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Abstract

The notion of Turing computable embedding [4] is a computable analog
of Borel embedding. It provides a way to compare classes of countable
structures, effectively reducing the classification problem for one class to
that for the other. Most of the known results on non-existence of Turing
computable embeddings reflect differences in the complexity of the sen-
tences needed to distinguish among non-isomorphic members of the two
classes. Here we consider structures obtained as sums. We show that the
n-fold sums of members of certain classes lie strictly below the (n + 1)-
fold sums. The differences reflect model theoretic considerations related
to Morley degree, not differences in the complexity of the sentences that
describe the structures. We consider three different kinds of sum struc-
tures: cardinal sums, in which the components are named by predicates;
equivalence sums, in which the components are equivalence classes under
an equivalence relation; and direct sums of certain groups.

1 Introduction

“Borel embeddings” were introduced by Friedman and Stanley [8], as a way of
comparing the classification problems for classes of countable structures. “Tur-
ing computable embeddings”, introduced in [4], are an effective analogue of
Borel embeddings. These allow some finer distinctions. We consider classes
K consisting of structures all having the same computable language, and with
universe a subset of ω. Our classes are closed under isomorphism. We say that
a class is nice if it is axiomatized by a computable infinitary sentence.

We identify each structure A with its atomic diagram D(A), and we identify
this, via Gödel numbering, with a subset of ω. For our purposes, a Turing
operator is a partial function from sets to sets, computed by an oracle Turing
machine. For a Turing operator Φ = ϕe given by the oracle machine with
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index e, we write Φ(A) = B if ϕAe = χB . The following is the main definition
from [4].

Definition 1. A Turing computable embedding of K into K ′ is a Turing op-
erator Φ = ϕe such that the following hold:

1. For each A ∈ K, there is some B ∈ K ′ such that ϕ
D(A)
e = χD(B). Identi-

fying the structures with their atomic diagrams, we write Φ(A) = B.

2. For A,A′ ∈ K, A ∼= A′ iff Φ(A) ∼= Φ(A′).

We write K ≤tc K ′ if there is a a Turing computable embedding of K
into K ′. The relation ≤tc is a pre-ordering on classes of structures. Many of the
results for Borel embeddings carry over to Turing computable embeddings. For
both kinds of emberddings, the class LO of linear orderings lies on top, along
with the class UG of undirected graphs. For both kinds of embeddings, the class
of fields of finite transcendence degree does not lie on top, and neither does the
class ApG of Abelian p-groups. Details of the proof for ApG may be found in
[7]. Using Turing computable embeddings, we can make some finer distinctions.
Under Borel embeddings, all classes with ℵ0 isomorphism types are equivalent.
Under Turing computable embeddings, we have

NF <tc V

where NF is the class of number fields, and V is the class of non-trivial Q-vector
spaces. We note that the class V is tc-equivalent to the class of free groups.

Suppose Φ is a Turing computable embedding (or tc-embedding, for short)
from K to K ′ reduces the classification problem for K to the classification
problem for K ′. We do not say exactly what a classification is, but it should
involve describing the (countable) members of K in a way that lets us tell
non-isomorphic members apart. Assuming that we know how to describe the
structures in K ′, we can describe a structure A ∈ K by computing the Φ-image
B ∈ K ′ and giving the description of B.

The single main tool in showing non-tc-embeddability of a class K into
K ′ has been to consider the complexity of sentences needed to distinguish the
different members of the classes, and apply the “Pullback Theorem” from [11].

Theorem 1.1 (Pullback Theorem). Suppose K ≤tc K ′ via Φ. Then for any
computable infinitary sentence ϕ in the language of K ′, we can find a sentence
ϕ∗ in the language of K such that for A ∈ K, A |= ϕ∗ iff Φ(A) |= ϕ. Moreover,
if ϕ is computable Σα, where α is a computable ordinal ≥ 1, then ϕ∗ is also
computable Σα.

As an example of the use of the Pullback Theorem, we show that V 6≤tc NF
(see [12]).

Sample proof. Suppose V ≤tc NF via Φ, expecting a contradiction. Let A,A′
be non-isomorphic Q-vector spaces. Then Φ(A),Φ(A′) are non-isomorphic num-
ber fields. The number fields must differ on some existential sentence ϕ. The
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Pullback Theorem gives a computable Σ1 sentence ϕ∗ on which A,A′ should
differ. However, all elements of V satisfy the same computable Σ1 sentences [11].

