to

(�)
rqk

qk −m
=

r(qk −m+m)

qk −m
= r +

rm

qk −m
=

rm

qk −m
.

In other words, x→ mx and x→ qkx agree on all points of this form. Consequently, for these points

(*) qkχg =
∑
b∈B

mbχb

will also hold “up to 2−s”, and this corresponds to

∃g qkg =
∑
b∈B

mbb

in H that vacuously holds since the group is q-divisible. We can therefore consistently switch the approximation of
our closed set locally perhaps making further necessary adjustments.

Remark 2.6. For instance, if we are dealing with mg = b and changing it to qkg = b then we need to introduce
2−s-approximations to many new pre-images of b under the (adjusted) map. For example, there are only two
preimages under x → 2x, but there are four under x → 4x. Such adjustments make the closed set that we build
not effectively closed in general.

Then we introduce a fresh circle corresponding to the relation ng =
∑

b∈B mbb, and repeat.

To make our proof a bit more transparent, we will actually split mχg =
∑

b∈B mbχb into χR =
∑

b∈B mbχb and
mχg = χR and work only with mχg = χR. This of course is merely a notational convenience.

2.2.3. Putting the strategies together. At this stage the reader hopefully sees how to organise the construction using,
say, movable markers. Note there is essentially no interaction between strategies working with different generators.
There are only two further subtleties that needs to be addressed.

Issue 1 Among other things, we need to make sure that the group is isomorphic to the dual of H. In particular, one
potential difficulty is that at some stage the (approximations to) relations imply that the group is torsion;
for example, we could potentially have that mx = b and nx = b for m ̸= n. These potentially bad cases can
be easily excluded. Indeed, all groups will be finitely generated abelian, where all such properties are easily
decidable (see, e.g., the analysis of f.g abelian groups contained in the previous subsection). We therefore do
not believe a relation unless, together with the previous relations, it gives us a finitely generated torsion-free
group.
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Issue 2 The relations of qn-divisibility play a special role in the construction; in particular, we must make sure that
all elements are q∞-divisible, but we also have to avoid problems similar to Issue 1 restricted to relations
of the form qnx =

∑
b mbb. This can be done as follows. In the construction, we implement the basic

strategies only for generators that have their relations of the form ng =
∑

b∈B mbb, where n and q are
co-prime. Meanwhile, we manually introduce more and more new circle-components for relations of the
form qkg = b, for every b, to make sure that no such relations are missing.

2.2.4. Formal proof. By the Dobrica’s result [59], we can assume that H has a ∆0
2 basis. We can view H as a Σ0

2

subgroup of V |B| =
⊕

i≤card(B) Q so that the basis B is equal to the standard basis of V |B|. In particular, we can

indeed assume that B is a computable set. To list H as a subgroup of V |B|, it is sufficient to list elements g ∈ H
that satisfy relations of the form

pvg =
∑
b∈B

mbb,

where p ranges over primes and v over positive integers. Note that if such a g exists then it is unique. We computably
guess whether the relation holds in the group in the spirit of the limit lemma. The relations holds in the group iff∑

b∈B mbb

pv
∈ H.

Since H is a Σ0
2 subgroup in general, the relation holds iff we eventually never see it to fail. However, if the relation

fails we can have infinitely many stages at which we believe that the relation might hold.

We first give a “macro-construction” that manipulates with copies of the unit circle and rules of the form
nχi =

∑
b∈B mbχb. Then we give the full construction that turns the macro-construction into a construction of a

computable Polish group G isomorphic to Ĥ.

2.2.5. The macro-construction. For every b ∈ B, reserve a copy Tb of the unit circle group. At stage s of the
macro-construction, introduce one more Tb and monitor one more relation of the form pvg =

∑
b∈B mbb. For every

such relation R that had not previously been considered, do the following:

(a.1) Introduce a copy of the unit circle group TR and declare

χR =
∑
b∈B

mbχb.

(a.2) Introduce a new copy of the unit circle group TR,0 and declare it active.
(a.3) Declare χR = pvχR,0.

