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Abstract

The first main result isolates some conditions which fail for the class
of graphs and hold for the class of Abelian p-groups, the class of Abelian
torsion groups, and the special class of “rank-homogeneous” trees. We
consider these conditions as a possible definition of what it means for
a class of structures to have “Ulm type”. The result says that there
can be no Turing computable embedding of a class not of Ulm type into
one of Ulm type. We apply this result to show that there is no Turing
computable embedding of the class of graphs into the class of “rank-
homogeneous” trees. The second main result says that there is a Turing
computable embedding of the class of rank-homogeneous trees into the
class of torsion-free Abelian groups. The third main result says that there
is a “rank-preserving” Turing computable embedding of the class of rank-
homogeneous trees into the class of Boolean algebras. Using this result,
we show that there is a computable Boolean algebra of Scott rank ωCK

1 .

1 Introduction

There are many known transformations between classes of structures, used in
different ways. Mal’cev [19] considered the transformation taking rings to their
Heisenberg groups. He showed that there is a copy of the input ring, defined
with parameters, in the output group. Mal’cev used this idea to obtain, from
the ring of integers, a group whose elementary first order theory is hereditarily
undecidable. Hirschfeldt, Khoussainov, Shore, and Slinko [13] used the Mal’tsev
transformation for results on computable dimension.

There is quite a lot of work comparing classes of countable structures and
saying, in various concrete ways, that the “classification problem” for one class
is more difficult than that for the other class. We think of the classification
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problem as the problem of describing the members of the class, up to isomor-
phism. There are different approaches. One involves cardinality. If the class
K has only countably isomorphism types of countable structures, while the
class K ′ has uncountably many, then the classification problem for K ′ is clearly
more difficult. There are other approaches which allow finer distinctions. Fried-
man and Stanley [9], introduced an approach involving “Borel embeddings” and
“Borel cardinality”. Borel embeddability gives a pre-ordering ≤B on classes of
structures. Friedman and Stanley located various familiar classes on top under
≤B—graphs, fields of any desired characteristic, groups, trees, linear orderings.
They located other familiar classes below the top under ≤B—fields of finite tran-
scendence degree, Abelian p-groups, Abelian torsion groups. Camerlo and Gao
[6] showed that the class of Boolean algebras lies on top under ≤B . Friedman
and Stanley left open the question of whether the class of torsion-free Abelian
groups lies on top. This has stimulated quite a lot of work, by Hjorth [12] and
others.

In [3], there is an effective version of the Friedman and Stanley approach,
involving “Turing computable embeddings” and “effective cardinality”. Some
of the known Borel embeddings are in fact computable. Some of the embed-
dings also turn out to preserve more. “Scott rank” is a measure of internal
model theoretic complexity. Computable structures have Scott rank at most
ωCK1 + 1. Examples of computable structures with various computable ranks,
and of rank ωCK1 + 1 have been known for some time. In [5], there is an ex-
ample of a computable tree with Scott rank ωCK1 . In [4], further examples (an
undirected graph, a field, a linear ordering) are obtained from the tree, using
“rank preserving” Turing computable embeddings.

In the remainder of the introduction, we discuss Borel cardinality and ef-
fective cardinality. We also describe the class of rank-homogeneous trees. In
Section 2, we give some background from infinitary logic, and we also say a little
about Scott rank. In Section 3, we propose a definition of “Ulm type”, and we
prove our general result saying that there is no Turing computable embedding of
a class not of Ulm type into a class of Ulm type. We show that the class of rank-
homogeneous trees has Ulm type. Borrowing ideas from Friedman and Stanley,
we show that the class of graphs is not of Ulm type. Hence, there is no Turing
computable embedding of the class of graphs into the class of rank-homogeneous
trees.

In Section 4, we give a Turing computable embedding of the class of rank-
homogeneous trees into the class of torsion-free Abelian groups. We use a trans-
formation defined by Hjorth [12] and also used by Downey and Montalbán. It is
not clear that the transformation on the full class of trees is 1−1 on isomorphism
types, but we can show this for the class of rank-homogeneous trees. In Section
5, we give a Turing computable embedding of the class of rank-homogeneous
trees into the class of Boolean algebras, and we show that this embedding has
a property of “rank preservation”. As a corollary, we obtain a computable
Boolean algebra of Scott rank ωCK1 —adding one more to the list of familiar
classes known to contain such structures.
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1.1 Borel cardinality

We are ready to describe in a precise way the approach of Friedman and Stan-
ley [9]. Let L be a countable language, and let Mod(L) be the class of all
L-structures with universe ω. There is a natural topology on Mod(L), with
basic open neighborhoods of the form Mod(σ), where σ is a finitary quantifier-
free (L ∪ ω)-sentence. Closing under countable unions and complements, we
obtain Borel subsets of Mod(L). Using the product topology and again closing
under countable unions and complements, we obtain Borel subsets of Mod(L)×
Mod(L′). Friedman and Stanley [9] considered classes K such that for some L,
K ⊆Mod(L), and K is closed under isomorphism. In this subsection, all of our
classes are assumed to satisfy these conventions.

Definition 1 (Friedman-Stanley). A Borel embedding of K into K ′ is a Borel
transformation Φ : K → K ′ such that for A,A′ ∈ K,

A ∼= A′ iff Φ(A) ∼= Φ(A′) .

We write K ≤B K ′ if there is such a transformation. We write K ≡B K ′ if
K ≤B K ′ and K ′ ≤B K. We write K <B K ′ if K ≤B K ′ and not K ′ ≤B K.

The relation ≤B is a pre-ordering on classes. Two classes have the same
Borel cardinality if they are ≡B-equivalent. If we have a Borel embedding Φ of
K into K ′, then we can describe a member of K by finding its Φ-image and de-
scribing that. All classes with ℵ0 isomorphism types are ≡B-equivalent. Among
classes with 2ℵ0 isomorphism types, the notion of Borel cardinality makes some
important distinctions.

There are well-known transformations showing that the class UG of undi-
rected graphs lies “on top” under the relation ≤B (see [20] or [22]). Friedman
and Stanley gave transformations showing that the class of trees, the class of
linear orderings and the class of fields of any fixed characteristic are also on
top. The class of 2-step nilpotent groups is on top—one way to see this uses
the Mal’cev transformation. Camerlo and Gao [6] showed that the class BA
of Boolean algebras lies on top. In fact, for any completion T of the theory of
Boolean algebras, the class Mod(T ) lies on top.

Friedman and Stanley showed that classes for which the isomorphism relation
is Borel lie strictly below the top. This is true, in particular, for the class of
fields of finite transcendence degree, and for the class of equivalence structures.
They also showed that the class of Abelian p-groups, and the broader class of
Abelian torsion groups, do not lie on top under the pre-ordering ≤B . The reason
is different. The idea behind the argument that Friedman and Stanley give is
that we may code a family of sets in a graph, while for Abelian p-groups, and
Abelian torsion groups, the invariants are essentially sets of countable ordinals.

Friedman and Stanley asked whether the class TFA of torsion-free Abelian
groups lies on top. This problem remains open. Hjorth [14] showed that the
isomorphism relation on TFA is not Borel. Downey and Montalbán [8] showed
that the isomorphism relation is complete analytic. A torsion-free Abelian group
is essentially a subgroup of a Q-vector space, and the rank is the least dimension
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of a vector space in which the group can be embedded. Let TFAn be the class
of torsion-free Abelian groups of rank n. With great effort, Hjorth and Thomas
[15], [24] showed that for all n, TFAn <B TFAn+1.

1.2 Effective cardinality

In [3], there is an effective analogue of Borel embedding. We modify the con-
ventions slightly. Languages are computable, not just countable. The universe
of each structure is a subset of ω, not necessarily all of ω. As above, a class K
consists of structures for a fixed language, and it is closed under isomorphism
(modulo the restriction on the universe).

Definition 2.

1. A Turing computable transformation from K to K ′ is a computable op-
erator Φ = ϕe such that for each A ∈ K, there exists B ∈ K ′ with

ϕ
D(A)
e = χD(B). We write Φ(A) for B.

2. A Turing computable embedding of K into K ′ is a Turing computable
transformation Φ such that for A,A′ ∈ K, A ∼= A′ iff Φ(A) ∼= Φ(A′). We
write K ≤tc K ′ if there is such a Φ. We write K ≡tc K ′ if K ≤tc K ′ and
K ′ ≤tc K. We write K <tc K

′ if K ≤tc K ′ and not K ′ ≤tc K.

Again we have a pre-ordering on classes. Two classes have the same effective
cardinality if they are ≡tc-equivalent. Many Borel embeddings are actually
Turing computable. However, in some cases, we make finer distinctions using
Turing computable embeddings. For example, if NF is the class of number fields
and FV S is the class of Q-vector spaces of finite dimension, then NF ≡B FV S,
but NF <tc FV S [11]. For a completion T of PA, the class Mod(T ) of models
of T lies on top under ≤B , but not under ≤tc [7].

As in the Borel setting, if K ≤tc K ′ via Φ, then we can describe A ∈ K by
computing Φ(A) and describing that. It is more satisfying to describe A in its
own language. The following result is from [17].

Theorem 1.1 (Pullback Theorem). Suppose K ≤tc K ′ via Φ. Then for any
computable infinitary sentence ϕ in the language of K ′, we can effectively find
a computable infinitary sentence ϕ∗ in the language of K such that for A ∈ K,

A |= ϕ∗ iff Φ(A) |= ϕ

Moreover, if ϕ is computable Σα, or computable Πα, then so is ϕ∗.

