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Many classical proofs in algebra and model theory are algorithmic in nature. For
example, when we show that every field is contained in an algebraically closed field, we
usually construct the closure. Another illustrative example is the proof of the Com-
pleteness Theorem for a first-order language via the Henkin construction. Although
these proofs are typically given via “algorithms”, the algorithmic nature of these and
similar results became fully accessible only after Mal’cev and Rabin (early 1960’s)
independently came up with the following definition:

Definition A countably infinite algebraic structure A is computable or constructive if
there exists a bijection ν : N→ A such that the ν-preimages of operations and relations
on A become (uniformly) computable sets of natural numbers. The map ν is called a
computable presentation (or computable copy) of A.

The definition generalizes the notion of a recursively presented group in which the word
problem is solvable, and also the notion of an explicitly given field suggested by van
der Waerden and formalized by Fröhlich and Shepherdson. A computable model M
is decidable or strongly constructive if there is a constructivization ν of M such that
every ν pre-images of definable sets are uniformly computable.

The effective content of the Henkin construction is rather straightforward: A com-
plete consistent first-order theory T is decidable if and only if T has a decidable model
(folklore). The algorithmic nature of the closure theorem for fields is more interesting:

Every computable field F can be embedded into its computable algebraic closure F
via a computable isomorphism, but locating the image of F within F does not have
to be an algorithmically decidable problem (Rabin, based on the work of Fröhlich and
Shepherdson).

The two basic examples discussed above belong to the field known as computable
model theory which examines the algorithmic nature of algebraic structures and their
theories. One of the central topics in computable model theory is the study of relations
between algorithmic complexity of a theory and its models. In this review we concen-
trate on model-theoretic restrictions and consider ℵ0- and ℵ1-categorical theories and
their models.

The first paper under review studies computable models of ℵ1-categorical theories.
Recall that a first-order theory is κ-categorical if all its models of cardinality κ are
isomorphic. In 1965, Morley showed that if a theory in a countable language is cate-
gorical in some uncountable cardinality, then it is categorical in all uncountable car-
dinalities. Baldwin and Lachlan (1971) proved that countable models of an uncount-
ably categorical theory (which is not countably categorical) can be listed in a chain
A0 � A1 � . . . � Aω of proper elementary embeddings, where A0 is the prime model
and Aω is the saturated model of the theory. Which models from the Baldwin-Lachlan
elementary chain have constructivizations? Starting from Goncharov (1978), there has
been a line of study into the effective content of the Baldwin and Lachlan theorem.
For a uncountably categorical theory T which is not countably categorical, its spectrum
is the collection of i corresponding to computable Ai in the Baldwin-Lachlan chain.
Various authors including Goncharov, Kudaibergenov, Hirschfeldt, Khoussainov, Nies,
Semukhin and Shore showed that {0}, {0, . . . , n}, {ω}, ω, ω + 1 \ {0} and {1, . . . , α}
for every α ∈ (1, . . . , ω], can be realized as spectra.

Andrews showed that there is an uncountably categorical theory whose only construc-
tive models are the prime and the saturated model. Thus, set {0, ω} is a spectrum.
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The proof of the theorem which can be found in the reviewed paper uses an alteration
of the Hrishovski construction. The Hrushovski construction is essentially the Fraisse
limit construction in which strong embeddings are used in place of usual embeddings to
control categoricity of the theory. Using his construction, Hrushovski (1991) obtained a
new example of a strongly minimal theory which does not fall into three classes defined
by Zilber (1986), thus refuting Zilber’s conjecture. The formal definition of a strong
embedding is technical and can be found in the paper under review.

The very rough idea of the proof can be described as follows. Let (Me)e∈ω be an
effective listing of partial computable structures inherited from the enumeration of all
partial computable functions. Using an alternation of the Hrushovski construction,
Andrews builds a computable saturated model M so that for every k > 0 and e, if
Me has a transcendental k-element basis, then Me ⊀ M. The strategy of satisfying
Me ⊀ M can be viewed as an infinite game. Andrews describes a strategy which
guarantees that either Me has no finite basis, or is not embeddable. To make the
prime model computable, Andrews names by a constant every element algebraic over
∅, thus making the signature of M infinite. The specific properties of the Hrushovski
construction are crucial for the verification.

The second paper under review studies ℵ0-categorical theories. It is well-known that
a theory is ℵ0-categorical if and only if the number of complete n-types is finite for
every n ∈ N. Since all countable models of such a theory are isomorphic, the theory T
is decidable if and only if its only countable model is decidable.

Various algorithmic aspects of countably categorical theories have been investigated
by Schmerl, Lerman, Knight, and others. For instance, we could consider a computable
model whose theory is countably categorical and ask for the complexity of this theory.
Khoussainov and Goncharov (2004) showed that for every n ∈ N this complexity can
be at least at the ∆0

n+1 level of the Arithmetical Hierarchy. Using Marker’s extensions,

Khoussainov and Goncharov came up with an elegant coding of 0(n), the canonical
∆0

n+1 -complete set, into the countably categorical first-order theory of a computable
structure.

It has been a long standing problem if the result of Khoussainov and Goncharov
can be improved to the coding of Th(N; 0, S,+,×), the highest possible upper bound.
Khoussainov and Montalban have resolved this problem by constructing an ℵ0-categorical
theory T whose only countable model is computable such that T computes the theory
of true first order arithmetic. The result shows that even under very strong model-
theoretic restrictions on M, the theory of a computable model could be as hard as
possible.

The proof of the above stated theorem uses a generalization of the random graph
to higher dimensions. The constructed computable structure consists of “levels”, each
level is either isomorphic to the n-dimensional analog of the random graph, or to
a graph which extends the random n-graph. For any given Σ0

n-sentence φn in the
signature of true arithmetic, Khoussainov and Montalban produce a computable n-
graph Gn which is “random” if ¬φn holds, and which is isomorphic to the extension
mentioned above, otherwise. The n-graphs Gn can be glued together so that the
resulting model is countably categorical, and so that the satisfyability of φn is encoded
into its Σ0

n-theory. They ensure that the theory computes the true arithmetic by
choosing an appropriate sequence of φn. Although various codings of Σ0

n information
are common in computable model theory, the use of generalized random graphs is
certainly a fresh idea.

It is worth mentioning that Andrews has recently announced another proof of the
result of Khoussainov and Montalban discussed above. The new proof uses a direct
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amalgamation construction combined with the coding of the true arithmetic rather
than a generalization of the random graph.
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