For every relation R′ that has already been considered, check if R′ still holds according to the Σ0
2-approximation

that we fixed above.
If it does not hold, then let u be largest such that TR′,u is currently active, and so that χR′ = pwχR′,u was

declared at the stage when TR′,u was introduced.

(b.1) Declare TR′,u inactive and declare χR′ = pvχR′,u dismissed.
(b.2) Choose k very large (to be clarified) and declare χR′ = qkχR′,u.
(b.3) Introduce a new copy TR′,u+1 of the unit circle group and declare it active.
(b.4) Declare χR′ = pvχR′,u+1.

2.2.6. The definition of G. The macro-construction builds a closed subgroup of Tω. We now explain how the
macro-construction can be computably approximated, and then we explain how this approximation allows us to
computably list a dense subset of G.

Definition 2.7. For a finite equation of the form ng =
∑

b∈B mbb, its ϵ-name is a finite collection of open basic

intervals U i
g ∈ Tg and U j

b ∈ Tb of diameter ϵ with the following properties:

(1) U j
b cover Tb;

(2) U i
g cover Tg;
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(3) If nx =
∑

b∈B mbyb holds for x ∈ Tg and yb ∈ Tb then for some intervals U i
g ∋ x and U jb

b ∋ yb,

nU i
g =

∑
b∈B

mbU
jb
b

Such an approximation is possible due to the especially nice properties of the usual operations and the geometry of
the unit circle. (We do not really need our approximations to be that nice though.)

To define G, we monitor the macro-construction. At every stage s, we do the following:

(1) Enumerate more points into each copy of the unit circle that is currently introduced by the macro-
construction.

(2) For every declared relation which have not yet been dismissed, with the exception of those declared in (b.4)
of the current stage, refine its 2−s+1-name to a 2−s name.

(3) For every relation of the form χR = qkχR,u that has been introduced at a (b.2)-type substage of the current
stage for some R, replace the 2−s+1-name of the dismissed χR = pvχR,u with a 2−s-name of χR = qkχR,u.

In particular, in (b.2) we choose k so large that substep (3) can be performed according to (�) and the discussion
preceding (�). (Note that there is no circularity here.)

2.2.7. The verification. We first explain how to list a dense subset of G. At every stage we list only finite tuples of
special points in the constructed copy of Tω that satisfy the currently declared 2−s-names rules up to 2−s. During
the construction, we will keep refining and extending each such finite tuple, so that the result will converge uniformly
to an infinite tuple of points going through the whole of Tω. This is done arbitrarily, say, by choosing the smallest
available index among the special points that obey the current 2−s-names.

Remark 2.8. One can argue that the closed set defined in the construction is effectively overt, that is, the set of
basic open balls intersecting the set is c.e. It is well-known that such closed sets admit a computable dense sequence
(e.g., [61]). We provide a detailed (but informal) explanation that avoids the use of effective overtness.

Suppose at stage s the rule is pχ1 = χ0. Note that there are p pre-images of x ∈ T0 in T1 under x → px. We
put finitely many rational points rs0,1, . . . , r

s
0,s in T0 and also use the 2−s-name of pχ1 = χ0 to find for each i all

points rs1,j such that prs1,j = rs0,i. (We actually do not really need the 2−s name as this can be done directly.)
If there is a rule relating T2 to either T0 or T1, then there will will also be at most finitely many points rs2,k

suitable for the third coordinate in
(rs0,i, r

s
1,j , r

s
2,k, . . .).

If there is no such rule, then at the stage there will be finitely many points in T2 so we can pick the third coordinate
arbitrarily using any of these points. According to the standard metric on Tω, the circles get “smaller” as i gets
larger. So we continues at this manner until we get to an index u such that the diameter of

∏
v>u Tv is smaller

than 2−s. Then (rs0,i, r
s
1,j , r

s
2,k, . . . , r

s
u,d, 0, 0, . . .) can be declared 2−s-approximation of a special point in G. Note

that at stage s there are only finitely many such approximations.
At the next stage, we need to refine it to (rs+1

0,i′ , r
s+1
1,j′ , r

s+1
2,k′ , . . . , r

s+1
u,d′ , 0, 0, . . .). For that, we will choose the

(lexicographically) smallest-index finite tuple that is within 2−s of the previous tuple and furthermore satisfies the
(perhaps, updated) rules with a better precision.

