
PRIMITIVE RECURSIVE REVERSE MATHEMATICS 1

NIKOLAY BAZHENOV, MARTA FIORI-CARONES, LU LIU, AND ALEXANDER MELNIKOV 2

Abstract. We use a second-order analogy PRA2 of PRA to investigate the proof-theoretic

strength of theorems in countable algebra, analysis, and infinite combinatorics. We compare
our results with similar results in the fast-developing field of primitive recursive (‘punctual’)

algebra and analysis, and with results from ‘online’ combinatorics. We argue that PRA2 is suf-

ficiently robust to serve as an alternative base system below RCA0 to study the proof-theoretic
content of theorems in ordinary mathematics. (The most popular alternative is perhaps RCA∗0.)

We discover that many theorems that are known to be true in RCA0 either hold in PRA2 or are
equivalent to RCA0 or its weaker (but natural) analogy 2N-RCA0 over PRA2. However, we also

discover that some standard mathematical and combinatorial facts are incomparable with these

natural subsystems.

Contents 3

1. Introduction 1 4

2. Preliminaries 5 5

2.1. The finitist’s first-order system PRA 5 6

2.2. The second-order system PRA2 7 7

2.3. Recursive comprehension and choice 8 8

2.4. Calculus of finite sets 11 9

3. Examples from countable algebra and infinite combinatorics 14 10

3.1. Algebraic structures and vector spaces 14 11

3.2. Countable categoricity 16 12

3.3. Infinite combinatorics done in PRA2 20 13

3.4. Models and algebraically closed fields 23 14

4. Baire category theorem and Ramsey theorem 25 15

4.1. Baire category theorem 25 16

4.2. The stronger result 27 17

4.3. Ramsey Theorem 28 18

5. Transforming a computable instance to a primitive recursive instance 29 19

5.1. More notation 29 20

5.2. The main transformation result 30 21

5.3. Can we always use padding? 32 22

5.4. A note about ACA0 and 2N-ACA0 33 23

6. WKL0 over PRA2 33 24

6.1. Uniform continuity 36 25

7. Further open questions 37 26

References 38 27

1. Introduction 28

Reverse mathematics is a relatively new program in mathematical logic. Its basic goal is to assess 29

the relative logical strengths of theorems from the ‘ordinary’ (non set theoretic) mathematics. In 30

reverse mathematics, one tries to find the minimal natural axiom system Γ that is capable of 31

proving a given theorem ∆. This is usually done by proving that, over a certain rather weak base 32

system, Γ is equivalent to ∆. In other words, one of the crucial steps in such investigations is 33

proving the axioms Γ from the given theorem ∆—thus, the name ‘reverse mathematics’. 34

35

Date: September 16, 2022.

1

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 2

Friedman, Simpson, and Smith presented these ideas in a systematic way in their seminal work 1

[FSS83]. Their paper contains a large number of examples of classical theorems from countable 2

algebra analysed in several subsystems of the second-order arithmetic. Following the earlier ideas of 3

Friedman [Fri76a, Fri76b], Friedman, Simpson, and Smith chose RCA0 as their most basic axiomatic 4

system. Here RCA0 stands for the ‘recursive comprehension axiom (scheme)’; informally speaking, 5

this axiomatic system postulates the existence of ‘recursive’ (computable) subsets of N. 6

It is perhaps not a coincidence that around the same time, the subject of recursive (computable, 7

effective) algebra was getting increasingly popular in both the US and Australia and, independently, 8

in the Soviet Union. Effective algebra investigates computability-theoretic properties of countable 9

algebraic structures. Such investigations began in the 1960s with the works of Mal’cev [Mal61, 10

Mal62] and Rabin [Rab60]. By the mid-1980s the subject had accumulated a large number of non- 11

trivial results, perhaps most notably in countable field theory, countable Boolean algebras, and 12

commutative group theory; we cite [EGN+98a, EGN+98b, AK00, EG00]. Around the same time, 13

the subject of computable analysis was becoming increasingly popular too; we cite [PER89, Wei00]. 14

The main objects of investigation in computable analysis are recursively (computably) presented 15

separable spaces and recursive (computable) functions between such spaces. 16

A large number of results in reverse mathematics, especially in the early stages of its develop- 17

ment, were based on similar results in effective algebra and computable analysis. Many results 18

in Friedman, Simpson, and Smith [FSS83] are essentially ‘recycled’ effective algebraic theorems. 19

For example, it is well-known that every computable field can be computably embedded into its 20

computable algebraic closure; this is an old result due to Rabin [Rab60]. It is therefore perhaps 21

not surprising that the result also holds in RCA0. However, this of course requires some extra 22

work since RCA0 additionally restricts the axiom of induction; we cite [Sim09] for the details. For 23

more results based on effective algebra, we cite [Sim05, Sim09, Sol98, Sho06]. For various results 24

inspired by computable analysis, see, e.g., [ST90, HS96, BS86]. More recently, it has become rather 25

common to combine reverse mathematics with effective algebra. Each of the two subjects suggests 26

a certain measure of complexity of an algebraic result, and while these measures can be somewhat 27

related technically, usually there is no immediate implication between the two. For a few relatively 28

recent examples, we cite [GM17, Con19]. Also, there are rather explicit connections between re- 29

verse mathematics and computable analysis; e.g., [Wei00, Bra05, GM09, BGP21]. More generally, 30

computable mathematics and reverse mathematics (especially in RCA0 and not far beyond) have 31

become so interconnected that no firm line can be drawn between them. 32

In the recent years and beginning with [KMN17], there has been much work in primitive re- 33

cursive (‘punctual’) algebra. Also, there have been several recent results in primitive recursive 34

analysis [SS21, BBB+22]. The main goal of such investigations is the elimination of unbounded 35

search from results in computable mathematics. Such investigations often lead to unexpected 36

results. Indeed, the technical depth of some of these results is almost equally unexpected. For 37

example, it is easy to see that the back-and-forth proofs of computable categoricity for the dense 38

linear order (Q, <) and for the random graph contain exactly one instance of unbounded search 39

at every stage. Using degree-theoretic techniques, Melnikov and Ng [MN19] discovered that the 40

‘fully primitive recursive degrees’ of these structures are not isomorphic as partial orders, and this 41

reflects that these delays have different nature. This difference is rather subtle and its nature is 42

not yet fully understood. We cite surveys [Mel17, BDKM19, DMN21] for many more results in 43

primitive recursive mathematics and for a detailed exposition of the theory. The theory has ac- 44

cumulated many theorems about primitive recursive algebraic and separable structures. Perhaps 45

more importantly, the theory has developed enough tools that allow to systematically investigate 46

primitive recursive mathematical structures and processes on such structures. Perhaps somewhat 47

unexpectedly, such investigations are rather closely related to another seemingly distant branch of 48

computable mathematics, namely ‘online’ combinatorics. Beginning in the 1980’s there has been 49

quite a lot of work on online infinite combinatorics, particularly by Kierstead, Trotter, Remmel 50

and others ([Kie81, Kie98, KPT94, LST89, Rem86]). Some results were quite surprising. For ex- 51

ample, Dilworth’s theorem says that a partial ordering of width k can be decomposed into k chains. 52

Szemeredi and others showed that there is a computable partial ordering of width k that cannot 53

be decomposed into k computable chains. But in 1981, Kierstead proved that there is an online 54

algorithm that will decompose any online presentation of a computable partial ordering into 5k−1
4 55

many (computable) chains. Investigations here are still ongoing; e.g., [FCM21, FCSS22]. As was 56

noted in [KMM21], there is a technical connection between results of this sort and the primitive re- 57

cursive ‘punctual’ framework by means of subrecursive relativisation (to be clarified). Indeed, it has 58

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 3

been demonstrated in [KMM21] that there is a tight connection between definability and primitive 1

recursion in the context of countable algebraic structures. Based on these results and observations, 2

it has been proposed in [DMN21] that punctual algebra and online combinatorics can be studied 3

simultaneously, and indeed that there should exist a unified approach to the reverse mathematics 4

of these results. However, it was not clear what would be the ‘right’ base axiomatic system for 5

such investigations. Even though RCA0 is the standard base system for reverse mathematics, it 6

fails to capture the subtle effects related to forbidding unbounded search. 7

8

There are several weaker base systems below RCA0 that could potentially capture the subre- 9

cursive content of mathematics, we briefly go over some of them. For example, [SS86, Hat89] 10

proposed RCA∗0, which is RCA0 with a weakened induction scheme. While certainly rather inter- 11

esting and useful in the study of the role of induction, it seems its power and convenience (in, 12

e.g., countable algebra) is extremely limited. Perhaps, one of the possible reasons is that RCA∗0 13

only proves bounded primitive recursion which poses a significant limitation on the ‘constructive’ 14

arguments that can be imitated in RCA∗0. In fact, RCA∗0 is Π0
2-conservative over elementary recur- 15

sion arithmetic, see [Avi05, Theorem 4.4] and [SS86, Corollary 4.9]). However, with some effort 16

several results in ordinary mathematics can be carried over RCA∗0, which seems very surprising 17

(thus, interesting) since bounded primitive recursion appears to be a very weak tool in algebra. 18

Research into RCA∗0 is ongoing; we cite [KY15, KKY21, FCKWY21, Yok13, HS17]. 19

The other well-known ‘subrecursive’ system is PRA with one axiom for each primitive recursive 20

scheme. However, it is a first-order system and can really handle only finite sets that can be 21

identified with their codes. A truly remarkable theorem is the Π0
2-conservativity of WKL0 over 22

PRA which in particular implies that these theories are equiconsistent; see [Sim09, Section IX.3] 23

where one can also find more references. However, while the system undoubtedly plays a rather 24

important role in proof theory, it cannot serve as a base for the reverse mathematics of, e.g., 25

countable algebra or infinite combinatorics. The obvious obstacle is, of course, that the system is 26

not second-order. 27

We also mention the various sub-recursive systems specifically designed to study complexity- 28

theoretic results; see books [Bus86, Bus98, CN10]. Similarly to PRA, such subsystems appear to 29

be too restricted to be used as a base theory to study infinite mathematics. 30

To keep the intro reasonably compact, we will no longer proceed with the discussion of various 31

possible systems below RCA0 and refer the reader to [FFF17]. Instead, we will concentrate on the 32

main subject of the paper, namely the second-order analogy PRA2 of PRA. 33

The system of our choice is PRA2. It is a function-based system (as opposed to the set-based 34

systems RCA0, WKL0, etc.) that postulates that functions are closed under primitive recursive 35

schemata. Informally, this corresponds to primitive recursive relativisation. The system PRA2 is, 36

of course, not new. For instance, Avigad [Avi05] presented a nonstandard higher-type extension of 37

PRA, which is still Π2-conservative over PRA, and some weaker systems, providing some examples 38

of statements of elementary analysis which can be proved in such systems. Various proof-theoretic 39

properties of higher-type analogies of PRA, including PRA2, are thoroughly studied in the books 40

[Avi05, Koh08]. We also remark that Harvey Friedman in [Fri76a, Fri76b] originally introduced 41

RCA0 in a functional language, not in the set-based one adopted in [Sim09]. Friedman defined RCA0 42

as ∆0
1-CA plus essentially I∆0

1 and closure under primitive recursive functions. This subsystem 43

implies IΣ0
1, so, in the end, it is another presentation of the usual basic theory. Nonetheless, this 44

may reveal that to Friedman’s eyes, primitive recursion carries a foundational import, which is 45

perhaps hidden in the later formulation of Simpson [Sim09] who uses ∆0
1-CA and IΣ0

1 to derive 46

totality of primitive recursive functions1. 47

The axiomatic system PRA2 seems to be the most natural second-order system to study primitive 48

recursive proofs and processes in countable algebra and separable spaces. Indeed, the second-order 49

part of the minimal ω-model of PRA2 is just the collection of all primitive recursive functions. 50

As we will discuss later, PRA2 proves comprehension and induction with bounded quantifiers. 51

This corresponds to our intuition that primitive recursive processes correspond to definability 52

with bounded quantifiers. We are not the first to realise that PRA2 has a potential in the reverse 53

mathematics of ordinary theorems. Some 20 years before us Kohlenbach [Koh00] tested the system 54

from the perspective of reverse mathematics. While Kohlenbach’s examples are both interesting 55

and instructive, at that time neither countable algebra nor analysis could really offer enough 56

1See also https://cs.nyu.edu/pipermail/fom/2002-April/005415.html for a further discussion.

https://cs.nyu.edu/pipermail/fom/2002-April/005415.html

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 4

primitive recursive results and techniques that could be partially re-used to truly test the system 1

in ordinary mathematics. 2

The main purpose of this paper is to initiate (or revive) a systematic investigation of the primitive 3

recursive content of ordinary mathematics using PRA2. In this paper, we do only a few initial steps 4

that we believe are sufficient to lay the foundations of this theory. 5

6

We now discuss the results that are summarised in Fig. 1. (Not all results and examples are 7

included into the diagram.) 8

PRA2

I∆0
1

∆0
1-CAIΣ0

1

BaireCategory

ConnectedComponentsExist

2N-RCA0 = IΣ0
1 ∧∆0

1-CA

RCA0Categoricity

RT1
<∞

RT2
2

RT3
2

WKL0 HeineBorelTheorem

UniformContinuityRCA0 + WKL0

2N-ACA0

ACA0

Figure 1. Summary of the results proved in the paper. Lines represent strict implica-
tions. Dashed arrows represent either not known but possible implications, or implica-
tions that we believe are true but we have not formally verified in the paper. Categoricity
stands for the three principles studied in Section 3.2. RCA0 is identified with it function-
based analogy QF-AC.

Section 2 is a preliminaries section. It contains some basic facts about PRA2 that will be 9

necessary in the later sections. Among other things, we verify that the formalisation of finite sets 10

is robust in PRA2. More specifically, we check that the two most natural approaches (the first- 11

order and the second-order ones) are equivalent, and that the cardinality of a finite set makes sense. 12

We also discuss the relationship between the function-based PRA2 and the set-based RCA0, and 13

also induction and comprehension axiom schemata. For instance, we explain why, over PRA2, the 14

set-based recursive comprehension ∆0
1-CA is weaker than the full function-based version QF-AC of 15

recursive comprehension. Since we will observe that QF-AC implies IΣ0
1 over PRA2, one can say 16

that up to notation, QF-AC is RCA0; it is indeed very similar to what Friedman initially suggested. 17

Section 3 contains two alternative approaches to countable algebraic structures in PRA2, and 18

it also contains a fair amount of examples. Some of these examples follow (often rather non- 19

elementary) proofs from the literature and are perhaps somewhat routine but instructive. However, 20

we believe that some other results presented in the section should be viewed as foundational. For 21

instance, we verify that PRA2 proves that every countable field can be embedded into its algebraic 22

closure. It is well-known that the result holds in RCA0 [FSS83, Sim09], but the standard proof relies 23

on too much induction. Some care must be taken to prove it over PRA2. In this section we also look 24

at countable categoricity of (Q, <) and the random graph. In contrast with the aforementioned 25

result from primitive recursive algebra, PRA2 fails to detect the subtle difference between these 26

two results. More formally, each of these results is equivalent to RCA0 over PRA2. This situation 27

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 5

is only expected: the reverse mathematics over RCA0 also typically does not distinguish between, 1

e.g., 0′-effective and 0′′-effective arguments in computable algebra [GM17]. 2

In Section 4, we study Ramsey-type theorems and Baire category theorem. It is well-known 3

(and easy to see) that RCA0 proves Baire category theorem. It also seems that the proof makes 4

an essential use of a truly unbounded search (quantification). However, we will prove that Baire 5

category theorem is actually not equivalent to RCA0 over PRA2, but lies strictly in-between PRA2
6

and RCA0. In fact, with just a bit more effort we show that Baire category theorem neither 7

implies nor is implied by 2N-RCA0 over PRA2 (recall 2N-RCA0 is the weaker set-version of recursive 8

comprehension). We also examine Ramsey theorem and show that, over PRA2, RTnk is incomparable 9

with 2N-RCA0. We believe that these results have no direct analogy in the literature. 10

Section 5 studies the following, rather general, phenomenon: for many combinatorial problems, 11

any computable instance can be transformed into a primitive recursive instance having either the 12

same or (in some sense) equivalent solution. We give a long list of examples of such problems and 13

discuss the consequences. We note that (almost evidently) WKL0 is also in this list. The results 14

should be compared to the rather long list of examples from primitive recursive algebra which 15

assert that, in many broad classes of countable algebraic structures, every computable structure 16

has a primitive recursive (or even ‘punctual’) presentation; we cite [Gri90, CR91, CR98, KMN17]. 17

Results of this sort give a rather strong evidence that PRA2 indeed could be used as an alternative 18

base for reverse mathematics to study combinatorial and algebraic theorems. 19

In Section 6 we look at WKL0 over PRA2. It is well-known that, over RCA0, uniform continuity 20

of a continuous function on [0, 1] is equivalent to WKL0; see, e.g., Theorem IV.2.3 in [Sim09]. We 21

show that, over PRA2, the uniform continuity of a continuous function on [0, 1] is strictly stronger 22

than WKL0. Specifically, we prove that over PRA2, the uniform continuity of a continuous function 23

on [0, 1] is equivalent to RCA0 + WKL0. 24

The study of PRA2 has many potential open questions, some perhaps routine but some likely 25

challenging. We state several concrete open questions throughout the paper. We finish the paper 26

with a brief Section 7 where we pose several further open problems. 27

2. Preliminaries 28

2.1. The finitist’s first-order system PRA. 29

Definition 2.1. The induction axiom for Σn-formulae, IΣn, is the following schema of axioms 30

∀c̄ ((ϕ(0, c̄) ∧ ∀n (ϕ(n, c̄)→ ϕ(n+ 1, c̄)))→ ∀nϕ(n, c̄)), 31

where ϕ is a Σn-formula. 32

The induction axiom for ∆n-formulae, I∆n, is the following schema of axioms 33

∀c̄ (∀n (ϕ(n, c̄)↔ ψ(n, c̄))→ ((ϕ(0, c̄) ∧ ∀n (ϕ(n, c̄)→ ϕ(n+ 1, c̄)))→ ∀nϕ(n, c̄))), 34

where ϕ is a Σn-formula and ψ is a Πn-formula. 35

The least number principle for Πn-formulae, LΠn, is the following schema of axioms 36

∀c̄ (∃nϕ(n, c̄)→ ∃n (ϕ(n, c̄) ∧ ∀m < n¬ϕ(m, c̄))), 37

where ϕ is a Πn-formula. 38

Any of Σ0,Π0,∆0 are generally defined to be formulae with only bounded quantifiers. Also, 39

Σn- and ∆n-formulae may contain bounded quantifiers; these do not contribute to the complexity. 40

Recall that over PA−, for each n ∈ N, IΣn+1 ⇒ I∆n+1 ⇒ IΣn ⇔ LΠn, and I∆0 ⇔ IΣ0; see [HP17, 41

Theorems I.2.4, I.2.5, IV.1.29], plus the fact that PA−+exp ` BΣn ⇔ I∆n, for all n > 0 by [Sla04]. 42

The definition below is standard (e.g., [Sim09]). 43

Definition 2.2. Let LPRA be the first-order language with non-logical symbols {0, s, <} and a 44

symbol for any primitive recursive function. The axioms of PRA are the following: 45

(1) ∀x(0 6= s(x)); ∀x, y(s(x) = s(y)→ x = y); 46

(2) defining equations of any primitive recursive function; 47

(3) QF-I, i.e., induction for any quantifier-free formula θ: 48

(θ(0) ∧ ∀n (θ(n)→ θ(n+ 1)))→ ∀n θ(n). 49

The next lemma is proved in [HP17, Theorem 0.35] and in [Sim09, Lemma IX.3.7] for ∆0
0- 50

formulae. 51

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 6

Lemma 2.3 ([Sim09]). For each ∆0-formula θ there exists a primitive recursive function f such 1

that PRA ` (f(n) = 1↔ θ(n)) ∧ (f(n) = 0↔ ¬θ(n)). 2

Proposition 2.4. PRA ` I∆0. 3

Proof. Let θ be a ∆0-formula and assume that PRA ` θ(0)∧∀n(θ(n)→ θ(n+1)). By Lemma 2.3, let 4

f be such that PRA ` (f(n) = 1↔ θ(n))∧(f(n) = 0↔ ¬θ(n)). Then, PRA ` f(0) = 1∧∀n (f(n) = 5

1→ f(n+ 1) = 1), which by QF-I implies PRA ` ∀n(f(n) = 1), so that PRA ` ∀n(θ(n)). � 6

Note that PRA is an extension by definition of the theory PA−+I∆0 plus totality of any primitive 7

recursive function. That is any model of PRA can be seen as a model of PA− + I∆0 in which any 8

primitive recursive function is total. The following propositions are immediate consequences of 9

this. 10

Proposition 2.5. PRA 0 I∆1. 11

Proof Sketch. The following proof suggested to us by Ko lodziejczyk is similar to the proof of the 12

fact that IΣn−1 0 BΣn, for each n ≥ 1 (see [Kay91, Chapter 10]), and so that IΣn−1 + exp 0 I∆n, 13

since PA− + exp ` I∆n ↔ BΣn, for each n ∈ N, by [Sla04]. 14

Let M � PA and c ∈M be non-standard. Consider the structure K1(M, c) of the elements of M 15

defined by a Σ1-formula, that is a ∈ K1(M, c) if and only if there exists some Σ1-formula ϕ(x, c) 16

such that M � ϕ(a, c)∧∀b (ϕ(b, c)→ b = a). Then K1(M, c) � PA−+ I∆0 and K1(M, c) 2 BΣ1 by 17

[Kay91, Theorems 10.3, 10.4]. We argue that K1(M, c) proves totality of any primitive recursive 18

function, so that K1(M, c) � PRA once expanded to LPRA. To this end, let f be a primitive 19

recursive function. Since f is primitive recursive and M � PA, then f is provably total in M and 20

defined in M by some ∆1-formula ψ(z, y) (see [HP17, Theorem I.1.54 and Lemma I.1.52]). Thus, 21

if x ∈ K1(M, c), there exists y ∈ M such that M � ψ(x, y), that is y = f(x) in M . The following 22

Σ1-formula defines y in M 23

∃x
(
θ(x, c) ∧ ψ(x, y)