1.3 Rank-homogeneous trees

We begin by recalling some definitions and basic facts about rank-homogeneous
trees (from [5]).

Definition 3 (tree rank). Let T be a subtree of ω<ω. We define the tree rank
of x ∈ T , denoted by tr(x), by induction.
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1. tr(x) = 0 if x has no successor,

2. for α > 0, tr(x) = α if α is the least ordinal greater than tr(y) for all
successors y of x,

3. tr(x) =∞ if x does not have ordinal tree rank.

Tree rank is sometimes called foundation rank. Note that tr(x) =∞ if and
only if x extends to a path.

Definition 4 (rank-homogeneous tree). A tree T ⊆ ω<ω is rank-homogeneous
provided that for all x at level n,

1. if tr(x) is an ordinal, then for all y at level n+ 1 such that tr(y) < tr(x),
x has infinitely many successors z such that tr(z) = tr(y),

2. if tr(x) =∞, then for all y at level n+1, x has infinitely many successors
z such that tr(z) = tr(y).

For a rank-homogeneous tree T , let R(T ) be the set of pairs (n, α) such that
there is an element at level n of tree rank α (where α is an ordinal, not ∞).
Note that the top node in T has rank ∞ just in case R(T ) has no pair of the
form (0, α). Also note if T has a node of rank ∞, then the top node must have
rank ∞, and if the top node has rank ∞, then there are nodes of rank ∞ at
all levels. Thus, from the set of pairs R(T ) in which the second components
are ordinals, we can deduce all of the information that would be given if we
included pairs with second component ∞.

Proposition 1.2. Suppose T, T ′ are rank-homogeneous trees. Then T ∼= T ′ iff
R(T ) = R(T ′).

Proof. Clearly, if T ∼= T ′, then R(T ) = R(T ′). Suppose R(T ) = R(T ′). To
see that there is an isomorphism, we show that the set of finite partial rank-
preserving isomorphisms between subtrees of T and T ′ has the back-and-forth
property. The subtrees must be closed under predecessor in the large trees, and
the finite partial isomorphisms must preserve all ranks, both ordinals and ∞.
Given a finite subtree of one of the large trees, we can reach any further node
by a finite sequence of steps in which the node being added is a successor of one
already included. Therefore, it is enough to prove the following.

Claim: Let p be a rank-preserving isomorphism from the finite subtree τ of
T onto the finite subtree τ ′ of T ′, and let a ∈ T − τ be a successor of b ∈ τ .
Suppose b′ = p(b). Then there exists a′, a successor of b′ in T ′, not already in
ran(p), such that a′ and a have the same rank.

The rank of p(b) is the same as that of b. If a has rank∞, then b and b′ also
have rank ∞, and b′ has infinitely many successors of rank ∞. If a has ordinal
rank α, then b and b′ have rank either ∞ or some β > α. In either case, b′ has
infinitely many successors of rank α. We choose a′ to be a successor of b′, of
the proper rank, not already in ran(p).
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2 Background on infinitary logic

In this section, we give some background on infinitary logic and Scott rank.

2.1 Infinitary logic

For a countable language L, the Lω1ω formulas allow countable conjunctions and
disjunctions. We consider countable fragments, so that we can apply a version of
the Henkin method to construct models. While the usual Compactness Theorem
fails for Lω1ω, Barwise [2] proved a limited version of Compactness for admissible
fragments. Ressayre [23] considered saturation properties related to Barwise
Compactness. We state special cases of these results, involving “computable”
infinitary sentences. For more about computable infinitary formulas, see [1].

The computable infinitary formulas are formulas of Lω1ω in which the infi-
nite disjunctions and conjunctions are over c.e. sets. The computable infinitary
formulas are essentially the formulas in the least admissible fragment. We con-
sider formulas in “normal” form, with the negations brought inside. These are
classified as computable Σα or computable Πα, where α is a computable ordinal.
For any computable infinitary formula ϕ, we have a formula neg(ϕ) such that
neg(ϕ) is logically equivalent to the negation of ϕ.

Definition 5.

1. if ϕ is finitary quantifier-free, then neg(ϕ) = ¬ϕ,

2. if ϕ is computable Σα, of the form
∨∨
i(∃ui)ψi(ui), then neg(ϕ) is com-

putable Πα, of the form
∧∧
i(∀ui)neg(ψi(ui)),

3. if ϕ is computable Πα, of the form
∧∧
i(∀ui)ψi(ui), then neg(ϕ) is com-

putable Σα, of the form
∨∨
i(∃ui)neg(ψi(ui)).

Note: If ϕ is computable Σα, then neg(ϕ) is computable Πα and vice versa.

Lopez-Escobar showed that for a class K ⊆ Mod(L) (closed under isomor-
phism), K is Borel if and only if it is axiomatized by a sentence of Lω1ω. Vaught
showed that K is Σ0

α in the Borel hierarchy if and only if it is axiomatized by
a Σα sentence. Vanden Boom [25] showed that K is Σ0

α in the effective Borel
hierarchy if and only if it is axiomatized by a computable Σα sentence.

Theorem 2.1 (Barwise-Kreisel Compactness). If Γ is a Π1
1 set of computable

infinitary sentences, and every ∆1
1 set Γ′ ⊆ Γ has a model, then Γ has a model.

Ressayre [23] showed the following.

Theorem 2.2 (Ressayre). Suppose Γ is a Π1
1 set of computable infinitary sen-

tences, where every ∆1
1 subset has a model. Then Γ has a model A such that

ωA1 = ωCK1 .
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Remark: The condition ωA1 = ωCK1 holds iff A is contained in a fattening of
the least admissible set.

Theorem 2.2 is a special case of the following result on expansions [23].

Theorem 2.3 (Ressayre). Suppose ωA1 = ωCK1 . Let Γ be a Π1
1 set of computable

infinitary sentences involving symbols from the language of A, possibly a finite
tuple of parameters from A, and finitely many further relation or constant sym-
bols. Suppose that for every ∆1

1 set Γ′ ⊆ Γ, there is an expansion of A satisfying
Γ′. Then A has an expansion A′ such that ωA

′

1 = ωCK1 and A′ satisfies all of
Γ.

2.2 Scott rank and rank preservation

Scott showed that for any countable structure A for a countable language L,
there is an Lω1ω- sentence whose countable models are just the isomorphic
copies of A. In the proof, Scott assigned ordinals to tuples in the structure, and
to the structure itself. Scott rank is a measure of model theoretic complexity
of countable structures. In general, countable structures may have arbitrarily
large countable ordinal ranks. Nadel [21] showed that if A is a computable, or
hyperarithmetical, structure, then SR(A) ≤ ωCK1 +1. More generally, SR(A) ≤
ωA1 + 1, where ωA1 is the first ordinal not computable relative to A.

There are several different ways to define Scott rank. Different definitions
of Scott rank may assign different ordinal ranks to some structures. However,
the definitions currently in use all agree on which computable structures are
assigned Scott rank ωCK1 and which are assigned Scott rank ωCK1 + 1. We
are primarily interested in Scott ranks for computable structures. Instead of
choosing a particular definition of Scott rank, we give, in Proposition 2.4 below,
conditions which, for computable, or hyperarithmetical, structures, may be used
as a definition of these special Scott ranks.

There are familiar examples of computable structures having various com-
putable Scott ranks. The Harrison ordering has Scott rank ωCK1 + 1 [12]. It
took longer to find examples of computable structures of Scott rank ωCK1 . For
some classes, such as Abelian p-groups, rank ωCK1 does not occur.

Makkai [18] produced an arithmetical structure of Scott rank ωCK1 . In [16],
Makkai’s example is made computable. In [5], it is shown that there is a com-
putable tree T of Scott rank ωCK1 . This tree has a special property of “rank-
homogeneity” (defined in the next subsection). In [4], there are further examples
of computable structures of Scott rank ωCK1 in the following classes: graphs,
linear orderings, and fields of any desired characteristic. These examples are ob-
tained from the tree by applying familiar effective transformations which have
been shown to “preserve” Scott rank in the sense that either the input and out-
put structures have the same Scott rank, or else both Scott ranks are computable
relative to the input structure.

Proposition 2.4 (Scott ranks for computable structures). If A is a computable
or hyperarithmetical structure, then
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1. SR(A) < ωCK1 if there is some α < ωCK1 such that the orbits of all tuples
are all ∆0

α,

2. SR(A) = ωCK1 if the orbits of all tuples are hyperarithmetical, but there
is no computable ordinal as in 1,

3. SR(A) = ωCK1 + 1 if there is some tuple whose orbit is not hyperarith-
metical.

This result is given in [16]. Related results are given in [1] and [5]. It is not
difficult to show that for a hyperarithmetical structure A, SR(A) < ωCK1 if the
orbits of all tuples are definable by computable infinitary formulas of bounded
complexity, SR(A) = ωCK1 if the orbits are all definable by computable infinitary
formulas, but there is no bound on the complexity, and SR(A) = ωCK1 +1 if there
is a tuple whose orbit is not definable by any computable infinitary formula. In
[10], it is shown that for a structure A that is computable, or hyperarithmetical,
the orbit of a tuple is hyperarithmetical if and only if it is definable in A by a
computable infinitary formula.

2.3 Scott ranks of rank-homogeneous trees

Proposition 2.5. Let T be a rank-homogeneous tree. If ωT1 = ωCK1 , then the
ordinals that occur as tree ranks are all computable.