In [7], the Pullback Theorem is used to prove the following.

Proposition 1.2. Suppose K and K ′ are classes of structures such that K has
a non-isomorphic pair of structures satisfying the same computable infinitary
sentences, while K ′ has no such pair. Then K 6≤tc K ′.

Proposition 1.2 implies that UG 6≤tc ApG. There are non-isomorphic undi-
rected graphs G1, G2 such that ωGi1 = ωCK1 and G1, G2 satisfy the same com-
putable infinitary sentences, but non-isomorphic Abelian p-groups that compute
no non-computable ordinals must differ on some computable infinitary sentence.

In the current paper, we give prove some non-embeddability results using
the model-theoretic idea of “Morley degree”. We consider classes Ks (Ks∗) in
which each element is an ordered (unordered) collection of s members of the
class K. We show that Ks <tc K

s+1 under some conditions on K, which cover
many cases of interest. We apply this result to K = S, the class of structures
in the pure language, K = V , the class of infinite Q-vector spaces, and others.

The motivating example was V . We observe that there is a single “most
complicated” structure in V ; namely, the saturated model. The elementary
first order theory of V is strongly minimal, so the formula x = x has Morley
rank 1. For the elementary first order theory of V s, the formula x = x has
Morley rank 1, but Morley degree s. If s > 1, there are structures in V s with
different numbers of saturated components, and the number increases with s.
The intuition behind the proof that V s+1 6≤tc V s is that there ought not to be
enough “room” in V s to code all of the structures in V s+1 with at least one
saturated component.

1.1 ≤FF and ≤FF ∗

Friedman and Fokina [5] defined a reducibility for comparing Σ1
1 equivalence

relations on ω.

Definition 2. Let E,E′ be equivalence relations on ω. We write E ≤FF E′ if
there is a total computable function f : ω → ω such that mEn iff f(m)E′f(n).

Recall that a structure A is computable if the atomic diagram D(A) is com-
putable; i.e., there is some e such that ϕe = χD(A). We refer to e as an index for
A. There may be different computable copies of a particular abstract structure,
and each of these will have infinitely many different indices. For an abstract
structure M, we write I(M) for the set of indices for computable copies of M.
For a class K, closed under isomorphism, we write I(K) for the set of indices for
computable members of K. We write E(K) for the set of pairs (a, b) of indices
for isomorphic computable members of K.
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A class of structures K, closed under isomorphism, is said to be nice if it is
axiomatized by a computable infinitary sentence. For a class K, let E∗(K) be
the set of pairs (a, b) ∈ ω2 such that either a and b are indices for isomorphic
computable members of K, or else a and b are both not in I(K). Thus we
introduce an extra equivalence class for the numbers not in I(K). If K is a
nice class, then E∗(K) is a Σ1

1 equivalence relation on ω. In [6], it is shown
that isomorphism on computable trees lies on top under ≤FF . The same is true
for isomorphism of computable torsion-free Abelian groups and even Abelian
p-groups. The proofs of these results make no use of the extra equivalence class.
In particular, for an arbitrary Σ1

1 equivalence relation E on ω, we produce a
uniformly computable sequence of trees (Tn)n∈ω such that mEn iff Tm ∼= Tn.
With this in mind, we introduce another reducibility ≤FF∗ , which is a natural
adjustment of ≤FF for comparing classes of computable structures.

Definition 3. Let K and K ′ be two classes of structures, closed under iso-
morphism. We write K ≤FF∗ K ′ if there is a partial computable function f
satisfying the following conditions.

• For each a ∈ I(K), f(a) is defined, with value b ∈ I(K ′).

• For a, a′ ∈ I(K), indices for structures A,A′, corresponding to structures
B with index f(a) and B′ with index f(b′), A ∼= A′ iff B ∼= B′.

It is easy to see that ≤tc reducibility implies ≤FF∗ reducibility. Suppose
K ≤tc K ′ via Φ = ϕe. Given an index a ∈ I(K) for a computable structure
A in K, we know a procedure for computing the diagram of Φ(Ae)—we take

ϕ
D(Aa)
e . We let f(a) be the resulting index.

1.2 New results

Let K be a class of L-structures, closed under isomorphism. For convenience, we
suppose that L is a relational language. We can treat functions and constants
as relations, so this is no real restriction on our classes.

Definition 4.