)
∧ ∀b∀d

(
θ(b, c) ∧ ψ(b, d)→ d = y

)
24

where θ(x, c) is the Σ0
1-formula defining x. This shows that y ∈ K1(M, c). � 25

Analogous reasons as above actually prove that PRA ∧ IΣn−1 0 BΣn, for each n ≥ 1, and in 26

particular that the structure Kn(M, c) of the elements of M defined by a Σn-formula on some 27

parameter c ∈ M satisfies PRA. Moreover, as expected, the following is true and can be proved 28

similarly. 29

Proposition 2.6. PRA ∧ I∆n 0 IΣn, for each n ≥ 1. 30

Proof. Let M � PA, c ∈ M be non-standard and n ≥ 1. Consider In(M, c), the downwards 31

closure of the elements Σn in c definable; in other words, a ∈ In(M, c) if and only if there exists 32

some b ≥ a and some Σn-formula ϕ(x, c) such that M � ϕ(b, c) ∧ ∀d (ϕ(d, c) → d = b). Then 33

In(M, c) � PA− + I∆n and In(M, c) 2 IΣn by [Kay91, Theorem 10.10] and [Sla04]. We argue that 34

In(M, c) proves totality of any primitive recursive function, so that In(M, c) � PRA once expanded 35

to LPRA. To this end, let f be a primitive recursive function and x ∈ In(M, c). 36

Define a primitive recursive function g : N → N such that g(z) =
∑z
i=0 f(i). Let b ≥ x be 37

such that b ∈ Kn(M, c). Since Kn(M, c) � PRA, then g(b) ∈ Kn(M, c). Moreover, g is provably 38

non-decreasing in M , and so f(x) ∈ In(M, c), since f(x) ≤ g(x) ≤ g(b). � 39

The previous proposition implies that PRA does not prove IΣn, for any n > 0. Recall that 40

PA− + I∆0 does not prove totality of exp (see [Par71, Theorem 4.3]). 41

Proposition 2.7. There exists a model of PA− + I∆0 which cannot be expanded to a model of 42

PRA. 43

Proof. Let M � PA− + I∆0 be such that there exists a primitive recursive function which is not 44

total in M . Such a model exists since PA− + I∆0 does not prove totality of all primitive recursive 45

functions. Then, since PRA proves totality of any primitive recursive function, M 2 PRA. � 46

The previous proposition contrasts with the fact that any model of IΣ1 can be expanded to a 47

model of PRA (see [Sim09, Lemma IX.3.5]). It is also well-known that WKL0 is Π0
2-conservative 48

over PRA; see [Sim09]. 49

The obvious issue with PRA is that it is first-order, so it is not suited for reverse mathematics 50

in algebra and analysis in the usual sense. 51

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 7

2.2. The second-order system PRA2. We follow Kohlenbach [Koh00] and consider the second- 1

order analogy of PRA which, according to the notation in [Koh00], will be denoted by PRA2. 2

Recall that in the definition of PRA we postulated the existence of primitive recursive functions, 3

each function was given by a separate axiom. To get the second-order analogy PRA2 of PRA, we 4

need to postulate the existence of primitive recursive functionals (to be clarified). Equivalently, 5

we need to postulate that functions are ‘closed under primitive recursion’. 6

Definition 2.8 (PRA2). Let LPRA2 be the two-sorted language with first and second order (func- 7

tion) variables, plus all the non-logical symbols of LPRA. 8

The axioms of PRA2 are the axioms of PRA extended with defining equations for all primitive 9

recursive functionals of Type 2 (i.e., functions of function argument). We also additionally al- 10

low that, in the quantifier-free induction, the formulae can have function-variables (parameters); 11

equivalently, we can take the universal closure of each such axiom. 12

We clarify what we mean by a primitive recursive functional. To define primitive recursive 13

functionals on finitely many inputs f1, . . . , fk (which are themselves functions), adjoin f1, . . . , fk to 14

the list of basic primitive recursive functions and close them under primitive recursion, composition 15

and bounded minimisation (the latter is, of course, a mere convenience). Each such individual 16

definition — that we call a scheme primitive recursive relative to f1, . . . , fk — will correspond to 17

a functional on arguments f1, . . . , fk. On input f1, . . . , fk it will output a function defined by the 18

scheme. If we additionally allow k to be arbitrary, we get a recursive list of all possible primitive 19

recursive schemata, each defining a functional. If P (f1, . . . , fk) is one such scheme, we axiomatically 20

postulate that for every f1, . . . , fk there is a g such that g = P (f1, . . . , fk). Hence, a model (M,X) 21

is a model of PRA2 if M � PRA and X is closed under composition and primitive recursion. This is 22

similar to PRA where we postulate the existence of all primitive recursive functions, but we have no 23

direct access to them since the language is first-order. Similarly, in PRA2, we cannot quantify over 24

functionals, but we can quantify over functions. We also note that a primitive recursive function 25

can be viewed as a primitive recursive functional: formally, set k = 0 in g = P (f1, . . . , fk). 26

Definition 2.9. We say that a class K of (total) functions is closed under primitive recursion, or 27

PR-closed, if for every n-ary primitive recursive functional Ψ and any f1, . . . , fn ∈ K, 28

Ψf1,...,fn ∈ K. 29

We could instead have used iterated join: 30

(f ⊕ g)(k) =

{
f(i) if k = 2i,

g(i) if k = 2i+ 1,
31

(which itself is a primitive recursive functional) to restrict ourselves to primitive recursive func- 32

tionals of one argument, but then we also have to require that K is closed under ⊕. 33

Given a collection S of functions, we can define their primitive recursive closure PR(S) to be 34

the smallest PR-closed class that contains S. In particular, a class K is PR-closed if, and only if, 35

PR(K) = K. Note that the smallest PR-closed class is the class of all primitive recursive functions 36

rather than the empty set. If Ψ is a primitive recursive functional, then in an ω-model it can 37

be thought of as a Turing machine as well, so, in particular, the use principle applies. Thus, 38

occasionally we call these functionals operators. 39

40

Notice that formulae of PRA2 may contain numbers and functions, while PRA is first-order. 41

Whenever M � PRA, (M,PRec(M)) � PRA2, where PRec(M) is the collection of all primitive 42

recursive functions over M . In particular, PRA2 has a minimal ω-model (ω, PRec(ω)). Following 43

the convention, we let ω denote the standard natural numbers, and N the first order universe, 44

which is possibly non standard. 45

2.2.1. Primitive recursive induction and comprehension. 46

47

Primitive recursive (∆0
0) induction. Let Σ0

n, Π0
n, ∆0

n denote Σn, Πn, ∆n-formulae, respectively, 48

where function-parameters are allowed. Hence, IΣ0
n, I∆0

n, LΠ0
n are defined as in Definition 2.1 and 49

denote respectively the induction for Σ0
n and ∆0

n-formulae with function-parameters and the least 50

number principle for Π0
n-formulae, also with parameters, respectively. 51

The proposition below says that PRA2 proves induction over formulae in which all quantifiers 52

are bounded — this is of course exactly as expected. Note that the formulae can have function- 53

parameters. 54

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 8

Proposition 2.10. PRA2 ` I∆0
0. 1

Proof. The plan is to imitate the proof of Proposition 2.4, but this time we need to define a 2

functional rather than a function. 3

Lemma 2.11. For each ∆0
0-formula θ, there exists a primitive recursive functional Φ such that 4

PRA2 proves the following 5

(1) Φ(n0, . . . , nm, f0, . . . , f`) = 1↔ θ(n0, . . . , nm, f0, . . . , f`) 6

(2) Φ(n0, . . . , nm, f0, . . . , f`) = 0↔ ¬θ(n0, . . . , nm, f0, . . . , f`). 7

Proof. Compare with [Sim09, Lemma IX.3.7]. It is important that the definition of Φ is derived 8

from the syntax (i.e., the formula), and thus the existence of the functional is postulated in PRA2. 9

In other words, this is a meta-argument. We give the details below. 10

The lemma is proved by induction on the complexity of the formula θ. Assume for readability 11

that θ has as unique parameters n and f . 12

If θ(n, f) is atomic of the form t1 = t2, then Φ(n, f) = 1 ↔ (|t1 − t2| × |t1 − t2|) = 0 and 13

Φ(n, f) = 0↔ (|t1 − t2| × |t1 − t2|) > 0. 14

If θ(n, f) is atomic of the form t1 < t2, then Φ(n, f) = 1 ↔ t2 − t1 > 0 and Φ(n, f) = 0 ↔ 15

t1 − t2 ≥ 0. 16

If θ(n, f) = θ1(n, f) ∧ θ2(n, f), let by induction hypothesis that Φ1(n, f) and Φ2(n, f) are 17

equivalent to θ1(n, f) and θ2(n, f) respectively. Let Φ(n, f) = Φ1(n, f)× Φ2(n, f). 18

If θ(n, f) = ¬θ1(n, f), let by induction hypothesis Φ1(n, f) be equivalent to θ1(n, f). Let 19

Φ(n, f) = 1↔ Φ1(n, f) = 0. 20

Finally, if θ(n, f) = (∀i < m)
(
θ1(i, n, f)

)
, for some term m, let by induction hypothesis 21

Φ1(i, n, f) be equivalent to θ1(i, n, f). Let Φ(n, f) =
∏
i<m Φ1(i, n, f) which is a primitive re- 22

cursive functional. � 23

The rest proceeds as in the proof of Proposition 2.4, but with Φ in place of θ. � 24

Primitive recursive (∆0
0) choice and comprehension. The definition below allows to define functions 25

using bounded quantifiers. It can be viewed as a ‘primitive recursive’ variation of choice, and it 26

serves as the function-analog of ∆0
0-comprehension. 27

Definition 2.12 (Bounded ∆0
0 choice). Bounded ∆0

0 choice (BQF-AC) states for any ∆0
0-formula 28

θ and any term b not mentioning m 29

∀n(∃m < b)θ(n,m)→ ∃f ∀n θ(n, f(n)), 30

where both b and θ may contain parameters (including perhaps function variables). 31

Proposition 2.13. PRA2 proves bounded ∆0
0 choice. 32

Proof. We use Lemma 2.11 and bounded minimisation to define a function f such that f(n) = 33

(µm < b)(θ(n,m)∧ (∀z < m)
(
¬θ(n, z)

)
. This, in particular, involves defining a primitive recursive 34

functional (based on the syntactical complexity of θ) and then referring to the axiom stating that 35

the result of applying this functional to the given function-parameters exists. It should be clear 36

that this function satisfies the desired property. � 37

Definition 2.14. ∆0
0-comprehension axiom, ∆0

0-CA, is the following schema 38

∃f ∀n (ϕ(n)→ f(n) = 1 ∧ ¬ϕ(n)→ f(n) = 0) 39

where ϕ is a ∆0
0-formula (perhaps, with parameters). 40

Note that f is a characteristic function, i.e., ∀x[f(x) = 0 ∨ f(x) = 1]. As usual, if there are 41

parameters then we could take the universal closure of the formulae above instead. Note that dif- 42

ferent choices of parameters will correspond to different functions f , so each such axiom essentially 43

postulates the existence of a functional. Thus, the proposition below is highly expected. 44

Proposition 2.15. PRA2 proves ∆0
0-comprehension. 45

Proof. This is essentially Lemma 2.11. � 46

2.3. Recursive comprehension and choice. 47

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 9

2.3.1. ∆0
1-comprehension axiom (∆0

1-CA). 1

Definition 2.16. The ∆0
1-comprehension axiom, ∆0

1-CA, is the following schema 2

∀n (ϕ(n)↔ ψ(n))→ ∃f ∀n (ϕ(n)→ f(n) = 1 ∧ ¬ϕ(n)→ f(n) = 0), 3

where ϕ is a Σ0
1-formula and ψ is a Π0

1-formula. Note that ∀x[f(x) = 0 ∨ f(x) = 1]. 4

We give an example of a familiar theorem equivalent to ∆0
1-CA. Recall that Post’s theorem 5

asserts that a set is computable if and only if both the set and its complement are computably 6

enumerable. 7

Proposition 2.17. Over PRA2, ∆0
1-CA is equivalent to the following statement for each g, h : N→ 8

N: 9

∀n (∃y g(y) = n↔ ∀y h(y) 6= n)→ ∃f ∀n ((f(n) = 1↔ ∃y g(y) = n) ∧ (f(n) = 0↔ ∃y h(y) = n)). 10

Proof. For the forward direction, given g, h : N → N as in the statement, ∆0
1-CA guarantees the 11

existence of f : N→ {0, 1} such that f(n) = 1↔ ∃y g(y) = n. Hence, f is the desired function. 12

For the reverse direction, let θ(n, y) and η(n, y) be ∆0
0-formulae such that ∀n (∃y θ(n, y) ↔ 13

∀y η(n, y)). Define the functions h, g : N→ N such that 14

g(〈n, 0〉) = 0

g(〈n, y + 1〉) =

{
n+ 2 if θ(n, y)

0 otherwise

h(〈n, 0〉) = 1

h(〈n, y + 1〉) =

{
n+ 2 if ¬η(n, y)

1 otherwise.

15

Notice that ∀m (∃y g(y) = m↔ ∀y h(y) 6= m). Let f be as in the consequent of the statement. 16

Then we have ∀m (f(m) = 1 ↔ (m = 0 ∨ (m ≥ 2 ∧ ∃y θ(m − 2, y))), and we can choose f ′(n) = 17

f(n+ 2) for the ∆0
1-comprehension. � 18

In order to give a simple example of how induction can play a role in the study of mathe- 19

matical theorems over PRA2, we recall the following statement proved in [Avi05, Lemma 6.4], 20

which essentially states that IΣ0
1 is equivalent to the existence of a least upper bound for bounded 21

functions. 22

Lemma 2.18. Over PRA2, IΣ0
1 is equivalent to the following: for each f : N→ N, if ∃z ∀n (f(n) ≤ 23

z), then ∃z∀n (f(n) ≤ f(z)). 24

2.3.2. Quantifier-free axiom of choice (QF-AC). 25

Definition 2.19. The schema of the quantifier-free axiom of choice, QF-AC, is the following schema 26

∀n∃mθ(n,m)→ ∃f ∀n θ(n, f(n)), 27

where θ is a quantifier-free formula (perhaps, with function- or number-parameters). 28

Notice that by Lemma 2.11, θ in the previous definition may be taken ∆0
0. This implies that 29

QF-AC is equivalent over PRA2 to ∀n∃!mθ(n,m)→ ∃f ∀n θ(n, f(n)), because one can consider the 30

∆0
0-formula θ′(n,m) = θ(n,m) ∧ (∀z < m)¬θ(n, z). 31

Proposition 2.20. Over PRA2, QF-AC implies ∆0
1-CA. 32

Proof. Let ∃y θ(n, y) and ∀y η(n, y), with θ and η ∆0
0-formulae, be equivalent over PRA2. Then it 33

holds that ∀n∃y(θ(n, y)∨¬η(n, y)). Since the disjunction in brackets in ∆0
0, by QF-AC, there exists 34

a function f such that ∀n(θ(n, f(n)) ∨ ¬η(n, f(n))). By Lemma 2.11, let Φ(n, f) be equivalent to 35

θ(n, f(n)). Then let g : N → N be such that g(n) = Φ(n, f). It is immediate to verify that the 36

function g witnesses the satisfaction of ∆0
1-CA. � 37

Proposition 2.21 ([Koh08], Proposition 3.21). Over PRA2, QF-AC implies IΣ0
1. 38

Proof. Assume that ∃y θ(0, y) ∧ ∀n∀y ∃z (θ(n, y) → θ(n + 1, z))) holds, for some ∆0
0-formula θ. 39

Then, by QF-AC, it holds that ∃f ∀〈n, y〉 (θ(n, y)→ θ(n+ 1, f(n, y))) Define a primitive recursive 40

functional Φ such that 41

Φ(0, y, f) = y

Φ(n+ 1, y, f) = f(n,Φ(n, y, f)).
42

Let m be such that θ(0,m) holds. Then it is easy to check by I∆0
0 that ∀n θ(n,Φ(n,m, f)) and so 43

that ∀n∃y θ(n, y). � 44

Proposition 2.22 (PRA2). The following are equivalent: 45

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 10

(1) QF-AC, 1

(2) totality of minimisation for functions2. 2

Proof. For the sake of convenience, assume i = 0. 3

(1 ⇒ 2) The ∆0
0-formula g(n,m) = 0 satisfies the antecedent of QF-AC, so let f be such that 4

∀n (g(n, f(n)) = 0). Define h(n) = µm ≤ f(n) (g(n,m) = 0) by bounded minimisation. 5

(2⇒ 1) Assume ∀n∃mθ(n,m), for some θ ∈ ∆0
0, and let Φ be as in Lemma 2.11. Let h be the 6

function that exists for the fixed collection of parameters that occur in the formula, in accordance 7

with the corresponding axiom of PRA2. Since ∀n ∃mh(n,m) = 1, there exists g returning the least 8

m witnessing that h(n,m) = 1. Thus, ∀n θ(n, g(n)). � 9

Since we are working over PRA2, we shall write simply QF-AC for PRA2 + QF-AC, and the 10

same for other additional axioms that we will encounter. Notice that the two systems RCA0 and 11

PRA2 +QF-AC share the same consequences, as one can be interpreted in the other and vice versa 12

using characteristic and pairing functions. We thus shall stretch our notation even further: 13

We identify RCA0 with PRA2 + QF-AC.

However, we must not forget that the second-order objects in our studies are (total) functions 14

rather than sets. There is a significant difference between the function-based and the set-based 15

approaches when we go below RCA0; we will encounter this difference already in the proof of 16

Proposition 2.29. In our function-based approach, the set-version 2N-RCA0 = IΣ0
1 ∧ ∆0

1-CA of 17

RCA0 is strictly weaker than the ‘full’ version NN-RCA0 = PRA2 + QF-AC that we identify with 18

RCA0. We will see that there are theorems that imply the natural set-version 2N-RCA0 of RCA0, 19

but not PRA2 + QF-AC (see e.g. Corollary 4.12). This distinction will be made very clear when 20

necessary. 21

2.3.3. The obvious implications are strict. 22

Proposition 2.23. PRA2 0 I∆0
1. 23

Proof. The following lemma is claimed in [Koh00, last line of p. 225] and in [Avi05, Theorem 2.1] 24

for finite-type extensions of PRA. 25

Lemma 2.24. PRA2 is arithmetically conservative over PRA 26

Proof. Let ϕ = ∀yθ(x, y) be a formula in LPRA, for θ a Σn formula, for some n ∈ N. Clearly, if 27

PRA ` ϕ, then PRA2 ` ϕ. For the reverse direction, assume PRA 0 ϕ and so let M and n be such 28

that M � PRA ∧ ¬θ(x, n). Then (M,PRec(M)) � PRA2 ∧ ¬θ(x, n), so that PRA2 0 ϕ. � 29

The proposition now follows from the fact that, by Proposition 2.5, PRA 0 I∆1 (thus, the 30

induction may fail even without function-parameters). � 31

Since PRA2 0 IΣ0
1 one needs to pay attention to the precise definition of ‘infinity’ (see, e.g., [SY13, 32

Lemma 3.2]). In this paper ‘infinity’ means ‘unbounded’. Unless stated otherwise, all instances of 33

the principles mentioned in this paper have domain N and, if the solution is required to be infinite, 34

then it is required to be unbounded (though it may be the case that those requirements may be 35

relaxed for some statements). 36

Proposition 2.25. Over PRA2, ∆0
1-CA does not imply IΣ0

1. 37

Proof. Consider M � PRA∧ I∆1∧¬IΣ1, which exists by Proposition 2.6. Let ∃y θ(x, y) be the for- 38

mula which witness the failure of IΣ1, namely such that M � ∃y θ(0, y) and M � ∀n (∃y θ(n, y)→ 39

∃y θ(n + 1, y)), but M � ∃n∀y ¬θ(n, y). Note that θ does not have any second-order parame- 40

ters. Consider now the model (M,∆0
1-def(M)). It is clear that it satisfies ∆0

1-CA. Moreover, 41

(M,∆0
1-def(M)) � QF-I, since M � I∆1. In fact, any second-order parameter in a quantifier-free 42

formula can be substituted with its ∆0
1-definition, so to obtain a ∆1-formula which is equivalent 43

to the original quantifier-free formula. This allows to conclude that (M,∆0
1-def(M)) � PRA2. 44

However, ∃n∀y ¬θ(n, y) witnesses that (M,∆0
1-def(M)) � ¬IΣ0

1. � 45

Proposition 2.26. Over PRA2, IΣ0
1 does not imply ∆0

1-CA. 46

2That is, for each g : Ni+2 → N such that for each n0, . . . , ni ∈ N there exists m ∈ N such that g(n0, . . . , ni,m) = 0,
there exists h : Ni+1 → N such that h(n0, . . . , ni) = µm (g(n0, . . . , ni,m) = 0).