Proof of Proposition 2.5. Supposing that tr(x) ≥ α for all computable ordinals
α, we can show that tr(x) = ∞. It is enough to show that any node with tree
rank ≥ α for all computable ordinals α has a successor with the same feature.
We use Theorem 2.3. Let a be a node at level n such that tr(a) ≥ α for all
computable ordinals α. Let e be a new constant, and let Γ(a, e) say that e is
at level n + 1, e is a successor of a, and tr(e) ≥ α for all computable ordinals
α. For any ∆1

1 subset Γ′ of Γ(a, e), there is a computable bound α∗ on the
ordinals mentioned. We satisfy Γ′ by letting e be a successor of a such that
tr(a) ≥ α∗.

While T may live in a proper fattening of the least admissible set, computable
infinitary formulas suffice to describe the tree ranks of the elements of T . More
generally, if ωT1 = α, then the ordinals that occur as tree ranks are all less than
α. While T itself may not be in the admissible set Lα, the natural formulas
saying that tr(x) = β, for β < α are in Lα.

Proposition 2.6. Let T be a rank-homogeneous tree such that ωT1 = ωCK1 .
Then

1. SR(T ) < ωCK1 if there is a computable bound α on the ordinals that occur
as tree ranks,

2. SR(T ) = ωCK1 if for each n, there is a computable bound αn on the ordi-
nals that occur as tree ranks of nodes at level n, but there is no bound as
in 1,
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3. SR(T ) = ωCK1 if there is some n such that there is no computable bound
on the ordinals that occur as tree ranks at level n.

In a rank-homogeneous tree T , the orbit of a tuple is determined by the
tree ranks of the elements in the finite subtree generated by the tuple, un-
der predecessor. If, for each of the finitely many levels represented, there is a
computable bound on the ordinal ranks, then we have a computable infinitary
formula defining the orbit (see [5]).

3 First main result

Let UG be the class of undirected graphs. Friedman and Stanley [9] showed that
there is no Borel embedding of UG in the class of Abelian p-groups, or the class
of Abelian torsion groups. If there were a Turing computable embedding taking
graphs with universe ω to Abelian p-groups, or Abelian torsion groups, with
universe ω, then this would be a Borel embedding. So, the result of Friedman
and Stanley implies that there is no Turing computable embedding of this kind.
Below, we prove a general result that yields, as corollaries, the fact that there
is no Turing computable embedding of UG into these classes, or into the class
RHT of rank-homogeneous trees.

Theorem 3.1. Let K,K ′ be classes of structures, closed under isomorphism.
Suppose K contains a pair of structures A,A′ such that ωA1 = ωA

′

1 = ωCK1 ,
A,A′ satisfy the same computable infinitary sentences, and A 6∼= A′, while K ′

contains no such pair. Then K 6≤tc K ′.

Before giving the proof of Theorem 3.1, we say something about the signif-
icance of the statement. The condition on the class K ′ is, it seems to us, a
possible definition of what it means for a class to have “Ulm type”.

Definition 6. A class has Ulm type provided that for any structures A,A′ in
the class, if there are no non-computable ordinals computable relative to A or
A′, and A and A′ satisfy the same computable infinitary sentences, then they
are isomorphic.

Equivalently, we may say that a class has Ulm type provided that for any
A in the class such that A lives in a fattening of the least admissible set, the
computable infinitary sentences true of A are enough to distinguish it from other
members of the class that live in fattenings of the least admissible set. We note
that the computable infinitary sentences live in the least admissible set.

Theorem 3.1 says that if K does not have Ulm type, while K ′ does have
Ulm type, then there is no Turing computable embedding of K into K ′.

Proof of Theorem 3.1. We shall use the Pull-back Theorem (Theorem 1.1). Sup-
pose K ≤tc K ′ via Φ. Let Φ(A) = B and let Φ(A′) = B′. Since Φ is Turing
computable, we have B ≤T A and B′ ≤T A′. Therefore, if ωA1 = ωA

′

1 = ωCK1 ,
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then ωB1 = ωB
′

1 = ωCK1 . Since A 6∼= A′, we must have B 6∼= B′. There is a com-
putable infinitary sentence ϕ that is true in B and not B′. If ϕ∗ is the pullback
of ϕ, then ϕ∗ should be true in A and not A′. This is a contradiction.

Theorem 3.2. Let A and A′ be rank-homogeneous trees. If ωA1 = ωA
′

1 = ωCK1 ,
and A,A′ satisfy the same computable infinitary sentences, then A ∼= A′.

Proof. Suppose A is a rank-homogeneous tree. If tr(∅) = ∞ in A, then R(A)
has no pair of the form (0, α). By Proposition 2.5, if ωA1 = ωCK1 , then the com-
putable ordinals are the only possible ordinal tree ranks. For any computable
ordinal α, and any n, we have a computable infinitary sentence saying that
there is a node of tree rank α at level n. Therefore, the computable infinitary
sentences determine R(A).

Remarks: More generally, if A,A′ are rank-homogeneous trees, each living in
an admissible set with ordinal α, and A,A′ satisfy the same Lω1ω-sentences in
Lα, then A ∼= A′. The same is true for Abelian p-groups and for Abelian torsion
groups.

Theorem 3.3. There exist non-isomorphic undirected graphs A and A′ such
that ωA1 = ωA

′

1 = ωCK1 , and A and A′ satisfy the same computable infinitary
sentences.

Proof. We consider graphs of a special form, coding a countable family of sets.
Let S be a countable family of sets. The graph G(S) will have one connected
component for each A ∈ S. The connected component for A is a “daisy”, with a
“center” c, and for each n, a “petal”, which is a cycle, containing c, and having
length 2n + 2, if n ∈ A, or 2n + 3 if n /∈ A. The cycles are disjoint except for
the common center c.

We consider “generic” graphs of the form G(S). For simplicity, we first say
how to produce one such graph. The universe will be ω. The forcing conditions
are finite graphs p—subgraphs of a graph of the proper form. Let F be the set of
forcing conditions. We write p ⊆ q if p is a subgraph of q. The forcing language
consists of sentences ϕ(a), where ϕ(x) is a computable infinitary formula in the
language of graphs, and a is a tuple of constants from ω. We let S be the set of
these sentences. We define the relation p  ϕ (p forces ϕ), for p ∈ F and ϕ ∈ S.

Definition 7 (Forcing).

1. If ϕ is finitary quantifier-free, then p  ϕ if p contains all of the constants
appearing in ϕ and p |= ϕ.

2. If ϕ is computable Σα, of the form
∨∨
i(∃ui)ψi(ui), then p  ϕ if for some

i and some ai, p  ψi(ai).

3. If ϕ is computable Πα, of the form
∧∧
i(∀ui)ψi(ui), then p  ϕ if for all i,

all ai, and all q ⊇ p, some r ⊇ q forces ψi(ai).

We have the usual forcing lemmas.
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Lemma 3.4 (Extension). If p  ϕ and q ⊇ p, then q  ϕ.

Proof. We proceed by induction on sentences ϕ in S.

Lemma 3.5 (Consistency). We cannot have p  ϕ and also p  neg(ϕ).

Proof. We proceed by induction on sentences ϕ in S.

Lemma 3.6 (Density). For any p and ϕ, there exists q ⊇ p such that q  ϕ or
q  neg(ϕ).

Proof. Again we proceed by induction on sentences ϕ in S.

We say that p decides ϕ if p  ϕ or p  neg(ϕ).

Definition 8. A complete forcing sequence (c.f.s.) is a sequence (pn)n∈ω such
that

1. for each sentence ϕ in S, there is some n such that pn  ϕ or pn  neg(ϕ).

2. pn ⊆ pn+1.

Using Density, we obtain the existence of a c.f.s. (pn)n∈ω. Then we obtain
a graph G = ∪npn. The definition of forcing assures that G will have universe
ω—we must decide the sentences a = a, and we do this by putting a into the
universe of some pn.

Definition 9. We say that G is generic if it is the union of a complete forcing
sequence (pn)n∈ω.

Lemma 3.7 (Truth and Forcing). For any sentence ϕ of the forcing language,
the following are equivalent:

1. G |= ϕ,

2. for some n, pn  ϕ,

3. for some finite subgraph q of G, q  ϕ.

It is not difficult to see that if G is generic, then G has the form G(S),
where S is a countably infinite family of subsets of ω. There are infinitely many
centers, and for each center, for each n, there is a petal of length 2n + 2 or
2n+ 3, and not both. For each element a, either a is a center or else a belongs
to a petal connected by a finite chain to a center. Thus, G consists of infinitely
many daisies, each coding a set.

Proposition 3.8. Suppose G is generic. Let a and b be centers in G, and let
Sa and Sb be the sets represented by the corresponding daisies. Then Sa 6= Sb.

11



Proof. There is a sentence in the forcing language saying that Sa = Sb—the
conjunction over k > 1 of sentences saying that there is a chain of length k
through a if and only if there is one through b. This sentence cannot be forced,
since for any p, there exists n and q ⊇ p such that q has a chain of length 2n+ 2
about one of a, b and one of length 2n+ 3 about the other.

There is a great deal of freedom in producing a generic graph. A surprising
fact is that for all generic graphs G, the computable infinitary theory is the same.
Essentially, this is because the forcing conditions satisfy the joint embedding
property.

Lemma 3.9. Suppose p  ϕ. For any permutation f of ω, if p′ is the forcing
condition isomorphic to p under f , and ϕ′ is the sentence obtained by applying
f to the constants in ϕ, then p′  ϕ′.