1. Kn is the class of cardinal sums of n elements of K. The language of
these structures consists of the symbols of L, plus new unary predicates
U1, . . . , Un. For each A ∈ Kn, we have n structures A1, . . . ,An ∈ K,
with disjoint universes, the universe of Ai is UAi , and for R ∈ L, RA =
∪1≤i≤nRAi .

2. Kn∗ is the class of equivalence sums of n elements of K. The language
of these structures consists of the symbols of L, plus a new binary relation
symbol ∼. For each A ∈ Kn∗, ∼A is an equivalence relation with n equiv-
alence classes. We have n structures A1, . . . ,An ∈ K whose universes are
the ∼-equivalence classes, and for R ∈ L, RA = ∪1≤i≤nRAi .
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For any class K with just one computable member, up to isomorphism,
whose index set is maximally complicated, we show that Kn <tc K

n+1. This
implies the following.

Theorem 1.3. For each of the following classes K, we have Kn <tc K
n+1 and

Kn <FF∗ K
n+1:

1. S—the class of structures in the pure language of equality.

2. V—the class of Q-vector spaces

3. computable well orderings, plus orderings of Harrison type,

4. computable rank-saturated trees.

We then show that for each n, and for each of the classes S and V , the two
kinds of n-fold sums, cardinal sums and equivalence sums, are tc-equivalent.

Theorem 1.4. Sn ≡tc Sn∗ and V n ≡tc V n∗;
thus, Sn∗ <tc S

(n+1)∗ and V n∗ <tc V
(n+1)∗.

Finally, we consider direct products of certain groups. Let Pn be the class
of direct products of n groups of the form Zpm (m ≥ 1) or Zp∞ (the Prüfer
group).

Theorem 1.5. Pn ≡tc Sn: thus, Pn <tc P
n+1.

The results on cardinal sums are in Section 3. In Section 2, we give some
background on index sets. The results on equivalence sums are in Section 4.
The results on direct products of groups are in Section 5.

2 Index sets

In this section we give some further background on index sets. Recall from the
introduction that a classK, closed under isomorphism, is nice if it is axiomatized
by a computable infinitary sentence.

Note: If K is a nice class, then I(K) is hyperarithmetical.

Definition 5 (Γ-hard, Γ-complete). Let Γ be a complexity class (such as Π0
n or

d-Σn or ∆1
1), and let A ⊆ ω.

1. A is Γ-hard if for every S ∈ Γ, S ≤m A,

2. A is m-complete Γ if A ∈ Γ, and A is Γ-hard.

Sometimes, we want to describe a specific structure A so as to differentiate
it from other members of a class K. The description of K may be complicated,
more complicated than the description of A within K. The following definitions
are from [2].
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Definition 6 (Γ within, Γ-hard within, Γ-complete within). Let A,B ⊆ ω,
where A ⊆ B.

1. A is Γ within B if there is some C ∈ Γ such that A = C ∩B.

2. A is Γ-hard within B if for each S ∈ Γ, there is a computable function f
such that for all n, f(n) ∈ B, and f(n) ∈ A iff n ∈ S.

3. A is m-complete Γ within B if it is Γ within B, and Γ-hard within B.

Note that if A is Γ and A ⊆ B, then A is trivially Γ within B. The following
index set calculations are given in [3].

Example 1. Recall that V is the class of non-trivial Q-vector spaces. Let
A ∈ V .

1. If A has infinite dimension, then I(A) is m-complete Π0
3. It is Π0

3 hard
within I(V ).

2. If A has finite dimension, then I(A) is m-complete d-Σ0
2. It is d-Σ0

2-hard
within I(V ).

3 Cardinal sums

In this section, we consider cardinal sums of pure sets, cardinal sums of vector
spaces, and cardinal sums of structures from some further classes that are not
nice. In each case, we consider sums of structures from a class K with one
computable member that is harder to describe than the others. We consider
complexity classes Γ of the forms Π0

n, d-Σ0
n (n ≥ 1) or ∆1

1. Recall that a set is
d-Σn if it is a difference of Σ0

n sets. This is the same as the intersection of a Σ0
n

set and one that is Π0
n. These classes Γ have the following features.

1. Γ is closed under finite intersection. This implies that if u ∈ Ks is s-fold
sum of structures with index sets that are Γ within I(K), then I(u) is Γ
within I(Ks).