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 11

Proof. Consider M � PRA ∧ IΣ1 — e.g., the standard model. Then (M,PRec(M)) � PRA2 ∧ 1

IΣ0
1 ∧ ¬∆0

1-CA, since there exists a computable, and hence ∆0
1, function which is not primitive 2

recursive. � 3

Corollary 2.27. Over PRA2, ∆0
1-CA and IΣ0

1 are incomparable. Moreover, PRA2 does not imply 4

∆0
1-CA. 5

In contrast with the previous corollary, Proposition 2.15 says that PRA2 ` ∆0
0-CA, which is 6

comprehension for ∆0
0-formulae. Also, if (M,X) � PRA2 ∧∆0

1-CA, then (M,X) � I∆0
1, since any 7

∆0
1-formula becomes a ∆0

0-formula and so I∆0
1 reduces to I∆0

0. 8

Corollary 2.28. Over PRA2, both ∆0
1-CA and IΣ0

1 are strictly weaker than RCA0 (the latter is 9

identified with QF-AC). 10

Proof. If ∆0
1-CA (IΣ0

1) implies QF-AC, then by Proposition 2.21 (resp., Proposition 2.20), it would 11

imply IΣ0
1 (resp., ∆0

1-CA) contrary to Proposition 2.25 (resp., Proposition 2.26). � 12

Proposition 2.29. Over PRA2, ∆0
1-CA ∧ IΣ0

1 does not imply RCA0. 13

Proof Sketch. We are working in a standard model, and thus we do not have to worry about 14

induction. Begin with the minimal model of PRA2 which contains only primitive recursive functions 15

over ω. Note that ∆0
1-CA establishes the existence of only {0, 1}-valued functions, and every such 16

function is bounded by a primitive recursive function. 17

Consider a primitive recursive functional Ψ on input f1, . . . , fk. Since each of f1, . . . , fk is 18

bounded by a primitive recursive function, there is a primitive recursive bound on the use of 19

Ψ(f1, . . . , fk) and, therefore, a primitive recursive bound on the value of the output function on a 20

given input. (We can simply go over all computations and take the maximum over all potential 21

outputs.) We cite Lemma 3.5 of [DMN21] for a detailed proof of a similar result. (Notice that 22

the mentioned lemma applies, since we can produce the primitively recursively bounded compact 23

subspace of ωω and identify each fi with a path through this space.) 24

Iterate the process of closing the model under instance of ∆0
1-CA and by primitive recursive 25

operators (as required by PRA2) to construct an ω-model of PRA2 which satisfies ∆0
1-CA but 26

fails QF-AC since it does not contain computable functions that are not dominated by primitive 27

recursive functions. � 28

Remark 2.30. Recall that RCA∗0 is the weakening of RCA0 in which Σ0
1-induction is replaced by 29

exp, stating the totality of exponentiation, and Σ0
0-induction, a.k.a. induction over formulae with 30

only bounded quantifiers. Since RCA∗0 includes ∆0
1-CA into its axioms, and so its minimal model 31

includes general recursive functions that are not primitive recursive, but does not prove totality of 32

primitive recursive functions, while PRA2 does vice versa, the two theories give two independent 33

axiomatic foundations below RCA0. Moreover, RCA∗0 is a set-based second-order system, while 34

PRA2 is function-based. 35

A peculiar fact is that, over RCA∗0, Σ0
1-induction is equivalent to the statement that the universe 36

of (total) functions is closed under primitive recursion; see, e.g., Lemma 2.5 in [SS86]. That is, 37

over RCA∗0, PRA is equivalent to IΣ0
1 (and, thus, to RCA0). 38

Remark 2.31. In this paper we study some statements which have already been analysed from 39

the classical reverse mathematics point of view. Such statements typically are formalised in the 40

set-based language of reverse mathematics [Sim09], and thus they have to be translated into our 41

function-based language to be studied using PRA2 (as was done, for example, for ∆0
1-CA). Nonethe- 42

less, quite often such a careful distinction is not necessary, since sets can be canonically identified 43

with their characteristic functions that are elements of 2N. For example, WKL0 formulated in PRA2
44

guarantees that for each T : 2<N → 2, such that T−1(1) is an infinite tree, there exists a function 45

P : N→ 2 such that T (〈P (0), . . . , P (n)〉) = 1 for each n ∈ N. When more care is needed, or when 46

we adopt a different representation, we will mention it explicitly. 47

2.4. Calculus of finite sets. The main purpose of this subsection is to establish the following 48

informal principle: 49

The formalisation of finite sets is robust in PRA2.

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 12

When working in PRA, a finite set is usually identified with its code which is a number (a string). 1

In PRA2, where we actually do have sets (identified with their characteristic functions), we can 2

also define a finite set to be a bounded set. It also makes sense to specify the bound rather than 3

just state that it exists—the latter requires an unbounded quantifier. In PRA, [Sim09] defines the 4

cardinality of a finite set using a primitive recursive function (via the sum of a string) completely 5

avoiding second-order considerations. In PRA2, it is perhaps more natural to define the cardinality 6

of a finite set using bijections with initial segments of N. We will see that these two approaches (the 7

first-order and the second-order ones) to finite sets are equivalent over PRA2. As a consequence, we 8

can use them interchangeably. This will be convenient when dealing with finite subsets of infinite 9

sets. We also establish some basic properties of finite sets that will be used throughout the rest 10

of the paper. We will later use the notion of a cardinality to bound our search by looking at ‘the 11

first m elements of a structure’; specifics in the end of the subsection (Remark 2.41). 12

2.4.1. Two definitions of a finite set. As usual, for every i ∈ N, let pi denote the i-th prime number. 13

Definition 2.32. Let n ∈ N, and let ā = a0, a1, . . . , an be a tuple from N. The code of the tuple 14

ā is the number 15

code(ā) = pa0+1
0 · pa1+1

1 · · · · · pan+1
n . 16

Lemma 2.33. (PRA2) The set 17

CT = {m ∈ N : (∃n)(∃a0, . . . , an)[m = code(ā)]} 18

is ∆0
0-definable. 19

Proof. It is known that the following functions (on natural numbers) are primitive recursive:

ex(i, x) =

{
max{l ∈ N : (pli | x)}, if x > 0,

0, if x = 0;

long(x) =

{
max{i ∈ N : (pi | x)}, if x > 1,

0, if x ∈ {0, 1}.

Therefore, we deduce that m ∈ CT if and only if (m ≥ 2) ∧ (∀i ≤ long(m))(ex(i,m) > 0). � 20

In a function-based language, we could choose to identify a finite set with a function f having 21

bounded support, so that the bound is also given. The main point of the elementary lemma 22

below is to verify that these two intuitions coincide over PRA2. More formally, Lemma 2.34 23

implies that there are two equivalent approaches to finite sets. Consider a non-empty finite set 24

F = {b0 < b1 < · · · < bk} ⊂ N. 25

(1) The set F can be encoded by a single number m = code(ā) ∈ CT , where 26

• ā = a0, a1, . . . , abk ; 27

• if i ≤ bk and i 6∈ F , then ai = 0; 28

• if i ≤ bk and i ∈ F , then ai = 1. 29

(2) The set F can be encoded by a function f and a number ` such that: 30

• ` = bk; 31

• (∀x > `)(f(x) = 0); 32

• (∀x ≤ `)[(x ∈ F → f(x) = 1) ∧ (x 6∈ F → f(x) = 0)]. 33

Lemma 2.34. (PRA2) Suppose that n, a0, a1, . . . , an ∈ N. Then the following are equivalent: 34

(a) there is m ∈ CT such that m = code(a0, . . . , an); 35

(b) there exists a unary function f such that 36

– (∀i ≤ n)(f(i) = ai + 1); 37

– (∀i > n)(f(i) = 0). 38

Proof. (a⇒b) Assume that m ∈ CT . Then the desired function f can be defined as follows: 39

f(x) = ex(x,m). 40

(b⇒a) Given a function f and a number n (satisfying the conditions in (b)), the desired code 41

m is recovered as follows: 42

m =

n∏
i=0

p
f(i)
i . 43

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 13

Lemma 2.34 is proved. � 1

In other words, a set is finite if, and only if, it is (explicitly) bounded. We slightly abuse our 2

notation and identify S with the ‘pair’ (f, `) even though we actually do not use a pairing function 3

of any kind to code f and ` together into one parameter. 4

We also remark that, when we use the first-order approach to finite sets (and to finite maps 5

alike) we can use Π2-conservativity of WKL0 over PRA and Lemma 2.24 to derive some of the 6

basic, first-order, facts about (codes of) finite sets while arguing in WKL0. Similar notions of 7

finite sets and of cardinality are defined in the theory PA− + I∆0 + exp in [HP17, Chapter 1.b]. 8

We highlight, in particular, Theorem 1.41 of [HP17], where a notion of cardinality similar to the 9

one in Definition 2.36 is introduced. Note that the results in [HP17, Chapter 1.b] are provable 10

in PRA2, since PRA2 ` PA− + I∆0 + exp. However, for conveniency in the reverse-mathematical 11

context, we chose a coding method for finite sets that differs from that of Hájek and Pudlák. Also, 12

using concervativity would not be much of a simplification though, as one can equally easily argue 13

directly in PRA2. In the next few subsections we shall give these elementary proofs in PRA2. 14

2.4.2. Cardinality. We use ∆0
0-induction and ∆0

0-comprehension throughout; recall that PRA2
15

proves these axiom schemata (see § 2.2.1). Let S = (f, d) be a finite set, where f is a {0, 1}- 16

valued function and d bounds its support. Up to notation, the following definition is equivalent to 17

the one found in Simpson [Sim09]: 18

Definition 2.35. Define the cardinality of a finite set S = (f, d) to be

|S| =
∑
i≤d

f(i).

Note that the above definition is witnessed by a primitive recursive functional and therefore 19

makes sense, and in particular for any f and d the cardinality |S| is a number that can be obtained 20

‘uniformly’ in the representation of S. 21

A different, perhaps occasionally more useful, notion of cardinality is more similar to the usual 22

set theoretic approach via bijections. However, it will take some work to show that it is robust 23

and is equivalent to the definition above. 24

Definition 2.36. Let S be a finite set coded as (f, d). Define card(S,m) to be the formula saying 25

that there is a bijection between S and the initial segment [0, . . . ,m− 1]. 26

We note that the notion of a bijection between finite sets can be formalised in the language 27

of PRA2; we omit this. Observe that one needs only bounded quantifiers to state that a given 28

function is a bijection between two given finite sets. It is also easy to see that PRA2 proves that if 29

g : S → L is a 1-1 and onto map between two finite sets, then f−1 exists and is also 1-1 and onto. 30

We shall use these properties without explicit reference. 31

Proposition 2.37. (PRA2) Let S = (f, d) be a finite set. Then card(S,m) holds if, and only if, 32

|S| = m. 33

Proof. The proposition follows from the two lemmas: 34

Lemma 2.38. For any finite set S, card(S, |S|) holds. 35

Lemma 2.39. For any finite set S and any m, k ∈ N, card(S,m) ∧ card(S, k) implies m = k. 36

Proof of Lemma 2.38. For simplicity, assume S is not empty. Using primitive recursion, define 37

38

g(0) = µy≤d f(y) = 1, 39

g(k + 1) =

{
µy≤d [y > g(k) ∧ f(y) = 1],

d+ 1, if no such y exists.
40

41

Let ψ(k) be a ∆0
0 formula (with parameter S = (f, d)) saying that, if g(k) 6= d+ 1 then: 42

• g �[0,...,k] is a bijection between [0, . . . , k] and S �≤g(k); 43

• k + 1 = |S �≤g(k) |. 44

It should be clear that we need only bounded quantifiers to write down ψ(k). We now can use 45

∆0
0-induction to demonstrate that ∀kψ(k) holds. Recall S 6= ∅, so g(0) 6= d + 1 is defined. We 46

clearly have g : [0]→ {g(0)} is a bijection, and |{g(0)}| = 1. 47

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 14

For the step, assume the statement holds for k. If g(k+1) = d+1, then we are done. Otherwise, 1

g(k + 1) is defined and g : [0, . . . , k + 1] → S �≤g(k+1)= S �≤g(k) ∪{g(k + 1)} is a bijection. Also, 2

|S �≤g(k) | =
∑
i≤g(k+1) f(i) = |S �≤g(k) |+ 1, and the lemma is proved3. � 3

Proof of Lemma 2.39. It is easy to see that |[0, . . . ,m]| = m+1, by ∆0
0-induction. It is sufficient to 4

prove that, in PRA2, if there is a bijection g : [0, . . . , k]→ [0, . . . ,m] then k = m. Assume k < m. 5

Let ψ be a bounded formula (with parameters k and g) saying that, if g : [0, . . . , k] → [0, . . . ,m] 6

then |g([0, . . . , k])| = k+1. If we can prove ψ, then the lemma will follow from m+1 = |[0, . . . ,m]| = 7

|g([0, . . . , k])| = k+ 1, which is a contradiction. But ψ follows easily by (∆0
0) induction, as follows. 8

ψ(0) says that |g([0])| = |{g(0)}| = 1. For the step, observe that g([0, . . . , k + 1]) = g([0, . . . , k]) ∪ 9

{g(k + 1)} where the union is disjoint, so |g([0, . . . , k + 1])| = |g([0, . . . , k])|+ 1. � 10

Proposition 2.37 is proved. � 11

2.4.3. Set theoretic operations and bounded search. We can formalise the basic operations on finite 12

sets (such as union, intersection, cartesian product, etc.) in the language of PRA2. In fact, all 13

these elementary set theoretic operations with finite sets have a pleasant property of uniformity, 14

meaning that each such operation is witnessed by a primitive recursive functional. In particular, 15

we can uniformly calculate the upper bound of the output. (This can also be formalised in PRA 16

using codes rather than second order names, and this would be equivalent in the right sense; we 17

omit this.) 18

Using ∆0
0-induction, we can derive the following basic properties of finite sets and their cardi- 19

nalities: 20

Lemma 2.40. Let S = (f, d) and K = (g, k) be finite sets. 21

(1) When S ∩K = ∅ then |S ∪K| = |S|+ |K|. 22

(2) |S ×K| = |S| × |K|. 23

(3) |Sn| = |S|n, for any n ∈ N. 24

(4) S ⊆ K =⇒ |S| ≤ |K|. 25

(5) |S| < |K| implies that ∃x ∈ S \K. 26

Proof. (1) and (2) follow by, e.g., ∆0
0-induction in the cardinality of S while the cardinality of K 27

is held fixed (as a parameter). Item (3) follows from (2) by ∆0
0-induction, and so does (4). To 28

see why (5) holds, use (4) to conclude that |S ∩ K| < |K|. So we can assume S ⊆ K. If for 29

all x ≤ k = max{d, k}, x ∈ K ⇐⇒ x ∈ S then, by ∆0
0-induction, we would have

∑
i≤d f(i) = 30∑

i≤k f(i) =
∑
i≤k g(i), and since f ≤ g, it must be that, for some x ≤ d, f(x) < g(x). � 31

We note that in (5), we can uniformly search for such an x ∈ S \K in the sense that there is a 32

primitive recursive operator which, on input names of S and K (recall names include their upper 33

bounds), outputs the least such x. If we prefer functions rather than functionals, we can of course 34

use codes instead of (explicitly) bounded functions. It is rather convenient that, at least in this 35

case, the first-order and the second-order approaches agree. 36

Remark 2.41. As promised at the beginning of the subsection, we explain how to use the notion 37

of cardinality to bound a search through N. Suppose we know that the cardinality of the finite set 38

{x : ϕ(x)} is m. Recall we already observed that |[0, . . . ,m]| = m+ 1. Using Lemma 2.40 conclude 39

that there is a y ∈ [0, . . . ,m] such that ¬ϕ(y). 40

3. Examples from countable algebra and infinite combinatorics 41

In this section we present several relatively basic results carried over PRA2. We also present two 42

rather different approaches to countable structures, one seems to be more suited for model theory, 43

and the other one for countable algebra. This section is essentially a semi-preliminaries section 44

with lots of examples, however, it appears that all results discussed here are actually new. 45

3.1. Algebraic structures and vector spaces. In PRA2 all second-order objects are functions. 46

For instance, if we want to represent a countable algebraic structure in a finite signature we do it 47

as follows. 48

(1) The domain (each domain, if a structure is n-sorted) is either N or an initial segment of N 49

(identified with its characteristic function). 50

3We implicitly used that g is strictly increasing unless is equal to d+ 1; this also follows by ∆0
0-induction.

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 15

(2) The operations are functions on the domain. 1

(3) Relations are represented by their characteristic functions. 2

Remark 3.1. We restrict the domain to make the search for the kth element of the structure a 3

bounded search. As argued in, e.g., [KMN17], without this assumption structures are not ‘fully’ 4

primitive recursive in the standard minimal model. 5

Remark 3.2. Note that if a structure is not infinite, it does not necessarily mean we can always 6

‘uniformly’ access the finite code of its domain; recall such a code must also include the upper 7

bound, see § 2.4. (Formally, there is no primitive recursive functional that, on input a structure, 8

outputs the upper bound for its domain.) 9

For instance, a countable vector space V over F is a two-sorted structure in which (dom(V),+V , 10

−V , 0V) is an abelian group together with scalar multiplication by elements of F. 11

Let V be a countable vector space over F. Then a basis of V is given as a function b : N → N 12

with the following property: every v ∈ V can be expressed uniquely in the form 13

v =
∑
k∈E0

αk · b(k), 14

where: 15

• there exists n0 ∈ N such that k ≤ n0 for every k ∈ E0; 16

• for every k ∈ E0, we have αk ∈ F \ {0}. 17

It is not difficult to show that the fact below fails in RCA0 if F = Q, even in the standard 18

minimal model. (An observation that can be traced back to Mal’cev [Mal62].) 19

Proposition 3.3. (PRA2) Let V be a countable F-vector space over a finite field F. Then V has 20

a basis. 21

Proof. We use the upper bound ` of F as well as its cardinality k, throughout. The procedure that 22

we describe below can be witnessed by a primitive recursive functional that takes V and k and 23

outputs the basis identified with its characteristic function. For simplicity, we restrict ourselves to 24

infinite spaces and we assume that the domain of V is N. We also assume that 0 denotes the zero 25

of the space. 26

We (usually, implicitly) use the materials of § 2.4 to operate with finite sets. In particular, we 27

use Lemma 2.40 to calculate cardinalities of sets and Remark 2.41 to bound our search. 28

29

The idea is to follow the usual effective algebraic proof and search for the smallest index element 30

which is not already in the span of the finite part of the basis enumerated so far. It is not hard 31

to see that, since the span of n elements has the size of at most kn, we can uniformly bound our 32

search. The short version of the formal proof below is: “this works in PRA2”. The construction 33

would definitely work in the standard minimal model. But it takes some work to formally verify — 34

using ∆0
0-induction, ∆0

0-comprehension, and properties of finite sets — that this procedure works 35

in PRA2. We give the details, but in later proofs similar details will often be omitted. 36

37

Formal proof. Recall sets are identified with their characteristic functions. First, we define the 38

auxiliary set coding the relation of linear dependence: 39

S = {〈a0, a1, . . . , an〉 : (∀i ≤ n)(ai ∈ dom(V)) and [n = 0, or n ≥ 1 and an ∈ span(a0, a1, . . . , an−1)]}.40
The set S is definable by a ∆0

0 formula with parameter k = |F|. This is because, using primitive 41

recursion, we can express an ∈ span(a0, a1, . . . , an−1) as a ∆0
0-fact. 42

We define a function b (which provides a basis of V) by primitive recursion. The value 43

b(0) is chosen as some non-zero element from V , say, having index 1. Suppose that the values 44

b(0), b(1), . . . , b(n) are already defined. Then we set 45

b(n+ 1) := (µz ≤ (kn+1 + 1))[z ∈ dom(V) ∧ 〈b(0), b(1), . . . , b(n), z〉 6∈ S]. 46

Since there exist at most kn+1 linear combinations of the vectors b(0), b(1), . . . , b(n), we deduce 47

that the value b(n+ 1) is well-defined. 48

This concludes the construction of the function b. Now we need to prove that b gives a basis of 49

V . For convenience, for n ∈ N, by bn we denote the vector b(n). 50

(1) First, we show that there is no n ∈ N such that there exists a non-trivial linear combination 51

u of b0, b1, . . . , bn such that u = 0. 52

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 16

Consider the set 1

T0 = {n ∈ N : some non-trivial linear combination of b0, . . . , bn equals 0}. 2

Note that T0 is ∆0
0-definable. Towards a contradiction, assume that T0 is not empty. Since 3

PRA2 ` I∆0
0, we deduce that there exists the least number n belonging to T0. Consider the 4

non-trivial combination 5

0 = α0b0 + α1b1 + · · ·+ αn−1bn−1 + αnbn. 6

Without loss of generality, one may assume that n ≥ 1. 7

Case 1. Assume that αn 6= 0. Then we have 8

bn = (−α−1
n α0)b0 + · · ·+ (−α−1

n αn−1)bn−1, 9

and hence, 〈b0, . . . , bn−1, bn〉 ∈ S, which contradicts with how the vector bn is chosen in the 10

construction. 11

Case 2. Otherwise, we have αn = 0. Then u = 0 is a non-trivial combination of b0, . . . , bn−1, 12

and this contradicts the minimality of the number n. 13

We conclude that the set T0 is empty, and the vectors bn, n ∈ N, are linearly independent. 14

(2) Second, we show that every non-zero vector w is a linear combination of b0, b1, . . . , bn, for 15

some n ∈ N. We consider an auxiliary set 16

T2 := {i ∈ N : i 6∈ span(b0, b1, . . . , bi) and i 6= bi+1}. 17

It is sufficient to prove that the set T2 is empty : indeed, if this is true, then every i can be written 18

as a linear combination of vectors b0, b1, . . . , bi, bi+1. Assume that T2 is non-empty. Since T2 is 19

∆0
0-definable, there exists the least i belonging to T2. Without loss of generality, we may assume 20

that i 6= 0. Consider the vector bi+1 — the construction ensures that bi+1 6∈ span(b0, b1, . . . , bi). 21

There are two cases: 22

Case 1. Assume that bi+1 = j < i. We have 23

bi+1 6∈ span(b0, b1, . . . , bi) ⊃ span(b0, b1, . . . , bj). 24

In addition, bi+1 6= bk+1 for all k < i. In particular, j = bi+1 6= bj+1. Hence, j ∈ T2, which 25

contradicts the fact that i is the minimal element of T2. 26

Case 2. Otherwise, bi+1 > i. But then the choice of bi+1 implies that i ∈ span(b0, b1, . . . , bi); a 27

contradiction. 28

The remaining case is when bi+1 = i. We deduce that for every i ∈ N,

i ∈ span(b0, b1, . . . , bi) or i = bi+1.