Proof. We proceed by induction on ϕ. If ϕ is finitary quantifier-free, then p |= ϕ
and p′ |= ϕ′, so p′  ϕ′. Consider ϕ =

∨∨
i(∃ui)ψi(ui). We have p  ψi(ai), for

some i and ai. By the Induction Hypothesis, we have p′  ψi(f(ai)), so p′  ϕ′.
Finally, consider ϕ =

∧∧
i(∀ui)ψi(ui). For all i and ai, and for all q ⊇ p, there

exists r ⊇ p such that r  ψi(ai). Fix i and a′i. Say q′ ⊇ p′. Let ai = f−1(a′i)
and let q be the extension of p isomorphic to q′ under f−1. We have r ⊇ q such
that r  ψi(ai). Let r′ be the extension of q′ isomorphic to r under f . Then by
the Induction Hypothesis, we have r′  ψi(a

′
i). Therefore, p′  ϕ′.

Lemma 3.9 implies that if ϕ is a sentence with no constants, and p, p′ are
isomorphic forcing conditions, then p  ϕ if and only if p′  ϕ.

Lemma 3.10. Suppose G and G′ are both generic. Then for any computable
infinitary sentence ϕ with no constants, G |= ϕ iff G′ |= ϕ.

Proof. If not, we would have p, q such that p  ϕ and q  neg(ϕ). There is a
forcing condition r extending disjoint copies of both p and q. Then r must force
both ϕ and neg(ϕ), a contradiction.

The next lemma gives an alternative definition of forcing for computable Πα

sentences.

Lemma 3.11. p 
∧∧
i(∀ui)ψi(ui) iff for all i and ai and all q ⊇ p, it is not the

case that q  neg(ψi(ai)).

Proof. Suppose p 
∧∧
i(∀ui)ψi(ui). If q ⊇ p, there exists r ⊇ q such that

r  ψi(ai). By Extension and Consistency, we cannot have q  neg(ψi(ai)).
Now, suppose that for all q ⊇ p, it is not the case that q  ψi(ai). Then for
each q, there is some r ⊇ q such that r  ψi(ai).

We calculate the complexity of the relations p  ϕ.

Lemma 3.12. If ϕ is finitary quantifier-free, then the relation q  ϕ is com-
putable. For α > 0, if ϕ is computable Σα, the relation q  ϕ is Σ0

α, and if ϕ is
computable Πα, the relation q  ϕ is Π0

α, all uniformly.

12



Proof. If ϕ is finitary quantifier-free, the statement is clear. Suppose α > 0,
and the statement holds for β < α. The statement is clear in the case where ϕ
is computable Σα. Suppose ϕ is computable Πα, say ϕ =

∧∧
i(∀ui)ψi(ui). Then

the statement is clear from Lemma 3.11.

Lemma 3.13. For each formula ϕ(x), and any tuple u, we can find a com-
putable infinitary formula Forceϕ(x),u(x, u), giving a disjunction of possible

equality relations on x, u and graph structures on u, such that if a, b satisfies the
formula and p is the graph on b then p  ϕ(a).

Sketch of proof. We use Lemma 3.9. For any formula ϕ(x) and any tuple u,
our preliminary version of Forceϕ(x),u(x, u) is the disjunction of the finitary
quantifier-free formulas δ(x, u) such that δ(x, u) describes an equality relation
on x, u and a graph structure on u, and if a, b satisfies δ(x, u) and p is the graph
on b, then p  ϕ(a). If ϕ(x) is computable Σα, then the preliminary version
of Forceϕ(x),u(x, u) is the disjunction of a Σ0

α set of finitary quantifier-free for-
mulas. By results in [1], we can effectively find a logically equivalent formula
that is computable Σα. If ϕ(x) is computable Πα, then the preliminary version
of Forceϕ(x),u(x, u) is the disjunction of a Π0

α set of finitary quantifier-free for-
mulas, and by the results in [1], we can effectively find a logically equivalent
formula that is computable Σα+1.

Lemma 3.14. There exists a generic G such that ωG1 = ωCK1 .

Proof. We use the result of Ressayre (Theorem 2.3). We have a Π1
1 set Γ of com-

putable infinitary sentences describing generic graphs G. For each computable
infinitary formula ϕ(x), we include the sentence Fϕ saying

(∀x)
∨∨
u

(∃u)Forceϕ(x),u(x, u) .

If G is a generic graph, then it is a model of Γ. Conversely, if G is a model of
Γ with universe ω, then we can produce a c.f.s. with union G, so G is generic.

For any ∆1
1 Γ′ ⊆ Γ, there is a computable bound α on the complexity of

the formulas ϕ such that Fϕ ∈ Γ′. For any computable ordinal α, there is
a hyperarithmetical c.f.s. deciding all computable Σα sentences in the forcing
language. The union of this c.f.s. is a hyperarithmetical graph G′ = (ω,R′)
satisfying the sentences of Γ′. We are in a position to apply Theorem 2.3.
We get G = (ω,R) such that ωG1 = ωCK1 and G satisfies all of Γ. Then G is
generic.

We want two non-isomorphic graphs G1, G2 such that ωGi
1 = ωCK1 , and

G1, G2 are both generic. We modify the forcing argument above. Our new
forcing conditions are pairs (p, q), where p, q are finite subgraphs of graphs of
the form G(S). We may suppose that p, q have the same universe. We let
(p, q) ⊆ (p′, q′) if p ⊆ p′ and q ⊆ q′. In our forcing language, we use two
different binary relation symbols, R1 and R2, one for each graph. We consider
computable infinitary sentences ϕ(a) which result from substituting a tuple of
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constants a for the free variables in some computable infinitary formula ϕ(x).
The formulas may describe both graphs. Given a c.f.s. (pn, qn)n∈ω, we obtain
two graphs G1 = ∪npn and G2 = ∪nqn, each with universe ω. Both are generic
in the old sense.

Lemma 3.15. If a is a center in G1 and b is a center in G2, the sets represented
by the daisies about a and b cannot be equal.

Proof. Suppose (p, q) forces the sentence saying that the sets are equal; i.e., for
all k, G1 has a petal of length k about a if and only if G2 has a petal of length
k about b. Take m such that there is no petal of either length 2m+ 2 or 2m+ 3
about a in p or about b in q. Take (p′, q′) ⊇ (p, q) with a petal of length 2m+ 2
about a in p′ and with a petal of length 2m+ 3 about b in q′.

We have formulas Forceϕ(x),u(x, u) obtained as the disjunction of quantifier-
free formulas δ(x, u), specifying an equality relation on x, u and two graph re-
lations on u, such that if a, b satisfies δ(x, u) and (p, q) is the forcing condition
given by the two graph relations on b, then (p, q)  ϕ(a). We have a Π1

1 set Γ
with a sentence Fϕ, for each computable infinitary formula ϕ(x), saying that
for all x, ϕ(x) holds if and only if there is some u such that Forceϕ(x),u(x, u).

For each computable ordinal α, there is a hyperarithmetical model satisfying
Fϕ for all computable Σα formulas ϕ. It follows that for any ∆1

1 set Γ′ ⊆ Γ,
Γ′ has a model. By Ressayre’s Theorem, Γ has a model G = (ω,R1, R2) such
that ωG1 = ωCK1 . We get a pair G1 = (ω,R1), G2 = (ω,R2) such that G1, G2

are mutually generic, and both live in the same fattening of the least admissible
set. By Lemma 3.15, the two graphs are not isomorphic. We have completed
the proof of Theorem 3.3.

We are in a position to apply Theorem 3.1 to get the following.

Corollary 3.16. UG 6≤tc RHT .

We may improve Theorem 3.3 as follows.

Theorem 3.17. There is a family of 2ℵ0 non-isomorphic graphs (Gi)i∈I , all
satisfying the same computable infinitary sentences, and with the feature that
ωGi
1 = ωCK1 .

Sketch of proof. Let Γ be the Π1
1 set of sentences describing a generic special

graph. We have seen that the models of Γ all satisfy the same computable
infinitary sentences with no constants. Take a constant a and let ϕ(a) be an
existential sentence saying that a is connected to at least three other points—
this says that a is the center of a daisy. For each n, let ψn(a) be an existential
sentence saying that there is a petal of length 2n + 2 attached to a. Similarly,
let ψ′n(a) say that there is a petal of length 2n+ 3 attached to a.

In Ressayre’s construction of a model G of Γ such that ωG1 = ωCK1 , at each
step, we have a Π1

1 set of computable infinitary sentences Γ ∪ Λ(a), mentioning
finitely many constants. The set is consistent in the sense that the consequences
(in the language with just equality) are all true of the distinct elements a in ω.
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Let S be the set of n such that Γ ∪ Λ(a), ϕ(a) ` ψn(a), and let S′ be the set
of n such that Γ ∪ Λ(a), ϕ(a) ` ψ′n(a). Both S and S′ are Π1

1. If S ∪ S′ = ω,
then S would be ∆1

1. However, the sets coded in a generic graph cannot be
hyperarithmetical. In particular, for any hyperarithmetical set A, we have a
sentence in the forcing language saying that Sa = A. No forcing condition p
can force this sentence, for we could take n not in either S nor S′, and we may
consistently add either ψn(a) or ψ′a(n) and then continue with the next step in
Ressayre’s construction. We obtain models G of Γ with 2ℵ0 different sets Sa.
These models G all have the feature that ωG1 = ωCK1 .

4 Second main result—torsion-free Abelian groups

Torsion-free Abelian groups are subgroups of Q-vector spaces. Hjorth [14] gave
a transformation from trees to torsion-free Abelian groups which enabled him
to show that the isomorphism relation on these groups is not Borel. Downey
and Montalbán [8] built on Hjorth’s ideas to show that the isomorphism relation
on these groups is analytic complete. The transformation from [14] and [8] is
described below.