It is crucial that the rules are updated so that (say) rs1,j , can be replaced with rs+1
1,j′ that is arbitrarily close to

rs1,j in T1. Also, as we already noted above once, a new rule implies that there are more preimages that need to be

listed. For instance, if prs1,j = rs0,i needs to be replaced with qkrs+1
1,j = rs+1

0,i , where k is very large, then there will be

qk > p points that satisfy the new equation for rs+1
0,i . Only p-many of them will be used as better approximations of

the previously introduced (procedures approximating) points. The new ones will have to be listed into new tuples
that will be (approximations to) new special points. As we have already mentioned, this is where we might lose
effective compactness in the definition of G.

We keep making better and better approximations using the smallest available index principle every time we
have a choice, and this way we will build a dense subset of G.

It should be clear that G is equal to the completion of the uniformly computable list of points that we build
according to the procedure described above. To finish the verification, note that G is topologically isomorphic to
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the character group of H, and therefore is a computable presentation of Ĥ under the operations inherited from
A = Tω. □

3. Completely decomposable groups and solenoid spaces

In this section we explain in detail the special case of Corollary 0.2 when β = 2. Thus, our goal is to construct
a compact space with non-low2 degree spectrum.

Assuming that the reader is willing to see what the isomorphism type of the space actually is, we give details
below. (If the reader does not need to see this, we just say that there is a completely decomposable group with
exactly the non-low copies [46]. It is easy to see that it can be made 2-divisible, and the jump inversion from groups
to spaces (in view of Theorem 2.1) makes it non-low2, as usual.)

A set W is the enumeration of a family U if {W [e] : e ∈ ω} = U , where W [e] = {x : ⟨x, e⟩ ∈ W}. Note that
repetitions do not matter here. We also say that U admits a ΣX

n+1 enumeration if there is a set W with the above

property such that which is c.e. relative to X(n). Recall that a group is completely decomposable if it is isomorphic
to a direct sum of additive subgroups of the rationals. The following proposition is a variation of a result from [46].

Proposition 3.1. Let U be an infinite family of finite sets that contains the empty set. There exists a completely
decomposable 2-divisible group G(U) such that the following conditions are equivalent.

(1) G(U) has an X-computable presentation.
(2) U admits a ΣX

2 -enumeration.

Proof sketch. Let (pi)i∈ω be the standard enumerations of all primes; in particular, p0 = 2. Let AS be the subgroup
of Q that contains 1 and such that pi+1 ̸ |1 if Di ⊆ S and p∞i+1|1 otherwise. Also, declare 2∞|1. Define

GU =
⊕
i∈ω

(⊕
S∈U

AS

)
.

It is not hard to show that GU has the desired property. □

A space is a solenoid space if it is equal to the inverse limit of the unit circles under multiplicative maps of the
form x→ mx, where m is a positive integer:

T←m0
T←m1

T←m2
. . . ,

where (mi)i∈ω is allowed to have repetitions. It is not hard to see that such as space is homeomorphic to the domain
of the dual of the group ⟨{ 1∏

j≤i mi
: i ∈ ω}⟩ ≤ (Q,+). Conversely, the dual of every subgroup of the rationals is

a solenoid group. Since
⊕̂

i∈ω Hi
∼=
∏

i∈ω Ĥi, completely decomposable groups correspond to direct products of
solenoid groups under duality.

It follows from Theorem 0.1 that, for H(U) = Ĝ(U), U admits a Σ0
3-enumeration iff H(U) has a computable

metrization. Relativise the result of Wehner [32] to 0′′ to obtain a family U of finite sets which is has no Σ0
3-

enumeration but is ΣX
3 -enumerable for any X such that X ′′ > 0′′. Then H(U) admits a Y -computable metrization

iff ΣY
3 ̸= Σ0

3 iff Y (3) ̸≤1 0(3) iff Y (2) ̸≤T 0(2) which is the same as to say that Y is not low2.
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