(3) Now it is sufficient to prove that every non-zero vector u ∈ V admits a unique decomposition 29

in our basis. Consider a ∆0
0-definable set 30

T3 = {n ∈ N : two different linear combinations over b0, b1, . . . , bn are equal}. 31

If the set T3 is non-empty, then it contains the least element n0. But then, a standard argument 32

shows that the vectors b0, b1, . . . , bn0
are linearly dependent, i.e., n0 also belongs to the set T1, 33

which gives a contradiction. � 34

In the ‘classical’ reverse mathematics over RCA0, vector spaces have attracted a considerable 35

attention. For example, in [DHK+07], it was shown that the existence of a nontrivial proper 36

subspace of a vector space of dimension greater than one (over an infinite field) is equivalent to 37

WKL0 over RCA0, and that the existence of a finite-dimensional nontrivial proper subspace of such 38

a vector space is equivalent to ACA0 over RCA0. Further related results can be found in [Con14]. 39

We suspect that many of these results might still hold over PRA2, in one way or another. 40

Question 3.4. Investigate proper subspaces of vector spaces over PRA2. 41

3.2. Countable categoricity. Many standard results in infinite combinatorics and model theory 42

are somewhat evidently relying on unbounded search (unbounded existential quantification) with 43

no further restriction on the search. If PRA2 is the ‘right’ system to study unbounded search, 44

then these basic results should be equivalent to RCA0 over PRA2. In this subsection we clarify this 45

intuition with a number of examples that are summarised in the theorem below. 46

Recall that RCA0 is identified with its function-based version QF-AC. All structures in the 47

theorem are countable. 48

Theorem 3.5. Over PRA2, RCA0 is equivalent to each of the following: 49

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 17

(1) Categoricity of dense linear orders without end points. 1

(2) Categoricity of random graphs. 2

(3) Categoricity of atomless Boolean algebras. 3

The rest of the section is devoted to the proof of the theorem. We will define all terms used in 4

the theorem very shortly. 5

6

We begin with the folklore result about dense linear orders. Categoricity of countable dense 7

linear orders without end points says that, whenever (N, <A) and (N, <B) are dense linear orders 8

without end points, then there exists an isomorphism h from (N, <A) onto (N, <B) such that its 9

inverse h−1 also exists. 10

Proposition 3.6. Over PRA2, RCA0 is equivalent to categoricity of countable dense linear orders 11

without end points. 12

Proof. We give a rather detailed proof, but in later arguments similar details will be omitted. 13

14

(⇒). Let (A,<A) and (B,<B) be two dense linear orders without end points. Since it holds 15

that 16

∀〈a0, a1〉 ∃〈c, d, e〉 (a0 <A a1 → c <A a0 <A d <A a1 <A e), 17

then by QF-AC (identified with RCA0), there exists f : A → B which given any pair of distinct 18

elements of A, returns a triple constituted of one element smaller than the pair, one in-between 19

the pair, and one greater than the pair, namely such that 20

∀〈a0, a1〉 (a0 <A a1 → π1f(〈a0, a1〉) <A a0 <A π2f(〈a0, a1〉) <A a1 <A π3f(〈a0, a1〉). 21

Following an analogous reasoning, we also get g : N→ N which does the same for B. 22

We define an isomorphism h : A → B by the usual back-and-forth argument. Without loss of 23

generality, we may assume that 0 <A 1 and 0 <B 1. So, beforehand we put h(0) = 0 and h(1) = 1. 24

Assume h is a partial isomorphism between {a0, . . . , an} and {b0, . . . , bn}, where n ≥ 1, a0 = 25

b0 = 0, and a1 = b1 = 1. Assume that ai0 <A · · · <A ain , and let an+1 be the least element of 26

A \ {a0, . . . , an}. There are three cases to be considered: 27

(1) ain <A an+1, then let h(an+1) = π3g(〈0, h(ain)〉), 28

(2) an+1 <A ai0 , then let h(an+1) = π1g(〈h(ai0), 1〉), 29

(3) aij <A an+1 <A aik , for some j, k ≤ n. Then let h(an+1) = π2g(〈h(aij), h(aik)〉). 30

When we have to define bn+1, we do the same using f in place of g. 31

It is immediate to prove that h is injective, surjective (recall that IΣ0
1 is implied by QF-AC), 32

and respects <A and <B . In addition, the construction also gives the existence of the inverse map 33

h−1. 34

(⇐). Our argument relies on a coding strategy from Theorem 2 of [BK21]. Let ψ(x, y) be a ∆0
0 35

formula (possibly with function parameters) such that ∀x∃yψ(x, y). We need to build a function 36

f(x) such that ∀xψ(x, f(x)). 37

First, we fix a dense linear order A = (N, <A) that comes with the Skolem function gA(x, y): 38

if x <A y, then x <A gA(x, y) <A y. We can appeal to, e.g., the standard construction of the 39

rationals adapted to PRA2 and then either illustrate that the Skolem function is primitive recursive 40

or appeal to Propositions 3.16 and 3.17 (and the well-known fact that the theory of dense linear 41

orders admits primitive recursive elimination of quantifiers) to conclude that such a dense linear 42

order exists. 43

Remark 3.7. It is also not hard to argue in PRA2 directly, and explicitly define A =
⋃

s∈N As by primitive recursion 44

as follows. Define A0 = {0 <A 1}. Consider the primitive recursive function 45

q(0) = 2, q(x+ 1) = 2q(x) + 1. 46

Suppose we have As = {as1 <A as2 <A · · · <A as
q(s)
}. 47

We choose the least numbers c0 <N c1 <N · · · <N cq(s) from N \As, and we define 48

As+1 = {c0 <A as1 <A c1 <A as2 <A c2 <A · · · <A asq(s) <A cq(s)}. 49

Say that As+1 \ {c0, cq(s)} is the finite dense extension of the order As by numbers c1, c2, . . . , cq(s)−1. The desired 50

order A is defined as follows: x <A y if and only if inside the finite order Amax(x,y), x is less than y. Similarly 51

to the previous proofs, one can argue in PRA2 and show that A is a well-defined linear order with domain N. In 52

addition, there is a function gA(x, y) with the following property: if x <A y, then x <A gA(x, y) <A y. This, in 53

particular, shows that the order A is dense. In a similar way, one can show that A does not have end points. 54

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 18

Second, we define another dense linear order B = (N, <B). This order ‘encodes’ the formula 1

ψ(x, y). Without loss of generality, we may assume that ψ(0, 0) is true. The order B is built by 2

primitive recursion, as follows. 3

We put B0 = {0 <B 4 <B 2 <B 6}. Assume we have defined Bs (going from <B-left to 4

<B-right) such that: 5

• the order As is copied on the numbers 4k — more formally, we have {4as1 <B 4as2 <B 6

· · · <B 4asq(s)}; 7

• for each k ≤ s, the interval [4k + 2; 4k + 6]Bs
is such that each number x strictly between 8

4k + 2 and 4k + 6 is odd. 9

The order Bs+1 is then defined as follows: 10

(1) We add the number 4s+ 10 as its greatest number. 11

(2) In a natural way, we extend the copy of As to the copy of As+1. 12

(3) For each k ≤ s + 1, if (∃y ≤ s + 1)ψ(k, y), then the Bs+1-interval [4k + 2; 4k + 6]Bs+1
is 13

constructed as the finite dense extension of [4k+ 2; 4k+ 6]Bs (see Remark 3.7) by the least 14

odd numbers not belonging to dom(Bs+1) at the moment. 15

Similarly to A, we say that B |= (x <B y) if and only if inside the finite order Bmax(x,y), x is 16

less than y. It is not hard to show that B is a well-defined linear order on N. In addition, it does 17

not have end points. 18

One can easily prove that there is a function g′B(x, y) with the following property: if x <B y 19

and {x, y} 6= {4k + 2, 4k + 6}, then x <B g′B(x, y) <B y. 20

In order to show that B is dense, now we need to consider the remaining non-trivial case: suppose 21

that x = 4k+ 2 and y = 4k+ 6. Then we know that there exists z0 such that ψ(k, z0) holds. Then 22

our construction ensures that inside the order Bmax(4k+6,z0), there exists an element w with the 23

property x <B w <B y. 24

Let h be an isomorphism from B onto A. Consider the function 25

ξ(k) = h−1(gA(h(4k + 2), h(4k + 6))). 26

The construction of B guarantees the following: the number ξ(k) is odd, and 27

ξ(k) ≥ the least s such that the interval [4k + 2; 4k + 6]Bs
contains odd numbers. 28

Hence, we deduce (∃y ≤ ξ(k))ψ(k, y). We define the function f(k) := (µy ≤ ξ(k))[ψ(k, y)]. It is 29

clear that we have ∀xψ(x, f(x)). Proposition 3.6 is proved. � 30

31

Definition 3.8. An undirected graph (N, E) is random if for each pair of disjoint non-empty finite 32

sets X,Y ⊆ N, there exists a vertex z ∈ N such that ∀x ∈ X (xE z) and ∀y ∈ Y ¬(y E z). 33

Proposition 3.9. Over PRA2, RCA0 is equivalent to categoricity of countable random graphs. 34

Extended sketch. Assuming categoricity, we sketch how to prove QF-AC. The construction is similar 35

to Proposition 3.6, but we have to be more careful with ‘witnesses’ since they will no longer be 36

independent from each other. We observe that the standard construction of the random graph 37

via Fräıssé limit of finite graphs is primitive recursive; we use ∆0
0-induction to verify that the 38

resulting structure A indeed satisfies Definition 3.8 and, furthermore, has a primitive recursive 39

Skolem function for existential formulae. 40

We also fix an instance ψ(x, y) of QF-AC and define a ‘bad’ random graph B by primitive 41

recursion, as follows. Define Bs to be a clique on s nodes unless ψ(0, s) holds; by bounded 42

minimisation, we can assume that s is the least such (in other words, ‘f(0) = s’, where f is the 43

minimal solution to the instance). In this case define Bs0 by adding a new point not connected 44

to any other point defined so far. (Note that, to calculate f(0) primitively recursively, it is now 45

sufficient to find at least two nodes in B not connected by an edge.) 46

Then we temporarily switch to defining B according to the standard Fräıssé construction, but 47

beginning with Bs0 (rather than with the empty graph). We continue according to the Fräıssé 48

construction until the nth finite configuration requirement, in the primitive recursive list of Fräıssé 49

extension requirements, is met. This way we define Bt0 where t0 is uniformly primitive recursive 50

in s0. 51

We then turn to coding f(1), as follows. Resume adding fresh nodes to B and declare them 52

connected to the already existing nodes. Do so unless ψ(1, s1) holds (where s1 is the least such). If 53

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 19

ψ(1, s1) holds, then we declare that the node s1 is not connected to all nodes x < s1. (Note that, 1

to calculate f(1) primitively recursively, it is now sufficient to find at least (t0 + 1)-many nodes in 2

B at least one of which is not connected to the rest of nodes by an edge.) We then switch again to 3

the Fräıssé construction for primitively recursively many steps, and then code f(n+ 1) primitively 4

recursively using f(n), Btn , and ψ(n+ 1, x). 5

Using the materials of § 2.4 we can argue that the definition of B is primitive recursive, so B 6

exists, and that it satisfies Definition 3.8. For the latter, we appeal to the Fräıssé construction 7

which is used simultaneously with the coding, albeit with a potentially unbounded ‘delay’. 8

Now suppose g is an isomorphism from A to B. To calculate f(0) so that ψ(0, f(0)) holds, 9

primitively recursively pick a pair of points in A not connected by an edge and calculate their 10

g-images in B. Assume f(0), . . . , f(k) have already been calculated. Primitively recursively, fix 11

(tk + 1)-many nodes in A so that at least one of them is not connected to the rest by an edge. By 12

∆0
0-induction, at least one of the g-images of these nodes has index d ≥ f(k + 1). � 13

14

We finish this section with a similar, also expected, result about countable atomless Boolean 15

algebras. We view a Boolean algebra as an algebraic structure in the signature (∨,∧,¬ , 0, 1) 16

satisfying the standard axioms of Boolean algebras. We say that a Boolean algebra is atomless if 17

for every x 6= 0, there exist non-zero z, y such that z ∨ y = x and z ∧ y = 0; all these definitions 18

can be formalised in PRA2. 19

Proposition 3.10 (PRA2). Over PRA2, RCA0 is equivalent to categoricity of countable atomless 20

Boolean algebras. 21

Sketch. The usual, the folklore ‘computable’ proof can be formalised in RCA0. 22

Following the general pattern, we observe that in PRA2 there is the ‘natural’ atomless Boolean 23

algebra A with a Skolem function. We informally explain how to code an instance of QF-AC into 24

an atomless Boolean algebra B so that any isomorphism from A onto B can be used to primitively 25

recursively recover a solution to the instance. As before, fix a ∆0
0 instance ψ(x, y) of QF-AC. 26

We use properties of finite sets throughout (§ 2.4). Without loss of generality, we may assume 27

that we have ¬ψ(x, y) for every y < x: if needed, replace ψ(x, y) with 28

ψ′(x, y) =

{
false, if y < x,

ψ(x, y − x), if y ≥ x.
29

Then using primitive recursion, we can define the function `(s) that outputs the cardinality of the 30

longest initial segment of N such that, for every element x of this segment, ψ(x, y) holds for some 31

y ≤ s. 32

In B, reserve a special element d /∈ {0, 1}. Define B =
⋃
sBs by initial segments so that a 33

new element s is added below d in Bs only if ` has increased. (Otherwise, adjoin a new element 34

below ¬d.) Note that in this case s bounds all witnesses that have been used in the definition of 35

`. Informally, the numbers of elements below s ‘code’ the enumeration stages of a solution of the 36

instance of QF-AC. Since ψ was an instance of QF-AC, it follows by ∆0
0-induction that the resulting 37

B satisfies the definition of a countable atomless Boolean algebra. 38

We can also show in PRA2 that there is a function which, on input (an index of) a finite set 39

with at least m elements below d, outputs the finite tuple of solutions f(x) for all x < m (together 40

with their common bound). 41

Now, if g : A → B is an isomorphism, then we can fix d′ ∈ A such that f(d′) = d. Since A 42

possesses a Skolem function, given m we can calculate a finite set D containing only elements in A 43

that lie below d′ and such that |D| = m. Since f is an isomorphism, it follows that f(D) is a finite 44

subset below d having the same cardinality as D. By the argument outlined above, this gives a 45

primitive recursive procedure that defines a solution to the instance of QF-AC. � 46

Note that each categoricity result in Theorem 3.5 evidently holds in RCA0. In fact, (1)–(3) of 47

Theorem 3.5 would be provable in PRA2 if we used structures augmented with a Skolem function for 48

existential formulae. It is expected that results in PRA2 are more sensitive to the choice of coding 49

than similar results in RCA0. However, RCA0 also distinguishes between ‘structures’ and ‘structures 50

with Skolem functions’: this reflects that, in computable algebra, not every computable structure 51

is decidable. It is not difficult to think of an analogy of Theorem 3.5 that would fail in RCA0 52

without a Skolem function. For example, having in mind a non-decidable copy of (Z, <), consider 53

the categoricity of linear orders A with no end points and such that for every pair x <A y, there 54

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 20

are only finitely many elements between x and y. A similar distinction can be found in computable 1

combinatorics and the reverse mathematics of graph theory. Structures with Skolem functions are 2

very useful (and indeed, seem unavoidable) when one needs to appeal to elementary model theory, 3

as will be explained in § 3.4. More ‘honest’ presentations of graphs will also play a significant role 4

in the subsection below. 5

3.3. Infinite combinatorics done in PRA2. We claim that many classical results in infinite 6

combinatorics from the literature can be proved in PRA2. We give several examples below. In 7

many cases we get these results almost for free if we follow proofs from the literature very closely, 8

even though some extra care must be taken. Some of these proofs are non-trivial and quite lengthy. 9

We therefore shall not give many formal details since it would drastically inflate the paper. Thus, 10

some of the claimed results below should perhaps be viewed as strong conjectures since we leave 11

the details to the reader. 12

Often in combinatorics theorems that fail to be computable in general become computably true 13

when restricted to a specific subclass of instances. We recall here two such results, namely Rival- 14

Sands theorem for graphs and Hall’s theorem, which in their generality are equivalent to ACA0 as 15

proved in [FCSS22, Theorem 3.5] and [Hir87, Theorem 2.2] respectively. Nonetheless, ‘computable’ 16

restrictions of these results are also known. In the next subsections we (essentially) verify that 17

those restrictions hold primitively recursively as well. We also have to be careful and make sure 18

that only bounded quantifier induction is used (if any). 19

3.3.1. Szpilrajn’s Theorem and graph reorientation. An oriented graph is a directed graph such 20

that at most one of the edges between two vertices exist. An oriented graph is pseudo-transitive 21

if for every a, b, c ∈ V such that a → b and b → c we have also a → c ∨ c → a. A reorientation 22

of an oriented graph (V,→) is an oriented graph obtained by reversing some of the edges, or more 23

formaly a relation R on V such that for each a, b ∈ V , if a → b then either aR b or bR a and if 24

aR b then either a→ b or b→ a. A transitive reorientation of (V,→) is a reorientation of (V,→) 25

which is also transitive. 26

Proposition 3.11. PRA2 proves the following: 27

(1) Szpilrajn’s Theorem, i.e., each poset can be linearly extended. 28

(2) Every pseudo-transitive oriented graph has a transitive reorientation 29

Proof idea. (1) The proof of the computable version of Szpilrajn’s Theorem (see [Hir15, Beginning 30

of Sect. 10.2]) can be transformed into a proof in PRA2. We outline the proof. 31

Given a poset (P,<P) and an enumeration of the vertices (pn)n∈N, the linear extension is 32

defined by stages. At a stage s a linear extension ≺s of <P has been defined on {p0, . . . , ps−1}. 33

Then at the stage s + 1, ≺s is extended with either ps ≺ pi or pi ≺ ps, for each i ≤ s. The 34

relation between ps and pi is settled via checking only <P � {p0, . . . , ps} and ≺s. Hence, it does 35

not involve any unbounded search in the input, this means that one can actually write a primitive 36

recursive functional, defined by primitive recursion, that takes <P as parameter and, at each stage 37

s, inspecting (the code for) s, outputs (the code for) the linearisation of {p0, . . . , ps}. In order to 38

verify that the described construction gives a solution, one needs to check that the defined relation 39

is a linear order and that the relation extends <P . This can be done using only bounded induction. 40

(2) Fiori-Carones and Marcone [FCM21] have recently designed an ‘on-line’ algorithm to transi- 41

tively reorient pseudo-transitive oriented graphs. As discussed in the cited paper, ‘on-line’ means 42

that there is a functional which, given the pseudo-transitive oriented graph as input, outputs the 43

transitive reorientation. Moreover, one can observe that, once the first n vertices in the enumer- 44

ation of the graph are transitively reoriented, then the relations between them and the (n+ 1)-st 45

vertex are decided by the algorithm based only on the adjacency relations between those vertices 46

and on the partial output (which transitively reorients the first n vertices). In other words, it is 47

possible to decide the first n+ 1 bits of the output looking only at the first n+ 1 bits of the input, 48

provided that each vertex comes along with the entire information about its adjacency relation 49

with the vertices previously enumerated, and thus no search, in particular no unbounded search, 50

is needed for the functional. This observation leads us to conclude that that functional is actually 51

primitive recursive. To claim that the statement can be proved in PRA2, one also needs to check 52

that the induction used in the proof is limited to I∆0
0. � 53

3.3.2. Rival-Sands theorem and graph colouring. Let (V,E) be an undirected graph. Then N(x) 54

denotes the neighbours of x, for any x ∈ V ; for convenience we assume that v ∈ N(v), for all 55

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 21

v ∈ V . The graph is locally finite if N(x) is finite for each x ∈ V . An honest (locally finite) 1

presentation of a locally finite graph (V,E) is a presentation of (V,E) (as usual) together with a 2

function b : V → N such that b(x) gives the code of all neighbours of x, for each x ∈ V . Intuitively, 3

‘honest’ presentations correspond to ‘highly recursive graphs’ in computable combinatorics. 4

Let (V,E) be a graph. A total function c : V → n is said to be an n-colouring iff c(v) 6= c(u) for 5

each {v, u} ∈ E. A graph is n-colourable if there exists an n-colouring for it. 6

In computable combinatorics, Schmerl [Sch80] proved that if (V,E) is highly recursive and n- 7

colourable, then (V,E) is computably (2n−1)-colourable, but there exists such a graph that is not 8

computably (2n− 2)-colourable (see also [Gas98, Theorem 4.21]). In order to fit into the context 9

of reverse mathematics (inspired by the known result that a graph if n-colourable if and only if 10

every finite subgraph is n-colourable), we consider a weakening of the statement, and prove that 11

it holds in PRA2 following essentially the Schmerl’s argument. For more results about colourings 12

of graphs, see [Gas98, Section 4]. 13

Proposition 3.12. PRA2 proves the following: 14

(1) Rival-Sands theorem for honestly presented graphs, i.e., for every honest presentation of a 15

locally finite infinite graph (V,E), there is an infinite H ⊆ V such that for every x ∈ V , x 16

is adjacent to at most one vertex in H. 17

(2) If (V,E) is honest and each finite subgraph is n-colourable, then (V,E) is (2n − 1)- 18

colourable. 19

Proof. (1) We follow [FCSS22, Proposition 3.4] closely. Given an instance of Rival-Sands theorem 20

(V,E) and a function b : V → N witnessing that (V,E) is honest, a solution is defined by primitive 21

recursion, as follows. Once x0, . . . , xs−1 are defined, consider the set of neighbours of neighbours 22

of those vertices, which can be primitively recursively computed. The set is clearly finite, and 23

thus can be coded by a number c. Then let xs = c + 1. This shows that the solution can be 24

computed by a primitive recursive functional, which takes the instance as a parameter. At each 25

stage, the functional searches for a new vertex (in the enumeration of V), and the performed search 26

is primitively recursively bounded. 27

(2) Let (vn)n∈N be an enumeration of V , and b : V → N be the function witnessing that (V,E) 28

is honest. A colouring c : V → 2n− 1 is defined by (primitive) recursion, so that c � {v0, . . . , vs} is 29

defined at ‘step’ s. At step 0 let c(v0) = 1. Assume that at a step s the following two conditions 30

are met: 31

(1) cs : X → 2n− 1 is a colouring, X ⊆ V is finite, and {v0, . . . , vs} ⊆ X, 32

(2) the vertices in the set Bs = {v ∈ X | ∃u ∈ b(v) (u /∈ X)} are either coloured with 33

{1, . . . , n− 1} or {n+ 1, . . . , 2n− 1}. 34

At step s + 1 we colour vs+1 and possibly some other vertices. If vs+1 ∈ X (i.e., vs+1 is already 35

coloured), we let cs+1 = cs, so that conditions (1)–(2) still hold, with vs and cs replaced by vs+1 36

and cs+1. Thus, we proceed to the next stage. 37

Otherwise, let 38

H = {v ∈ V \X | ∃w ∈ b(v)∃u ∈ b(w) (u ∈ X)} ∪ {vs+1}. 39

Assume Bs is coloured with {1, . . . , n−1}, the other case being analogous. Notice that H is a finite 40

set, since the graph is locally finite and H is a subset of the neighbours of the neighbours of X, 41

which is assumed to be finite by (1). Moreover, one can explicitly bound the size of H thanks to 42

b. Thus, let d : H → {n, . . . , 2n− 1} be an n-colouring of H such that d(vs+1) 6= n. To guarantee 43

that (2) is satisfied at step s+ 2, consider the set S = {v ∈ V | c(v) = n∧∃u ∈ b(v) (u /∈ X ∪H)}. 44