2. If B ∈ Γ and A ≤m B, then A ∈ Γ. More is true. Suppose A ⊆ C and
B ⊆ D, and f is a partial computable function from C to D such that
for x ∈ C, we have x ∈ A iff f(x) ∈ B—we might say that f reduces A
within C to B within D. If B is Γ within D, then A is Γ within C. This
implies that if A ∈ K and B ∈ K ′ are computable structures, and f is
a partial computable function taking I(A) to I(B) and I(K) − I(A) to
I(K ′)− I(B), and I(B) is Γ within I(K ′), then I(A) is Γ within I(K).

Theorem 3.1. Let Γ be one of the complexity classes Π0
n, d-Σ0

n, or ∆1
1. Suppose

K is a class with (up to isomorphism) exactly one computable member A such
that I(A) is not Γ within I(K). Then Kn <tc K

n+1.
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Proof. There is an obvious embedding witnessing that Kn ≤tc Kn+1. We copy
the first n components of the input structure, and we fix the last component,
giving it type A. To show that Kn+1 6≤tc Kn, it is enough to prove the following.

Lemma 3.2. If Ks ≤tc Kt via Φ, then Φ maps computable structures with at
least r components of type A to structures with at least r components of type A.

Proof. We proceed by induction on r. For r = 0, the result is trivial. Assuming
that the result holds for r, we prove it for r+1. Let u be a computable member
of Ks with r+1 components of isomorphism type A, and let v be a computable
member of Kt with just r components of type A. Suppose Φ(u) = v, expecting
a contradiction. Let Ls consist of the elements of Ks with at least r components
of type A, and let Lt consist of the elements of Kt with at least r components of
type A. From Φ we get a partial computable function f from I(Ks) to I(Kt),
taking I(u) to I(v) and taking I(Ls) to I(Lt).

Claim 1: I(v) is Γ within I(Lt). We describe v within Lt by describing within
K the t− r components not of type A.

Claim 2: I(u) is not Γ within I(Ls). Let Ψ be a Turing operator taking K to
Ks such that in the output structure, a copy of the input structure fills the last
place filled by A in u, and the other components of the output are the same
as for u. This gives a partial computable function g taking I(K) to I(Ls) such
that e ∈ I(A) iff g(e) ∈ I(u). If I(u) were Γ within I(Ls), say C ∩ I(Ls), then
I(A) would be Γ within K, as I(A) = g−1(C) ∩K. It follows that I(u) is not
Γ within I(Ls).

From Φ, we get a partial computable function f taking I(Ks) to I(Kt), such
that f takes I(Ls) to I(Lt), and e ∈ I(u) iff f(e) ∈ I(v). Therefore, I(u) is Γ
within I(Ls), contradicting Claim 2 above.

The theorem is proved.

We have the corresponding result for FF ∗-embeddings.

Theorem 3.3. Let Γ be one of the complexity classes Π0
n, d-Σ0

n, or ∆1
1. Suppose

K is a class with exactly one computable member A (up to isomorphism) such
that I(A) is not Γ within K. Then Kn <FF∗ K

n+1.

Proof. The Turing computable embedding of Kn into Kn+1 gives an FF ∗-
embedding. Suppose Kn+1 ≤FF∗ Kn via f . Let u be a computable element
of Kn+1 with all components of type A. Then f gives an m-reduction of I(u)
to I(v) for some computable structure v ∈ Kn. The proof above shows that if
Ks ≤FF∗ Kt via f , then f maps indices for computable structures with at least
r components of type A to indices for structures with at least r components of
type A.
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3.1 Sums of sets

Let S be the class of structures in the empty language. Then Sn is the class of
structures A in the language {Ui | 1 ≤ i ≤ n}, where each Ui is a unary relation
symbol, and the universe of A is the disjoint union of the sets UAi .

Proposition 3.4. Sn <tc S
n+1

Proof. Let A be the countably infinite structure in the empty language. Then
I(A) is Π0

2-complete within I(S), whereas for any finite structure B in the empty
language, I(B) is d-Σ1. Taking Γ to be the complexity class d-Σ1, we are in a
position to apply Theorem 3.1.

3.2 Sums of vector spaces

Recall that V is the class of non-trivial Q-vector spaces. Then V n is the class
of cardinal sums of n vector spaces.

Proposition 3.5. V n <tc V
n+1.