We consider the elements of ω<ω as a basis for a Q-vector space V ∗. Let
T be a subtree of ω<ω, and let V be the subspace of V ∗ with basis T . Let Tn
be the set of elements at level n of T . If u is at level n > 0, let u− be the
predecessor of u. Let (pn)n∈ω be the standard computable list of primes, in
increasing order. We let G(T ) be the subgroup of V generated by the vector
space elements of the following forms:

1. v
(p2n)k

, where v ∈ Tn, and k ∈ ω,

2. v+v′

(p2n+1)k
, where v ∈ Tn, v′ is a successor of v, and k ∈ ω.

If P is a finite set of prime numbers, we let QP be the set of rationals of the
form k

m , where k ∈ Z and m is a product of powers of elements of P .

Facts.

1. Q∅ = Z

2. QP ∩QR = QP∩R

3. QP + QR (the set of sums of elements of QP and QR) is QP∪R

Note that each element of G(T ) can be expressed in the form

h = Σv∈V avv + Σu∈Ubu(u− + u)

where

1. U, V are finite subsets of T , ∅ /∈ U ,
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2. if v ∈ V ∩ Tn, then av ∈ Q{p2n},

3. if u ∈ U ∩ Tn+1, then bu ∈ Q{p2n+1}.

The transformation described above takes the full class of trees to the class
TFA of torsion-free Abelian groups. It is not clear that the transformation
is 1 − 1 on isomorphism types. Our goal is to show that the restriction of
the transformation to the class RHT of rank-homogeneous trees is 1 − 1 on
isomorphism types. We use the definitions and techniques from [14], [8]. We do
not distinguish between elements of the tree T and the corresponding elements
of G(T ), which we call vertex elements. We will describe elements of G(T ) that
resemble vertex elements. We will also describe a relation on these elements
that resembles the successor relation. From this, we obtain a notion of rank.
For each n ∈ ω and each countable ordinal α, we will have a sentence of Lω1,ω

that is true in G(T ) if and only if T has a node at level n of tree rank α. From
this, it follows that rank-homogeneous trees that give rise to isomorphic groups
must be isomorphic.

The results in [8] use only a few simple facts, which they extract from the
proofs in [14]. We begin with these same facts, but we shall need more. Recall
that ∅ is the top node in the tree T . We write p∞|h if h is divisible by all powers
of p.

Lemma 4.1. Let h ∈ G(T ), say h =
∑
v∈V qvv, where V is a finite set of

vertex elements and qv ∈ Q−{0}. If p is a prime and p∞|h, then there is some
g ∈ G(T ) such that g =

∑
v∈V rvv, where p∞|g, and for all v ∈ V , rv ∈ Q{p}−Z.

Proof. We multiply h by an appropriate integer and then divide by a power
of p.

The next two lemmas are given explicitly in [8].

Lemma 4.2. Let h be an element of G(T ), say h =
∑
v∈V rvv, where V is a

finite subset of T and rv ∈ Q − {0}. If (p2n)∞|h, then for all v ∈ V , v has
length n.

Proof. We take g =
∑
v∈V r

′
vv as in Lemma 4.1. For v ∈ V , the coefficient

r′v has the form av + (
∑
u∈Uv

bu) + bv, where Uv consists of successors of v,
if v has length m, then av ∈ Q{p2m}, if u ∈ Uv, then bu ∈ Q{p2m+1}, and
bv ∈ Q{p2m−1}. Since r′v ∈ Q{p2n} − Z, we must have m = n and av 6= 0. Note
that (

∑
u∈Vv

bu) + bv must be in Z.

Lemma 4.3. Let h be an element of G(T ), say h =
∑
v∈V rvv, where V is a

finite subset of T and rv ∈ Q−{0}. If (p2n+1)∞|h, then for all v of length n in
V , there is a successor u.

Proof. Again take g =
∑
v∈V r

′
vv as in Lemma 4.1. For v ∈ V , of length m,

r′v has the form av + (
∑
u∈Uv

bu) + bv, where Uv consists of successors of v,
av ∈ Q{p2m}, bu ∈ Q{p2m+1}, and bv ∈ Q{p2m−1}. Since r′v ∈ Q{p2n+1} − Z, we
must have m = n, and there must exist u ∈ Uv with bu /∈ Z.
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It is useful to keep in mind the following example.

Example: Let h = u − u′ = (v + u) − (v + u′), where v ∈ Tn and u, u′ are
successors of v in Tn+1. Then p∞2n+1|h, although in our expression for h, the
coefficient of v is 0.

The following is taken from Hjorth [14] (Propositions 2.2 and 2.5).

Proposition 4.4. Let ϕ be a homomorphism from G(T ) to Q such that ϕ(v) = 1
for v ∈ Tn and ϕ(v) = −1 for v ∈ Tn+1. Let h =

∑
v∈V cvv+

∑
u∈U auu, where

V ⊆ Tn and U ⊆ Tn+1. If (p2n+1)∞|h, then ϕ(h) = 0. Moreover, for each
v ∈ V , if hv = cvv +

∑
u∈Uv

auu, then (p2n+1)∞|hv, and ϕ(hv) = 0.

Using Proposition 4.4, we obtain the following.

Lemma 4.5.

1. Suppose h = a∅∅+
∑
u∈U auu, where U ⊆ T1. If (p1)∞|h, then

a∅ =
∑
u∈U au.

2. Suppose h =
∑
v∈V avv+

∑
u∈U buu, where U ⊆ Tn+1, and V is the set of

predecessors of these elements. For v ∈ V , let Uv be the set of successors
of v. If (p2n+1)∞|h, then for each v ∈ V , av =

∑
u∈Uv

bu.

Proof. For 1, we consider a homomorphism ϕ taking ∅ to 1 and taking elements
at level 1 to −1. We have ϕ(h) = 0 = a∅ −

∑
u∈U au. By Proposition 4.4,

a∅ =
∑
u∈U au. For 2, we consider a homomorphism ϕ taking all elements

of V to 1 and all elements of U to −1. By Proposition 4.4, for each v ∈ V ,
ϕ(avv +

∑
u∈Uv

bu) = 0 = av −
∑
u∈Uv

bu. Therefore, av =
∑
u∈Uv

bu.

Note that in Lemma 4.5, in Case 1, we may have a∅ = 0 and
∑
u∈U au = 0,

and in Case 2, we may have av = 0, and
∑
u∈Uv

bu = 0. We need a refinement
of Lemma 4.2.

Lemma 4.6. Suppose (p2n)∞|h.

1. If n > 0, then h can be expressed in the form
∑
v∈V rvv, where V ⊆ Tn

and rv is in Q{p2n,p2n−1}.

2. If n = 0, then h has the form r∅, where r ∈ Q{p0}.

Proof. We consider the two cases separately.

Case 1: Suppose n > 0. By Lemma 4.2, h can be expressed in the form∑
v∈V rvv, where V ⊆ Tn, and rv ∈ Q. Just because h ∈ G(T ), we have

h =
∑
u∈U auu +

∑
u∈W bu(u + u−), where if u ∈ Tk, then au ∈ Q{p2k}, and

bu ∈ Q{p2k−1}. For u at level k 6= n, the coefficient of u in the expression for h
must be 0. This coefficient has the form au + (

∑
w−=u bw) + bu.

Claim: For all k > n, for u at level k (appearing in our decomposition), au and
bu are integers.
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Proof of Claim. We work our way back from the largest k > n with some u
at level k that appears. For the greatest k, if u is at level k, and u appears,
then no successor of u appears. We have 0 = au + bu, where au ∈ Q{p2k} and
bu ∈ Q{p2k−1}. Then both au and bu must be integers. Supposing that the
claim holds for k′ > k, where k > n, let u be an element at level k that appears.
We have 0 = au + (

∑
w−=u bw) + bu, where au ∈ Q{p2k−1}, bu ∈ Q{p2k−1}, and∑

w−=u bw ∈ Z. Again au and bu must be integers.

Using the Claim, we can complete the proof for Case 1. For v at level n, the
coefficient is rv = av + (

∑
w−=v bw) + bv, where

∑
w−=v bw ∈ Z, av ∈ Q{p2n}

and bv ∈ Q{p2n−1}. Therefore, rv ∈ Q{p2n,p2n−1}.

Case 2: Suppose n = 0. Then the only possible v is ∅, so h = r∅. Since there
is no ∅−, we have r = a∅+

∑
w−=∅ bw. By the argument above,

∑
w−=∅ bw ∈ Z.

Since a∅ is in Q{p0}, r is also.

A node in Tn has the feature that there is a successor chain of length n
leading from ∅ to it. We try to describe this in the group G(T ). We define first
the pseudo-vertex-like elements at level n, and then the vertex-like elements at
level n.

Definition 10 (pseudo-vertex-like). An element h ∈ G(T ) is pseudo-vertex-
like, or p.v.l., at level n, if one of the following holds:

1. n = 0 and p∞0 |h or

2. n > 0 and

(a) p∞2n|h,

(b) there exists a sequence g0, g1, . . . , gn = h, such that g0 satisfies the
formula Θ(x) from Lemma 4.7, and for all i < n, we have p∞2i |gi and
p∞2i+1|(gi + gi+1).

It is easy to see that all vertex elements are pseudo-vertex-like. For each n,
we have a computable infinitary formula that defines the set of p.v.l. elements
of G(T ). The formula is independent of T .

Next, we give a notion of successor on the p.v.l. elements.

Definition 11 (pseudo-successor). Suppose g is p.v.l. at level n and let h be
p.v.l. at level n+1. We say that h is a pseudo-successor of g if (p2n+1)∞|(g+h).