Extend cs to cs+1 : X ∪ (H \ S)→ 2n− 1 using d to colour the vertices in H \ S. It is easy to see 45

that at step s+ 2 the conditions are still met. � 46

3.3.3. Hall’s theorem and bipartite graphs. A graph (V,E) is bipartite if there are two totally 47

disconnected subsets A,B ⊆ V such that A∪B = V and A∩B = ∅. We represent (V,E) directly 48

as (A,B,E). A bipartite graph (A,B,E) satisfies Hall’s condition if for every finite X ⊆ A, 49

|N(X)| ≥ |X|. Hall’s theorem guarantees that for any bipartite graph (A,B,E) there exists an 50

injective function f : A→ B such that ∀a ∈ A (aE f(a)) if and only if Hall’s condition is satisfied. 51

Hirst in [Hir87, Chapter 2] studied the strength of Hall’s theorem, proving that in its full 52

generality the theorem is not computably true. Nonetheless, it is possible to weaken the premise 53

and formulate versions of Hall’s theorem which are computably true. Hirst himself restricted the 54

instances to bipartite graphs (A,B,E) with A finite (see [Hir87, Theorem 2.1]). Gasarch in [Gas98, 55

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 22

Theorem 5.19] considered bipartite graphs (A,B,E) with A possibly infinite, but strengthened 1

Hall’s condition itself and formulated the extended Hall’s condition. A bipartite graph (A,B,E) 2

satisfies the extended Hall’s condition if there exists a function h : N→ N such that h(0) = 0 and, 3

for every finite X ⊆ A, 4

|X| ≥ h(n)⇒ |N(X)| \ |X| ≥ n. 5

Notice that the former requirement on H implies that if (A,B,E) satisfies the extended Hall’s 6

condition, then it also satisfies Hall’s condition. 7

We prove that both of the proposed weaker versions are primitively recursively true. We give a 8

new simpler proof of Hirst’s weakening of Hall’s theorem, which does not use IΣ0
1. 9

Proposition 3.13. PRA2 proves the following: 10

(1) Hall’s theorem for graphs (A,B,E) with A finite. 11

(2) If (A,B,E) is a honest bipartite graph that satisfies extended Hall’s condition, then there 12

exists an injective function f : A→ B such that ∀a ∈ A (aE f(a)). 13

Proof. (1) Recall that ‘A is finite’ means that there exists a code for A, and notice that any subset 14

of A is itself coded by some code less or equal to (the code for) A. Here we identify the set with 15

its code, for simplicity of notation. Recall that Hall’s condition guarantees that for each X ⊆ A 16

there are |X| vertices in B adjacent to vertices in X. Thus, the following is true: 17

∀X ≤ A ∃y (y = 〈b0, . . . , b|X|−1〉 ∧ ∀j < |X| (bj ∈ N(X))). 18

Note that the formula in the parentheses is ∆0
0. Hence, by BΣ0

0, there exists a uniform bound c 19

such that 20

∀X ≤ A∃y < c (y = 〈b0, . . . , b|X|−1〉 ∧ ∀j < |X| (bj ∈ N(X))). 21

Note that (A, [0, c], E) is finite and still satisfies Hall’s condition. Thus, by finite Hall’s theorem, 22

there exists a solution for it, which is clearly a solution for (A,B,E). 23

(2) Assume that (A,B,E) satisfies the hypothesis of the statement. Let h : N→ N be a function
witnessing that (A,B,E) satisfies extended Hall’s condition, and let a ∈ A. The solution f is
defined by (primitive) recursion, so that if at ‘step’ s

fs : {a0, . . . , as−1} → {b0, . . . , bs−1}

is defined and (A\{a0, . . . , as−1}, B\{b0, . . . , bs−1}, E) with h′ : N→ N satisfy the hypothesis of the 24

statement, then at the next step the elements as ∈ A\{a0, . . . , as−1} and f(as) ∈ B\{b0, . . . , bs−1} 25

are picked, and a function h′′ : N→ N is defined so that (A \ {a0, . . . , as−1}, B \ {b0, . . . , bs−1}, E) 26

with h′′ satisfy the hypothesis of the statement. 27

In order to do so, pick as ∈ A \ {a0, . . . , as−1} and by ∆0
0-CA define S, the subset of A \ 28

{a0, . . . , as−1} containing vertices which are connected to as by a path of length at most 2h(s+ 1), 29

as follows: 30

{x | ∃i ≤ 2h(s+ 1) ∃x0, x1, . . . , xi (x0 = x ∧ xi = as ∧ ∀j < i (xj ∈ b(xj+1)))}, 31

where xj ∈ b(xj+1) expresses the fact that xj belongs to the string coded by b(xj+1). Let T 32

be the set of neighbours of S, which can still be defined by ∆0
0-CA thanks to the function b. 33

The graph (S, T,E) is bipartite and satisfies Hall’s condition. Thus, by the finite Hall’s theorem, 34

there exists an injective function g : S → T such that ∀a ∈ S (aE g(a)). Let f(as) = g(as) and 35

h′′(0) = 0, h′′(n) = h′(n + 1) for all n ≥ 1. One now needs to check that (A \ {a0, . . . , as−1}, B \ 36

{b0, . . . , bs−1}, E) with h′′ satisfies the hypothesis of the statement. This is done essentially exactly 37

as in the proof of [Gas98, Theorem 5.19]. � 38

3.3.4. Connected components of a graph. Let (V,E) be an undirected graph. Then C ⊆ V is a 39

connected component of V if C is a maximal set such that any pair of vertices in C is connected 40

by a path. Gura, Hirst, and Mummert [GHM15] studied the strength of the principle stating the 41

existence of a connected component of a graph. In the same paper a modification of the statement 42

is proposed, so to let it be provable in RCA0. We prove that, over PRA2, the proposed modification 43

is equivalent to 2N-RCA0 = ∆0
1-CA ∧ IΣ0

1. 44

Proposition 3.14. Over PRA2, the following are equivalent: 45

(1) 2N-RCA0 = ∆0
1-CA ∧ IΣ0

1. 46

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 23

(2) Let (V,E) be a graph and {v0, . . . , vn} ⊆ V be such that each v ∈ V is connected to at least 1

one of v0, . . . , vn. Then the connected components of V exist4. 2

Proof. (1 ⇒ 2) By IΣ0
1 we claim that there exists a subset S of {v0, . . . , vn} which is maximal

totally disconnected, that is a maximal set such that any vertex in V is connected with exactly one
vertex in S. To see this, consider an enumeration S0, . . . , S2n−1 of all subsets of {v0, . . . , vn}, such
that if Si ⊆ Sj , then j ≤ i. Consider the Π0

1-formula ϕ(k) stating that there is no path between
elements of Sk, if not the trivial one from a vertex to itself. Since ϕ(2n − 1) holds, because S2n−1

is a singleton, by LΠ0
1 there exists the minimal k such that ϕk holds. Note that (Sk, E) is maximal

totally disconnected, by the choice of k. Define, by ∆0
1-CA, a function g : V × Sk → 2 such that

g(v, si) = 1⇔ there exists a path from v to si

⇔ there is no path from v to sj , for any j 6= i.

Finally, let f : V × V → 2 be such that 3

f(v, u) = 1⇔ ∃x ∈ Sk (g(v, x) = 1 = g(u, x)) 4

It is easy to see that f is the desired function. 5

(2 ⇒ 1) We first prove ∆0
1-CA. Consider two ∆0

0-formulae θ, η such that ∀n (∃s θ(n, s) ↔ 6

∀s¬η(n, s)). Let V = {a, b} ∪ {xn,s | n, s ∈ N}, and E ⊆ V × V satisfying the followings 7

(1) xn,sExm,t if and only if n = m, 8

(2) xn,sEa if and only if θ(n, s), 9

(3) xn,sEb if and only if η(n, s). 10

It is easy to see that, for each n, t ∈ N, xn,t is connected with precisely one node from {a, b}. In
fact, for each n there exists an s such that either θ(n, s) or η(n, s). If the former is the case, then
aExn,sExn,t witnesses that xn,t is connected with a; otherwise, xn,t is connected with b. Thus,
(V,E) and the set {a, b} satisfy the hypothesis of the statement. Let f : V × V → 2 be a solution.
Define g : N→ 2 be such that

g(n) = 1⇔ f(xn,n, a) = 1⇔ ∃s θ(n, s);
g(n) = 0⇔ f(xn,n, b) = 1⇔ ∃s η(n, s).

We now prove LΠ0
1. Let θ be a ∆0

0-formula and n ∈ N such that ∀s θ(n, s). We find the least 11

m ∈ N such that ∀s θ(m, s). Let V = {v0, . . . , vn, a} ∪ {xs | s ∈ N}. Define E ⊆ V × V as follows 12

(1) xsEa for each s, 13

(2) xsEvi if and only if ¬θ(i, s). 14

It is immediate to check that (V,E) and {v0, . . . , vn, a} satisfy the hypothesis of the statement, so 15

let f : V × V → 2 be a solution. Consider the sequence 〈f(v0, a), . . . , f(vn, a)〉, and search for the 16

smallest m ≤ n such that f(vm, a) = 0. Since by construction, vm is connected with a if and only 17

if ∃s¬θ(m, s), such m is the smallest such that ∀s θ(m, s). � 18

3.4. Models and algebraically closed fields. The main purpose of this subsection is to ver- 19

ify that PRA2 proves that every countable field can be embedded into its algebraic closure, and 20

similarly for ordered fields and their real closures. 21

22

Having in mind ‘decidable’ algebraic structures in elementary computable model theory, we shall 23

need a more expressive way to code an algebraic structure suitable for developing basic construc- 24

tions (such as Henkin’s) in PRA2. This is also consistent with the approach in Simpson [Sim09]. 25

We define a countable model M in a given finite signature, as follows. 26

• M is represented as a structure (§ 3.1). 27

• There is a {0, 1}-valued function deciding the truth of first-order facts about M (perhaps, 28

with parameters in M). 29

We identify M with the function evaluating the truth of first-order statements in M , but we keep 30

in mind that M also has to have its domain an initial segment of N (to make the search for its 31

kth element bounded). If a first-order formula σ contains free variables, then (by definition) we 32

set M(σ) = 1 if M(σ′) = 1, where σ′ is the universal closure (the generalisation) of σ. 33

4More specifically, there exists a function f : V × V → 2 such that if v, u ∈ V are connected, then f(v, u) = 1, and
outputs 0 otherwise.

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 24

Remark 3.15. We can additionally require that there is a function which, whenever M(σ) = 1 for 1

an existential σ, on input σ returns an existential witness x ∈ M . The proofs that we give in 2

this subsection would still work for this stronger notion. This assumption would not make any 3

difference in RCA0 or a stronger system, but in PRA2 it does. If we choose to additionally require 4

that M comes together with a Skolem function, we can drop the restriction on the domain to be 5

(an initial segment of) N since the search for the next element in the structure becomes bounded. 6

Every model is an algebraic structure. It is not difficult to see that the notions of a ‘model’ and 7

an ‘algebraic structure’ differ already in the minimal model of PRA2; we cite [KMN17] for several 8

results that imply this fact. 9

10

We fix calculus of first-order formulae (coded in PRA2). We can assume that our formal proof 11

system uses only modus ponens (see [End01, Section 2.4]), so any initial segment of the proof is 12

also a proof. A theory is a set of sentences, represented in PRA2 through its characteristic function, 13

closed under logical consequence. In particular, it includes all basic axioms of our proof system. 14

Then M is a model of T , M |= T , if M(σ) = 1 whenever σ ∈ T . 15

Proposition 3.16. PRA2 proves that a complete consistent theory has a countable model. 16

Proof. This is essentially [BDKM19, Proposition 2.7]. One also needs to recall that among the 17

primitive recursive enumeration of sentences in the expanded language, there are also formulae 18

(∃x)
∧
i<m(x 6= ci) for each m ∈ N. Since the Henkin’s proof is primitive recursive, and such 19

formula is considered at a stage g(m) of the proof, where g is also primitive recursive in m, this 20

allows to produce a primitive recursive enumeration of representatives of the quotient classes, 21

without repetition. � 22

Proposition 3.17. PRA2 proves that if T has a model, then T is consistent. 23

Proof. The argument that can be found in [Sim09] would not work since we cannot use Σ0
1-induc- 24

tion and neither can we use recursive comprehension. We need to be a bit more careful. 25

Suppose T is not consistent and M |= T . Fix σ0, . . . , σk ∈ T such that T proves ¬
∧
i≤k σi, and

let p be a proof. Let S be the collection of all formulae that are mentioned in p. Let ϕ(σ, k) say
that if there is a subproof (of p) of σ of length k then M |= σ, and consider

ψ(k) = (∀σ ∈ S)ϕ(σ, k)

which is a bounded formula. (Here M is a parameter in the formula, and we do allow parameters 26

in our induction scheme.) 27

We have that ψ(0) holds because M |= T . Since the only rule of inference is modus ponens, 28

we have that ∀k(ψ(k) → ψ(k + 1)) since any instance σ of ϕ(σ, k + 1) in S is either an axiom in 29

T or is obtained using modus ponens from an instance σ′ ∈ S having proof of length k. By the 30

principle of bounded induction, we arrive at M(¬
∧
i≤k σi) = 1 which contradicts the assumption 31

that M(¬σi) = 0, for i = 0, . . . , k. � 32

Definition 3.18. The algebraic closure of a field F is an algebraically closed fieldX (more formally, 33

X |= ACF) together with an embedding f : F → X such that for every x ∈ X there is a z̄ ∈ F 34

such that x is algebraic over z̄. The real closure of an ordered field is defined similarly using RCF . 35

Remark 3.19. We have to be a bit careful in our definition of the algebraic closure since the 36

standard textbook proof of transitivity of ‘being algebraic over’ seemingly relies on unbounded 37

search. Although there are other arguments that involve elementary matrix analysis, we chose to 38

use the model-theoretic version, i.e., x ∈ clalgY if x is first-order definable over Y , which is clearly 39

transitive. Note that in both cases (RCF and ACF) we have quantifier elimination so this is 40

(classically) equivalent to the algebraic definition, and we conjecture that this can be demonstrated 41

in PRA2. We feel that a more detailed analysis and comparison of the several potentially different 42

ways of defining ‘algebraicity over’, albeit perhaps interesting, is outside the scope of this article. 43

Theorem 3.20 (PRA2). 44

(1) Every field can be embedded into its algebraic closure. 45

(2) Every ordered field can be embedded into its real closure. 46

Extended sketch. We follow the proof of Theorem 11.9.4 in [Sim09] closely (which itself is based on 47

folklore in computable model theory). Recall that quantifier elimination in both ACF and RCF is 48

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 25

a primitive recursive manipulation with formulae. Our proof relies on Propositions 3.16 and 3.17 1

instead of the analogous results in RCA0. 2

Form ACF ∪D0(F), where D0(F) is the quantifier-free diagram of the field F . If AF stands 3

for the field axioms, then AF ∪D0(F) has a model (being F), and thus is consistent by Proposi- 4

tions 3.17. Because of the quantifier elimination, this also implies that ACF ∪D0(F) is consistent, 5

and thus has a countable model by Proposition 3.16. Henkin’s construction guarantees that the 6

embedding of F into its natural image in the resulting M is primitive recursive. It remains to set 7

U = clalg(F); the latter can be primitively recursively listed (because of the quantifier elimination). 8

We can use primitive recursiveness of the image of F and padding (a delay of computation which 9

consists in repeating segments of a sequence, more detailed examples are given in the next two 10

sections) to make sure that the domain of U is equal to N. 11

(2) is proved similarly. � 12

In computable mathematics, computable model-theoretic results are the standard tools for estab- 13

lishing various existential closure results. For example, Harrington [Har74] uses computable prime 14

models to derive that every computable differential field is contained in its differential closure. 15

Ershov in a series of works [Ers72, Ers73, Ers80] develops an effective model-theoretic machinery 16

and a general notion of an effective closure. He applies it to show that every computable locally 17

nilpotent torsion-free group can be embedded into its divisible closure. We conjecture that many 18

results of this sort hold primitively recursively. But to apply these results in PRA2 one needs to 19

develop a sufficient amount of ‘soft’ model theory in PRA2; this may prove to be a challenging 20

task. For instance, it seems that the aforementioned result of Harrington about prime models 21

holds primitively recursively but requires too much induction (since it is a priority construction). 22

Question 3.21. Study model theory over PRA2. 23

The reverse mathematics of model theory has been studied in, e.g., [HSS09, Bel14, Bel15, HLS17]. 24

4. Baire category theorem and Ramsey theorem 25

Recall that we fixed a primitive recursive coding of finite strings in N<N. Elements of N<N
26

can be identified with total functions. We could follow the basic ideas from [Sim09] and formalise 27

Polish metric spaces in PRA2, but for now we restrict ourselves to the space NN. 28

An open set V in NN is coded by the sequence of basic open sets that together make up V ; each 29

basic open set is identified with the respective finite string. An open set V is said to be dense if 30

for every finite string σ there is a string τ extending σ and a basic open subset B of V such that 31

τ lies in B. These definitions can be formalised in LPRA2 . In particular, an open set is identified 32

with a function that lists basic open sets (coded as finite strings) that together make up the open 33

set. A sequence of open sets is coded using a primitive recursive function in two arguments. 34

This choice of coding can be criticised. One could argue that a more ‘honest’ coding should 35

involve characteristic functions rather than enumeration. However, as further explained in Re- 36

mark 4.5, Theorem 4.2 would still remain true under this seemingly more expressive coding. 37

4.1. Baire category theorem. The following can be made sense of in LPRA2 . 38

Definition 4.1 (BaireCategoryTheorem). An instance of BaireCategoryTheorem is a sequence (Vn)n∈N 39

of dense open sets in NN. Then a function h ∈ NN is a solution if h ∈ ∩nVn. 40

Theorem 4.2. PRA2 + BaireCategoryTheorem lies strictly between PRA2 and RCA0. 41

Proof. It is easy to see that BaireCategoryTheorem can be demonstrated in RCA0; see [Sim09]. We 42

demonstrate that there is an instance of BaireCategoryTheorem in the standard minimal model 43

of PRA2 which does not have a primitive recursive solution, and thus PRA2 does not prove 44

BaireCategoryTheorem: 45

Lemma 4.3. There is a uniformly primitive recursive sequence of dense open sets (Vn) in ωω such 46

that there is no primitive recursive point (path, function) in their intersection. 47

Proof. Let (fe)e∈ω be a uniformly computable enumeration of all primitive recursive functions. 48

The idea is to describe a primitive recursive procedure of simultaneous enumeration of open sets 49

(Vn)n∈ω such that either V2n = ωω \ {fn} and V2n+1 = ωω, or V2n = ωω and V2n+1 = ωω \ {fn}. 50

For a σ ∈ ω<ω, let Bσ = {ρ ∈ ω<ω : σ � ρ}. Regardless of the outcome, we will eventually
put the basic open set B0 into V2n and the basic open set B1 into V2n+1. This will not be done

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 26

immediately though. We initiate a primitive recursive enumeration of

B00, B01, B02, . . .

into V2n, and similarly we initiate a primitive recursive enumeration of

B10, B11, B12, . . .

into V2n+1. 1

We wait for fn(0) to converge. Without loss of generality, we can assume fn(0) 6= 0; the case 2

when fn(0) 6= 1 is symmetric. Since fn(0) = m0 6= 0 we can use V2n to diagonalise, since no part 3

of Bm0
has yet been listed in V2n. (In this case we proceed to list all basic balls into V2n+1 thus 4

making it equal to the whole space.) 5

We wait for fn(1) to halt. Meanwhile, we keep enumerating the sequence B00, B01, B02, . . . into 6

V2n. If fn(1) = m1, then we initiate the enumeration of Bm0 \Bm0m1 into V2n. 7

We iterate the procedure. Eventually, we will start listing elements in Bm0m1 \ Bm0m1m2 , and 8

the same for m3, etc. We keep enumerating Bm0
\Bm0m1

into V2n while we wait for fn to halt on 9

one more argument. This way we produce a primitive recursive procedure that lists an open set 10

equal to ωω \ {fn}. 11

It remains to argue that these open sets can be build uniformly primitively recursively. We 12

can fix a primitive recursive function U such that fe,s(x) = U(e, x, s). (Note that the computable 13

function se(x) = µt fe,t(x)↓ is not primitive recursive.) We use U to run the construction of 14

(Vn)n∈ω simultaneously, so that in each Vn we either use B0 or B1 until sn halts on one more 15

input. 16

It is clear that each Vn is dense, but for any n, fn /∈
⋂
n Vn. � 17

To show that RCA0 is strictly above BaireCategoryTheorem, we build a (standard) model of 18

PRA2 +BaireCategoryTheorem such that the model does not contain all computable functions. We 19

work with the standard natural numbers ω. All functions in this proof are total. We identify 20

functions with paths through ωω. 21

Fix a computable function f ∈ ωω that is not dominated by any primitive recursive function. 22

We iteratively apply Lemma 4.4 below to the minimal model of PRA2 to build a model M ⊆ ωω 23

of BaireCategoryTheorem so that f is not dominated by any function in M. 24

Lemma 4.4. Let K ⊆ ωω be a countable PR-closed class. Suppose f is not dominated by any 25

function in K. Then, for every sequence (Vn)n∈ω of dense open sets in ωω, there is a function 26

h ∈ ∩nVn such that f is not dominated by any function in PR(K ∪ {h}). 27

Proof. For each g ∈ K and each primitive recursive functional Ψ, we need to meet the following
requirements:

RΨ,g : Ψg⊕h does not dominate f ;

and also for every n ∈ ω,
Dn : h ∈ Vn.