Proof. Let A be the infinite-dimensional Q-vector space. Then I(A) is Π0
3-

complete within I(V ) [3]. If B is a finite-dimensional vector space, then I(B) is
d-Σ2. Taking Γ to be the complexity class d-Σ0

2, we are in a position to apply
Theorem 3.1.

3.3 Sums of ordinals and rank-saturated trees

We consider some examples of classes K with, up to isomorphism, a single
computable member A of K such that I(A) is non-hyperarithmetical within
I(K), and we apply Theorem 3.1 to these classes.

Example 2. Let K be the class of orderings that are either well orderings or
have the form α(1+η), for an admissible ordinal α. The single computable mem-
ber of K whose index set is non-hyperarithmetical within I(K) is the Harrison
ordering, which has order type ωCK

1 (1+η). Letting Γ be the complexity class ∆1
1

(hyperarithmetical), we can apply Theorem 3.1 to show that Kn <tc K
n+1.

The next example is the class of rank-saturated subtrees of ω<ω. For a tree
T ⊆ ω<ω, the tree rank of the nodes is defined as follows. We write tr(σ) for
the tree rank, or foundation rank of the node σ. We have tr(σ) = 0 if σ has no
successors. For α > 0, tr(σ) = α if all successors of σ have ordinal ranks, and
α is the least ordinal greater than all of these. We let tr(σ) =∞ if σ does not
have ordinal rank.

Definition 7 (Rank-saturated tree). A tree T ⊆ ω<ω is rank-saturated if, for
the least ordinal α that is the ordinal of an admissible set containing a copy of
T , for all σ ∈ T , either

1. tr(σ) is an ordinal less than α and for all β < tr(σ), σ has infinitely many
successors σ′ with tr(σ′) = β, or
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2. tr(σ) = ∞ and for all β < α, σ has infinitely many successors σ′ with
tr(σ′) = β, plus infinitely many successors σ′ with tr(σ′) =∞.

For a computable rank-saturated tree, the ordinal α must be ωCK1 .

Example 3. Let K be the class of rank-saturated trees T ⊆ ω<ω. These trees
are characterized by the rank of the root node. If A is the computable rank-
saturated tree with rank ∞, then I(A) is not hyperarithmetical within K. The
other computable members of K all have hyperarithmetical index sets. Again,
letting Γ be the class ∆1

1, we can apply Theorem 3.1 to show that Kn <tc K
n+1.

The two classes K above are not nice. If K is a nice class with just one
computable member A (up to isomorphism) such that I(A) is not hyperarith-
metical, of course, Theorem 3.1 would apply. We do not actually know of a
class like this. Assuming that Vaught’s Conjecture fails, we get a relativized
version. Becker [1] and Montalbán [13], showed that if there is a counterexam-
ple to Vaught’s Conjecture, then there is an Lω1ω sentence ϕ such that for a
cone of sets X, ϕ has, up to isomorphism, a unique X-computable model A
for which the set of X-computable indices is not X-hyperarithmetical; i.e., it is
not in the least admissible set containing X. The two proofs were independent,
with Becker’s just a little earlier. We may suppose that ϕ is X-computable.
Then Mod(ϕ) is a “nice” class relative to X, and A is (up to isomorphism), the
unique X-computable member such that I(A) is not X-hyperarithmetical, so it
is not X-hyperarithmetical within I(K).

4 Equivalence sums

Recall that for a class K, Kn∗ consists of structures with an equivalence relation
that partitions the universe into n equivalence classes, with a structure from K
on each equivalence class. Recall also that S is the class of sets (structures for
the empty language), and V is the class of non-trivial Q-vector spaces.

Proposition 4.1.

1. Sn∗ <tc S
(n+1)∗

2. V n∗ <tc V
(n+1)∗

Proof. We know that Sn <tc S
n+1 and V n <tc V

n+1. Therefore, to prove
Proposition 4.1, it is enough to prove that Sn ≡tc Sn∗ and V n ≡tc V n∗.

Lemma 4.2. Sn ≡tc Sn∗

Proof. We first show that Sn ≤tc Sn∗. Given an input structure A ∈ Sn,
we produce an output structure B ∈ Sn∗ that codes which components of A
have which size. When we are building B, there is an ordering on the classes,
corresponding to that in A. If at stage s, we have seen m elements in the kth

component of A, then the kth class in B has size 〈k,m〉. From the isomorphism
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type of the output B, we can recover the set of pairs (k,m) such that the kth

component of the input A has size m. For 1 ≤ k ≤ n, if there is no such pair
(k,m), then the kth component of the input is infinite.