Lemma 4.7. There is a computable infinitary formula Θ(x) such that for all
T ∈ RHT with T1 6= ∅, Θ(x) is satisfied just by ∅ and −∅.

Proof. We let Θ(x) say the following:

1. (p0)∞|x,
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2. for primes q 6= p0, q 6 |x,

3. x has a pseudo-successor,

4. 1
p0
x has no pseudo-successor.

It is not difficult to see that ∅ and −∅ satisfy Θ(x). We must show that other
elements do not. If x satisfies Condition 1, we can apply Part 2 of Lemma 4.6, to
see that x has the form r∅, where r ∈ Q{p0}. Then r has the form z

(p0)m
, where

z ∈ Z. Condition 2 implies that z is not divisible by any primes other than p0.
Therefore, x has the form ±pk∅. Condition 3 says that x has a successor. Using
this, we show that k ≥ 0. Take y such that (p2)∞|y. By Part 1 of Lemma 4.6,
y =

∑
v∈V svv, where V ⊆ T1 and sv ∈ Q{p2,p1}. If (p1)∞|(x + y), then by

Lemma 4.5, ±(p0)k =
∑
v∈V sv. This implies that the right-hand side is an

integer, and then the left-hand side is as well. Therefore, x = ±pk0 , where k ≥ 0.
Finally, we show that if x satisfies Condition 4, then k cannot be positive. If
k > 0, then 1

p0
x = pk−10 ∅. This satisfies Conditions 1 and 2. Moreover, if v ∈ T1,

then pk−10 v is a successor of 1
p0
x, contradicting Condition 4. Therefore, x must

have the form ±∅.

Remark. For each n, we have a computable infinitary formula defining in G(T )
the set of pairs (g, h) such that g is p.v.l. at level n and h is a pseudo-successor
of g. The formula is independent of T .

We define rank for p.v.l. elements by analogy with tree rank. We write rk(h)
for the rank of h in the group G(T ), and tr(v) for the tree rank of v in the tree T .

Definition 12 (rank). Let h be p.v.l. at level n.

1. rk(h) = 0 if h has no pseudo-successors,

2. for α > 0, rk(h) = α if all pseudo-successors of h have ordinal rank, and
α is the least ordinal greater than these ranks,

3. rk(h) =∞ if h does not have ordinal rank.

We note that rk(h) = ∞ if and only if there is an infinite sequence (gi)i∈ω
such that each gi is p.v.l., g0 = h and gi+1 is a pseudo-successor of gi.

Lemma 4.8. Suppose h is p.v.l at level n, expressed in the form
∑
v∈V rvv,

where V is a finite subset of Tn and rv 6= 0. Then for all v, tr(v) ≥ rk(h).

Proof. We show by induction on α that if rk(h) > α, then for all v ∈ V ,
tr(v) 6= α. (We allow the possibility that rk(h) = ∞.) Let rk(h) > 0. Let g
be a p.v.l. pseudo-successor for h. Then (p2n+1)∞|(h+ g). Say g =

∑
u∈U suu,

where U is a set of vertex elements at level n + 1 and su 6= 0. By Lemma 4.3,
for each v ∈ V , there is some u ∈ U such that u is a successor of v. Therefore,
tr(v) 6= 0.
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Consider α > 0, where the statement holds for β < α. Suppose rk(h) > α.
Let g be a p.v.l. pseudo-successor of h such that rk(g) ≥ α. Say g =

∑
u∈U suu,

where U is a set of vertex elements at level n+ 1 and su 6= 0. By the Induction
Hypothesis, tr(u) 6= β for any β < α, so tr(u) ≥ α. By Lemma 4.3, some
u ∈ U is a successor of v. Then tr(v) 6= α. Finally, we show that if rk(h) =∞,
then for all v ∈ V , tr(v) = ∞. There must be an infinite sequence of p.v.l.
elements (gk)k∈ω such that g0 = h and gk+1 is a pseudo-successor of gk. We
have gk =

∑
u∈Uk

suu, where Uk is a set of vertex elements at level n + k, and
su 6= 0. For each element of Uk, there is a successor in Uk+1. We obtain a chain
of successors, starting with v = v0 ∈ U0, and choosing vk+1 a successor of vk in
Uk+1. Therefore, tr(v) =∞.

Remark. For each n and α, we have a formula of Lω1,ω defining in G(T ) the
set of p.v.l. elements at level n of rank α. The formula is independent of T .
Moreover, it lies in the least admissible set containing the ordinal α.

It is again helpful to consider an example.

Example: Let v ∈ T1 and let u and u′ be successors of v in T2. Suppose
that both u and u′ have successors in T3. Let g = 1

11u + 10
11u
′. Since p∞4 |u, u′,

we have p∞4 |g. Since v + g = 1
11 (v + u) + 10

11 (v + u′), we see that p∞5 |(v + g).
Therefore, g is p.v.l. and it is a pseudo-successor of v. We can show that g
has no pseudo-successor, even though we have expressed it in terms of u and
u′, both of which have successors in T4. Suppose that h is a pseudo-successor
at level 4. Then h =

∑
w∈W rww, where W ⊆ T4 and rw. By Lemma 4.6, we

must have rw ∈ Q7,8. We must have p∞9 |(g + h). By Lemma 4.5, if Wu,Wu′

are, respectively, the sets of successors of u, u′ in W , then
∑
w∈Wu

rw = 1
11 , and∑

w∈Wu′
rw = 10

11 . This is a contradiction.

We strengthen the definition of p.v.l. element in order to rule out examples
like the one above, in which g has no successor, but it has a decomposition in
terms of elements all having successors.

Definition 13 (vertex-like). Let g ∈ G(T ). We say that g is vertex-like, or
v.l., if

1. g is p.v.l. at some level n, and

2. either

(a) rk(g) > 0, or

(b) rk(g) = 0 and for any decomposition g =
∑
j rjgj such that all gj

are p.v.l. at level n, there exists j such that rk(gj) = 0.

Lemma 4.9. If v is a vertex element, then it is vertex-like.
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Proof. We already noted that a vertex element is p.v.l. Suppose v is at level n,
and rk(v) = 0. Then v has no successors. We must show that if v =

∑
j gj ,

where each gj is p.v.l. at level n, then for some j, rk(gi) = 0. Suppose that for
all j, rk(gj) 6= 0. Say hj is a p.v.l. pseudo-successor of gj at level n + 1. By
Lemma 4.2, each gj has a decomposition in terms of tree elements at level n.
Since v =

∑
j gj , v must appear with non-zero coefficient in the decomposition

of some gj . Then by Lemma 4.5, the corresponding hj has a decomposition that
involves successors of v with non-zero coefficients. This is a contradiction.

We would like to show that if g is v.l. at level n, expressed in the form∑
v∈V rvv, where V ⊆ Tn and rv 6= 0, then rk(g) is the minimum of tr(v), for

v ∈ V .

Lemma 4.10. Suppose g is v.l. at level n. Say g =
∑
v∈V rvv, where V ⊆ Tn.

Then rk(g) = 0 iff there exists v ∈ V such that tr(v) = 0.

Proof. First, suppose there exists v ∈ V such that tr(v) = 0. By Lemma 4.8,
tr(v) ≥ rk(g), so rk(g) = 0. Next, suppose rk(g) = 0. The elements of V
are p.v.l. and one of the decompositions of g is

∑
v∈V rvv. By the definition

of vertex-like, there is some v such that rk(v) = 0. Then v has no pseudo-
successors, so v has no successors in T . Therefore, tr(v) = 0.

Lemma 4.11. If g is v.l. at level n and rk(g) > 0, then g has a decomposition∑
v∈V mvv where all coefficients mv are integers.

Proof. By Lemma 4.6, g can be expressed in the form
∑
v∈V rvv, where V ⊆ Tn

and rv ∈ Q{p2n,p2n−1}. Since rk(g) > 0, we have a p.v.l. pseudo-successor g′,
expressed in the form

∑
u∈U suu, where U ⊆ Tn+1 and su ∈ Q{p2n+2,p2n+1}.

Consider h = g + g′. Since (p2n+1)∞|h, we can apply Lemma 4.5. For each
v ∈ V , let Uv be the set of successors of v in U . We have rv =

∑
u∈Uv

su. It
follows that

∑
u∈Uv

su and rv are integers.

Suppose g is a v.l. element at level n. Recall that the definition of v.l. has
two condidions, with the second split into two cases. If Condition 2 (a) holds for
g, then Lemma 4.10 says that g can be expressed as a sum of vertex elements on
level n with integer coefficients. If Condition rk(g) = 0, then the decomposition
of g involves some terminal vertex element.

Lemma 4.12. Let g be v.l. at level n, with a decomposition
∑
v∈V rvv, where

V ⊆ Tn and all coefficients rv are non-zero. Then rk(g) = minv∈V tr(v).

Proof. By Lemma 4.8, tr(v) ≥ rk(g) for all v ∈ V . We show by induction on
α that if tr(v) ≥ α for all v ∈ V , then rk(g) ≥ α. For α = 0, the statement
is trivially true. Suppose α > 0, where the statement holds for all β < α. If g
satisfies Condition 2 (b) from the definition of v.l., then by Lemma 4.11, there
is some v ∈ V such that tr(v) = 0. Suppose rk(g) = β, where 0 < β < α. For
all v ∈ V , tr(v) > β, so v has a successor uv with tr(uv) ≥ β. By Lemma 4.11,
we may suppose that all rv are integers. We have a successor h of g, of the form∑
v∈V rvuv. This h is vertex-like at level n+1, and by the Induction Hypothesis,
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rk(h) ≥ β. Then rk(g) cannot be β after all. Finally, suppose tr(v) =∞ for all
v ∈ V . For each v, there is an infinite successor chain, and we can use these to
form an infinite chain of successors of g, so rk(g) =∞.