Suppose we have already defined a finite initial segment ρ ≺ h. To meet Dn, use that Vn is 28

dense, combined with the claim below that allows to meet RΨ,g. 29

Claim 4.4.1. For any ρ ∈ ω<ω, there is a σ � ρ such that for some m, Ψg⊕σ(m) < f(m). 30

Proof. Since Ψ is a primitive recursive functional, the function w = Ψg⊕(ρa0ω) is total and is indeed
primitive recursive in g. In other words,

w ∈ K.
So, by the assumption about K there must be m, j such that Ψg⊕(ρa0j)(m) < f(m). � 31

Using the claim and by the use principle, we can always extend a given string ρ to a string 32

ρ′ = ρa0j such that any extension of this string meets RΨ,g. We then further extend the string ρ′ 33

to meet the open set Vn+1, and so on. � 34

This finishes the proof of Theorem 4.2. � 35

Remark 4.5. We represented an open set via a function that lists its basic open subsets. We could 36

instead use the characteristic function, i.e., a function g so that g(σ) = 1 iff Bσ ∈ V , and g(σ) = 0 37

otherwise. It is however not hard to see that Lemma 4.3 would still hold true under this new 38

coding. More specifically, suppose we have to quickly decide whether Bσ is in V but we are not 39

yet sure whether we can say “yes” (because fn has not yet halted on enough inputs, so it is still 40

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 27

possible that fn ∈ Bσ). In this case we can always quickly declare that Bσ is not in Vn. We can 1

later list Bσ \ ξ into Vn, where ξ is either fn or σ0ω in case if fn /∈ Bσ. 2

This adds quite a bit of extra noise to the construction of Lemma 4.3. One needs to argue that 3

it can be arranged so that for each basic open Bσ 63 fn, the intersection Bσ ∩Vn is missing at most 4

finitely many points of Bσ. (This property implies that Vn is dense.) Indeed, if Bσ 63 fn, then 5

eventually this will be recognised, and from this stage on we can stop extracting points from Bσ 6

for the sake of producing a rapid definition of Vn. 7

Alternatively, we could assume that the enumeration of Vn has no repetitions—this would also 8

have no effect on the results, with just a bit of extra care. In other words, the results of this 9

subsection are essentially independent of the specific (natural) choice of coding. 10

4.2. The stronger result. In fact, using similar techniques exploiting the speed of growth, we 11

can establish, perhaps, a more unexpected fact: 12

Theorem 4.6. BaireCategoryTheorem neither implies nor is implied by ∆0
1-CA over PRA2. 13

Indeed, the theorem holds even when restricted to standard models (in particular, with full 14

induction). It is also clear that combined with Corollary 2.28 the theorem implies the less ele- 15

mentary half of Theorem 4.2. However, the proof below relies on Lemma 4.7 which is established 16

using a generalisation of the much more transparent argument in Lemma 4.3 used in the proof of 17

Theorem 4.2. Thus, we decided to keep both proofs. 18

Proof. Recall that in the proof of Proposition 2.29, we argued that the minimal model of ∆0
1-CA 19

consists of primitively recursively bounded computable functions. Thus, to construct a standard 20

model of ∆0
1-CA in which BaireCategoryTheorem fails, we need to push the proof of Lemma 4.3 and 21

diagonalise against all solutions that are primitively recursively bounded (rather than just against 22

all primitive recursive solutions). 23

Lemma 4.7. There is a primitive recursive instance of BaireCategoryTheorem that has no primi- 24

tively recursively bounded solutions. 25

Proof. For a fixed primitive recursive bound h, let hω denote the h-branching homeomorphic copy 26

of the Cantor space 2ω. Note that ωω \ hω is open and dense in ωω. So the idea is to build a 27

primitive recursive instance of BaireCategoryTheorem in which Vn = ωω \ fωn , where fn is the nth 28

primitive recursive function. If we succeed, then evidently no h bounded by any fn can possibly 29

be a solution to this instance, and thus the minimal model of ∆0
1-CA would fail to contain any 30

solution to this instance. 31

The usual issue is that, of course, there is no uniformly primitive recursive enumeration of fn. 32

Thus, we have to deal with a primitive recursive simultaneous approximation to fn, n ∈ ω, using 33

a primitive recursive function in two arguments. 34

The idea is to delay the enumeration of a basic open set Bσ into Vn, as follows. If we are not 35

yet sure whether we should put Bσ in or not, declare it out. We then wait for fn to converge 36

on sufficiently many inputs to decide whether we should actually have listed Bσ in Vn if we had 37

quick access to fn. If this is indeed the case, we can always later initiate a primitive recursive 38

enumeration of a sequence of basic clopen subsets of Bσ that together make up Bσ. 39

However, this might lead to the issue of totality of enumeration in the sense that each Vn has 40

to be enumerated by a primitive recursive procedure, so we have to put at least one basic clopen 41

set into each Vn. 42

We resolve this as follows. Instead of one dense open Vn for each n, define a sequence Vn,k, k ∈ ω. 43

(This is similar to how we had two open sets in the proof of Lemma 4.3.) More specifically, we 44

always put Bk into Vn,k initially. We then wait for fn(0) to halt. If fn(0) ≥ k then we can proceed 45

to enumerating the entirety of ωω into Vn,k. Otherwise, for each k > fn(0), we can proceed with 46

the strategy of local delay (as described above) and build Vn,k = ωω \ fωn . We omit further details 47

which we believe are sufficiently elementary. (Remark 4.5 applies to this argument as well.) � 48

We conclude that ∆0
1-CA does not imply BaireCategoryTheorem. 49

50

To establish that BaireCategoryTheorem does not imply ∆0
1-CA over PRA2, we shall construct 51

a standard model of PRA2 + BaireCategoryTheorem that does not include some {0, 1}-valued com- 52

putable function; the latter can be picked to be an arbitrary total computable characteristic func- 53

tion that is not primitive recursive. 54

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 28

Recall that constructing a standard model of PRA2 is the same as defining a collection of total
functions closed under primitive recursive operators, i.e., PR-closed. Note also that for any instance
(Vn)n∈ω of BaireCategoryTheorem and any monotonically increasing total function `, (Vn)n∈ω has
a solution h with the property:

For infinitely many i, h �[`(i),`(i+1)−1] is a constant function.

The property holds true since Vn is dense in ωω, and therefore we can delay the correction of 1

h for as long as we desire and still hit Vn. In the property, ` simply stands for the delay that 2

we choose. We thus call the property described above the local delay property, or LD-property for 3

short. (It is essentially a property that allows one to use ‘padding’.) 4

5

We shall construct our model by iteratively applying the lemma below. 6

Lemma 4.8. Fix a non-primitive recursive function g ∈ ωω, a primitive recursive operator P , 7

σ ∈ ω<ω, and m ∈ ω. There exist n, i ∈ ω such that g(i) 6= Pσ
amn

(i) ↓ (where mn denotes the 8

string of the form m · · ·m having length n). 9

Proof. This is simply because Pσ
amω

is a (total) primitive recursive function. Thus, take i ∈ ω so 10

that g(i) 6= Pσ
amω

(i) ↓ and take n so that the use of Pσ
amω

(i) is σ ·mn. � 11

In particular, strings σ1, . . . , σk could be taken as initial segments of solutions to k instances 12

of BaireCategoryTheorem that we have built so far. We can assume they have equal lengths, say 13

length s. We then can use the lemma (with σ = σ1⊕· · ·⊕σk) to define ` on one more argument and 14

successfully diagonalise against the operator P . We then use LD-property and the use principle 15

to conclude that any extension of the strings that we now have will be diagonalising against the 16

operator P . 17

We thus can iterate the lemma to build a PR-closed family K of total functions that includes
at least one solution for each instance of BaireCategoryTheorem while simultaneously meeting the
requirements:

g 6= P f1,...,fk

for all f1, . . . , fk ∈ K and each primitive recursive scheme P with k parameters. We do so by 18

simultaneously defining the fi and also building the common ‘local delay’ function `; see the 19

LD-property. We omit the further elementary (but somewhat tedious) details. � 20

Question 4.9. Over PRA2, does BaireCategoryTheorem imply IΣ0
1 or I∆0

1? 21

In [Sim14] it is proved that, over RCA∗0, BaireCategoryTheorem implies IΣ0
1, or in other words 22

that, over RCA∗0, BaireCategoryTheorem is equivalent to RCA0. 23

4.3. Ramsey Theorem. Recall that RTnk abbreviates that any k-colouring of Nn admits a ho- 24

mogeneous set. For more background on Ramsey Theorem in reverse mathematics, see [Hir15]. It 25

should be clear that RTnk can be formalised in PRA2. However, there are two natural ways to code 26

a solution to an instance of RTnk . One possibility is to represent a solution via an injective function 27

that lists the solution; we will return to this approach in the next section. In this subsection we 28

focus on the coding that views a solution of RTnk as a set that is identified with its characteristic 29

function. 30

Theorem 4.10. Over PRA2, RTnk is incomparable with ∆0
1-CA, for any n, k ≥ 2. (This holds 31

already for standard models.) 32

Proof. Fix n, k ≥ 2. We first argue that RTnk does not imply ∆0
1-CA. If X is an instance of RTnk 33

and Y is a solution to X, then any infinite subset Ŷ of Y is also a solution to X. In particular, 34

we can keep arbitrarily long segments of the characteristic function equal to zero. This is very 35

similar to the local delay property that was used in the proof of the previous theorem, the only 36

difference being that the delaying interval could be longer than [`(i), `(i + 1) − 1] because there 37

is no guarantee that Y (`(i + 1)) = 1. However, Lemma 4.8 still applies, and the argument that 38

follows the lemma can be slightly adjusted to work for a longer delay. We omit further details. 39

To see that ∆0
1-CA does not imply RTnk for n, k ≥ 2, recall that a computable instance of RTnk , 40

n, k ≥ 2, does not have to possess a computable solution [Spe71, Joc72], and thus there exists a 41

model (M,X) � RCA0 ∧ ¬RTnk . Let (M,Y) be the functional version of (M,X), that is let Y be 42

composed by the characteristic functions of sets in X. Then (M,Y) � RCA0, and so in particular 43

(M,Y) � ∆0
1-CA, but fails to satisfy RTnk . � 44

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 29

The previous theorem allows to immediately derive the following corollaries, which show that 1

even above RCA0 the behaviour of the principles in classical and primitive recursive reverse mathe- 2

matics may be different. Recall that, over RCA0, RTnk , for n ≥ 3 and k ≥ 2, is equivalent to König’s 3

lemma (see [Sim09, Theorem III.7.6]). Moreover, RT1
<∞, namely the infinite pigeonhole principle 4

for arbitrary numbers of colours, is strictly stronger than RCA0 (see [Hir87, Theorem 6.4]). 5

Corollary 4.11. Over PRA2, RTnk , for k, n ≥ 2, does not imply KL, i.e., for each finitely branching 6

tree T ⊆ N<N there exists a path P (that is, P : N→ N such that ∀nP (n) ∈ T). 7

Proof. KL implies RCA0 by Proposition 6.4 below, and hence it implies ∆0
1-CA, which is not implied 8

by RTnk by Theorem 4.10. � 9

As firstly noted in [CJS01] (stable) RT2
2 implies RT1

<∞. In fact, if c : N → k, for some k ∈ N, 10

then one can ∆0 in c define a colouring d : [N]2 → 2 such that d(x, y) = 0 ⇔ c(x) 6= c(y) and 11

d(x, y) = 1 ⇔ c(x) = c(y), and note that any homogeneous set for d is homogeneous for c. It is 12

clear the the implication still holds in PRA2. Since RCA0 implies ∆0
1-CA, while RT2

2 does not, we 13

can derive the following corollary. 14

Corollary 4.12. Over PRA2, neither RT1
<∞ nor RTnk , for k, n ≥ 2, imply RCA0, and are thus 15

incomparable with it. 16

On the other hand, it is easy to see that, for each k ∈ N, PRA2 ` RT1
k. 17

The following questions remain open. 18

Question 4.13. Over PRA2, do RT1
<∞ or RTnk , for k, n ≥ 2, imply BaireCategoryTheorem? 19

Note that the reverse cannot hold since it does not hold over RCA0. 20

Question 4.14. Over PRA2, do RT1
<∞ or RTnk , for k, n ≥ 2, imply IΣ0

1? 21

Note that, over RCA∗0, RTnk , for k, n ≥ 2, do not imply IΣ0
1 (see [Yok13, Corollary 3.7]). On the 22

other hand, over RCA∗0, RTnk , for k, n ≥ 2, do imply IΣ0
1, whenever the homogeneous set is required 23

to have universe size (as opposed to be only unbounded) (see [FCKK21]). 24

5. Transforming a computable instance to a primitive recursive instance 25

It seems to be a general phenomenon in computable algebra that many computable algebraic
structures are isomorphic, and indeed often computably isomorphic, to primitive recursive struc-
tures. Many results of this sort can be found in [Gri90, CR91, KMN17]. It requires some effort
to find an example of a computable structure without a primitive recursive or fully primitive re-
cursive (‘punctual’) presentation; we cite [CR92, CR98, KMN17]. In this section we discuss a
similar phenomenon that occurs in PRA2; we have already encountered it a few times (implicitly
or explicitly) in the preceding sections. Specifically, we have seen that typically some delaying
‘padding’ argument shows that for many problems, their primitive recursive instance can be as
powerful (with respect to coding) as their computable instance in the sense that

for every computable P-instance X, there is a primitive recursive P-instance X̂

such that every solution of X̂ computes a solution of X.

Indeed, it is not uncommon that every solution of X̂ can be turned into a solution of X uniformly 26

primitively recursively, i.e., using a primitive recursive operator. For some problems, every solution 27

of X̂ is a solution of X; and the aforementioned transformation operator is simply the identity 28

operator. For such problems, many results that are known over the base system RCA0 can be 29

transformed into PRA2 proofs with minimal effort. We give more examples of such problems 30

below. 31

5.1. More notation. Before we state the next result, we clarify our notation and our approach to 32

continuity in PRA2. We represent rationals as pairs of integers. We represent a real via a function 33

f : N→ Q such that |f(i)− f(i+ 1)| < 2−i−1. We represent a function g : Q→ R via a function 34

g(r,m) such that for every r ∈ Q and m ∈ N, g(r,m) is a rational. 35

A function h : R → R is represented by a pair of functions f and δ, where f : Q → R is its
‘restriction to Q’ and δ : Q× N→ N is the ‘attempted modulus of continuity’:

h((r − 2−δ(r,n), r + 2−δ(r,n))) ⊆ (f(r)− 2−n, f(r) + 2−n).

36

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 30

Remark 5.1. Having such a presentation does not imply that h can be continuously extended to 1

R, as some points could be ‘missing’ in a model. Given a presentation (h, δ), we can express “(h, δ) 2

is continuous” as a (second order) arithmetic sentence. But it only ensures that the function is 3

continuous at every real r (whose presentation is) in the model. We will study this effect later in 4

much detail. 5

Definition 5.2. We specify the following problems: 6

• An instance of IntermediateValueTheorem is (a presentation of) a function X on [0, 1]. A 7

solution to X is (a presentation of) a real r so that either X is not continuous at r or 8

X(r) = 0. 9

• An instance of Completeness of R is (a presentation of) a sequence (ρn ∈ 2n : n ∈ N) of 10

strings so that limn→∞ ρn is Cauchy. A solution to (ρn ∈ 2n : n ∈ N) is limn→∞ ρn. 11

• An instance of HeineBorelTheorem is (the presentation) of a sequence (Is : s ∈ N) of 12

open intervals with rational end points (some of the intervals could be empty) such that 13⋃
s<t Is + [0, 1] for all t ∈ N. A solution is (the presentation) of a real x such that x /∈

⋃
s Is. 14

Remark 5.3. In the definition of HeineBorelTheorem, the assumption that the end points are rational 15

is a mere convenience. Indeed, for any primitive recursive sequence (Is : s ∈ ω) of intervals (whose 16

end points are not necessarily rational), there is an instance (Îs : s ∈ ω) primitive recursive in 17

(Is : s ∈ ω) with rational end points of Îs such that
⋃
s Îs =

⋃
s Is. 18

Finally, recall that COH stands for the Cohesive Principle: For any family {Rx : x ∈ N} of 19

subsets of N there is an infinite H such that for each x, either ∀∞z ∈ H (z ∈ Rx) or ∀∞z ∈ 20

H (z /∈ Rx). In PRA2 we represent COH as follows: for any function r : N × N → 2, there exists 21

a function h : N → N which gives value 1 infinitely many times and such that, for each x, either 22

∀∞z (h(z) = 1→ r(x, z) = 1) or ∀∞z (h(z) = 1→ r(x, z) = 0). 23

5.2. The main transformation result. The theorem below essentially says that, for the listed 24

problems, each computable instance can be (usually, uniformly) turned into a primitive recursive 25

instance so that the solutions are the same up to a Turing degree. We also note that the result 26

below is a recursion-theoretic result, not a result in PRA2, at least as stated. 27

Theorem 5.4. For the following problems P, for every computable P-instance X, there is a prim- 28

itive recursive P-instance X̂, such that every solution of X̂ computes a solution of X: 29

(1) WKL, 30

(2) Completeness of R, 31

(3) RTnk , for n ≥ 1 and k ≥ 2, 32

(4) SRT2
2, 33

(5) COH, 34

(6) IntermediateValueTheorem, 35

(7) HeineBorelTheorem. 36

Remark 5.5. The reductions between solutions and instances tend to be uniform. For instance, 37

typically we have that X̂ = ΦX for some Turing functional Φ, where furthermore the running time 38

of the computations in X̂ are also bounded by a primitive recursive timestamp function that does 39

not depend on X. Also, there is a Turing operator Ψ such that for a solution ξ of X̂, we have that 40

Ψξ is a solution of X. 41

In other words, this is a sub-recursive version of the Weihrauch reduction—see, e.g., [BG11]. 42

Usually these reductions that we get enjoy various uniformities that allow to relativise the results. 43

For example, we could throw in a total function f and (subrecursively) relativise everything to f 44

(including the timestamp function), in the sense of primitive recursive operators. That is, we could 45

allow f to be ‘primitive recursive’, and the results would still typically hold relative to f . 46

Proof. (1) Note that for any computable tree T ⊆ 2<ω, there is a primitive recursive tree T̂ ⊆ 2<ω 47

such that [T̂] = [T]. To see that, define T̂ so that ρ /∈ T̂ iff it is found at time |ρ| that for some 48

σ � ρ, σ /∈ T [|ρ|]. 49

(2) Using a straightforward padding (a delay of computation by repetition) we can argue that for 50

any computable sequence of strings (ρn ∈ 2n : n ∈ ω), there is a primitive recursive sequence of 51

strings (σn ∈ 2n : n ∈ ω) such that if limn→∞ ρn exists, then limn→∞ ρn = limn→∞ σn. 52

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 31

(3) To explain the idea behind this proof, consider RT2
2, and view an instance as a computable 1

graph. The idea is to replace every vertex x with many identical copies of x that form (say) an 2

anti-clique Ax. We grow Ax until the graph is calculated on one more vertex x+ 1. Then we begin 3

growing Ax+1 and wait for the graph on {0, 1, . . . , x+ 2} to be calculated, etc. 4

Now fix n ≥ 1 and k ≥ 2. Given a computable RTnk -instance c : [ω]n → k, we construct 5

a primitive recursive instance ĉ : [ω]n → k together with a primitive recursive nondecreasing 6

function p : ω → ω so that 7

(1) ĉ(x1, . . . , xn) = c(p(x1), . . . , p(xn)) whenever p(xi) 6= p(xj), for any i, j ≤ n. 8

Suppose by stage t, we have constructed ĉ : [t]n → k and a nondecreasing function p : t → t so
that

ĉ(x1, . . . , xn) = c(p(x1), . . . , p(xn)) for all x1, . . . , xn ∈ t with p(xi) 6= p(xj).

At stage t, let k = p(t−1). If c(x1, . . . , xn−1, k+1)[t] ↓ for all x1, . . . , xn−1 ≤ k, then let p(t) = k+1 9

and ĉ(y1, . . . , yn−1, t) = c(p(y1), . . . , p(yn−1), k + 1) for all y1, . . . , yn−1 < t; otherwise, let p(t) = k 10

and ĉ(y1, . . . , yn−1, t) = c(p(y1), . . . , p(yn−1), k) for all y1, . . . , yn−1 < t with p(yj) < k, and let 11

ĉ(y1, . . . , yn−1, t) = 0 for all y1, . . . , yn−1 ∈ p−1(k). Obviously, ĉ satisfies (1). 12

Let Y be a solution to ĉ. It is clear that we can compute a solution to the original problem from 13

Y using the function p. (For instance, consider p(Y).) 14

(4) Argue as in (3), noticing that if c is stable, then ĉ is stable as well. 15

(5) We think of a COH instance (Rj : j ∈ ω) as a sequence of strings (ρj ∈ 2j : j ∈ ω) where 16

ρj is the membership vector (R0(j), · · · , Rj−1(j)). A set G ⊆ ω is a solution iff limi∈G ρi exists. 17

Given a computable sequence (ρj ∈ 2j : j ∈ ω), we will apply delay of computation to code it by a 18

primitive recursive sequence (σj : j ∈ ω). Suppose before stage t, (ρk : k < j) has been computed, 19

but ρj has not been computed. If at stage t, ρj is still not computed, then let σt ∈ [σt−1]� ∩ 2t be 20

arbitrary. Otherwise, we choose arbitrary σt ∈ [ρj]
� ∩ 2t (in which case we say σt is added due to 21

ρj ; if at stage t, ρj is not computed, then σt is added due to the same string that was behind the 22

choice of σt−1, which must be ρj−1). Let Ĝ ⊆ ω be a solution to (σj : j ∈ ω) (say Ĝ = {ji : i ∈ ω}), 23

and suppose σji is added due to ρki . Let G ⊆ ω be the set {ki : i ∈ ω}. Clearly, G ≤T Ĝ and 24

limi ρki = limi σji . 25

(6) Fix a computable instance X of IntermediateValueTheorem. We produce a primitive recursive 26

instance X̂ such that every solution of X̂ is a solution of X. We do not necessarily require that X̂ 27

and X have the same set of solutions. 28

Without loss of generality, assume X(0) < 0, X(1) > 0, and X(r) 6= 0 for all r ∈ Q. When (at 29

stage t) we cannot decide whether X(1/2) > 0 or X(1/2) < 0, we set X̂(1/2)[t] = 05. Meanwhile, 30

we set X̂(r)[t] = 0 for all r ∈ Q so that 〈r〉 ≤ t. Here 〈r〉 is the presentation of r, i.e., the associated 31

pair of integers. 32

Once we found, say X(1/2) < 0, at stage t, we set X̂(1/2)[t̂] = −1/2t for all t̂ ≥ t. We define 33

X̂(r)[t̂] = −1/2t for all r ∈ Q∩ [0, 1/2] (i.e., we don’t care about the value of X̂(r) for r ∈ [0, 1/2], 34

since we know that X has a solution in (1/2, 1); this is to guarantee the continuity of X̂). 35

Next, we look at the value X(3/4). If (at stage t) we cannot decide whether X(3/4) > 0 or 36

X(3/4) < 0, we set X̂(r)[t] = 0 for all r ∈ Q ∩ (1/2, 1] with 〈r〉 ≤ t. If at stage t we see that, e.g., 37

X(3/4) > 0, we let X̂(r)[t̂] = 1/2t for all t̂ ≥ t and all r ∈ Q ∩ [3/4, 1]. 38

The rest of the construction goes similarly. It is not hard to define the continuity modulus δ; 39

we omit further details. 40

(7) Fix a computable instance (Is : s ∈ N) of HeineBorelTheorem. We produce a primitive recursive 41

instance (Îs : s ∈ N) such that every solution of (Îs : s ∈ N) primitively recursively computes a 42

solution of (Is : s ∈ N). 43

Recall that we are allowed to have the empty interval in the sequence (Is : s ∈ N), we can use 44

it to delay our computation. If at stage t, we have not finished computing Is, then list the empty 45

interval into (Îs : s ∈ N). Clearly,
⋃
s Îs =

⋃
s Is. � 46

Remark 5.6. In (7) above, the conclusion would still hold even if the empty interval was not 47

allowed. We can use the interval [0, 1/2] to ‘code’ the interval [0, 1]. Then any interval I ⊆ [0, 1] is 48

‘coded’ by the interval I/2. Thus, we can always spam the interval (1/2, 2) by enumerating it into 49

5Recall that X̂ is seen as a function from Q to QN, so X̂(r)[t] is the tth rational in the rational sequence converging

to X̂(r).