Next, we show that Sn∗ ≤tc Sn. Given an input structure A ∈ Sn∗, we
produce an output structure B ∈ Sn that codes the number of components of
each size. At stage s, we produce a sequence of numbers ks1, . . . , k

s
n, representing

the current sizes of the components of A, arranged in non-decreasing order. We
give the ith component of B size ksi .

Lemma 4.3. V n ≡tc V n∗

Proof. We first show that V n ≤tc V n∗. Recall the standard computable guessing
function d(k, s) such that lim infs d(k, s) is the dimension of the kth component—
we are guessing at basis elements. For an input A ∈ V n, we build an output
B ∈ V n∗. At stage s, d(k, s) is our guess at the dimension of the kth component
in B. We give the kth component in B (the ordering of the components is not
part of the structure) dimension 〈k, d(k, s)〉. We designate the basis elements.
When the dimension of a component increases, we add new basis elements, and
when the dimension decreases, we keep the first ones, and remove the last ones.
From B, we can recover the set of pairs (k,m) such that m = lim infs d(k, s).
For 1 ≤ k ≤ n such that lim infs d(k, s) = ∞, the kth component of the input
has infinite dimension.

Next, we show that V n∗ ≤tc V n. For an input A ∈ V n∗, we build an
output B ∈ V n with the same dimensions, but arranged in a non-decreasing
sequence. We order the equivalence classes of A by the first element, so we
have components V1, . . . , Vn. There is a standard procedure for guessing the
dimension of a vector space, so that the dimension of V is the lim inf of the
stage s guesses, and the dimension is infinite if the lim inf is∞ (does not exist).
If n = 2, and both components have dimension 2, we may always guess that
one has dimension at least 3. We must think of a scheme that yields B with the
correct dimensions.

Using the jump of the atomic diagram of A, we can determine whether a
given tuple of elements is linearly independent in Vi. Then we can compute
a basis for each component Vi. We look at the elements, in order, and add
an element to our basis if it is independent of the elements we have already
included. For each s, we count the number of basis elements among the first
s elements of Vi, and we arrange these numbers in a non-decreasing sequence
f(s) = (ds1, . . . , d

s
n). Obviously, for each s, dsi is non-decreasing in i. We can see

that for each i, dsi is non-decreasing in s. If some Vi has finite dimension d, and
all other Vj have dimension at least d, then for all sufficiently large s, ds1 = d.
More generally, if (d1, . . . , dk) is the sequence of dimensions for the components
of finite dimension, arranged in non-decreasing order, then (d1, . . . , dk) is an
initial segment of f(s) for all sufficiently large s.

Keep in mind that the function f is ∆0
2(A). Computably in A, we guess the

values so that we are eventually correct on each initial segment. At stage t, we
have what we believe to be f � s, for some s. At stage t+ 1, we either extend,
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adding one more value f(s) at the end of our stage t sequence, or drop back and
change the first value that no longer seems correct. The guesses are sensible;
for our stage t guess f � s, where for all k < s, f(k) = (dk,t1 , . . . , dk,tn ), we have

that for each fixed i, dk,ti is non-decreasing in k. Of course, for each fixed k, dk,ti
is non-decreasing in i.

We explain how to construct B, based on the guesses at f . At stage t,
suppose the last term of our guess is f(s − 1) = (d1, . . . , dn) (di = ds−1,ti ).
We picture B with components U1, . . . , Un such that Ui has dimension di. Of
course, we enumerate only finitely much of the diagram, but we mention the
basis elements. Suppose at stage t + 1, we have f(0), . . . , f(s), f(s + 1), where
f(s + 1) = (d′1, . . . , d

′
n) (d′i = ds+1,t+1

i ). We must have d′i ≥ di. We add basis
elements, as needed, to the components Ui. We keep track of which were the
basis at stage s, for f(s − 1), and which are the new ones, for f(s). Now,
suppose at stage t + 1, our guesses at f(j), for j < k are unchanged, but we

have a new guess at f(k), say (d∗1, . . . , d
∗
n), where d∗i = dk,t+1

i ). We may have
d∗i < di, for some i. For such i, we introduce dependencies to collapse any extra
basis elements in Ui. We keep as part of our basis for Ui the elements created
for f(k − 1).