Recall that for a tree T , R(T ) is the set of pairs (n, α) such that there is some
v ∈ T at level n with tr(v) = α. Proposition 1.2 says that for rank-homogeneous
trees T, T ′, T ∼= T ′ if and only if R(T ) = R(T ′).

We give one last example.

Example: Let g =
∑
v∈V rvv, where V ⊆ Tn and rv 6= 0. Let h =

∑
w∈W sww

be a successor of g, where W ⊆ Tn+1 and sw 6= 0. For each v ∈ V , we must
have successors w ∈ W , but there may be some w ∈ W such that w− /∈ V .
If this happens, we call h a “bad” successor. Let W ′ be the set of such w.
Then h′ =

∑
w∈W−W ′ sww is a “good” successor of g. We can show that

rk(h′) ≤ rk(h). If rk(h′) and rk(h) are both non-zero, then h and h′ are both
v.l., and by Lemma 4.12, rk(h′) ≥ rk(h). If rk(h) = 0, then rk(h′) ≥ rk(h).
Finally, suppose rk(h′) = 0 and rk(h) > 0. If k is a successor of h, then
we obtain a successor for h′ by removing from the decomposition the terms
corresponding to successors of elements of W ′. When we compute rk(g), we
may ignore any “bad” successors such as h and consider only good successors.

Theorem 4.13. For T, T ′ ∈ RHT , T ∼= T ′ iff G(T ) ∼= G(T ′).

Proof. We let R(G(T )) be the set of pairs (n, α) such that there is a v.l. g ∈ G(T )
at level n with rk(g) = α. We can show that R(T ) = R(G(T )). If (n, α) ∈ R(T ),
then v is v.l. in G(T ), expressed simply as 1v, and tr(v) = rk(v). Therefore,
(n, α) ∈ R(G(T )). If (n, α) ∈ R(G(T )), witnessed by g =

∑
v∈V rvv, then

by Lemma 4.12, there is some vertex element v ∈ Vn such that tr(v) = α.
Therefore, (n, α) ∈ R(T ).

This completes the proof that Φ is 1− 1 on isomorphism types.

5 Third main result—Boolean algebras

In this section, our first goal is to define a Turing computable transformation
from RHT to BA that is 1− 1 on isomorphism types. After this, we show that
the transformation preserves Scott rank.

Theorem 5.1. RHT ≤tc BA

Proof. Let (An)n∈ω be an effective partition of ω into disjoint infinite sets. Let
(Ln)n∈ω be a uniformly computable sequence of orderings, where Ln has order
type ωn+1 + η + 1. For an input tree T , let S(T ) consist of the finite sequences
of the form r0q1r1 . . . qnrnx satisfying the following conditions:

• for some tree element a1 . . . an, qi ∈ Aai , for i < n,

22



• ri ∈ A0,

• rn ∈ A1, and

• x ∈ Ln, where x is not last in Ln.

From the tree element ∅, we obtain sequences of the form r0x, where x ∈ L0,
not last.

For ρ = r0q1 . . . rn−1qn of length 2n with extensions in S(T ), let Nρ be the
set of these extensions. For σ = r0q1 . . . qnrn of length 2n + 1, with extensions
in S(T ) and with rn ∈ A1, and for I a half open interval in Ln, let Mσ,I be
the set of extensions of σ in S(T )—this looks like the interval I in Ln. Note
that N∅ = S(T ). Let B(T ) be the set algebra generated by the special sets Nρ
and Mσ,I . The Turing computable transformation that we want to consider is
the one that takes T to B(T ). Note that if T and T ′ are isomorphic trees, then
B(T ) ∼= B(T ′).

Remark: The transformation that we have described makes sense for arbitrary
trees. However, it is not 1−1 on isomorphism types. For example, let T = 2<ω,
and let T ′ = 3<ω. Then T 6∼= T , but B(T ) ∼= B(T ′).

We show that the restriction of the transformation to rank-homogeneous
trees is 1− 1 on isomorphism types.

Definition 14. For ρ = r0q1 . . . rn−1qn, where qi ∈ Aai , we say that Nρ repre-
sents the sequence s = a1 . . . an.

Each tree element s is represented by many elements Nρ. For each n, we
have a computable infinitary formula λn(x) describing the elements Nρ which
represent elements at level n of T . The formula (which is independent of our
choice of T ) says the following:

1. x bounds infinitely many copies of I(Ln) and no copies of I(Lk), for k < n.

2. if y ≤ x, then only one of y or x − y bounds infinitely many copies of
I(Ln).

For a given n, we have an ideal in B(T ) generated by the elements of the
form Nρ, for ρ representing a sequence of length > n, and elements of the form
Mσ,I , where I is isomorphic to a sub-interval of Lm for some m ≥ n. We say
that x ∼n y if x∆y is in this ideal. If a satisfies λn(x), then there is a unique ρ
of length 2n such that a ∼n Nρ. If a satisfies λn(x), we say that a is at level n.

Suppose a is at level n, b is at level n+ 1, and b ⊆ a. Let ρ, ρ′ be the unique
sequences such that a ∼n Nρ, b ∼n+1 Nρ′ , and let s, s′ be the sequences in T
represented by Nρ, Nρ′ . Then s′ is a successor of s. We say that b is a successor
of a. Again we have a computable infinitary formula expressing this. Note that
a given b may be a successor of many different a.
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Lemma 5.2. Suppose ωT1 = ωCK1 . For each n ∈ ω and each computable ordinal
β, there is a computable infinitary formula νn,β(x) such that B(T ) |= νn,β(a)
iff a is at level n and for the unique ρ such that a ∼n Nρ, Nρ represents s ∈ T
such that tr(s) ≥ β.

Proof of Lemma. We define the formulas νn,β(x) inductively as follows.

1. νn,0(x) says that x is at level n.

2. νn,β+1(x) says

(a) x is at level n,

(b) x has infinitely many successors satisfying νn+1,β(x),

3. for limit β, νn,β(x) is the conjunction of νn,γ(x), for γ < β.

We may generalize this as follows.

Lemma 5.3. Suppose ωT1 ≤ α, where α is admissible. For each n ∈ ω and each
β < α, there is a formula νn,β(x), in the fragment Lα,ω = Lω1ω ∩Lα, such that
B(T ) |= νn,β(a) iff a is at level n and for the unique ρ such that a ∼n Nρ, Nρ
represents s ∈ T such that tr(s) ≥ β.

We have formulas saying in B(T ) that x is at level n and x ∼ Nρ, where Nρ
represents s ∈ T of tree rank at least β. We also have formulas saying that x is
at level n and x ∼ Nρ, where Nρ represents s ∈ T of tree rank exactly β. We
let τn,β(x) say that νn,β(x) holds and νn,β+1(x) does not hold.

Lemma 5.4.

1. If ωT1 = ωCK1 , then for each n ∈ ω and each computable ordinal β, there
is a computable infinitary formula τn,β(x) such that B(T ) |= τn,β(a) iff a
is at level n and for the unique ρ such that a ∼ Nρ, Nρ represents s ∈ T
such that tr(s) = β.

2. If ωT1 ≤ α, where α is admissible, then for each n ∈ ω and each β < α,
there is a formula τn,β(x) in Lα,ω such that B(T ) |= τn,β(a) iff a is at
level n and for the unique ρ such that a ∼ Nρ, Nρ represents s ∈ T such
that tr(s) = β.

Remark: For τn,0(x), it may be tempting to say simply that x is at level n,
and x has no successor; i.e., there is no y ⊆ x such that y is at level n+ 1. This
does not work. To see the difficulty, consider the element a = Nρ ∪N ′ρ, where
Nρ represents s at level n, and Nρ′ represents s′, at level n + 1. Now, Nρ′ is a
successor of a, but a ∼n Nρ.

We are ready to complete the proof of the theorem. We consider the sen-
tences of the form (∃x) τn,β(x). We have B(T ) |= (∃x) τn,β(x) if and only if

24



there exists a ∈ B(T ) at level n, with a unique ρ such that a ∼ Nρ. This Nρ
represents a unique s ∈ T such that tr(s) = β. Then B(T ) |= (∃x) τn,β(x) if and
only if (n, β) ∈ R(T ). If B(T ) ∼= B(T ′), then the two Boolean algebras satisfy
the same infinitary sentences. It follows that R(T ) = R(T ′), so T ∼= T ′.

5.1 Preservation of Scott rank

Definition 15. Let Φ be a Turing computable transformation from K to K ′.
We say that Φ has the rank preservation property if for all A ∈ K, either
SR(A) = SR(Φ(A)) or else SR(A), SR(Φ(A)) < ωA1 .

In [4], there are some transfer theorems, giving conditions sufficient to guar-
antee preservation of Scott rank. However, we cannot apply any of these transfer
theorems here. We note that if Nρ represents the sequence s in T , then the orbit
of Nρ in B(T ) depends only on the tree rank of s, while the orbit of s in T de-
pends on the tree rank of s, plus the tree ranks of the other elements generated
by s under the predecessor function.

Theorem 5.5. Let Φ : RHT → BA be the transformation taking T to B(T ).
Then Φ has the rank preservation property.