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 32

(Îs : s ∈ ω)—we put interval (1/2, 2) into it when we wait for our computation to halt. So given a 1

solution r of (Îs : s ∈ ω), we have 2r as a solution of (Is : s ∈ ω). 2

Remark 5.7. Note that for COH, the computation of a solution of (Rn : n ∈ ω) using (σj : j ∈ ω) 3

is not primitive recursive. Indeed, there is a computable COH instance X such that there is no 4

primitive recursive instance X̂ such that every solution of X̂ primitively recursively computes a 5

solution of X. Actually, there is a single computable set R ⊆ ω such that for every primitive 6

recursive instance X of COH, there is a solution Y of X such that no Z ∈ PR(Y) ∩ 2ω is cohesive 7

for R. That is, either Z is finite or Z ∩R,Z ∩R are both infinite. 8

The above property allows to derive information about minimal models failing some principles. 9

Obviously, if RCA0 0 P, then the ‘functional-translation’ of the model witnessing the unprovability 10

of P over RCA0, witnesses the unprovability of P over PRA2. However, if such P has the above 11

property and (ω,∆0
1-Def(ω)) 2 P, then we can argue that (ω, PRec(ω)) 2 P. In fact, let X be a 12

computable P -instance with no computable solutions. Let X̂ be a primitive recursive P -instance, 13

so that X̂ ∈ PRec(ω). Then there is no solution Ŷ ∈ PRec(ω), otherwise a solution Y to X would 14

belong to ∆0
1-Def(ω), since Y ≤T Ŷ , contradicting the assumption. 15

We can of course use Theorem 5.4 as a base of our intuition or to argue in standard models. 16

For example, we conjecture that the following holds: 17

Proposition 5.8. Over PRA2, IntermediateValueTheorem is equivalent to ∆0
1-CA. 18

Sketch. Noting that a real can be viewed as a {0, 1}-valued function, we can repeat the usual 19

dichotomy argument to see that ∆0
1-CA implies IntermediateValueTheorem. For the other direc- 20

tion, we recycle the well-known fact from computable analysis that any computable real can be 21

realised as a solution to some computable instance of IntermediateValueTheorem. We will then 22

have to mimic the proof of Theorem 5.4(5) to actually produce a primitive recursive instance of 23

IntermediateValueTheorem directly from an instance of ∆0
1-CA. Then we could argue in PRA2 that 24

this works. � 25

Even though we strongly conjecture that the idea outlined above can be indeed implemented, 26

the actual formal implementation would likely be a bit tedious (cf. the proof of Proposition 3.6). 27

It would be very nice to have a general fact that would imply this sort of results, rather than 28

checking the details for each specific result that involves a problem with ‘enough’ primitive recursive 29

instances. 30

5.3. Can we always use padding? It seems that for all combinatorial problems that we are 31

aware of, primitive recursive instances are as computationally powerful as computable instances. 32

Question 5.9. Is there a natural problem P so that for some computable instance X, there is no 33

primitive recursive instance X̂ such that every solution of X̂ computes a solution of X? 34

The question above is of course loosely stated, since ‘natural’ is a subjective quality. Preferably, 35

we would like to find a reverse mathematical problem P that has already been studied in the past 36

rather than manufacture an ad hoc problem. 37

We therefore leave the question open, but we give an example of a somewhat natural problem to 38

illustrate what can potentially go wrong with primitive recursive instances: there could be simply 39

not enough such instances. The example below is in the spirit of the ‘categoricity’ examples that 40

we have seen in Section 3. It is based on an old result in effective algebra that can be traced back 41

to Mal’cev [Mal62] and the well-known description of subgroups of the rationals (Q,+) by their 42

Baer types [Bae37]. The elementary result says that two rank 1 computable TFAGs (torsion-free 43

abelian groups) having the same types have to be isomorphic. The corresponding old effective 44

algebraic result says that groups having the same type are indeed computably isomorphic, and 45

that every computable rank 1 group has to have a c.e. (but not necessarily computable) type. We 46

clarify these terms below. 47

48

Definition 5.10. The following definitions can be formalised in PRA2. We represent groups as 49

structures (§ 3.1). 50

• We say that an additive torsion-free abelian group (TFAG) G has rank 1 if ∀g, h ∈ G \ {0} 51

we can find non-zero m,n ∈ Z such that mg = nh6. 52

6Using primitive recursion, define mg via 1g = g and (k+1)g = kg+g. For a negative integer m, mg = −(−m)g. In
particular, we can express that a group is torsion-free by stating that the order of any non-zero element is infinite.

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 33

• Say that rank 1 TFAGs G and H have the same (Baer) type, written t(G) = t(H), if there
exist non-zero g in G and a non-zero h in H such that, for any m ∈ N,

H |= m|h ⇐⇒ G |= m|g,

where A |= k|x means that there is a y ∈ A such that ky = x. 1

• A rank 1 TFAG G is Baer categorical if whenever H is a rank 1 TFAG such that t(G) = 2

t(H), we have that there is an isomorphism from H onto G. 3

• An instance of BaerType is a rank 1 Baer categorical G. A solution is a set H ⊆ N such 4

that for some non-zero g ∈ G, H = {m : m|g}. (Output the empty set otherwise.) 5

In other words, BaerType takes a ‘categorical’ group and outputs its isomorphism invariant. 6

The example below exploits that there are simply not enough primitive recursive Baer categorical 7

groups. On the other hand, Baer’s classification of rank 1 TFAGs holds computably, and thus 8

there are enough instances to code an arbitrary c.e. set. 9

Proposition 5.11. For any c.e. Turing degree b, there is a computable instance of BaerType any 10

solution of which has degree b. In contrast, the only primitive recursive instance of BaerType is 11

the trivial group, and the only solution is the empty set. 12

Proof. Use the aforementioned classification of Baer combined with the fact that every rank 1 group 13

is computably categorical meaning that any two isomorphic computable copies are computably 14

isomorphic. Code any c.e. set S into a computable G ≤ Q as follows: 15

pi|1 ∈ G iff i ∈ S. 16

Since any other non-zero element is a rational multiple of 1, any such element also codes S up to a 17

finite difference. Thus, this coding is degree-invariant. (This argument is folklore; see [Mel14] for 18

further details.) 19

However, in the minimal standard model of PRA2, the only Baer categorical rank 1 TFAG is the 20

trivial group. This is because for any nontrivial primitive recursive TFAG, there exists a (fully) 21

primitive recursive group computably isomorphic to it but not primitively recursively isomorphic 22

to it. (We cite [KMN17] for a detailed proof.) It follows that the only possible primitive recursive 23

instance is {0}, and the only possible solution is the empty set. � 24

5.4. A note about ACA0 and 2N-ACA0. We conjecture that, much in the spirit of the categoricity 25

results discussed in § 3.3, the proof of Proposition 5.11 outlined above can be carried out in models 26

that are not necessarily standard or minimal. We conjecture that PRA2 ` BaerType while RCA0 ` 27

ACA0 ↔ BaerType; we leave the verification of this claim to the reader. 28

We shall not really look at problems equivalent to ACA0 in the present paper, but we conjecture 29

that a large portion of results known to be equivalent to ACA0 over RCA0 will be equivalent to 30

ACA0 or 2N-ACA0 over PRA2 as well; we clarify what we mean by ACA0 and 2N-ACA0 below. 31

The function-based version of ACA0 is similar to the function-based version QF-AC of RCA0, but 32

it asserts the existence of Σ0
n definable functions rather than just ∆0

1-definable functions. Similarly 33

to RCA0, it also has a bounded version that is strictly weaker. More specifically, the bounded 34

version, that we denote 2N-ACA0, postulates the existence of arithmetically definable {0, 1}-valued 35

functions. Notably, over PRA2, 2N-ACA0 does not imply RCA0 (this is similar to Proposition 2.29). 36

Notice that, 2N-ACA0, and hence ACA0, implies arithmetical induction, since any arithmetical 37

formula becomes equivalent to a quantifier-free formula (with extra parameter the defining {0, 1}- 38

valued function), over which one can apply QF-I. 39

6. WKL0 over PRA2
40

Recall that instances of WKL0 are binary trees, and solutions are paths through the trees. 41

We can represent a binary tree via a set of finite {0, 1}-strings (identified with its characteristic 42

function) closed under taking the prefix. Note that a solution is necessarily a {0, 1}-valued function; 43

in particular, it is primitively recursively bounded. We therefore obtain the following (seemingly 44

well-known) fact. 45

Proposition 6.1. Over PRA2, WKL0 is strictly stronger than ∆0
1-CA, is incomparable with RCA0, 46

and is strictly weaker than ACA0. 47

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 34

Proof. To see why PRA2 +WKL0 ` ∆0
1-CA, fix an instance of ∆0

1-CA whose solution is f . Use the 1

idea in (1) of Theorem 5.4 to define a primitive recursive tree T such that the only path through T 2

is f . (Note that we do not need induction to argue that the only path through T is f .) Of course, 3

if we were to give full details, then we would define the tree using bounded versions of formulae 4

from the instance of ∆0
1-CA and primitive recursion to produce the tree. 5

6

For instance, we can argue as follows. Consider an instance of ∆0
1-CA, i.e., ∆0

0-formulae ϕ(n, x) and ψ(n, x) such 7

that ∀n[∃xϕ(n, x)↔ ∀x¬ψ(n, x)]. Then a string σ belongs to our tree T if and only if 8

(∀i < |σ|)[(σ(i) = 0→ (∀x ≤ |σ|)¬ϕ(i, x)) ∧ (σ(i) = 1→ (∀x ≤ |σ|)¬ψ(i, x))]. 9

Then the only path through our tree is f . Indeed, if g is an arbitrary path through T , then: 10

g(i) = 0 ⇒ ∀x¬ϕ(i, x) ⇔ f(i) = 0; 11

g(i) = 1 ⇒ ∀x¬ψ(i, x) ⇔ f(i) = 1. 12

This is similar to the proof of Σ0
1-separation from WKL0 given in [Sim09, Lemma IV.4.4]. 13

14

Since there are infinite primitive recursive binary trees with no computable paths ((1) of The- 15

orem 5.4 combined with folklore), the standard minimal model of PRA2 + RCA0 illustrates that 16

PRA2+RCA0 6`WKL0, and in particular PRA2+∆0
1-CA 6`WKL0. To see why PRA2+WKL0 6` RCA0, 17

follow the proof of Proposition 2.29 to construct a standard model of PRA2 +WKL0 that contains 18

only primitively recursively bounded functions. The proof that ACA0 implies WKL0 is essentially 19

the same as the standard proof in the set-based system, up to notation. � 20

Remark 6.2. We do not need the full power of ACA0 to deduce WKL0; the existence of arithmetical 21

{0, 1}-valued functions would suffice. 22

It is immediate to see that it is possible to compute a path in each infinite pruned tree, i.e., a 23

tree without leaves. Thus, RCA0 proves both WKL and KL for pruned trees. In this setting we 24

observe the following. 25

Proposition 6.3. PRA2 proves that each binary pruned tree has an infinite path. 26

Proof sketch. Let T ⊆ 2<N be without leaves. One can define a path P inductively as follows

P (0) = r

P (n) = P (n− 1)ai

where r is the root and i ∈ {0, 1} is minimal such that P (n− 1)ai ∈ T . � 27

In contrast, we have the following, also highly expected, fact. 28

Proposition 6.4. Over PRA2, RCA0 is equivalent to the following: each infinite pruned tree 29

T ⊆ N<N has an infinite path. 30

Proof. Let T ⊆ N<N be an infinite pruned tree, so that it holds that ∀σ ∃m (σam ∈ T). Let 31

f : N→ N be a choice function for 32

θ(σ,m) = (σam ∈ T), 33

and define a path P through T such that P (n) = fn(r), for r the root of T and n ∈ N. 34

Let θ be a quantifier-free formula such that ∀n∃mθ(n,m). By ∆0
0-comprehension define a tree 35

T ⊆ NN as follows: 36

σ ∈ T ⇔ ∀n < |σ| (σ(n) = m↔ θ(n,m)) 37

It is immediate to check that T is infinite and pruned. The path provides the desired choice 38

function for the formula θ. � 39

Recall that we defined HeineBorelTheorem in Definition 5.2. 40

Proposition 6.5. Over PRA2, HeineBorelTheorem is equivalent to WKL0. 41

Proof. Working in PRA2, we give primitive recursive definitions. It then takes only quantifier- 42

free induction (combined with appealing to the primitive recursive schemata) to argue that these 43

processes define the desired objects. Also, recall that all our intervals have rational end points, so, 44

in particular, inclusion of two given intervals becomes a quantifier-free formula. 45

(⇒). Fix the natural primitive recursive homeomorphism h : 2N → C, where C denotes the 46

Cantor set. The homomorphism h and its inverse are realised by primitive recursive functionals. 47

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 35

Remark 6.6. We shall avoid giving the formal definition of a homeomorphism in PRA2 and treat 1

the operator h merely as a notation that can be extracted from the primitive recursive definition 2

of the Cantor set C. It should be clear to the reader at this stage how this sort of operators can 3

be formally defined; we omit this. 4

Let T ⊆ 2N be an infinite tree. We will primitively recursively compute a HeineBorelTheorem 5

instance (Is : s ∈ ω) such that any solution of (Is : s ∈ ω) primitively recursively computes a 6

WKL0-solution for T . Firstly, let all intervals in [0, 1] \ C be included in (Is : s ∈ ω). Secondly, 7

for each string ρ /∈ T , put the interval corresponding to ρ into (Is : s ∈ ω). Obviously, this 8

(Is : s ∈ ω) is primitive recursive in T . One can arrange the construction, by slowly enumerating 9

‘small enough’ intervals in [0, 1]\C, in such a way that
⋃
s<t Is + [0, 1] for all t. Hence, (Is : s ∈ ω) 10

is an instance. Now, let (a presentation of) a real r be so that r /∈
⋃
s Is. 11

It is easy to see that if X 6∈ [T], then
⋃
s Is contains the real h(X). Therefore, h−1(r) ∈ [T]. 12

(⇐). Let (Is : s ∈ ω) be an HeineBorelTheorem instance. Recall that each string ρ ∈ 2<N
13

represents an interval of form [kρ/2
|ρ|, (kρ + 1)/2|ρ|]. To define T , whenever we see

⋃
s<n Is ⊇ 14

[kρ/2
|ρ|, (kρ+1)/2|ρ|], we put ρ of length n in T , i.e., the complement of T . Otherwise, declare ρ in 15

T . Let Y ∈ [T]. Clearly (kY �n/2
n : n ∈ ω) is a sequence of rationals representing a real r ∈ [0, 1] 16

such that r /∈
⋃
s Is. � 17

We conjecture that many basic theorems, such as GödelCompletenessTheorem, that are equivalent 18

to WKL0 over RCA0 remain equivalent to WKL0 over PRA2. The following elementary but useful 19

fact helps to study problems whose solutions lie in 2N. 20

Lemma 6.7. Suppose P and Q are problems such that P -instances lie in 2N and Q-solutions lie 21

in 2N. Suppose also that P implies ∆0
1-CA over PRA2. If P implies Q over RCA0, then P implies 22

Q over PRA2. 23

Proof. Suppose M |= PRA2 + P . Define an expansion M̂ of M by taking the collection of all 24

∆0
1-definable functions in M . It should be clear that M̂ |= RCA0. Note also that M̂ ∩ 2N = M ∩ 2N 25

because P implies ∆0
1-CA over PRA2 (note that ∆0

1-definability is transitive). It follows that M 26

already contains all P -instances that are present in M̂ . Since M̂ is an expansion of M and M |= P , 27

it evidently contains all the solutions of P too. So it follows that M̂ |= RCA0 +P , and thus M̂ |= Q. 28

Recall that all solutions of Q are in 2N, and M̂ ∩ 2N = M ∩ 2N. We conclude that M |= Q. � 29

We obtain: 30

Theorem 6.8. Suppose all Q-solutions lie in 2N. If WKL0 implies Q over RCA0, then WKL0 31

implies Q over PRA2. 32

Proof. By Proposition 6.1, we have that PRA2 + WKL0 ` ∆0
1-CA. Under a suitable coding of 33

subsets of 2N, instances of WKL0 can be viewed as primitively recursively bounded functions. 34

We can represent instances of WKL0 as 2-bounded functions, i.e., elements of 2N. It remains to 35

apply Lemma 6.7. � 36

We now derive several corollaries of the result stated above. 37

38

In this contest, where IΣ0
1 may fail, one needs a bit of care to formalise, inside the theory, 39

the notion of Turing reduction. We borrow the definition of ‘being recursive in’, as in [CY07], 40

so that ∀X ∃Y (Y ≤T X) means that there exists a monotonic Σ0
1-functional Φ such that y ∈ Y 41

(y /∈ Y) if and only if there are two coded sets P ⊆ X and N ⊆ N \X such that 〈x, 1, P,N〉 ∈ Φ 42

(〈x, 0, P,N〉 ∈ Φ). Notice that, in our contest, both P ⊆ X and N ⊆ N \X are ∆0
0-properties. For 43

more details we refer to the cited paper. 44

A set H ⊆ N is homogeneous for a σ ∈ 2<N if there exists a colour i < 2 such that ∀n ∈ 45

H (n < |σ| → σ(n) = i). A set H ⊆ N is homogeneous for an infinite tree T ⊆ 2<N if the tree 46

{σ ∈ T | H is homogeneous for σ} is infinite. 47

Let T be a theory. A formula ϕ(x0, . . . , xn) of T is an atom of T if for each formula ψ(x0, . . . , xn) 48

it holds that T ` ϕ → ψ or T ` ϕ → ¬ψ, but not both. The theory T is atomic if, for every 49

formula ψ(x0, . . . , xn) consistent with T , there is an atom ϕ(x0, . . . , xn) of T such that T ` ϕ→ ψ. 50

The types of T are subenumerable if there exists a set S such that, for every type Γ of T , there is 51

an i such that {ϕ | 〈i, ϕ〉 ∈ S} and Γ imply the same formulae in T . A model M of T is atomic if 52

every n-tuple from M satisfies an atom of T . 53

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 36

Corollary 6.9. Over PRA2, the following principles are implied by WKL0: 1

(1) WWKL, Weak Weak Kőnig’s Lemma, i.e., every tree T ⊆ 2<N such that 2

|{σ ∈ 2n | σ ∈ T}|
2n

3

is uniformly bounded away from zero for all n has an infinite path. 4

(2) DNR, Diagonally Non-Recursive function, i.e., for each A ⊆ N there exists a function 5

f : N→ N such that f(e) 6= ϕAe (e), for any e ∈ N. 6

(3) ∀X ∃Y (Y �T X). 7

(4) AST, i.e., Atomic model theorem with Subenumerable Types: Let T be a complete atomic 8

theory whose types are subenumerable. Then T has an atomic model. 9

(5) RWKL, Ramsey-type Weak Kőnig’s Lemma, i.e., for every infinite subtree of 2<N, there is 10

an infinite homogeneous set. 11

Proof. In light of Theorem 6.8 we only need to check that the items above are consequences of 12

WKL0 and that their solutions belong to 2N. 13

Items (1) and (3) are clear consequences of WKL0. 14

Over RCA0, WKL0 implies the existence of {0, 1}-valued diagonally non-computable functions. 15

Moreover, the existence of {0, 1}-valued diagonally non-computable functions trivially implies DNR. 16

Thus, (2) holds. 17

Over RCA0, AST is implied by WKL0 by [HSS09, Theorem 6.3]. In order to apply Theorem 6.8, 18

we represent a model as a {0, 1}-valued function, namely the signature functions are represented 19

through their graphs. 20

Over RCA0, (5) is implied by WKL0 by [Flo12, Theorem 3]. � 21

6.1. Uniform continuity. Recall that, over RCA0, UniformContinuityOn[0, 1] is equivalent to 22

WKL0 (see [Sim09, Exercise IV.2.9]). 23

Definition 6.10. An instance of UniformContinuityOn[0, 1] (in a modelM) is a presentation (X, δ) 24

of a function on [0, 1] (see § 5.1). A solution of X is a modulus of uniform continuity of X, which 25

is a function h ∈ ωω such that |r − r̂| < 2−h(n) implies |X(r)−X(r̂)| < 2−n for all r, r̂ ∈ [0, 1]. 26

We now determine the proof-theoretic strength of UniformContinuityOn[0, 1] over PRA2. 27

Theorem 6.11. Over PRA2, UniformContinuityOn[0, 1] is equivalent to WKL0 + RCA0. 28

Proof. It is well known that over RCA0, UniformContinuityOn[0, 1] is equivalent to WKL0. So it 29

suffices to show that over PRA2, UniformContinuityOn[0, 1] implies RCA0. The proof is based on a 30

recursion-theoretic lemma. We first explain how to prove the lemma and then we explain how to 31

turn it into an argument in PRA2. 32

Lemma 6.12. Fix a computable function g. There is a primitive recursive contiinuous function 33

(h, δ) (in the sense of §5.1) so that any uniform continuity modulus of (h, δ) primitively recursively 34

computes a function dominating g. 35

Proof. We define a continuous function represented via primitive recursive (h, δ). In order for (h, δ) 36

to be a presentation of a continuous functions we must make sure that δ gives arbitrarily small 37

covers of [0, 1]. But we do not have to produce these covers ‘quickly’. In other words, we can delay 38

the definition of the next refined cover until we are ready, as long as every rational point that we 39

consider at any stage is within its δ-neighbourhood that could be quite small. 40