If for some i, there is a limiting value for dsi , then Ui will eventually have d
basis elements which are never collapsed, and any further basis elements that we
add temporarily will later be collapsed. If there is no limiting value for dsi , then
for each s, there is some stage t after which our guess at f(s) = (ds1, . . . , d

s
n) will

never change, and if Ui will eventually have dsi basis elements that will never be
collapsed. In the end, the dimension is infinite.

5 Abelian groups

In this section, we consider the class Pn of Abelian p-groups that are the direct
product of n groups, where each component is either Zpm for some m ≥ 1 or
Zp∞ (the Prüfer p-group), all for some fixed prime p. The Prüfer p-group Zp∞
is the additive Abelian group that can be described as 〈ai : i ∈ ω|pa0 = 0, pai =
ai−1 : i > 0〉. The Prüfer p-group Zp∞ can also be viewed as the direct limit of
(Zpk)k∈ω under the natural inclusion.

We will need some elementary facts about Abelian p-groups. A standard
reference is [10]. All groups in this subsection are countable, commutative, and
additive. Abelian groups are naturally Z-modules: for an element a of the group
and an integer n, we set na = sign(n) ·

∑
i∈|n| a if n 6= 0, and we define 0a = 0.

Given a prime p, an Abelian group A and k ≥ 1, we write pkA to denote the
subgroup {pkx|x ∈ A} 5 A, and we write A[p] for {g ∈ A : pg = 0}. Note that
A[p] is naturally a Zp-vector space, its Zp-dimension is denoted by dimZpA[p].

Recall that an Abelian group A is a direct sum of its subgroups X and
Y if A = X + Y and X ∩ Y = {0}. This direct sum is isomorphic to the
direct product of X and Y , and the same holds for any finite number of direct
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summands. Thus, we can use direct sums instead of direct products. Recall also
that every finite Abelian p-group is isomorphic to a direct sum of cyclic groups
of the form Zpk (k ≥ 1); such a full decomposition is also unique in the usual
sense (i.e., the orders and the number of the cyclic summands are invariants
of the group). Finally, it is well-known that every element in Pn is uniquely
described by the number and the orders of cyclic and Prüfer summands in its
(full) direct decomposition. We prove:

Theorem 5.1. Pn <tc P
n+1.

Proof. By Proposition 3.4, Sn <tc S
n+1. Hence, it is enough to show that

Pn ≡tc Sn. One of the embeddings is easy.

Lemma 5.2. Sn ≤tc Pn.

Proof. Given V ∈ Sn, produce A ∈ Pn such that if the kth component of V
has size α, then the kth direct summand of A is Zpα .

Showing that Pn ≤tc Sn will require more work.

Lemma 5.3. Pn ≤tc Sn.

Proof. We need a claim.

Claim 5.4. Suppose A ∈ Pn and B 5 A, and suppose ∞ ≥ r1 ≥ . . . ≥ rk ≥ 1
and ∞ ≥ s1 ≥ . . . ≥ sm ≥ 1 are such that A ∼= Zpr1 ⊕ . . . ⊕ Zprk and B ∼=
Zps1 ⊕ . . .⊕ Zpsm . Then k ≥ m and ri ≥ si for i = 1, . . . ,m.

Proof. Recall that for r ∈ ω, prA = {prx|x ∈ A} 5 A. Before we prove the
claim, we establish several basic properties of the functor A→ prA.

Note that if U = X ⊕ Y then prU = prX ⊕ prY (to be explained shortly).
Indeed, prX 5 prU and prY 5 prU . Furthermore, for every w ∈ prU we have
w = prv for some v ∈ U . Since U = X ⊕ Y , there exist x ∈ X and y ∈ Y such
that v = x+ y. Thus, w = pr(x+ y) = prx+ pry ∈ prX + prY and

prU = prX + prY.

But prX 5 X and prY 5 Y imply that prX ∩ prY = {0}, therefore the above
sum is direct.

Observe also that, for any α ∈ ω ∪ {∞} and r ∈ ω, we have

prZpα ∼= Zpα−r ,

where ∞− r =∞ and α− r = 0 for r > α. (In fact, prZp∞ is equal to Zp∞ .)
We now prove the claim. Clearly, k = dimZp(A[p]) ≥ dimZp(B[p]) = m.