Proof. We already understand the orbits of tuples in T in terms of tree ranks.
We need to understand the orbits of tuples in B(T ). For a tuple b, we consider
the finite algebra generated by the elements of b. We look at the atoms of
this algebra. Say these are b1, . . . , bn. The orbit of b is determined by the
isomorphism types of bi, for i = 1, . . . , n, considered as sub-algebras of B(T ).

We focus on the isomorphism type of a single b = bi. We may suppose that
b is a finite disjoint sum d1 ⊕ . . . ⊕ dk, where each dj is a finite intersection
of generating elements and their complements. We can see that each dj is
isomorphic to a single Nρ, or Mσ,I . Then b is isomorphic to a finite sum of
these. Just as we can collapse atoms into 1-atoms, we may be able to collapse
certain dj into others.

It is easy to describe the isomorphism type of Mσ,I—it is a familiar interval
algebra. We must describe the isomorphism type of an element Nρ. Suppose Nρ
represents some s ∈ T at level n, where tr(s) = β. Suppose Nρ′ also represents
some s′ ∈ T at level n, with tr(s′) = β. Then we have Nρ ∼= Nρ′ . If a is in
the orbit of Nρ, then we must have a ∼ Nρ′ for such a ρ′. However, this is not
enough. If x ≤ a, there must be some x′ ≤ Nρ such that x ∼= x′. We can give
a formula describing the orbit of Nρ. Even in the case where ωT1 = ωCK1 . The
formula that we give may not be computable infinitary, but it is T -computable
infinitary.

Lemma 5.6. Suppose ωT1 = α.

1. For each n and β < α, we have a T -computable infinitary formula ϕn,β(x)
such that B(T ) |= ϕn,β(a) iff a ∼= Nρ, where Nρ represents a sequence
s ∈ T , at level n, with tr(s) = β.
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2. Suppose that for each n, there is a bound βn < α on the tree ranks at level
n. Then we have a T -computable infinitary formula ϕn,∞(x) such that
B(T ) |= ϕn,∞(a) iff a is isomorphic to some Nρ representing a sequence
s ∈ T , at level n, with tr(s) =∞.

Proof. For 1, we proceed by induction. We let ϕn,0(x) say that x is at level n
with no successors. For β > 0, let Sβ = {γ < β : (n + 1, γ) ∈ R(T )}. We let
ϕn,β(x) say that for all γ ∈ Sβ , x has infinitely many successors y such that
ϕn+1,γ(y) holds, and for each successor y of x, there is some γ ∈ Sβ such that
ϕn+1,γ(y) holds.

For 2, we let ϕn,∞(x) say that x is at level n, and it does not satisfy any of
the formulas τn,β , for (n, β) ∈ R(T ). If a satisfies this formula, then it is almost
equal to Nρ, for ρ representing some sequence s ∈ T at level n. This s does not
have tree rank β for any β < βn such that (n, β) ∈ R(T ). Then tr(s) must be
∞. This means that everything that can occur at levels m ≥ n occurs in the
subtree below s.

We are prepared to complete the proof of rank preservation. We suppose
that ωT1 = α.

Case 1: Suppose SR(T ) < α. There is a bound β < α on the ordinal tree ranks
that occur. Then there is some β′ < α such that for all tuples b in B(T ), there
is a T -computable Σβ′ formula defining the orbit. Therefore, SR(B(T )) < α.

Case 2: Suppose SR(T ) = α. For level n of T , there is a bound βn < α on
the ordinal tree ranks, but there is no bound over all. For all tuples b in B(T ),
there is a T -computable infinitary formula defining the orbit, but there is no
over-all bound on the complexity of the formulas.

Case 3: Suppose SR(T ) = α + 1. For some level n, there is no bound β < α
on the tree ranks at level n. It follows that T has paths. Let s be a node at
level n of rank ∞ and let p be the predecessor of s. The set of successors of p
of tree rank ∞ is not defined by any formula in Lα,ω. We have a T -computable
function h mapping each successor s′ of p to some Nρ representing it. Suppose
the orbit of h(s) is defined by a T -computable infinitary formula ψ(x). We get
a contradiction by showing that there is some bound β < α on the tree ranks of
successors of p. If not, then we can use Theorem 2.3 to get a successor s′ of p
such that tr(s′) =∞ and h(s′) does not satisfy ψ(x). Therefore, if T has Scott
rank α+ 1, so does B(T ).

In [5], there is a computable rank-homogeneous tree T of Scott rank ωCK1 .
Moreover, the tree T shares with the Harrison ordering the following feature.

Definition 16. A computable structure A, of non-computable Scott rank, is
strongly computably approximable if for any Σ1

1 set S, there is a uniformly
computable sequence (An)n∈ω such that An ∼= A if n ∈ S, and SR(An) < ωCK1 ,
otherwise.
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Our rank-preserving computable embedding yields a computable Boolean
algebra B = B(T ) such that SR(B) = ωCK1 , and B is strongly computably
approximable.

6 Conclusion

Camerlo and Gao [6] showed that BA lies on top under ≤B . It is not clear that
their transformation is effective. The transformation that we gave is effective,
but it does not answer the following.

Problem 1. Does BA lie on top under ≤tc?

There are computable structures of Scott rank ωCK1 in a number of familiar
classes, obtained by applying rank-preserving transformations to a rank homo-
geneous tree.

Problem 2. Let Φ : RHT → TFA be the transformation of Hjorth and
Downey-Montalbán, taking T to G(T ). Does Φ have the rank preservation prop-
erty?

To show that the transformation preserves Scott rank, we would need to
understand the orbits of tuples in G(T ) and show that they are simply described
in terms of orbits in T .

References

[1] Ash, C. J., and J. F. Knight, Computable Structures and the Hyperarith-
metical Hierarchy, Elsevier, 2000.

[2] Barwise, J., “Infinitary logic and admissible sets”, J. Symb. Logic,
vol. 34(1969), pp. 226-252.

[3] Calvert, W., D. Cummins, J. F. Knight, and S. Miller, “Comparing classes
of finite structures”, Algebra and Logic, vol. 43(2004), pp. 365-373.

[4] Calvert, W., S. S. Goncharov, and J. F. Knight, “Computable structures
of Scott rank ωCK1 in familiar classes”, Advances in Logic, ed. by Gao,
Jackson, and Zhang, in series Con. Math., pp. 43-66.

[5] Calvert, W., J. F. Knight, and J. Millar, “Computable trees of Scott
rank ωCK1 , and computable approximation”, J. Symb. Logic, vol. 71(2006),
pp. 283-298.

[6] Camerlo, R., and S. Gao, “The completeness of the isomorphism rela-
tion for countable Boolean algebras”, Trans. of the Amer. Math. Soc.,
vol. 353(2000), pp. 491-518.

[7] D’Aquino, P., and J. F. Knight, “Effective embeddings and arithmetic”,
in preparation.

27



[8] Downey, R., and A. Montalbán, “The isomorphism problem for torsion-
free Abelian groups is analytic complete”, to appear in J. Algebra.

[9] Friedman, H., and L. Stanley, “A Borel reducibility theory for classes of
countable structures”, J. Symb. Logic, vol. 54(1989), pp. 894-914.

[10] Goncharov, S. S., V. S. Harizanov, J. F. Knight, and R. Shore, “Π1
1 rela-

tions and paths through O”, J. Symb. Logic, vol. 69(2004), pp. 585-611.

[11] Harizanov, V. S., J. F. Knight, K. Lange, C. McCoy, C. Maher, S. Quinn,
and J. Wallbaum, “Index sets for fields”, unpublished notes.

[12] Harrison, J., “Recursive pseudo well-orderings”, Transactions of the
Amer. Math. Soc., vol. 131(1968), pp. 526-543.

[13] Hirschfeldt, D., B. Khoussainov, A. Slinko, and R. Shore, “Degree spectra
and computable dimension in algebraic structures”, Annals of Pure and
Appl. Logic, vol. 115(2002), pp. 71-113.

[14] Hjorth, G., “The isomorphism relation on countable torsion-free Abelian
groups”, Fund. Math., vol. 175(2002), pp. 241-257.

[15] Hjorth, G., and S. Thomas, “The classification problem for p-local torsion-
free abelian groups of rank two”, J. Math. Logic, vol. 6(2006), pp. 233-251.

[16] Knight, J. F., and J. Millar, “Computable structures of rank ωCK1 ”, sub-
mitted to J. Math. Logic in 2004.

[17] Knight, J. F., S. Miller (Quinn), and M. Vanden Boom, “Turing com-
putable embeddings”, J. Symb. Logic, vol. 73(2007), pp. 901-918.

[18] Makkai, M., “An example concerning Scott heights”, J. Symb. Logic,
vol. 46(1981), pp. 301-318.

[19] Mal’cev, A., “On a correspondence between rings and groups”, Amer.
Math. Soc. Translations ser. 2 (1965), pp. 221-232.

[20] Marker, D., Model theory: An Introduction, Springer-Verlag, 2002.

[21] Nadel, M. E., “Scott sentences for admissible sets”, Annals of Math. Logic,
vol. 7(1974), pp. 267-294.

[22] Nies, A., “Undecidable fragments of elementary theories”, Algebra Uni-
versalis, vol. 35(1996), pp. 8-33.

[23] Ressayre, J.-P., “Models with compactness properties relative to an ad-
missible language”, Annals of Math. Logic, vol. 11(1977), pp. 31-55.

[24] Thomas, S., “On the complexity of the classification problem for torsion-
free Abelian groups of finite rank”, Bull. Symb. Logic, vol. 7(2001),
pp. 329-344.

28



[25] Vanden Boom, M., “The effective Borel hierarchy”, Fund. Math., vol.
195(2007), pp. 269-289.

29