If m is a modulus of uniform continuity for g, then our goal is to make sure that m(i) > g(i), 41

for every i. Fix some irrational but primitive recursive point ξ, say ξ =
√

2/2. (Fixing ξ ahead of 42

time is not really necessary, but it will make things a bit more transparent at least in the standard 43

model.) We build it so that the infinitely many breaking points of h converge at the accumulation 44

point (ξ, h(ξ)), where h(ξ) = supx∈[0,1] h(x) = 2. Outside of ξ the function h will be piecewise 45

linear. As the argument of h approaches ξ the value of h will be increasing, but the speed with 46

which it will be increasing locally will be determined by the construction, thus making h very steep 47

around ξ. The reader is perhaps already convinced that this can be done primitively recursively 48

by delaying, but we give more details nonetheless. 49

To makem(i) > g(i), we ensure that there is a pair of rational points xi and zi so that zi < xi < ξ
and |xi − zi| < 2−g(i) but |h(zi) − h(xi)| > 2−i. For that, we wait for g(i) to converge. While
we wait, we define the function on more and more rational points, as follows. If r < ξ is a new

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 37

rational point so that h(r) has to be defined, then use bounded search to find the closest rational
q < ξ so that h(q) has already been defined at a previous stage. Set h(r) = h(q), and also declare
δ(r, n) to be so small that the point ξ is not covered by the δ-neighbourhood (nbhd) of r. Notice
that if a rational point d is in the interval between r and q, then at the stage at which we consider
d the value of h(d) will be set equal to h(r), and we can define δ for d so that the δ-nbhd of d is
inside the interval between r and q. We proceed in this manner primitively recursively until g(i) is
calculated. Once this is done, we primitively recursively pick the right-most rational to the left of
ξ for which h has already been defined and set zi equal to this rational. Note that h(xi−1) = h(zi).
We then pick a rational xi between zi and ξ so that is 2−g(i)-close to zi, is not covered by the
δ-nbhd around zi (for the precision moduli defined so far for zi), and set

h(xi) = h(zi) + 2−i+1 = h(xi−1) + 2−i+1,

and we also define δ so that ξ is covered by the δ-nbhd of xi at the stage. To make the function 1

continuous, we also implement the same procedure for rationals r > ξ, and simultaneously define a 2

sequences (wi)i∈ω and (yi)i∈ω that converge to ξ from the right. This is done similarly to how we 3

defined zi and xi mutatis mutandis; we omit this. Note that the function h is indeed continuous at 4

the point ξ, with limx→ξ h(x) well-defined (and is equal to 2). The function is therefore continuous 5

at ξ. It is also continuous at any other point, by the construction. It is also primitive recursive 6

(by the construction). � 7

In any ω-model, the theorem now follows by subrecursive relativisation of the above argument.
To get an argument in PRA2, we use the restricted Church-Turing thesis to produce a primitive
recursive schema implementing the lemma above. For that, we fix an instance of RCA0 (more
formally, of QF-AC) and use primitive recursion to produce an instance of UniformContinuityOn[0, 1]
along the lines of the proof of the lemma above. Some care must be taken. For instance, it is
perhaps most convenient to use Proposition 2.22 and use the minimisation operator applied to some
function that exists in the model. We shall use this function in our primitive recursive schema.
Also, to avoid appealing to WKL0, we have to be very careful and explicit in the way we define δ
and the associated covers of [0, 1]. For that, for parameter s in the scheme that corresponds to a
‘stage’, we always subdivide [0, 1] into more and more refined rational intervals using, e.g., nested
partitioning of the form

0 < 2−s < 2 · 2−s < . . . < (k + 1)2−s < . . . < 1− 2−s < 1,

which do correspond to covers of the whole [0, 1] without any reference to WKL0. It does not take 8

any induction to conclude that the formal schema gives a presentation of a continuous function. 9

We then argue using only bounded induction and and bounded comprehension that, using any 10

solution of this instance of UniformContinuityOn[0, 1] produced by the schema, we can calculate the 11

fixed instance of RCA0. We invite the reader to reconstruct the formal details. � 12

7. Further open questions 13

Recall that we stated Questions 3.4, 3.21, 4.9, 4.13, 4.14, 5.9 in the previous sections. We also 14

leave open whether all dashed lines in Fig. 1 correspond to strict implications. We state a few 15

more questions below. 16

Question 7.1. Study the behaviour of COH over PRA2. 17

We note that COH has behaves differently over RCA0 and over RCA∗0; only over the former is 18

implied by RT2
2 (see [CJS01, Lemma 7.11] and [FCKK21]). 19

Question 7.2. Develop the theory of Weihrauch reductions in the primitive recursive setting. 20

In particular, some version of Weihrauch reduction may help to ‘separate’ the categoricity 21

principles discussed in the present paper for the dense linear order, the random graph, and the 22

atomless Boolean algebra. We note that an ‘online’ version of Weihrauch reduction has recently 23

been suggested in [DMN21]. 24

Question 7.3. Develop the reverse mathematics of countable algebra over PRA2. 25

For instance, how much of [Sol98] can be carried over PRA2? We have not really looked at natural 26

problems equivalent to ACA0 over PRA2; see Subsection 5.4 for a brief discussion. We believe that 27

systematically investigating into Question 7.3 will help to fill this gap. 28

29

Of course, this list of potential questions is far from being complete. 30

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 38

References 1

[AK00] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of 2

Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 3

2000. 4

[Avi05] Jeremy Avigad. Weak theories of nonstandard arithmetic and analysis. In Stephen G. Simpson, editor, 5

Reverse Mathematics 2001, Lecture Notes in Logic, pages 19–46. Cambridge University Press, 2005. 6

[Bae37] Reinhold Baer. Abelian groups without elements of finite order. Duke Math. J., 3(1):68–122, 1937. 7

[BBB+22] Ramil Bagaviev, Ilnur Batyrshin, Nikolay Bazhenov, Dmitry Bushtets, Marina Dorzhieva, Heer Tern 8

Koh, Ruslan Kornev, Alexander Melnikov, and Keng Meng Ng. Computably and punctually universal 9

spaces, 2022. Submitted. 10

[BDKM19] N. Bazhenov, R. Downey, I. Kalimullin, and A. Melnikov. Foundations of online structure theory. Bull. 11

Symb. Logic, 25(2):141–181, 2019. 12

[Bel14] David R. Belanger. Reverse mathematics of first-order theories with finitely many models. J. Symb. 13

Log., 79(3):955–984, 2014. 14

[Bel15] David R. Belanger. WKL0 and induction principles in model theory. Ann. Pure Appl. Logic, 166(7– 15

8):767–799, 2015. 16

[BG11] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak computability. 17

J. Symbolic Logic, 76(1):143–176, 2011. 18

[BGP21] Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch complexity in computable analysis. 19

In Handbook of computability and complexity in analysis, Theory Appl. Comput., pages 367–417. 20

Springer, Cham, 2021. 21

[BK21] N. A. Bazhenov and I. Sh. Kalimullin. Punctual categoricity spectra of computably categorical struc- 22

tures. Algebra Logic, 60(3):223–228, 2021. 23

[Bra05] Vasco Brattka. Effective Borel measurability and reducibility of functions. Math. Log. Q., 51(1):19–44, 24

2005. 25

[BS86] Douglas K. Brown and Stephen G. Simpson. Which set existence axioms are needed to prove the 26

separable Hahn-Banach theorem? Ann. Pure Appl. Logic, 31(2-3):123–144, 1986. Special issue: Second 27

Southeast Asian logic conference (Bangkok, 1984). 28

[Bus86] Samuel R Buss. Bounded arithmetic. Bibliopolis, 1986. 29

[Bus98] Samuel R Buss. First-order proof theory of arithmetic. Handbook of proof theory, 137:79–147, 1998. 30

[CJS01] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey’s theorem 31

for pairs. The Journal of Symbolic Logic, 66(1):1–55, 2001. 32

[CN10] Stephen Cook and Phuong Nguyen. Logical foundations of proof complexity. Perspectives in Logic. 33

Cambridge University Press, Cambridge; Association for Symbolic Logic, La Jolla, CA, 2010. 34

[Con14] Chris J. Conidis. Infinite dimensional proper subspaces of computable vector spaces. J. Algebra, 35

406:346–375, 2014. 36

[Con19] Chris J. Conidis. The computability, definability, and proof theory of Artinian rings. Adv. Math., 37

341:1–39, 2019. 38

[CR91] Douglas Cenzer and Jeffrey Remmel. Polynomial-time versus recursive models. Ann. Pure Appl. Logic, 39

54(1):17–58, 1991. 40

[CR92] Douglas Cenzer and Jeffrey Remmel. Polynomial-time abelian groups. Ann. Pure Appl. Logic, 56(1– 41

3):313–363, 1992. 42

[CR98] D. Cenzer and J. B. Remmel. Complexity-theoretic model theory and algebra. In Handbook of recur- 43

sive mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math., pages 381–513. North-Holland, 44

Amsterdam, 1998. 45

[CY07] C. T. Chong and Yue Yang. The jump of a Σn-cut. Journal of the London Mathematical Society (2), 46

75(3):690–704, 2007. 47

[DHK+07] Rodney G. Downey, Denis R. Hirschfeldt, Asher M. Kach, Steffen Lempp, Joseph R. Mileti, and 48

Antonio Montalbán. Subspaces of computable vector spaces. J. Algebra, 314(2):888–894, 2007. 49

[DMN21] R. Downey, A. G. Melnikov, and K. M. Ng. Foundations of online structure theory II: The operator 50

approach. Logical Methods in Computer Science, 17(3):6:1–6:35, 2021. 51

[EG00] Yuri L. Ershov and Sergei S. Goncharov. Constructive models. Siberian School of Algebra and Logic. 52

Consultants Bureau, New York, 2000. 53

[EGN+98a] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, editors. Handbook of 54

recursive mathematics. Vol. 1, volume 138 of Studies in Logic and the Foundations of Mathematics. 55

North-Holland, Amsterdam, 1998. Recursive model theory. 56

[EGN+98b] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, editors. Handbook of 57

recursive mathematics. Vol. 2, volume 139 of Studies in Logic and the Foundations of Mathematics. 58

North-Holland, Amsterdam, 1998. Recursive algebra, analysis and combinatorics. 59

[End01] Herbert B Enderton. A mathematical introduction to logic. Elsevier, 2001. 60

[Ers72] Yu. L. Ershov. Existence of constructivizations. Soviet Math. Dokl., 13(5):779–783, 1972. 61

[Ers73] Yu. L. Ershov. Skolem functions and constructive models. Algebra Logic, 12(6):368–373, 1973. 62

[Ers80] Yu. L. Ershov. Decidability problems and constructive models. “Nauka”, Moscow, 1980. In Russian. 63

[FCKK21] Marta Fiori-Carones, Leszek Aleksander Ko lodziejczyk, and Katarzyna W. Kowalik. Weaker cousins 64

of Ramsey’s theorem over a weak base theory. Ann. Pure Appl. Logic, 172(10):Paper No. 103028, 22 65

pages, 2021. 66

[FCKWY21] Marta Fiori-Carones, Leszek A. Ko lodziejczyk, Tin Lok Wong, and Keita Yokoyama. An isomorphism 67

theorem for models of Weak König’s Lemma without primitive recursion, 2021. In preparation. 68

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 39

[FCM21] Marta Fiori-Carones and Alberto Marcone. To reorient is easier than to orient: An on-line algorithm 1

for reorientation of graphs. Computability, 10(3):215 – 233, 2021. 2

[FCSS22] Marta Fiori-Carones, Paul Shafer, and Giovanni Soldà. An inside/outside ramsey theorem and recur- 3

sion theory. Transactions of the American Mathematical Society, 375(03):1977–2024, 2022. 4

[FFF17] António M. Fernandes, Fernando Ferreira, and Gilda Ferreira. Analysis in weak systems. In Carlos 5

Caleiro, Francisco Diońısio, Paulo Gouveia, Paulo Mateus, and João Editor Rasga, editors, Logic and 6

computation: essays in honour of Amı́lcar Sernadas, pages 231–261. College Publication, 2017. 7

[Flo12] Stephen Flood. Reverse mathematics and a Ramsey-type König’s lemma. The Journal of Symbolic 8

Logic, 77(4):1272–1280, 2012. 9

[Fri76a] Harvey Friedman. Subsystems of second order arithmetic with restricted induction. I [abstract]. J. 10

Symb. Log., 41(2):557–558, 1976. 11

[Fri76b] Harvey Friedman. Subsystems of second order arithmetic with restricted induction. II [abstract]. J. 12

Symb. Log., 41(2):558–559, 1976. 13

[FSS83] Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith. Countable algebra and set existence 14

axioms. Ann. Pure Appl. Logic, 25(2):141–181, 1983. 15

[Gas98] William Gasarch. A survey of recursive combinatorics. In Yu. L. Ershov, S. S. Goncharov, A. Nerode, 16

, J. B. Remmel, and V. W. Marek, editors, Handbook of recursive mathematics, volume 139 of Studies 17

in logic and the foundations of mathematics, pages 1041–1176. Elsevier, 1998. 18

[GHM15] Kirill Gura, Jeffry L. Hirst, and Carl Mummert. On the existence of a connected component of a 19

graph. Computability, 4(2):103 – 117, 2015. 20

[GM09] Guido Gherardi and Alberto Marcone. How incomputable is the separable Hahn-Banach theorem? 21

Notre Dame J. Form. Log., 50(4):393–425, 2009. 22

[GM17] Noam Greenberg and Alexander Melnikov. Proper divisibility in computable rings. J. Algebra, 474:180– 23

212, 2017. 24

[Gri90] Serge Grigorieff. Every recursive linear ordering has a copy in DTIME-SPACE(n, log(n)). J. Symbolic 25

Logic, 55(1):260–276, 1990. 26

[Har74] Leo Harrington. Recursively presentable prime models. J. Symbolic Logic, 39:305–309, 1974. 27

[Hat89] Kostas Hatzikiriakou. Algebraic disguises of Σ0
1 induction. Archive for Mathematical Logic, 29:47–51, 28

1989. 29

[Hir87] Jeffry L. Hirst. Combinatorics in Subsystems of Second Order Arithmetic. PhD thesis, The Pennsyl- 30

vania State University, 1987. 31

[Hir15] Denis R. Hirschfeldt. Slicing the Truth. World Scientific, 2015. 32

[HLS17] Denis R. Hirschfeldt, Karen Lange, and Richard A. Shore. Induction, bounding, weak combinatorial 33

principles, and the homogeneous model theorem. Mem. Amer. Math. Soc., 249(1187), 2017. iii+101 34

pages. 35

[HP17] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic, volume 3. Cambridge Uni- 36

versity Press, 2017. 37

[HS96] A. James Humphreys and Stephen G. Simpson. Separable Banach space theory needs strong set 38

existence axioms. Trans. Amer. Math. Soc., 348(10):4231–4255, 1996. 39

[HS17] Kostas Hatzikiriakou and Stephen G. Simpson. Reverse mathematics, Young diagrams, and the as- 40

cending chain condition. J. Symb. Log., 82(2):576–589, 2017. 41

[HSS09] Denis Hirschfeldt, Richard Shore, and Theodore Slaman. The atomic model theorem and type omitting. 42

Transactions of the American Mathematical Society, 361(11):5805–5837, 2009. 43

[Joc72] Carl G. Jockusch, Jr. Ramsey’s theorem and recursion theory. The Journal of Symbolic Logic, 37:268– 44

280, 1972. 45

[Kay91] Richard Kaye. Models of Peano arithmetic. Clarendon Press, Oxford, 1991. 46

[Kie81] H. A. Kierstead. An effective version of Dilworth’s theorem. Trans. Am. Math. Soc., 268:63–77, 1981. 47

[Kie98] H. A. Kierstead. On line coloring k-colorable graphs. Israel J. Math., 105(1):93–104, 1998. 48

[KKY21] Leszek A. Ko lodziejczyk, Katarzyna W. Kowalik, and Keita Yokoyama. How strong is Ramsey’s the- 49

orem if infinity can be weak?, 2021. Submitted. Available at arXiv:2011.02550. 50

[KMM21] Iskander Kalimullin, Alexander Melnikov, and Antonio Montalban. Punctual definability on structures. 51

Ann. Pure Appl. Logic, 172(8):Paper No. 102987, 18, 2021. 52

[KMN17] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures computable with- 53

out delay. Theoretical Computer Science, 674:73–98, 2017. 54

[Koh00] Ulrich Kohlenbach. Things that can and things that cannot be done in PRA. Ann. Pure Appl. Logic, 55

102(3):223–245, 2000. 56

[Koh08] Ulrich Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics. Springer 57

Science & Business Media, 2008. 58

[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive graph theory. 59

SIAM J. Discrete Math., 7:72–89, 1994. 60

[KY15] Leszek A. Ko lodziejczyk and Keita Yokoyama. Categorical characterizations of the natural numbers 61

require primitive recursion. Annals of Pure and Applied Logic, 166(2):219–231, 2015. 62

[LST89] L. Lovász, M. Saks, and W. T. Trotter Jr. An on-line graph coloring algorithm with sublinear perfor- 63

mance ratio. Discrete Math., 75:319–325, 1989. 64

[Mal61] A. I. Mal’tsev. Constructive algebras. I. Russ. Math. Surv., 16(3):77–129, 1961. 65

[Mal62] A. I. Mal’tsev. On recursive abelian groups. Sov. Math., Dokl., 32:1431–1434, 1962. 66

[Mel14] Alexander G. Melnikov. Computable abelian groups. Bull. Symb. Log., 20(3):315–356, 2014. 67

arXiv:2011.02550

PRIMITIVE RECURSIVE REVERSE MATHEMATICS 40

[Mel17] Alexander G. Melnikov. Eliminating unbounded search in computable algebra. In Jarkko Kari, Florin 1

Manea, and Ion Petre, editors, Unveiling Dynamics and Complexity - 13th Conference on Computabil- 2

ity in Europe, CiE 2017, volume 10307 of Lecture Notes in Computer Science, pages 77–87. Springer, 3

2017. 4

[MN19] Alexander G. Melnikov and Keng Meng Ng. The back-and-forth method and computability without 5

delay. Israel J. Math., 234(2):959–1000, 2019. 6

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. The Journal of Symbolic Logic, 36(3):494–508, 7

1971. 8

[PER89] Marian B. Pour-El and J. Ian Richards. Computability in analysis and physics. Perspectives in Math- 9

ematical Logic. Springer-Verlag, Berlin, 1989. 10

[Rab60] Michael O. Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer. 11

Math. Soc., 95:341–360, 1960. 12

[Rem86] J. B. Remmel. Graph colorings and recursively bounded Π0
1-classes. Ann. Pure Appl. Logic, 32:185– 13

194, 1986. 14

[Sch80] James H. Schmerl. Recursive colorings of graphs. Canadian Journal of Mathematics, 32(4):821–830, 15

1980. 16

[Sho06] Richard A. Shore. Invariants, Boolean algebras and ACA+
0 . Trans. Amer. Math. Soc., 358(3):989–1014, 17

2006. 18

[Sim05] Stephen G. Simpson, editor. Reverse mathematics 2001, volume 21 of Lecture Notes in Logic. Associ- 19

ation for Symbolic Logic, La Jolla, CA; A K Peters, Ltd., Wellesley, MA, 2005. 20

[Sim09] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Association for Symbolic Logic, 2009. 21

[Sim14] Stephen G Simpson. Baire categoricity and Σ0
1-induction. Notre Dame Journal of Formal Logic, 22

55(1):75–78, 2014. 23

[Sla04] Theodore Slaman. Σn-bounding and ∆n-induction. Proceedings of the American Mathematical Soci- 24

ety, 132(8):2449–2456, 2004. 25

[Sol98] David Reed Solomon. Reverse mathematics and ordered groups. ProQuest LLC, Ann Arbor, MI, 1998. 26

Thesis (Ph.D.)–Cornell University. 27

[Spe71] E. Specker. Ramsey’s theorem does not hold in recursive set theory. In Logic Colloquium ’69 (Proc. 28

Summer School and Colloq., Manchester, 1969), pages 439–442. North-Holland, Amsterdam, 1971. 29

[SS86] Stephen G. Simpson and Rick L. Smith. Factorization of polynomials and Σ0
1 induction. Ann. Pure 30

Appl. Logic, 31(2-3):289–306, 1986. 31

[SS21] Victor L. Selivanov and Svetlana Selivanova. Primitive recursive ordered fields and some applications. 32

In François Boulier, Matthew England, Timur M. Sadykov, and Evgenii V. Vorozhtsov, editors, Com- 33

puter Algebra in Scientific Computing - 23rd International Workshop, CASC 2021, volume 12865 of 34

Lecture Notes in Computer Science, pages 353–369. Springer, 2021. 35

[ST90] Naoki Shioji and Kazuyuki Tanaka. Fixed point theory in weak second-order arithmetic. Ann. Pure 36

Appl. Logic, 47(2):167–188, 1990. 37

[SY13] Stephen G. Simpson and Keita Yokoyama. Reverse mathematics and Peano categoricity. Annals of 38

Pure and Applied Logic, 164(3):284–293, 2013. 39

[Wei00] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An EATCS Series. 40

Springer-Verlag, Berlin, 2000. An introduction. 41

[Yok13] Keita Yokoyama. On the strength of Ramsey’s theorem without Σ1-induction. Mathematical of Logic 42

Quarterly, 59:108–111, 2013. 43

	1. Introduction
	2. Preliminaries
	2.1. The finitist's first-order system PRA
	2.2. The second-order system PRA2
	2.3. Recursive comprehension and choice
	2.4. Calculus of finite sets

	3. Examples from countable algebra and infinite combinatorics
	3.1. Algebraic structures and vector spaces
	3.2. Countable categoricity
	3.3. Infinite combinatorics done in PRA2
	3.4. Models and algebraically closed fields

	4. Baire category theorem and Ramsey theorem
	4.1. Baire category theorem
	4.2. The stronger result
	4.3. Ramsey Theorem

	5. Transforming a computable instance to a primitive recursive instance
	5.1. More notation
	5.2. The main transformation result
	5.3. Can we always use padding?
	5.4. A note about ACA0 and 2N-ACA0

	6. WKL0 over PRA2
	6.1. Uniform continuity

	7. Further open questions
	References