Suppose rt ≥ st for t = 1, . . . , i − 1, but ri < si. Note that the assumption
implies ri is finite and is smaller than rj , sj for each j < i. Then priA is
isomorphic to Zpr1−ri ⊕ . . .⊕Zpri−1−ri and priB is isomorphic to Zps1−ri ⊕ . . .⊕
Zpsi−ri · · · , where ∞− ri =∞. Thus

dimZp((priB) [p]) ≥ i > (i− 1) = dimZp((priA) [p]),

which contradicts (priB) [p] ⊆ (priA) [p].
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Note that that the claim above fully describes finite subgroups of A ∼= Zpr1⊕
. . .⊕ Zprk up to isomorphism1.

We now define a computable reduction witnessing Pn ≤tc Sn. We identify
a structure with its open diagram and we use Claim 5.4 throughout. Using
A ∈ Pn as an oracle, we can effectively define a nested approximation of A by
its finite subgroups, i.e.

A =
⋃
s

As,

where (As)s∈ω is a computably enumerable sequence in which As 5 A and
As ⊆ As+1 (and thus As 5 As+1). Since every As is finite, it splits into a
direct sum As =

⊕
1≤i≤l[s] Zpti[s] , where the finite sequence (ti[s])i≤l[s] is non-

decreasing in i and l[s] ≤ n. Suppose

A ∼= Zpr1 ⊕ . . .⊕ Zprn .

Since As 5 As+1 5 A, we have l[s] ≤ l[s+1] ≤ n and furthermore, by Claim 5.4,
ti[s] ≤ ti[s+ 1] ≤ ri for every i ≤ l[s].

We define a computable enumeration (Vs)s∈ω of finite cardinal sums of sets
that are nested under componentwise inclusion, as follows. Declare Vs equal to
the cardinal sum of sets X1[s], . . . , Xl[s][s] having sizes t1[s], . . . , tl[s][s], respec-
tively. Notice that the properties of (As)s∈ω described above guarantee that we
can make Vs a substructure of Vs+1 under the natural componentwise inclusion.
Thus, we can define V =

⋃
s Vs consistently and furthermore effectively and

uniformly in A. The structure V is the intended effective image of A in Sn.
It remains to show that the effective transformation Pn → Sn described

above is injective on isomorphism types. Recall that

A ∼= Zpr1 ⊕ . . .⊕ Zprn ,

where the first i ≥ 0 summands are Zp∞ and the rest summands are finite.
Since A =

⋃
sAs, there exists an s such that G 5 As, where

G ∼= (Zpri+1+1 ⊕ . . .⊕ Zpri+1+1)⊕ Zpri+1 ⊕ . . .⊕ Zprn 5 A.

By Claim 5.4, for every v > s we have

Av ∼= Zpt1[v] ⊕ . . .⊕ Zpti[v] ⊕ Zpri+1 ⊕ . . .⊕ Zprn ,

where tj [v] ≥ ri+1 + 1 for j ≤ i. Therefore lims l[s] = n and lims tj [s] = rj for
j > i. Note that for any choice of (‘arbitrarily large’) cyclic p-groups C1, . . . , Ci,
the group

C1 ⊕ . . .⊕ Ci ⊕ Zpri+1 ⊕ . . .⊕ Zprn
1Indeed, given any finite p-group B, find its full decomposition B ∼= Zps1 ⊕ . . . ⊕ Zpsm .

If we have k ≥ m and ri ≥ si for i = 1, . . . ,m then we can embed B into A. Conversely, if
B 5 A is finite then (using the same notation) we get k ≥ m and ri ≥ si for i = 1, . . . ,m by
the claim. We also note that the claim in fact describes the isomorphism types of arbitrary
subgroups of A ∈ Pn, but this fact has no use for us.
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is embeddable into A. Thus, the same argument as we had for G illustrates
lims tj [s] =∞, j = 1, . . . , i.

We conclude that
lim
s
tj [s] = rj , j = 1, . . . , n,

where each sequence (tj [s])s is non-decreasing (Claim 5.4). Hence, the output
V will be the cardinal sum of n sets Xj whose cardinalities match with the
respective lims tj [s] (under the identification ω =∞). It remains to recall that
the tuple (r1, . . . , rn), where ∞ ≥ r1 ≥ . . . ≥ rn ≥ 1, is a full and injective
isomorphism invariant of both A and the corresponding V .

We note that proving Pn <tc P
n+1 directly (i.e., without any reference to

Sn) would require more work.
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